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Dynamic Linear Panel Regression Models with Interactive Fixed Effects

Supplementary Material (Not for Publication)

Hyungsik Roger Moon‡ Martin Weidner§

December 25, 2013

S.1 Proofs for Appendix A (Examples of Error Distributions)

Here we give the proof of the result ‖e‖ = Op(
√

max(N,T )) for the different examples of error
distributions presented in the main text.

Proof of example (i). Latala (2005) showed that for a N × T matrix e with independent
entries we have

E‖e‖ ≤ c

max
i

√∑
t

Ee2
it + max

j

√∑
i

Ee2
it + 4

√∑
i,t

Ee4
it

 ,

where c is some universal constant (independent of N and T , and of the distribution of e). Since
we assumed uniformly bounded 4’th moments for eit we thus have E‖e‖ = O(

√
T ) +O(

√
N) +

O((TN)1/4), which implies E‖e‖ = O(
√

max(N,T )). Therefore ‖e‖ = Op(
√

max(N,T )).

Proof of example (ii). Let ψj = (ψ1j , . . . , ψNj) be an N × 1 vector for each j ≥ 0. Let U−j
be an N × T sub-matrix of (uit) consisting of uit, i = 1 . . . N , t = 1− j, . . . , T − j. We can then
write equation (A.1) in matrix notation as

e =
∞∑
j=0

diag(ψj)U−j

=
T∑
j=0

diag(ψj)U−j + rNT , ,

where we cut the sum at T , which results in the remainder rNT =
∑∞

j=T+1 diag(ψj)U−j . When
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approximating an MA(∞) by a finite MA(T ) process we have for the remainder

E (‖rNT ‖F )2 =
N∑
i=1

T∑
t=1

E (rNT )2
ij ≤ σ2

u

N∑
i=1

T∑
t=1

∞∑
j=T+1

ψ2
ij

≤ σ2
uN T

∞∑
j=T+1

max
i

(
ψ2
ij

)
≤ σ2

uN

∞∑
j=T+1

j max
i

(
ψ2
ij

)
,

where σ2
u is the variance of uit. Therefore, for T →∞ we have

E

(
(‖rNT ‖F )2

N

)
−→ 0 ,

which implies (‖rNT ‖F )2 = Op(N), and therefore ‖rNT ‖ ≤ ‖rNT ‖F = Op(
√
N).

Let V be the N × 2T matrix consisting of uit, i = 1 . . . N , t = 1− T, . . . , T . For j = 0 . . . T
the matrices U−j are sub-matrices of V , and therefore ‖U−j‖ ≤ ‖V ‖. From example (i) we know
that ‖V ‖ = Op(

√
max(N, 2T )). Furthermore, we know that ‖ diag(ψj)‖ ≤ maxi

(∣∣ψij∣∣).
Combining these results we find

‖e‖ ≤
T∑
j=0

‖diag(ψj)‖ ‖U−j‖+ ‖rNT ‖

≤
T∑
j=0

max
i

(∣∣ψij∣∣) ‖V ‖+ op(
√
N)

≤

 ∞∑
j=0

max
i

(∣∣ψij∣∣)
Op(√max(N, 2T )) + op(

√
N)

≤ Op(
√

max(N,T )) .

This is what we wanted to show.

Proof of example (iii). Since σ and Σ are positive definite, there exits a symmetric N × N
matrix φ and a symmetric T × T matrix ψ such that σ = φ2 and Σ = ψ2. The error term
can then be generated as e = φuψ, where u is a N × T matrix with iid entries uit such that
E(uit) = 0 and E(u4

it) < ∞. Given this definition of e we immediately have Eeit = 0 and
Eeitejτ = σijΣtτ . What is left to show is that ‖e‖ = Op(

√
max(N,T )). From example (i) we

know that ‖u‖ = Op(
√

max(N,T )). Using the inequality ‖σ‖ ≤
√
‖σ‖1 ‖σ‖∞ = ‖σ‖1, where

‖σ‖1 = ‖σ‖∞ because σ is symmetric we find

‖σ‖ ≤ ‖σ‖1 ≡ max
j=1...N

N∑
i=1

|σij | < L ,

and analogously ‖Σ‖ < L. Since ‖σ‖ = ‖φ‖2 and ‖Σ‖ = ‖ψ‖2, we thus find ‖e‖ ≤ ‖φ‖‖u‖‖ψ‖ ≤
LOp(

√
max(N,T )), i.e. ‖e‖ = Op(

√
max(N,T )).
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S.2 Comments on assumption 4 on the regressors

Consistency of the LS estimator β̂ requires that the regressors not only satisfy the standard
no-collinearity condition in assumption 4(i), but also the additional conditions on high- and
low-rank regressors in assumption 4(ii). Bai (2009) considers the special cases of only high-
rank and only low-rank regressors. As low-rank regressors he considers only cross-sectional
invariant and time-invariant regressors, and he shows that if only these two types of regressors
are present, one can show consistency under the assumption plimN,T→∞WNT > 0 on the re-
gressors (instead of assumption 4), where WNT is the K × K matrix defined by WNT,k1k2 =
(NT )−1 Tr(Mf0 X ′k1 Mλ0 Xk2). This matrix appears as the approximate Hessian in the profile
objective expansion in theorem 4.1, i.e. the condition plimN,T→∞WNT > 0 is very natural in the
context of the interactive fixed effect models, and one may wonder whether also for the general
case one can replace assumption 4 with this weaker condition and still obtain consistency of
the LS estimator. Unfortunately, this is not the case, and below we present two simple counter
examples that show this.

(i) Let there only be one factor (R = 1) f0
t with corresponding factor loadings λ0

i . Let there
only be one regressor (K = 1) of the form Xit = wivt + λ0

i f
0
t . Assume that the N × 1

vector w = (w1, . . . , wN )′, and the T × 1 vector v = (v1, . . . , vN )′ are such that the N × 2
matrix Λ = (λ0, w) and and the T × 2 matrix F = (f0, v) satisfy plimN,T→∞ (Λ′Λ/N) > 0,
plimN,T→∞ (F ′F/T ) > 0. In this case, we have WNT = (NT )−1 Tr(Mf0 vw′Mλ0 wv′), and
therefore plimN,T→∞WNT = plimN,T→∞(NT )−1 Tr(Mf0 vw′Mλ0 wv′) > 0. However, β is
not identified because β0X +λ0f0′ = (β0 + 1)X −wv′, i.e. it is not possible to distinguish
(β, λ, f) = (β0, λ0, f0) and (β, λ, f) = (β0 + 1,−w, v). This implies that the LS estimator
is not consistent (both β0 and β0 + 1 could be the true parameter, but the LS estimator
cannot be consistent for both).

(ii) Let there only be one factor (R = 1) f0
t with corresponding factor loadings λ0

i . Let the N×1
vectors λ0, w1 and w2 be such that Λ = (λ0, w1, w2) satisfies plimN,T→∞ (Λ′Λ/N) > 0. Let
the T×1 vectors f0, v1 and v2 be such that F = (f0, v1, v2) satisfies plimN,T→∞ (F ′F/T ) >
0. Let there be four regressors (K = 4) defined by X1 = w1v

′
1, X2 = w2v

′
2, X3 =

(w1 + λ0)(v2 + f0)′, X4 = (w2 + λ0)(v1 + f0)′. In this case, one can easily check that
plimN,T→∞WNT > 0. However, again βk is not identified, because

∑4
k=1 β

0
kXk + λ0f0′ =∑4

k=1(β0
k+1)Xk−(λ0 +w1 +w2)(f0′+v1 +v2)′, i.e. we cannot distinguish between the true

parameters and (β, λ, f) = (β0 + 1, −λ0−w1−w2, f
0′+ v1 + v2). Again, as a consequence

the LS estimator is not consistent in this case.

In example (ii), there are only low-rank regressors with rank(Xl) = 1. One can easily check
that assumption 4 is not satisfied for this example. In example (i) the regressor is a low-rank
regressor with rank(X) = 2. In our present version of assumption 4 we only consider low-rank
regressors with rank rank(X) = 1, but (as already noted in a footnote in the main paper) it is
straightforward to extend the assumption and the consistency proof to low-rank regressors with
rank larger than one. Independent of whether we extend the assumption or not, the regressor
X of example (i) fails to satisfy assumption 4. This justifies our formulation of assumption 4,
because it shows that in general the assumption cannot be replaced by the weaker condition
plimN,T→∞WNT > 0.
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S.3 Some Matrix Algebra

The following statements are true for real matrices – throughout the wholer paper complex
numbers never appear.

Let A be an arbitrary n×m matrix. In addition to the operator (or spectral) norm ‖A‖ and
to the Frobenius (or Hilbert-Schmidt) norm ‖A‖F , it is also convenient to define the 1-norm,
the ∞-norm, and the max-norm by

‖A‖1 = max
j=1...m

n∑
i=1

|Aij | , ‖A‖∞ = max
i=1...n

m∑
j=1

|Aij | , ‖A‖max = max
i=1...n

max
j=1...m

|Aij | .

Theorem S.3.1 (Some useful Inequalities). Let A be a n×m matrix, B be a m×p matrix, and
C and D be n× n matrices. Then we have:

(i) ‖A‖ ≤ ‖A‖F ≤ ‖A‖ rank (A)1/2 ,

(ii) ‖AB‖ ≤ ‖A‖ ‖B‖ ,
(iii) ‖AB‖F ≤ ‖A‖F ‖B‖ ≤ ‖A‖F ‖B‖F ,

(iv) |Tr(AB)| ≤ ‖A‖F ‖B‖F , for n = p,
(v) |Tr (C)| ≤ ‖C‖ rank (C) ,

(vi) ‖C‖ ≤ Tr (C) , for C symmetric and C ≥ 0,

(vii) ‖A‖2 ≤ ‖A‖1 ‖A‖∞ ,

(viii) ‖A‖max ≤ ‖A‖ ≤
√
nm ‖A‖max ,

(ix) ‖A′CA‖ ≤ ‖A′DA‖ , for C symmetric and C ≤ D.
For C, D symmetric, and i = 1, . . . , n we have:

(x) µi(C) + µn(D) ≤ µi(C +D) ≤ µi(C) + µ1(D) ,
(xi) µi(C) ≤ µi(C +D) , for D ≥ 0,

(xii) µi(C)− ‖D‖ ≤ µi(C +D) ≤ µi(C) + ‖D‖ .

Proof. Here we use notation si(A) for the i’th largest singular value of a matrix A.
(i) We have ‖A‖ = s1(A), and ‖A‖2F =

∑rank(A)
i=1 (si(A))2. The inequalities follow directly from

this representation. (ii) This inequality is true for all unitarily invariant norms, see e.g. Bhatia
(1997). (iii) can be shown as follows

‖AB‖2F = Tr(ABB′A′)

= Tr[‖B‖2AA′ −A(‖B‖2I−BB′)A′]
≤ ‖B‖2Tr(AA′) = ‖B‖2 ‖A‖2F ,

where we used that A(‖B‖2I − BB′)A′ is positive definite. Relation (iv) is just the Cauchy
Schwarz inequality. To show (v) we decompose C = UDO′ (singular value decomposition),
where U and O are n × rank(C) that satisfy U ′U = O′O = I and D is a rank(C) × rank(C)
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diagonal matrix with entries si(C). We then have ‖O‖ = ‖U‖ = 1 and ‖D‖ = ‖C‖ and therefore

|Tr(C)| = |Tr(UDO′)| = |Tr(DO′U)|

=

∣∣∣∣∣∣
rank(C)∑
i=1

η′iDO
′Uηi

∣∣∣∣∣∣
≤

rank(C)∑
i=1

‖D‖‖O′‖‖U‖ = rank(C)‖C‖ .

For (vi) let e1 be a vector that satisfied ‖e1‖ = 1 and ‖C‖ = e′1Ce1. Since C is symmetric
such an e1 has to exist. Now choose ei, i = 2, . . . , n, such that ei, i = 1, . . . , n, becomes a
orthonormal basis of the vector space of n× 1 vectors. Since C is positive semi definite we then
have Tr (C) =

∑
i e
′
iCei ≥ e1Ce1 = ‖C‖, which is what we wanted to show. For (vii) we refer

to Golub, van Loan (1996), p.15. For (viii) let e be the vector the vector that satisfies ‖e‖ = 1
and ‖A′CA‖ = e′A′CAe. Since A′CA is symmetric such an e has to exist. Since C ≤ D we
then have ‖C‖ = (e′A′)C(Ae) ≤ (e′A′)D(Ae) ≤ ‖A′DA‖. This is what we wanted to show. For
inequality (ix) let e1 be a vector that satisfied ‖e1‖ = 1 and ‖A′CA‖ = e′1A

′CAe1. Then we have
‖A′CA‖ = e′1A

′DAe1 − e′1A′(D − C)Ae1 ≤ e′1A
′DAe1 ≤ ‖A′DA‖. Statement (x) is a special

case of Weyl’s inequality, see e.g. Bhatia (1997). The Inequalities (xi) and (xii) follow directly
from (ix) since µn(D) ≥ 0 for D ≥ 0, and since −‖D‖ ≤ µi(D) ≥ ‖D‖ for i = 1, . . . , n.

Definition S.3.2. Let A be an n × r1 matrix and B be an n × r2 matrix with rank(A) = r1

and rank(B) = r2. The smallest principal angle θA,B ∈ [0, π/2] between the linear subspaces
span(A) = {Aa| a ∈ Rr1} and span(B) = {Bb| b ∈ Br2} of Rn is defined by

cos(θA,B) = max
06=a∈Rr1

max
06=b∈Rr2

a′A′Bb

‖Aa‖‖Bb‖
.

Theorem S.3.3. Let A be an n× r1 matrix and B be an n× r2 matrix with rank(A) = r1 and
rank(B) = r2. Then we have the following alternative characterizations of the smallest principal
angle between span(A) and span(B)

sin(θA,B) = min
06=a∈Rr1

‖MB Aa‖
‖Aa‖

= min
06=b∈Rr2

‖MAB b‖
‖B b‖

.

Proof. Since ‖MB Aa‖2 + ‖PB Aa‖2 = ‖Aa‖2 and sin(θA,B)2 + cos(θA,B)2 = 1, we find that
proving the theorem is equivalent to proving

cos(θA,B) = min
06=a∈Rr1

‖PB Aa‖
‖Aa‖

= min
06=b∈Rr2

‖PAB b‖
‖Ab‖

.

This result is theorem 8 in Galantai, Hegedus (2006), and the proof can be found there.
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Proof of Theorem C.1. Let

S1(Z) = min
f,λ

Tr
[(
Z − λf ′

) (
Z ′ − fλ′

)]
,

S2(Z) = min
f

Tr(ZMf Z
′) ,

S3(Z) = min
λ

Tr(Z ′Mλ Z) ,

S4(Z) = min
λ̄,f̄

Tr(Meλ ZM ef Z ′) ,
S5(Z) =

T∑
i=R+1

µi(Z
′Z) ,

S6(Z) =
N∑

i=R+1

µi(ZZ
′) .

The theorem claims

S1(Z) = S2(Z) = S3(Z) = S4(Z) = S5(Z) = S6(Z) .

We find:

(i) The non-zero eigenvalues of Z ′Z and ZZ ′ are identical, so in the sums in S5(Z) and in
S6(Z) we are summing over identical values, which shows S5(Z) = S6(Z).

(ii) Starting with S1(Z) and minimizing with respect to f we obtain the first order condition

λ′ Z = λ′ λ f ′ .

Putting this into the objective function we can integrate out f , namely

Tr
[(
Z − λf ′

)′ (
Z − λf ′

)]
= Tr

(
Z ′Z − Z ′λf ′

)
= Tr

(
Z ′Z − Z ′λ(λ′λ)−1(λ′λ)f ′

)
= Tr

(
Z ′Z − Z ′λ(λ′λ)−1(λ′λ)λ′ Z

)
= Tr

(
Z ′Mλ Z

)
.

This shows S1(Z) = S3(Z). Analogously, we can integrate out λ to obtain S1(Z) = S2(Z).

(iii) Let Mbλ be the projector on the N − R eigenspaces corresponding to the N − R smallest
eigenvalues1 of ZZ ′, let Pbλ = IN − Mbλ, and let ωR be the R’th largest eigenvalue of
ZZ ′. We then know that the matrix Pbλ[ZZ ′ − ωRIN ]Pbλ −Mbλ[ZZ ′ − ωRIN ]Mbλ is positive
semi-definite. Thus, for an arbitrary N ×R matrix λ with corresponding projector Mλ we
have

0 ≤ Tr
{(
Pbλ[ZZ ′ − ωRIN ]Pbλ −Mbλ[ZZ ′ − ωRIN ]Mbλ) (Mλ −Mbλ)2}

= Tr
{(
Pbλ[ZZ ′ − ωRIN ]Pbλ +Mbλ[ZZ ′ − ωRIN ]Mbλ) (Mλ −Mbλ)}

= Tr
[
Z ′Mλ Z

]
− Tr

[
Z ′Mbλ Z]+ ωR

[
rank(Mλ)− rank(Mbλ)

]
,

1If an eigenvalue has multiplicity m, we count it m times when finding the N −R smallest eigenvalues. In this
terminology we always have exactly N eigenvalues of ZZ′, but some may appear multiple times.
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and since rank(Mbλ) = N −R and rank(Mλ) ≤ N −R we have

Tr
[
Z ′Mbλ Z] ≤ Tr

[
Z ′Mλ Z

]
.

This shows that Mbλ is the optimal choice in the minimization problem of S3(Z), i.e. the
optimal λ = λ̂ is chosen such that the span of the N -dimensional vectors λ̂r (r = 1 . . . R)
equals to the span of the R eigenvectors that correspond to the R largest eigenvalues of
ZZ ′. This shows that S3(Z) = S6(Z). Analogously one can show that S2(Z) = S5(Z).

(iv) In the minimization problem in S4(Z) we can choose λ̃ such that the span of the N -
dimensional vectors λ̃r (r = 1 . . . R1) equals to the span of the R1 eigenvectors that corre-
spond to the R1 largest eigenvalues of ZZ ′. In addition, we can choose f̃ such that the span
of the T -dimensional vectors f̃r (r = 1 . . . R2) equals to the span of the R2 eigenvectors
that correspond to the (R1 + 1)-largest up to the R-largest eigenvalue of Z ′Z. With this
choice of λ̃ and f̃ we actually project out all the R largest eigenvalues of Z ′Z and ZZ ′.
This shows that S4(Z) ≤ S5(Z). (This result is actually best understood by using the
singular value decomposition of Z.)

We can write Meλ ZM ef = Z − Z̃, where

Z̃ = Peλ ZM ef + Z P ef .
Since rank(Z) ≤ rank(Peλ ZM ef )+rank(Z P ef ) = R1 +R2 = R, we can always write Z̃ = λf ′

for some appropriate N ×R and T ×R matrices λ and f . This shows that

S4(Z) = min
λ̄,f̄

Tr(Meλ ZM ef Z ′)
≥ min
{ eZ : rank( eZ)≤R}

Tr((Z − Z̃)(Z − Z̃)′)

= min
f,λ

Tr
[(
Z − λf ′

) (
Z ′ − fλ′

)]
= S1(Z) .

Thus we have shown here S1(Z) ≤ S4(Z) ≤ S5(Z), and actually this holds with equality
since S1(Z) = S5(Z) was already shown above.

S.4 Supplement to the Consistency Proof (Appendix C)

Lemma S.4.1. Under assumption 1 and 4 there exists a constant B0 > 0 such that for the
matrices w and v introduced in assumption 4 we have

w′Mλ0 w − B0w
′ v ≥ 0 , wpa1,

v′Mf0 v − B0 v
′ v ≥ 0 , wpa1.

Proof. We can decompose w = w̃ w̄, where w̃ is a N × rank(w) matrix and w̄ is a rank(w)×K1

matrix. Note that w̃ has full rank, and Mw = M ew.
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By assumption 1(i) we know that λ0′λ0/N has a probability limit, i.e there exists some B1 > 0
such that λ0′λ0/N < B1IR wpa1. Using this and assumption 4 we find that for any R× 1 vector
a 6= 0 we have

‖Mv λ
0 a‖2

‖λ0 a‖2
=

a′ λ0′Mv λ
0 a

a′ λ0′ λ0 a
>

B

B1
, wpa1.

Applying theorem S.3.3 we find

min
06=b∈Rrank(w)

b′ w̃′Mλ0 w̃ b

b′ w̃′ w̃ b
= min

06=a∈RR
a′ λ0′Mw λ

0 a

a′ λ0′ λ0 a
>

B

B1
, wpa1.

Therefore we find for every rank(w) × 1 vector b that b′ (w̃′Mλ0 w̃ − (B/B1)w̃′w̃ ) b > 0, wpa1.
Thus w̃′Mλ0 w̃ − (B/B1) w̃′ w̃ > 0, wpa1. Multiplying from the left with w̄′ and from the
right with w̄ we obtain w′Mλ0 w − (B/B1)w′w ≥ 0, wpa1. This is what we wanted do show.
Analogously we can show the statement for v.

As a consequence of the this lemma we obtain some properties of the low-rank regressors
summarized in the following lemma.

Lemma S.4.2. Let the assumptions 1 and 4 be satisfied and let Xlow,α =
∑K1

l=1 αlXl be a linear
combination of the low-rank regressors. Then there exists some constant B > 0 such that

min
{α∈RK1 ,‖α‖=1}

∥∥∥Xlow,αMf0 X ′low,α

∥∥∥
NT

> B , wpa1,

min
{α∈RK1 ,‖α‖=1}

∥∥∥Mλ0 Xlow,αMf0 X ′low,αMλ0

∥∥∥
NT

> B , wpa1.

Proof. Note that
∥∥∥Mλ0 Xlow,αMf0 X ′low,αMλ0

∥∥∥ ≤ ∥∥∥Xlow,αMf0 X ′low,α

∥∥∥, because ‖Mλ0‖ = 1,
i.e. if we can show the second inequality of the lemma we have also shown the first inequality.

We can write Xlow,α = w diag(α′) v′. Using lemma S.4.1 and part (v), (vi) and (ix) of
Theorem S.3.1 we find∥∥Mλ0 Xlow,αMf0 X ′low,αMλ0

∥∥ =
∥∥Mλ0 w diag(α′) v′Mf0 v diag(α′)w′Mλ0

∥∥
≥ B0

∥∥Mλ0 w diag(α′) v′ v diag(α′)w′Mλ0

∥∥
≥ B0

K1
Tr
[
Mλ0 w diag(α′) v′ v diag(α′)w′Mλ0

]
=
B0

K1
Tr
[
v diag(α′)w′Mλ0w diag(α′) v′

]
≥ B0

K1

∥∥v diag(α′)w′Mλ0w diag(α′) v′
∥∥

≥ B2
0

K1

∥∥v diag(α′)w′w diag(α′) v′
∥∥

≥ B2
0

K2
1

Tr
[
v diag(α′)w′w diag(α′) v′

]
=
B2

0

K2
1

Tr
[
Xlow,αX

′
low,α

]
.

8



Thus we have
∥∥∥Mλ0 Xlow,αMf0 X ′low,αMλ0

∥∥∥ /(NT ) ≥ (B0/K1)2 α′W low
NT α , where the K1 ×K1

matrix W low
NT is defined by W low

NT,l1l2
= (NT )−1Tr

(
Xl1X

′
l2

)
, i.e. it is a submatrix of WNT . Since

by assumption WNT and thus W low
NT converges to a positive definite matrix the lemma is proven

by the inequality above.

Using the above lemmas we can now prove the lower bound on S̃
(2)
NT (β, f) that was used in

the consistency proof. Remember that

S̃
(2)
NT (β, f) =

1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)′
P(λ0,w)

 .

We want to show that under the assumptions of theorem 3.1 there exist finite positive constants
a0, a1, a2, a3 and a4 such that

S̃
(2)
NT (β, f) ≥

a0

∥∥βlow − βlow
0

∥∥2∥∥βlow − βlow
0

∥∥2
+ a1

∥∥βlow − βlow
0

∥∥+ a2

− a3

∥∥∥βhigh − βhigh
0

∥∥∥− a4

∥∥∥βhigh − βhigh
0

∥∥∥ ∥∥∥βlow − βlow
0

∥∥∥ , wpa1.

Proof of the lower bound on S̃
(2)
NT (β, f). Applying theorem C.1 and part (xi) of Theorem S.3.1

9



we find that

S̃
(2)
NT (β, f) ≥ 1

NT
µR+1

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)′
P(λ0,w)

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)
=

1
NT

µR+1

[(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)

+

(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′
P(λ0,w)

K∑
m=K1

(β0
m − βm)Xm

+
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)

+
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

K∑
m=K1

(β0
m − βm)Xm

]

≥ 1
NT

µR+1

[(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)

+

(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′
P(λ0,w)

K∑
m=K1

(β0
m − βm)Xm

+
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)]

≥ 1
NT

µR+1

(λ0 f0′ +
K1∑
l=1

(β0
l − βl)wl v′l

)′(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)
− a3

∥∥∥βhigh − βhigh
0

∥∥∥− a4

∥∥∥βhigh − βhigh
0

∥∥∥∥∥∥βlow − βlow
0

∥∥∥ , wpa1,

where a3 > 0 and a4 > 0 are appropriate constants. For the last step we used part (xii) of
Theorem S.3.1 and the fact that

1
NT

∥∥∥∥∥∥
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

(
λ0 f0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)∥∥∥∥∥∥
≤ K

∥∥∥βhigh − βhigh
0

∥∥∥max
m

∥∥∥∥ Xm√
NT

∥∥∥∥(∥∥∥∥λ0 f0′
√
NT

∥∥∥∥+K
∥∥∥βlow − βlow

0

∥∥∥ max
l

∥∥∥∥ wlv′l√
NT

∥∥∥∥) .

Our assumptions guarantee that the operator norms of λ0 f0′/
√
NT and Xm/

√
NT are bounded

from above as N,T →∞, which results in finite constants a3 and a4.
We write the above result as S̃(2)

NT (β, f) ≥ µR+1(A′A)/(NT ) + terms containing βhigh, where
we defined A = λ0 f0′+

∑K1
l=1(β0

l −βl)wl v′l. Also write A = A1+A2+A3, with A1 = Mw APf0 =
Mw λ

0 f0′, A2 = Pw AMf0 =
∑K1

l=1(β0
l − βl)wl v′lMf0 , A3 = Pw APf0 = Pw λ

0 f0′ +
∑K1

l=1(β0
l −

10



βl)wl v′l Pf . We then find A′A = A′1A1 + (A′2 +A′3)(A2 +A3) and

A′A ≥ A′A− (a1/2A′3 + a−1/2A′2)(a1/2A3 + a−1/2A2)

=
[
A′1A1 − (a− 1)A′3A3

]
+ (1− a−1)A′2A2 ,

where ≥ for matrices refers to the difference being positive definite, and a is a positive number,
namely a = 1 + µR(A′1A1)/(2 ‖A3‖2). The reason for this choice becomes clear below.

Note that [A′1A1 − (a− 1)A′3A3] has at most rank R (asymptotically it has exactly rank R).
The non-zero eigenvalues of A′A are therefore given by the (at most) R non-zero eigenvalues
of [A′1A1 − (a− 1)A′3A3] and the non-zero eigenvalues of (1− a−1)A′2A2, the largest one of the
latter being given given by the operator norm (1− a−1)‖A2‖2. We therefore find

1
NT

µR+1

(
A′A

)
≥ 1
NT

µR+1

[(
A′1A1 − (a− 1)A′3A3

)
+ (1− a−1)A′2A2

]
≥ 1
NT

min
{

(1− a−1)‖A2‖2 , µR
[
A′1A1 − (a− 1)A′3A3

]}
.

Using Theorem S.3.1(xii) and our particular choice of a we find

µR
[
A′1A1 − (a− 1)A′3A3

]
≥ µR(A′1A1)−

∥∥(a− 1)A′3A3

∥∥
=

1
2
µR(A′1A1) .

Therefore

1
NT

µR+1(A′A) ≥ 1
2NT

µR(A′1A1) min
{

1 ,
2 ‖A2‖2

2 ‖A3‖2 + µR(A′1A1)

}
≥ 1
NT

‖A2‖2 µR(A′1A1)
2 ‖A‖2 + µR(A′1A1)

,

where we used ‖A‖ ≥ ‖A3‖ and ‖A‖ ≥ ‖A2‖.
Our assumptions guarantee that there exist positive constants c0, c1, c2 and c3 such that

‖A‖√
NT

≤ ‖λ
0 f0′‖√
NT

+
K1∑
l=1

|β0
l − βl|

‖wl v′l‖√
NT

≤ c0 + c1

∥∥∥βlow − βlow
0

∥∥∥ , wpa1 ,

µR(A′1A1)
NT

=
µR
(
f0 λ0′Mw λ

0 f0′)
NT

≥ c2 , wpa1 ,

‖A2‖2

NT
= µ1

 K1∑
l1=1

(β0
l1 − βl1)wl1 v

′
l1 Mf0

K1∑
l2=1

(β0
l2 − βl2) vl2 w

′
l2


≥ c3

∥∥∥βlow − βlow
0

∥∥∥2
, wpa1 ,

were for the last inequality we used lemma S.4.2.
We thus have

1
NT

µR+1

(
A′A

)
≥

c3

∥∥βlow − βlow
0

∥∥2

1 + 2
c2

(
c0 + c1

∥∥βlow − βlow
0

∥∥)2 , wpa1 .
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Defining a0 = c2c3
2c21

, a1 = 2c0
c1

and a2 = c2
2c21

we thus obtain

1
NT

µR+1

(
A′A

)
≥

a0

∥∥βlow − βlow
0

∥∥2∥∥βlow − βlow
0

∥∥2
+ a1

∥∥βlow − βlow
0

∥∥+ a2

, wpa1 ,

i.e. we have shown the desired bound on S̃
(2)
NT (β, f).

S.5 Proof of Corollary 4.2

All that is left to show for Corollary 4.2 is that the matrix WNT = WNT (λ0, f0, Xk) does not
become singular as N,T →∞.

Proof. Remember that

WNT =
1
NT

Tr(Mf0 X ′k1 Mλ0 Xk2) .

The smallest eigenvalue of the symmetric matrix W (λ0, f0, Xk) is given my

µK (WNT ) = min
{a∈RK , a 6=0}

a′WNT a

‖a‖2

= min
{a∈RK , a 6=0}

1
NT ‖a‖2

Tr

Mf0

 K∑
k1=1

ak1 X
′
k1

 Mλ0

 K∑
k2=1

ak2 Xk2


= min
{α ∈ RK1 , ϕ ∈ RK2

α 6= 0, ϕ 6= 0}

Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
Mλ0 (Xlow,ϕ +Xhigh,α)

]
NT (‖α‖2 + ‖ϕ‖2)

,

where we decomposed a = (ϕ′, α′)′, with ϕ and α being vectors of length K1 and K2, respectively,
and we defined linear combinations of high- and low-rank regressors2

Xlow,ϕ =
K1∑
l=1

ϕlXl , Xhigh,α =
K∑

m=K1+1

αmXm .

We have Mλ0 = M(λ0,w) + P(Mλ0w), where w is the N ×K1 matrix defined in assumption 4, i.e.
(λ0, w) is N × (R+K1) matrix, while Mλ0w is also a N ×K1 matrix. Using this we obtain

µK (WNT )

= min
{ϕ ∈ RK1 , α ∈ RK2

ϕ 6= 0, α 6= 0}

1
NT (‖ϕ‖2 + ‖α‖2)

{
Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
M(λ0,w) (Xlow,ϕ +Xhigh,α)

]

+ Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
P(Mλ0w) (Xlow,ϕ +Xhigh,α)

]}
= min
{ϕ ∈ RK1 , α ∈ RK2

ϕ 6= 0, α 6= 0}

1
NT (‖ϕ‖2 + ‖α‖2)

{
Tr
[
Mf0 X ′high,αM(λ0,w)Xhigh,α

]

+ Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
P(Mλ0w) (Xlow,ϕ +Xhigh,α)

]}
.

(S.5.1)
2As in assumption 4 the components of α are denoted αK1+1, . . . , αK to simplify notation.
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We note that there exists finite positive constants c1, c2, c3 such that

1
NT

Tr
[
Mf0 X ′high,αM(λ0,w)Xhigh,α

]
≥ c1‖α‖2 , wpa1,

1
NT

Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
P(Mλ0w) (Xlow,ϕ +Xhigh,α)

]
≥ 0 ,

1
NT

Tr
[
Mf0 X ′low,ϕ P(Mλ0w)Xlow,ϕ

]
≥ c2 ‖ϕ‖2 , wpa1,

1
NT

Tr
[
Mf0 X ′low,ϕ P(Mλ0w)Xhigh,α

]
≥ −c3

2
‖ϕ‖‖α‖ , wpa1,

1
NT

Tr
[
Mf0 X ′high,α P(Mλ0w)Xhigh,α

]
≥ 0 , (S.5.2)

and we want to justify these inequalities now. The second and the last equation in (S.5.2) are
true because e.g. Tr

[
Mf0 X ′high,α P(Mλ0w)Xhigh,α

]
= Tr

[
Mf0 X ′high,α P(Mλ0w)Xhigh,αMf0

]
, and

the trace of a symmetric positive semi-definite matrix is non-negative. The first inequality in
(S.5.2) is true because rank(f0)+rank(λ0, w) = 2R+K1 and using theorem C.1 and assumption
4 we have

1
NT‖α‖2

Tr
[
Mf0 X ′high,αM(λ0,w)Xhigh,α

]
≥ 1
NT‖α‖2

µ2R+K1+1

[
Xhigh,αX

′
high,α

]
> b , wpa1,

i.e. we can set c1 = b. The third inequality in (S.5.2) is true because according Theorem S.3.1(v)
we have

1
NT

Tr
[
Mf0 X ′low,ϕ P(Mλ0w)Xhigh,α

]
≥ − K1

NT
‖Xlow,ϕ‖ ‖Xhigh,α‖

≥ − K1

NT
‖Xlow,ϕ‖F ‖Xhigh,α‖F

≥ −K1K1K2 ‖ϕ‖ ‖α‖ max
k1=1...K1

∥∥∥∥ Xk1√
NT

∥∥∥∥
F

max
k2=K1+1...K

∥∥∥∥ Xk2√
NT

∥∥∥∥
F

≥ −c3

2
‖ϕ‖ ‖α‖ ,

where we used that assumption 4 implies that
∥∥∥Xk/

√
NT

∥∥∥
F
< C holds wpa1 for some constant

C as, and we set c3 = K1K1K2C
2. Finally, we have to argue that the third inequality in (S.5.2)

holds. Note that X ′low,ϕ P(Mλ0w)Xlow,ϕ = X ′low,ϕMλ0 Xlow,ϕ, i.e. we need to show that

1
NT

Tr
[
Mf0 X ′low,ϕMλ0 Xlow,ϕ

]
≥ c2 ‖ϕ‖2 .

Using part (vi) or Theorem S.3.1 we find

1
NT

Tr
[
Mf0 X ′low,ϕMλ0 Xlow,ϕ

]
=

1
NT

Tr
[
Mλ0 Xlow,ϕMf0 X ′low,ϕMλ0

]
≥ 1
NT

∥∥Mλ0 Xlow,ϕMf0 X ′low,ϕMλ0

∥∥ ,
and according to lemma S.4.2 this expression is bounded by some positive constant times ‖ϕ‖2
(in the lemma we have ‖ϕ‖ = 1, but all expressions are homogeneous in ‖ϕ‖).
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Using the inequalities (S.5.2) in equation (S.5.1) we obtain

µK (WNT ) ≥ min
{ϕ ∈ RK1 , α ∈ RK2

ϕ 6= 0, α 6= 0}

1
‖ϕ‖2 + ‖α‖2

{
c1‖α‖2 + max

[
0, c2‖ϕ‖2 − c3‖ϕ‖‖α‖

]}
≥ min

(
c2

2
,

c1c
2
2

c2
2 + c2

3

)
, wpa1.

Thus, the smallest eigenvalue of WNT is bounded from below by a positive constant as N,T →∞,
i.e. WNT is non-degenerate and invertible.

S.6 Proof of Examples for Assumption 5

Proof of Example 1. We want to show that the conditions of Assumption 5 are satisfied.
Conditions (i)-(iii) immediately follow by the assumptions of the example.

For condition (iv), notice that Cov (Xit, Xis|C) = E (UitUis). Since |β0| < 1 and supit E(e2
it) <

∞, it follows that

1
NT

N∑
i=1

T∑
t,s=1

|Cov (Xit, Xis|C)| =
1
NT

N∑
i=1

T∑
t,s=1

|E (UitUis)|

=
1
NT

N∑
i=1

T∑
t,s=1

∞∑
p,q=0

∣∣(β0)p+qE (eit−peis−q)
∣∣ .

For condition (v), notice by the independence between the sigma field C and the error terms
{eit} that we have for some finite constant M,

1
NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣
=

1
NT 2

N∑
i=1

T∑
t,s,u,v=1

|Cov (eitUis, eiuUiv)|

=
1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∞∑
p,q=0

∣∣∣(β0
)p+q E (eiteis−peiueiv−q)−

(
β0
)p E (eiteis−p)

(
β0
)q E (eiueiv−q)

∣∣∣
≤ M

T 2

T∑
t,s,u,v=1

∞∑
p,q=0

∣∣β0
∣∣p+q [I {t = u} I {s− p = v − q}+ I {t = v − q} I {s− p = u}]

=
M

T 2

T∑
t,u,s,v=1

s∑
k=−∞

v∑
l=−∞

∣∣β0
∣∣s−k+v−l I {t = u} I {k = l}+M

 1
T

T∑
s,u=1
s−u≥0

∣∣β0
∣∣s−u


 1
T

T∑
v,t=1
v−t≥0

∣∣β0
∣∣v−t



=
M

T

T∑
s,v=1

min{s,v}∑
k=−∞

∣∣β0
∣∣s+v−2k +M

 1
T

T∑
s,u=1
s−u≥0

∣∣β0
∣∣s−u


 1
T

T∑
v,t=1
v−t≥0

∣∣β0
∣∣v−t

 .
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Notice that

1
T

T∑
s,v=1

min{s,v}∑
k=−∞

∣∣β0
∣∣s+v−2k

=
2
T

T∑
s=2

s∑
v=1

v∑
k=−∞

∣∣β0
∣∣s−v+2(v−k) +

2
T

T∑
s=1

s∑
k=−∞

∣∣β0
∣∣2(s−k)

=
2
T

T∑
s=2

s∑
v=1

∣∣β0
∣∣s−v ∞∑

l=0

∣∣β0
∣∣2l +

2
T

T∑
s=1

∞∑
l=0

∣∣β0
∣∣2l

=
2

1−
∣∣β0
∣∣2 1
T

T∑
s=2

s∑
v=1

∣∣β0
∣∣s−v +

2

1−
∣∣β0
∣∣2

=

(
2

1−
∣∣β0
∣∣2
)
T−1∑
l=1

∣∣β0
∣∣l (1− l

T

)
+

2

1−
∣∣β0
∣∣2

= O (1) ,

and
1
T

T∑
s,u=1
s−u≥0

∣∣β0
∣∣s−u =

1
T

T∑
s=1

s∑
u=1

∣∣β0
∣∣s−u =

T−1∑
l=0

∣∣β0
∣∣l (1− l

T

)
= O (1) .

Therefore, we have the desired result that

1
NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣ = Op (1) .

Preliminaries for Proof of Example 2

• Although we observe Xit for 1 ≤ t ≤ T, here we treat that Zit = (eit, Xit) has infinite past
and future over time. Define

Gtτ (i) = σ ({Xis : τ ≤ s ≤ t} , C) and Htτ (i) = σ ({Zit : τ ≤ s ≤ t} , C) .

Then, by definition, we have Gtτ (i) ,Htτ (i) ⊂ F tτ (i) for all τ , t, i. By Assumption (iv) of
Example 2, the time series of {Xit : −∞ < t <∞} and {Zit : −∞ < t <∞} are conditional
α− mixing conditioning on C uniformly in i.

• Mixing inequality: The following inequality is a conditional version of the α-mixing inequal-
ity of Hall and Heyde (1980, p. 278). Suppose that Xit is a Ft-measurable K-dimensional
random vector with E

(
|Xit|max{p,q} |C

)
< ∞, where p, q > 1 with 1/p + 1/q < 1. Denote

‖Xk,it‖C,p = (E (|Xk,it|p |C))1/p . Then, for each i, we have

|Cov (Xk,it, Xl,it+m|C)| ≤ 8 ‖Xk,it‖C,p ‖Xl,it+m‖C,q α
1− 1

p
− 1
q

m (i) . (S.6.1)
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Proof of Example 2. Again, we want to show that the conditions of Assumption 5 are satis-
fied. Conditions (i)-(iii) immediately follow by the assumptions of the example.

For condition (iv), we apply the mixing inequality (S.6.1) with p = q > 4 Then, we have

1
NT

N∑
i=1

T∑
t,s=1

|Cov (Xit, Xis|C)|

≤ 2
NT

N∑
i=1

T∑
t=1

T−t∑
m=0

|Cov (Xit, Xit+m|C)| =
2
NT

N∑
i=1

T−1∑
m=0

T−m∑
t=1

|Cov (Xit, Xit+m|C)|

=
16
NT

N∑
i=1

T−1∑
m=0

T−m∑
t=1

‖Xit‖C,p ‖Xit+m‖C,p αm (i)
p−2
P

≤ 16

(
sup
i,t
‖Xit‖2C,p

) ∞∑
m=0

α
p−2
P
m

≤ Op (1) ,

where the last line holds since supi,t ‖Xit‖2C,p = Op (1) for some p > 4 as assumed in the example

(2), and
∑∞

m=0 α
p−2
P
m =

∑∞
m=0m

−ζ p−2
P = O (1) due to ζ > 3 4p

4p−1 and p > 4.
For condition (v), we need to show

1
NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣ = Op (1) .

Notice that

1
NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣
=

1
NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣E(eitX̃iseiuX̃iv|C
)
− E

(
eitX̃is|C

)
E
(
eiuX̃iv|C

)∣∣∣
≤ 1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣E(eitX̃iseiuX̃iv|C
)∣∣∣+

1
N

N∑
i=1

 1
T

T∑
t,s=1

E
(
eitX̃is|C

)2

= I + II, say.

First, for term I, there are finite number of different orderings among the indices t, s, u, v. We
consider the case t ≤ s ≤ u ≤ v and establish the desired result. The rest of the cases are the
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same. Note that

1
NT 2

N∑
i=1

T∑
t=1

T−t∑
k=0

T−k∑
l=0

T−l∑
m=0

∣∣∣E(eitX̃it+keit+k+lX̃it+k+l+m|C
)∣∣∣

≤ 1
N

N∑
i=1

1
T 2

T∑
t=1

∑
0≤l,m≤k

0≤k+l+m≤T−t

∣∣∣E(eit (X̃it+keit+k+lX̃it+k+l+m

)
|C
)∣∣∣

+
1
N

N∑
i=1

1
T 2

T∑
t=1

∑
0≤k,m≤l

0≤k+l+m≤T−t

∣∣∣∣E [(eitX̃it+k

)(
eit+k+lX̃it+k+l+m

)
|C
]

−E
(
eitX̃it+k|C

)
E
(
eit+k+lX̃it+k+l+m|C

) ∣∣∣∣
+

1
N

N∑
i=1

1
T 2

T∑
t=1

∑
0≤k,m≤l

0≤k+l+m≤T−t

E
(
eitX̃it+k|C

)
E
(
eit+k+lX̃it+k+l+m|C

)

+
1
N

N∑
i=1

1
T 2

T∑
t=1

∑
0≤p,l≤m

0≤k+l+m≤T−t

∣∣∣E [(eitX̃it+keit+k+l

)
X̃it+k+l+m|C

]∣∣∣
= I1 + I2 + I3 + I4, say.

By applying the mixing inequality (S.6.1) to
∣∣∣E(eit (X̃it+keit+k+lX̃it+k+l+m

)
|C
)∣∣∣ with eit and

X̃it+keit+k+lX̃it+k+l+m, we have∣∣∣E(eit (X̃it+keit+k+lX̃it+k+l+m

)
|C
)∣∣∣

≤ 8 ‖eit‖C,p
∥∥∥X̃it+keit+k+lX̃it+k+l+m

∥∥∥
C,q
α

1− 1
p
− 1
q

k (i)

≤ 8 ‖eit‖C,p
∥∥∥X̃it+k

∥∥∥
C,3q
‖eit+k+l‖C,3q

∥∥∥X̃it+k+l+m

∥∥∥
C,3q

α
1− 1

p
− 1
q

k (i) ,

where the last inequality follows by the generalized Holder’s inequality. Choose p = 3q > 4.
Then,

I1 ≤ 8
N

N∑
i=1

1
T 2

T∑
t=1

∑
0≤l,m≤k

0≤k+l+m≤T−t

‖eit‖C,p
∥∥∥X̃it+k

∥∥∥
C,p
‖eit+k+l‖C,p

∥∥∥X̃it+k+l+m

∥∥∥
C,p
α

1− 1
4p

k (i)

≤ 8

(
sup
i,t
‖eit‖2C,p

)(
sup
i,t

∥∥∥X̃it+k

∥∥∥2

C,p

)
1
T 2

T∑
t=1

∑
0≤l,m≤k

0≤k+l+m≤T−t

α
1− 1

4p

k

≤ 8

(
sup
i,t
‖eit‖2C,p

)(
sup
i,t

∥∥∥X̃it+k

∥∥∥2

C,p

) ∞∑
k=0

k2α
1− 1

4p

k

≤ Op (1) ,

where the last line holds since we assume in the example (2) that
(

supi,t ‖eit‖
2
C,p

)(
supi,t

∥∥∥X̃it+k

∥∥∥2

C,p

)
=
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Op (1) for some p > 4,, and
∑∞

m=0m
2α

1− 1
4p

m =
∑∞

m=0m
2−ζ 4p−1

4p = O (1) due to ζ > 3 4p
4p−1 and

p > 4.
By applying similar argument, we can also show that

I2, I3, I4 = Op (1) .

S.7 Supplement to the Proof of Theorem 4.3

What is left to show to complete the proof of Theorem 4.3 is that that Lemma D.1 and
Lemma D.2 in the main text appendix hold. Before showing this, we first present two further
intermediate lemmas.

Lemma S.7.1. Under the assumptions of Theorem 4.3 we have for k = 1, . . . ,K that

(a) ‖Pλ0X̃k‖ = op(
√
NT ) ,

(b) ‖X̃kPf0‖ = op(
√
NT ) ,

(c) ‖Pλ0eX ′k‖ = op(N3/2) ,
(d) ‖Pλ0ePf0‖ = Op(1) .

Proof of lemma S.7.1. # Part (a): We have

‖Pλ0X̃k‖ = ‖λ0(λ0′λ0)−1λ0′X̃k‖

≤ ‖λ0(λ0′λ0)−1‖‖λ0′X̃k‖

≤ ‖λ0‖‖(λ0′λ0)−1‖‖λ0′X̃k‖F = Op(N−1/2)‖λ0′X̃k‖F ,

where we used part (i) and (ii) of Theorem S.3.1 and Assumption 1. We have

E
{

E
[
‖λ0′X̃k‖2F

∣∣∣C]} = E


R∑
r=1

T∑
t=1

E

( N∑
i=1

λ0
irX̃k,it

)2 ∣∣∣∣∣ C


= E

{
R∑
r=1

T∑
t=1

N∑
i=1

(λ0
ir)

2E
(
X̃2
k,it

∣∣∣∣ C )
}

=
R∑
r=1

T∑
t=1

N∑
i=1

E
[
(λ0
ir)

2Var
(
Xk,it

∣∣∣∣ C )]
= Op(NT ),

where we used that X̃k,it is mean zero and independent across i conditional on C, and on our
bounds on the moments of λ0

ir and Xk,it. We therefore have ‖λ0′X̃k‖F = Op(
√
NT ) and and the

above inequality thus gives ‖Pλ0X̃k‖ = Op(
√
T ) = op(

√
NT ).
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# The proof for part (b) is similar. As above we first obtain ‖X̃kPf0‖ = ‖Pf0X̃ ′k‖ ≤
Op(T−1/2)‖f0′X̃ ′k‖F . Next, we have

E
[
‖f0′X̃ ′k‖2F

∣∣∣C] =
R∑
r=1

N∑
i=1

E

( T∑
t=1

f0
trX̃k,it

)2 ∣∣∣∣∣ C


=
R∑
r=1

N∑
i=1

T∑
t,s=1

f0
trf

0
srE

(
X̃k,itX̃k,is

∣∣∣∣ C )

≤

[
R∑
r=1

(
max
t
|f0
tr|
)2
]

N∑
i=1

T∑
t,s=1

∣∣∣∣Cov
(
Xk,it, Xk,is

∣∣∣∣ C )∣∣∣∣
= Op(T 2/(4+ε))Op(NT ) = op(NT 2),

where we used that uniformly bounded E‖f0
t ‖4+ε implies that maxt |f0

tr| = Op(T 1/(4+ε)). We
thus have ‖f0′X̃ ′k‖2F = op(T

√
N) and therefore ‖X̃kPf0‖ = op(

√
NT ).

# Next, we show part (c). First, we have

E
{

E
[(
‖λ0 ′eX ′k‖F

)2 ∣∣∣ C]} = E

E

 R∑
r=1

N∑
j=1

(
N∑
i=1

T∑
t=1

λ0
ireitXk,jt

)2 ∣∣∣∣∣ C


= E


R∑
r=1

N∑
i,j,l=1

T∑
t,s=1

λ0
irλ

0
lrE
(
eitelsXk,jtXk,js

∣∣∣ C)


=
R∑
r=1

N∑
i,j=1

T∑
t=1

E
[
(λ0
ir)

2E
(
e2
itX

2
k,jt

∣∣∣ C)] = O(N2T ) ,

where we used that E
(
eitelsXk,jtXk,js

∣∣ C) is only non-zero if i = l (because of cross-sectional
independence conditional on C) and t = s (because regressors are pre-determined). We can thus
conclude that ‖λ0 ′eX ′k‖F = Op(N

√
T ). Using this we find

‖Pλ0eX ′k‖ = ‖λ0(λ0′λ0)−1λ0′eX ′k‖
≤ ‖λ0(λ0′λ0)−1‖‖λ0′eX ′k‖

≤ ‖λ0‖‖(λ0′λ0)−1‖‖λ0′eX ′k‖F = Op(N−1/2)Op(N
√
T ) = Op(

√
NT ) .

This is what we wanted to show.
# For part (d), we first find that 1√

NT

∥∥f0′eλ0
∥∥
F

= Op (1), because

E

E

(∥∥f0′eλ0
∥∥
F√

NT

)2 ∣∣∣∣∣ C
 = E

 1
NT

E

( N∑
i=1

T∑
t=1

eitf
0′
t λ

0
i

)2 ∣∣∣∣∣ C


= E

 1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E (eitejs) f0′
t λ

0
iλ

0′
j f

0
s


=

1
NT

N∑
i=1

T∑
t=1

E
(
e2
it

)
E
(
f0′
t λ

0
iλ

0′
i f

0
t

)
= O (1) ,
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where we used that eit is independent of C and is also independent across i and over t. Thus we
obtain

‖Pλ0ePf0‖ = ‖λ0(λ0′λ0)−1λ0′ef0(f0′f0)−1 f0′‖
≤ ‖λ0‖

∥∥(λ0′λ0)−1
∥∥ ‖λ0′ef0‖

∥∥(f0′f0)−1
∥∥ ‖f0′‖

≤ Op(N1/2)Op(N−1)‖λ0′ef0‖FOp(T−1)Op(T 1/2) = Op(1) ,

where we used part (i) and (ii) of Theorem S.3.1.

Lemma S.7.2. Suppose that A and B are a T ×T and an N ×N matrices that are independent
of e, conditional on C, such that E

(
‖A‖2F

∣∣∣ C) = O (NT ) and E
(
‖B‖2F

∣∣∣ C) = O (NT ), and let
Assumption 5 be satisfied. Then there exists a finite non-random constant c0, independent of
N,T , such that

(a) E
{

Tr
[(
e′e− E

(
e′e
))
A
] ∣∣ C}2 ≤ c0N E

(
‖A‖2F

∣∣∣ C) ,

(b) E
{

Tr
[(
ee′ − E

(
ee′
))
B
] ∣∣ C}2 ≤ c0 T E

(
‖B‖2F

∣∣∣ C) .

Proof. In this following proof we write EC for expectations conditional on C.
# Part (a): Denote Ats to be the (t, s)th element of A. We have

Tr
{(
e′e− E

(
e′e
))
A
}

=
T∑
t=1

T∑
s=1

(
e′e− E

(
e′e
))
ts
Ats

=
T∑
t=1

T∑
s=1

(
N∑
i=1

(eiteis − E (eiteis))

)
Ats.

To compute its variance, we write

EC
(
Tr
{(
e′e− E

(
e′e
))
A
})2

=
T∑
t=1

T∑
s=1

T∑
p=1

T∑
q=1

E

( N∑
i=1

(eiteis − E (eiteis))

) N∑
j=1

(ejpejq − E (ejpejq))

EC (AtsApq) .

Let Σit = E(e2
it). Then we find

E


(

N∑
i=1

(eiteis − E (eiteis))

) N∑
j=1

(ejpejq − E (ejpejq))


=

N∑
i=1

N∑
j=1

{E (eiteisejpejq)− E (eiteis) E (ejpejq)}

=


ΣitΣis if (t = p) 6= (s = q) and (i = j)
ΣitΣis if (t = q) 6= (s = p) and (i = j)
E
(
e4
it

)
− Σ2

it if (t = s = p = q) and (i = j)
0 otherwise.
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Therefore,

E
(
Tr
{(
e′e− E

(
e′e
))
A
})2 ≤ T∑

t=1

T∑
s=1

N∑
i=1

ΣitΣis

(
EC
(
A2
ts

)
+ EC (AtsAst)

)
+

T∑
t=1

N∑
i=1

(
E
(
e4
it

)
− Σ2

it

)
ECA2

tt.

Define Σi = diag (Σi1, ...,ΣiT ) . Then, we have

T∑
t=1

T∑
s=1

N∑
i=1

ΣitΣis

(
ECA2

ts

)
= EC

(
N∑
i=1

Tr
(
A′ΣiAΣi

))

≤
N∑
i=1

EC
∥∥AΣi

∥∥2

F
≤

N∑
i=1

∥∥Σi
∥∥2 EC ‖A‖2F

≤ N

(
sup
it

Σ2
it

)
EC ‖A‖2F . (S.7.1)

Also,

T∑
t=1

T∑
s=1

N∑
i=1

ΣitΣisEC (AtsAst) = EC

[
N∑
i=1

Tr
(
ΣiAAΣi

)]

≤
N∑
i=1

EC
∥∥ΣiA

∥∥
F

∥∥AΣi
∥∥
F
≤

N∑
i=1

∥∥Σi
∥∥2 EC ‖A‖2F

≤ N

(
sup
it

Σ2
it

)
EC ‖A‖2F . (S.7.2)

Finally,

T∑
t=1

N∑
i=1

(
E
(
e4
it

)
− Σ2

it

)
ECA2

tt ≤ N

(
sup
it

E
(
e4
it

))
EC ‖A‖2F . (S.7.3)

# Part (b): The proof is analogous to that of part (a).

Proof of lemma D.1. # For part (a) we have∣∣∣∣ 1√
NT

Tr
(
Pf0 e′ Pλ0 X̃k

)∣∣∣∣ =
∣∣∣∣ 1√
NT

Tr
(
Pf0 e′ Pλ0Pλ0X̃kPf0

)∣∣∣∣
≤ R√

NT

∥∥Pλ0 e Pf0

∥∥∥∥∥Pλ0X̃k

∥∥∥∥∥Pf0

∥∥
=

1√
NT

Op(1) op(
√
NT )Op(1)

= op(1),

where the the second last equality follows by Lemma S.7.1 (a) and (d).
# To show statement (b) we define ζk,ijt = eitX̃k,jt. We then have

1√
NT

Tr
(
Pλ0 e X̃ ′k

)
=

R∑
r,q=1

[(
λ0′λ0

N

)−1
]
rq

1
N
√
NT

T∑
t=1

N∑
i,j=1

λ0
irλ

0
jqζk,ijt︸ ︷︷ ︸

≡Ak,rq

.
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We only have E
(
ζk,ijtζk,lms

∣∣C) 6= 0 if t = s (because regressors are pre-determined) and i = l
and j = m (because of cross-sectional independence). Therefore

E
{
E
(
A2
k,rq

∣∣C)} = E

 1
N3T

T∑
t,s=1

N∑
i,j,l,m=1

λirλjqλlrλmq E
(
ζk,ijtζk,lms

∣∣C)


=
1

N3T

T∑
t=1

N∑
i,j=1

E
[
λ2
irλ

2
jq E

(
ζ2
k,ijt

∣∣C)] = O(1/N) = op(1).

We thus have Ak,rq = op(1) and therefore also 1√
NT

Tr
(
Pλ0 e X̃ ′k

)
= op(1).

# The proof for statement (c) is similar to that of statement (b). Define ξk,its = eitX̃k,is −
E
(
eitX̃k,is

∣∣ C). We then have

1√
NT

Tr
{
Pf0

[
e′ X̃k − E

(
e′ X̃k

∣∣ C)]} =
R∑

r,q=1

[(
f ′f

T

)−1
]
rq

1
T
√
NT

N∑
i=1

T∑
t,s=1

ftrfsqξk,its︸ ︷︷ ︸
≡Bk,rq

.

Therefore

E
(
B2
k,rq

∣∣ C) =
1

T 3N

N∑
i,j=1

T∑
t,s,u,v=1

ftrfsqfurfvqE
(
ξk,itsξk,juv

∣∣ C)
≤
(

max
t,er |fter|

)4 1
T 3N

N∑
i,j=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃k,is, ejuX̃k,jv

∣∣ C)∣∣∣
=
(

max
t,er |fter|

)4 1
T 3N

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃k,is, eiuX̃k,iv

∣∣ C)∣∣∣
= Op(T 4/(4+ε))Op(1/T )
= op(1),

where we used that that uniformly bounded E‖f0
t ‖4+ε implies that maxt |f0

tr| = Op(T 1/(4+ε)).
# Part (d) and (e): We have ‖λ0 (λ0′λ0)−1 (f0′f0)−1 f0′‖ = Op((NT )−1/2), ‖e‖ = Op(N1/2),

‖Xk‖ = Op(
√
NT ) and ‖Pλ0ePf0‖ = Op(1), which was shown in Lemma S.7.1. Therefore:

1√
NT

Tr
(
ePf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
=

1√
NT

Tr
(
Pλ0ePf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
≤ R√

NT

∥∥Pλ0ePf0

∥∥ ‖e‖‖Xk‖
∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥ = Op(N−1/2) = op(1) .

which shows statement (d). The proof for part (e) is analogous.
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# To prove statement (f) we need to use additionally ‖Pλ0 eX ′k‖ = op(N3/2), which was also
shown in Lemma S.7.1. We find

1√
NT

Tr
(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)
=

1√
NT

Tr
(
e′Mλ0 Xk e

′ Pλ0 λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)
− 1√

NT
Tr
(
e′Mλ0 Xk Pf0 e′ Pλ0 λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)

≤ R√
NT
‖e‖‖Pλ0 eX ′k‖ ‖λ0 (λ0′λ0)−1 (f0′f0)−1 f0′‖

− R√
NT
‖e‖‖Xk‖‖Pλ0 e Pf0‖‖λ0 (λ0′λ0)−1 (f0′f0)−1 f0′‖

= op(1) .

# Now we want to prove part (g) and (h) of the present lemma. For part (g) we have

1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′}
=

1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′}
+

1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Mλ0 X̃kPf0 f0 (f0′f0)−1 (λ0′λ0)−1 λ0′

}
=

1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′}
+

1√
NT

∥∥ee′ − E
(
ee′
)∥∥ ∥∥∥X̃kPf0

∥∥∥∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥
=

1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′}+ op(1)

Thus, what is left to prove is that 1√
NT

Tr
{

[ee′ − E (ee′)] Mλ0 Xk f
0 (f0′f0)−1 (λ0′λ0)−1 λ0′} =

op(1). For this we define

Bk = Mλ0 Xk f
0 (f0′f0)−1 (λ0′λ0)−1 λ0′ .

Using part (i) and (ii) of Theorem S.3.1 we find

‖Bk‖F ≤ R1/2‖Bk‖
≤ R1/2‖Xk‖

∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥
≤ R1/2‖Xk‖F

∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥ .
and therefore

E
(
‖Bk‖2F

∣∣C) ≤ R ∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥2 E
(
‖Xk‖2F

∣∣∣ C)
= O(1) ,
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where we used E
(
‖Xk‖2F

∣∣∣ C) = O(NT ), which is true since we assumed uniformly bounded

moments of Xk,it. Applying lemma S.7.2 we therefore find

E
(

1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Bk
} ∣∣∣∣ C)2

≤ c0
T

NT
E
(
‖Bk‖2F

∣∣∣ C) = o(1) ,

and thus
1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Bk
}

= op(1) ,

which is what we wanted to show. The proof for part (h) is analogous.
# Part (i): By the law of iterated expectations and since E

(
e2
it

)
= E

(
e2
it

∣∣ C) we find that
conditional on C the expression E

(
e2
it

)
Xit X

′
it − E

(
e2
it Xit X

′
it

∣∣ C) is mean zero (because eit is
independent of Xit conditional on C), and it is also uncorrelated across i. This together with the
bounded moments that we assume implies that

Var

{
1
NT

N∑
i=1

T∑
t=1

[
E
(
e2
it

)
Xit X

′
it − E

(
e2
it Xit X

′
it

∣∣ C)] ∣∣∣∣∣ C
}

= Op(1/N) = op(1),

which shows the required result.
# Part (j): Define the K × K matrix A = 1

NT

∑N
i=1

∑T
t=1 E

(
e2
it

)
(Xit + Xit) (Xit −Xit)′.

Then we have

1
NT

N∑
i=1

T∑
t=1

E
(
e2
it

) (
Xit X

′
it −XitX ′it

)
=

1
2
(
A+A′

)
.

Let Bk be the N × T matrix with elements Bk,it = E
(
e2
it

)
(Xk,it + Xk,it). We have ‖Bk‖ ≤

‖Bk‖F = Op(
√
NT ), because the moments of Bk,it are uniformly bounded. The components of

A can be written as Alk = 1
NT Tr[Bl(Xk −Xk)′]. We therefore have

|Alk| ≤
1
NT

rank(Xk −Xk)‖Bl‖ ‖Xk −Xk‖ .

We have Xk −Xk = X̃k Pf0 + Pλ0 X̃kMf0 . Therefore rank(Xk −Xk) ≤ 2R and

|Alk| ≤
2R
NT
‖Bl‖

(∥∥∥X̃k Pf0

∣∣∣+
∥∥∥Pλ0 X̃kMf0

∥∥∥)
≤ 2R
NT
‖Bl‖

(∥∥∥X̃k Pf0

∣∣∣+
∥∥∥Pλ0 X̃k

∥∥∥) =
2R
NT
Op(
√
NT )op(

√
NT ) = op(1).

where we used Lemma S.7.1. This shows the desired result.

Proof of lemma D.2. Let c be a K-vector such that ‖c‖ = 1. The required result follows by
the Cramer-Wold device, if we show that

1√
NT

N∑
i=1

T∑
t=1

eitX
′
itc ⇒ N

(
0, c′Ωc

)
.

For this, define ξit = eitX
′
itc. Conditional on C, our assumptions guarantee that (ξi1, . . . , ξiT ) is

independent across i, and that for each i the process ξit is a martingale difference sequence over
t. Define ξm = ξM,m = ξNT,it, with M = NT and m = T (i− 1) + t ∈ {1, . . . ,M}. We then have
the following:
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(i) {ξm, m = 1, . . . ,M} is a martingale difference sequence, conditional on C.

(ii) E(ξ4
it | C) is bounded uniformly over i, t, N and T , because we assume that Ee8

it and
E
(
‖Xit‖8+ε

∣∣ C) are uniformly bounded.

(iii) 1
M

∑M
m=1 ξ

2
m = 1

M

∑M
m=1 E(ξ2

m | C)+op(1) = Var(M−1/2
∑M

m=1 ξm | C)+op(1) = c′Ωc+op(1).
Here, in the first step, we used that ξ2

m−E(ξ2
m | C) is also a martingale difference sequence

with finite second moment, conditional on C, so that the corresponding WLLN holds.
Afterwards, we just used what was already derived in equation (D.1) in the main text.

These three properties of {ξm, m = 1, . . . ,M} allow us to apply Corollary 5.26 in White (2001),
which is based on Theorem 2.3 in Mcleish (1974), to obtain that 1√

M

∑M
m=1 ξm →d N (0, c′Ωc).

This concludes the proof, because 1√
M

∑M
m=1 ξm = 1√

NT

∑N
i=1

∑T
t=1 eitX

′
itc.

S.8 Supplement to the Proof of Theorem 4.4

The following lemma gives a useful bound on the maximum of (correlated) random variables

Lemma S.8.1. Let Zi, i = 1, 2, . . . , n, be n real valued random variables, and let γ ≥ 1 and
B > 0 be finite constants (independent of n). Assume maxi E|Zi|γ ≤ B, i.e. the γ’th moment
of the Zi are finite and uniformly bounded. For n→∞ we then have

max
i
|Zi| = Op

(
n1/γ

)
. (S.8.1)

Proof. Using Jensen’s inequality one obtains E maxi |Zi| ≤ (E maxi |Zi|γ)1/γ ≤ (E
∑n

i=1 |Zi|γ)1/γ ≤
(n maxi E|Zi|γ)1/γ ≤ n1/γ B1/γ . Markov’s inequality then gives equation (S.8.1).

Lemma S.8.2. Let

Z̄
(1)
k,tτ = N−1/2

N∑
i=1

[eitXk,iτ − EC (eitXk,iτ )] ,

Z̄
(2)
t = N−1/2

N∑
i=1

[
e2
it − E

(
e2
it

)]
,

Z̄
(3)
i = T−1/2

T∑
t=1

[
e2
it − E

(
e2
it

)]
.

Under assumption 5 we have

EC
∣∣∣Z̄(1)

k,tτ

∣∣∣4 ≤ B ,

E
∣∣∣Z̄(2)

tτ

∣∣∣4 ≤ B ,

E
∣∣∣Z̄(3)

i

∣∣∣4 ≤ B ,

for some B > 0, i.e. the expectations Z̄(1)
k,tτ , Z̄(2)

tτ , and Z̄(3)
i are uniformly bounded over t, τ , or i,

respectively.
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Proof. # We start with the proof for Z̄(1)
k,tτ . Define Z(1)

k,tτ ,i = eitXk,iτ − EC (eitXk,iτ ). By as-
sumption we have finite 8’th moments for eit and Xk,iτ uniformly across k, i, t, τ , and thus
(using Cauchy Schwarz inequality) we have finite 4th moment of Z(1)

k,tτ ,i uniformly across k, i, t, τ .

For ease of notation we now fix k, t, τ and write Zi = Z
(1)
k,tτ ,i. We have EC(Zi) = 0 and

EC(ZiZjZkZl) = 0 if i /∈ {j, k, l} (and the same holds for permutations of i, j, k, l). Using
this we compute

EC

(
N∑
i=1

Zi

)4

=
N∑

i,j,k,l=1

EC (ZiZjZkZl)

= 3
∑
i 6=j

EC
(
Z2
i Z

2
j

)
+
∑
i

EC
(
Z4
i

)
= 3

N∑
i,j=1

EC
(
Z2
i

)
EC
(
Z2
j

)
+

N∑
i=1

{
EC
(
Z4
i

)
− 3

[
EC
(
Z2
i

)]2}
,

Since we argued that EC
(
Z4
i

)
is bounded uniformly, the last equation shows that Z̄

(1)
k,tτ =

N−1/2
∑N

i=1 Z
(1)
k,tτ ,i is bounded uniformly across k, t, τ . This is what we wanted to show.

# The proofs for Z̄(2)
t and Z̄

(3)
i are analogous.

Lemma S.8.3. For a T × T matrix A we have3∥∥AtruncR
∥∥ ≤ M

∥∥AtruncR
∥∥

max
≡ M max

t
max

t<τ≤t+M
|Atτ | ,

Proof. For the 1-norm of AtruncR we find

∥∥AtruncR
∥∥

1
= max

t=1...T

t+M∑
τ=t+1

|Atτ |

≤M max
t<τ≤t+M

|Atτ | = M
∥∥AtruncR

∥∥
max

,

and analogously we find the same bound for the ∞-norm
∥∥AtruncR

∥∥
∞. Applying part (vii) of

Theorem S.3.1 we therefore also get this bound for the operator norm ‖AtruncR‖.

Proof of lemma F.3. # The proof of A0 ≡ (NT )−1
∑N

i=1

∑T
t=1 e

2
it (XitX

′
it −XitX ′it) = op(1) is

analogous to the proof of part (j) of Lemma D.1, with E(e2
it) replaced by e2

it.
# Next, we are going to show A1 ≡ (NT )−1

∑N
i=1

∑T
t=1 e

2
it

(
XitX ′it − X̂itX̂ ′it

)
= op(1). Let

B1,it = Xit − X̂it, B2,it = e2
itXit, and B3,it = e2

itX̂it. Note that B1, B2, and B3 can either be
viewed as K-vectors for each it, or equivalently as N × T matrices B1,k, B2,k, and B3,k for each

k = 1, . . . ,K. We have A1 = (NT )−1
∑

i

∑
t

(
B1,itB

′
2,it +B3,itB

′
1,it

)
, or equivalently

A1,k1k2 =
1
NT

Tr
(
B1,k1B

′
3,k2 +B2,k1B

′
1,k2

)
.

3For the boundaries of τ we could write max(1, t−M) instead of t−M , and min(T, t+M) instead of t+M ,
to guarantee 1 ≤ τ ≤ T . Since this would complicate notation, we prefer the convention that Atτ = 0 for t < 1 or
τ < 1 of t > T or τ > T .

26



Using ‖Mbλ −Mλ0‖ = Op(N−1/2), ‖M bf −Mf0‖ = Op(N−1/2), ‖Xk‖ = Op(
√
NT ) = Op(N), we

find for B1,k = (Mλ0 −Mbλ)XkMf0 + MbλXk(Mf0 −M bf ) that ‖B1,k‖ = Op(N1/2). In addition
we have rank(B1,k) ≤ 4R. We also have

‖B2,k‖4 ≤ ‖B2,k‖4F

=

(
N∑
i=1

T∑
t=1

e4
itX 2

k,it

)2

≤

(
N∑
i=1

T∑
t=1

e8
it

)(
N∑
i=1

T∑
t=1

X 4
k,it

)
= Op(NT )Op(NT ) ,

which implies ‖B2,k‖ = Op(
√
NT ), and analogously we find ‖B3,k‖ = Op(

√
NT ). Therefore

|A1,k1k2 | ≤
4R
NT

(‖B1,k1‖‖B3,k2‖+ ‖B2,k1‖‖B1,k2‖)

=
4R
NT

(
Op(N1/2)Op(

√
NT ) +Op(

√
NT )Op(N1/2)

)
= op(1) .

This is what we wanted to show.
# Finally, we want to show A2 ≡ (NT )−1

∑N
i=1

∑T
t=1

(
e2
it − ê2

it

)
X̂itX̂ ′it = op(1). According

to theorem E.1 we have e − ê = C1 + C2, where we defined C1 = −
∑K

k=1

(
β̂k − β0

k

)
Xk, and

C2 =
∑K

k=1

(
β̂k − β0

k

) (
Pλ0 XkMf0 +Xk Pf0

)
+Pλ0 eMf0 + e Pf0 − ê(1)

e − ê(rem), which satisfies

‖C2‖ = Op(N1/2), and rank(C2) ≤ 11R (actually, one can easily prove ≤ 5R, but this does not
follow from theorem E.1). Using this notation we have

A2 =
1
NT

N∑
i=1

T∑
t=1

(eit + êit)(C1,it + C2,it)X̂itX̂ ′it ,

which can also be written as

A2,k1k2 = −
K∑

k3=1

(
β̂k3 − β

0
k3

)
(C5,k1k2k3 + C6,k1k2k3) +

1
NT

Tr (C2C3,k1k2) +
1
NT

Tr (C2C4,k1k2) ,

where we defined

C3,k1k2,it = eitX̂k1,itX̂k2,it ,

C4,k1k2,it = êitX̂k1,itX̂k2,it ,

C5,k1k2k3 =
1
NT

N∑
i=1

T∑
t=1

eitX̂k1,itX̂k2,itXk3,it ,

C6,k1k2k3 =
1
NT

N∑
i=1

T∑
t=1

êitX̂k1,itX̂k2,itXk3,it .
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Again, since we have uniformly bounded 8’th moments for eit and Xk,it, we find

‖C3,k1k2‖4 ≤ ‖C3,k1k2‖4F

=

(
N∑
i=1

T∑
t=1

e2
itX̂ 2

k1,itX̂
2
k2,it

)2

≤

(
N∑
i=1

T∑
t=1

e4
it

)(
N∑
i=1

T∑
t=1

X̂ 4
k1,itX̂

4
k2,it

)
= Op(N2T 2) ,

i.e. ‖C3,k1k2‖ = Op(
√
NT ). Furthermore

‖C4,k1k2‖2 ≤ ‖C3,k1k2‖2F

=
N∑
i=1

T∑
t=1

ê2
itX̂ 2

k1,itX̂
2
k2,it

≤

(
N∑
i=1

T∑
t=1

ê2
it

)
max
i=1...N

max
t=1...T

(
X̂ 2
k1,itX̂

2
k2,it

)
≤

(
N∑
i=1

T∑
t=1

e2
it

)
max
i=1...N

max
t=1...T

(
X̂ 2
k1,itX̂

2
k2,it

)
= Op(NT )Op((NT )(4/(8+ε))) = op((NT )(3/4)) .

Here we used the assumption that Xk has uniformly bounded moments of order 8 + ε for some
ε > 0. We also used

∑N
i=1

∑T
t=1 ê

2
it ≤

∑N
i=1

∑T
t=1 e

2
it.

For C5 we find

C2
5,k1k2k3 ≤

(
1
NT

N∑
i=1

T∑
t=1

e2
it

)(
1
NT
X̂ 2
k1,itX̂

2
k2,itX

2
k3,it

)
= Op(1) ,

i.e. C5,k1k2k3 = Op(1), and analogously C6,k1k2k3 = Op(1), since
∑N

i=1

∑T
t=1 ê

2
it ≤

∑N
i=1

∑T
t=1 e

2
it.

Using these results we obtain

|A2,k1k2 | ≤ −
K∑

k3=1

∥∥∥β̂k3 − β0
k3

∥∥∥ |C5,k1k2k3 + C6,k1k2k3 |+
11R
NT
‖C2‖‖C3,k1k2‖+

11R
NT
‖C2‖‖C4,k1k2‖

= Op((NT )−1/2)Op(1) +
11R
NT
Op(N1/2)Op(

√
NT ) +

11R
NT
Op(N1/2)op((NT )3/4) = op(1) .

This is what we wanted to show.

Remember that the truncation Kernel Γ(.) is defined by Γ(x) = 1 for |x| ≤ 1 and Γ(x) = 0
otherwise. Without loss of generality we assume in the following that the bandwidth parameter
M is a positive integer (without this assumption, one needs to replace M everywhere below by
the largest integer contained in M , but nothing else changes).
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Proof of lemma F.4. By lemma F.2 we know that asymptotically P bf is close to Pf0 and
therefore rank(P bfPf0) = rank(Pf0Pf0) = R , i.e. rank(P bff0) = R asymptotically. We can

therefore write f̂ = P bff0H, where H = HNT is a non-singular R×R matrix.

We now want to show ‖H‖ = Op(1) and ‖H−1‖ = Op(1). Due to our normalization of f̂
and f0 we have H = (f̂ ′P bff0/T )−1 = (f̂ ′f0/T )−1, and therefore ‖H−1‖ ≤ ‖f̂‖‖f0‖/T = Op(1).

We also have f̂ = f0H + (P bf − Pf0)f0H, and thus H = f0′f̂/T − f0′(P bf − Pf0)f0H/T , i.e.
‖H‖ ≤ Op(1) + ‖H‖Op

(
T−1/2

)
which shows ‖H‖ = Op(1). Note that all the following results

only require ‖H‖ = Op(1) and ‖H−1‖ = Op(1), but apart from that are independent of the
choice of normalization.

The advantage of expressing f̂ in terms of P bf as above is that the result
∥∥∥P bf − Pf0

∥∥∥ =

Op
(
T−1/2

)
of lemma F.2 immediately implies∥∥∥f̂ − f0H

∥∥∥ = Op (1) .

The FOC wrt λ in the minimization of the first line in equation (3.3) reads

λ̂ f̂ ′f̂ =

(
Y −

K∑
k=1

β̂kXk

)
f̂ , (S.8.2)

which yields

λ̂ =

[
λ0f0′ −

K∑
k=1

(
β̂k − β0

k

)
Xk

]
f̂
(
f̂ ′f̂
)−1

=

[
λ0f0′ +

K∑
k=1

(
β0
k − β̂k

)
Xk + e

]
P bff0

(
f0′P bff0

)−1 (
H ′
)−1

= λ0
(
H ′
)−1 + λ0f0′

(
P bf − Pf0

)
f0
(
f0′P bff0

)−1 (
H ′
)−1

+ λ0f0′f0

[(
f0′P bff0

)−1
−
(
f0′f0

)−1
] (

H ′
)−1

+

[
K∑
k=1

(
β0
k − β̂k

)
Xk + e

]
P bff0

(
f0′P bff0

)−1 (
H ′
)−1

.

We have
(
f0′P bff0

/
T )−1 −

(
f0′f0/T

)−1 = Op(T−1/2), because
∥∥∥P bf − Pf0

∥∥∥ = Op
(
T−1/2

)
and

f0′f0/T by assumption is converging to a positive definite matrix (or given our particular choice
of normalization is just the identity matrix IR) In addition, we have ‖e‖ = Op(

√
T ), ‖Xk‖ =

Op(
√
NT ) and by corollary F.1 also ‖β̂ − β0‖ = Op(1/

√
NT ). Therefore∥∥∥λ̂− λ0

(
H ′
)−1
∥∥∥ = Op (1) , (S.8.3)

which is what we wanted to prove.
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Next, we want to show∥∥∥∥∥∥
(
λ̂
′
λ̂

N

)−1

−

(
(H)−1 λ0′ λ0 (H ′)−1

N

)−1
∥∥∥∥∥∥ = Op

(
N−1/2

)
,

∥∥∥∥∥∥
(
f̂ ′ f̂

T

)−1

−
(
H ′ f0′ f0H

T

)−1
∥∥∥∥∥∥ = Op

(
T−1/2

)
. (S.8.4)

Let A = N−1 λ̂
′
λ̂ and B = N−1 (H)−1 λ0′ λ0 (H ′)−1. Using (S.8.3) we find

‖A−B‖ =
1

2N

∥∥∥[λ̂′ + (H)−1 λ0′
] [
λ̂− λ0

(
H ′
)−1
]

+
[
λ̂
′
− (H)−1 λ0′

] [
λ̂+ λ0

(
H ′
)−1
]∥∥∥

= N−1Op(N1/2)Op(1) = Op
(
N−1/2

)
.

By assumption 1 we know that ∥∥∥∥∥
(
λ0′ λ0

N

)−1
∥∥∥∥∥ = Op(1) .

and thus also
∥∥B−1

∥∥ = Op(1), and therefore
∥∥A−1

∥∥ = Op(1) (using ‖A − B‖ = op(1) and
applying Weyl’s inequality to the smallest eigenvalue of B). Since A−1−B−1 = A−1(B−A)B−1

we find ∥∥A−1 −B−1
∥∥ ≤ ∥∥A−1

∥∥ ∥∥B−1
∥∥ ‖A−B‖

= Op
(
N−1/2

)
.

Thus, we have shown the first statement of (S.8.4), and analogously one can show the second
one. Combining (S.8.3), (S.8.2) and (S.8.4) we obtain∥∥∥∥∥∥ λ̂√

N

(
λ̂
′
λ̂

N

)−1 (
f̂ ′f̂

T

)−1
f̂ ′√
T
− λ0

√
N

(
λ0′λ0

N

)−1 (
f0′f0

T

)−1
f0′
√
T

∥∥∥∥∥∥
=

∥∥∥∥∥∥ λ̂√
N

(
λ̂
′
λ̂

N

)−1 (
f̂ ′f̂

T

)−1
f̂ ′√
T
− λ0 (H ′)−1

√
N

(
(H)−1 λ0′λ0 (H ′)−1

N

)−1 (
H ′f0′f0H

T

)−1
H ′f0′
√
T

∥∥∥∥∥∥
= Op

(
N−1/2

)
,

which is equivalent to the statement in lemma. Note also that λ̂ (λ̂
′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′ is independent

of H, i.e. independent of the choice of normalization.

Proof of lemma F.5. # Part A of the proof: We start by showing that

N−1
∥∥∥EC [e′Xk −

(
e′Xk

)truncR
]∥∥∥ = op(1) . (S.8.5)

Let A = e′Xk and B = A − AtruncR. By definition of the left-sided truncation (using the equal
weight kernel Γ(.)) we have Btτ = 0 for t < τ ≤ t+M and Btτ = Atτ otherwise. By assumption 5
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we have EC(Atτ ) = 0 for t ≥ τ . For t < τ we have E(Atτ ) =
∑N

i=1 EC(eitXk,iτ ). We thus have
E(Btτ ) = 0 for τ ≤ t+M , and EBtτ =

∑N
i=1 EC(eitXk,iτ ) for τ > t+M . Therefore

‖E(B)‖1 = max
t=1...T

T∑
τ=1

|E(Btτ )|

≤ max
t=1...T

T∑
τ=t+M+1

∣∣∣∣∣
N∑
i=1

EC(eitXk,iτ )

∣∣∣∣∣ ≤ N max
t=1...T

T∑
τ=t+M+1

c (τ − t)−(1+ε) = op(N) ,

where we used M → ∞. Analogously we can show ‖E(B)‖∞ = op(N). Using part (vii) of
Theorem S.3.1 we therefore also find ‖E(B)‖ = op(N), which is equivalent to equation (S.8.5)
that we wanted to show in this part of the proof. Analogously we can show that

N−1
∥∥∥E [e′e)− (e′e)truncD

]∥∥∥ = op(1) ,

T−1
∥∥∥E [ee′)− (ee′)truncD

]∥∥∥ = op(1) .

# Part B of the proof: Next, we want to show that

N−1
∥∥∥[e′Xk − EC

(
e′Xk

)]truncR
∥∥∥ = op(1) . (S.8.6)

Using lemma S.8.3 we have

N−1
∥∥∥[e′Xk − EC

(
e′Xk

)]truncR
∥∥∥ ≤M max

t
max

t<τ≤t+M
N−1

∣∣e′tXk,τ − EC
(
e′tXk,τ

)∣∣
≤M max

t
max

t<τ≤t+M
N−1

∣∣∣∣∣
N∑
i=1

[eitXk,iτ − EC (eitXk,iτ )]

∣∣∣∣∣
≤M N−1/2 max

t
max

t<τ≤t+M

∣∣∣Z̄(1)
k,tτ

∣∣∣ .
According to lemma S.8.2 we know that EC

∣∣∣Z̄(1)
k,tτ

∣∣∣4 is bounded uniformly across t and τ . Applying

lemma S.8.1 we therefore find maxt maxt<τ≤t+M Z̄
(1)
tτ = Op((MT )1/4). Thus we have

M N−1/2 max
t

max
t<τ≤t+M

∣∣∣Z̄(1)
tτ

∣∣∣ = Op
(
M N−1/2 (MT )1/4

)
= op(1) .

Here we used M5/T → 0. Analogously we can show that

N−1
∥∥∥[e′e − E

(
e′e
)]truncD

∥∥∥ = op(1) ,

T−1
∥∥∥[ee′ − E

(
ee′
)]truncD

∥∥∥ = op(1) .

# Part C of the proof: Finally, we want to show that

N−1
∥∥∥[e′Xk − ê′Xk

]truncR
∥∥∥ = op(1) . (S.8.7)
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According to theorem E.1 we have ê = Mλ0eMf0+erem, where erem ≡ ê(1)
e −

∑K
k=1

(
β̂k − β0

k

)
ê

(1)
k +

ê(rem). We then have

N−1
∥∥∥[e′Xk − ê′Xk

]truncR
∥∥∥

≤ N−1
∥∥∥[e′remXk

]truncR
∥∥∥+N−1

∥∥∥[Pf0e′Mλ0Xk

]truncR
∥∥∥+N−1

∥∥∥[e′Pλ0Xk

]truncR
∥∥∥ .

Using corollary F.1 we find that the remainder term satisfies ‖erem‖ = Op(1). Using lemma S.8.3
we find

N−1
∥∥∥[e′remXk

]truncR
∥∥∥ =

M

N
max
t,τ

ê′rem,tXk,τ

≤ M

N
max
t,τ
‖erem,t‖ ‖Xk,τ‖

≤ M

N
‖erem‖ max

τ
‖Xk,τ‖

≤ M

N
Op(1)Op(N1/2T 1/8) = op(1) ,

where we used the fact that the norm of each column erem,t is smaller than the operator norm
of the whole matrix erem. In addition we used lemma S.8.1 and the fact that N−1/2 ‖Xk,τ‖ =√
N−1

∑N
i=1X

2
k,iτ has finite 8’th moment in order to show maxτ ‖Xk,τ‖ = Op(N1/2T 1/8). Using

again lemma S.8.3 we find

N−1
∥∥∥[Pf0e′Mλ0Xk

]truncR
∥∥∥ ≤ N−1M max

t,τ=1...T

∣∣f0
t (f0′ f0)−1 f0′ e′Mλ0Xk,τ

∣∣
≤ N−1M ‖e‖ ‖f0‖

∥∥(f0′ f0)−1
∥∥ max

t
‖f0
t ‖ max

τ
‖Xk,τ‖

= N−1M Op(N1/2)Op(T 1/2)Op(T−1)Op(N1/2T 1/8) = op(1) ,

and

∥∥∥[e′Pλ0Xk

]truncR
∥∥∥ ≤ N−1/2M max

t=1...T

(
N−1/2

∑
i

eitλ
0
i

)
(N−1λ0′ λ0)−1 max

τ=1...T

N−1
∑
j

λ0′
j Xjt


= N−1/2MOp(T 1/8)Op(1)Op(T 1/8) = op(1).

Thus, we proved equation (S.8.7). Analogously we obtain

N−1
∥∥∥[e′e − ê′ ê

]truncD
∥∥∥ = op(1) ,

T−1
∥∥∥[ee′ − ê ê′

]truncD
∥∥∥ = op(1) ,

# Combining (S.8.5), (S.8.6) and (S.8.7) shows that N−1
∥∥∥E(e′Xk

∣∣ C)− (ê′Xk)
truncR

∥∥∥ =
op(1). The proof of the other two statements of the lemma is analogous.

Proof of lemma F.6. Using theorem E.1 and F.1 we find ‖ê‖ = Op(N1/2). Applying lemma
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S.8.3 we therefore find

N−1
∥∥∥(ê′Xk

)truncR
∥∥∥ ≤ M

N
max
t,τ

ê′tXk,τ

≤ M

N
max
t,τ
‖êt‖ ‖Xk,τ‖

≤ M

N
‖ê‖ max

τ
‖Xk,τ‖

≤ M

N
Op(N1/2)Op(N1/2T 1/8) = Op(MT 1/8) ,

where we used the result maxτ ‖Xk,τ‖ = Op(N1/2T 1/8) that was already obtained in the proof
of the last theorem.

The proof for the statement (ii) and (iii) is analogous.

S.9 Additional Monte Carlo Results

We consider an AR(1) model with R factors

Yit = ρ0 Yi,t−1 +
R∑
r=1

λ0
ir f

0
tr + eit .

We draw the eit independently and identically distributed from a t-distribution with five degrees
of freedom. The λ0

ir are independently distributed as N (1, 1), and we generate the factors
from an AR(1) specification, namely f0

tr = ρf f
0
t−1,r + utr, for each r = 1, . . . , R, where utr ∼

iidN (0, (1 − ρ2
f )σ2

f ). For all simulations we generate 1000 initial time periods for f0
t and Yit

that are not used for estimation. This guarantees that the simulated data used for estimation is
distributed according to the stationary distribution of the model.

For R = 1 this is exactly the simulation design used in the main text Monte Carlo section,
but DGP’s with R > 1 were not considered in the main text. Table S.1 reports results, where
R = 1 is used both in the DGP and for the LS estimation. Table S.2 reports results, where R = 1
is used in the DGP, but R = 2 is used for the LS estimation. Table S.3 reports results, where
R = 2 is used both in the DGP and for the LS estimation. The results in Table S.1 and S.2 are
identical to those reported in the main text Table 1 and 2, except that we also report results for
the CCE estimator. The results in Table S.3 are not contained in the main text.

The CCE estimator is obtained by using f̂proxy
t = N−1

∑
i(Yit, Yi,t−1)′ as a proxy for the

factors an then estimating the parameters ρ, λi1, λi2, i = 1, . . . , N , via OLS in the linear
regression model Yit = ρYi,t−1 + λi1f̂

proxy
t1 + λi2f̂

proxy
t2 + eit.

The performance of the CCE estimator in Table S.1 and S.2 are identical (up to random
MC noise), because the number of factors need not be specified for the CCE estimator, and the
DGP’s in Table S.1 and S.2 are identical. These tables show that for R = 1 in the DGP the CCE
estimator performs very well. From Chudik and Pesaran (2013) we expect the CCE estimator
to have a bias of order 1/T in a dynamic model, which is confirmed in the simulations: the bias
of the CCE estimator shrinks roughly in inverse proportion to T , as T becomes larger. The 1/T
bias of the CCE estimator could be corrected for, and we would expect the bias corrected CCE
estimator to perform similarly to the bias corrected LS estimator, although this is not included
in the simulations.
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However, if there are R = 2 factors in the true DGP, then it turns out that the proxies f̂proxy
t

do not pick those up correctly. Table S.3 shows that for some parameter values and sample sizes
(e.g. ρ0 = 0.3 and T = 10, or ρ0 = 0.9 and T = 40) the CCE estimator is almost unbiased, but
for other values, including T = 80, the CCE estimator is heavily biased if R = 2. In particular,
the bias of the CCE estimator does not seem to converge to zero as T becomes large in this
case. In contrast, the correctly specified LS estimators (i.e. correctly using R = 2 factors in
the estimation) performs very well according to Table S.3. However, an incorrectly specified
LS estimator, which would underestimate the number of factors (e.g. using R = 1 factors in
estimation instead of the correct number R = 2) would probably perform similarly to the CCE
estimator, since not all factors would be corrected for. Overestimating the number of factors
(i.e. using R = 3 factors in estimation instead of the correct number R = 2) should, however,
not pose a problem for the LS estimator, according to Moon and Weidner (2013).
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Tables with Simulation Results

ρ0 = 0.3 ρ0 = 0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE

T = 5, M = 2 bias 0.1232 -0.1419 -0.0713 -0.1755 0.0200 -0.3686 -0.2330 -0.3298
std 0.1444 0.1480 0.0982 0.1681 0.0723 0.1718 0.1301 0.2203
rmse 0.1898 0.2050 0.1213 0.2430 0.0750 0.4067 0.2669 0.3966

T = 10, M = 3 bias 0.1339 -0.0542 -0.0201 -0.0819 0.0218 -0.1019 -0.0623 -0.1436
std 0.1148 0.0596 0.0423 0.0593 0.0513 0.1094 0.0747 0.0972
rmse 0.1764 0.0806 0.0469 0.1011 0.0557 0.1495 0.0973 0.1734

T = 20, M = 4 bias 0.1441 -0.0264 -0.0070 -0.0405 0.0254 -0.0173 -0.0085 -0.0617
std 0.0879 0.0284 0.0240 0.0277 0.0353 0.0299 0.0219 0.0406
rmse 0.1687 0.0388 0.0250 0.0491 0.0434 0.0345 0.0235 0.0739

T = 40, M = 5 bias 0.1517 -0.0130 -0.0021 -0.0200 0.0294 -0.0057 -0.0019 -0.0281
std 0.0657 0.0170 0.0160 0.0166 0.0250 0.0105 0.0089 0.0162
rmse 0.1654 0.0214 0.0161 0.0260 0.0386 0.0119 0.0091 0.0324

T = 80, M = 6 bias 0.1552 -0.0066 -0.0007 -0.0100 0.0326 -0.0026 -0.0006 -0.0136
std 0.0487 0.0112 0.0109 0.0111 0.0179 0.0056 0.0053 0.0073
rmse 0.1627 0.0130 0.0109 0.0149 0.0372 0.0062 0.0053 0.0154

Table S.1: Same as Table 1 in main paper, but also reporting pooled CCE estimator of Pesaran (2006).

ρ0 = 0.3 ρ0 = 0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE

T = 5, M = 2 bias 0.1239 -0.5467 -0.3721 -0.1767 0.0218 -0.9716 -0.7490 -0.3289
std 0.1454 0.1528 0.1299 0.1678 0.0731 0.1216 0.1341 0.2203
rmse 0.1910 0.5676 0.3942 0.2437 0.0763 0.9792 0.7609 0.3958

T = 10, M = 3 bias 0.1343 -0.1874 -0.1001 -0.0816 0.0210 -0.4923 -0.3271 -0.1414
std 0.1145 0.1159 0.0758 0.0592 0.0518 0.1159 0.0970 0.0971
rmse 0.1765 0.2203 0.1256 0.1008 0.0559 0.5058 0.3412 0.1715

T = 20, M = 4 bias 0.1451 -0.0448 -0.0168 -0.0407 0.0255 -0.1822 -0.1085 -0.0618
std 0.0879 0.0469 0.0320 0.0277 0.0354 0.0820 0.0528 0.0404
rmse 0.1696 0.0648 0.0362 0.0492 0.0436 0.1999 0.1207 0.0739

T = 40, M = 5 bias 0.1511 -0.0161 -0.0038 -0.0199 0.0300 -0.0227 -0.0128 -0.0282
std 0.0663 0.0209 0.0177 0.0167 0.0250 0.0342 0.0225 0.0164
rmse 0.1650 0.0264 0.0181 0.0260 0.0390 0.0410 0.0258 0.0326

T = 80, M = 6 bias 0.1550 -0.0072 -0.0011 -0.0100 0.0325 -0.0030 -0.0010 -0.0136
std 0.0488 0.0123 0.0115 0.0111 0.0182 0.0064 0.0057 0.0074
rmse 0.1625 0.0143 0.0116 0.0149 0.0372 0.0071 0.0058 0.0155

Table S.2: Same as Table 2 in main paper, but also reporting pooled CCE estimator of Pesaran (2006).
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ρ0 = 0.3 ρ0 = 0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE

T = 5, M = 2 bias 0.1861 -0.4968 -0.3323 -0.1002 0.0309 -0.9305 -0.7057 -0.2750
std 0.1562 0.1910 0.1580 0.2063 0.0801 0.1644 0.1754 0.2302
rmse 0.2429 0.5322 0.3680 0.2294 0.0859 0.9449 0.7272 0.3586

T = 10, M = 3 bias 0.1989 -0.1569 -0.0758 0.0036 0.0326 -0.4209 -0.2732 -0.1040
std 0.1185 0.1018 0.0700 0.1074 0.0543 0.1607 0.1235 0.1070
rmse 0.2315 0.1870 0.1031 0.1074 0.0633 0.4505 0.2998 0.1492

T = 20, M = 4 bias 0.2096 -0.0592 -0.0185 0.0520 0.0366 -0.0741 -0.0406 -0.0310
std 0.0884 0.0377 0.0287 0.0711 0.0356 0.0859 0.0552 0.0512
rmse 0.2274 0.0702 0.0341 0.0881 0.0511 0.1134 0.0686 0.0599

T = 40, M = 5 bias 0.2174 -0.0275 -0.0054 0.0759 0.0404 -0.0134 -0.0047 -0.0012
std 0.0649 0.0192 0.0170 0.0500 0.0239 0.0166 0.0122 0.0281
rmse 0.2269 0.0335 0.0179 0.0908 0.0469 0.0214 0.0131 0.0281

T = 80, M = 6 bias 0.2232 -0.0134 -0.0016 0.0873 0.0433 -0.0052 -0.0012 0.0125
std 0.0472 0.0118 0.0113 0.0364 0.0164 0.0066 0.0058 0.0176
rmse 0.2281 0.0179 0.0114 0.0946 0.0463 0.0084 0.0059 0.0216

Table S.3: Analogous to Table 2 in main paper, but with R = 2 correctly specified, and also reporting pooled
CCE estimator of Pesaran (2006).
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