
Moon, Hyungsik Roger; Weidner, Martin

Working Paper

Dynamic linear panel regression models with interactive
fixed effects

cemmap working paper, No. CWP63/13

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Moon, Hyungsik Roger; Weidner, Martin (2013) : Dynamic linear panel regression
models with interactive fixed effects, cemmap working paper, No. CWP63/13, Centre for Microdata
Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2013.6313

This Version is available at:
https://hdl.handle.net/10419/97403

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2013.6313%0A
https://hdl.handle.net/10419/97403
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Dynamic linear panel 
regression models with 
interactive fixed effects 
 
 
 

Hyungsik Roger Moon 
Martin Weidner 

 

 

 
 

 

 

The Institute for Fiscal Studies 
Department of Economics, UCL 

 
cemmap working paper CWP63/13 



Dynamic Linear Panel Regression Models with

Interactive Fixed Effects∗

Hyungsik Roger Moon‡ Martin Weidner§

December 25, 2013

Abstract

We analyze linear panel regression models with interactive fixed effects and predetermined
regressors, e.g. lagged-dependent variables. The first order asymptotic theory of the least
squares (LS) estimator of the regression coefficients is worked out in the limit where both
the cross sectional dimension and the number of time periods become large. We find that
there are two sources of asymptotic bias of the LS estimator: bias due to correlation or het-
eroscedasticity of the idiosyncratic error term, and bias due to predetermined (as opposed to
strictly exogenous) regressors. We provide an estimator for the bias and a bias corrected LS
estimator for the case where idiosyncratic errors are independent across both panel dimen-
sions. Furthermore, we provide bias corrected versions of the three classical test statistics
(Wald, LR and LM test) and show that their asymptotic distribution is a χ2-distribution.
Monte Carlo simulations show that the bias correction of the LS estimator and of the test
statistics also work well for finite sample sizes.

1 Introduction

In this paper we study a linear panel regression model where the individual fixed effects λi, called
factor loadings, interact with common time specific effects ft, called factors. This interactive
fixed effect specification contains the conventional fixed effects and time-specific effects as special
cases, but is significantly more flexible since it allows the factors ft to affect each individual with
a different loading λi.
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Factor models have been widely studied in various economics disciplines, for example in asset
pricing, empirical macro, forecasting, and empirical labor economics.1 In the panel literature,
factor models are often used to represent time varying individual effects (or heterogenous time
effects), so called interactive fixed effects. For panels with a large cross sectional dimension (N)
but a short time dimension (T ), Holtz-Eakin, Newey, and Rosen (1988) (hereafter HNR) study
a linear panel regression model with interactive fixed effects and lagged dependent variables.
To solve the incidental parameter problem caused by the λi’s, they estimate a quasi-differenced
version of the model using appropriate lagged variables as instruments, and treating ft’s as a
fixed number of parameters to estimate. Ahn, Lee and Schmidt (2001) also consider large N but
short T panels. Instead of eliminating the individual effects λi by transforming the panel data,
they impose various second moment restrictions including the correlated random effects λi, and
derive moment conditions to estimate the regression coefficients. More recent literature considers
panels with comparable size of N and T . The interactive fixed effect panel regression model of
Pesaran (2006) allows heterogenous regression coefficients. Pesaran’s estimator is the common
correlated effect (CCE) estimator that uses the cross sectional averages of the dependant variable
and the independent variables as control functions for the interactive fixed effects.2

Among the interactive fixed effect panel literature, most closely related to our paper is
Bai (2009). Bai assumes that the regressors are strictly exogenous and the number of factors is
known. The estimator that he investigates is the least squares (LS) estimator, which minimizes
the sum of squared residuals of the model jointly over the regression coefficients and the fixed
effect parameters λi and ft.3 Using the alternative asymptotics where N,T → ∞ at the same
rate,4 Bai shows that the LS estimator is

√
NT -consistent and asymptotically normal, but may

have an asymptotic bias. The bias in the normal limiting distribution occurs when the regression
errors are correlated or heteroscedastic. Bai also shows how to estimate the bias and proposes a
bias corrected estimator.

Following the methodology in Bai (2009), we investigate the LS estimator for a linear panel
regression with a known number of interactive fixed effects. The main difference from Bai is
that we consider predetermined regressors, thus allowing feedback of past outcomes to future
regressors. One of the main findings of the present paper is that under the alternative asymp-
totics, the limit distribution of the LS estimator has two types of biases, one type of bias due to
correlated or heteroscedastic errors (the same bias as in Bai) and the other type of bias due to
the predetermined regressors. This additional bias term is analogous to the incidental parameter
bias of Nickell (1981) in finite T and the bias in Hahn and Kuersteiner (2002) in large T .

In addition to allowing for predetermined regressors, we also extend Bai’s results to models
where both “low-rank regressor” (e.g. time-invariant and common regressors, or interactions of
those two) and “high-rank-regressor” (almost all other regressors that vary across individuals and

1See, e.g., Chamberlain and Rothschild (1983), Ross (Ross, 1976), and Fama and French (1993) for asset
pricing, Bernanke, Boivin and Eliasz (2005) for empirical macro, Stock and Watson (2002) and Bai and Ng (2006)
for forecasting, and Holtz-Eakin, Newey, and Rosen (1988) for empirical labor economics.

2The theory of the CCE estimator was further developed in e.g. Harding and Lamarche (2009; 2011), Kapetan-
ios, Pesaran and Yamagata (2011), Pesaran and Tosetti (2011), Chudik, Pesaran and Tosetti (2011), and Chudik
and Pesaran (2013).

3The LS estimator is sometimes called “concentrated” least squares estimator in the literature, and in an
earlier version of the paper we referred to it as the “Gaussian Quasi Maximum Likelihood Estimator”, since LS
estimation is equivalent to maximizing a conditional Gaussian likelihood function.

4This alternative asymptotics is known to be a convenient tool in the fixed effect panel literature to characterize
the asymptotic bias due to incidental parameter problems. See, e.g., Hahn and Kuersteiner (2002; 2011), Alvarez
and Arellano (2003), Hahn and Newey (2004), and Hahn and Moon (2006).
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over time) are present simultaneously, while Bai (2009) only considers the “low-rank regressor”
separately and in a restrictive setting (in particular not allowing for regressors that are obtained
by interacting time-invariant and common variables). A general treatment of “low-rank regres-
sors” is desirable since they often occur in applied work, e.g., Gobillon and Magnac (2013). The
analysis of those regressors is challenging, however, since the unobserved interactive fixed effects
also represent a low-rank N ×T matrix, thus posing a non-trivial identification problem for low-
rank regressors, which needs to be addressed. We provide conditions under which the different
type of regressors are identified jointly and under which they can be estimated consistently as
N and T grow large.

Another contribution of this paper is to establish the asymptotic theory of the three classical
test statistics (Wald test, LR test, and LM (or score) test) for testing restrictions on the regression
coefficients in a large N , T panel framework.5 Regarding testing for coefficient restrictions,
Bai (2009) investigates the Wald test based on the bias corrected LS estimator, and HNR consider
the LR test in their 2SLS estimation framework with fixed T .6 What we show is that the
conventional LR and LM test statistics based on the LS profile objective function have non-
central chi-square limit due to incidental parameters in the interactive fixed effects. We therefore
propose modified LR and LM tests whose asymptotic distributions are conventional chi-square
distributions.

In order to establish the asymptotic theories of the LS estimator and the three classical tests,
we use the quadratic approximation of the profile LS objective function that was derived in
Moon and Weidner (2013). This method is different from Bai (2009), who uses the first order
condition of the LS optimization problem as the starting point of his analysis. One advantage
of our methodology is that it can also directly be applied to derive the asymptotic properties of
the LR and LM test statistics.

In this paper, we assume that the regressors are not endogenous and the number of factors
is known, which might be restrictive in some applications. In other papers we study how to
relax these restrictions. Moon and Weidner (2013) investigates the asymptotic properties of the
LS estimator of the linear panel regression model with factors when the number of factors is
unknown and extra factors are included unnecessarily in the estimation. It turns out that under
suitable conditions the limit distribution of the LS estimator is unchanged when the number
of factors is overestimated. Moon and Weidner (2013) is complementary to the current paper,
since there we do not derive the limiting distribution of the estimator, do not correct for the
bias, and also do not consider low-rank regressors or testing problems. The extension to allow
endogenous regressors is closely related with the result in Moon, Shum and Weidner (2012)
(hereafter MSW). MSW’s main purpose is to extended the random coefficient multinomial logit
demand model (known as the BLP demand model from Berry, Levinsohn and Pakes (1995)) by
allowing for interactive product and market specific fixed effects. Although the main model of
interest is quite different from the linear panel regression model of the current paper, MSW’s
econometrics framework is directly applicable to the model of the current paper with endogenous
regressors. In Section 6, we briefly discuss how to apply the estimation method of MSW in the
current framework with endogenous regressors.7

5The “likelihood ratio” and the score used in the tests are based on the LS objective function, which can be
interpreted as the (misspecified) conditional Gaussian likelihood function.

6Another type of widely studied tests in the interactive fixed effect panel literature are panel unit root test,
e.g., Bai and Ng (2004), Moon and Perron (2004), and Phillips and Sul (2003).

7Lee, Moon, and Weidner (2012) also apply the MSW estimation method to estimate a simple dynamic panel
regression with interactive fixed effect and classical measurement errors.
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Comparing the different estimation approaches for interactive fixed effect panel regressions
proposed in the literature, it seems fair to say that the LS estimator in Bai (2009) and our paper,
the CCE estimator of Pesaran (2006), and the IV estimator based on quasi-differencing in HNR,
all have their own relative advantages and disadvantages. These three estimation methods handle
the interactive fixed effects quite differently. The LS method concentrates out the interactive
fixed effects by taking out the principal components. The CCE method controls the factor (or
time effects) using the cross sectional averages of the dependent and independent variables. The
NHR’s approach quasi-differences out the individual effects, treating the remaining time effects
as parameters to estimate. The IV estimator of HNR should work well when T is short, but
should be expected to also suffer from an incidental parameter problem due to estimation of the
factors when T becomes large. Pesaran’s CCE estimation method does not require the number
of factors to be known and does not require the strong factor assumption that we will impose
below, but in order for the CCE to work, not only the DGPs for the dependent variable (e.g.,
the regression model) but also the DGP of the explanatory variables should be restricted in a
way that their cross sectional average can control the unobserved factors. The LS estimator and
its bias corrected version perform well under relatively weak restrictions on the regressors, but
it requires that T should not be too small and the factors should be sufficiently strong to be
correctly picked up as the leading principal components.

The paper is organized as follows. In Section 2 we introduce the interactive fixed effect
model and provide conditions for identifying the regression coefficients in the presence of the
interactive fixed effects. In Section 3 we define the LS estimator of the regression parameters
and provide a set of assumptions that are sufficient to show consistency of the LS estimator.
In Section 4 we work out the asymptotic distribution of the LS estimator under the alternative
asymptotic. We also provide a consistent estimator for the asymptotic bias and a bias corrected
LS estimator. In Section 5 we consider the Wald, LR and LM tests for testing restrictions on
the regression coefficients of the model. We present bias corrected versions of these tests and
show that they have chi-square limiting distribution. In Section 6 we briefly discuss how to
estimate the interactive fixed effect linear panel regression when the regressors are endogenous.
In Section 7 we present Monte Carlo simulation results for an AR(1) model with interactive
fixed effect. The simulations show that the LS estimator for the AR(1) coefficient is biased, and
that the tests based on it can have severe size distortions and power asymmetries, while the bias
corrected LS estimator and test statistics have better properties. We conclude in Section 8. All
proofs of theorems and some technical details are presented in the appendix.

A few words on notation. For a column vector v the Euclidean norm is defined by ‖v‖ =
√
v′v.

For the n-th largest eigenvalues (counting multiple eigenvalues multiple times) of a symmetric
matrix B we write µn(B). For an m×n matrix A the Frobenius norm is ‖A‖F =

√
Tr(AA′), and

the spectral norm is ‖A‖ = max06=v∈Rn
‖Av‖
‖v‖ , or equivalently ‖A‖ =

√
µ1(A′A). Furthermore,

we define PA = A(A′A)−1A′ and MA = I− A(A′A)−1A′, where I is the m×m identity matrix,
and (A′A)−1 may be a pseudo-inverse in case A is not of full column rank. For square matrices
B, C, we write B > C (or B ≥ C) to indicate that B − C is positive (semi) definite. For a
positive definite symmetric matrix A we write A1/2 and A−1/2 for the unique symmetric matrices
that satisfy A1/2A1/2 = A and A−1/2A−1/2 = A−1. We use ∇ for the gradient of a function, i.e.
∇f(x) is the row vector of partial derivatives of f with respect to each component of x. We use
“wpa1” for “with probability approaching one”.
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2 Model and Identification

We study the following panel regression model with cross-sectional size N , and T time periods,

Yit = β0′Xit + λ0′
i f

0
t + eit, i = 1 . . . N, t = 1 . . . T, (2.1)

where Xit is a K×1 vector of observable regressors, β0 is a K×1 vector of regression coefficients,
λ0
i is an R×1 vector of unobserved factor loadings, f0

t is an R×1 vector of unobserved common
factors, and eit are unobserved errors. The superscript zero indicates the true parameters. We
write f0

tr and λ0
ir, where r = 1, . . . , R, for the components of λ0

i and f0
t , respectively. R is the

number of factors. Note that we can have f0
tr = 1 for all t and a particular r, in which case the

corresponding λ0
ir become standard individual specific effects. Analogously we can have λ0

ir = 1
for all i and a particular r, so that the corresponding f0

tr become standard time specific effects.
Throughout this paper we assume that the true number of factors R is known.8 We introduce

the notation β0 ·X ≡
∑K

k=1 β
0
kXk. In matrix notation the model can then be written as

Y = β0 ·X + λ0f0′ + e ,

where Y , Xk and e are N × T matrices, λ0 is an N ×R matrix, and f0 is a T ×R matrix. The
elements of Xk are denoted by Xk,it.

We separate the K regressors into K1 “low-rank regressors” Xl, l = 1, . . . ,K1, and K2 =
K −K1 “high-rank regressors” Xm, m = K1 + 1, . . . ,K. Each low-rank regressor l = 1, . . . , L
is assumed to satisfy rank(Xl) = 1. This implies that we can write Xl = wlv

′
l, where wl is an

N -vector and vl is a T -vector, and we also define the N ×K1 matrix w = (w1, . . . , wK1) and the
T ×K1 matrix v = (v1, . . . , vK1).

Let l = 1, . . . ,K1. The two most prominent types of low-rank regressors are time-invariant
regressors, which satisfy Xl,it = Zi for all i, t, and common (or cross-sectionally invariant)
regressors, in which case Xl,it = Wt for all i, t. Here, Zi and Wt are some observed variables,
which only vary over i or t, respectively. A more general low-rank regressor can be obtained
by interacting Zi and Wt multiplicatively, i.e. Xl,it = ZiWt, an empirical example of which is
given in Gobillon and Magnac (2013). In these examples, and probably for the vast majority
of applications, the low-rank regressors all satisfy rank(Xl) = 1, but our results can easily be
extended to more general low-rank regressors.9

High-rank regressor are those whose distribution guarantees that they have high rank (usually
full rank) when considered as an N × T matrix. For example, a regressor whose entries satisfy
Xm,it ∼ iidN (µ, σ), with µ ∈ R and σ > 0, satisfies rank(Xm) = min(N,T ) with probability
one.

This separation of the regressors into low- and high-rank regressors is important to formulate
our assumptions for identification and consistency, but actually plays no role in the estimation
and inference procedures for β̂ discussed below.

8To remove this restriction, one could estimate R consistently in the presence of the regressors. In the literature
so far, however, consistent estimation procedures for R are established mostly in pure factor models (e.g., Bai and
Ng (2002), Onatski (2005) and Harding (2007)). Alternatively, one could rely on Moon and Weidner (2013) who
consider a regression model with interactive fixed effects when only an upper bound on the number of factors is
known — but it is mathematically very challenging to extend those results to the more general setup considered
here.

9If we have low-rank regressors with rank larger than one, then we write Xl = wlv
′
l, where wl is an N×rank(Xl)

matrix and vl is a T × rank(Xl) matrix, and we define w = (w1, . . . , wK1) as a N ×
PL

l=1 rank(Xl) matrix, and

v = (v1, . . . , vK1) ae a T ×
PL

l=1 rank(Xl) matrix. All our results would then be unchanged, as long as rank(Xl)
is a finite constant for all l = 1, . . . ,K1, and we replace 2R + K1 by 2R + rank (w) in Assumption ID(v) and
Assumption 4(ii)(a).
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Assumption ID (Assumptions for Identification).

(i) Existence of Second Moments:
The second moments of Xk,it and eit conditional on λ0, f0, w exist for all i, t, k.

(ii) Mean Zero Errors and Exogeneity:
E
(
eit|λ0, f0, w

)
= 0, E(Xk,iteit|λ0, f0, w) = 0, for all i, t, k.

The following two assumptions only need to be imposed if K1 > 0, i.e. if low-rank regressors are
present:

(iii) Non-Collinearity of Low-Rank Regressors:
Consider linear combinations α · Xlow ≡

∑K1
l=1 αlXl of the low-rank regressors Xl with

α ∈ RK1. For all α 6= 0 we assume that

E
[
(α ·Xlow)Mf0(α ·Xlow)′

∣∣λ0, f0, w
]
6= 0.

(iv) No Collinearity between Factor Loadings and Low-Rank Regressors:
rank(Mwλ

0) = rank(λ0).10

The following assumption only needs to be imposed if K2 > 0, i.e. if high-rank regressors are
present:

(v) Non-Collinearity of High-Rank Regressors:
Consider linear combinations α ·Xhigh ≡

∑K
m=K1+1 αmXm of the high-rank regressors Xm

for α ∈ RK2.11 For all α 6= 0 we assume that

rank
{
E
[
(α ·Xhigh)(α ·Xhigh)′

∣∣λ0, f0, w
]}
> 2R+K1.

All expectations in the assumptions are conditional on λ0, f0, and w, in particular eit is not
allowed to be correlated with λ0, f0, and w. However, eit is allowed to be correlated with v (i.e.
predetermined low-rank regressors are allowed). If desired, one can interchange the role of N
and T in the assumptions, by using the formal symmetry of the model under exchange of the
panel dimensions (N ↔ T , λ0 ↔ f0, Y ↔ Y ′, Xk ↔ X ′k, w ↔ v).

Assumptions ID(i) and (ii) have standard interpretations, but the other assumptions require
some further discussion.

Assumption ID(iii) states that the low-rank regressors are non-collinear even after projecting
out all variation that is explained by the true factors f0. This would, for example, be violated
if vl = f0

r for some l = 1, . . . ,K1 and r = 1, . . . , R, since then XlMf0 = 0 and we can choose
α such that Xlow = Xl. Similarly, Assumption ID(iv) rules out, for example, that wl = λ0

r

for some l = 1, . . . ,K1 and r = 1, . . . , R, since then rank(Mwλ
0) < rank(λ0), in general. It

ought to be expected that λ0 and f0 have to feature in the identification conditions for the low-
rank regressors, since the interactive fixed effects structure and the low-rank regressors represent
similar types of low-rank N × T structures.

10Note that rank(λ0) = R if R factors are present. Our identification results are consistent with the possibility
that rank(λ0) < R, i.e. that R only represents an upper bound on the number of factors, but later we assume
rank(λ0) = R to show consistency.

11The components of the K2-vector α are denoted by αK1+1 to αK .
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Assumption ID(v) would be a standard non-collinearity assumption if it would impose
rank

{
E
[
(α ·Xhigh)(α ·Xhigh)′

∣∣λ0, f0, w
]}
> 0, which is equivalent to demanding that the N×N

matrix E
[
(α ·Xhigh)(α ·Xhigh)′

∣∣λ0, f0, w
]

is non-zero for all α ∈ RK2 . The assumption strength-
ens this standard non-collinearity assumption by imposing the rank of this N × N matrix to
be larger than 2R + K1, thus guaranteeing that any linear combination α ·Xhigh is sufficiently
different from the low-rank regressors and from the interactive fixed effects. This also explain
the name “high-rank regressors” since their rank has to be sufficiently large in order to satisfy
Assumption ID(v). Note also that only the number of factors R, but not λ0 and f0 itself feature
in Assumption ID(v).

Theorem 2.1 (Identification). Suppose that the Assumptions ID are satisfied. Then, the
minima of the expected objective function E

(
‖Y − β ·X − λ f ′‖2F

∣∣∣λ0, f0, w
)

over (β, λ, f) ∈
RK+N×R+T×R satisfy β = β0 and λf ′ = λ0f0′. This shows that β0 and λ0f0′ are identified.

The theorem shows that the true parameters are identified as minima of the expected value
of ‖Y − β ·X − λ f ′‖2F =

∑
i,t(Yitβ

′ −Xit − λ′ift)2, which is the sum of squared residuals. The
same objective function is used to define the estimators β̂, λ̂ and f̂ below. Without further
normalization conditions the parameters λ0 and f0 are not separately identified, because the
outcome variable Y is invariant under transformations λ0 →0 λA′ and f0 → f0A−1, where A is
a non-singular R×R matrix. However, the product λ0f0′ is uniquely identified according to the
theorem. Since our focus is on identification and estimation of β0, there is no need to discuss
those additional normalization conditions for λ0 and f0 in this paper.

3 Estimator and Consistency

The objective function of the model is simply the sum of squared residuals, which in matrix
notation can be expressed as

LNT (β, λ, f) =
1
NT

∥∥Y − β ·X − λf ′∥∥2

F

=
1
NT

Tr
[(
Y − β ·X − λf ′

)′ (
Y − β ·X − λf ′

)]
. (3.1)

The estimator we consider is the LS estimator that jointly minimizes LNT (β, λ, f) over β, λ
and f . Our main object of interest are the regression parameters β = (β1, ..., βK)′, whose
estimator is given by

β̂ = argmin
β∈B

LNT (β) , (3.2)

where B ⊂ RK is a compact parameter set that contains the true parameter, i.e. β0 ∈ B, and
the objective function is the profile objective function

LNT (β) = min
λ,f
LNT (β, λ, f)

= min
f

1
NT

Tr
[
(Y − β ·X)Mf (Y − β ·X)′

]
=

1
NT

T∑
r=R+1

µr
[
(Y − β ·X)′ (Y − β ·X)

]
. (3.3)

7



Here, the first expression for LNT (β) is its definition as the the minimum value of LNT (β, λ, f)
over λ and f . We denote the minimizing incidental parameters by λ̂(β) and f̂(β), and we define
the estimators λ̂ = λ̂(β̂) and f̂ = f̂(β̂). Those minimizing incidental parameters are not uniquely
determined – for the same reason that λ0 and f0 are non uniquely identified –, but the product
λ̂(β)f̂ ′(β) is unique.

The second expression for LNT (β) in equation (3.3) is obtained by concentrating out λ
(analogously, one can concentrate out f to obtain a formulation where only the parameter λ
remains). The optimal f in the second expression is given by the R eigenvectors that correspond
to the R largest eigenvalues of the T ×T matrix (Y − β ·X)′ (Y − β ·X). This leads to the third
line that presents the profile objective function as the sum over the T − R smallest eigenvalues
of this T × T matrix. Theorem C.1 in the appendix shows equivalence of the three expressions
for LNT (β) given above.

Multiple local minima of LNT (β) may exist, and one should use multiple starting values for
the numerical optimization of β to guarantee that the true global minimum β̂ is found.

To show consistency of the LS estimator β̂ of the interactive fixed effect model, and also
later for our first order asymptotic theory, we consider the limit N,T →∞. In the following we
present assumptions on Xk, e, λ, and f that guarantee consistency.12

Assumption 1. (i) plimN,T→∞
(
λ0′λ0/N

)
> 0, (ii) plimN,T→∞

(
f0′f0/T

)
> 0.

Assumption 2. plimN,T→∞
[
(NT )−1Tr(Xk e

′)
]

= 0, for all k = 1, . . . ,K.

Assumption 3. plimN,T→∞

(
‖e‖/
√
NT

)
= 0.

Assumption 1 guarantees that the matrices f0 and λ0 have full rank, i.e. that there are
R distinct factors and factor loadings asymptotically, and that the norm of each factor and
factor loading grows at a rate of

√
T and

√
N , respectively. Assumption 2 demands that the

regressors are weakly exogenous. Assumption 3 restricts the spectral norm of the N × T error
matrix e. We discuss this assumption in more detail in the next section, and we give examples
of error distributions that satisfy this condition in Appendix A. The final assumption needed
for consistency is an assumption on the regressors Xk. We already introduced the distinction
between the K1 “low-rank regressors” Xl, l = 1, . . . ,K1, and the K2 = K − K1 “high-rank
regressors” Xm, m = K1 + 1, . . . ,K above.

Assumption 4.

(i) plimN,T→∞

[
(NT )−1

∑N
i=1

∑T
t=1 XitX

′
it

]
> 0.

(ii) The two types of regressors satisfy:

(a) Consider linear combinations α ·Xhigh =
∑K

m=K1+1 αmXm of the high-rank regressors
Xm for K2-vectors13 α with ‖α‖ = 1. We assume that there exists a constant b > 0
such that

min
{α∈RK2 ,‖α‖=1}

N∑
r=2R+K1+1

µr

[
(α ·Xhigh)(α ·Xhigh)′

NT

]
≥ b wpa1.

12We could write X
(N,T )
k , e(N,T ), λ(N,T ) and f (N,T ), because all these matrices, and even their dimensions, are

functions on N and T , but we suppress this dependence throughout the paper.
13The components of the K2-vector α are denoted by αK1+1 to αK .
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(b) For the low-rank regressors we assume rank(Xl) = 1, l = 1, . . . ,K1, i.e. they can be
written as Xl = wlv

′
l for N -vectors wl and T -vectors vl, and we define the N × K1

matrix w = (w1, . . . , wK1) and the T ×K1 matrix v = (v1, . . . , vK1). We assume that
there exists a constant B > 0 such that N−1 λ0′Mw λ

0 > B IR and T−1 f0′Mv f
0 >

B IR, wpa1.

Assumption 4(i) is a standard non-collinearity condition for all the regressors. Assump-
tion 4(ii)(a) is an appropriate sample analog of the identification Assumption ID(v). If the sum
in Assumption 4(ii)(a) would start from r = 1, then we would have

∑N
r=1 µr

[
(α·Xhigh)(α·Xhigh)′

NT

]
=

1
NT Tr[(α ·Xhigh)(α ·Xhigh)′], so that the assumption would become a standard non-collinearity
condition. Not including the first 2R+K1 eigenvalues in the sum implies that the N ×N matrix
(α ·Xhigh)(α ·Xhigh)′ needs to have rank larger than 2R+K1.

Assumption 4(ii)(b) is closely related to the identification Assumptions ID(iii) and (iv). The
appearance of the factors and factor loadings in this assumption on the low-rank regressors is
inevitable in order to guarantee consistency. For example, consider a low-rank regressor that is
cross-sectionally independent and proportional to the r’th unobserved factor, e.g. Xl,it = ftr.
The corresponding regression coefficient βl is then not identified, because the model is invariant
under a shift βl 7→ βl + a, λir 7→ λir − a, for an arbitrary a ∈ R. This phenomenon is well
known from ordinary fixed effect models, where the coefficients of time-invariant regressors are
not identified. Assumption 4(ii)(b) therefore guarantees for Xl = wlv

′
l that wl is sufficiently

different from λ0, and vl is sufficiently different from f0.
We can now state our consistency result for the LS estimator.

Theorem 3.1. Let Assumption 1, 2, 3, 4 be satisfied, let the parameter set B be compact, and
let β0 ∈ B. In the limit N,T →∞ we then have

β̂ −→
p

β0 .

The proof of the theorem and of all theorems below can be found in the appendix. We assume
compactness of B to guarantee existence of the minimizing β̂. We also use boundedness of B in
the consistency proof, but only for those parameters βl, l = 1 . . .K1, that correspond to low-rank
regressors, i.e. if there are only high-rank regressors (K1 = 0) the compactness assumption can
be omitted, as long as existence of β̂ is guaranteed (e.g. for B = RK).

Bai (2009) also proves consistency of the LS estimator of the interactive fixed effect model, but
under somewhat different assumptions. He also employs, what we call Assumptions 1 and 2, and
he uses a low-level version of Assumption 3. He demands the regressors to be strictly exogenous.
Regarding consistency, the real difference between our assumptions and his is the treatment of
high- and low-rank regressors. He first gives a condition on the regressors (his assumption A)
that rules out low-rank regressors, and later discussed the case where all regressors are either
time-invariant or common regressors (i.e. are all low-rank). In contrast, our Assumption 4 allows
for a combination of high- and low-rank regressors, and for low-rank regressors that are more
general than time-invariant and common regressors.

4 Asymptotic Distribution and Bias Correction

Since we have already shown consistency of the LS estimator β̂, it is sufficient to study the
local properties of the objective function LNT (β) around β0 in order to derive the first order
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asymptotic theory of β̂. A useful approximation of LNT (β) around β0 was derived in Moon
and Weidner (2013), and we briefly summarize the ideas and results of this approximation in
the following subsection. We then apply those results to derive the asymptotic distribution of
the LS estimator, including working out the asymptotic bias, which was not done previously.
Afterwards we discuss bias correction and inference.

4.1 Expansion of the Profile Objective Function

The last expression in equation (3.3) for the profile objective function is convenient because it
does not involve any minimization over the parameters λ or f . On the other hand, this is not an
expression that can be easily discussed by analytic means, because in general there is no explicit
formula for the eigenvalues of a matrix. The conventional method that involves a Taylor series
expansion in the regression parameters β alone seems infeasible here. In Moon and Weidner
(2013) we showed how to overcome this problem by expanding the profile objective function
jointly in β and ‖e‖. The key idea is the following decomposition

Y − β ·X = λ0f0′︸ ︷︷ ︸
leading
term

−
(
β − β0

)
·X + e︸ ︷︷ ︸

perturbation term

.

If the perturbation term is zero, then the profile objective LNT (β) is also zero, since the leading
term λ0f0′ has rank R, so that the T − R smallest eigenvalues of f0λ0′λ0f0′ all vanish. One
may thus expect that small values of the perturbation term should correspond to small values
of LNT (β). This idea can indeed be made mathematically precise. By using the perturbation
theory of linear operators (see e.g. Kato (1980)) one can work out an expansion of LNT (β) in the
perturbation term, and one can show that this expansion is convergent as long as the spectral
norm of the perturbation term is sufficiently small.

The assumptions on the model made so far are in principle already sufficient to apply this
expansion of the profile objective function, but in order to truncate the expansion at an appro-
priate order and to provide a bound on the remainder term which is sufficient to derive the first
order asymptotic theory of the LS estimator, we need to strengthen Assumption 3 as follows.

Assumption 3∗. ‖e‖ = op(N2/3).

In the rest of the paper we only consider asymptotics where N and T grow at the same rate,
i.e. we could equivalently write op(T 2/3) instead of op(N2/3) in Assumption 3∗. In Appendix A we
provide examples of error distributions that satisfy Assumption 3∗. In fact, for these examples, we
have ‖e‖ = Op(

√
max(N,T )). There is large literature that studies the asymptotic behavior of

the spectral norm of random matrices, see e.g. Geman (1980), Silverstein (1989), Bai, Silverstein,
Yin (1988), Yin, Bai, and Krishnaiah (1988), and Latala (2005). Loosely speaking, we expect
the result ‖e‖ = Op(

√
max(N,T )) to hold as long as the errors eit have mean zero, uniformly

bounded fourth moment, and weak time-serial and cross-sectional correlation (in some well-
defined sense, see the examples).

We can now present the quadratic approximation of the profile objective function LNT (β)
that was derived in Moon and Weidner (2013).

Theorem 4.1. Let Assumption 1, 3∗, and 4(i) be satisfied, and consider the limit N,T → ∞
with N/T → κ2, 0 < κ <∞. Then, the profile objective function satisfies LNT (β) = Lq,NT (β) +
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(NT )−1RNT (β), where the remainder RNT (β) is such that for any sequence ηNT → 0 we have

sup
{β:‖β−β0‖≤ηNT }

|RNT (β)|(
1 +
√
NT

∥∥β − β0
∥∥)2 = op (1) ,

and Lq,NT (β) is a second order polynomial in β, namely

Lq,NT (β) = LNT (β0) − 2√
NT

(β − β0)′CNT + (β − β0)′WNT (β − β0) ,

with K × K matrix WNT defined by WNT,k1k2 = (NT )−1 Tr(Mf0 X ′k1 Mλ0 Xk2), and K-vector
CNT with entries CNT,k = C(1)

(
λ0 , f0 , Xk e

)
+ C(2)

(
λ0 , f0 , Xk e

)
, where

C(1)
(
λ0, f0, Xk, e

)
=

1√
NT

Tr(Mf0 e′Mλ0 Xk) ,

C(2)
(
λ0, f0, Xk, e

)
= − 1√

NT

[
Tr
(
eMf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
+ Tr

(
e′Mλ0 eMf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+ Tr

(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) ] .

We refer to WNT and CNT as the approximated Hessian and the approximated score (at
the true parameter β0). The exact Hessian and the exact score (at the true parameter β0)
contain higher order expansion terms in e, but the expansion up to the particular order above
is sufficient to work out the first order asymptotic theory of the LS estimator, as the following
corollary shows.

Corollary 4.2. Let the assumptions of Theorem 3.1 and 4.1 hold, let β0 be an interior point of
the parameter set B, and assume that CNT = Op(1). We then have

√
NT

(
β̂−β0

)
= W−1

NTCNT +
op(1) = Op(1).

Combining consistency of the LS estimator and the expansion of the profile objective function
in Theorem 4.1, one obtains

√
NT WNT

(
β̂ − β0

)
= CNT + op(1) (see e.g. Andrews (1999)). To

obtain the corollary one needs in addition that WNT does not become degenerate as N,T →∞,
i.e. the smallest eigenvalue of WNT should by bounded by a positive constant. Our assumptions
already guarantee this, as is shown in the supplementary material.

4.2 Asymptotic Distribution

We now apply Corollary 4.2 to work out the asymptotic distribution of the LS estimator β̂. For
this purpose we need more specific assumptions on λ0, f0, Xk, and e.

Assumption 5. There exists a conditioning set C = CNT , which contains the sigma-algebra
generated by λ0 and f0, such that

(i) Eeit = 0 for all i, t.

(ii) {(Xit, eit), t = 1, . . . , T} is independent across i, conditional on C.

(iii) eit ⊥ C, and eit ⊥ {(Xis, ei,s−1), s ≤ t}
∣∣ C, for all i, t.
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(iv) 1
NT

∑N
i=1

∑T
t,s=1

∣∣∣Cov
(
Xk,it, Xk,is

∣∣∣ C)∣∣∣ = Op(1), for all k = 1, . . . ,K.

(v) 1
NT 2

∑N
i=1

∑T
t,s,u,v=1

∣∣∣Cov
(
eitX̃k,is, eiuX̃k,iv

∣∣∣ C)∣∣∣ = Op(1), where X̃k,it ≡ Xk,it−E
[
Xk,it

∣∣C],
for all k = 1, . . . ,K.

(vi) Ee8
it and E

(
‖Xit‖8+ε

∣∣ C) and E‖λ0
i ‖4 and E‖f0

t ‖4+ε are bounded uniformly over i, t and
N,T , and over all realizations of C, for some ε > 0.

(vii) β0 is an interior point of the compact parameter set B.

Remarks on Assumption 5

(1) Assumption 5 imposes (i) mean zero errors, (ii) cross-sectional independence, conditional
on C, (iii) strict exogeneity of C, sequential exogeneity of Xit, time-serial independence of
errors, (iv) weak time-serial correlation of Xit, (v) weak time-serial correlation of X̃k,it =
Xk,it−E

[
Xk,it

∣∣C] and eit, (vi) bounded moments, and (viii) a compact parameter set with
interior true parameter.

(2) Assumption 5(i) and (iii) imply that E (Xiteit|C) = E (eit|C) E (Xit|C) = E (eit) E (Xit|C) =
0. Analogously we obtain E (XiteitXiseis|C) = 0 for t 6= s. Thus, the assumption guarantees
that Xiteit is mean zero, uncorrelated over t, and independent across i, conditional on C.

(3) Assumption 5 is sufficient for Assumption 2. To see this, notice that Tr(Xk e
′) =

∑
i,tXk,iteit,

and that the sequential exogeneity and the cross-sectional independence assumption imply

that E
[(

(NT )−1
∑

i,tXk,iteit

)2 ∣∣∣C] = (NT )−2
∑

i,t E
[
(Xk,iteit)

2
∣∣∣C]. Together with the

assumption of bounded moments this gives (NT )−1
∑

i,tXk,iteit = op(1).

(4) Assumption 5 is also sufficient for Assumption 3∗ (and thus for Assumption 3). This is
because eit is assumed independent over t and across i and has bounded 4’th moment, which
according to Latala (2005) implies that the spectral norm satisfies ‖e‖ =

√
max(N,T ) as

N and T become large.

(5) Examples of regressor processes, which satisfy assumption Assumption 5(iv) and (v) are
discussed in the following. This will also illuminate the role of the conditioning set C.

Examples of DGPs for Xit

Here we provide examples of the DGPs of the regressors Xit that satisfy the conditions in
Assumption 5. Proofs for these examples are provided in the supplementary material.

Example 1. The first example is a simple AR(1) interactive fixed effect regression

Yit = β0Yi,t−1 + λ0′
i f

0
t + eit,

where eit is mean zero, independent across i and t, and independent of λ0 and f0. Assume
that |β0| < 1 and that eit, λ0

i and f0
t all possess uniformly bounded moments of order 8 + ε.

In this case, the regressor is Xit = Yit−1 = λ0′
i F

0
t + Uit, where F 0

t =
∑∞

s=0(β0)sf0
t−1−s and

Uit =
∑∞

s=0(β0)sei,t−1−s. For the conditioning sigma field C in Assumption 5, we choose C =
σ
(
{λ0

i : 1 ≤ i ≤ N}, {f0
t : 1 ≤ t ≤ T}

)
. Conditional on C the only variation in Xit stems from
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Uit, which is independent across i and weakly correlated over t, so that Assumption 5(iv) holds.
Furthermore, we have E (Xit|C) = λ0′

i F
0
t and X̃it = Uit, which allows to verify Assumption 5(v).

This example can be generalized to a VAR(1) model as follows:(
Yit
Zit

)
= B

(
Yi,t−1

Zi,t−1

)
︸ ︷︷ ︸

=Xit

+
(
λ0′
i f

0
t

dit

)
+
(
eit
uit

)
︸ ︷︷ ︸

=Eit

, (4.1)

where Zit is an m×1 vector of additional variables and B is an (m+1)× (m+1) matrix of VAR
parameters. The m × 1 vector dit and the factors f0

t and factor loadings λ0
i are assumed to be

independent of the (m+1)×1 vector of innovations Eit. Suppose that our interest is to estimate
the first row in equation (4.1), which corresponds exactly to our interactive fixed effects model
with regressors Yi,t−1 and Zi,t−1. Choosing C to be the sigma field generated by all f0

t , λ0
i , dit we

obtain X̃it =
∑∞

s=0 BsEi,t−1−s. Analogous to the AR(1) case we then find that Assumption 5(iv)
and (v) are satisfied in this example if the innovations Eit are independent across i and over t,
have appropriate bounded moments (higher than four), and the absolute values of the eigenvalues
of B are all smaller than one.

Example 2. Consider a scalar Xit for simplicity, and let Xit = g (vit, δi, ht). We assume
that (i)

{
(eit, vit)i=1,...,N ;t=1,...,T

}
⊥
{(
λ0
i , δi

)
i=1,...,N

,
(
f0
t , ht

)
t=1,...,T

}
, (ii) (eit, vit, δi) are inde-

pendent across i for all t, and (iii) vis ⊥ eit for s ≤ t and all i. Furthermore assume that
supit E|Xit|8+ε < ∞ for some positive ε. For the conditioning sigma field C in Assumption 5
we choose C = σ

({
λ0
i : 1 ≤ i ≤ N

}
, {δi : 1 ≤ i ≤ N} ,

{
f0
t : 1 ≤ t ≤ T

}
, {ht : 1 ≤ t ≤ T}

)
.

Furthermore, let F tτ (i) = σ ({(eis, vis) : τ ≤ s ≤ t}, C), and define the conditional α-mixing coef-
ficient on C,

αm(i) = sup
A∈Ft

−∞(i),B∈F∞t+m(i)

[P (A ∩B)− P (A) P (B) |C] .

Let αm = supi αm(i), and assume that αm = O
(
m−ζ

)
, where ζ > 12 p

4p−1 for p > 4. Then,
Assumption 5(iv) and (v) are satisfied.

In this example, the shocks ht (which may contain the factors f0
t ), δi (which may contain

the factor loadings λ0
i ), and vit (which may contain past values of eit) can enter in a general

non-linear way into the regressor Xit.

The following assumption guarantees that the limiting variance and the asymptotic bias
converge to constant values.

Assumption 6. Let Xk = Mλ0 XkMf0, which is an N × T matrix with entries Xk,it. For
each i and t, define the K-vector Xit = (X1,it, . . . ,XK,it)′. We assume existence of the following
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probability limits for all k = 1, . . . ,K,

W = plim
N,T→∞

1
NT

N∑
i=1

T∑
t=1

XitX ′it ,

Ω = plim
N,T→∞

1
NT

N∑
i=1

T∑
t=1

E
(
e2
it

)
XitX ′it ,

B1,k = plim
N,T→∞

1
N

Tr
[
Pf0E

(
e′Xk

∣∣ C)] ,
B2,k = plim

N,T→∞

1
T

Tr
[
E
(
ee′
)
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′] ,
B3,k = plim

N,T→∞

1
N

Tr
[
E
(
e′e
)
Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′] ,
where C is the same conditioning set that appears in Assumption 5.

Here, W and Ω are K × K matrices, and we define the K-vectors B1, B2 and B3 with
components B1,k, B2,k and B3,k, k = 1, . . . ,K.

Theorem 4.3. Let Assumptions 1, 4, 5 and 6 be satisfied,14 and consider the limit N,T → ∞
with N/T → κ2, where 0 < κ <∞. Then we have

√
NT

(
β̂ − β0

)
→
d
N
(
W−1B, W−1 ΩW−1

)
,

where B = −κB1 − κ−1B2 − κB3.

From Corollary 4.2 we already know that the limiting distribution of β̂ is given by the limiting
distribution of W−1

NTCNT . Note that WNT = 1
NT

∑N
i=1

∑T
t=1 XitX ′it, i.e. W is simply defined as

the probability limit of WNT . Assumption 4 guarantees that W is positive definite.
Thus, the main task in showing Theorem 4.3 is to show that the approximated score at the

true parameter satisfies CNT →d N (B,Ω). It turns out that the asymptotic variance Ω and the
asymptotic bias B1 originate from the C(1) term, while the two further bias terms B2 and B3

originate from the C(2) term of CNT .
The bias B1 is due to correlation of the errors eit and the regressors Xk,iτ in the time direction

(for τ > t). This bias term generalizes the Nickell (1981) bias that occurs in dynamic models
with standard fixed effects, and it is not present in Bai (2009), where only strictly exogenous
regressors are considered.

The other two bias terms B2 and B3 are already described in Bai (2009). If eit is homoscedas-
tic, i.e. if E(eit) = σ2, then E (ee′) = σ2IN and E (e′e) = σ2IT , so that B2 = 0 and B3 = 0
(because the trace is cyclical and f0′Mf0 = 0 and λ0′Mλ0 = 0). Thus, B2 is only non-zero if eit
is heteroscedastic across i, and B3 is only non-zero if eit is heteroscedastic over t. Correlation
in eit across i or over t would also generate non-zero bias terms of exactly the form B2 and B3,
but is ruled out by our assumptions.

14Assumption 2 and 3∗ are implied by Assumption 5 and therefore need not be explicitly assumed here.
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4.3 Bias Correction

In order to express our estimators for the asymptotic bias and the asymptotic variance of β̂ we
first have to introduce some notation.

Definition 1. Let Γ : R → R be the truncation kernel defined by Γ(x) = 1 for |x| ≤ 1, and
Γ(x) = 0 otherwise. Let M be a bandwidth parameter that depends on N and T . For an N ×N
matrix A with elements Aij and a T × T matrix B with elements Bts we define

(i) the diagonal truncations AtruncD = diag[(Aii)i=1,...,N ] and BtruncD = diag[(Btt)t=1,...,T ].

(ii) the right-sided Kernel truncation of B, which is a T × T matrics BtruncR with elements
BtruncR
ts = Γ

(
s−t
M

)
Bts for t < s, and BtruncR

ts = 0 otherwise.

Here, we suppress the dependence of BtruncR on the bandwidth parameter M . Estimators
for W , Ω, B1, B2, and B3 are obtained by forming suitable sample analogs and replacing the
unobserved λ0, f0 and e by the estimates λ̂, f̂ and the residuals ê.

Definition 2. Let X̂k = MbλXkM bf . For each i and t, define the K-vector X̂it = (X̂1,it, . . . , X̂K,it)′.
We define the K ×K matrices Ŵ and Ω̂, and the K-vectors B̂1, B̂2 and B̂3 as follows

Ŵ =
1
NT

N∑
i=1

T∑
t=1

X̂it X̂ ′it ,

Ω̂ =
1
NT

N∑
i=1

T∑
t=1

(êit)2 X̂it X̂ ′it ,

B̂1,k =
1
N

Tr
[
P bf (ê′Xk

)truncR
]
,

B̂2,k =
1
T

Tr
[(
ê ê′
)truncD

MbλXk f̂ (f̂ ′f̂)−1 (λ̂
′
λ̂)−1 λ̂

′]
,

B̂3,k =
1
N

Tr
[(
ê′ ê
)truncD

M bf X ′k λ̂ (λ̂
′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′

]
,

where ê = Y − β̂ ·X − λ̂ f̂ ′.

Notice that the estimators Ω̂, B̂2, and B̂3 are similar to White’s standard error estimator
under heteroskedasticity and the estimator B̂1 is similar to the HAC estimator with a kernel.
To show consistency of these estimators we impose some additional assumptions.

Assumption 7.

(i) ‖λ0
i ‖ and ‖f0

t ‖ are uniformly bounded over i, t and N , T .

(ii) There exists c > 0 and ε > 0 such that for all i, t,m,N, T we have∣∣∣ 1
N

∑N
i=1 E(eitXk,it+m

∣∣ C)∣∣∣ ≤ cm−(1+ε).

Assumption 7(i) is made for convenience in order to simplify the consistency proof for the
estimators in Definition 2. It is possible to weaken this assumption by only assuming suitable
bounded moments of ‖λ0

i ‖ and ‖f0
t ‖. In order to show consistency of B̂1 we need to control how

strongly eit and Xk,iτ , t < τ , are allowed to be correlated, which is done by Assumption 7(ii). It
is straightforward to verify that Assumption 7(ii) is satisfied in the two examples of regressors
processes presented below Assumption 5.
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Theorem 4.4. Let Assumptions 1, 4, 5, 6 and 7 hold, and consider a limit N,T → ∞ with
N/T → κ2, 0 < κ <∞, such that the bandwidth M = MNT satisifies M →∞ and M5/T → 0.
We then have Ŵ = W + op(1), Ω̂ = Ω + op(1), B̂1 = B1 + op(1), B̂2 = B2 + op(1), and
B̂3 = B3 + op(1).

The assumption M5/T → 0 can be relaxed if additional higher moment restrictions on eit and
Xk,it are imposed. Note also that for the construction of the estimators Ŵ , Ω̂, and B̂i, i = 1, 2, 3,
it is not necessary to know whether the regressors are strictly exogenous or predetermined; in
both cases the estimators for W , Ω, and Bi, i = 1, 2, 3, are consistent. We can now present our
bias corrected estimator and its limiting distribution.

Corollary 4.5. Under the assumptions of Theorem 4.4 the bias corrected estimator

β̂
∗

= β̂ + Ŵ−1
(
T−1B̂1 +N−1B̂2 + T−1B̂3

)
satisfies

√
NT

(
β̂
∗
− β0

)
→d N

(
0, W−1 ΩW−1

)
.

According to Theorem 4.4, a consistent estimator of the asymptotic variance of β̂
∗

is given
by Ŵ−1 Ω̂ Ŵ−1.

An alternative to the analytical bias correction result given by Corollary 4.5 is to use Jackknife
bias correction in order to eliminate the asymptotic bias. For panel models with incidental
parameters only in the cross-sectional dimensions one typical finds a large N,T leading incidental
parameter bias of order 1/T for the parameters of interest. To correct for this 1/T bias one can
use the delete-one Jackknife bias correction if observations are iid over t (Hahn and Newey, 2004)
and the split-panel Jackknife bias correction if observations are correlated over t (Dhaene and
Jochmans, 2010). In our current model we have incidental parameters in both panel dimensions
(λ0
i and f0

t ), resulting in leading bias terms of order 1/T (bias term B1 and B3) and of order
1/N (bias term B2). The generalizations of the split-panel Jackknife bias correction to that case
was discussed in Fernández-Val and Weidner (2013).

The corresponding bias corrected split-panel Jackknife estimator reads β̂
J

= 3β̂NT−βN,T/2−
βN/2,T , where β̂NT = β̂ is the LS estimator obtained from the full sample, βN,T/2 is average of
the two LS estimators that leave out the first and second halves of the time periods, and βN/2,T
is the average of the two LS estimators that leave out half of the individuals. Jackknife bias
correction is convenient since only the order of the bias, but not the structure of the terms B1,
B2, B3 needs not be known in detail. However, one requires additional stationarity assumptions
over t and homogeneity assumptions across i in order to justify the Jackknife correction and to
show that β̂

J
has the same limiting distribution as β̂

∗
in Corollary 4.5, see Fernández-Val and

Weidner (2013) for more details. Jackknife bias correction is not explored further in this paper.

5 Testing Restrictions on β0

In this section we discuss the three classical test statistics for testing linear restrictions on β0.
The null-hypothesis is H0 : Hβ0 = h, and the alternative is Ha : Hβ0 6= h, where H is an
r ×K matrix of rank r ≤ K, and h is an r × 1 vector. We restrict the presentation to testing a
linear hypothesis for ease of exposition. One can easily generalize the discussion to the testing of
non-linear hypotheses. Throughout this subsection we assume that β0 is an interior point of B,
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i.e. there are no local restrictions on β as long as the null-hypothesis is not imposed. Using the
expansion of LNT (β) one could also discuss testing when the true parameter is on the boundary,
as shown in Andrews (2001).

The restricted estimator is defined by

β̃ = argmin
β∈eB LNT (β) ,

where B̃ = {β ∈ B|Hβ = h} is the restricted parameter set. Analogous to Theorem 4.3 for the
unrestricted estimator β̂, we can use the expansion of the profile objective function to derive the
limiting distribution of the restricted estimator. Under the assumptions of Theorem 4.3 we have

√
NT (β̃ − β0) −→

d
N
(
W−1B, W−1 Ω W−1

)
,

where W−1 = W−1−W−1H ′(HW−1H ′)−1HW−1. The K×K covariance matrix in the limiting
distribution of β̃ is not full rank, but satisfies rank(W−1 Ω W−1) = K − r, because HW−1 = 0
and thus rank(W−1) = K − r. The asymptotic distribution of

√
NT (β̃ − β0) is therefore K − r

dimensional, as it should be for the restricted estimator.

Wald Test

Using the result of Theorem 4.3 we find that under the null-hypothesis
√
NT

(
Hβ̂ − h

)
is asymp-

totically distributed as N
(
HW−1B, HW−1 ΩW−1H ′

)
. Thus, due to the presence of the bias B,

the standard Wald test statistics WDNT = NT
(
Hβ̂ − h

)′ (
HŴ−1 Ω̂ Ŵ−1H ′

)−1 (
Hβ̂ − h

)
is

not asymptotically χ2
r distributed. Using the estimator B̂ ≡ −

√
N
T B̂1 −

√
T
N B̂2 −

√
N
T B̂3 for

the bias we can define the bias corrected Wald test statistics as

WD∗NT =
[√

NT
(
Hβ̂ − h

)
−HŴ−1B̂

]′ (
HŴ−1 Ω̂ Ŵ−1H ′

)−1 [√
NT

(
Hβ̂ − h

)
−HŴ−1B̂

]
.

(5.1)

Under the null hypothesis and the Assumptions of Theorem 4.4 we find WD∗NT →d χ
2
r .

Likelihood Ratio Test

To implement the LR test we need the relationship between the asymptotic Hessian W and the
asymptotic score variance Ω of the profile objective function to be of the form Ω = cW , where c >
0 is a scalar constant. This is satisfied in our interactive fixed effect model if Ee2

it = c, i.e. if the
error is homoskedastic. A consistent estimator for c is then given by ĉ = (NT )−1

∑N
i=1

∑T
t=1 ê

2
it,

where ê = Y − β̂ ·X − λ̂ f̂ ′. Since the likelihood function for the interactive fixed effect model
is just the sum of squared residuals, we have ĉ = LNT (β̂). The likelihood ratio test statistics is
defined by

LRNT = ĉ−1NT
[
LNT

(
β̃
)
− LNT

(
β̂
)]

.

Under the assumption of Theorem 4.3 we then have

LRNT −→
d

c−1C ′W−1H ′(HW−1H ′)−1HW−1C ,
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where C ∼ N (B,Ω), i.e. CNT →dC. This is the same limiting distribution that one finds for
the Wald test if Ω = cW (in fact, one can show WDNT = LRNT + op(1)). Therefore, we need
to do a bias correction for the LR test in order to achieve a χ2 limiting distribution. We define

LR∗NT = ĉ−1NT

[
min

{β∈B|Hβ=h}
LNT

(
β + (NT )−1/2Ŵ−1B̂

)
−min

β∈B
LNT

(
β + (NT )−1/2Ŵ−1B̂

)]
,

(5.2)

where B̂ and Ŵ do not depend on the parameter β in the minimization problem.15 Asymptot-
ically we have minβ∈B LNT

(
β + (NT )−1/2Ŵ−1B̂

)
= LNT (β̂), because β ∈ B does not impose

local constraints, i.e. close to β0 it does not matter for the value of the minimum whether one
minimizes over β or over β + (NT )−1/2Ŵ−1B̂. The correction to the LR test therefore origi-
nates from the first term in LR∗NT . For the minimization over the restricted parameter set it
matters whether the argument of LNT is β or β+ (NT )−1/2Ŵ−1B̂, because generically we have
HW−1B 6= 0 (otherwise no correction would be necessary for the LR statistics). One can show
that

LR∗NT −→
d

c−1(C −B)′W−1H ′(HW−1H ′)−1HW−1(C −B) ,

i.e. we obtain the same formula as for LRNT , but the limit of the score C is replaced by the
bias corrected term C − B. Under the Assumptions of Theorem 4.4, if H0 is satisfied, and
for homoscedastic errors eit, we then have LR∗NT →d χ

2
r . In fact, one can show that LR∗NT =

WD∗NT + op(1).

Lagrange Multiplier Test

Let ∇̃LNT be the gradient of the LS objective function (3.1) with respect to β, evaluated at the
restricted parameter estimates, i.e.

∇̃LNT ≡ ∇LNT (β̃, λ̃, f̃) =

(
∂LNT (β, λ̃, f̃)

∂β1

∣∣∣∣
β=eβ, . . . ,

∂LNT (β, λ̃, f̃)
∂βK

∣∣∣∣
β=eβ

)′
= − 2

NT

(
Tr
(
X ′1ẽ

)
, . . . ,Tr

(
X ′K ẽ

) )′
,

where λ̃ = λ̂(β̃), f̃ = f̂(β̃), and ẽ = Y − β̃ ·X − λ̃ f̃ ′. Under the Assumptions of Theorem 4.3,
and if the null hypothesis H0 : Hβ0 = h is satisfied, one finds that16

√
NT ∇̃LNT =

√
NT ∇LNT (β̃) + op(1). (5.3)

Due to this equation, one can base the Lagrange multiplier test on the gradient of LNT (β̃, λ̃, f̃),
or on the gradient of the profile quasi-likelihood function LNT (β̃) and obtains the same limiting
distribution.

15Alternatively, one could use bB(eβ) and cW (eβ) as estimates for B and W , and would obtain the same limiting
distribution of LR∗NT under the null hypothesis H0. These alternative estimators are not consistent if H0 is false,
i.e. the power-properties of the test would be different. The question which specification should be preferred is
left for future research.

16The proof of the statement is given in the appendix as part of the proof of Theorem 5.2.
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Using the bound on the remainder RNT (β) given in Theorem 4.1, one cannot infer any
properties of the score function, i.e. of the gradient ∇LNT (β), because nothing is said about
∇RNT (β). The following theorem gives the bound on ∇RNT (β) that is sufficient to derive the
limiting distribution of the Lagrange multiplier.

Theorem 5.1. Under the assumptions of Theorem 4.1, and with WNT and CNT as defined
there, the score function satisfies

∇LNT (β) = 2WNT (β − β0) − 2√
NT

CNT +
1
NT
∇RNT (β) ,

where the remainder ∇RNT (β) satisfies for any sequence ηNT → 0

sup
{β:‖β−β0‖≤ηNT }

‖∇RNT (β)‖
√
NT

(
1 +
√
NT

∥∥β − β0
∥∥) = op (1) .

From this theorem, and the fact that β̃ is
√
NT -consistent under H0, we obtain

√
NT ∇̃LNT =

√
NT ∇Lq,NT (β̃) + op(1)

= 2
√
NT WNT (β̃ − β0)− 2CNT + op(1) .

Using this result and the known limiting distribution of β̃ we now find
√
NT ∇̃LNT −→

d
−2H ′(HW−1H ′)−1HW−1C . (5.4)

The LM test statistics is therefore given by17

LMNT =
NT

4
(∇̃LNT )′W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1∇̃LNT ,

where B̃, W̃ and Ω̃ are defined like B̂, Ŵ and Ω̂, but with unrestricted parameter estimates
replaced by restricted parameter estimates. One can show that the LM test is asymptotically
equivalent to the Wald test: LMNT = WDNT + op(1), i.e. again bias correction is necessary.
We define the bias corrected LM test statistics as

LM∗NT =
1
4

(√
NT ∇̃LNT + 2B̃

)′
W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1

(√
NT ∇̃LNT + 2B̃

)
.

(5.5)

The following theorem summarizes the main results of the present subsection.

Theorem 5.2. Let the assumptions of Theorem 4.4 and the null hypothesis H0 : Hβ0 = h be
satisfied. For the bias corrected Wald and LM test statistics introduced in equation (5.1) and
(5.5) we then have

WD∗NT −→
d

χ2
r , LM∗NT −→

d
χ2
r .

If in addition we assume Ee2
it = c, i.e. the idiosyncratic errors are homoscedastic, and we use

ĉ = LNT (β̂) as an estimator for c, then the LR test statistics defined in equation (5.2) satisfies

LR∗NT −→
d

χ2
r .

17Note also that
√
NTHW−1∇LNT (eβ) →d −2HW−1C.
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6 Extension to Endogenous Regressors

In this section we briefly discuss how to estimate the regression coefficient β0 of Model (2.1)
when some of the regressors in Xit are endogenous with respect to the regression error eit. The
question is how instrumental variables can be used to estimate the regression coefficients of the
endogenous regressor in the presence of the interactive fixed effects λ0′

i f
0
t .

In the existing literature similar questions were already investigated under various setups.
Harding and Lamarche (2009; 2011) investigate the problem of estimating an endogenous panel
(quantile) regression with interactive fixed effects and show how to use IVs in the CCE estimation
framework. Moon, Shum and Weidner (2012) (hereafter MSW) estimate a random coefficient
multinomial demand model (as in Berry, Levinsohn and Pakes (1995))) when the unobserved
product-market characteristics have interactive fixed effects. The IVs are required to identify
the parameters of the random coefficient distribution and to control for price endogeneity. They
suggested a multi-step “least squares-minimum distance” (LS-MD) estimator.18 The LS-MD
approach is also applicable to linear panel regression models with endogenous regressors and
interactive fixed effects, as demonstrated in Lee, Moon, and Weidner (2012) for the case of a
dynamic linear panel regression model with interactive fixed effects and measurement error.

We now discuss how to implement the LS-MD estimation in our setup. Let Xend
it be the

vectors of endogenous regressors, and let Xexo
it be the vector of exogenous regressors, with respect

to eit, such that Xit = (Xend′
it , Xexo′

it )′. The model then reads

Yit = β0′
endX

end
it + β0′

exoX
exo
it + λ0′

i f
0
t + eit,

where E
(
eitX

exo
it |λ

0, f0
)

= 0, but E
(
eitX

end
it |λ

0, f0
)
6= 0. Suppose that Zit is an additional L-

vector of instrumental variables (IVs) such that E
(
eitZit|λ0, f0

)
= 0, but Zit may be correlated

with λ0
i and f0

t . The LS-MD estimator of β0 =
(
β0′

end, β
0′
exo

)′ can then be calculated by the
following three steps:

(1) For given βend we run the least squares regression of Yit − β′endX
end
it on the included

exogeneous regressors Xexo
it , the interactive fixed effects λ′ift, and the IVs Zit :(

β̃exo (βend) , γ̃ (βend) , λ̃ (βend) , f̃ (βend)
)

= argmin
{βexo,γ,λ,f}

N∑
i=1

T∑
t=1

(
Yit − β′endX

end
it − β′exoX

exo
it − γ′Zit − λ′ift

)2
.

(2) We estimate βend by finding γ̃ (βend), obtained by step (1), that is closest to zero. For this,
we choose a symmetric positive definite L× L weight matrix W γ

NT and compute

β̂end = argmin
βend

γ̃ (βend)′ W γ
NT γ̃ (βend) .

(3) We estimate βexo (and λ, f) by running the least squares regression of Yit − β̂
′
endX

end
it on

the included exogeneous regressors Xexo
it and the interactive fixed effects λ′ift:(

β̂exo, λ̂, f̂
)

= argmin
{βexo,γ,λ,f}

N∑
i=1

T∑
t=1

(
Yit − β̂

′
endX

end
it − β′exoX

exo
it − λ′ift

)2
.

18Chernazhukov and Hansen (2005) also used a similar method for estimating endogenous quantile regression
models.
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The idea behind this estimation procedure is that valid instruments are excluded from the model
for Yit, so that their first step regression coefficients γ̃ (βend) should be close to zero if βend is
close to its true value β0

end. Thus, as long as Xexo
it and Zit jointly satisfy the assumptions of the

current paper we obtain γ̃
(
β0

end

)
= op(1) for the first step LS estimator, and we also obtain the

asymptotic distribution of γ̃
(
β0

end

)
from the results derived in Section 4.

However, to justify the second step minimization formally one needs to study the properties
of γ̃ (βend) also for βend 6= β0

end. For this we refer to MSW. Our βend, βexo, and Yit − β′endX
end
it

correspond to their α, β and δjt (α), respectively. The Assumptions 1 to 5 in MSW can be
translated accordingly, and the results in MSW show large N,T consistency and asymptotic
normality of the LS-MD estimator.

The final step of the LS-MD estimation procedure is essentially a repetition of the first step,
but without including Zit in the set of regressors, which results in some efficiency gains for β̂exo

compared to the first step.

7 Monte Carlo Simulations

We consider an AR(1) model with R = 1 factors:

Yit = ρ0 Yi,t−1 + λ0
i f

0
t + eit .

We estimate the model as an interactive fixed effect model, i.e. no distributional assumption
on λ0

i and f0
t are made in the estimation. The parameter of interest is ρ0. The estimators we

consider are the OLS estimator (which completely ignores the presence of the factors), the least
squares estimator with interactive fixed effects (denoted FLS in this section to differentiate from
OLS) defined in equation (3.2),19 and its bias corrected version (denoted BC-FLS), defined in
Theorem 4.5.

For the simulation we draw the eit independently and identically distributed from a t-
distribution with five degrees of freedom, the λ0

i independently distributed from N (1, 1), and
we generate the factors from an AR(1) specification, namely f0

t = ρf f
0
t−1 + ut, where ut ∼

iidN (0, (1−ρ2
f )σ2

f ), and σf is the standard deviation of f0
t . For all simulations we generate 1000

initial time periods for f0
t and Yit that are not used for estimation. This guarantees that the

simulated data used for estimation is distributed according to the stationary distribution of the
model.

In this setup there is no correlation and heteroscedasticity in eit, i.e. only the bias term B1

of the LS estimator is non-zero, but we ignore this information in the estimation, i.e. we correct
for all three bias terms (B1, B2, and B3, as introduced in Assumption 6) in the bias corrected
LS estimator.

Table 1 shows the simulation results for the bias, standard error and root mean square error
of the three different estimators for the case N = 100, ρf = 0.5, σf = 0.5, and different values
of ρ0 and T . As expected, the OLS estimator is biased due to the factor structure and its bias
does not vanish (it actually increases) as T increases. The FLS estimator is also biased, but
as predicted by the theory its bias vanishes as T increases. The bias corrected FLS estimator
performs even better than the non-corrected LS estimator, in particular its bias vanishes even
faster. Since we only correct for the first order bias of the FLS estimator, we could not expect
the bias corrected FLS estimator to be unbiased. However, as T gets larger more and more of

19Here we can either use B = (−1, 1), or B = R. In the present model we only have high-rank regressors, i.e.
the parameter space need not be bounded to show consistency.
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the LS estimator bias is corrected for, e.g. for ρ0 = 0.3 we find that at T = 5 the bias correction
only corrects for about half of the bias, while at T = 80 it already corrects for about 90% of it.

Table 2 is very similar to Table 1, with the only difference that we allow for misspecification
in the number of factors R, namely the true number of factors is assumed to be R = 1 (i.e.
same DGP as for Table 1), but we incorrectly use R = 2 factors when calculating the FLS and
BC-FLS estimator. By comparing Table 2 with Table 1 we find that this type of misspecification
of the number of factors increases the bias and the standard deviation of both the FLS and the
BC-FLS estimator at finite sample. That increase, however, is comparatively small once both N
and T are large. According to the results in Moon and Weidner (2013) we expect the limiting
distribution of the correctly specified (R = 1) and incorrectly specified (R = 2) FLS estimator
to be identical when N and T grow at the same rate. Our simulations suggest that the same
is true for the BC-FLS estimator, which was not explored in Moon and Weidner (2013). The
remaining simulation all assume correctly specified R = 1.

An import issue is the choice of bandwidth M for the bias correction. Table 3 gives the
fraction of the FLS estimator bias that is captured by the estimator for the bias in a model with
N = 100, T = 20, ρf = 0.5, σf = 0.5 and different values for ρ and M . The table shows that
the optimal bandwidth (in the sense that most of the bias is corrected for) depends on ρ0: it is
M = 1 for ρ = 0, M = 2 for ρ = 0.3, M = 3 and ρ = 0.6, and M = 5 for ρ = 0.9. Choosing
the bandwidth too large or too small results in a smaller fraction of the bias to be corrected.
Table 4 also reports the properties of the BC-FLS estimator for different values of ρ0, T and
M . It shows that the effect of the bandwidth choice on the standard deviation of the BC-FLS
estimator is relatively small at T = 40, but is more pronounced at T = 20. The issue of optimal
bandwidth choice is therefore an important topic for future research. In the simulation results
presented here we tried to choose reasonable values for M , but made no attempt of optimizing
the bandwidth.

In our setup we have ‖λ0f0′‖ ≈
√

2NTσf and ‖e‖ ≈
√
N +
√
T .20 Assumption 1 and 3 imply

that asymptotically ‖λ0f0′‖ � ‖e‖. We can therefore only be sure that our asymptotic results
for the FLS estimator distribution are a good approximation of the finite sample properties if
‖λ0f0′‖ & ‖e‖, i.e. if

√
2NTσf &

√
N +

√
T . To explore this we present in Table 5 simulation

results for N = 100, T = 20, ρ0 = 0.6, and different values of ρf and σf . In the case σf = 0 we
have 0 = ‖λ0f0′‖ � ‖e‖, and this case is equivalent to R = 0 (no factor at all). In this case the
OLS estimator estimates the true model and is almost unbiased, and correspondingly the FLS
estimator and the bias corrected FLS estimator perform worse than OLS at finite sample (though
we expect that all three estimators are asymptotically equivalent), but the bias corrected FLS
estimator has a lower bias and a lower variance than the non-corrected FLS estimator. The
case σf = 0.2 corresponds to ‖λ0f0′‖ ≈ ‖e‖, and one finds that the bias and the variance of
the OLS estimator and of the LS estimator are of comparable size. However, the bias corrected
FLS estimator already has much smaller bias and a bit smaller variance in this case. Finally,
in the case σf = 0.5 we have ‖λ0f0′‖ > ‖e‖, and we expect our asymptotic results to be a
good approximation of this situation. Indeed, one finds that for σf = 0.5 the OLS estimator is
heavily biased and very inefficient compared to the FLS estimator, while the bias corrected FLS
estimator performs even better in terms of bias and variance.

In Table 6 we present simulation results for the size of the various tests discussed in the
last section when testing the Null hypothesis H0 : ρ = ρ0. We choose a nominal size of 5%,
ρf = 0.5, σf = 0.5, and different values for ρ0, N and T . In all cases, the size distortions of

20To be precise, we have ‖λ0f0′‖/(
√

2NTσf ) →p 1, and ‖e‖/(
√
N +

√
T ) →p 1.
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the uncorrected Wald, LR and LM test are rather large, and the size distortions of these test
do not vanish as N and T increase: the size for N = 100 and T = 20 is about the same as for
N = 400 and T = 80, and the size for N = 400 and T = 20 is about the same as for N = 1600
and T = 80. In contrast, the size distortions for the bias corrected Wald, LR, and LM test are
much smaller, and tend to zero (i.e. the size becomes closer to 5%) as N,T increase, holding
the ratio N/T constant. For fixed T an increase in N results in a larger size distortion, while
for fixed N an increase in T results in a smaller size distortion (both for the non-corrected and
for the bias corrected tests).

In Table 7 and 8 we present the power and the size corrected power when testing the left sided
alternative H left

a : ρ = ρ0− (NT )−1/2 and the right-sided alternative Hright
a : ρ = ρ0 + (NT )−1/2.

The model specifications are the same as for the size results in table 4. Since both the FLS
estimator and the bias corrected FLS estimator for ρ have a negative bias one finds the power
for the left-sided alternative to be much smaller than the power for the right-sided alternative.
For the uncorrected tests this effect can be extreme and the size-corrected power of these tests
for the left sided alternative is below 2% in all cases, and does not improve as N and T become
large, holding N/T fixed. In contrast, the power for the bias corrected tests becomes more
symmetric as N and T become large, and the size-corrected power for the left sided alternative
is much larger than for the uncorrected tests, while the size corrected power for the right sided
alternative is about the same.

8 Conclusions

This paper studies the least squares estimator for dynamic linear panel regression models with
interactive fixed effects. We provide conditions under which the estimator is consistent, allowing
for predetermined regressors, and for a general combination of “low-rank” and “high-rank” re-
gressors. We then show how a quadratic approximation of the profile objective function LNT (β)
can be used to derive the first order asymptotic theory of the LS estimator of β under the alterna-
tive asymptotic N,T →∞. We find that the asymptotic distribution of the LS estimator can be
asymptotically biased (i) due to weak exogeneity of the regressors and (ii) due and heteroscedas-
ticity (and correlation) of the idiosyncratic errors eit. Consistent estimators for the asymptotic
covariance matrix and for the asymptotic bias of the LS estimator are provided, and thus a bias
corrected LS estimator is given. We furthermore study the asymptotic distributions of the Wald,
LR and LM test statistics for testing a general linear hypothesis on β. The uncorrected test
statistics are not asymptotically chi-square due to the asymptotic bias of the score and of the LS
estimator, but bias corrected test statistics that are asymptotically chi-square distributed can
be constructed. A possible extensions of the estimation procedure to the case of endogeneous
regressors is also discussed. The findings of our Monte Carlo simulations show that our asymp-
totic results on the distribution of the (bias corrected) LS estimator and of the (bias corrected)
test statistics provide a good approximation of their finite sample properties. Although the bias
corrected LS estimator has a non-zero bias at finite sample, this bias is much smaller than the
one of the LS estimator. Analogously, the size distortions and power asymmetries of the bias
corrected Wald, LR and LM test are much smaller than for the non-bias corrected versions.
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Appendix

A Examples of Error Distributions

Under each of the following distributional assumptions on the errors eit, i = 1, . . . , N , t =
1, . . . , T , we have ‖e‖ = Op(

√
max(N,T )). The proofs are given in the supplementary material.

(i) The eit are independent across i and t, they satisfy Eeit = 0, and Ee4
it is bounded uniformly

over i, t and N,T .

(ii) The eit follow different MA(∞) process for each i, namely

eit =
∞∑
τ=0

ψiτ ui,t−τ , for i = 1 . . . N, t = 1 . . . T , (A.1)

where the uit, i = 1 . . . N , t = −∞ . . . T are independent random variables with Euit = 0
and Eu4

it uniformly bounded across i, t and N,T . The coefficients ψiτ satisfy

∞∑
τ=0

τ max
i=1...N

ψ2
iτ < B ,

∞∑
τ=0

max
i=1...N

|ψiτ | < B , (A.2)

for a finite constant B which is independent of N and T .

(iii) The error matrix e is generated as e = σ1/2 uΣ1/2, where u is an N × T matrix with
independently distributed entries uit and Euit = 0, Eu2

it = 1, and Eu4
it is bounded uniformly

across i, t and N,T . Here σ is the N ×N cross-sectional covariance matrix, and Σ is T ×T
time-serial covariance matrix, and they satisfy

max
j=1...N

N∑
i=1

|σij | < B , max
τ=1...T

T∑
t=1

|Σtτ | < B , (A.3)

for some finite constant B which is independent of N and T . In this example we have
Eeitejτ = σijΣtτ .

B Proof of Identification (Theorem 2.1)

Proof of Theorem 2.1. Let Q(β, λ, f) ≡ E
(
‖Y − β ·X − λ f ′‖2F

)
, where β ∈ RK , λ ∈

RN×R and f ∈ RT×R. We have

Q(β, λ, f)

= E
{

Tr
[(
Y − β ·X − λ f ′

)′ (
Y − β ·X − λ f ′

)] ∣∣∣λ0, f0, w
}

= E
{

Tr
[(
λ0f0′ − λf ′ − (β − β0) ·X + e

)′ (
λ0f0′ − λf ′ − (β − β0) ·X + e

)] ∣∣∣λ0, f0, w
}

= E
[
Tr
(
e′e
) ∣∣∣λ0, f0, w

]
+ E

{
Tr
[(
λ0f0′ − λf ′ − (β − β0) ·X

)′ (
λ0f0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f0, w
}

︸ ︷︷ ︸
≡Q∗(β,λ,f)

.
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In the last step we used Assumption ID(ii). Since E
[
Tr (e′e)

∣∣∣λ0, f0, w
]

is independent of β, λ, f ,
we find that minimizing Q(β, λ, f) is equivalent to minimizing Q∗(β, λ, f). We decompose
Q∗(β, λ, f) as follows

Q∗(β, λ, f)

= E
{

Tr
[(
λ0f0′ − λf ′ − (β − β0) ·X

)′ (
λ0f0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f0, w
}

= E
{

Tr
[(
λ0f0′ − λf ′ − (β − β0) ·X

)′
M(λ,λ0,w)

(
λ0f0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f0, w
}

+ E
{

Tr
[(
λ0f0′ − λf ′ − (β − β0) ·X

)′
P(λ,λ0,w)

(
λ0f0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f0, w
}

= E
{

Tr
[(

(βhigh − β0
high) ·Xhigh

)′
M(λ,λ0,w)

(
(βhigh − β0

high) ·Xhigh

)] ∣∣∣λ0, f0, w
}

︸ ︷︷ ︸
≡Qhigh(βhigh,λ)

+ E
{

Tr
[(
λ0f0′ − λf ′ − (β − β0) ·X

)′
P(λ,λ0,w)

(
λ0f0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f0, w
}

︸ ︷︷ ︸
≡Qlow(β,λ,f)

,

where (βhigh − β0
high) · Xhigh =

∑K
m=K1+1(βm − β0

m)Xm. A lower bound on Qhigh(βhigh, λ) is
given by

Qhigh(βhigh, λ)

≥ mineλ∈RN×(R+R+rank(w))
E
{

Tr
[(

(βhigh − β0
high) ·Xhigh

)′
M

(eλ,λ,w)

(
(βhigh − β0

high) ·Xhigh

)] ∣∣∣λ0, f0, w
}

=
min(N,T )∑

r=R+R+rank(w)

E
[(

(βhigh − β0
high) ·Xhigh

) (
(βhigh − β0

high) ·Xhigh

)′ ∣∣∣λ0, f0, w
]
. (B.1)

Since Q∗(β, λ, f), Qhigh(βhigh, λ), and Qlow(β, λ, f), are expectations of traces of positive
semi-definite matrices we have Q∗(β, λ, f) ≥ 0, Qhigh(βhigh, λ) ≥ 0, and Qlow(β, λ, f) ≥ 0 for
all β, λ, f . Let β̄, λ̄ and f̄ be the parameter values that minimize Q(β, λ, f), and thus also
Q∗(β, λ, f). Since Q∗(β0, λ0, f0) = 0 we have Q∗(β̄, λ̄, f̄) = minβ,λ,f Q∗(β, λ, f) = 0. This
implies Q∗(β̄, λ̄, f̄), and thus also Qhigh(β̄high, λ̄) = 0, and Qlow(β̄, λ̄, f̄) = 0. Assumption ID(v),
the lower bound (B.1), and Qhigh(β̄high, λ̄) = 0 imply that β̄high = β0

high. Using this we find that

Qlow(β̄, λ̄, f̄)

= E
{

Tr
[(
λ0f0′ − λ̄f̄ ′ − (β̄low − β0

low) ·Xlow

)′ (
λ0f0′ − λ̄f̄ ′ − (β̄low − β0

low) ·Xlow

)] ∣∣∣λ0, f0, w
}
,

≥ min
f

E
{

Tr
[(
λ0f0′ − λ̄f ′ − (β̄low − β0

low) ·Xlow

)′ (
λ0f0′ − λ̄f ′ − (β̄low − β0

low) ·Xlow

)] ∣∣∣λ0, f0, w
}

= E
{

Tr
[(
λ0f0′ − (β̄low − β0

low) ·Xlow

)′
Mλ̄

(
λ0f0′ − (β̄low − β0

low) ·Xlow

)] ∣∣∣λ0, f0, w
}
, (B.2)

where (β̄low− β0
low) ·Xlow =

∑K1
l=1(β̄l− β0

l )Xl. Since Qlow(β̄, λ̄, f̄) = 0 and the last expression in
(B.2) is non-negative we must have

E
{

Tr
[(
λ0f0′ − (β̄low − β0

low) ·Xlow

)′
Mλ̄

(
λ0f0′ − (β̄low − β0

low) ·Xlow

)] ∣∣∣λ0, f0, w
}

= 0.
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Since rank(λ̄) ≤ R this implies that

rank
{

E
[(
λ0f0′ − (β̄low − β0

low) ·Xlow

) (
λ0f0′ − (β̄low − β0

low) ·Xlow

)′ ∣∣∣λ0, f0, w
]}
≤ R.

We furthermore find

R ≥ rank
{

E
[(
λ0f0′ − (β̄low − β0

low) ·Xlow

) (
λ0f0′ − (β̄low − β0

low) ·Xlow

)′ ∣∣∣λ0, f0, w
]}

≥ rank
{
MwE

[(
λ0f0′ − (β̄low − β0

low) ·Xlow

)
Pf0

(
λ0f0′ − (β̄low − β0

low) ·Xlow

)′
Mw

∣∣∣λ0, f0, w
]}

+ rank
{
PwE

[(
λ0f0′ − (β̄low − β0

low) ·Xlow

)
Mf0

(
λ0f0′ − (β̄low − β0

low) ·Xlow

)′
Pw

∣∣∣λ0, f0, w
]}

≥ rank
[
Mwλ

0f0′f0λ0′Mw

]
+ rank

{
E
[(

(β̄low − β0
low) ·Xlow

)
Mf0

(
(β̄low − β0

low) ·Xlow

)′ ∣∣∣λ0, f0, w
]}

.

Assumption ID(iv) guarantees that rank
(
Mwλ

0f0′f0λ0′Mw

)
= rank

(
λ0f0′f0λ0′) = R, i.e. we

must have

E
[(

(β̄low − β0
low) ·Xlow

)
Mf0

(
(β̄low − β0

low) ·Xlow

)′ ∣∣∣λ0, f0, w
]

= 0.

According to Assumption ID(iii) this implies β̄low = β0
low, i.e. we have β̄ = β0. This also implies

Q∗(β̄, λ̄, f̄) = ‖λ0f0′ − λ̄f̄ ′‖2F = 0, and thereofere λ̄f̄ ′ = λ0f0′.

C Proof of Consistency (Theorem 3.1)

The following theorem is useful for the consistency proof and beyond.

Theorem C.1. Let N , T , R, R1 and R2 be positive integers such that R ≤ N , R ≤ T , and
R = R1 +R2. Let Z be an N × T matrix, λ be an N ×R, f be a T ×R matrix, λ̃ be an N ×R1

matrix, and f̃ be a T × R2 matrix. Then the following six expressions (that are functions of Z
only) are equivalent:

min
f,λ

Tr
[(
Z − λf ′

) (
Z ′ − fλ′

)]
= min

f
Tr(ZMf Z

′) = min
λ

Tr(Z ′Mλ Z)

= min
λ̄,f̄

Tr(Meλ ZM ef Z ′) =
T∑

i=R+1

µi(Z
′Z) =

N∑
i=R+1

µi(ZZ
′)

In the above minimization problems we do not have to restrict the matrices λ, f , λ̃ and f̃ to
be of full rank. If for example λ is not of full rank we can still define (λ′λ)−1 as a generalized
inverse. The projector Mλ is therefore still defined in this case and satisfied Mλλ = 0 and
rank(Mλ) = N − rank(λ). If rank(Z) ≥ R then the optimal λ, f , λ̃ and f̃ always have full rank.

Theorem C.1 shows the equivalence of the three different versions of the profile objective func-
tion in equation (3.3). It goes beyond this by also considering minimization of Tr(Meλ ZM ef Z ′)
over λ̃ and f̃ , which will be used in the consistency proof below. The proof of the theorem is
given in the supplementary material. The following lemma is due to Bai (2009).

Lemma C.2. Under the assumptions of Theorem 3.1 we have

sup
f

∣∣∣∣Tr(XkMf e
′)

NT

∣∣∣∣ = op(1) , sup
f

∣∣∣∣Tr(λ0 f0′Mf e
′)

NT

∣∣∣∣ = op(1) , sup
f

∣∣∣∣Tr(e Pf e′)
NT

∣∣∣∣ = op(1) ,

where the parameters f are T ×R matrices with rank(f) = R.
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Proof. By Assumption 2 we know that the first equation in Lemma C.2 is satisfied when
replacing Mf by the identity matrix. So we are left to show maxf

∣∣ 1
NT Tr(Ξ e′)

∣∣ = op(1), where Ξ
is either XkPf , λ0f0′Mf , or ePf . In all three cases we have ‖Ξ‖/

√
NT = Op(1) by Assumption 1,

3, and 4, respectively, and we have rank(Ξ) ≤ R. We therefore find21

sup
f

∣∣∣∣ 1
NT

Tr(ΞPf e′)
∣∣∣∣ ≤ R ‖e‖√

NT

‖Ξ‖√
NT

= op(1) .

Proof of Theorem 3.1. For the second version of the profile objective function in equation
(3.3) we write LNT (β) = minf SNT (β, f), where

SNT (β, f) =
1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk + e

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk + e

)′ ,
We have SNT (β0, f0) = 1

NT Tr
(
eMf0 e′

)
. Using Lemma (C.2) we find that

SNT (β, f) = SNT (β0, f0) + S̃NT (β, f)

+
2
NT

Tr

[(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)
Mf e

′

]
+

1
NT

Tr
(
e (Pf0 − Pf ) e′

)
= SNT (β0, f0) + S̃NT (β, f) + op(‖β − β0‖) + op(1) , (C.1)

where we defined

S̃NT (β, f) =
1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)′ .
Up to this point the consistency proof is almost equivalent to the one given in Bai (2009), but
the remainder of the proof differs from Bai, since we allow for more general low-rank regressors,
and since we allow for high-rank and low-rank regressors simultaneously. We split S̃NT (β, f) =
S̃

(1)
NT (β, f) + S̃

(2)
NT (β, f), where

S̃
(1)
NT (β, f) =

1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)′
M(λ0,w)


=

1
NT

Tr

 K∑
m=K1+1

(β0
m − βm)Xm

 Mf

 K∑
m=K1+1

(β0
m − βm)Xm

′ M(λ0,w)

 ,
S̃

(2)
NT (β, f) =

1
NT

Tr

(λ0 f0′ +
K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f0′ +

K∑
k=1

(β0
k − βk)Xk

)′
P(λ0,w)

 ,
21Here we use |Tr (C)| ≤ ‖C‖ rank (C), which holds for all square matrices C, see the supplementary material.
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and (λ0, w) is the N × (R + K1) matrix that is composed out of λ0 and the N ×K1 matrix w

defined in Assumption 4. For S̃(1)
NT (β, f) we can apply Theorem C.1 with f̃ = f and λ̃ = (λ0, w)

(the R in the theorem is now 2R+K1) to find

S̃
(1)
NT (β, f) ≥ 1

NT

N∑
i=2R+K1+1

µi

 K∑
m=K1+1

(β0
m − βm)Xm

 K∑
m=K1+1

(β0
m − βm)Xm

′
≥ b

∥∥∥βhigh − βhigh
0

∥∥∥2
, wpa1, (C.2)

where in the last step we used the existence of a constant b > 0 guaranteed by Assump-
tion 4(ii)(a), and we introduced βhigh = (βK1+1, . . . , βK)′, which refers to the K2 × 1 parameter
vector corresponding to the high-rank regressors. Similarly we define βlow = (β1, . . . , βK1

)′ for
the K1 × 1 parameter vector of low-rank regressors.

Using P(λ0,w) = P(λ0,w)P(λ0,w) and the cyclicality of the trace we see that S̃(2)
NT (β, f) can

be written as the trace of a positive definite matrix, and therefore S̃(2)
NT (β, f) ≥ 0. Note also

that we can choose β = β0 and f = f0 in the minimization problem over SNT (β, f), i.e. the
optimal β = β̂ and f = f̂ must satisfy SNT (β̂, f̂) ≤ SNT (β0, f0). Using this, equation (C.1),
S̃

(2)
NT (β, f) ≥ 0, and the bound in (C.2) we find

0 ≥ b
∥∥∥β̂high

− βhigh
0

∥∥∥2

+ op

(∥∥∥β̂high
− βhigh

0

∥∥∥)+ op

(∥∥∥β̂low
− βlow

0

∥∥∥)+ op(1) .

Since we assume that β̂
low

is bounded, the last equation implies that
∥∥∥β̂high

− βhigh
0

∥∥∥ = op(1),

i.e. β̂
high

is consistent. What is left to show is that β̂
low

is consistent, too. In the supplementary
material we show that Assumption 4(ii)(b) guarantees that there exist finite positive constants
a0, a1, a2, a3 and a4 such that

S̃
(2)
NT (β, f) ≥

a0

∥∥βlow − βlow
0

∥∥2∥∥βlow − βlow
0

∥∥2
+ a1

∥∥βlow − βlow
0

∥∥+ a2

− a3

∥∥∥βhigh − βhigh
0

∥∥∥− a4

∥∥∥βhigh − βhigh
0

∥∥∥ ∥∥∥βlow − βlow
0

∥∥∥ , wpa1.

Using consistency of β̂
high

and again boundedness of βlow this implies that there exists a > 0 such

that S̃(2)
NT (β̂, f) ≥ a

∥∥∥β̂low
− βlow

0

∥∥∥2

+ op(1). With the same argument as for β̂
high

we therefore

find
∥∥∥β̂low

− βlow
0

∥∥∥ = op(1), i.e. β̂
low

is consistent. This is what we wanted to show.

D Proof of Limiting Distribution (Theorem 4.3)

Theorem 4.1 and Corollary 4.2 are from Moon and Weidner (2013), and the proof can be found
there. Note that Assumption 4(i) implies ‖Xk‖ = Op(

√
NT ), which is assumed in Moon and

Weidner (2013). There it is also assumed that ‖e‖ = Op(
√

max(N,T )) = Op(
√
N), while we

assume ‖e‖ = op(‖N2/3‖). It is, however, straightforward to verify that the proof of Theorem
4.1 is also valid under this weaker assumption. Moon and Weidner (2013) also employs different
consistency assumptions than are demanded in Corollary 4.2, which is not important for the proof
of the corollary, since only consistency result itself enters into the proof. In the supplementary
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material we show that the assumptions of Corollary 4.2 already guarantee that WNT does not
become singular as N,T →∞.

For each k = 1, . . . ,K we define the N × T matrices Xk, X̃k and Xk as follows

Xk ≡ E
(
Xk

∣∣ C) , X̃k ≡ Xk − E
(
Xk

∣∣ C) , Xk ≡Mλ0 XkMf0 + X̃k.

Note the difference between Xk and Xk = Mλ0 XkMf0 , which was defined in Assumption 6. In
particular, conditional on C, the elements Xk,it of Xk are contemporaneously independent of the
error term eit, while the same is not true for Xk.

To present the proof of Theorem 4.3 it is convenient to first establish two technical lemmas.

Lemma D.1. Under the assumptions of Theorem 4.3 we have

(a)
1√
NT

Tr
(
Pf0 e′ Pλ0 X̃k

)
= op(1) ,

(b)
1√
NT

Tr
(
Pλ0 e X̃ ′k

)
= op(1) ,

(c)
1√
NT

Tr
{
Pf0

[
e′ X̃k − E

(
e′ X̃k

∣∣ C)]} = op(1) ,

(d)
1√
NT

Tr
(
ePf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′) = op(1) ,

(e)
1√
NT

Tr
(
e′ Pλ0 eMf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′) = op(1) ,

(f)
1√
NT

Tr
(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) = op(1) ,

(g)
1√
NT

Tr
{[
ee′ − E

(
ee′
)]
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′} = op(1) ,

(h)
1√
NT

Tr
{[
e′e− E

(
e′e
)]
Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′} = op(1) ,

(i)
1
NT

N∑
i=1

T∑
t=1

[
E
(
e2
it

)
Xit X

′
it − E

(
e2
it Xit X

′
it

∣∣ C)] = op(1),

(j)
1
NT

N∑
i=1

T∑
t=1

E
(
e2
it

) (
Xit X

′
it −XitX ′it

)
= op(1).

Lemma D.2. Under the assumptions of Theorem 4.3 we have

1√
NT

N∑
i=1

T∑
t=1

eitXit →
d
N (0,Ω) .

The proofs of Lemma D.1 and Lemma D.2 are provided in the supplementary material.
Regarding Lemma D.2, note that since eitXit is mean zero and uncorrelated across both i and t,
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conditional on C, we have

Var

(
1√
NT

N∑
i=1

T∑
t=1

eitXit

∣∣∣∣ C
)

=
1
NT

N∑
i=1

T∑
t=1

E
(
e2
it Xit X

′
it

∣∣ C)
=

1
NT

N∑
i=1

T∑
t=1

E
(
e2
it

)
Xit X

′
it + op(1)

=
1
NT

N∑
i=1

T∑
t=1

E
(
e2
it

)
XitX ′it + op(1)

= Ω + op(1), (D.1)

where we also used part (i) and (j) of Lemma D.1, and the definition of Ω in Assumptions 5. Note
that Ω is a constant, which implies that the probability limit of Var

[
1√
NT

∑N
i=1

∑T
t=1 eitXit

∣∣ C]
is independent of C. This explains why the asymptotic variance-covariance matrix in Lemma D.2
turns out to be Ω.

Using those lemmas we can now prove the theorem on the limiting distribution of β̂ in the
main text.

Proof of Theorem 4.3. We have ‖e‖ = Op(N1/2), i.e. Assumption 3∗ is satisfied. We can
therefore apply Corollary 4.2 to calculate the limiting distribution of β̂. Note that Xk = Xk −
X̃k Pf0 − Pλ0 X̃k + Pλ0 X̃k Pf0 . Using Lemmas D.1 and D.2 and Assumption 6 we find

1√
NT

C(1)
(
λ0, f0, Xk, e

)
=

1√
NT

Tr
(
Mf0 e′Mλ0 Xk

)
=

1√
NT

Tr
(
e′Xk

)
− 1√

NT
Tr
[
Pf0 E

(
e′ X̃k

∣∣ C)]
− 1√

NT
Tr
(
e′ Pλ0 X̃k

)
+

1√
NT

Tr
(
Pf0 e′ Pλ0 X̃k

)
− 1√

NT
Tr
{
Pf0

[
e′ X̃k − E

(
e′ X̃k

∣∣ C)]}
=

1√
NT

Tr
(
e′Xk

)
− 1√

NT
Tr
[
Pf0 E

(
e′Xk

∣∣ C)]+ op(1) .

→
d
N (−κB1, Ω) ,
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where we also used that E
(
e′ X̃k

∣∣ C) = E
(
e′Xk

∣∣ C). Using Lemmas D.1 we also find

1√
NT

C(2)
(
λ0, f0, Xk, e

)
=− 1√

NT

[
Tr
(
eMf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
+ Tr

(
e′Mλ0 eMf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+ Tr

(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) ]

=
1√
NT

Tr
(
ePf0 e′Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′)
− 1√

NT
Tr
{[
ee′ − E

(
ee′
)]
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′}
− 1√

NT
Tr
[
E
(
ee′
)
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′]
+

1√
NT

Tr
(
e′Pλ0 eMf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
− 1√

NT
Tr
{[
e′e− E

(
e′e
)]
Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′}
− 1√

NT
Tr
[
E
(
e′e
)
Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′]
+

1√
NT

Tr
(
e′Mλ0 XkMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′)

=− 1√
NT

Tr
[
E
(
ee′
)
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′]
− 1√

NT
Tr
[
E
(
e′e
)
Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′]+ op(1) ,

=− κ−1B2 − κB3 + op(1) ,

Combining these results we obtain

√
NT

(
β̂ − β0

)
= W−1

NT

(
1√
NT

C(1) +
1√
NT

C(1)

)
,

→
d
N
(
−W−1

(
κB1 + κ−1B2 + κB3

)
, W−1 ΩW−1

)
,

which is what we wanted to show.

E Expansions of Projectors and Residuals

The incidental parameter estimators f̂ and λ̂ as well as the residuals ê enter into the asymptotic
bias and variance estimators for the LS estimator β̂. To describe the properties of f̂ , λ̂ and ê, it is
convenient to have asymptotic expansions of the projectors Mbλ(β) and M bf (β) that correspond to

the minimizing parameters λ̂(β) and f̂(β) in equation (3.3). Note that the minimizing λ̂(β) and
f̂(β) can be defined for all values of β, not only for the optimal value β = β̂. The corresponding
residuals are ê(β) = Y − β ·X − λ̂(β) f̂ ′(β).
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Theorem E.1. Under Assumption 1, 3, and 4(i) we have the following expansions

Mbλ(β) = Mλ0 +M
(1)bλ,e +M

(2)bλ,e −
K∑
k=1

(
βk − β0

k

)
M

(1)bλ,k +M
(rem)bλ (β) ,

M bf (β) = Mf0 +M
(1)bf,e +M

(2)bf,e −
K∑
k=1

(
βk − β0

k

)
M

(1)bf,k +M
(rem)bf (β) ,

ê(β) = Mλ0 eMf0 + ê(1)
e −

K∑
k=1

(
βk − β0

k

)
ê

(1)
k + ê(rem)(β) ,

where the spectral norms of the remainders satisfy for any series ηNT → 0

sup
{β:‖β−β0‖≤ηNT }

∥∥∥M (rem)bλ (β)
∥∥∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥∥∥M (rem)bf (β)
∥∥∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥∥ê(rem)(β)
∥∥

(NT )1/2‖β − β0‖2 + ‖e‖ ‖β − β0‖+ (NT )−1‖e‖3
= Op (1) ,

and we have rank(ê(rem)(β)) ≤ 7R, and the expansion coefficients are given by

M
(1)bλ,e = −Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 ,

M
(1)bλ,k = −Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′X ′kMλ0 ,

M
(2)bλ,e = Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1λ0′

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

−Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′

− λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′Mλ0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0

+ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1λ0′ ,

analogously

M
(1)bf,e = −Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 ,

M
(1)bf,k = −Mf0 X ′k λ

0 (λ0′λ0)−1 (f0′f0)−1f0′ − f0 (f0′f0)−1 (λ0′λ0)−1 λ0′XkMf0 ,

M
(2)bf,e = Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

−Mf0 e′Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′

− f0 (f0′f0)−1 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0

+ f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1f0′ ,
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and finally

ê
(1)
k = Mλ0 XkMf0 ,

ê(1)
e = −Mλ0 eMf0 e′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

− λ0 (λ0′λ0)−1 (f0′f0)−1 f0′ e′Mλ0 eMf0

−Mλ0 e f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ eMf0 .

Proof. The general expansion of Mbλ(β) is given Moon and Weidner (2013), and in the theorem
we just make this expansion explicit up to a particular order. The result for M bf (β) is just
obtained by symmetry (N ↔ T , λ↔ f , e↔ e′, Xk ↔ X ′k). For the residuals ê we have

ê = Mbλ
(
Y −

∑
k=1

β̂kXk

)
= Mbλ

[
e−

(
β̂ − β0

)
·X + λ0f0′

]
,

and plugging in the expansion of Mbλ gives the expansion of ê. We have ê(β) = A0 + λ0f0′ −
λ̂(β)f̂ ′(β), where A0 = e−

∑
k(βk−β

0
k)Xk. Therefore ê(rem)(β) = A1 +A2 +A3 with A1 = A0−

Mλ0 A0Mf0 , A2 = λ0f0′ − λ̂(β)f̂ ′(β), and A3 = −ê(1)
e . We find rank(A1) ≤ 2R, rank(A2) ≤ 2R,

rank(A3) ≤ 3R, and thus rank(ê(rem)(β)) ≤ 7R, as stated in the theorem.

Having expansions for Mbλ(β) and M bf (β) we also have expansions for Pbλ(β) = IN−Mbλ(β) and
P bf (β) = IT −M bf (β). The reason why we give expansions of the projectors and not expansions of

λ̂(β) and f̂(β) directly is that for the latter we would need to specify a normalization, while the
projectors are independent of any normalization choice. An expansion for λ̂(β) can for example
be defined by λ̂(β) = Pbλ(β)λ0, in which case the normalization of λ̂(β) is implicitly defined by
the normalization of λ0.

F Consistency Proof for Bias and Variance Estimators (Theo-
rem 4.4)

Corollary F.1. Under the Assumptions of Theorem 4.3 we have
√
NT

(
β̂ − β0

)
= Op(1).

This corollary directly follows from Theorem 4.3.

Corollary F.2. Under the Assumptions of Theorem 4.4 we have∥∥Pbλ − Pλ0

∥∥ =
∥∥Mbλ −Mλ0

∥∥ = Op(N−1/2) ,∥∥∥P bf − Pf0

∥∥∥ =
∥∥∥M bf −Mf0

∥∥∥ = Op(T−1/2) .

Proof. Using ‖e‖ = Op(N1/2) and ‖Xk‖ = Op(N) we find that the expansion terms in Theo-
rem E.1 satisfy∥∥∥M (1)bλ,e

∥∥∥ = Op(N−1/2) ,
∥∥∥M (2)bλ,e

∥∥∥ = Op(N−1) ,
∥∥∥M (1)bλ,k

∥∥∥ = Op(1) .

Together with corollary F.1 the result for
∥∥Mbλ −Mλ0

∥∥ immediately follows. In addition we have
Pbλ − Pλ0 = −Mbλ +Mλ0 . The proof for M bf and P bf is analogous.
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Lemma F.3. Under the Assumptions of Theorem 4.4 we have

A0 ≡
1
NT

N∑
i=1

T∑
t=1

e2
it

(
XitX

′
it −XitX ′it

)
= op(1) ,

A1 ≡
1
NT

N∑
i=1

T∑
t=1

e2
it

(
XitX ′it − X̂itX̂ ′it

)
= op(1) ,

A2 ≡
1
NT

N∑
i=1

T∑
t=1

(
e2
it − ê2

it

)
X̂itX̂ ′it = op(1) .

Lemma F.4. Let f̂ and f0 be normalized as f̂ ′f̂/T = IR and f0′f0/T = IR. Then, under the
assumptions of Theorem 4.4, there exists an R×R matrices H = HNT such that22∥∥∥f̂ − f0H

∥∥∥ = Op (1) ,
∥∥∥λ̂− λ0

(
H ′
)−1
∥∥∥ = Op (1) .

Furthermore ∥∥∥λ̂ (λ̂
′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′ − λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

∥∥∥ = Op

(
N−3/2

)
.

Lemma F.5. Under the Assumptions of Theorem 4.4 we have

(i) N−1
∥∥∥E(e′Xk

∣∣ C)− (ê′Xk

)truncR
∥∥∥ = op(1) ,

(ii) N−1
∥∥∥E(e′e)−

(
ê′ ê
)truncD

∥∥∥ = op(1) ,

(iii) T−1
∥∥∥E(ee′)−

(
ê ê′
)truncD

∥∥∥ = op(1) .

Lemma F.6. Under the Assumptions of Theorem 4.4 we have

(i) N−1
∥∥∥(ê′Xk

)truncR
∥∥∥ = Op(MT 1/8) ,

(ii) N−1
∥∥∥(ê′ ê)truncD

∥∥∥ = Op(1) ,

(iii) T−1
∥∥∥(ê ê′)truncD

∥∥∥ = Op(1) .

The proof of the above lemmas is given in the supplementary material. Using these lemmas
we can now prove Theorem 4.4.

Proof of Theorem 4.4, Part I: show Ŵ = W + op(1).
Using |Tr (C)| ≤ ‖C‖ rank (C) and corollary F.2 we find∣∣Ŵk1k2−WNT,k1k2

∣∣
=
∣∣∣∣(NT )−1Tr

[(
Mbλ −Mλ0

)
Xk1 M bf X ′k2

]
+ (NT )−1Tr

[
Mλ0 Xk1

(
M bf −Mf0

)
X ′k2

]
≤ 2R
NT

∥∥Mbλ −Mλ0

∥∥ ‖Xk1‖‖Xk2‖
2R
NT

∥∥∥M bf −Mf0

∥∥∥ ‖Xk1‖‖Xk2‖

=
2R
NT
Op(N−1)Op(NT ) +

2R
NT
Op(T−1)Op(NT )

= op(1) .
22We consider a limit N,T → ∞ and for different N,T different H-matrices can be chosen, but we write H

instead of HNT to keep notation simple.
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Thus we have Ŵ = WNT + op(1) = W + op(1).

Proof of Theorem 4.4, Part II: show Ω̂ = Ω + op(1).
Let ΩNT ≡ 1

NT

∑N
i=1

∑T
t=1 E

(
e2
it

)
XitX ′it and Ω∗NT ≡

1
NT

∑N
i=1

∑T
t=1 e

2
it Xit X

′
it. As already

stated in equation (D.1) we can use part (i) and (j) of Lemma D.1 to show that ΩNT =
E
(
Ω∗NT

∣∣ C)+ op(1). Using cross-sectional independence conditional on C we find that

Var
(
Ω∗NT,k1k2

∣∣ C)
=

1
(NT )2

N∑
i,j=1

T∑
t,τ=1

[
E
(
e2
itXk1,itXk2,it e

2
jτXk1,jτXk2,jτ

∣∣ C)
− E

(
e2
itXk1,itXk2,it

∣∣ C)E
(
e2
jτXk1,jτXk2,jτ

∣∣ C) ]
=

1
(NT )2

N∑
i=1

T∑
t,τ=1

[
E
(
e2
itXk1,itXk2,it e

2
iτXk1,iτXk2,iτ

∣∣ C)
− E

(
e2
itXk1,itXk2,it

∣∣ C)E
(
e2
iτXk1,iτXk2,iτ

∣∣ C) ]

=
1

(NT )2

N∑
i=1


T∑

t,τ=1

E
(
e2
itXk1,itXk2,it e

2
iτXk1,iτXk2,iτ

∣∣ C)− [ T∑
t=1

E
(
e2
itXk1,itXk2,it

∣∣ C)]2


≤ 1
(NT )2

N∑
i=1

T∑
t,τ=1

E
(
e2
itXk1,itXk2,it e

2
iτXk1,iτXk2,iτ

∣∣ C)

≤ 1
N

√√√√ 1
N T 2

N∑
i=1

T∑
t,τ=1

E
(
e4
ite

4
iτ

∣∣ C) 1
N T 2

N∑
i=1

T∑
t,τ=1

E
(
X2
k1,it

X2
k2,it

X2
k1,iτ

X2
k2,iτ

∣∣ C)
=

1
N
O(1) = o(1) ,

where we used that both e and Xk have uniformly bounded 8’th moments. This shows that
Ω∗NT − E

(
Ω∗NT

∣∣ C) = op(1). We also have Ω∗NT − Ω̂ = A0 + A1 + A2 = op(1), where A0, A1

and A2 are defined in Lemma F.3, and the lemmas states that A0, A1 and A2 are all op(1).
Combining the above we thus conclude that Ω̂ = Ω + op(1).

Proof of Theorem 4.4, Part III: show B̂1 = B1 + op(1).
Let B1,k,NT = N−1 Tr

[
Pf0 E

(
e′Xk

∣∣ C)], According to Assumption 6 we have B1,k = B1,k,NT +
op(1). What is left to show is that B1,k,NT = B̂1,k + op(1). Using |Tr (C)| ≤ ‖C‖ rank (C) we
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find ∣∣∣B1,k,NT − B̂1

∣∣∣ =
∣∣∣∣E [ 1

N
Tr(Pf0 e′ Xk)

∣∣∣ C]− 1
N

Tr
[
P bf (ê′Xk

)truncR
]∣∣∣∣

≤
∣∣∣∣ 1
N

Tr
[(
Pf0 − P bf

) (
ê′Xk

)truncR
]∣∣∣∣

+
∣∣∣∣ 1
N

Tr
{
Pf0

[
E
(
e′ Xk

∣∣ C)− (ê′Xk

)truncR
]}∣∣∣∣

≤ 2R
N

∥∥∥Pf0 − P bf
∥∥∥ ∥∥∥(ê′Xk

)truncR
∥∥∥

+
R

N

∥∥Pf0

∥∥ ∥∥∥E (e′ Xk

∣∣ C)− (ê′Xk

)truncR
∥∥∥ .

We have
∥∥Pf0

∥∥ = 1. We now apply Lemmas F.5, F.2 and F.6 to find∣∣∣B1,k,NT − B̂1

∣∣∣ = N−1
(
Op(N−1/2)Op(MNT 1/8) + op(N)

)
= op(1) .

This is what we wanted to show.

Proof of Theorem 4.4, final part: show B̂2 = B2 + op(1) and B3 = B3 + op(1).
Define

B2,k,NT =
1
T

Tr
[
E
(
ee′
)
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′] .
According to Assumption 6 we have B2,k = B2,k,NT + op(1). What is left to show is that
B2,k,NT = B̂2,k + op(1). We have

B2,k − B̂2,k =
1
T

Tr
[
E
(
ee′
)
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′]
− 1
T

Tr
[(
ê ê′
)truncD

MbλXk f̂ (f̂ ′f̂)−1 (λ̂
′
λ̂)−1 λ̂

′]
=

1
T

Tr
[(
ê ê′
)truncD

MbλXk

(
f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ − f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′)]
+

1
T

Tr
[(
ê ê′
)truncD (

Mλ0 −Mbλ) Xk f
0 (f0′f0)−1 (λ0′λ0)−1 λ0′

]
+

1
T

Tr
{[

E
(
ee′
)
−
(
ê ê′
)truncD

]
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′
}
.

Using |Tr (C)| ≤ ‖C‖ rank (C) (which is true for every square matrix C, see the supplementary
material) we find∣∣∣B2,k − B̂2,k

∣∣∣ ≤R
T

∥∥∥(ê ê′)truncD
∥∥∥ ‖Xk‖

∥∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′ − f̂ (f̂ ′f̂)−1 (λ̂
′
λ̂)−1 λ̂

′∥∥∥
+
R

T

∥∥∥(ê ê′)truncD
∥∥∥∥∥Mλ0 −Mbλ∥∥ ‖Xk‖

∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥
+
R

T

∥∥∥E (ee′)− (ê ê′)truncD
∥∥∥ ‖Xk‖

∥∥f0 (f0′f0)−1 (λ0′λ0)−1 λ0′∥∥ .
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Here we used
∥∥Mf0

∥∥ =
∥∥∥M bf

∥∥∥ = 1. Using ‖Xk‖ = Op(
√
NT ), and applying Lemmas F.2, F.4,

F.5 and F.6, we now find∣∣∣B2,k − B̂2,k

∣∣∣ = T−1

[
Op(T )Op((NT )1/2)Op(N−3/2)

+Op(T )Op(N−1/2)Op((NT )1/2)Op((NT )−1/2)

+ op(T )Op((NT )1/2)Op((NT )−1/2)
]

= op(1) .

This is what we wanted to show. The proof of B̂3 = B3 + op(1) is analogous.

G Proofs for Section 5 (Testing)

Proof of Theorem 5.1. Using the expansion for LNT (β) in Lemma A.1 of Moon and Weid-
ner (2013) we find for the derivative (the sign convention εk = β0

k − βk results in the minus sign
below)

∂LNT
∂βk

= − 1
NT

∞∑
g=2

g
K∑

κ1=0

K∑
κ2=0

. . .
K∑

κg−1=0

εκ1 εκ2 . . . εκg−1 L
(g)
(
λ0, f0, Xk, Xκ1 , . . . , Xκg−1

)
=
[
2WNT (β − β0)

]
k
− 2√

NT
CNT,k +

1
NT
∇R1,NT,k +

1
NT
∇R2,NT,k ,

where

WNT,k1k2 =
1
NT

L(2)
(
λ0, f0, Xk1 , Xk2

)
,

CNT,k =
1

2
√
NT

Ge∑
g=2

g (ε0)g−1 L(g)
(
λ0, f0, Xk, X0, . . . , X0

)
=

Ge∑
g=2

g

2
√
NT

L(g)
(
λ0, f0, Xk, e, . . . , e

)
,

and

∇R1,NT,k = −
∞∑

g=Ge+1

g (ε0)g−1 L(g)
(
λ0, f0, Xk, X0, . . . , X0

)
,

= −
∞∑

g=Ge+1

g L(g)
(
λ0, f0, Xk, e, . . . , e

)
,

∇R2,NT,k = −
∞∑
g=3

g

g−1∑
r=1

(
g − 1
r

) K∑
k1=1

. . .
K∑

kr=1

εk1 . . . εkr (ε0)g−r−1

L(g)
(
λ0, f0, Xk, Xk1 , . . . , Xkr , X0, . . . , X0

)
.

= −
∞∑
g=3

g

g−1∑
r=1

(
g − 1
r

) K∑
k1=1

. . .

K∑
kr=1

(β0
k1 − βk1) . . . (β0

kr
− βkr

)

L(g)
(
λ0, f0, Xk, Xk1 , . . . , Xkr , e, . . . , e

)
.

39



The above expressions for WNT and CNT are equivalent to their definitions given in theorem
4.1. Using the bound on L(g) we find23

|∇R1,NT,k| ≤ c0NT
‖Xk‖√
NT

∞∑
g=Ge+1

g2

(
c1‖e‖√
NT

)g−1

≤ 2 c0 (1 +Ge)2NT
‖Xk‖√
NT

(
c1‖e‖√
NT

)Ge
[
1−

(
c1‖e‖√
NT

)]−3

= op(
√
NT ) ,

|∇R2,NT,k| ≤ c0NT
‖Xk‖√
NT

∞∑
g=3

g2
g−1∑
r=1

(
g − 1
r

)
cg−1

1

 K∑
ek=1

|βek − β0
k|
‖Xek‖√
NT


×

 K∑
ek=1

|βek − β0
k|
‖Xek‖√
NT

+
‖e‖√
NT

g−2

≤ c0NT
‖Xk‖√
NT

∞∑
g=3

g3 (4c1)g−1

 K∑
ek=1

|βek − β0
k|
‖Xek‖√
NT

 K∑
ek=1

|βek − β0ek| ‖Xek‖√
NT

+
‖e‖√
NT

g−2

≤ c2NT
‖Xk‖√
NT

 K∑
ek=1

|βek − β0
k|
‖Xek‖√
NT

 K∑
ek=1

|βek − β0ek| ‖Xek‖√
NT

+
‖e‖√
NT

 ,

where c0 = 8Rdmax(λ0, f0)/2 and c1 = 16dmax(λ0, f0)/d2
min(λ0, f0) both converge to a constants

as N,T → ∞, and the very last inequality is only true if 4c1

(∑Kek=1
|βek − β0ek| ‖Xek‖√

NT
+ ‖e‖√

NT

)
<

1, and c2 > 0 is an appropriate positive constant. To show ∇R1,NT,k = op(NT ) we used
Assumption 3∗. From the above inequalities we find for ηNT →∞

sup
{β:‖β−β0‖≤ηNT }

‖∇R1,NT (β)‖√
NT

= op (1) ,

sup
{β:‖β−β0‖≤ηNT }

‖∇R2,NT (β)‖
NT

∥∥β − β0
∥∥ = op (1) .

Thus RNT (β) = R1,NT (β) +R2,NT (β) satisfies the bound in the theorem.

Proof of Theorem 5.2. Using Theorem 4.3 it is straightforward to show that WD∗NT has
limiting distribution χ2

r .
For the LR test we have to show that the estimator ĉ = (NT )−1Tr(ê(β̂) ê′(β̂)) is consistent

for c = Ee2
it. As already noted in the main text we have ĉ = LNT

(
β̂
)

, and using our expansion

and
√
NT -consistency of β̂ we immediately obtain

ĉ =
1
NT

Tr(Mλ0eMf0e′) + op(1) .

Alternatively, one could use the expansion of ê in Theorem E.1 to show this. From the above
23Here we use

`
n
k

´
≤ 4n.
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result we find ∣∣∣∣ĉ− 1
NT

Tr(ee′)
∣∣∣∣ =

1
NT

∣∣Tr(Pλ0eMf0e′) + Tr(ePf0e′)
∣∣+ op(1)

≤ 2R
NT
‖e‖2 + op(1) = op(1) .

By the weak law of large numbers we thus have

ĉ =
1
NT

N∑
i=1

T∑
t=1

e2
it + op(1) = c+ op(1) ,

i.e. ĉ is indeed consistent for c. Having this one immediately obtains the result for the limiting
distribution of LR∗NT .

For the LM test we first want to show that equation (5.3) holds. Using the expansion of ê in
Theorem E.1 one obtains
√
NT (∇̃LNT )k = − 2√

NT
Tr
(
X ′kẽ

)
=
[
2
√
NT WNT

(
β̃ − β0

)]
k

+
2
NT

C(1)(λ0, f0, Xk, e) +
2
NT

C(2)(λ0, f0, Xk, e)

− 2√
NT

Tr
(
X ′kẽ

(rem)
)

=
[
2
√
NT WNT

(
β̃ − β0

)
+

2
NT

CNT

]
k

+ op(1)

=
√
NT

[
∇LNT (β̃)

]
k

+ op(1) ,

which is what we wanted to show. Here we used that |Tr
(
X ′kẽ

(rem)
)
| ≤ 7R‖Xk‖‖ẽ(rem)‖ =

Op(N3/2). Note that ‖Xk‖ = Op(N), and Theorem E.1 and
√
NT -consistency of β̃ imply

‖ẽ(rem)‖ = Op(
√
N). We also used the expression for ∇LNT (β̃) given in Theorem 5.1, and the

bound on ∇RNT (β) given there.
We now use equation (5.4) and W̃ = W + op(1), Ω̃ = Ω + op(1), and B̃ = B+ op(1) to obtain

LM∗NT −→
d

(C −B)′W−1H ′(HW−1ΩW−1H ′)−1HW−1(C −B) .

Under H0 we thus find LM∗NT →d χ
2
r .
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Tables with Simulation Results

ρ0 = 0.3 ρ0 = 0.9
OLS FLS BC-FLS OLS FLS BC-FLS

T = 5, M = 2 bias 0.1232 -0.1419 -0.0713 0.0200 -0.3686 -0.2330
std 0.1444 0.1480 0.0982 0.0723 0.1718 0.1301
rmse 0.1898 0.2050 0.1213 0.0750 0.4067 0.2669

T = 10, M = 3 bias 0.1339 -0.0542 -0.0201 0.0218 -0.1019 -0.0623
std 0.1148 0.0596 0.0423 0.0513 0.1094 0.0747
rmse 0.1764 0.0806 0.0469 0.0557 0.1495 0.0973

T = 20, M = 4 bias 0.1441 -0.0264 -0.0070 0.0254 -0.0173 -0.0085
std 0.0879 0.0284 0.0240 0.0353 0.0299 0.0219
rmse 0.1687 0.0388 0.0250 0.0434 0.0345 0.0235

T = 40, M = 5 bias 0.1517 -0.0130 -0.0021 0.0294 -0.0057 -0.0019
std 0.0657 0.0170 0.0160 0.0250 0.0105 0.0089
rmse 0.1654 0.0214 0.0161 0.0386 0.0119 0.0091

T = 80, M = 6 bias 0.1552 -0.0066 -0.0007 0.0326 -0.0026 -0.0006
std 0.0487 0.0112 0.0109 0.0179 0.0056 0.0053
rmse 0.1627 0.0130 0.0109 0.0372 0.0062 0.0053

Table 1: Simulation results for the AR(1) model described in the main text with N = 100, ρf = 0.5, σf = 0.5,

and different values of T (with corresponding bandwidth M) and true AR(1) coefficient ρ0. The OLS estimator,
the LS estimator with factors (FLS, computed with correct R = 1), and corresponding bias corrected LS estimator
with factors (BC-FLS) were computed for 10,000 simulation runs. The table lists the mean bias, the standard
deviation (std), and the square root of the mean square error (rmse) for the three estimators.

ρ0 = 0.3 ρ0 = 0.9
OLS FLS BC-FLS OLS FLS BC-FLS

T = 5, M = 2 bias 0.1239 -0.5467 -0.3721 0.0218 -0.9716 -0.7490
std 0.1454 0.1528 0.1299 0.0731 0.1216 0.1341
rmse 0.1910 0.5676 0.3942 0.0763 0.9792 0.7609

T = 10, M = 3 bias 0.1343 -0.1874 -0.1001 0.0210 -0.4923 -0.3271
std 0.1145 0.1159 0.0758 0.0518 0.1159 0.0970
rmse 0.1765 0.2203 0.1256 0.0559 0.5058 0.3412

T = 20, M = 4 bias 0.1451 -0.0448 -0.0168 0.0255 -0.1822 -0.1085
std 0.0879 0.0469 0.0320 0.0354 0.0820 0.0528
rmse 0.1696 0.0648 0.0362 0.0436 0.1999 0.1207

T = 40, M = 5 bias 0.1511 -0.0161 -0.0038 0.0300 -0.0227 -0.0128
std 0.0663 0.0209 0.0177 0.0250 0.0342 0.0225
rmse 0.1650 0.0264 0.0181 0.0390 0.0410 0.0258

T = 80, M = 6 bias 0.1550 -0.0072 -0.0011 0.0325 -0.0030 -0.0010
std 0.0488 0.0123 0.0115 0.0182 0.0064 0.0057
rmse 0.1625 0.0143 0.0116 0.0372 0.0071 0.0058

Table 2: Same DGP as Table 1, but misspecification in number of factors R is present. The true number of
factors is R = 1, but the FLS and BC-FLS are calculated with R = 2.
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M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8
ρ0 = 0 0.889 0.832 0.791 0.754 0.720 0.689 0.660 0.633
ρ0 = 0.3 0.752 0.806 0.778 0.742 0.708 0.677 0.648 0.621
ρ0 = 0.6 0.589 0.718 0.728 0.704 0.674 0.644 0.616 0.590
ρ0 = 0.9 0.299 0.428 0.486 0.510 0.519 0.516 0.508 0.495

Table 3: Simulation results for the AR(1) model with N = 100, T = 20, ρf = 0.5, and σf = 0.5. For different

values of the AR(1) coefficient ρ0 and of the bandwidth M , we give the fraction of the LS estimator bias that is

accounted for by the bias correction, i.e. the fraction
√
NT E(bβ−β)/E(cW−1 bB), computed over 10,000 simulation

runs. Here and in all following tables it is assumed that R = 1 is correctly specified.

BC-FLS for ρ0 = 0.3 BC-FLS for ρ0 = 0.9
M=2 M=5 M=8 M=2 M=5 M=8

T = 20 bias -0.0056 -0.0082 -0.0100 -0.0100 -0.0083 -0.0089
std 0.0239 0.0241 0.0247 0.0253 0.0212 0.0208
rmse 0.0245 0.0255 0.0266 0.0272 0.0228 0.0227

T = 40 bias -0.0017 -0.0023 -0.0030 -0.0024 -0.0019 -0.0018
std 0.0159 0.0159 0.0159 0.0095 0.0089 0.0085
rmse 0.0160 0.0161 0.0162 0.0098 0.0091 0.0087

Table 4: Same specification as Table 1. We only report the properties of the bias corrected LS estimator, but
for multiple values of the bandwidth parameter M and two different values for T . Results were obtained using
10,000 simulation runs.

ρf = 0.3 ρf = 0.7
OLS FLS BC-FLS OLS FLS BC-FLS

σf = 0 bias -0.0007 -0.0076 -0.0043 -0.0004 -0.0074 -0.0041
std 0.0182 0.0332 0.0243 0.0178 0.0331 0.0242
rmse 0.0182 0.0340 0.0247 0.0178 0.0339 0.0245

σf = 0.2 bias 0.0153 -0.0113 -0.0032 0.0474 -0.0291 -0.0071
std 0.0251 0.0303 0.0229 0.0382 0.0387 0.0272
rmse 0.0294 0.0323 0.0231 0.0609 0.0484 0.0281

σf = 0.5 bias 0.0567 -0.0137 -0.0041 0.1491 -0.0403 -0.0126
std 0.0633 0.0260 0.0207 0.0763 0.0298 0.0226
rmse 0.0850 0.0294 0.0211 0.1675 0.0501 0.0259

Table 5: Simulation results for the AR(1) model with N = 100, T = 20, M = 4, and ρ0 = 0.6. The three
different estimators were computed for 10,000 simulation runs, and the mean bias, standard deviation (std), and
root mean square error (rmse) are reported.
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size size
WD LR LM WD∗ LR∗ LM∗

ρ0 = 0 N = 100, T = 20, M = 4 0.219 0.214 0.192 0.066 0.062 0.056
N = 400, T = 80, M = 6 0.199 0.198 0.195 0.055 0.054 0.054
N = 400, T = 20, M = 4 0.560 0.556 0.532 0.089 0.088 0.076
N = 1600, T = 80, M = 6 0.593 0.591 0.586 0.056 0.055 0.055

ρ0 = 0.6 N = 100, T = 20, M = 4 0.326 0.311 0.272 0.098 0.091 0.077
N = 400, T = 80, M = 6 0.260 0.255 0.248 0.056 0.053 0.057
N = 400, T = 20, M = 4 0.591 0.582 0.552 0.174 0.167 0.136
N = 1600, T = 80, M = 6 0.666 0.663 0.656 0.060 0.058 0.059

Table 6: Simulation results for the AR(1) model with ρf = 0.5 and σf = 0.5. For the different values of ρ0, N ,

T and M we test the hypothesis H0 : ρ = ρ0 using the uncorrected and bias corrected Wald, LR and LM test and
nominal size 5%. The size of the different tests is reported, based on 10,000 simulation runs.

power power
WD LR LM WD∗ LR∗ LM∗

ρ0 = 0 N = 100, T = 20, M = 4 H left
a 0.094 0.089 0.076 0.128 0.123 0.121

Hright
a 0.526 0.515 0.487 0.235 0.227 0.206

N = 400, T = 80, M = 6 H left
a 0.066 0.064 0.063 0.154 0.151 0.153

Hright
a 0.549 0.545 0.540 0.194 0.191 0.190

N = 400, T = 20, M = 4 H left
a 0.306 0.305 0.284 0.100 0.097 0.096

Hright
a 0.791 0.787 0.769 0.309 0.305 0.279

N = 1600, T = 80, M = 6 H left
a 0.254 0.253 0.248 0.128 0.127 0.129

Hright
a 0.871 0.869 0.866 0.225 0.224 0.224

ρ0 = 0.6 N = 100, T = 20, M = 4 H left
a 0.192 0.180 0.147 0.184 0.171 0.171

Hright
a 0.619 0.605 0.563 0.335 0.318 0.294

N = 400, T = 80, M = 6 H left
a 0.081 0.079 0.076 0.184 0.195 0.200

Hright
a 0.680 0.675 0.668 0.335 0.262 0.267

N = 400, T = 20, M = 4 H left
a 0.421 0.412 0.378 0.184 0.160 0.150

Hright
a 0.792 0.787 0.765 0.335 0.426 0.399

N = 1600, T = 80, M = 6 H left
a 0.318 0.314 0.307 0.200 0.169 0.172

Hright
a 0.912 0.911 0.908 0.268 0.316 0.320

Table 7: As Table 6, but we report the power for testing the alternatives H left
a : ρ = ρ0 − (NT )−1/2 and

Hright
a : ρ = ρ0 + (NT )−1/2.
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size corrected power size corrected power
WD LR LM WD∗ LR∗ LM∗

ρ0 = 0 N = 100, T = 20, M = 4 H left
a 0.010 0.011 0.010 0.105 0.104 0.112

Hright
a 0.211 0.208 0.206 0.199 0.197 0.193

N = 400, T = 80, M = 6 H left
a 0.008 0.008 0.008 0.143 0.143 0.145

Hright
a 0.236 0.237 0.235 0.181 0.182 0.181

N = 400, T = 20, M = 4 H left
a 0.008 0.008 0.009 0.055 0.052 0.062

Hright
a 0.187 0.185 0.181 0.210 0.208 0.208

N = 1600, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.119 0.119 0.120

Hright
a 0.226 0.227 0.225 0.213 0.213 0.212

ρ0 = 0.6 N = 100, T = 20, M = 4 H left
a 0.014 0.014 0.016 0.114 0.115 0.127

Hright
a 0.196 0.193 0.196 0.233 0.234 0.231

N = 400, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.185 0.187 0.184

Hright
a 0.288 0.288 0.288 0.248 0.252 0.247

N = 400, T = 20, M = 4 H left
a 0.013 0.016 0.015 0.040 0.039 0.051

Hright
a 0.128 0.127 0.126 0.206 0.201 0.209

N = 1600, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.153 0.153 0.154

Hright
a 0.236 0.236 0.238 0.291 0.291 0.291

Table 8: As Table 7, but we report the size corrected power.
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