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Dynamic Linear Panel Regression Models with Interactive Fixed Effects

Supplementary Material (Not for Publication)

Hyungsik Roger Moon! Martin Weidner?
December 25, 2013

S.1 Proofs for Appendix A (Examples of Error Distributions)

Here we give the proof of the result ||e|| = O,(\/max(N,T')) for the different examples of error
distributions presented in the main text.

Proof of example (i). Latala (2005) showed that for a N x T" matrix e with independent

entries we have
Ele]| < ¢ max /Z]Eezt—l—max\/ZEelt—l—\/ZEe?t ,
-

where c is some universal constant (independent of N and 7', and of the distribution of e). Since
we assumed uniformly bounded 4’th moments for e;; we thus have Elle| = O(VT) + O(V'N) +
O((TN)Y*), which implies E|e|| = O(y/max(N, T)). Therefore |le| = Op(y/max(N,T)). 1

Proof of example (ii). Let ¢; = (¢y;,...,%y;) be an N x 1 vector for each j > 0. Let U_;
be an N x T sub-matrix of (u;) consisting of uy, i =1...N,t=1—j,...,T —j. We can then
write equation (A.1) in matrix notation as

= Z diag(y;) U—j + N, ,

where we cut the sum at 7T, which results in the remainder ry7 = -2 7 diag(y);) U-;. When
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approximating an MA(co) by a finite MA(T") process we have for the remainder

N T N T 00
E(|ryrle)? =) ) E@wr)i <on ) > v
=1 t=1 i=1 t=1 j=T+1

J=T+1
o0
<o2N Z J max (1/)”) )
j=T+1

where 03 is the variance of u;;. Therefore, for T' — oo we have

E ((HrN;HF)Q) 0,

which implies (||ry7||r)? = Op(N), and therefore ||[ryr| < ||rnrllr = Op(vV'N).

Let V be the N x 2T matrix consisting of u;, t =1...N,t=1-1T,...,T. For j=0...T
the matrices U_; are sub-matrices of V', and therefore ||U_;|| < ||V||. From example (i) we know
that ||V = Op(y/max(N,2T)). Furthermore, we know that || diag(z;)|| < max; (}1/1”‘)

Combining these results we find

T
lell < Y [ diag(w )|l |U—j]| + [Irar]
=0
JT
<> max ([¢]) [V +0p(VN)
=0
<

Zm?x(\wij\) O,(v/max(N,2T)) + 0,(VN)
j=0

< Op(v/max(N,T)) .
This is what we wanted to show.

Proof of example (iii). Since o and X are positive definite, there exits a symmetric N x N
matrix ¢ and a symmetric 7 x T matrix ¢ such that 0 = ¢? and ¥ = ¢%. The error term
can then be generated as e = ¢uip, where uw is a N x T matrix with iid entries u; such that
E(ui) = 0 and E(u},) < oo. Given this definition of e we immediately have Ee; = 0 and
Eejtejr = 04jX¢,. What is left to show is that |e|| = Op(y/max(N,T)). From example (i) we
know that ||u|| = Op(y/max(N,T)). Using the inequality [|o|| < /|lo|li]|o]lcc = [|o]|1, Where

llolli = [|o]|cc because o is symmetric we find

N
< = Z ¥ L
ol <ol = s 3= low < £
i—

and analogously ||X]| < L. Since |lo| = ||¢|* and ||3]| = [|¢[|?, we thus find [le]| < [|¢|l[ull|¥] <
LO,(y/max(N,T)), i.e. |le|]| = Op(y/max(N,T)). 1



S.2 Comments on assumption 4 on the regressors

Consistency of the LS estimator B requires that the regressors not only satisfy the standard
no-collinearity condition in assumption 4(i), but also the additional conditions on high- and
low-rank regressors in assumption 4(ii). Bai (2009) considers the special cases of only high-
rank and only low-rank regressors. As low-rank regressors he considers only cross-sectional
invariant and time-invariant regressors, and he shows that if only these two types of regressors
are present, one can show consistency under the assumption plimy . Wyt > 0 on the re-
gressors (instead of assumption 4), where Wy is the K x K matrix defined by Wnr gk, =
(NT)~ ! Tr(M o X ,'61 Mo X},). This matrix appears as the approximate Hessian in the profile
objective expansion in theorem 4.1, i.e. the condition plimy 7., W7 > 0 is very natural in the
context of the interactive fixed effect models, and one may wonder whether also for the general
case one can replace assumption 4 with this weaker condition and still obtain consistency of
the LS estimator. Unfortunately, this is not the case, and below we present two simple counter
examples that show this.

(i) Let there only be one factor (R = 1) f? with corresponding factor loadings A). Let there
only be one regressor (K = 1) of the form X;; = w;v; + )\g ftO . Assume that the N x 1
vector w = (w1, ..., wy)’, and the T x 1 vector v = (v1,...,vy)" are such that the N x 2
matrix A = (A\°, w) and and the T x 2 matrix F' = (f°, v) satisfy plimy 7, (A'A/N) > 0,
plimy 7 (F'F/T) > 0. In this case, we have Wy = (NT)~* Tr(M o vw' Myo wv'), and
therefore plimy 7o, Wt = plimy oo (NT) ™! Tr(M po vw’ Myo wv') > 0. However, 3 is
not identified because B°X + A\ f¥ = (8% +1)X —w/, i.e. it is not possible to distinguish
(BN, f) = (8% A% f9) and (B, A, f) = (8° 4+ 1, —w, v). This implies that the LS estimator
is not consistent (both (Y and 3° + 1 could be the true parameter, but the LS estimator
cannot be consistent for both).

(ii) Let there only be one factor (R = 1) f with corresponding factor loadings AY. Let the N x 1
vectors A’, wy and w be such that A = (A%, wy, ws) satisfies plimy 7o, (A’A/N) > 0. Let
the T'x 1 vectors f, v and vy be such that F = (f°, vy, vy) satisfies plimy 7, (F'F/T) >
0. Let there be four regressors (K = 4) defined by X; = wiv], Xo = wovh, X3 =
(w1 + A\ (vg + O, X4 = (w2 + A (v1 + f°). In this case, one can easily check that
plimy .o Wnr > 0. However, again (3, is not identified, because Zi:l ﬁng + X0 0 =
Zizl(ﬂg +1) X — (A0 4wy +wa) (f¥ +v1 419)", i.e. we cannot distinguish between the true
parameters and (3, A, f) = (8% +1, =\° —w; —wy, f¥ +v; +v7). Again, as a consequence
the LS estimator is not consistent in this case.

In example (ii), there are only low-rank regressors with rank(X;) = 1. One can easily check
that assumption 4 is not satisfied for this example. In example (i) the regressor is a low-rank
regressor with rank(X) = 2. In our present version of assumption 4 we only consider low-rank
regressors with rank rank(X) = 1, but (as already noted in a footnote in the main paper) it is
straightforward to extend the assumption and the consistency proof to low-rank regressors with
rank larger than one. Independent of whether we extend the assumption or not, the regressor
X of example (i) fails to satisfy assumption 4. This justifies our formulation of assumption 4,
because it shows that in general the assumption cannot be replaced by the weaker condition
pth,T—»oo Wnt > 0.



S.3 Some Matrix Algebra

The following statements are true for real matrices — throughout the wholer paper complex
numbers never appear.

Let A be an arbitrary n x m matrix. In addition to the operator (or spectral) norm || Al| and
to the Frobenius (or Hilbert-Schmidt) norm ||Al|r, it is also convenient to define the 1-norm,
the co-norm, and the max-norm by

n m
1Al = max Y Ay, [[Alle = max YAy, [ Allnax = max  max |4yl .
j=1l.m =1 i=1...n 4 i=1..n j=1..m

Theorem S.3.1 (Some useful Inequalities). Let A be a n x m matriz, B be a m X p matriz, and
C and D be n x n matrices. Then we have:

(i) lAl < [Alp < Al rank (4)Y2
(i) |AB[ < [|A[l[B]
(i) [[AB|p < Al 1Bl < Al [BllF

~

(w)  [Te(AB)| < |AllpBllF,  forn=p,
(v) [T (C)] < [|C][rank (C)
(vi) IC| < Tr(C) , for C' symmetric and C > 0,

(vii) — [IAI* < [lAll1 Al
(viii) (| Allmax < [[A] < Vrm [[Allmax

(ix) |A'CA| < ||ADAJ, for C symmetric and C < D.
For C, D symmetric, and i =1,...,n we have:

(x)  pi(C) + (D) < py(C+ D) < 1;(C) + py (D)

(wi) 1;(C) < p(C+ D), for D >0,

(zii) — pi(C) = DIl < py(C+ D) < py(C) +[|DI| -

Proof. Here we use notation s;(A) for the ’th largest singular value of a matrix A.

(1) We have ||A]| = s1(A4), and ||A]|%2 = Zginlk(A)(si(A))Q. The inequalities follow directly from
this representation. (ii) This inequality is true for all unitarily invariant norms, see e.g. Bhatia
(1997). (iii) can be shown as follows

|AB|% = Tr(ABB'A')
= Tv[||B|* AA’ — A(|B|*1 - BB) 4’|
< [|BIPTr(AA) = ||B]* | A7 ,
where we used that A(||B|*I — BB')A’ is positive definite. Relation (iv) is just the Cauchy

Schwarz inequality. To show (v) we decompose C' = UDO’ (singular value decomposition),
where U and O are n x rank(C) that satisfy U'U = O'O =1 and D is a rank(C) x rank(C)



diagonal matrix with entries s;(C). We then have |O| = ||U|| = 1 and || D|| = ||C|| and therefore

|Tr(C)| = |[Tr(UDO")| = |Tr(DO'U))|
rank(C)
=| Y #DO'Uy;
=1
rank(C)
< > IPIONU] = rank(C)[|C]| -

i=1

For (vi) let e; be a vector that satisfied |le1]| = 1 and ||C|| = €[Ce;. Since C is symmetric
such an e; has to exist. Now choose ¢;, ¢ = 2,...,n, such that e;, ¢ = 1,...,n, becomes a
orthonormal basis of the vector space of n x 1 vectors. Since C' is positive semi definite we then
have Tr (C) = )", elCe; > e1Cey = ||C||, which is what we wanted to show. For (vii) we refer
to Golub, van Loan (1996), p.15. For (viii) let e be the vector the vector that satisfies |le|| = 1
and ||A'/CA| = ¢’A’/CAe. Since A'C'A is symmetric such an e has to exist. Since C' < D we
then have ||C|| = (¢/A")C(Ae) < (/! A")D(Ae) < ||A'DA||. This is what we wanted to show. For
inequality (ix) let e; be a vector that satisfied ||e1|| = 1 and ||[A'C A|| = €| A'C Ae;. Then we have
|A'CA| = efA'DAey — e A/ (D — C)Aey < €jA'DAe; < ||A'DA|. Statement (x) is a special
case of Weyl’s inequality, see e.g. Bhatia (1997). The Inequalities (xi) and (xii) follow directly
from (ix) since p,, (D) > 0 for D > 0, and since —||D|| < p;(D) > ||D|| fori =1,...,n.

Definition S.3.2. Let A be an n x r1 matriz and B be an n X ro matriz with rank(A) = r;
and rank(B) = ry. The smallest principal angle 04 p € [0,7/2] between the linear subspaces
span(A) = {Aa|la € R} and span(B) = {Bb|b € B2} of R" is defined by

a' A’ Bb

Oap) = o0
cos(Ba.p) =  mmax WX iBol

Theorem S.3.3. Let A be an n x r1 matriz and B be an n X ro matriz with rank(A) = r; and
rank(B) = ryo. Then we have the following alternative characterizations of the smallest principal
angle between span(A) and span(B)

M5 Adf
0#acR™  ||Aal|
M B
0#£beR2 || Bb|

Sin(QA,B) =

Proof. Since |Mp Aa|? + ||Pg Aal* = ||Aal? and sin(04 5)? + cos(645)? = 1, we find that
proving the theorem is equivalent to proving

cos(Bap) = min ALBAG 1P Bb|
7 0#ack™ || Aal 0£beR™2  ||Ab||

This result is theorem 8 in Galantai, Hegedus (2006), and the proof can be found there. §



Proof of Theorem C.1. Let

S1(Z2) = f,l)\nTr [(Z-=Xf)(Z' = fN)]
S(2) = minT(Z My Z') .
S3(Z) = minTr(Z’ M\ 2Z),
S4(Z) = min Tr(M5 ZMfZ/)
A
T
55(2) = Z :U’Z(Z,Z)a
i=R+1
N
Se(2)= Y w22
i=R+1

The theorem claims
S1(Z) = S2(Z) = S3(Z) = S4(Z) = S5(Z) = Se(Z) .
We find:

(i) The non-zero eigenvalues of Z'Z and ZZ' are identical, so in the sums in S5(Z) and in
Se(Z) we are summing over identical values, which shows S5(Z) = Sg(Z).

(ii) Starting with S;(Z) and minimizing with respect to f we obtain the first order condition
NZ=XN\f".
Putting this into the objective function we can integrate out f, namely

e [(Z2 = M) (Z = M)| =T (22 = ZAf)
=Tr (Z2'Z — ZZXNN) TN F)
T (Z2'Z — Z’2X(NA) TNV 2)
=T (Z' My2) .

This shows S1(Z) = S3(Z). Analogously, we can integrate out A to obtain S1(Z) = S2(2).

(iii) Let M5 be the projector on the N — R eigenspaces corresponding to the N — R smallest
eigenvalues' of ZZ', let P = Iy — M;, and let wr be the R’th largest eigenvalue of
ZZ'. We then know that the matrix P;[ZZ' — wrIn|P; — M5[ZZ' — wRln]Ms; is positive
semi-definite. Thus, for an arbitrary N x R matrix A with corresponding projector M) we
have

0 < T {(P5[22 — wiln]P; — M3[ZZ' — wrln]My) (My - M5)* |
= Tv { (P[22 — wiln]P; + M5|ZZ' — wrlly] M) (M — M)}
=Tr [Z' M) Z] — Tr [Z' M5 Z] + wg [rank(M)) — rank(M5)]

If an eigenvalue has multiplicity m, we count it m times when finding the N — R smallest eigenvalues. In this
terminology we always have exactly N eigenvalues of ZZ’, but some may appear multiple times.



and since rank(M5) = N — R and rank(M)) < N — R we have
Tr[Z' M5 Z] <Tx [Z' M)\ Z] .

This shows that M5 is the optimal choice in the minimization problem of S3(Z), i.e. the

optimal \ = X is chosen such that the span of the N-dimensional vectors Ar (r=1...R)
equals to the span of the R eigenvectors that correspond to the R largest eigenvalues of
ZZ'. This shows that S3(Z) = Sg(Z). Analogously one can show that S3(Z) = S5(Z).

(iv) In the minimization problem in S4(Z) we can choose A such that the span of the N-
dimensional vectors XT (r=1...R1) equals to the span of the R; eigenvectors that corre-
spond to the Ry largest eigenvalues of ZZ ’. In addition, we can choose fsuch that the span
of the T-dimensional vectors f, (r = 1...Rg) equals to the span of the Ry eigenvectors
that correspond to the (R; + 1)-largest up to the R-largest eigenvalue of Z'Z. With this
choice of \ and f we actually project out all the R largest eigenvalues of Z'Z and ZZ'.
This shows that S4(Z) < S5(Z). (This result is actually best understood by using the
singular value decomposition of Z.)

We can write MXZMJ—;: Z — Z, where
Z:PXZM]?+ZP]?.

Since rank(Z) < rank(P5 Z Mf) +rank(Z Pf) — Ry + Ry = R, we can always write Z = \f’
for some appropriate N x R and T" x R matrices A and f. This shows that

Su(Z) = }1Tr(M ZM;Z')

 min Tx((Z-2)(Z - Z))
{Z : rank(Z)<R}

= r?iAnTr (Z =X (Z'=fN)] =51(2) .

)

v

Thus we have shown here S1(Z) < S4(Z) < S5(Z), and actually this holds with equality
since S1(Z) = S5(Z) was already shown above.

S.4 Supplement to the Consistency Proof (Appendix C)

Lemma S.4.1. Under assumption 1 and 4 there exists a constant By > 0 such that for the
matrices w and v introduced in assumption 4 we have

w'M)\ow — Byw'v>0, wpal,
v’Mfov—Bov’UZO, wpal.

Proof. We can decompose w = w w, where w is a N X rank(w) matrix and w is a rank(w) x K
matrix. Note that w has full rank, and M,, = M.



By assumption 1(i) we know that AY \°/N has a probability limit, i.e there exists some By > 0
such that AY\°/N < BT wpal. Using this and assumption 4 we find that for any R x 1 vector
a # 0 we have

M, Xal?> &AM, \Na _ B

= > — 1.
I\ a2 dN N B
Applying theorem S.3.3 we find
, V@' Myowb , a’)\O’Mw)\Oa> B )
min ——2—— = min ——— > —, wpal.
OibERra“k(w) bw wbd 0#acRE a )\0/ )\0 a Bl P

Therefore we find for every rank(w) x 1 vector b that ¢/ (@’ Myow — (B/B1)w'w)b > 0, wpal.
Thus w' My w — (B/Bi)w'w > 0, wpal. Multiplying from the left with @’ and from the
right with w we obtain w’ Mo w — (B/B1)w'w > 0, wpal. This is what we wanted do show.
Analogously we can show the statement for v. I

As a consequence of the this lemma we obtain some properties of the low-rank regressors
summarized in the following lemma.

Lemma S.4.2. Let the assumptions 1 and 4 be satisfied and let Xiow o = Z{ill a; X; be a linear
combination of the low-rank regressors. Then there exists some constant B > 0 such that

. HXIOVV#Y Mfo Xl/ow,aH B 1

min > B, wpal,
{a€RR1, af=1} NT b

| HMAO Xiowa Mpo X[y, o Myo . 1

min , wpal.
{a€RK1 |la|=1} NT Y

Proof. Note that HMAO Xiowa Mpo XL Myo

low,a

< HXlow,a Mfo X

low,a||: Decause [[Myol| = 1,
i.e. if we can show the second inequality of the lemma we have also shown the first inequality.
We can write Xjoy o = wdiag(a’)v’. Using lemma S.4.1 and part (v), (vi) and (ix) of

Theorem S.3.1 we find

| M0 Xiow,a Mo Xigy o Myol| = || Mo wdiag(a’) v' Mo v diag(a) w' Myol|
> By || Mo wdiag(a/) v" vdiag(a/) w' Myo||

B
> ?0 Tr [M,0 w diag(a’) v vdiag(a) w'M,o]
1
By . ! / : AW
=% Tr [v diag(e) w'M,ow diag(a) V']
1
BO . / ! : AW,
> e |v diag(a’) w'M,ow diag(a/) V' |
B2
> ﬁ |v diag(a’) w'w diag(a/) V' |
BQ
> fg Tr [v diag() w'w diag(a) v']
1
B2
= ?%TI' [Xlow aXllow,Oc]
1



low,a
matrix W}\‘}’}V is defined by W}\?¥l112 = (NT)'Tr (Xlle’2), i.e. it is a submatrix of W7. Since
by assumption W7 and thus W}\‘,’VTV converges to a positive definite matrix the lemma is proven
by the inequality above. I

Thus we have HMAO Xiow.a Mo X! MAOH J(NT) > (Bo/K1)? o/ W% & | where the K x K

Using the above lemmas we can now prove the lower bound on gﬁgp(ﬁ, f) that was used in
the consistency proof. Remember that

K K 1
S50 = 1o T (AO eI m)xk) M; (A” P4+ Y8 - mxk) Pisouw)
k=1 k=1

We want to show that under the assumptions of theorem 3.1 there exist finite positive constants
ag, a1, as, az and a4 such that

low low [|2
5(2) B, f) > aOHﬁ — B H
NT H/Blow _ ﬂ%)osz +ay HBIOW _ ﬂ%)ow“ + as

i high i high
— as Hﬁhlgh _ 60% H —ay H/@hlgh _ ﬁolg H H/Blow _ ﬁ%)ow

‘ , wpal.

Proof of the lower bound on §](3)T(ﬁ, f). Applying theorem C.1 and part (xi) of Theorem S.3.1



we find that

K /
SUB.D) 2 5 s <A°f°’+2<ﬂ2—ﬂk>xk) Prow) (A0f°'+z (8% = Bi) X )
k=1

NT HPR+1 [ </\0 7+ Z — B))w Uz) </\0 Y+ Z — B))w; Uz)

! K
+ (/\0 7+ Z - Bwi Ul) Ping,w) Z (B = B) Xom
m=K
K K,
+ Z (6971 - ﬁm)X;nP()\o,w) (AO fOI + Z(ﬁ? - ﬁl)’lUl UZ)
m:K1 =1
+ Z 60 6m X P()\o w) Z m)Xm]
m=K; m=K1

K3
> % HR+1 [ (AO U+ Z(ﬁ? — B)w vl> <)\0 o+ Z — B)w; Uz)
=1

K

+ <)‘0 fO/ + Z ﬂl wi Ul) P()\O,w) Z (ﬁ?n - ﬁm)Xm

m=K,

K K
+ ) (8% = Bu) X0 Ponow) (AO 74D 8 = Bw Uf) ]

=1

> % HR+1 (AO}CO/"‘Z - By wl“z) (AOfO/‘FZ (8] = B) ww;)

high high high h' h 1 1
B R L | L B

where ag > 0 and a4 > 0 are appropriate constants. For the last step we used part (xii) of
Theorem S.3.1 and the fact that

K K,
S| 8~ B X Py (AO RIC R vz)
m=K1 _
i high )‘0 fO, ow ow wlv/
< i [l e | | (15252 ¢ [t ] o | S )

Our assumptions guarantee that the operator norms of A\° f”/v/NT and X,,/v'NT are bounded
from above as N, T — oo, which results in finite constants a3 and a4.

We write the above result as §ﬁ%(ﬁ, f) > ppe1(A’A)/(NT) + terms containing 378" where
we defined A = 0 ¥+ 34 (80— 8)) wy vj. Also write A = Ay + Ay + Ag, with Ay = M, A Pjo =
My X° fO, Ay = Py AMpo = 325 (B — B)) wyv) Mo, Az = Py APjo = Py X° fO + S (8) —

10



B;) wyv; Pr. We then find A’A = A1 Ay + (A5 + A5)(Az + A3) and

AA > AA- (0P A+ a2 Ah) (0 Ag + a2 Ay)
= [A’lAl —(a—1) AgAg] + (1- ail)A/QAg ,
where > for matrices refers to the difference being positive definite, and a is a positive number,
namely a = 1+ pup(A741)/(2 |/ A3]|?). The reason for this choice becomes clear below.
Note that [A] A1 — (a — 1) A5A3] has at most rank R (asymptotically it has exactly rank R).
The non-zero eigenvalues of A’A are therefore given by the (at most) R non-zero eigenvalues

of [A]A; — (a — 1) A5A3] and the non-zero eigenvalues of (1 — a~1) A, Ay, the largest one of the
latter being given given by the operator norm (1 — a~')||Az||?. We therefore find

1

1 _
NT MR+ (A'A) > NT MRl [(A1A1 — (a— 1) A3A3) + (1 —a™')A5A,]

1
> NT min {(1 — a Y A?, pg [A1 A1 — (a— 1) A5A5]} .

Using Theorem S.3.1(xii) and our particular choice of a we find
r [A1A1 — (a — 1) A3A3] > pp(AfAL) — [[(a — 1) A3 43|
1
= §#R(A/1A1) :

Therefore

1 1 . 2| Ag|?
— AA) > —— Al A 1
NT it ( ) > INT pr(A1 A1) mm{ " 2452 + np(ALA))

1 || A2)? pp(A7Ar)
~ NT 2| AI? + pgr(A1AL)

where we used ||A|| > [|As]| and || A|| > ||A2]|.

Our assumptions guarantee that there exist positive constants cg, c1, c2 and c3 such that

K1
| Al HAOfO’H szvlll I I
o < OB B <ot |8 — By wpat,
=1
A/A O)\O/M )\0 07
/’LR( 1 1):'U’R(f w f)ZCQ, Wpal,
NT NT
| 422 - -
NT 231 Z(ﬁ?l = B wyy Ulll Mo Z(ﬂ% — B,) v UJZQ
li=1 lo=1
low low 2
> 8o - g wpat

were for the last inequality we used lemma S.4.2.
We thus have

s Hﬁlow low H

1+ % (CO +c HIBIOW IOWH)

1
N7 Hrn (A4) = wpal.

11



€2¢3

3 we thus obtain
2¢?
1

Defining ag = a] = 2% and ag =

€2
20%
) - ao Hﬂlow . ﬁ%}OWHQ

= Hﬁlow 7ﬁ%)OWH2 ¥ ay Hﬁlow . B%)OWH T as

i.e. we have shown the desired bound on gj(\?)T(ﬁ, f)-n

/

1
NT HRr+1 (A A

Y ‘A]I)a’1 Y

S.5 Proof of Corollary 4.2

All that is left to show for Corollary 4.2 is that the matrix Wy = WNT()\O, f°, X},) does not
become singular as N, T — oo.

Proof. Remember that

1
WNT — WTI‘(M}CO X]lfl M)\O Xk2) .

The smallest eigenvalue of the symmetric matrix W(X°, f0, X}.) is given my

a Wxra

W = min _—
p (W) = i lal?

K K
=, in e T | M X, | M X
{aeﬂgl(l,l}zyéo} NT|a|? o ek Z Uky Ay A° Z Oky A ks

k1=1 ko=1
. Tr [Mfo (Xllow,go + Xl,ngh,a) M)\O (Xlow,cp + Xhigh,oc):|
- min ,
T NT ([l + Tl
a#0, p# 0}

where we decomposed a = (¢, '), with ¢ and « being vectors of length K7 and K, respectively,

and we defined linear combinations of high- and low-rank regressors?
K K
Xlow,go = Z ®1 Xy, Xhigh,a = Z o X
=1 m=Ki1+1

We have Mo = M()\O,w) + P(M/\Ow)’ where w is the N x K7 matrix defined in assumption 4, i.e.
A w)is N x (R4 K1) matrix, while M,ow is also a N x K; matrix. Using this we obtain
A

i (Wnr)

1
- min Tr[M X 44X VM Xiow o + Xin }
{peREL, acRE> NT ([lo]|? + H@HQ){ 70 (Kowp T Xiigh.a) Mx0,w) (Xiow,e + Xnigh,a)

» #0, a#0}

+Tr [Mfo (Xllow,go + Xllligh,a) P(MAow) (Xlow,go + Xhigh,oz):| }

1

min
{p eRE1, aeRE2 NT ([lo]? + [laf|?
0 #0, a#0}

] {Tr [M 70 Xhigh,a M (204 Xhigh,a]

+ Tr |:Mf0 (Xllow,gp + X}/ligh70¢) P(M)\Ow) (XIOWW + Xhigh,a):| } :
(S.5.1)

2As in assumption 4 the components of o are denoted QK +1,-- -,k to simplify notation.

12



We note that there exists finite positive constants ci, c2, c3 such that

1 -
I [Mfo Xighia Mooy Xigna| = ellal, wpal,

1 -
WTI' |:Mf0 (Xllow,tp + Xflligh,a) P(M)\Ow) (XIOWAO + Xhigh,a)_ >0 )

WTI [Mfo Xllow,so P(Mxow) XlOW#’_ 2 C HQOHQ , wpal,

1 -
7T [ Mo X o Plat,gu) Xiighiol

1 -
7T [ Mo Xligno Platygu) Xiigha] = 0. (8.5.2)

v

€3
-2 Jlplllall - wpa,

and we want to justify these inequalities now. The second and the last equation in (S.5.2) are
true because e.g. Tr [Mfo X{ligh@ Pt gw) Xhigha} =Tr [Mfo Xl/ligh,a Pt gw) Xnigh,a Mfo], and
the trace of a symmetric positive semi-definite matrix is non-negative. The first inequality in

(S.5.2) is true because rank(f°) +rank(A, w) = 2R+ K and using theorem C.1 and assumption
4 we have

1 1
NTH H Tr |:Mf0 Xhlgha M(/\O )Xhigh’a:| 2 WM2R+KI+1 [Xhigh7a Xl/ligh,a] > b y Wpa].7

i.e. we can set ¢; = b. The third inequality in (S.5.2) is true because according Theorem S.3.1(v)
we have

1
NT ¥ [Mfo Xllow,so P(Mkow) Xhighﬂ} Z - | Xiow QOH [ Xnigh,o

NT|

NT
> = 2 ool 1 Xvighl o
L e e e =
>~ gl ol

where we used that assumption 4 implies that HX k/VNT HF < C holds wpal for some constant
C as, and we set c3 = K1 K1 Ky C?. Finally, we have to argue that the third inequality in (S.5.2)

holds. Note that XI’OWM P, ow) Xiow,p = Xow o Mo Xiow,p, i-e. we need to show that

1 2
WTI‘ [Mfo Xl/ow,tp M)\O Xlow,cp] > C2 H@H :

Using part (vi) or Theorem S.3.1 we find

1 1
ﬁ”ﬁ (Mo Xioy o Myo Xiow, | = NT% [Myo Xiow,p Mo Xy, , Mo
> NT | Mo Xiow,e Mo X o, Myol|

and according to lemma S.4.2 this expression is bounded by some positive constant times ||¢]|?
(in the lemma we have ||| = 1, but all expressions are homogeneous in ||¢||).

13



Using the inequalities (S.5.2) in equation (S.5.1) we obtain

. 1 2 2
x (Wnr) > min T ooz cllell” + max [0, eoflol|* = esfloll [l
{p €RK1, o € RK: Hs0||2+||a||2{ : I}
@ #0, a#0}

2

C2 C1Cy
> min , , al.
(2 c% —|—c§> wp

Thus, the smallest eigenvalue of W is bounded from below by a positive constant as N, T — oo,
i.e. W7 is non-degenerate and invertible.

S.6 Proof of Examples for Assumption 5

Proof of Example 1. We want to show that the conditions of Assumption 5 are satisfied.
Conditions (i)-(iii) immediately follow by the assumptions of the example.

For condition (iv), notice that Cov (X, X;s|C) = E (UitUss). Since |3°| < 1 and sup;; E(e?) <
oo, it follows that

T

Z |E 1tUzs

1t,s=1
T 00

> D (B IE (eir-peisq)|

1t,s=1p,q=0

M=

1 N T
ﬁz D |Cov (Xir, XislC)| =

=1 t,s=1

%

[
- -
M=

7

For condition (v), notice by the independence between the sigma field C and the error terms
{eit} that we have for some finite constant M,

T
T2 Z Z ‘Cov(eti,S,ewa]C)‘

T
Z |COV eitUis, eiUiv)|

T 00
Z Z ‘ ﬂo P-HZE eztezs pezuew q) (/Bo)pE(eiteis—p) (ﬁo)qE(eiueiv—q)

2 Z Z|50|p+q[ﬂ{tzu}ﬂ{3—p=U—Q}Jrﬂ{t:v—Q}]I{s—p:u}]

t,s,u,v=1 p,q=0

IA

M 1 & _ 1 & _
- S Y S e - w1 T 2 T 7 X e
t,u,s,v=1k=—o0 l=—00 s,u=1 v,t=1

s—u>0 v—t>0
T min{sv} . 1 T 1 T
s—i—v 2 s—u v—t
S DD LIRS 12 D Sl 7 2 |7
s, v=1 k=—oc0 s,u=1 v,t=1

s—u>0 v—t>0

14



Notice that

T min{s,v}

72 Z ’ﬁos+v2k

s, v=1 k=—o00

9 T s v o . 9 T s o
S 9 3D ST PR b N El S

s=2v=1 k=—00 s=1 k=—o0
T oo
- *ZZWO“ZWZ =SSR
s=2 v=1 s=1 =0
s—v 2
= BO e
}ﬂo2T§;;‘ —‘/80‘2
2
- (i) Sr(-)-
<1_}ﬂ0 )Z‘ —|B0}2
= 0(1),
and
1 d 0|S—u 1 T - 0|S—u = 01! l
Tsélwl ZT;;W =§|ﬂ}<1—T>:0(1).

s—u>0

Therefore, we have the desired result that

1 K& -
NT2 Z Z ‘COV <€itX¢s,€z‘uXw\C>‘ =0,(1).

=1 t,s,u,v=1

PRELIMINARIES FOR PROOF OF EXAMPLE 2

e Although we observe X;; for 1 < ¢ < T, here we treat that Z; = (e;;, X;¢) has infinite past
and future over time. Define

Gt(i)=0({Xis:7<s5<t},C) and HL (i) =0 ({Zy : 7 <5 <t},C).

Then, by definition, we have Gt (i), HE (i) € FL(4) for all 7,¢,i. By Assumption (iv) of
Example 2, the time series of {X;: : —00 <t < 0o} and {Z;; : —0o < t < 0o} are conditional
a— mixing conditioning on C uniformly in i.

e Mixing inequality: The following inequality is a conditional version of the a-mixing inequal-
ity of Hall and Heyde (1980, p. 278). Suppose that X;; is a Fi-measurable K-dimensional

random vector with E (|Xit|max{p’q} |C> < 00, where p,q > 1 with 1/p+ 1/¢q < 1. Denote
1 Xkitlle, = (B ([ Xpael” €))7 . Then, for each i, we have

1

1-i_1
|Cov (X,its Xiit4m|C)] < 8| Xiitlle , I Xiitmlle ,aom * 7 (7). (5.6.1)

15



Proof of Example 2. Again, we want to show that the conditions of Assumption 5 are satis-
fied. Conditions (i)-(iii) immediately follow by the assumptions of the example.
For condition (iv), we apply the mixing inequality (S.6.1) with p = ¢ > 4 Then, we have

M=
E

|COV (X’itv XlS‘C)|

1
NT <
i=1t,s=1
9 N T T-—t 9 N T-1T-m
< WZZ Z ‘COV <XZt’Xlt+m|C NT Z Z Z ’COV thszt-l-m‘C)‘
i=1 t=1 m=0 i=1 m=0 t=1
16 =11 p—2

I
=
Mz

HXz'tHc,p [ Xitsmlle pom () 7

1 0t

T
6 (sup Hth”cp> Z am

m=0

7 1

3
I

<

—_

< 0,01,

where the last line holds since sup, , ||Xit||g’p = O, (1) for some p > 4 as assumed in the example
P—2

2), and % g an? = 0 m % = 0/(1) due to ¢ > 372 and p > 4.
For condition (v), we need to show

Ni:v: Z: ’COV (eit)?i&eiu)?iv‘c)‘ =0, (1).

Notice that

N T
T2 Z Z Cov <€it}?’isu ezuji:u)|c) ‘
=1 t,s,u,v=1
T N N - )

= N72 Z Z E <€ith‘s€z‘uXw\C) -E <eitXis\C> E <emXZ-U\C> ’

i=1 t,s,u,v=1

N T B N LA ) 2
< Z PIL (cuuenTac) [+ 53 7 3 B (cnkilc)

= I+II, say.

First, for term I, there are finite number of different orderings among the indices t, s, u,v. We
consider the case t < s < u < v and establish the desired result. The rest of the cases are the

16



same. Note that

E (eitXit+keit+k+lXit+k+l+m|C> ’

=
%)—‘
M-
M=

N T
1 1 = =~
N Z = Z Z ‘]E <€it (Xit+keit+k+lXit+k+l+m) \C) ‘

=17 =1 0<lLm<k
0<k+l+m<T—t

+% i i2 i Z ‘E [(eit)?it%) <e¢t+k+z§it+k+l+m) ‘C]

i=1 t=1  0<k,m<lI
0<k+Il+m<T—t

IN

-E <€it)~(¢t+kfc> E (ez‘t+k+l)~(it+k+l+m|c) ‘

(N T ~ -
¥ Z — Z Z E (eitX,;t+k|C> E (eit+k+lXit+k+l+m|C>

i=1 t=1  0<k,m<lI
0<k+l4+m<T—t

N T
1 1 > >
t Z = Z Z ‘E [<€¢tXit+k€it+k+z> Xit—i—k—i—l—i—m’C] ‘

i=1 t=1 0<p,l<m
0<k+l4+m<T—t

= L+ Ih+ I3+ 14, say.

_l’_

By applying the mixing inequality (5.6.1) to ’E (eit (Xit+keit+k+l)zit+k+l+m) ]C)‘ with e;; and
Xit+kCit-+k-+1Xit+k+1+m, We have

‘E <€it ()Zit—f—keit—&—k—l—l)?it—l-k—i—l—l—m) |C>‘

1_1

~ ~ 1 .
< 8||€z't”c7pHXit-&—keit-i-k-i-lXit-‘rk—&-l—l—mHCqak ")

VAN

~ 1—1_1 )
l€it-+r+ille 3qHXit+k+l+mH o 71 (0),
q ’ C,3q

IN

hetey [,

where the last inequality follows by the generalized Holder’s inequality. Choose p = 3¢ > 4.
Then,

1
L < % - % ; 0<lz<k |!€it||c,p szit-i-kHQp ||€it+k+l||c,p H)?it—l—k—&-l—i-ch’p 04;16_@ (4)
1= = FULCRS
0<k-+l+m<T—t
2 v 2 1 1=
< 8 <S:1tP Hez‘tHc,p) (S;ltp HXitJrkHap) T2 Z Z a,

t=1  0<l;m<k
0<k+I+m<T—t

~ 2 © 11
< 8 Sup”%t”?},p SllpHXinH Zkzak o
it it C.p o

S OP (1>7

~ 2
where the last line holds since we assume in the example (2) that <Sup¢,t Henllg p) (SUpi t HXit+k H c ) =
). ) ’p
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1

1-L _etp=1
O, (1) for some p > 4,, and > oo_ miam ¥ =Y >0, m?> e = O (1) due to ¢ > 3% and

p > 4.
By applying similar argument, we can also show that

Iy, 13,1, = O, (1).

S.7 Supplement to the Proof of Theorem 4.3

What is left to show to complete the proof of Theorem 4.3 is that that Lemma D.1 and
Lemma D.2 in the main text appendix hold. Before showing this, we first present two further

intermediate lemmas.

Lemma S.7.1. Under the assumptions of Theorem 4.3 we have for k =1,..., K that

~—

[Pyo X || = 0p(VNT)

)
(0) 1X1Ppol| = 0,(VNT)
(¢) 1PyoeXil = op(N/?
(d) [PyoeProl| = Op(1) .

Proof of lemma S.7.1. # Part (a): We have

[Py Xkl = [IA°(AYA0) 1A X |
< AN T[N X |

< IXOIACA) XY Xlle = Op(N )N K|

where we used part (i) and (ii) of Theorem S.3.1 and Assumption 1. We have

E{E [\|A°’Xkyy%)c]}:E SSE (éﬁjk,itf

where we used that jzk,it is mean zero and independent across 7 conditional on C, and on our
bounds on the moments of \). and X}, ;. We therefore have [|A\” Xj|r = O,(vV/NT) and and the

above inequality thus gives ||P/\o)~(k|| = 0,(VT) = 0,(V/NT).

18
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# The proof for part (b) is similar. As above we first obtain ||)~(ka0|| = ||Pfo)~(,;|| <
Op(T7V2)|| f¥ X || #. Next, we have

E I/ %1% |c] = ii (Z fo X )

r=1 =1

C

R N T B N
= Z Z Z ft(z" ;)’I’]E: <Xk,ith‘7is
ey

i=1t,s=1
= 0, (T <4+E>) O,(NT) = 0,(NT?),

‘)

Cov (Xk ity Xk is

IN

‘)

where we used that uniformly bounded E|f2||**¢ implies that max; || = O,(T"/“+9)). We
thus have || f” X} ||% = 0,(TVN) and therefore || Xj,Pfo| = o,(vV/NT).
# Next, we show part (c). First, we have

E{E [(H)\O/QX,’CHF)? )CH =E{E XR: Nl <ZZ)\?TenXkﬁ>

i=1 t=1

C

R N
- K Z Z ZA AE (fiitelst,thkJS

‘)

ﬁ
Il
—
-
S,
T~
Il
—
“ﬂ

where we used that E (eitelsX k,jt Xk, js ’C) is only non-zero if i = | (because of cross-sectional
independence conditional on C) and t = s (because regressors are pre-determined). We can thus
conclude that |A\°’eX/||p = Op(NVT). Using this we find

[PyoeXi] = [A(AYA) TIAYe Xy
< IO THIIAY e Xk |
< XY A) T I eXk P = Op(N 72O (NVT) = Op(VNT) .

This is what we wanted to show.
# For part (d), we first find that

\/]1\[7 Hfo’e)\OHF = O, (1), because

1 N ?
=

2
LT (e, ]
VvVNT

1 N N T T

= B WZZZ E (eirejs) J{'NA) £9

i=1 j=1 t=1 s=1
— 1 E OIAO)\OIf )
N Zt t

i=1 t=1

= 0(1),
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where we used that e;; is independent of C and is also independent across ¢ and over ¢. Thus we
obtain

1PyoePyol| = [A(AYAY)TIAYe fO(F £0) 7%
< NI THIA e SO
< Op(NV2) O, (N [Nefl|rOp (T O (T?) = 0, (1)
where we used part (i) and (ii) of Theorem S.3.1.

Lemma S.7.2. Suppose that A and B are a T XT and an N x N matrices that are independent
of e, conditional on C, such that E (HAH%7 ‘C) =O(NT) and E <HBH§7 ‘ C) = O(NT), and let
Assumption 5 be satisfied. Then there exists a finite non-random constant cg, independent of
N, T, such that

(a) E{Tr (e — E (€'¢)) A] ‘C}Z SCONIE(HAH%‘C) ,
(b) E{Tr [(ee ~E(ec') B] | C}* <« TE (IBI}|C) -

Proof. In this following proof we write E¢ for expectations conditional on C.
# Part (a): Denote Ay to be the (¢, 5)™ element of A. We have

T T
Tl“{(e/e— A} ZZ e —FE ))tsAtS
t;l S;l N
- Z Z (Z €it€is — ezteis))> Ags.
t=1 s=1 \i=1

To compute its variance, we write

Ec (Tr {('e —E ('e)) A})?
T T T T N N
— Z Z ZE (Z eiteis — E (eit€4s) ) Z ejp€iq — E(ejp€jq)) Ec (AtsApg) -
— =

Let X;z = E(e?). Then we find

N N
E (eiteis — E (eieis)) E (ejpeiq — E (ejpeiq))

=1 =
N N
=D D {E(eueiscipejo) — E(eneis) E (ejpejq)}
E(ej;) =% if (t=s=p=q) and (i =)
0 otherwise.
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Therefore,

T T T N
E(Tr{(e’e— ee A} ZZZE”E’S Ec A%s)-i-Ec AsAst) +ZZ 21215 ECA

t=1 s=1 i=1 t=1 i=1

Define ¥ = diag (i1, ..., Xs7) . Then, we have

T T N N
YD SaSis (Bedf,) = Ee (Z Tr (A’ZiAEi)>
t=1 s=11

=1 =1 =1

< ZIEC \AElHF < ZHEZ\ Ec || A|%

=1
< N<supz$t>Ec||A||F. (S.7.1)
it
Also,
T T N N
> D SuSiEe(Anda) = Ec ZTr(z"AAz")
t=1 s=1 i=1
< ZEc > AHFHAE’HF<ZHEZ\ Ec ||All3
=1
< N(sup2§t> Ec | Al7 - (S.7.2)
it
Finally,
T N
YD (E 2)EcAL < N<sup]E(e;§)> Ec ||A|% . (S.7.3)
it

t=1 i=1

# Part (b): The proof is analogous to that of part (a). I

Proof of lemma D.1. # For part (a) we have

' \/leiTTr (P’ Po X) ‘ FTr Pyo ¢’ PyoPyo X Ppo )
= \/ﬁ [P e Prol| ‘Pxo)?kH 1Pyo]|
1
= UNT Op(1) 0p(VNT) Op(1)
= Op(l)’

where the the second last equality follows by Lemma S.7.1 (a) and (d).
# To show statement (b) we define (j, ;;; = €it X jt. We then have

(5] b e

t=11,5=1

\/%Tr (P)\o e)?,é) = ZR:

r,g=1

=Aprq
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We only have E (¢}, ;¢ k,lms}c) # 0 if t = s (because regressors are pre-determined) and ¢ = [
and 7 = m (because of cross-sectional independence). Therefore

T N
1
E{E (A2,00)} =B 57 D Do Airdiahrdmg B (CeigeCiims[C)

t,s=11,5,l,m=1

NgTZ Z E [\ E (GRaiel0)] = O(/N) = 0,(1).

t=11,5=1

We thus have Ay . = 0p(1) and therefore also \/JI\TTTY (P/\o e)?,@) = o0p(1).
# The proof for statement (c) is similar to that of statement (b). Define & ;. = einX kiis —

E (eit)?ms ’C) We then have

e [ R e (VR c)]) :Z (fo) > 3 bt
=By rq

Therefore

4 T
1
Htlax‘ftr|> T3 E E ‘COV (elth: ZSae]uijv ’C)‘
T o

max | fi7| > TN iV: ZT: )COV (6it)~(k,z‘s, eiuXpiv | C))

=1 t,s,u,v=1

(T4/ 90, (1/T)
= p( )7
where we used that that uniformly bounded E||fP]|** implies that max; |f| = O,(T/(4+9).

# Part (d) and (c): We have [ A0 (\YA%)~1 (F0)1 0| = O,(NT)"12), [l = 0,(N1/2),
| Xkl = Op(VNT) and ||PyoePpo|| = Op(1), which was shown in Lemma S.7.1. Therefore:
P NS p

1
\/WTL" (ePgo €' Myo X fO (£ f0)71 (AYA0) 71 AY)
1
— ﬁﬂ (PyoePyoe’ Myo Xy, fO(f7 7)1 (AYA%) 71 AY)

R
< g BBl el 27 (7 £0)7 ) A = 0p(v2) = (1)

which shows statement (d). The proof for part (e) is analogous.
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# To prove statement (f) we need to use additionally || Pyo e X} | = 0,(N?/?), which was also
shown in Lemma S.7.1. We find

NTTr (BIMAO Xk MfO 6/ )\0 ()\0/)\0)—1 (fOlfO)—l fO/)

Tr (¢/ M0 Xi €' Pyo A’ (AYA0) 7!
VNT A

(fO/fO)—l fO/)

mTr (¢'Myo Xy, Ppo €' Pyo A” (A”A%)~

1 (fO/fO)—l fO/)
CAF |

R p—
lellIP e XA (%)

HIA® NP~ )
=0,(1) .

1

NTTr { [66/ o) (66,)} M)\O Xk fo (fO/fO)—l ()\0/)\0)—1 )\Ol}
1

I ee/ 07 0/ £0/ £0
NTTr{[ee E (e€e')] My Xi fO(f" )~
+

# Now we want to prove part (g) and (h) of the present lemma. For part (g) we have

()\0/)\0 )\O/}

1 ’ > ’ — / — /
\/WTr{[ee —E (e€/)] Myo XePpo £° (£ %)~ (A”A0) )\0}
\/leiTTr { [ee’ —E (ee/)] Mo Xy O

-1 (AOI)\O)*l )\0/}

1 / / > 0 [ £07 £0 07,0
+ ez Nl =B (e[| Xy 17° (557 0720)
1

WTr {[e€' —E (e€')] Myo Xp, fO(f”f°) "

)\OIH

(}\OI)\O )\0/} + Op )
Thus, what is left to prove is that

\/lefTTr {lee’ —E (e
op(1). For this we define

e’)] M}\O Yk fO (fO/fO)—l ()\0/)\0)—1 )\O/} —

By = Myo X3, fO(f7 %1

()\0/)\0)—1 )\0/ )
Using part (i) and (ii) of Theorem S.3.1 we find

I1Billr < RY2|| By

< RV Xkl || /0 (0!

()\0/)\0 )\O/H
< RV Xkllp || £O (V0!

()\0/)\0 )\0/ H

and therefore

IBeliE[C) < R[S (07 0N AP E (IX4li3 | €)
= 0(1)
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where we used E (HY;CH% ’C) = O(NT), which is true since we assumed uniformly bounded
moments of Yk,z’t- Applying lemma S.7.2 we therefore find

Tr{[ee — E (e€’)] By} C>2 < ¢ %E (HBkH%’ C) =o(1),

E ( !
VNT
and thus
1
VNT
which is what we wanted to show. The proof for part (h) is analogous.

# Part (i): By the law of iterated expectations and since E (e7,) = E (¢, ‘ C) we find that
conditional on C the expression E (e?t) XX, — E (e?t Xi X5, ‘ C) is mean zero (because e;; is
independent of X;; conditional on C), and it is also uncorrelated across i. This together with the
bounded moments that we assume implies that

{NT Z Z :{Zt —E (e%t Xie Xy }C)]

i=1 t=1

Tr {[ee’ — E (e€’)] Br} = 0p(1) ,

C} — O,(1/N) = 0,(1),

which shows the required result.
# Part (j): Define the K x K matrix A = NT ZZ 1 E( ) (i + Xip) (Xi — X))
Then we have

1 1
LSS R ) (e ) = (4 ).
i=1 t=1
Let By be the N x T matrix with elements By ;; = E( ) (X it + Xiit). We have ||By|| <
| Bellr = Op(VNT), because the moments of By, ;¢ are uniformly bounded. The components of

A can be written as Ay, = NT Tr[B;(Xr — Xx)']. We therefore have
1
[ Au| < srrank (2 — A5 [ Bull [ X, — Xl
We have Xj, — Xy = Xi Pjo + Pyo Xj, Mo. Therefore rank(Xy, — Aj) < 2R and

)

< NT +po %) = ;iop(m)op(\/ﬁ) — o,(1).

where we used Lemma S.7.1. This shows the desired result. 1

2R 2
Au| < —HBzu (| % Pro

2l (|| o

Proof of lemma D.2. Let ¢ be a K-vector such that ||¢|| = 1. The required result follows by
the Cramer-Wold device, if we show that

ZZezt%nc = N (0,dQc) .

zltl

For this, define &;; = e;:X},c. Conditional on C, our assumptions guarantee that (&;;,...,&) is
independent across ¢, and that for each ¢ the process £;; is a martingale difference sequence over
t. Define &,,, = {py 0 = Engit, With M = NT and m =T(i — 1)+t € {1,..., M}. We then have
the following;:
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(i) {&,,, m=1,..., M} is a martingale difference sequence, conditional on C.

(ii) E(&}|C) is bounded uniformly over i, ¢+, N and T, because we assume that Eef, and
E (][ X[|®+¢|C) are uniformly bounded.

(i) 3 Yot Em = 27 Lot E(E5, [C)F0p(1) = Var(M 23300 £, |C)F0p(1) = ¢Qe-toy(1).
Here, in the first step, we used that &2, —E(£2,|C) is also a martingale difference sequence
with finite second moment, conditional on C, so that the corresponding WLLN holds.
Afterwards, we just used what was already derived in equation (D.1) in the main text.

These three properties of {£,,, m = 1,..., M} allow us to apply Corollary 5.26 in White (2001),
which is based on Theorem 2.3 in Mcleish (1974), to obtain that —— Zm 1&m —a N(0,Qc).

This concludes the proof, because ﬁ Zi\le & = \/ﬁ Zz’:l thl eir Xy c. 1

S.8 Supplement to the Proof of Theorem 4.4

The following lemma gives a useful bound on the maximum of (correlated) random variables

Lemma S.8.1. Let Z;, 1 = 1,2,...,n, be n real valued random variables, and let v > 1 and
B > 0 be finite constants (independent of n). Assume max; E|Z;|Y < B, i.e. the v’th moment
of the Z; are finite and uniformly bounded. For n — oo we then have

max|Z| = O, (nl/V) . (S.8.1)

Proof. Using Jensen’s inequality one obtains E max; | Z;| < (Emax; |Z;|")"/7 < (E S \Z; M <
(n max,;IE\ZﬂﬂlM < n'/7 BY7. Markov’s inequality then gives equation (S.8.1). i

Lemma S.8.2. Let

_ 1t) 1/2 Z eZth T — (eithyiT)] ’
Z(2 1/2 Z R
B =172 Z 5 —
t=1

Under assumption 5 we have

4
<B

)

Ec |Z{%,

E‘Zt@) <

e|z] <5,

for some B > 0, i.e. the expectations Z,S, t)’r’ Zt(T), and Z( ) are uniformly bounded overt, T, or i,
respectively.
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Proof. # We start with the proof for Z,(Qlt)T. Define Z,glt)n = €y Xnir — Ec (€t X ir). By as-

sumption we have finite 8'th moments for e; and Xy ;, uniformly across k,7,t,7, and thus

(using Cauchy Schwarz inequality) we have finite 4th moment of Z lilt)T ; uniformly across k, i, ¢, 7.

For ease of notation we now fix k,¢,7 and write Z; = Z]ilt)”.. We have E¢(Z;) = 0 and
Ec(ZiZ;jZyZ)) = 0 if i ¢ {j,k,l} (and the same holds for permutations of i,j,k,1). Using
this we compute

N 4 N
Ec <Zl Zi> = ' ;_1 Ec (ZiZjZkZl)
=3 Ec(Z}Z})+) Ec(Z})
z;j\? 7 .
=3 Y Ec(Z) Be(2) + ) {Be (2)) -3 [Ee (20)]°}

ij=1 i=1

Since we argued that E¢ (Z;l) is bounded uniformly, the last equation shows that Z,il) =

T
N—1/2 Zf\i 1 Z lglt)T ; is bounded uniformly across k,t, 7. This is what we wanted to show.

# The proofs for Zt@) and ZL»(?’) are analogous. 1

Lemma S.8.3. For a T x T matriz A we have?

AR < M |ATR|| = M max  max [Ay,
t t<r<t+M

Proof. For the 1-norm of A™'"R we find

t+M

HAAtruncRH1 :tr:nlaXT Z |At7—|
T =t

<M max |Ap|=M HAtrunCRH

t<r<ttM max ’

and analogously we find the same bound for the co-norm HA”““CRHOO. Applying part (vii) of
Theorem S.3.1 we therefore also get this bound for the operator norm || A™UneR|| g

Proof of lemma F.3. # The proof of Ag = (NT)"' o8 ST €2 (XX, — XinX),) = 0,(1) is
analogous to the proof of part (j) of Lemma D.1, with E(e?) replaced by e2.

# Next, we are going to show A; = (NT)~! Zfil Zle e (Xz‘tXi/t — )?it/ﬁ',t) = 0p(1). Let
B = Xy — Q?it, By = e?tXit, and B3 = e?t)/(\it. Note that Bj, B2, and Bs can either be
viewed as K-vectors for each it, or equivalently as N x T matrices B, By, and Bs for each
k=1,....K. Wehave Ay = (NT)™' 3, 52, (BuiuBh 0 + BsaBi ), or equivalently

1
A1J€1/€2 = WTT (B17k1Bé,k2 + B27k1Bi,k2) .

3For the boundaries of T we could write max(1,¢ — M) instead of t — M, and min(T,t + M) instead of t + M,
to guarantee 1 < 7 < T'. Since this would complicate notation, we prefer the convention that A = 0 for ¢t < 1 or
T<loft>Tort>T.
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Using || M5, — Myo|| = Op(N~Y2), || Mf — Myo|| = Op(N~V2), | Xi]| = Op(VNT) = Oy(N), we
find for By = (Myo — M3)XpMpo + M5 Xy(Mpo — M7) that ||Byll = Op(N'/2). In addition
we have rank(B ) < 4R. We also have

| Bae||* <
N T 2
= (Zze?txig,it)
i=1 t=1
< (zzet) ( zxm) — 0,(NT) 0,(NT).
i=1 t=1 i=1 t=1

which implies || By x| = Op(VNT), and analogously we find || B3 ;|| = Op(VNT). Therefore

4R
[ Atk < w5 Bk 1 Bs s Il + (B2 [ B, 1)

= e (O/N0,(VRT) + O,(VNT)OL(NY)) = 0,(1)

This is what we wanted to show. L
# Finally, we want to show Ay = (NT)"' 2N ST, (e, —€2) XX, = 0p(1). According

to theorem E.1 we have e — e = C7 + (5, where we defined C; = — Zle (Ek - ﬂ,g) X, and
Cy =20, (Bk - ﬁg) (Pyo X3, Mo + Xg Pyo) + Pyo e Mo + ¢ Po — &) — 2em) | which satisfies

|Ca|l = Op(N/?), and rank(Cy) < 11R (actually, one can easily prove < 5R, but this does not
follow from theorem E.1). Using this notation we have

N T
Ag = NlT;tzl eit + €it) (Chit + Coit) XXy |
which can also be written as
Ko 1 1
Ao kyky = — kgzl (ﬁkg - 5@,) (Cs eakaks + Counkahs) + 7 T (C2 O paey) + 5 Tr (C2 Cgaka)
where we defined

O3 k1 ko it = €it Xiey it Xho it +

C4,k:1k2,it = e’ith‘l,ithQ,it 3

1 N T
C5,k‘1k2k3 = W E E eithl,ithz,ithg,,it )

i1 t=1
| N7
Cé k1koks = o Cit Xy it X it X ks it -
NT
=1 t=1
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Again, since we have uniformly bounded 8th moments for e;; and X}, ;+, we find

”C3J€1k2 ||4 < ||C3J€1k2 H}l«“

=1 t=1
N T N T R R

< (zzeza) (zz »«)
=1 t=1 =1 t=1

= O0,(N?*T?),

i.e. ||C3pikoll = Op(VNT). Furthermore

1C erea ]| < ||C3 k1k2 i

- Z Z Xk‘l ZthJQ,’Lt

=1 t=1

N T
< Z€2 max max (2?2 X2 )
= )N =1 kit Tkt
i=1 t=1
N T
< Z 62 max max (2?2 -2?2 )
= it I ON = k1,it““ka,it

= O,(NT)O,((NT) W) — o, (NT) /)

Here we used the assumption that X; has uniformly bounded moments of order 8 + ¢ for some

e> 0. We also used 3270, 3300, @5 < 3200, S0, €
For C5 we find

N

1 1 ~ ~

Cg,klkgkg — <M-v ZZ e’%t) <M1X’€21,ith?2,itX£3,it>
)

i=1 t=1
Op(1) ,

. . N T = N T
i-e. C5 1ok = Op(1), and analogously C k,kok; = Op(1), since 3750 3oy €5 < 32001 oy €
Using these results we obtain

At < = ZH% 30| 1Cs kst + Coaanal + T IOl Catarall + T2 1Mt
o —1/2 1R U200 (VNT) 4 L 1/2 3/4
= Op(NT)/2)0,(1) + F7 Op(N YO (VNT) + 3 Op(NY2)0, (NT)) = 0,(1) .

This is what we wanted to show.

Remember that the truncation Kernel I'(.) is defined by I'(z) = 1 for |z| < 1 and I'(z) = 0
otherwise. Without loss of generality we assume in the following that the bandwidth parameter
M is a positive integer (without this assumption, one needs to replace M everywhere below by
the largest integer contained in M, but nothing else changes).

28



Proof of lemma F.4. By lemma F.2 we know that asymptotically Pf is close to Py and
therefore rank(]ifPfo) = rank(PpoPp) = R , i.e. rank(PffO) = R asymptotically. We can
therefore write f = PffOH , where H = Hyr is a non-singular R x R matrix.

We now want to show |[|[H|| = O,(1) and ||[H™!|| = O,(1). Due to our normalization of 7
and f° we have H = (f’PJny/T)_1 = (f'f°/T)~1, and therefore |[HY| < || £l fOl/T = Op(1).
We also have f = fOH + (Pf_ Pfo)fOH, and thus H = fYf/T — fO’(Pf— Pfo)fOH/T, i.€.
|H|| < Op(1) + || H||Op (T~Y/?) which shows ||H|| = Op(1). Note that all the following results
only require ||H| = Opy(1) and ||[H™!|| = O,(1), but apart from that are independent of the

choice of normalization.
The advantage of expressing f in terms of Pf as above is that the result HPJy— Pro

(@ (T‘l/ 2) of lemma F.2 immediately implies
|F-rm|=0,0).

The FOC wrt A in the minimization of the first line in equation (3.3) reads

K
177 (v ) 7 552
k=1
which yields
~ K ~ ~ -~ —1
A= [AOfO’ -3 (ﬁk - 62) Xi| f (?f)
k=1

_ [/\Ofo’ + i (82 = By) Xe+e| Prf° (£7Pps°) GO
k=1

—)0 (H’)_l Y (Pf—Pf()) Ju (fO/Pff())_l (H/)—l
4 00 f0 |:(f0/Pff0>1 _ (fO/f0)1:| (H’)_l
K

Z(ﬂg—ﬁk)Xk—i—e

k=1

+ P (5Ps0) " ()7

_ -1 _ _
We have (fO’PffO/T) I (fo’fO/T) = O,(T 1/2) | because HPJ?— Pro|l = O, (T 1/2) and
fYf9/T by assumption is converging to a positive definite matrix (or given our particular choice
of normalization is just the identity matrix Iz) In addition, we have |le|| = O,(VT), || Xi| =

Op(VNT) and by corollary F.1 also 18— 8% = Op(1/VNT). Therefore

HX - (Hl)_IH =0,(1) (S.8.3)

which is what we wanted to prove.
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Next, we want to show

~t ~\ —1 —1
A A (H)"P XY X\ (F)) _
(w) ‘( N ) =0, (N712)

FINT E o E 2
<T> _< - > :(’)p<T ) (S.8.4)

Let A= N~'A\' X and B=N-! (H)™P A\ X0 (H)™!. Using (S.8.3) we find

14— Bl = o [} + @t w0 R-x0 )]+ [F =t 0] R0 ()7 |

= N1O,(N/2)0,(1) = 0, (N_1/2> .

)\0/)\0 -1
()

and thus also |[B™!|| = O,(1), and therefore ||[A7|| = Op(1) (using ||[A — B|| = op(1) and
applying Weyl’s inequality to the smallest eigenvalue of B). Since A~! — B! = A=}(B— A)B~!
we find

By assumption 1 we know that

= 0,(1).

[A= =B < laH| |B7Y 1A - B
=0, (N712) .

Thus, we have shown the first statement of (S.8.4), and analogously one can show the second
one. Combining (S.8.3), (S.8.2) and (S.8.4) we obtain

i E -1 ﬁ -1 J?/ _)\70 <)\o/)\0>1 (fo’f(’)lfo’
VN \ N T) VT VN\N T VT

b (X’X)l (}*\/f)_l J?/ 20 (H/)*l ((H)l 2070 (H/)1>_1 <H/f0/f0H>—1 H/fO/

UN AN T) Vi N N T VT
:(9}7(]\[—1/2)7

which is equivalent to the statement in lemma. Note also that A (/)://):)*1 (F )~
of H, i.e. independent of the choice of normalization. §

1 J/”\’ is independent

Proof of lemma F.5. # Part A of the proof: We start by showing that
N[ ¢/ X5 — (/X)) || = 0p(1). (S.8.5)

Let A =¢'Xy and B = A — A" R By definition of the left-sided truncation (using the equal
weight kernel I'(.)) we have B, = 0 for t < 7 < t+ M and By; = Ay otherwise. By assumption 5
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we have E¢(As) = 0 for ¢t > 7. For t < 7 we have E(4) = Zf\il Ec(eit Xk, ir). We thus have
E(Bi,) =0 for 7 <t + M, and EB;, = Y.V | Ee(ei Xy ir) for 7 >t + M. Therefore

T
IE(B), = max Z_; [E(B:.)|
T N T
) ) _n\—(1+e)
S S v e o )
T=t+M+1 |i=1 T=t+M+1

where we used M — oo. Analogously we can show ||E(B)| ., = 0p(N). Using part (vii) of
Theorem S.3.1 we therefore also find ||E(B)|| = 0,(N), which is equivalent to equation (S.8.5)
that we wanted to show in this part of the proof. Analogously we can show that

N1 HIE [e’e) — (e’e)trunCD] H =o0p(1),
Tt HE {ee/) - (ee’)trunCD] H =o,(1) .

# Part B of the proof: Next, we want to show that

’ = 0,(1) . (S.8.6)
Using lemma S.8.3 we have

N7 /X = Ee (/X)) ™| < Momax max N7V (el Xs — Ee (¢} Xps)]

t t<r<t+M

<M max max N!
t t<r<t+M

< M N2 max  max Z(l)
t  t<T<t+M

4
is bounded uniformly across t and 7. Applying

According to lemma S.8.2 we know that E¢ ’Z ,Elt)T

lemma S.8.1 we therefore find max; max;<r<¢4 Zt(Tl) = Op((MT)1/4). Thus we have

_ >(1
M N7Y2 max  max ‘Zt(r)
t o t<T<t+M

=0, (MN_1/2 (MT)1/4) = 0,(1).

Here we used M?°/T — 0. Analogously we can show that
N7Y||[e'e — E (¢e)]"™ P = op(1)
7! e — E (ee’)]trunCD =o0p(1) .
# Part C of the proof: Finally, we want to show that

N[ Xy — @ X)) = 0,(1) - (S.8.7)
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According to theorem E.1 we have e = MyoeM F0+€rem, Where epem = A(l) E 1 ( —p k)
2lrem)  We then have

‘ + Nt H [PfoelMAOXk trunCR

_1 H [ele _ ,é/Xk] truncR

_ truncR
<N H [ reka

‘ + N™ H |:€/P>\0Xk] truncR

Using corollary F.1 we find that the remainder term satisfies ||e;em| = Op(1). Using lemma S.8.3
we find

<
< == llereml| mf_%XHXk,TH

< p(l)op(Nl/QTl/B) =o0p(1),

where we used the fact that the norm of each column éem ¢ is smaller than the operator norm
of the whole matrix erem. In addition we used lemma S.8.1 and the fact that N—1/2 | Xk || =

N-1 Zf\il X2, has finite 8’th moment in order to show max, || X ;| = O, (N'/2T1/8). Using
again lemma S.8.3 we find

N—l H [Pfo C,M)\o Xk] truncR

[N max [f0 (70 )7 M X |
< NTEM el PG %) 7| ma 7] mae | X
= N1 M Op(N'?) O,(TV?) O,(T™) Op(N'2TV®) = 0,(1)

and

H [G/P OX truncR
A

‘ < NY20M max ( —1/2 Z €t )\0> N\ )\0) _max_ -1 Z AO/X],:

t_
= N*“Mop<T1/8>0p<1>0p<T1/8> = op(1).

Thus, we proved equation (S.8.7). Analogously we obtain

N[ e = @@ = 0,(1),
71 H [ee’ — ’é’é’]thCD ’ =o0p(1),

# Combining (S.8.5), (S.8.6) and (S.8.7) shows that N~ HE(e'Xk\c) (@ Xp)truneR

op(1). The proof of the other two statements of the lemma is analogous. i

Proof of lemma F.6. Using theorem E.1 and F.1 we find ||é] = O,(N/?). Applying lemma
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S.8.3 we therefore find

N1 H(é\' Xk)mmCR ‘ < % n;l%X € Xi.r
< S max 2] X |
< S el max X
< TOANVR0,(NYATS) = O, (T

where we used the result max, | X, || = Op(N'/2T1/8) that was already obtained in the proof
of the last theorem.
The proof for the statement (ii) and (iii) is analogous. I

S.9 Additional Monte Carlo Results

We consider an AR(1) model with R factors

R
Yie = p"Yiec1 + D A0 fi + eir .

r=1

We draw the e;; independently and identically distributed from a t-distribution with five degrees
of freedom. The )‘er are independently distributed as N (1,1), and we generate the factors
from an AR(1) specification, namely fJ). = Pf ft0—1,7~ + Uy, for each r = 1,..., R, where ug. ~
idA (0, (1 — p?c)aQ). For all simulations we generate 1000 initial time periods for f? and Yj
that are not used for estimation. This guarantees that the simulated data used for estimation is
distributed according to the stationary distribution of the model.

For R =1 this is exactly the simulation design used in the main text Monte Carlo section,
but DGP’s with R > 1 were not considered in the main text. Table S.1 reports results, where
R = 1 is used both in the DGP and for the LS estimation. Table S.2 reports results, where R = 1
is used in the DGP, but R = 2 is used for the LS estimation. Table S.3 reports results, where
R = 2 is used both in the DGP and for the LS estimation. The results in Table S.1 and S.2 are
identical to those reported in the main text Table 1 and 2, except that we also report results for
the CCE estimator. The results in Table 5.3 are not contained in the main text.

The CCE estimator is obtained by using f"™ = N=13 (Y, Yit—1) as a proxy for the
factors an then estimating the parameters p, Aj1, Aiz, ¢ = 1,..., N, via OLS in the linear
regression model Yy = pYi o1 + N [ 00 + XNiafpn 0 + eit.

The performance of the CCE estimator in Table S.1 and S.2 are identical (up to random
MC noise), because the number of factors need not be specified for the CCE estimator, and the
DGP’s in Table S.1 and S.2 are identical. These tables show that for R = 1 in the DGP the CCE
estimator performs very well. From Chudik and Pesaran (2013) we expect the CCE estimator
to have a bias of order 1/T" in a dynamic model, which is confirmed in the simulations: the bias
of the CCE estimator shrinks roughly in inverse proportion to 7', as T' becomes larger. The 1/T
bias of the CCE estimator could be corrected for, and we would expect the bias corrected CCE
estimator to perform similarly to the bias corrected LS estimator, although this is not included
in the simulations.
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However, if there are R = 2 factors in the true DGP, then it turns out that the proxies Atproxy

do not pick those up correctly. Table S.3 shows that for some parameter values and sample sizes
(e.g. p° =0.3 and T = 10, or p’ = 0.9 and T = 40) the CCE estimator is almost unbiased, but
for other values, including T' = 80, the CCE estimator is heavily biased if R = 2. In particular,
the bias of the CCE estimator does not seem to converge to zero as 1" becomes large in this
case. In contrast, the correctly specified LS estimators (i.e. correctly using R = 2 factors in
the estimation) performs very well according to Table S.3. However, an incorrectly specified
LS estimator, which would underestimate the number of factors (e.g. using R = 1 factors in
estimation instead of the correct number R = 2) would probably perform similarly to the CCE
estimator, since not all factors would be corrected for. Overestimating the number of factors
(i.e. using R = 3 factors in estimation instead of the correct number R = 2) should, however,
not pose a problem for the LS estimator, according to Moon and Weidner (2013).
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Tables with Simulation Results

o’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T=5 M=2 bias | 0.1232 -0.1419 -0.0713 -0.1755 | 0.0200 -0.3686 -0.2330  -0.3298
std 0.1444 0.1480 0.0982 0.1681 | 0.0723 0.1718 0.1301 0.2203
rmse | 0.1898 0.2050 0.1213 0.2430 | 0.0750 0.4067 0.2669 0.3966
T=10, M =3 bias | 0.1339 -0.0542 -0.0201  -0.0819 | 0.0218 -0.1019 -0.0623 -0.1436
std 0.1148 0.0596  0.0423 0.0593 | 0.0513 0.1094 0.0747 0.0972
rmse | 0.1764 0.0806  0.0469 0.1011 | 0.0557 0.1495 0.0973 0.1734
T=20, M =4 bias | 0.1441 -0.0264 -0.0070 -0.0405 | 0.0254 -0.0173 -0.0085 -0.0617
std 0.0879 0.0284 0.0240 0.0277 | 0.0353 0.0299 0.0219 0.0406
rmse | 0.1687 0.0388  0.0250 0.0491 | 0.0434 0.0345 0.0235 0.0739
T=40, M =5 bias | 0.1517 -0.0130 -0.0021  -0.0200 | 0.0294 -0.0057 -0.0019 -0.0281
std 0.0657 0.0170  0.0160 0.0166 | 0.0250 0.0105 0.0089 0.0162
rmse | 0.1654 0.0214 0.0161 0.0260 | 0.0386 0.0119 0.0091 0.0324
T=80,M =6 bias | 0.1552 -0.0066 -0.0007 -0.0100 | 0.0326 -0.0026 -0.0006 -0.0136
std 0.0487 0.0112 0.0109 0.0111 | 0.0179 0.0056  0.0053 0.0073
rmse | 0.1627 0.0130 0.0109 0.0149 | 0.0372 0.0062  0.0053 0.0154
Table S.1: Same as Table 1 in main paper, but also reporting pooled CCE estimator of Pesaran (2006).
P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T=5 M=2 bias | 0.1239 -0.5467 -0.3721 -0.1767 | 0.0218 -0.9716 -0.7490 -0.3289
std 0.1454 0.1528 0.1299 0.1678 | 0.0731 0.1216 0.1341 0.2203
rmse | 0.1910 0.5676  0.3942 0.2437 | 0.0763 0.9792  0.7609 0.3958
T=10, M =3 Dbias | 0.1343 -0.1874 -0.1001 -0.0816 | 0.0210 -0.4923 -0.3271 -0.1414
std 0.1145 0.1159 0.0758 0.0592 | 0.0518 0.1159 0.0970 0.0971
rmse | 0.1765 0.2203  0.1256 0.1008 | 0.0559 0.5058  0.3412 0.1715
T=20, M =4 bias | 0.1451 -0.0448 -0.0168 -0.0407 | 0.0255 -0.1822 -0.1085 -0.0618
std 0.0879 0.0469 0.0320 0.0277 | 0.0354 0.0820 0.0528 0.0404
rmse | 0.1696 0.0648  0.0362 0.0492 | 0.0436 0.1999 0.1207 0.0739
T =40, M =5 Dbias | 0.1511 -0.0161 -0.0038 -0.0199 | 0.0300 -0.0227 -0.0128  -0.0282
std 0.0663 0.0209 0.0177 0.0167 | 0.0250 0.0342 0.0225 0.0164
rmse | 0.1650 0.0264 0.0181 0.0260 | 0.0390 0.0410 0.0258 0.0326
T=80,M=6 bias | 0.1550 -0.0072 -0.0011 -0.0100 | 0.0325 -0.0030 -0.0010 -0.0136
std 0.0488 0.0123 0.0115 0.0111 | 0.0182 0.0064 0.0057 0.0074
rmse | 0.1625 0.0143 0.0116 0.0149 | 0.0372 0.0071  0.0058 0.0155

Table S.2: Same as Table 2 in main paper, but also reporting pooled CCE estimator of Pesaran (2006).

35




P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T=5 M=2 bias | 0.1861 -0.4968 -0.3323 -0.1002 | 0.0309 -0.9305 -0.7057 -0.2750
std 0.1562 0.1910 0.1580 0.2063 | 0.0801 0.1644 0.1754 0.2302
rmse | 0.2429 0.5322  0.3680 0.2294 | 0.0859 0.9449 0.7272 0.3586
T=10, M =3 bias | 0.1989 -0.1569 -0.0758  0.0036 | 0.0326 -0.4209 -0.2732 -0.1040
std 0.1185 0.1018  0.0700 0.1074 | 0.0543 0.1607 0.1235 0.1070
rmse | 0.2315 0.1870  0.1031 0.1074 | 0.0633 0.4505  0.2998 0.1492
T =20, M =4 bias | 0.2096 -0.0592 -0.0185 0.0520 | 0.0366 -0.0741 -0.0406 -0.0310
std 0.0884 0.0377  0.0287 0.0711 | 0.0356 0.0859  0.0552 0.0512
rmse | 0.2274 0.0702  0.0341 0.0881 | 0.0511 0.1134 0.0686 0.0599
T=40, M =5 bias | 0.2174 -0.0275 -0.0054  0.0759 | 0.0404 -0.0134 -0.0047 -0.0012
std 0.0649 0.0192 0.0170 0.0500 | 0.0239 0.0166 0.0122 0.0281
rmse | 0.2269 0.0335 0.0179 0.0908 | 0.0469 0.0214 0.0131 0.0281
T=80, M =6 bias | 0.2232 -0.0134 -0.0016 0.0873 | 0.0433 -0.0052 -0.0012  0.0125
std 0.0472 0.0118 0.0113 0.0364 | 0.0164 0.0066 0.0058 0.0176
rmse | 0.2281 0.0179 0.0114 0.0946 | 0.0463 0.0084  0.0059 0.0216

Table S.3: Analogous to Table 2 in main paper, but with R = 2 correctly specified, and also reporting pooled
CCE estimator of Pesaran (2006).
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