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Abstract

This paper studies the identification of nonseparable models with continuous, endoge-
nous regressors, also called treatments, using repeated cross sections. We show that
several treatment effect parameters are identified under two assumptions on the effect of
time, namely a weak stationarity condition on the distribution of unobservables, and time
variation in the distribution of endogenous regressors. Other treatment effect parameters
are set identified under curvature conditions, but without any functional form restrictions.
This result is related to the difference-in-differences idea, but does neither impose additive
time effects nor exogenously defined control groups. Furthermore, we investigate two ex-
trapolation strategies that allow us to point identify the entire model: using monotonicity
of the error term, or imposing a linear correlated random coefficient structure. Finally,
we illustrate our results by studying the effect of mother’s age on infants’ birth weight.
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1 Introduction

Using the time dimension to correct for the influence of correlated but time invariant unob-

servables has a long tradition in econometrics. Panel data in combination with a fixed effects

or first differencing transformation are common methods to purge the data from the influence

of unobserved heterogeneity across many applications. However, panel data sets are rare. For

many questions arising in applications they simply do not exist. Moreover, they have several

drawbacks. Most prominently, they suffer from nonrandom attrition, a phenomenon that is

hard to control.1 Also, they frequently cover only short time spans.

An alternative is to rely on repeated cross sections, i.e., a data set that covers the same pop-

ulation, but not necessarily the same individual, repeatedly. More formally, as econometricians

we have access to the distributions (FY1,X1 , ..., FYT ,XT ) of outcomes and explanatory variables,

but contrary to panel data the joint distribution FY1,X1,...,YT ,XT is not identified. Many promi-

nent data sets are repeated cross sections, e.g., the FES in the UK, or the CEX in the US. We

argue in this paper that many of the strong identification results obtained for panel data, e.g.,

concerning the correlated random coefficients panel data model (Chamberlain, 1982, Graham

& Powell, 2012) have close correspondences in repeated cross section (RCS). In particular, in a

RCS it is possible to obtain causal effects of a continuous variable of interest Xt on an outcome

Yt, while allowing for an unobservable At that is contemporaneously arbitrarily correlated with

Xt, and does not even need to be time invariant. Note that the data structure precludes the

use of past Xt for the same individual to construct control variables, as in Altonji & Matzkin

(2005).

Formally, we consider as a general framework the single-equation structure of the form

Yt = gt(Xt, At) t = 1, ..., T (1.1)

where Yt ∈ R is the outcome, Xt = (X1t, ..., Xkt) ∈ Rk is a set of endogenous explanatory vari-

ables, and At are unobserved heterogeneous factors which may be correlated with Xt. Observe

1See nonetheless, among others, Hausman & Wise (1979), Hirano et al. (2001), Bhattacharya (2008) or

Sasaki (2013) for proposals on how to deal with endogenous attrition.
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that the structural function gt is allowed to depend on the time period t, e.g., whether we are

in a boom or an in a crisis in the business cycle. However, we do place restrictions on the time

evolution of gt by requiring that it is comprised of a monotonic transformation mt and a time

invariant base function g, i.e. Yt = mt(g(Xt, At)). This transformation extends typical additive

time dummy specifications that are meant to capture macro shocks, and allows for the macro

shocks to have different effects on different parts of the distribution of the “detrended” variable

Ỹt ≡ g(Xt, At), say affects individuals with high Ỹt only.

In this setup, we focus on the identification of several parameters that take the form of

average and quantile treatment effects. Generally, we establish that several treatment effect

parameters are point identified. This requires in a first step to establish identification of the time

dependent transformation function mt. Based on this result, we establish point identification

of a number of treatment effect parameters. Some parameters, like average partial effects at

arbitrary positions Xt = x, however, are not covered by our point identification results. In

those cases we derive bounds under a local curvature condition.

Finally, we clarify the role of a linear correlated random coefficients specification, as in

Chamberlain (1982), Wooldridge (2003), Murtazashvili & Wooldridge (2008) or Graham &

Powell (2012), in that it allows to extrapolate and thus obtain point identification of average

partial effects across the entire population.2 A similar remark applies to assuming monotonicity

in a scalarAt - we are again able to point identify a structural model across the entire population.

Our key identifying assumption is that for almost all v in the support of Vt defined below

and all (s, t) ∈ {1, ..., T}2,
At|Vt = v ∼ As|Vs = v,

where Vt = Ft(Xt) = (FX1t(X1t), ..., FXkt(Xkt)). To illustrate the content of this assumption,

consider the following textbook example with a scalar Xt: Suppose that Yt is unemployment

duration, At is ability and Xt is unemployment benefits, and suppose that, as in many countries,

the benefit is tied to income through a fixed ratio. For simplicity, let us suppose that they are

2We also show identification of treatment effects in a polynomial correlated random coefficient model provided

that the order of the polynomial is less or equal to T . This result is related to Florens et al. (2008) except that

time is discrete and does not act as a standard instrument here.
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actually equal (i.e., the fixed ratio is 1). Then Vt denotes the rank in the income distribution

and has always an uniform distribution on the unit interval [0, 1]. The assumption now requires

the following: suppose that the rank is fixed in periods s and t, so that Vt = Vs = v. At

this rank, the distribution of ability ought to be the same in both periods s and t. To give

an example, the distributions of abilities have to be the same at median income in 1985 an

2000. Median income (“middle class”) people are similar in terms of their raw abilities over

time, at least for the relatively short time horizons in a repeated cross section. At least in

this example, we think of this assumption as more realistic as requiring time invariance with

respect to income Xt itself, or the income process X1, ..., XT , as is commonly assumed in the

panel data literature, because individuals who earned 30 K a year in 1985 (or had a certain

trajectory leading to 30 K) could be quite distinct from those who earned 30 K in the year

2000, especially in a country with high growth or inflation.

While this assumption is in place of a traditional exogeneity condition, we also need the

source of exogenous variation in our model, time itself, to have some effect on the continuous

explanatory variable. Since we are not following individuals over time, these variations should

be at the distributional level. Namely, Ft 6= Fs is necessary to obtain nontrivial identification

results on the effect of XT . We also require that there be at least one crossing point x∗ between

Ft and Fs. Note that this is a testable property, analogous to a rank condition in IV.

The main idea behind our identification result is to first isolate the effect of time, in our

notation the monotonic function mt. This effect is obtained by realizing that we can construct

a control group at the crossing point x∗. Since Xt is time invariant at this point, and the

associated rank and hence the distribution of unobservables At does not change either, we

conclude that any effect on the outcome distribution must have been generated by time itself.

The combination of this insight with the monotonicity assumption allows one to recover mt.

The next step is purging Yt from the influence of time, thus removing from the treated groups

the effect that time alone had on them. The new variable, Ỹt can now be used to point,

respectively, set identify any of the various causal effects parameters described below. At this

stage, the key insight is that under our condition, in particular the fact that At has a time

independent conditional distribution, time plays the role of an instrument. We can therefore
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use exogenous variation in the distribution of Xt over to time to identify causal effects.

Related Literature: Our setup is most related to the difference-in-difference (DiD) frame-

work introduced by Ashenfelter & Card (1985). In its standard version, the difference-in-

difference method also works with repeated cross sections, though it applies to binary treat-

ments, and assumes a linear fixed coefficients structure. The idea is that there are two well-

defined groups, namely the control and treatment group, and while none of them are treated

at period 1, the treatment group becomes treated at period 2. Then if the effect of time is

the same for both groups (“the common trend assumption”), it can be identified using the

control group. The effect of the treatment is then obtained using the treatment group and the

detrended variable.3 The broad identification strategy we develop here is similar, though there

are important differences, most notably that we consider a continuous endogenous regressor

(treatment). But this is by no means the only important difference. Other crucial differences

include the following: First, our model is fully nonlinear in both the continuous regressor and

the potentially high dimensional unobservables. Second, the effect of time in particular is al-

lowed to be nonadditive in our model. The only other reference that allows for a nonlinear (yet

binary) treatment model with nonadditive time effects is Athey & Imbens (2006). Different,

however, from the entire literature, including Athey & Imbens (2006), is that the control group

is data-dependent in our context, whereas it is defined ex ante in the DiD framework.

As already discussed, we use exogenous variations of Xt due to time. This idea has already

been put forward in the literature on repeated cross sections. Previous contributions include

Deaton (1985), Moffitt (1993), Verbeek & Nijman (1992, 1993), Verbeek (1996), Collado (1997),

McKenzie (2004) and Devereux (2007). Compared to this literature, our contribution is twofold.

First, we dispense with the common linear or parametric framework that they consider. Our

model is nonlinear and nonparametric, and allows for high dimensional heterogeneity. Second,

our identification strategy does not exclude time from affecting the outcome directly. A last

important difference between our work and the classical literature on repeated cross sections is

the focus. While we are concerned with contemporaneous causal effects, the literature usually

3Extensions of this strategy to account for time effects that depend on covariates are considered by Heckman

et al. (1997) and Abadie (2005).
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focuses on the identification of the joint distribution of (Y1, X1, ..., YT , XT ), or features of it,

from the marginal distributions of (Y1, X1),..., (YT , XT ), usually to derive dynamic effect, see

Moffitt & Ridder (2007) for a survey.

Our work is also related to general work on high dimensional heterogeneity in panel and

cross section data, starting with the seminal work by Chamberlain (1982, 1984). Important

references in the class of panel data models include Altonji & Matzkin (2005), Graham &

Powell (2012), Hoderlein & White (2012) and Chernozhukov et al. (2013). All of these papers

consider special cases or similar structures as defined in Equation (1.1), but they do not allow

the structural function to depend on time. Instead of our time invariance assumption, all of

these references assume, for (s, t) ∈ {1, ..., T}2 and almost all (x1, ..., xT )

At|X1 = x1, ..., XT = xT ∼ As|X1 = x1, ..., XT = xT .

This condition neither nests nor is nested in our assumption, as we argue below. In addition,

Altonji & Matzkin (2005) assume an exchangeability condition that allows to construct a control

function that makes At conditionally independent of Xt, while Graham & Powell (2012) assume

a linear random coefficients structure, arguably a crucial special case that we will also analyze

in detail. Evdokimov (2011) imposes the error term to be scalar and to have a monotonic effect.

Under monotonicity, we also obtain full identification with only repeated cross sections over two

time periods, as opposed to panel data with three periods in his case. On the other hand, we

obtain our result under time invariance conditions that are not imposed in his setting. Finally,

many of the treatment parameters we are considering appear in these references, but have also

figured prominently in the cross section literature, see Imbens & Newey (2009), Schennach et al.

(2012), or Hoderlein & Mammen (2007).

Structure of the Paper In section 2, we introduce the model formally, including all major

assumptions and the parameters of interest, and discuss them thoroughly. In the third section,

we present the main identification result. In the fourth section, we discuss two extrapolation

strategies. We consider a linear correlated random coefficient structure and a model where g

depends monotonically on a scalar At. We show that in both cases, these restrictions yield

point identification of the structural effect across the entire population. Finally, in the fifth
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section we apply our methodology to the effect of maternal age on birth weight of the first

child. This is typically an example where maternal age is endogenous, an instrument might be

difficult to find and panel data are useless, because the maternal age at the first birth does not

vary within individuals.

2 The Model and Formal Assumptions

In this section, we formally introduce the model and the main assumptions. Since the model

is nonparametric and heterogeneous, the parameters of interest are not obvious. We start out

by formally introducing these parameters. We then proceed to present and discuss the main

assumptions we employ.

2.1 Parameters of interest

We are especially interested in the following average and quantile treatment on the treated

effects:

∆ATT (x, x′) ≡ E [gT (x′, AT )− gT (x,AT )|XT = x] ,

∆AME
j (x) ≡ E

[
∂gT
∂xj

(x,AT )|XT = x

]
,

∆QTT (τ, x, x′) ≡ F−1gT (x′,AT )|XT (τ |x)− F−1gT (x,AT )|XT (τ |x),

∆QME
j (τ, x) ≡

∂F−1gT (x′,AT )|XT (τ |x)

∂x′j
|x′ = x,

for any x = (x1, ..., xk) and x′ = (x′1, ..., x
′
k) in the support of XT and j ∈ {1, ..., k}. These

parameters correspond to the effect of exogenous shifts of XT on YT . The first two effects are

average effects, while the latter two effects are their quantile analogs. The former two effects

are related to treatment effects on the treated in that they provide averages over causal effects

for a subpopulation with treatment intensity XT = x. To understand this better, consider the

first parameter of interest, ∆ATT (x, x′). To fix ideas, think of At as ability in period t, and Xt

as schooling. Obviously, we would believe ability to be heterogeneously distributed across the

population, as well as contemporaneously correlated with schooling. For an individual with
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ability level At = a in period t, the effect of changing exogenously the amount of schooling she

receives from x to x′ would be

gT (x′, a)− gT (x, a).

A very natural parameter for a decision maker to be interested in is some form of average

across a heterogeneous population. Since Xt and At are correlated, the natural question is which

type of average one would like to consider. In this paper, we advocate the use of FAt|Xt as a

weighting scheme. The reason is simple, and easily understood in our example. Suppose Xt = x

corresponds to 4 years of university, and the question is to determine effect of the introduction

of ninth semester (i.e., x′ = x + 0.5) as a policy measure. In this case it does not make sense

to weigh with the unconditional distribution of At as there are many individuals, presumably

frequently with lower levels of ability, who never complete four years of college. Hence, it is

natural to average the causal effect with the weighting scheme FAt|Xt(.|x), since this is really

the subpopulation primarily affected by the policy measure of changing Xt exogenously from x

to x′. This corresponds, in period T , to the effect∫
(gT (x′, a)− gT (x, a))FAT |XT (da;x) = E [gT (x′, AT )− gT (x,AT )|XT = x] .

Very analogous arguments apply to the marginal effect ∆AME
j (x). The analysis of this effect

has a long history in econometrics, starting with the seminal work by Chamberlain (1982, 1984),

who called this marginal effect the local average response. Important references are Altonji &

Matzkin (2005), Wooldridge (2005), Graham & Powell (2012), Hoderlein & White (2012) and

Chernozhukov et al. (2013) in the panel data literature, and Hoderlein & Mammen (2007),

Imbens & Newey (2009), Schennach et al. (2012) in the IV literature.

An interesting consequence of obtaining ∆AME
j (x)(x) is that∫

∆AME
j (x)(x)fX(x)dx = E

[
∂gT
∂x

(XT , AT )

]
provides the overall average partial effect (see Chamberlain, 1984). This parameter corresponds

to the thought experiment of increasing schooling marginally across the entire population, and

averaging the effect across the various levels of eduction and ability.
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The quantile effects ∆QTT (τ, x, x′) and ∆QME
j (τ, x) provide causal effects on the counterfac-

tual marginal distributions. This is different from obtaining the distribution of causal effects,

but both effects are widely analyzed, see Abadie et al. (2002) and Chernozhukov et al. (2013),

amongst many others.

Finally, we consider all effects for period T as we believe there are the most natural to

compute in general. However, the result of Theorem 1 below implies that we can actually

identify similar effects at any date.

2.2 Assumptions

The broad idea for identifying these parameters is to restrict the way time affects both observed

and unobserved variables. More specifically, we impose hereafter three restrictions. The first

is a stationarity condition on the observed and unobserved determinants of the outcome. The

second restricts the way time is affecting the outcome itself. The third restricts the way the

distribution of Xt moves over time. We discuss them in turns, using the notations Ft(x) =

(FX1t(x1), ..., FXkt(xk)) for any x = (x1, ..., xk), Vt = Ft(Xt) and Vt = supp(Vt). The first

assumption is:

Assumption 1. The distribution of Xt is absolutely continuous with a convex support, and for

all (s, t) ∈ {1, ..., T}2 and almost all v ∈ VT ,

At|Vt = v ∼ As|Vs = v.

To fix ideas, consider the returns to education example, and suppose that At comprises an

ability term correlated with education, and an idiosyncratic term independent of ability and

education. Assumption 1 means in this context that the distribution of ability conditional on

a given rank in the distribution of education remains stable over time.

This stationarity condition is different from the condition

As|X1, ..., XT ∼ At|X1, ..., XT , (2.1)
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commonly assumed in panel data (see, e.g., Manski, 1987, Honore, 1992, Graham & Powell,

2012 and Chernozhukov et al., 2013). To understand the differences between the two, consider

two polar cases. In the first, endogeneity stems from a simultaneity issue while (At, Vt)t=1...T

are i.i.d. If so, Assumption 1 is satisfied. On the other hand, (2.1) does not hold, unless At

is independent of Vt, because the distribution of As conditional on (X1, ..., XT ) is a function

of Xs only, i.e., fAs|X1,...,XT (a|x1, ..., xT ) = fAs|Xs(a|xs), while the conditional distribution At

is a function of Xt only, and they do generally not coincide if xs 6= xt. Assuming (As, Vs)

independent of (At, Vt) is of course often unrealistic, but the same conclusion would hold with,

say, a vector autoregressive structure. In the second case, At = (A,Ut) where A is a fixed

effect potentially correlated with X1, ..., XT and (Ut)t are i.i.d. idiosyncratic shocks that are

independent of (A,X1, ..., XT ). In this case, the condition (2.1) is always satisfied. On the other

hand, Assumption 1 holds only under a special correlation structure between A and (X1, ..., XT ):

A|Vt = v ∼ A|Vs = v, which for instance imposes Cov(A, Vt) = Cov(A, Vs), s 6= t. While this

still allows for arbitrary contemporaneous correlation between A and Vt, respectively Vs, it

limits the time evolution of this covariance. It is this type of time invariance of the correlated

unobservables that an applied researcher has to check, and, if adopted, defend.

This time invariance is somewhat mitigated by the fact that we allow for the function gt to

vary with time. To see this, let us first state the extent to which we allow for time dependence

formally:

Assumption 2. For all t ∈ {1, ..., T}, gt = mt ◦ g, where mt is strictly increasing. Without

loss of generality, we let mT (y) = y for all y ∈ supp(YT ).

Assumption 2 generalizes the standard translation model mt(u) = δt + u to allow for het-

erogeneous effects of time. Allowing for the effect of time on the structural relationship seems

quite important. For instance, in the returns to education example, the effect of education

on wage may vary according to the state of the business cycle. Our specification allows for

these macroeconomic shocks to have heterogeneous effects on individuals. To understand the

extent to which is the case, think of Ỹt = g(Xt, At) as the latent, long run wage which is free of

seasonal or business cycle effects. Then, our specification allows in particular for the effect of
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an economic downturn on lower Ỹ individuals to be stronger (or less strong). But it still places

restriction on the way time affects the outcome. In particular, while allowing for contractions

and expansions of the wage distribution, we cannot assume that the effect of time is such that

the ordering of any two individuals is reversed if neither their observables nor unobservables

change over time.

On the positive side, this assumption allows to overcome some of the restrictiveness of the

fact that Cov(A, Vt) = Cov(A, Vs), s 6= t. To understand this, suppose that the structural model

is given by Yt = δt(αA+βh1(Xt)+γAh2(Xt)) = αtA+βtk1(Vt)+γtAk2(Vt), where hj, kj, j = 1, 2

are increasing transformations, and γt = δtγ. This specification allows for some interaction

effect between between A and Vt, with a time heterogeneous impact on Yt. In the example of

returns to eduction, even if the correlation between ranks in the education distribution and

unobserved ability is time invariant, the effect of having high education combined with high

ability could be higher in, say, an economic upswing.

Finally, our last assumption concerns the independent variation that identifies the model.

Given the highly nonlinear setup we are considering, it comes in form of a distributional as-

sumption. It allows for the construction of a “control group” that identifies the effect of time

on the outcome (the function mt), analogously to the DiD literature.

Assumption 3. For all t ∈ {1, ..., T}, there exists x∗t ∈ Rk such that Ft(x
∗
t ) = FT (x∗t ) ∈ (0, 1)k.

Several remarks are in order: first, Assumption 3 is directly testable in the data. It allows for

any change in the distribution of Xt, provided that there is a crossing between the cumulative

distribution function of XjT and Xjt, for all j ∈ {1, ..., k} and t ≥ 2.4 Roughly speaking, this

means that time has an heterogenous effect on the distribution of Xt. It fails to hold in the

pure location model Xt = γt + Bt, where the distribution of Bt is stationary with support Rk.

On the other hand, it holds in the location-scale model Xt = γt + ΣtBt if Σt is diagonal with

4We assume for simplicity crossings between XT and the other cdf, but actually, T − 1 crossings are fine

provided that we can “relate” them to each other, for instance if the cdf of Xt crosses the one of Xt+1 for

1 ≤ t < T . With only one crossing between Fs and Ft, we can still identify the effect of time between these

two periods (mt ◦m−1s ) and then identify some treatment effects.
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diagonal terms σjt that are distinct at each time period. In such a case x∗t is unique and satisfies

x∗t =

(
γt − γT
σ1T − σ1t

, ...,
γt − γT
σkT − σkt

)
.

Note that if Ft remains constant with t, Assumption 3 is satisfied but we identify only trivial

parameters such as ∆ATT (x, x). Nontrivial parameters are identified only when Ft changes with

t.

Identification with repeated cross sections thus requires variation in the distribution of the

(continuous) treatment over time. This contrasts with the variation in the individual value of

the treatment over time that is typically required with panel data, the fixed effects absorbing

any variable that is constant across time. The distribution of Xt can move over time even if Xt

is constant for each individual, provided new generations are involved at date t compared to

date s. Our application below is an example of such a situation. On the other hand, compared

to panel data, we do not identify anything, apart from the time effect mt, when the treatment

changes at an individual level but the distribution of Xt remains constant over time. This is

one different aspect of our identification strategy from panel data based strategies.

3 Identification results

3.1 Point Identified Effects

The first idea that drives our results is that the effect of time can be obtained using individuals

for which XT = Xt = x∗t . These individuals, though possibly different across time periods,

have under Assumption 1 the same distribution of unobservables and the same value of the

treatment. For them, differences between YT and Yt can only stem from the effect of time itself.
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This is the reason why we call them the “control group”. Formally,

P (YT ≤ y|XT = x∗t )
A.2
= P (g(x∗t , AT ) ≤ y|VT = FT (x∗t ))

A.1
= P (g(x∗t , At) ≤ y|Vt = FT (x∗t ))

A.3
= P (g(x∗t , At) ≤ y|Vt = Ft(x

∗
t ))

A.2
= P (mt ◦ g(x∗t , At) ≤ mt(y)|Xt = x∗t )

A.2
= P (Yt ≤ mt(y)|Xt = x∗t ) ,

the first equality following because mT is the identity function. As a result, mt is identified by

mt(y) = F−1Yt|Xt
[
FYT |XT (y|x∗t )|x∗t

]
.

This transformation is similar in spirit to a transformation in Athey & Imbens (2006).

However, it differs in the crucial aspect that we are not exogenously given a treatment and, in

particular, a control group, but endogenously obtain the control group through our assumptions.

We conjecture that there are more general ways of constructing a control group, in particular

if there are more than two time periods available, but we leave this issue for future research.

Next, consider the transformed outcome Ỹt = m−1t (Yt), which is purged of the influence

of time in the sense that by Assumption 1, time has no direct effect on Ỹt. In other words,

variations in Xt provided by time are now exogenous in the sense that they do not affect the

distribution of unobservables. Time can thus be considered to act like an instrument. As

already mentioned, implicitly similar ideas have been used in the panel data literature, though

using different and non-nested assumptions (see, e.g., Manski, 1987, Honore, 1992, Graham

& Powell, 2012, Hoderlein & White, 2012, Chernozhukov et al., 2013), which all consider the

effect of time variations on Xt and Yt.

To proceed with the identification of our model, let qt(x) denote the value of Xt (say, income

in period t) for an individual at the same rank as another individual whose period T income is

XT = x, x 6= x∗. Formally, let qjt = F−1Xjt
◦ FXjT for j ∈ {1, ..., k} and

qt(x) = (q1t(x1), ..., qkt(xk)) .

13



We have then that

E
[
Ỹt|Xt = qt(x)

]
= E [g(qt(x), At)|Vt = FT (x)]

A.1
= E [g(qt(x), AT )|VT = FT (x)]

= E [g(qt(x), AT )|XT = x] .

The latter is the mean counterfactual outcome at period T for individuals with XT = x if XT

was moved exogenously to qt(x). We can therefore identify ∆ATT (x, qt(x)), the average effect

of moving XT from their initial value x to qt(x), by

∆ATT (x, qt(x))
A.2
= E [g(qt(x), AT )− g(x,AT )|XT = x]

= E
[
Ỹt|Xt = qt(x)

]
− E

[
ỸT |XT = x

]
,

where the first equality comes from the normalization in assumption 2 implies that gT = mT◦g =

g, and henceATT (x, x′) ≡ E [gT (x′, AT )− gT (x,AT )|XT = x] =E [g(x′, AT )− g(x,AT )|XT = x] .

This means that we can obtain ∆ATT (x, x′) for any pair x, x′ = qt(x), and x 6= x∗. Note that we

cannot point identify ∆ATT (x, x′) for x′ 6= qt(x), but we will show in the following subsection

that we can at least set identify these parameters under plausible curvature restrictions. Also,

we cannot identify any effect ∆ATT (ξ, ξ′) with ξ′ 6= ξ if Ft(ξ)−FT (ξ) = 0. As mentioned above,

we need the distribution of Xt to change with time.

When XT is multivariate, it may be difficult to interpret ∆ATT (x, qt(x)) because it cor-

responds to the effect of a change of potentially all components of XT . However, still us-

ing the crossing points, we can identify some partial effects. To see this, consider jx̃t =

(x∗1t, ..., x
∗
j−1t, xj, x

∗
j+1t, ..., x

∗
kt) for some xj 6= x∗jt. Then, by definition of x∗t ,

qt(jx̃t) =
(
x∗1t, ..., x

∗
j−1t, qjt(xj), x

∗
j+1t, ..., x

∗
kt

)
.

This means that ∆ATT (jx̃t, qt(jx̃t)) corresponds to the average partial effect of exogenously

shifting XjT from xj to qjt(xj).

For people at the crossing points x∗t , we do not learn anything from the above reasoning,

because ∆ATT (x∗t , qt(x
∗
t )) = ∆ATT (x∗t , x

∗
t ) = 0 by construction. On the other hand, under mild
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regularity condition (see Assumption 4 below), we can identify the average marginal effects for

this population provided that qt differs from the identity function in the neighborhood of x∗t .

The intuition behind the latter result is that we can find values x close to x∗t and such that

qt(x)− x is close to zero, but not exactly zero. Then, if Xt is univariate (the multivariate case

can be handled similarly),

g(qt(x), AT )− g(x,AT )

qt(x)− x ' ∂g

∂x
(x∗t , A1t). (3.1)

Moreover, if the conditional distribution of AT is regular, conditioning on XT = x becomes the

same as conditioning on XT = x∗t , so that

∆ATT (x)

qt(x)− x ' ∆AME
1 (x)(x∗t ).

Formally, identification of the marginal effect is achieved on the set X0 defined by

X0 =

{
x ∈ Rk : ∃(t, (xn)n∈N) ∈ {1, ..., T − 1} ×

(
Rk
)N

: qt(x) = x, lim
n→∞

xn = x

and qjt(xjn) 6= xjn for all j = 1, ..., k

}
.

X0 is the union of fixed points of q2, ..., qT , once we exclude points x∗ such that in their neigh-

borhood, qjt(xj) = xj for some j ∈ {1, ..., k}. See Figure 1 for an illustration in the univariate

case. To make the preceding argument rigorous, the following technical conditions are also

required.

Assumption 4. (Regularity conditions) For all points x∗t ∈ X0, there exists a neighborhood N
such that:

(i) almost surely, x 7→ g(x,AT ) is continuously differentiable on N .

(ii) the distribution of AT conditional on XT is continuous with respect to the Lebesgue measure

and x 7→ fAT |XT (a|x) is continuous at x∗t .

(iii) For all j ∈ {1, ..., k},
∫
|supx′∈N ∂g/∂xj(x

′, a)|
∣∣supx′∈N fAT |XT (a|x′)

∣∣ da <∞.

(iv) For all x ∈ N and j ∈ {1, ..., k}, x′−1g(x′,AT )|XT (τ |x) is differentiable at x∗t . (x, x′) 7→
∂F−1

g(x′′,AT )|XT
(τ |x)

∂x′′j
|x′′ = x′ is continuous on N 2.
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6

-

FX1

FX2

x ∈ X0x′ 6∈ X0

1

Figure 1: Example of points belonging or not to X0

Finally, we can apply the same reasoning to the quantile function. We can recover F−1gT (qt(x),AT )|XT (τ |x)

by F−1
Ỹt|Xt

(τ |qt(x)), which implies that ∆QTT (τ, x, qt(x)) is identified. We also identify ∆QME
j (τ, x∗t )

by a similar argument as above.

Theorem 1 summarizes all findings of this section:

Theorem 1. Under Assumptions 1-3, we identify, for all x ∈ supp(XT ), τ ∈ (0, 1) and

t ∈ {1, ..., T−1}, the functions mt and the average and quantile treatment effects ∆ATT (x, qt(x))

and ∆QTT (τ, x, qt(x)). If Assumption 4 holds as well, we also identify ∆AME
j (x)(x∗t ) and

∆QME
j (τ, x∗t ) for all x∗t ∈ X0 and all j ∈ {1, ..., k}.

3.2 Partial Identification of Other Treatment Effects

Theorem 1 implies that we can point identify some but not all average treatment effects

∆ATT (x, x′). Similarly, we point identify the average marginal effects only at some particu-

lar points. We show in this subsection that with three or more periods of observation and an

univariate Xt, we can get bounds for many other points under a weak local curvature condition.5

Let us consider the average marginal effect for instance. The idea is that if g(., At) is locally

5The reasoning developed here also works when Xt is multivariate, but only applies to ∆ATT (j x̃
∗
t , j x̃

∗′
t ),

where j x̃
∗
t is defined as before and j x̃

∗′
t is similar to j x̃

∗
t , except that its j-th component is x′j instead of xj .
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concave (say) and qt(x) < x, then g(qt(x),AT )−g(x,AT )
qt(x)−x is an upper bound of ∂g

∂x
(x,AT ). Similarly, if

qs(x) > x, then g(qs(x),AT )−g(x,AT )
qs(x)−x is a lower bound for ∂g

∂x
(x,AT ) (see Figure 2). By integrating

over AT , we can therefore bound ∆AME
j (x) by some appropriate ∆ATT (x, qt(x))/(qt(x) − x).

The same idea can be used to obtain bounds ∆ATT (x, x′) for x′ 6∈ {qt(x), t = 2...T}.
The above argument works even if we do not know a priori whether g is concave or convex.

Using the minimum and the maximum of the local discrete treatment effect will be sufficient

to obtain bounds, provided that g is locally concave or locally convex around x. We therefore

adopt henceforth the following definition.

Definition 1. g is locally concave or convex on [x̃, x̃′] if x 7→ g(x,At) is twice differentiable

6

-

FX3

FX2

FX1

xq2(x) q1(x)

6

-

g( · , A3)

xq2(x) q1(x)

g(q2(x),A3)−g(x,A3)
q2(x)−x

∂g(x,A3)
∂x

g(q1(x),A3)−g(x,A3)
q1(x)−x

1

Figure 2: Bounds under the local curvature condition
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and
∂2g

∂x2
(x,At) ≤ 0 ∀x ∈ [x̃, x̃′] a.s. or

∂2g

∂x2
(x,At) ≥ 0 ∀x ∈ [x̃, x̃′] a.s.

Let us introduce, for all (x, x′) ∈ supp(XT ), (xT (x′), xT (x′)) defined by

xT (x′) = max{qt(x), t ∈ {1, ..., T − 1} : qt(x) 6= x and qt(x) < x′},

xT (x′) = min{qt(x), t ∈ {1, ..., T − 1} : qt(x) 6= x and qt(x) > x′}.

If the sets are empty we let xT (x′) = −∞ and xT (x′) = +∞.

Theorem 2. If k = 1 and under Assumptions 1-3,

- for any x < x′, if g is locally concave or convex on [min(x, xT (x′)), xT (x′)], then

(x′ − x) min

{
∆ATT (x, xT (x′))

xT (x′)− x ,
∆ATT (x, xT (x′))

xT (x′)− x

}
≤ ∆ATT (x, x′)

≤ (x′ − x) max

{
∆ATT (x, xT (x′))

xT (x′)− x ,
∆ATT (x, xT (x′))

xT (x′)− x

}
.

- If g is locally concave or convex on [xT (x), xT (x)], then

min

{
∆ATT (x, xT (x))

xT (x)− x ,
∆ATT (x, xT (x))

xT (x)− x

}
≤ ∆AME

1 (x) ≤ max

{
∆ATT (x, xT (x))

xT (x)− x ,
∆ATT (x, xT (x))

xT (x)− x

}
.

where the bounds are understood to be infinite when either xT (x′) = −∞ or xT (x′) = +∞
(whether x′ > x or x′ = x).

Both bounds are finite provided that there exists t, t′ such that qt(x) < x < q1t′(x), which

implies that T ≥ 3. More generally, the bounds improve with T , because (xT (x′))T∈N and

(xT (x′))T∈N are by construction increasing and decreasing, respectively. The local curvature

condition becomes less and less restrictive as T increases, because the interval on which g has to

satisfy this condition decreases. It seems particularly credible, if qt(x) 7→ ∆(x, qt(x))/(qt(x)−x)

is monotonic, because such a pattern is implied by global concavity or global convexity.
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To illustrate Theorem 2, we consider the following example:

Yt = 1− exp(−0.5(δt +Xt + At))

Xt = µt + σtΦ
−1(Vt),

where Vt ∼ U [0, 1] and At|Vt ∼ N (Vt, 1). We also suppose that

µT = 2.5, µt ∼ N (µT , 1) for t > 1,

σT = 1, σt ∼ χ2(1) for t < T,

δT = 0, δt ∼ N (0, 1) for t < T.

In this example, Assumptions 1, 2 (with mt(y) = 1−exp(−0.5δt)(1−y)) and 3 are satisfied,

the latter because σt 6= σT almost surely. The local curvature condition also holds, since

u 7→ 1 − exp(−0.5u) is concave. Figure 3 displays the bounds on ∆AME
1 (x)(x) for T = 3, 4, 5

and 6. Note that the bounds coincide for T − 1 points. This simply reflects our previous point

identification result. Each Ft crosses once FT and each at a different point. By Theorem 1,

point identification is achieved at these T − 1 crossing points. We also see that in the interval

where we get finite bounds, that is to say the interval for which −∞ < xT (x) < xT (x) < ∞,

the bounds are quite informative even with T = 3. Figure 3 also shows that as T increases,

both the bounds shrink and the interval on which we get finite bounds increase. For T = 6, we

get informative bounds for x ∈ [1, 3.85], which corresponds roughly to 85% of the population.

This means that we could also obtain finite bounds for the average partial effect for this large

fraction of the total population.

3.3 Point Identification with Exogenous Covariates

We consider here the case where exogenous covariates Zt also affect Yt, so that the model now

writes

Yt = gt(Xt, Zt, At) t = 1, ..., T. (3.2)

We still focus on the effect of Xt hereafter. In this case, the preceding analysis can be conducted

conditionally on Zt. We briefly discuss this extension here, by considering only the discrete
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T = 3

T = 4

T = 5

T = 6

Figure 3: Example of bounds on ∆AME
1 (x) for different values of x and T = 3, 4, 5 and 6.
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average and quantile effects

∆ATT (x, x′, z) ≡ E [gT (x′, z, AT )− gT (x, z, AT )|XT = x, ZT = z] ,

∆QTT (τ, x, x′, z) ≡ F−1gT (x′,z,AT )|XT ,ZT (τ |x, z)− F−1gT (x,z,AT )|XT ,ZT (τ |x, z).

The marginal effects can be handled similarly.

We first restate our previous conditions in this context. The rank variable is now defined

conditionally on Zt, Vt = Ft|Zt(Xt) with

Ft|Zt(x) =
(
FX1t|Zt(X1t|Zt), ..., FXkt|Zt(Xkt|Zt)

)
.

Assumption 1.’ The conditional distributions of Xt|Zt = z is absolutely continuous with a

convex support, supp((Vt, Zt)) does not depend on t and for all (s, t) ∈ {1, ..., T}2 and almost

all (v, z) ∈ supp(Vt, Zt),

As|Vs = v, Zs = z ∼ At|Vt = v, Zt = z.

Next, we consider two versions of Assumptions 2 and 3. The trade-off between these two

versions is basically between the generality of the model and data requirement. In the first

version, we allow for more general time effects but the corresponding crossing condition is more

demanding, because we should observe a crossing point for each value of z.

Assumption 2.’ We have either

(i) for all t, gt(Xt, Zt, At) = mt(Zt, g(Xt, Zt, At)), where mt(Zt, .) is strictly increasing. Without

loss of generality, we let mT (z, y) = y for all (y, z) ∈ supp((YT , ZT ));

or (ii) for all t, gt(Xt, Zt, At) = mt(g(Xt, Zt, At)), where mt is strictly increasing. Without loss

of generality, we let mT (y) = y for all y ∈ supp(YT ).

Assumption 3.’ We have either:

(i) for all (z, t) ∈ supp(ZT ) × {1, ..., T − 1}, there exists x∗t (z) such that FT |ZT (x∗t (z)|z) =

Ft|Zt(x
∗
t (z)|z) ∈ (0, 1).

or (ii) for all t, there exists (x∗t , z
∗
t ) such that FT |ZT (x∗t |z∗t ) = Ft|Zt(x

∗
t |z∗t ) ∈ (0, 1).
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These two sets of assumptions lead to the same results, which are qualitatively very similar

to those of Theorem 1. The proof, which is very similar to the one of Theorem 1, is omitted.

Theorem 3. Suppose that Assumption 1’ and either Assumptions 2’ (i) -3’ (i) or Assumptions

2’ (ii) -3’ (ii) hold. Then, for almost all (x, z) ∈ supp((XT , ZT )), all τ ∈ (0, 1) and all t ∈
{1, ..., T − 1}, the functions mt and the average and quantile treatment effects ∆ATT (x, qt(x), z)

and ∆QTT (τ, x, qt(x), z) are identified.

4 Extrapolation

As we have established in Theorem 1, we can point identify several treatment effect parameters

under the relatively mild restrictions A1 to A3, but, as pointed out, these are by no means all

possible causal effects one may be interested in. As we have seen in the previous section, many

more treatment parameters can be set identified under often plausible curvature restrictions,

in particular average marginal effects and effects of the form ∆ATT (x, x′). However, in any

given application, these bounds may be wide, and to conduct inference may be cumbersome,

or even impractical. Hence it makes sense to search for additional assumptions that yield point

identification of average structural effects across the entire population, or even of all structural

functions.

In the following, we propose two sets of non-nested restrictions that allow us to achieve

point identification. The main restriction in the first approach constrains the heterogeneity

term At to be scalar and have a monotonic effect on g. The main restriction in the second

approach constrains Xt to have a linear or polynomial effect on Yt. On the other hand, the

coefficients on the explanatory variables are allowed to be random and correlated with Xt.

These two approaches can be seen as providing a trade off. We either limit the extent of

unobserved heterogeneity while allowing for flexibility in the way Xt enters the function or

impose a functional form restriction on g but allow for a rich heterogeneity structure.
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4.1 Scalar Monotonic Heterogeneity

In this subsection, we assume that heterogeneity is scalar and has a monotonic effect on the

outcome. More formally:

Assumption 5. At ∈ R and g(Xt, .) is strictly increasing in its second argument.

An example of model satisfying Assumption 5 is the linear quantile regression: g(Xt, At) =

X ′tβAt , where a 7→ X ′tβa is strictly increasing almost surely (i.e, there is comonotonicity).

However, linearity is really not the essence here.

We also rely on the following technical restrictions:

Assumption 6. (i) Xt ∈ R and its support X = [x, x] (with −∞ ≤ x < x ≤ +∞) does not

depend on t.

(ii) At is uniformly distributed.

(iii) (a, v) 7→ FAT |VT (a|v) is continuous on (0, 1)2 and a 7→ FAT |VT (a|v) is strictly increasing on

(0, 1) for all v ∈ (0, 1).

(iv) g(., .) is continuous on X × (0, 1).

(v) qt has a finite number of fixed points.

Under these additional conditions, we obtain

Theorem 4. Under Assumptions 1-3, 5-6, mt and g are identified.

The proof relies on the observation that we have a triangular system Ỹt = g(Xt, At)

Xt = h(t, Vt)

where h(t, v) = F−1Xt
(v). This is a nonseparable triangular model where Xt is endogenous and

t may be seen as an instrument. In this context, the usual exogeneity condition translates

into time invariance of the distribution of (At, Vt). Because both g(Xt, .) and h(t, .) are strictly

increasing, we can then use the identification results of D’Haultfoeuille & Février (2012) or Tor-

govitsky (2012). Note that under additional conditions, we could also obtain full identification

when Xt is multivariate, using Theorem 5.2 of D’Haultfoeuille & Février (2012).
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The reason why monotonicity makes a difference in our context is that we can then directly

relate g(qt(x), a) with g(x, a):

g(qt(x), a) = Qqt(x),x ◦ g(x, a),

where Qqt(x),x is identified. This shows, as before, that ∆ATT (x, qt(x)) is identified, but also

that we can iterate, and relate g(qt ◦ qt(x), a) to g(x, a), so that ∆ATT (x, qt ◦ qt(x)) is identified

as well. By repeating this argument, and using fixed points of qt, we can show that the model

is fully identified. Because the model is actually identified with T = 2, it may well be the case

that identification is possible even without any fixed points when T > 2. This issue is left for

future research.

It is instructive to relate Theorem 4 to results for nonlinear panel data models. The closest

paper is the one of Evdokimov (2011), who considers the nonseparable model Yt = gt(Xt, At)

where At also satisfies Assumption 5 in his model. Compared to us, he imposes At = U + εt

and identification is achieved using the entire joint distribution of (Y1, X1, ..., YT , XT ) and with

T ≥ 3. On the other hand, he does not impose any time invariance restriction on εt, nor does he

put restriction on the effect of time on Yt. Other related work is quantile regressions with “fixed

effects”. Rosen (2012) considers the model Yt = X ′tβτ +ατ +εtτ , with F−1εtτ |Xt,α(τ |Xt, α) = 0 and

where ατ may be correlated with Xt. He shows that βτ is not point identified for a fixed T . So

it might seem surprising that with only T = 2, without panel data, and even without assuming

linearity, identification can be achieved in such quantile regression models. Once more, the key

difference between our setting and the one of Rosen (2012) is the time invariance condition that

we impose on the error term.

4.2 Linear Correlated Random Coefficient Model

The second possible route for extrapolation is a random coefficient linear model of the form:

Yt = δt + A0t +X ′tAt, (4.1)
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where At = (A1t, ..., Akt)
′. Under this structure, the vector E [AT |XT = x] is the vector of

average marginal effects for individuals at x:

E [AT |XT = x] = (∆AME
1 (x), ...,∆AME

k (x))′.

Moreover,

∆ATT (x, qt(x)) = (qt(x)− x)′E [AT |XT = x] .

Let us define the matrix Q(x) and the vector ∆(x) as

Q(x) =


(q1(x)− x)′

...

(qT−1(x)− x)′

 , ∆(x) =


∆ATT (x, q1(x))

...

∆ATT (x, qT−1(x))

 .

If Q(x) is full column rank, we can identify E [AT |XT = x] by

E [AT |XT = x] = (Q(x)′Q(x))
−1

Q(x)′∆(x). (4.2)

Apart from the vector of average marginal effects, we can then identify ∆ATT (x, x′), for any x′,

by

∆ATT (x, x′) = (x′ − x)′E [AT |XT = x] .

Note that the rank condition implies that T − 1 ≥ k. It also implies that the distribution of

Xt differs at each date, so that qs(x) 6= qt(x). It makes sense that with several endogenous

variables, more time variation on Xt is needed to identify causal effects.

Finally, if Q(XT ) is full rank almost surely, we point identify the vector of average marginal

effect over the whole population, ∆AME = (∆AME
1 , ...,∆AME

k )′, by

∆AME = E [A1T ] = E
[
(Q(XT )′Q(XT ))

−1
Q(XT )′∆(XT )

]
.

We summarize these finding in the following theorem.

Theorem 5. Under Assumptions 1-3 and Equation (4.1), δt, ∆ATT (x, x′) and ∆AME
j (x) are

identified for all x such that Q(x) is full column rank, and for any x′ and j ∈ {1, .., k}. If

Q(XT ) is full column rank almost surely, ∆AME
j is point identified as well for j ∈ {1, .., k}.
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Thus, we recover the same parameter as Graham & Powell (2012), who also consider a

random coefficient linear model similar to (4.1). They obtain identification with panel data,

relying on first-differencing. Compared to them, we rely on variations in the cdf of Xt rather

than on individual variations. We rely on a different, non-nested, restriction on the distribution

of the error term. In particular, for the same individual, A1t−A1s could be correlated with Xt

in our framework.

Apart from identification, Equation (4.2) implies that the linearity assumption can be

testable when T − 1 > k, because the system of equation is overidentified. In the univari-

ate case, for instance, Equation (4.2) implies

∆ATT (x, qs(x))

qs(x)− x =
∆ATT (x, qt(x))

qt(x)− x ∀s 6= t.

We can use additional periods to identify higher moments of the distribution of the coefficients.

For instance, with k = 1, V (A01|XT = x), V (A1T |XT = x) and Cov(A01, A1T |XT = x) can be

shown to be identified with T = 3 as soon as x, q12(x) and q13(x) are distinct. Alternatively

(here still with k = 1 to simplify), we can identify the random coefficient polynomial model of

order T

Yt = δt + A0t + A1tXt + ...+ ATtX
T
t . (4.3)

Identification works the same way as before. At the end, we recover not only average marginal

effect, but actually E(Akt|Xt = x) for all k = 1...T and all x such that (x, q12(x), ..., q1T (x)) are

all distinct. Identification of Model (4.3) was studied before by Florens et al. (2008), but with

cross-sectional data and under assumptions that typically rule out discrete instruments (see also

Heckman & Vytlacil (1998) for a study of the identification of Model (4.1) with instruments).

In contrast, we allow here for a time effect and rely only on a finite number of time periods,

which would be equivalent to a discrete instrument.
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5 Application to the Effect of Maternal Age on Birth

Weight

In most industrialized economies, there is a pronounced trend towards a later age at which

a family is established. In particular, mother’s childbearing age is steadily increasing. This

phenomenon is well documented, and the individual and social costs have been extensively

studied (see, e.g., Heffner, 2004, for a medical perspective and Hofferth, 1998), for an economic

overview). In this section, we want to focus on one aspect that has received less attention, but

which we feel is important: the ceteris paribus effects of mother’s age at first birth, denoted

Xt, on infant birth weight Yt. The reason is that infant birth weight plays a very important

role in the literature on health economics. In particular, infant birth weights are often thought

of as playing a dual role, both as an output and as an input. On the one hand, birth weights

are used as a measure of an outcome, namely infant health, that involve maternal behaviors

and environments as primitive inputs (see, e.g., Rosenzweig & Schultz, 1983, Corman et al.,

1987, Grossman & Joyce, 1990), Geronimus & Korenman, 1992, Rosenzweig & Wolpin, 1991,

Rosenzweig & Wolpin, 1995, Evans & Ringel, 1999,Currie & Moretti, 2003, Camacho, 2008).

On the other hand, birth weight is itself used as a measure for the initial input, the condition

of an individual at birth, that eventually “produces” educational attainment, employment, and

earnings as outcomes (see, e.g., Behrman et al., 1994, Currie & Hyson, 1999, Behrman & Rosen-

zweig, 2004, Black et al., 2007). Both aspects make understanding the causal determinants of

a child’s birth weight an issue of first order importance.

In most economic approaches, maternal age and the decision to give birth are made endoge-

nously through life cycle plans made by forward-looking decision makers. The key econometric

issue is to separate the physiological effects of mother’s age from the effects of the economic

environment that is associated with a mother’s age. The standard panel data approaches will

suffer from selection bias, because we cannot observe the same mother giving twice birth to

the first child. Having a second child is usually thought of a dynamic decision that depends in

parts on the outcome of the first birth, and is hence not a comparable decision. The first preg-

nancy may also have an effect on subsequent pregnancies. The standard instrumental variable
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approach (using an exogenous variable that affects mother’s age) extensively used in this liter-

ature also seems difficult to justify in our context, because age cannot be exogenously varied

by common policy instruments, unlike other treatment variables such as smoking intensity or

use of prenatal care. Instead, we will now argue that identification using time stationarity of

the conditional distribution of unobservables is well suited for this problem.

In our empirical study, we use extracts from the repeated cross sections of the Natality

Vital Statistics System of the National Center for Health Statistics from for years 1990-1999

and 2008. Following our notation, we let Xt and Yt denote mother’s age and infant birth

weight, respectively, where t denotes the index for years 90-99 and 08. To exclude any dynamic

optimization issues, we focus on the subsample consisting of first births. Table 1 shows summary

statistics of (Yt, Xt), for the repeated cross sections of first births. The displayed values are the

sample means of age and birth weight, with the sample standard errors shown in parentheses.

These aggregate statistics suggest two time trends – the mean infant birth weight is decreasing

over time, and mean age of mother at first birth is increasing over time toward the turn of

the century. This simple observation alone, however, does not allow us to conclude the causal

effects of mother’s age on infant birth weight due to omitted explanatory variables which may

also follow certain time trends. Our approach controls for those omitted variables.

To examine whether our approach is applicable, we first consider the time shift of the

t 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2008

Yt 3306 3298 3300 3288 3283 3285 3277 3275 3272 3271 3177

(595) (590) (588) (593) (590) (597) (593) (599) (599) (604) (601)

Xt 24.2 24.2 24.3 24.4 24.4 24.5 24.5 24.7 24.8 24.7 23.8

(5.5) (5.6) (5.7) (5.8) (5.9) (6.0) (6.0) (6.0) (6.1) (6.1) (5.6)

Nt 84708 83408 81629 81204 80708 80266 79341 78870 78745 79429 39809

Sources: Natality Vital Statistics System of the National Center for Health Statistics.

Notes: the displayed values are the sample means, with their sample standard errors shown in the paren-

theses. The bottom row shows the effective sample sizes of the repeated cross sections for each year.

Table 1: Summary statistics of the first births from 1990 to 1999 and 2008.
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cumulative distribution of mother’s age at first birth. We focus on the pair of most recent years

in our data set, namely 1999 and 2008, but we will later use cross sections of the other years

for robustness checks. Figure 4 shows the cdfs of maternal age at first birth in the years 1999

and 2008, i.e., X99 and X08, smoothed by interpolation of the discretely supported Xt. Observe

that they cross around Age = 18, while X99 first-order stochastically dominates X08 above age

20. Assumption 3 is therefore satisfied, and we can use x∗ = 18 to form the temporal control

group necessary to disentangle the time effects from the effect of age for those mothers older

than 18.

Our approach also relies on the conditional stationarity assumption, which states that the

distribution of unobservables At of all mothers who have rank Vt = v in the first birth age

distribution is the same as the distribution of As given Vs = v. To understand this, think of At

as variable that captures the healthiness of the lifestyle. Endogeneity arises here because the

distribution of healthy lifestyles of mothers who have their first child at 18 (think of teenage

pregnancies) is likely to be different from the one of mothers who have their first child at 28,

Figure 4: Cumulative distribution of maternal age at first birth.
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for instance. Then, our identifying assumption says that mothers at the third quartile (say) of

first birth age in 1999 (which is 29), have the same distribution in terms of healthy lifestyles,

as the mothers at the third quartile of first birth age in 2008 (which is 27). This is plausible

if, loosely speaking, these two subpopulations are at the same position in the distribution of

smoking and alcohol consumption, physical activity etc, as is likely the case given the close

proximity of the two cdfs, and the not too distant time periods.

Given the crossing point x∗ = 18 that we use to construct the “nontreated” control group,

we use the two conditional cumulative distributions, FY99|X99=18 and FY08|X08=18 to identify the

effect of time in isolation. Recall that the aggregate summary statistics in Table 1 shows the

tendency that the mean birth weights decrease over time from 1999 to 2008 by nearly 100

grams. The same is true in terms of the conditional distribution of birth weight at first birth

when mothers were 18 years old. As such, the time effects from 1999 to 2008, identified by

m08 ◦m−199 = FY08|X08=18 ◦F−1Y99|X99=18, is overall smaller than unity, and is illustrated by the Q-Q

plot that appear on or below the 45◦ line shown in Figure 5. In words, for the control group

the birth weight decreased. If we think of At as the healthiness of lifestyle, which as we argue

below is plausibly time invariant for a given rank of the income distribution over such a short

time span, this time effect reflects the fact that the structural relationship changes slightly over

time. This probably is largely due to the increase of preterm birth rate, which rose by more

than 20 percent between 1990 and 2008, and can be attributed to the increase in the medical

ability to save lives of even very underweight preterm newborns. Besides, the effect of time

appears to be heterogeneous. It is pronounced at both tails of the distribution but insignificant

for intermediate quantiles. This shows the potential importance of not restricting oneself to a

constant time effect.

Using the estimated time effects, we in turn estimate the marginal effects of interest. As

we have FX99(x) ≈ FX08(x) for all x < 21 and all x > 37, it is only for 21 6 x 6 37 that

heterogeneous marginal effects can be obtained, which is of course a very large part of the

population. Figure 6 (a) shows the average estimated effects ∆ATT (x, q12(x))/(q12(x) − x)

together with 95% bootstrap confidence intervals. Note that because q12(x) is close to x, these

effects are likely to approximate well the average marginal effects ∆AME
j (x)(x), and with slight
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Figure 5: The time effects on birth weight in grams from 1999 to 2008.

abuse of language we refer to them as marginal effects hereafter. The mean estimates are

negative throughout the effective domain of mother’s age. Furthermore, these marginal effects

are significantly negative at the five percent level for 28- through 37-year old mothers, implying

that adverse physiological effects of aging on birth weight are likely to exist, at least starting

with a maternal age at first birth of 30.

Note that this result accounts for the endogeneity of mother’s age at first birth, which may

for instance be the result of family planning by forward-looking individuals (crucial is only

the conditional stationarity assumption, as discussed above). To see the degree to which this

endogeneity would affect estimates of the marginal effects, if not properly taken care off, we

also compute a naive cross section estimate of the marginal effects, assuming that mother’s

age at first birth were exogenous, i.e., the effect of an exogenous shift from x to x′ is analyzed

using E[Y08 | X08 = x′] − E[Y08 | X08 = x], instead of E[F−1Y08|X08=17 ◦ FY99|X99=17(Y99) | X08 =

x′] − E[Y08 | X08 = x]. Figure 6 (b) shows these “naive” estimates. Compared with Figure 6

(a), which accounts for endogeneity, the mean estimates in Figure 6 (b) are much smaller in
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absolute value, and are almost never significant. Furthermore, these naively estimated marginal

effects are even significantly positive for ages between 20 and 26. One possible explanation of

this outcome is that wealthier and more educated women, i.e., women with a healthier lifestyle

on average, who may tend to have newborns with higher birth weights are likely to defer

childbearing in these early ages. An estimator that does not account for endogeneity might

wrongly take as positive marginal effects of mother’s age on birth weight.

Figure 6 (a) shows our estimates of the marginal effects in 2008 using 1999 as a reference

year. We next demonstrate that the qualitative patterns are similar even if we used other years

as reference years. The left column of Figure 7 shows analogous estimates of the marginal effects

in 2008 using (a) 1996, (b) 1997, and (c) 1998 as reference years, which are computed based on

the crossing point x∗ = 18. The mean estimates are negative almost everywhere throughout

the effective domains, and are overall convex-shaped around Xt = 30. The negative estimates

are robustly significant near or above Xt = 30 for all the reference years. There is no single

year of age at which these estimates are significantly positive, in contrast to the implausible

results we obtain from the naive estimates of Figure 6 (b). The right column of Figure 7 shows

the counterparts of these naive estimates using (a) 1996, (b) 1997, and (c) 1998 as reference

years. These robust results across multiple reference years support our claim.
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Many economies have seen the ongoing trend of delaying marriage and first birth. Social

costs of this tendency have been discussed extensively, but we found that there may be costs to

the health of children, at least in as far as they are reflected in reduced birth weights. Based on

our mean estimates, delaying first birth by a year results in about 50 gram loss of birth weights

for 30 year old mothers. This number is statistically significant, and is roughly the same as the

weight reduction that could result from 3 additional cigarettes smoked by a smoking pregnant

mother per day (see Hoderlein & Sasaki, 2013). Couples may want to consider these potential

health costs when making decisions to delay marriage and child birth. Furthermore, since these

immediate health costs can have significant losses in the long run (see, e.g.Behrman et al., 1994,

Currie & Hyson, 1999, Behrman & Rosenzweig, 2004, Black et al., 2007), our empirical results

may inform policy makers on how to improve welfare outcomes by affecting the age of first

birth.

6 Conclusion

Contrary to panel data, repeated cross sections are seldom considered as an alternative to

instruments when endogeneity is suspected. Yet, we show that repeated cross sections can

resolve this issue even in the case where the explanatory variable of interest, the treatment, is

continuous in a way that is reminiscent of difference-in-difference methods. Importantly, this

is possible even if time has a nonlinear and heterogeneous effect, meaning that the additive

decomposition typically assumed with difference-in-differences is not a necessary condition to

conduct such an analysis. However, other conditions are important: The first key assumption is

a time invariance condition, which - as we argue - differs from the one usually assumed in panel

data models. The second is a crossing condition, which basically holds when time affects the

treatment not in a homogeneous way. Under these conditions, several treatment effect param-

eters are point, while others are set identified. Moreover, we propose two distinct additional

set of restrictions that yield point identification of most commonly analyzed treatment effects.

The first is a linear correlated random coefficient model recently considered in the panel data

literature (see, e.g., Arellano & Bonhomme, 2012), Graham & Powell, 2012). The second does



(a) Endogeneity of mother’s age is taken into account.

(b) Mother’s age is assumed to be exogenous.

Notes: Effects for first birth in 2008, with bootstrap confidence intervals.

Figure 6: Estimated marginal effects of mother’s age on infant birth weights
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(a) Endogenous age & 1996 as a reference year (a) Exogenous age & 1997 as a reference year

(b) Endogenous age & 1997 as a reference year (b) Exogenous age & 1997 as a reference year

(c) Endogenous age & 1998 as a reference year (c) Exogenous age & 1998 as a reference year

Notes: Effects for first birth in 2008, with bootstrap confidence intervals. The left column takes endogeneity of

mother’s age into account, while the right column assumes that mother’s age is exogenous. While Figure 6 uses

1999 as a reference year, this figure uses (a) 1996, (b) 1997, and (c) 1998 as reference years.

Figure 7: Estimated marginal effects of mother’s age on infant birth weights
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not impose linearity, but restricts the error term to be scalar, in line with the literature on non-

separable models. We show that such an approach works well in an application that discusses

the effect of maternal age at first birth on the birth weight of a newborn, and uncovers, as we

feel, interesting details.
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A Appendix

A.1 Proof of Theorem 1

The result for mt and ∆ATT (x, qt(x)) has already been proved in the text. As for ∆QTT (x, qt(x)),

we have

F−1
Ỹt|Xt

(τ |qt(x)) = F−1g(qt(x),At)|Vt(τ |FT (x))

A.1
= F−1g(qt(x),AT )|VT (τ |FT (x))

= F−1g(qt(x),At)|XT (τ |x).

The result follows.

Now consider marginal effects. Consider a sequence (xn)n∈N such that for all i ∈ {1, ..., K},
i 6= j, xin = x∗it and qjt(xjn) 6= xjn. We have

∆ATT
j (xn, qt(xn))

qjt(xn)− xjn
=

∫
g(qt(xn), a)− g(xn, a)

qjt(xn)− xjn
fAT |XT (a|xn)da.

By Assumption 4-(i) and (ii), we have, for almost all a,

g(qt(xn), a)− g(xn, a)

qjt(xn)− xjn
fAT |XT (a|xn) =

∂g

∂xj
(x̃n, a)fAT |XT (a|xn)

−→ ∂g

∂xj
(x∗t , a)fAT |XT (a|x∗t ),

where x̃n is such that x̃in = x∗it for all i 6= j and x̃jn ∈ [xjn, qjt(xjn)]. Moreover, for n large

enough, xn and x̃n belong to the neighborhood N considered in Assumption 4. Thus, for n

large enough, ∣∣∣∣ ∂g∂xj (x̃n, a)fAT |XT (a|xn)

∣∣∣∣ ≤ ∣∣∣∣ sup
x′∈N

∂g

∂xj
(x′, a)

∣∣∣∣ ∣∣∣∣ sup
x′∈N

fAT |XT (a|x′)
∣∣∣∣ .

The right-hand side is integrable by Assumption 4-(iii). Thus, by the dominated convergence

theorem,∫
g(qt(xn), a)− g(xn, a)

qt(xn)− xn
fAT |XT (a|xn)da −→

∫
∂g

∂xj
(x∗t , a)fAT |XT (a|x∗t )da = ∆AME

j (x∗t ).
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Finally, let us turn to ∆QME
j (τ, x). We have

∆QTT
j (τ, xn, qt(xn))

qjt(xjn)− xjn
=

F−1g(qt(xn),AT )|XT (τ |xn)− F−1g(xn,AT )|XT (τ |xn)

qjt(xjn)− xjn

=
∂F−1g(x′,AT )|XT (τ |xn)

∂x′j
|x′=x̃′n ,

where x̃′n is such that x̃′in = x∗it for all i 6= j and x̃′jn ∈ [xjn, qjt(xjn)]. By Assumption 4-(iv), the

last derivative converges to

∂F−1g(x′,AT )|XT (τ |x∗t )
∂x′j

|x′∗t = ∆QME
j (τ, x∗t ).

A.2 Proof of Theorem 2

Suppose first that g is locally concave on [min(x, xT (x′)), xT (x′)]. Then, for all x1 ≤ x′ ≤ x2,

almost surely,

g(x2, AT )− g(x,AT )

x2 − x
≤ g(x′, AT )− g(x,AT )

x′ − x ≤ g(x1, AT )− g(x,AT )

x1 − x
. (A.1)

Taking x1 = xT (x′) and x2 = xT (x′) and integrating conditional on XT = x, we obtain

(x′ − x)
∆ATT (x, xT (x′))

xT (x′)− x ≤ ∆ATT (x, x′) ≤ (x′ − x)
∆ATT (x, xT (x′))

xT (x′)− x .

The inequality is simply reverted if g is locally convex. Hence, in either case,

(x′ − x) min

{
∆ATT (x, xT (x′))

xT (x′)− x ,
∆ATT (x, xT (x′))

xT (x′)− x

}
≤ ∆ATT (x, x′)

≤ (x′ − x) max

{
∆ATT (x, xT (x′))

xT (x′)− x ,
∆ATT (x, xT (x′))

xT (x′)− x

}
.

The reasoning is the same for marginal effects using, instead of Equation (A.1),

g(x2, AT )− g(x,AT )

x2 − x
≤ ∂g

∂x
(x,AT ) ≤ g(x1, AT )− g(x,AT )

x1 − x
.

A.3 Proof of Theorem 4

mt is identified by Theorem 1. We now show that we can apply Theorem 4.4 of D’Haultfoeuille

& Février (2012). The idea for that is to observe that we have a triangular system Ỹt = g(Xt, At)

Xt = h(t, Vt)
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where h(t, v) = F−1Xt
(v). This is a nonseparable triangular model where Xt can be seen as

the potential endogenous variable corresponding to the value t of an instrument. The only

difference between this model and the one considered by D’Haultfoeuille & Février (2012) is

that we assume here rank similarity instead of rank invariance. Namely, At and Vt are allowed to

vary with t here, while the potential error terms corresponding to each value of the instrument

are identical in D’Haultfoeuille & Février (2012). But this does not affect the reasoning. In

particular,

FỸt|Xt(g(x, a)|x) = P (g(x,At) ≤ g(x, a)|Vt = Ft(x))

A.5
= P (At ≤ a|Vt = Ft(x))

A.1
= P (At′ ≤ a|Vt′ = Ft(x))

A.5
= P (g(qtt′(x), At′ ≤ g(qtt′(x), a)|Xt′ = qtt′(x))

= FỸt′ |Xt′ (g(qtt′(x), a)|qtt′(x)).

These equalities were also derived by D’Haultfoeuille & Février (2012) (see p.6), the only

difference being that they used an independence assumption (Assumption 1 in their paper) in

place of our time invariance Assumption 1 here. But both lead to the same conclusion. Note

also that the function qtt′ plays the role of their function sij. The rest of the proof is identical,

noting that their Assumption 2 holds by Assumption 5, and their Assumptions 3 and 4 are

satisfied by Assumption 4.
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