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COMPARISON AND ANTI-CONCENTRATION BOUNDS

FOR MAXIMA OF GAUSSIAN RANDOM VECTORS

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. Slepian and Sudakov-Fernique type inequalities, which com-
pare expectations of maxima of Gaussian random vectors under certain
restrictions on the covariance matrices, play an important role in proba-
bility theory, especially in empirical process and extreme value theories.
Here we give explicit comparisons of expectations of smooth functions
and distribution functions of maxima of Gaussian random vectors with-
out any restriction on the covariance matrices. We also establish an
anti-concentration inequality for maxima of Gaussian random vectors,
which derives a useful upper bound on the Lévy concentration function
for the maximum of (not necessarily independent) Gaussian random
variables. The bound is universal and applies to vectors with arbitrary
covariance matrices. This anti-concentration inequality plays a crucial
role in establishing bounds on the Kolmogorov distance between maxima
of Gaussian random vectors. These results have immediate applications
in mathematical statistics. As an example of application, we establish a
conditional multiplier central limit theorem for maxima of sums of inde-
pendent random vectors where the dimension of the vectors is possibly
much larger than the sample size.

1. Introduction

We derive a bound on the difference in expectations of smooth functions
of maxima of finite dimensional Gaussian random vectors. We also derive a
bound on the Kolmogorov distance between distributions of these maxima.
The key property of these bounds is that they depend on the dimension p of
Gaussian random vectors only through log p, and on the maximum difference
between the covariance matrices of the vectors. These results extend and
complement the work of [7] that derived an explicit Sudakov-Fernique type
bound on the difference of expectations of maxima of Gaussian random
vectors. See also [1], Chapter 2. As an application, we establish a conditional
multiplier central limit theorem for maxima of sums of independent random
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vectors where the dimension of the vectors is possibly much larger than the
sample size. In all these results, we allow for arbitrary covariance structures
between the coordinates in random vectors, which is plausible especially in
applications to high-dimensional statistics. We stress that the derivation of
bounds on the Kolmogorov distance is by no means trivial and relies on the
new anti-concentration inequality for maxima of Gaussian random vectors,
which is another main result of this paper (see Comment 3 for what anti-
concentration inequalities here precisely refer to and how they differ from the
concentration inequalities). These anti-concentration bounds are non-trivial
in the following sense: (i) they apply to every dimension p and are explicit
in the effect of the dimension p, (ii) they allow for arbitrary covariance
structures between the coordinates in Gaussian random vectors, and (iii)
they are sharp in the sense that there is an example for which the bound
is tight up to a dimension independent constant. We note that these anti-
concentration bounds are sharper than those that result from the application
of the universal reverse isoperimetric inequality of [2] (see Comment 5). This
happens due to the special structure of the sets of interest.

Comparison inequalities for Gaussian random vectors play an important
role in probability theory, especially in empirical process and extreme value
theories. We refer the reader to [21], [12], [11], [14], [15], [16], [7] and [27]
for standard references on this topic. The anti-concentration phenomenon
has attracted considerable interest in the context of random matrix theory
and the Littlewood-Offord problem in number theory. See, e.g., [19], [20],
and [26] who remarked that “concentration is better understood than anti-
concentration”. Those papers were concerned with the anti-concentration in
the Euclidean norm for sums of independent random vectors, and the topic
and the proof technique here are substantially different from theirs.

Either of the comparison or anti-concentration bounds derived in the pa-
per have many immediate statistical applications, especially in the context
of high-dimensional statistical inference, where the dimension p of vectors of
interest is much larger than the sample size (see [5] for a textbook treatment
of the recent developments of high-dimensional statistics). In particular,
the results established here are helpful in deriving an invariance principle
for sums of high-dimensional random vectors, and also in establishing the
validity of the multiplier bootstrap for inference in practice. We refer the
reader to a companion paper [9], where the results established here are ap-
plied in several important statistical problems, particularly the analysis of
Dantzig selector of [6] in the non-Gaussian setting.

After the initial submission, we have become aware of the work [17], which
derives bounds on the density function of the maximum of a Gaussian ran-
dom vector [see 17, Proposition 3.12] under positive covariances restriction.
This is related to but different from our anti-concentration bounds. The
crucial assumption in [17]’s Proposition 3.12 is positivity of all the covari-
ances between the coordinates in the Gaussian random vector, which does
not hold in our targeted applications in high-dimensional statistics, e.g.,
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analysis of Danzig selector. Moreover, [17]’s upper bound on the density
depends on the inverse of the lower bound on the covariances – and hence,
e.g., if there are two independent coordinates in the Gaussian random vec-
tor, then the upper bound becomes infinite. Our anti-concentration bounds
do not require such positivity (or other) assumptions on covariances and
hence are not implied by results [17]. Moreover, the proof technique used
here is substantially different from that of [17] based on Malliavin calculus.

The rest of the paper is organized as follows. In Section 2, we present
comparison bounds for Gaussian random vectors and its application, namely
the conditional multiplier central limit theorem. In Section 3, we present
anti-concentration bounds for maxima of Gaussian random vectors. In Sec-
tions 4 and 5, we give proofs of the theorems in Sections 2 and 3. Appendix
contains a proof of a technical lemma.

Notation. Denote by (Ω,F ,P) an underlying probability space. For
a, b ∈ R, we write a+ = max{0, a} and a ∨ b = max{a, b}. Let 1(·) denote
the indicator function. The transpose of a vector z is denoted by zT . For a
function g : R → R, we use the notation ‖g‖∞ = supz∈R |g(z)|.

2. Comparison Bounds and Multiplier Bootstrap

2.1. Comparison bounds. Let X = (X1, . . . ,Xp)
T and Y = (Y1, . . . , Yp)

T

be centered Gaussian random vectors in R
p with covariance matrices ΣX =

(σX
jk)1≤j,k≤p and ΣY = (σY

jk)1≤j,k≤p, respectively. The purpose of this sec-
tion is to give error bounds on the difference of the expectations of smooth
functions and the distribution functions of

max
1≤j≤p

Xj and max
1≤j≤p

Yj

in terms of p and

∆ := max
1≤j,k≤p

|σX
jk − σY

jk|.

The problem of comparing distributions of maxima is of intrinsic diffi-
culty since the maximum function z = (z1, . . . , zp)

T 7→ max1≤j≤p zj is non-
differentiable. To circumvent the problem, we use a smooth approximation
of the maximum function. For z = (z1, . . . , zp)

T ∈ R
p, consider the function:

Fβ(z) := β−1 log




p∑

j=1

exp(βzj)


 ,

which approximates the maximum function, where β > 0 is the smoothing
parameter that controls the level of approximation (we call this function the
“smooth max function”). Indeed, an elementary calculation shows that for
every z ∈ R

p,

0 ≤ Fβ(z) − max
1≤j≤p

zj ≤ β−1 log p. (1)

This smooth max function arises in the definition of “free energy” in spin
glasses. See, e.g., [24] and [18]. Here is the first theorem of this section.
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Theorem 1 (Comparison bounds for smooth functions). For every g ∈
C2(R) with ‖g′‖∞ ∨ ‖g′′‖∞ < ∞ and every β > 0,

|E[g(Fβ(X))] − E[g(Fβ(Y ))]| ≤ (‖g′′‖∞/2 + β‖g′‖∞)∆,

and hence

|E[g( max
1≤j≤p

Xj)]− E[g( max
1≤j≤p

Yj)]| ≤ (‖g′′‖∞/2 + β‖g′‖∞)∆ + 2β−1‖g′‖∞ log p.

Proof. See Section 4. �

Comment 1. Minimizing the second bound with respect to β > 0, we have

|E[g( max
1≤j≤p

Xj)]− E[g( max
1≤j≤p

Yj)]| ≤ ‖g′′‖∞∆/2 + 2‖g′‖∞
√

2∆ log p.

This result extends the work of [7], which derived the following Sudakov-
Fernique type bound on the difference of the expectations of the Gaussian
maxima:

|E[ max
1≤j≤p

Xj ]− E[ max
1≤j≤p

Yj ]| ≤ 2
√

2∆ log p.

Theorem 1 is not applicable to functions of the form g(z) = 1(z ≤ x) and
hence does not directly lead to a bound on the Kolmogorov distance between
max1≤j≤pXj and max1≤j≤p Yj (recall that the Kolmogorov distance between
(the distributions) of two real valued random variables ξ and η is defined by
supx∈R |P(ξ ≤ x) − P(η ≤ x)|). Nevertheless, we have the following bound
on the Kolmogorov distance.

Theorem 2 (Comparison of distributions). Suppose that p ≥ 2 and σY
jj > 0

for all 1 ≤ j ≤ p. Then

sup
x∈R

|P( max
1≤j≤p

Xj ≤ x)− P( max
1≤j≤p

Yj ≤ x)| ≤ C∆1/3(1 ∨ log(p/∆))2/3, (2)

where C > 0 depends only on min1≤j≤p σ
Y
jj and max1≤j≤p σ

Y
jj (the right side

is understood to be 0 when ∆ = 0).

Proof. See Section 4. �

Deriving a bound on the Kolmogorov distance between max1≤j≤pXj and
max1≤j≤p Yj from Theorem 1 is not a trivial issue and this step relies on the
anti-concentration inequality for maxima of (not necessarily independent)
Gaussian random variables, which we will study in Section 3. Interestingly,
the proof of Theorem 2 is substantially different from the (“textbook”) proof
of classical Slepian’s inequality. The simplest form of Slepian’s inequality
states that

P( max
1≤j≤p

Xj ≤ x) ≤ P( max
1≤j≤p

Yj ≤ x), ∀x ∈ R,
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whenever σX
jj = σY

jj and σX
jk ≤ σY

jk for all 1 ≤ j, k ≤ p. This inequality is
immediately deduced from the following expression:

P( max
1≤j≤p

Xj ≤ x)− P( max
1≤j≤p

Yj ≤ x)

=
∑

1≤j<k≤p

(σX
jk − σY

jk)

∫ 1

0

{∫ x

−∞

· · ·
∫ x

−∞

∂2ft(z)

∂zj∂zk
dz

}
dt, (3)

where σX
jj = σY

jj, 1 ≤ ∀j ≤ p, is assumed. Here ft denotes the density

function of N(0, tΣX + (1 − t)ΣY ). See [12], page 82, for this expression.
The expression (3) is of importance and indeed a source of many interesting
probabilistic results (see, e.g., [16] and [27] for recent related works). It
is not clear (or at least non-trivial), however, whether a bound similar in
nature to Theorem 2 can be deduced from the expression (3) when there
is no restriction on the covariance matrices except for the condition that
σX
jj = σY

jj, 1 ≤ ∀j ≤ p, and here we take the different route.

The key features of Theorem 2 are: (i) the bound on the Kolmogorov
distance between the maxima of Gaussian random vectors in R

p depends
on the dimension p only through log p and the maximum difference of the
covariance matrices ∆, and (ii) it allows for arbitrary covariance matrices for
X and Y (except for the nondegeneracy condition that σY

jj > 0, 1 ≤ ∀j ≤ p).
These features have an important implication to statistical applications, as
discussed below.

2.2. Conditional multiplier central limit theorem. Consider the fol-
lowing problem. Suppose that n independent centered random vectors in
R
p of observations Z1, . . . , Zn are given. Here Z1, . . . , Zn are generally non-

Gaussian, and the dimension p is allowed to increase with n (i.e., the case
where p = pn → ∞ as n → ∞ is allowed). We suppress the possible depen-
dence of p on n for the notational convenience. Suppose that each Zi has a
finite covariance matrix E[ZiZ

T
i ]. Consider the following normalized sum:

Sn := (Sn,1, . . . , Sn,p)
T =

1√
n

n∑

i=1

Zi.

The problem here is to approximate the distribution of max1≤j≤p Sn,j.
Statistics of this form arise frequently in modern statistical applications.

The exact distribution of max1≤j≤p Sn,j is generally unknown. An intuitive
idea to approximate the distribution of max1≤j≤p Sn,j is to use the Gaussian
approximation. Let V1, . . . , Vn be independent Gaussian random vectors in
R
p such that Vi ∼ N(0,E[ZiZ

T
i ]), and define

Tn := (Tn,1, . . . , Tn,p) :=
1√
n

n∑

i=1

Vi ∼ N(0, n−1∑n
i=1E[ZiZ

T
i ]).
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It is expected that the distribution of max1≤j≤p Tn,j is close to that of
max1≤j≤p Sn,j in the following sense:

sup
x∈R

|P( max
1≤j≤p

Tn,j ≤ x)− P( max
1≤j≤p

Sn,j ≤ x)| → 0, n → ∞. (4)

When p is fixed, (4) will follow from the classical Lindeberg-Feller central
limit theorem, subject to the Lindeberg conditions. The recent paper by [9]
established conditions under which this Gaussian approximation (4) holds
even when p is comparable or much larger than n. For example, [9] proved
that if c1 ≤ n−1

∑n
i=1 E[Z

2
ij] ≤ C1 and E[exp(|Zij |/C1)] ≤ 2 for all 1 ≤ i ≤ n

and 1 ≤ j ≤ p for some 0 < c1 < C1, then (4) holds as long as log p = o(n1/7).
The Gaussian approximation (4) is in itself an important step, but in the

general case where the covariance matrix n−1
∑n

i=1 E[ZiZ
T
i ] is unknown, it

is not directly applicable for purposes of statistical inference. In such cases,
the following multiplier bootstrap procedure will be useful. Let η1, . . . , ηn
be independent standard Gaussian random variables independent of Zn

1 :=
{Z1, . . . , Zn}. Consider the following randomized sum:

Sη
n := (Sη

n,1, . . . , S
η
n,p)

T :=
1√
n

n∑

i=1

ηiZi.

Since conditional on Zn
1 ,

Sη
n ∼ N(0, n−1∑n

i=1ZiZ
T
i ),

it is natural to expect that the conditional distribution of max1≤j≤p S
η
n,j is

“close” to the distribution of max1≤j≤p Tn,j and hence that of max1≤j≤p Sn,j.
Note here that the conditional distribution of Sη

n is completely known, which
makes this distribution useful for purposes of statistical inference. The fol-
lowing proposition makes this intuition rigorous.

Proposition 1 (Conditional multiplier central limit theorem). Work with
the setup as described above. Suppose that p ≥ 2 and there are some con-
stants 0 < c1 < C1 such that c1 ≤ n−1

∑n
i=1 E[Z

2
ij ] ≤ C1 for all 1 ≤ j ≤ p.

Moreover, suppose that ∆̂ := max1≤j,k≤p |n−1
∑n

i=1(ZijZik − E[ZijZik])| =
oP((log p)

−2). Then

sup
x∈R

|P( max
1≤j≤p

Sη
n,j ≤ x | Zn

1 )− P( max
1≤j≤p

Tn,j ≤ x)| P→ 0, as n → ∞. (5)

Here recall that p is allowed to increase with n.

Proof. By Theorem 2, we have

sup
x∈R

|P( max
1≤j≤p

Sη
n,j ≤ x | Zn

1 )−P( max
1≤j≤p

Tn,j ≤ x)| = O{∆̂1/3(1∨log(p/∆̂))2/3}.

The right side is oP(1) as soon as ∆̂ = oP((log p)
−2). �

We call this result a “conditional multiplier central limit theorem,” where
the terminology follows that in empirical process theory. See [25], Chapter
2.9. The notable features of this proposition, which inherit from the features
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of Theorem 2 discussed above, are: (i) (5) can hold even when p is much
larger than n, and (ii) it allows for arbitrary covariance matrices for Zi

(except for the mild scaling condition that c1 ≤ n−1
∑n

i=1 E[Z
2
ij ] ≤ C1). The

second point is clearly desirable in statistical applications as the information
on the true covariance structure is generally (but not always) unavailable.

For the first point, we have the following estimate on E[∆̂].

Lemma 1. Let p ≥ 2. There exists a universal constant C > 0 such that

E[∆̂] ≤ C

[
max
1≤j≤p

(n−1∑n
i=1E[Z

4
ij ])

1/2

√
log p

n
+ (E[ max

1≤i≤n
max
1≤j≤p

Z4
ij ])

1/2 log p

n

]
.

Proof. See Appendix. �

Hence with help of Lemma 2.2.2 in [25], we can find various primitive

conditions under which ∆̂ = oP((log p)
−2) so that (5) holds. Consider the

following examples.
Case (a): Suppose that E[exp(|Zij |/C1)] ≤ 2 for all 1 ≤ i ≤ n and

1 ≤ j ≤ p for some C1 > 0. In this case, it is not difficult to verify that

∆̂ = oP((log p)
−2) as soon as log p = o(n1/5).

Case (b): Another type of Zij which arises in regression applications
is of the form Zij = εixij where εi are stochastic with E[εi] = 0 and
max1≤i≤n E[|εi|4q] = O(1) for some q ≥ 1, and xij are non-stochastic (typ-
ically, εi are “errors” and xij are “regressors”). Suppose that xij are nor-
malized in such a way that n−1

∑n
i=1 x

2
ij = 1, and there are bounds Bn ≥ 1

such that max1≤i≤nmax1≤j≤p |xij | ≤ Bn, where we allow Bn → ∞. In this

case, ∆̂ = oP((log p)
−2) as soon as

max{B2
n(log p)

5, B4q/(2q−1)
n (log p)6q/(2q−1)} = o(n),

since max1≤j≤p(n
−1

∑n
i=1 E[(εixij)

4]) ≤ B2
nmax1≤i≤n E[ε

4
i ] = O(B2

n) and

E[max1≤i≤nmax1≤j≤p(εixij)
4] ≤ B4

nE[max1≤i≤n ε
4
i ] = O(n1/qB4

n).
Importantly, in these examples, for (5) to hold, p can increase exponen-

tially in some fractional power of n.

3. Anti-concentration Bounds

The following theorem provides bounds on the Lévy concentration func-
tion of the maximum of p Gaussian random variables, where the terminology
is borrowed from [20].

Definition 1 ([20], Definition 3.1). The Lévy concentration function of a
real valued random variable ξ is defined for ε > 0 as

L(ξ, ε) = sup
x∈R

P(|ξ − x| ≤ ε).

Theorem 3 (Anti-concentration). Let X1, . . . ,Xp be (not necessarily in-
dependent) centered Gaussian random variables with σ2

j := E[X2
j ] > 0 for
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all 1 ≤ j ≤ p. Moreover, let σ := min1≤j≤p σj, σ̄ := max1≤j≤p σj , and
ap := E[max1≤j≤p(Xj/σj)].

(i) If the variances are all equal, namely σ = σ̄ = σ, then for every
ε > 0,

L( max
1≤j≤p

Xj , ε) ≤ 4ε(ap + 1)/σ.

(ii) If the variances are not equal, namely σ < σ̄, then for every ε > 0,

L( max
1≤j≤p

Xj , ε) ≤ Cε{ap +
√

1 ∨ log(σ/ε)},

where C > 0 depends only on σ and σ̄.

The following simpler corollary is useful in applications. This corollary
will be used in the proof of Theorem 2.

Corollary 1. Let X1, . . . ,Xp be (not necessarily independent) centered Gauss-
ian random variables with σ2

j := E[X2
j ] > 0 for all 1 ≤ j ≤ p. Let

σ := min1≤j≤p σj and σ̄ := max1≤j≤p σj. Then for every ε > 0,

L( max
1≤j≤p

Xj, ε) ≤ Cε
√

1 ∨ log(p/ε),

where C > 0 depends only on σ and σ̄. When σj are all equal, log(p/ε) on
the right side can be replaced by log p.

Proof of Corollary 1. Since Xj/σj ∼ N(0, 1), by a standard calculation, we
have ap ≤

√
2 log p. See, e.g., Proposition 1.1.3 of [24]. Hence the corollary

follows from Theorem 3. �

Comment 2 (Anti-concentration vs. small ball probabilities). The problem
of bounding the Lévy concentration function L(max1≤j≤pXj, ε) is qualita-
tively different from the problem of bounding P(max1≤j≤p |Xj | ≤ x). For a
survey on the latter problem, called the “small ball problem”, we refer the
reader to [15].

Comment 3 (Concentration vs. anti-concentration). Concentration in-
equalities refer to inequalities bounding P(|ξ−x| > ε) for a random variable
ξ (typically x is the mean or median of ξ). See the monograph [13] for
a study of the concentration of measure phenomenon. Anti-concentration
inequalities in turn refer to reverse inequalities, i.e., inequalities bound-
ing P(|ξ − x| ≤ ε). Theorem 3 provides anti-concentration inequalities
for max1≤j≤pXj . [26] remarked that “concentration is better understood
than anti-concentration”. In the present case, the Gaussian concentration
inequality (see [13], Theorem 7.1) states that

P(| max
1≤j≤p

Xj − E[ max
1≤j≤p

Xj ]| ≥ r) ≤ 2e−r2/(2σ̄2), r > 0,

where the mean can be replace by the median. This inequality is well known
and dates back to [4] and [23]. To the best of our knowledge, however, the
reverse inequalities in Theorem 3 were not known and are new.
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Comment 4 (Anti-concentration for maximum of moduli, max1≤j≤p |Xj |).
Versions of Theorem 3 and Corollary 1 continue to hold for max1≤j≤p |Xj |.
That is, e.g., when σj are all equal (σj = σ), we have L(max1≤j≤p |Xj |, ε) ≤
4(a′p + 1)/σ, where a′p := E[max1≤j≤p |Xj |/σ]. To see this, observe that
max1≤j≤p |Xj | = max1≤j≤2pX

′
j where X

′
j = Xj for j = 1, . . . , p and X ′

p+j =

−Xj for j = 1, . . . , p. Hence we may apply Theorem 3 to X ′
1, . . . ,X

′
2p to

obtain the desired conclusion.

The main feature of Theorem 3 is the fact that it provides qualitative
bounds on the Lévy concentration function L(max1≤j≤pXj , ε). In a triv-
ial example where p = 1, it is immediate to see that P(|X1 − x| ≤ ε) ≤
ε
√
2/(πσ2

1). A non-trivial case is the situation where p → ∞. In such a
case, it is typically not known whether max1≤j≤pXj has a limiting distribu-
tion as p → ∞ (recall that except for σ > 0, we allow for general covariance
structures between X1, . . . ,Xp) and therefore it is not trivial at all whether,
for every sequence ε = εp → 0 (or at some rate), L(max1≤j≤pXj , ε) → 0 or
how fast ε = εp → 0 should be to guarantee that L(max1≤j≤pXj , ε) → 0.
Theorem 3 answers this question with explicit, non-asymptotic bounds.

Comment 5 (Relation to Ball’s reverse isoperimetric inequality). Applica-
tion of Ball’s [2] reverse isoperimetric inequality to our problem gives the
following anti-concentration bound:

L( max
1≤j≤p

Xj, ε) ≤ Cεp1/4. (6)

More precisely, this bound follows from equation (1.4) noted in [3], which
is based on [2], and from the fact that the sets of the form Amax(t) = {x ∈
R
p : max1≤j≤p xj ≤ t} are convex. Thus, the dimension p appears as p1/4 in

the bound (6). In contrast, our anti-concentration bound has
√

1 ∨ log(p/ε)

instead of p1/4, which results in considerably tighter bounds when p is very
large. Note, however, that Ball’s inequality is universal for a broad collection
A of convex bodies, whereas the anti-concentration inequality developed
here can be viewed as a reverse isoperimetric inequality for collection of sets
Amax = {Amax(t) : t ∈ R}.

The presence of ap on the bounds is essential and can not be removed,
as the following example suggests. This shows that there does not exist a
substantially sharper estimate of the universal bound of the concentration
function than that given in Theorem 3. Potentially, there could be refine-
ments but they would have to rely on the particular (hence non-universal)
features of the covariance structure between X1, . . . ,Xp.

Example 1 (Partial converse of Theorem 3). LetX1, . . . ,Xp be independent
standard Gaussian random variables. By Theorem 1.5.3 of [12], as p → ∞,

bp( max
1≤j≤p

Xj − dp)
d→ G(0, 1), (7)
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where

bp :=
√

2 log p, dp := bp −
log(4π) + log log p

2bp
,

and G(0, 1) denotes the standard Gumbel distribution, i.e., the distribu-

tion having the density g(x) = e−xe−e−x
for x ∈ R. In fact, we can show

that the density of bp(max1≤j≤pXj − dp) converges to that of G(0, 1) lo-
cally uniformly. To see this, we begin with noting that the density of
bp(max1≤j≤pXj − dp) is given by

gp(x) =
p

bp
φ(dp + b−1

p x)[Φ(dp + b−1
p x)]p−1,

where φ(·) and Φ(·) are the density and distribution functions of the standard
Gaussian distribution, respectively. Pick any x ∈ R. Since, by the weak
convergence result (7),

[Φ(dp + b−1
p x)]p = P(bp( max

1≤j≤p
Xj − dp) ≤ x) → e−e−x

, p → ∞,

we have [Φ(dp + b−1
p x)]p−1 → e−e−x

. Hence it remains to show that

p

bp
φ(dp + b−1

p x) → e−x.

Taking the logarithm of the left side yields

log p− log bp − log(
√
2π)− (dp + b−1

p x)2/2. (8)

Expanding (dp + b−1
p x)2 gives that

d2p + 2dpb
−1
p x+ b−2

p x2 = b2p − log log p− log(4π) + 2x+ o(1), p → ∞,

by which we have (8) = −x + o(1). This shows that gp(x) → g(x) for all
x ∈ R. Moreover, this convergence takes place locally uniformly in x, i.e.,
for every K > 0, gp(x) → g(x) uniformly in x ∈ [−K,K].

On the other hand, the density of max1≤j≤pXj is given by fp(x) =
pφ(x)[Φ(x)]p−1. By this form, for every K > 0, there exist a constant
c > 0 and a positive integer p0 depending only on K such that for p ≥ p0,

inf
x∈[dp−Kb−1

p ,dp+Kb−1
p ]

b−1
p fp(x) = inf

x∈[−K,K]
gp(x) ≥ inf

x∈[−K,K]
g(x) + o(1) ≥ c,

which shows that for p ≥ p0,

fp(x) ≥ cbp, ∀x ∈ [dp −Kb−1
p , dp +Kb−1

p ].

Therefore, we conclude that for p ≥ p0,

P(| max
1≤j≤p

Xj − dp| ≤ ε) =

∫ dp+ε

dp−ε
fp(x)dx ≥ 2cεbp, ∀ε ∈ [0,Kb−1

p ].

By the Gaussian maximal inequality and Lemma 2.3.15 of [10], we have
√

log p/12 ≤ E[ max
1≤j≤p

Xj ] ≤
√

2 log p.
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Hence, by the previous result, for every K ′ > 0, there exist a constant c′ > 0
and and a positive integer p′0 depending only on K ′ such that for p ≥ p′0,
ap ≥ 1 and

L( max
1≤j≤p

Xj , ε) ≥ P(| max
1≤j≤p

Xj − dp| ≤ ε) ≥ c′εap, ∀ε ∈ [0,K ′a−1
p ].

�

4. Proofs for Section 2

4.1. Proof of Theorem 1. Here for a smooth function f : Rp → R, we
write ∂jf(z) = ∂f(z)/∂zj for z = (z1, . . . , zp)

T . We shall use the following
version of Stein’s identity.

Lemma 2 (Stein’s identity). Let W = (W1, . . . ,Wp)
T be a centered Gauss-

ian random vector in R
p. Let f : R

p → R be a C1-function such that
E[|∂jf(W )|] < ∞ for all 1 ≤ j ≤ p. Then for every 1 ≤ j ≤ p,

E[Wjf(W )] =

p∑

k=1

E[WjWk]E[∂kf(W )].

Proof of Lemma 2. See Section A.6 of [24]; also [8] and [22]. �

We will use the following properties of the smooth max function.

Lemma 3. For every 1 ≤ j, k ≤ p,

∂jFβ(z) = πj(z), ∂j∂kFβ(z) = βwjk(z),

where

πj(z) := eβzj/
∑p

m=1e
βzm , wjk(z) := 1(j = k)πj(z)− πj(z)πk(z).

Moreover,

πj(z) ≥ 0,
∑p

j=1πj(z) = 1,
∑p

j,k=1|wjk(z)| ≤ 2.

Proof of Lemma 3. The first property was noted in [7]. The other properties
follow from a direct calculation. �

Lemma 4. Let m := g ◦ Fβ with g ∈ C2(R). Then for every 1 ≤ j, k ≤ p,

∂j∂km(z) = (g′′ ◦ Fβ)(z)πj(z)πk(z) + β(g′ ◦ Fβ)(z)wjk(z),

where πj and wjk are defined in Lemma 3.

Proof of lemma 4. The proof follows from a direct calculation. �

Proof of Theorem 1. Without loss of generality, we may assume that X and
Y are independent, so that E[XjYk] = 0 for all 1 ≤ j, k ≤ p. Consider the
following Slepian interpolation between X and Y :

Z(t) :=
√
tX +

√
1− tY, t ∈ [0, 1].
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Let m := g ◦ Fβ and Ψ(t) := E[m(Z(t))]. Then

|E[m(X)]− E[m(Y )]| = |Ψ(1)−Ψ(0)| =
∣∣∣∣
∫ 1

0
Ψ′(t)dt

∣∣∣∣ .

Here we have

Ψ′(t) =
1

2

p∑

j=1

E[∂jm(Z(t))(t−1/2Xj − (1− t)−1/2Yj)]

=
1

2

p∑

j=1

p∑

k=1

(σX
jk − σY

jk)E[∂j∂km(Z(t))],

where the second equality follows from applying Lemma 2 toW = (t−1/2Xj−
(1− t)−1/2Yj, Z(t)T )T and f(W ) = ∂jm(Z(t)). Hence

∣∣∣∣
∫ 1

0
Ψ′(t)dt

∣∣∣∣ ≤
1

2

p∑

j,k=1

|σX
jk − σY

jk|
∣∣∣∣
∫ 1

0
E[∂j∂km(Z(t))]dt

∣∣∣∣

≤ 1

2
max

1≤j,k≤p
|σX

jk − σY
jk|

∫ 1

0

p∑

j,k=1

|E[∂j∂km(Z(t))]| dt

=
∆

2

∫ 1

0

p∑

j,k=1

|E[∂j∂km(Z(t))]| dt.

By Lemmas 3 and 4,

p∑

j,k=1

|∂j∂km(Z(t))| ≤ |(g′′ ◦ Fβ)(Z(t))| + 2β|(g′ ◦ Fβ)(Z(t))|.

Therefore, we have

|E[g(Fβ(X)) − g(Fβ(Y ))]|

≤ ∆×
{
1

2

∫ 1

0
E[|(g′′ ◦ Fβ)(Z(t))|]dt + β

∫ 1

0
E[|(g′ ◦ Fβ)(Z(t))|]dt

}
(9)

≤ ∆(‖g′′‖∞/2 + β‖g′‖∞),

which leads to the first assertion. The second assertion follows from the
inequality (1). This completes the proof. �

4.2. Proof of Theorem 2. We first note that we may assume that 0 <
∆ ≤ 1 since otherwise the proof is trivial (take C ≥ 1 in (2)). In what
follows, let C > 0 be a generic constant that depends only on min1≤j≤p σ

Y
jj

and max1≤j≤p σ
Y
jj, and its value may change from place to place. For β > 0,

define eβ := β−1 log p. Consider and fix a C2-function g0 : R → [0, 1] such
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that g0(t) = 1 for t ≤ 0 and g0(t) = 0 for t ≥ 1. For example, we may take

g0(t) =





0, t ≥ 1,

30
∫ 1
t s2(1− s)2ds, 0 < t < 1,

1, t ≤ 0.

For given x ∈ R, β > 0 and δ > 0, define gx,β,δ(t) = g0(δ
−1(t − x − eβ)).

For this function gx,β,δ, ‖g′x,β,δ‖∞ = δ−1‖g′0‖∞ and ‖g′′x,β,δ‖∞ = δ−2‖g′′0‖∞.
Moreover,

1(t ≤ x+ eβ) ≤ gx,β,δ(t) ≤ 1(t ≤ x+ eβ + δ), ∀t ∈ R. (10)

For arbitrary x ∈ R, β > 0 and δ > 0, observe that

P( max
1≤j≤p

Xj ≤ x) ≤ P(Fβ(X) ≤ x+ eβ) ≤ E[gx,β,δ(Fβ(X))]

≤ E[gx,β,δ(Fβ(Y ))] + C(δ−2 + βδ−1)∆

≤ P(Fβ(Y ) ≤ x+ eβ + δ) + C(δ−2 + βδ−1)∆

≤ P( max
1≤j≤p

Yj ≤ x+ eβ + δ) + C(δ−2 + βδ−1)∆,

where the first inequality follows from the inequality (1), the second from
the inequality (10), the third from Theorem 1, the fourth from the in-
equality (10), and the last from the inequality (1). We wish to compare
P(max1≤j≤p Yj ≤ x + eβ + δ) with P(max1≤j≤p Yj ≤ x), and this is where
the anti-concentration inequality plays its role. By Corollary 1, we have

P( max
1≤j≤p

Yj ≤ x+ eβ + δ)− P( max
1≤j≤p

Yj ≤ x)

= P(x < max
1≤j≤p

Yj ≤ x+ eβ + δ)

≤ L( max
1≤j≤p

Yj, eβ + δ)

≤ C(eβ + δ)
√

1 ∨ log(p/(eβ + δ))

≤ C(eβ + δ)
√

1 ∨ log(p/δ).

Therefore,

P( max
1≤j≤p

Xj ≤ x)− P( max
1≤j≤p

Yj ≤ x)

≤ C{(δ−2 + βδ−1)∆ + (eβ + δ)
√

1 ∨ log(p/δ)}. (11)

Choose β and δ in such a way that

β = δ−1 log p and δ = ∆1/3(2 log p)1/6.

Recall that p ≥ 2 and 0 < ∆ ≤ 1. Since δ ≥ ∆1/3 ≥ ∆, 1 ∨ log(p/δ) ≤
2 log(p/∆). Hence the right side on (11) is bounded by C∆1/3(log(p/∆))2/3.
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For the opposite direction, observe that

P( max
1≤j≤p

Xj ≤ x) ≥ P(Fβ(X) ≤ x) ≥ E[gx−eβ−δ,β,δ(Fβ(X))]

≥ E[gx−eβ−δ,β,δ(Fβ(Y ))] − C(δ−2 + βδ−1)∆

≥ P(Fβ(Y ) ≤ x− δ)− C(δ−2 + βδ−1)∆

≥ P( max
1≤j≤p

Yj ≤ x− eβ − δ)− C(δ−2 + βδ−1)∆.

The rest of the proof is similar and hence omitted. �

5. Proof of Theorem 3

The proof of Theorem 3 uses some properties of Gaussian measures. We
begin with preparing technical tools. Here let φ(·) and Φ(·) denote the
density and distribution functions of the standard Gaussian distribution:

φ(x) =
1√
2π

e−x2/2, Φ(x) =

∫ x

−∞

φ(t)dt.

The following two facts were essentially noted in [28, 29] (note: [28] and [29]
did not contain a proof of Lemma 5, which we find non-trivial). For the
sake of completeness, we give their proofs after the proof of Theorem 3.

Lemma 5. Let W1, . . . ,Wp be (not necessarily independent nor centered)
Gaussian random variables with unit variance. Suppose that Corr(Wj ,Wk) <
1 whenever j 6= k. Then the distribution of max1≤j≤pWj is absolutely con-
tinuous with respect to the Lebesgue measure and a version of the density is
given by

f(x) = φ(x)

p∑

j=1

eE[Wj ]x−(E[Wj])
2/2 · P (Wk ≤ x,∀k 6= j | Wj = x) . (12)

Lemma 6. Let W0,W1, . . . ,Wp be (not necessarily independent nor cen-
tered) Gaussian random variables with unit variance. Suppose that E[W0] ≥
0. Then the map

x 7→ eE[W0]x−(E[W0])2/2 · P(Wj ≤ x, 1 ≤ ∀j ≤ p | W0 = x) (13)

is non-decreasing on R.

Let us also recall (a version of) the Gaussian concentration (more pre-
cisely, deviation) inequality. See, e.g., [13], Theorem 7.1, for its proof.

Lemma 7. Let X1, . . . ,Xp be (not necessarily independent) centered Gauss-
ian random variables with variance bounded by σ2 > 0. Then for every
r > 0,

P( max
1≤j≤p

Xj ≥ E[ max
1≤j≤p

Xj ] + r) ≤ e−r2/(2σ2).

We are now in position to prove Theorem 3.
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Proof of Theorem 3. The proof consists of three steps.
Step 1. This step reduces the analysis to the unit variance case. Pick

any x ≥ 0. Let Wj := (Xj−x)/σj+x/σ. Then E[Wj] ≥ 0 and Var(Wj) = 1.
Define Z := max1≤j≤pWj. Then we have

P(| max
1≤j≤p

Xj − x| ≤ ε) ≤ P

(∣∣∣∣max
1≤j≤p

Xj − x

σj

∣∣∣∣ ≤
ε

σ

)

≤ sup
y∈R

P

(∣∣∣∣max
1≤j≤p

Xj − x

σj
+

x

σ
− y

∣∣∣∣ ≤
ε

σ

)

= sup
y∈R

P

(
|Z − y| ≤ ε

σ

)
.

Step 2. This step bounds the density of Z. Without loss of generality,
we may assume that Corr(Wj ,Wk) < 1 whenever j 6= k. Since the marginal
distribution of Wj is N(µj , 1) where µj := E[Wj] = (x/σ − x/σj) ≥ 0, by
Lemma 5, Z has density of the form

fp(z) = φ(z)Gp(z), (14)

where the map z 7→ Gp(z) is non-decreasing by Lemma 6. Define z̄ :=
(1/σ − 1/σ̄)x, so that µj ≤ z̄ for every 1 ≤ j ≤ p. Moreover, define
Z̄ := max1≤j≤p(Wj − µj). Then

∫ ∞

z
φ(u)duGp(z) ≤

∫ ∞

z
φ(u)Gp(u)du

= P(Z > z)

≤ P(Z̄ > z − z̄)

≤ exp

{
−(z − z̄ − E[Z̄])2+

2

}
,

where the last inequality is due to the Gaussian concentration inequality
(Lemma 7). Note that Wj − µj = Xj/σj , so that

E[Z̄] = E[ max
1≤j≤p

(Xj/σj)] =: ap.

Therefore, for every z ∈ R,

Gp(z) ≤
1

1− Φ(z)
exp

{
−(z − z̄ − ap)

2
+

2

}
. (15)

Mill’s inequality states that for z > 0,

z ≤ φ(z)

1− Φ(z)
≤ z

1 + z2

z2
,

and in particular (1+ z2)/z2 ≤ 2 when z > 1. Moreover, φ(z)/{1−Φ(z)} ≤
1.53 ≤ 2 on z ∈ (−∞, 1). Therefore,

φ(z)/{1 −Φ(z)} ≤ 2(z ∨ 1), ∀z ∈ R.
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Hence we conclude from this, (15), and (14) that

fp(z) ≤ 2(z ∨ 1) exp

{
−(z − z̄ − ap)

2
+

2

}
, ∀z ∈ R.

Step 3. By Step 2, for every y ∈ R and t > 0, we have

P (|Z − y| ≤ t) =

∫ y+t

y−t
fp(z)dz ≤ 2t max

z∈[y−t,y+t]
fp(z) ≤ 4t(z̄ + ap + 1),

where the last inequality follows from the fact that the map z 7→ ze−(z−a)2/2

(with a > 0) is non-increasing on [a+1,∞). Combining this inequality with
Step 1, for every x ≥ 0 and ε > 0, we have

P(| max
1≤j≤p

Xj − x| ≤ ε) ≤ 4ε{(1/σ − 1/σ̄)|x|+ ap + 1}/σ. (16)

This inequality also holds for x < 0 by the similar argument, and hence it
holds for every x ∈ R.

If σ = σ̄ = σ, then we have

P(| max
1≤j≤p

Xj − x| ≤ ε) ≤ 4ε(ap + 1)/σ, ∀x ∈ R, ∀ε > 0,

which leads to the first assertion of the theorem.
On the other hand, consider the case where σ < σ̄. Suppose first that

0 < ε ≤ σ. By the Gaussian concentration inequality (Lemma 7), for |x| ≥
ε+ σ̄(ap +

√
2 log(σ/ε)), we have

P(| max
1≤j≤p

Xj − x| ≤ ε) ≤ P( max
1≤j≤p

Xj ≥ |x| − ε)

≤ P

(
max
1≤j≤p

Xj ≥ E[ max
1≤j≤p

Xj] + σ̄
√

2 log(σ/ε)

)

≤ ε/σ. (17)

For |x| ≤ ε+ σ̄(ap +
√

2 log(σ/ε)), by (16) and using ε ≤ σ, we have

P(| max
1≤j≤p

Xj − x| ≤ ε) ≤ 4ε{(σ̄/σ)ap + (σ̄/σ − 1)
√

2 log(σ/ε) + 2− σ/σ̄}/σ.
(18)

Combining (17) and (18), we obtain the inequality in (ii) for 0 < ε ≤ σ
(with a suitable choice of C). If ε > σ, the inequality in (ii) trivially follows
by taking C ≥ 1/σ. This completes the proof. �

Proof of Lemma 5. Let M := max1≤j≤pWj. The absolute continuity of the
distribution of M is deduced from the fact that P(M ∈ A) ≤ ∑p

j=1 P(Wj ∈
A) for every Borel measurable subset A of R. Hence, to show that a version
of the density ofM is given by (12), it is enough to show that limε↓0 ε

−1P(x <
M ≤ x+ ε) equals the right side on (12) for a.e. x ∈ R.
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For every x ∈ R and ε > 0, observe that

{x < M ≤ x+ ε}
= {∃i0,Wi0 > x and ∀i,Wi ≤ x+ ε}
= {∃i1, x < Wi1 ≤ x+ ε and ∀i 6= i1,Wi ≤ x}
∪ {∃i1,∃i2, x < Wi1 ≤ x+ ε, x < Wi2 ≤ x+ ε and ∀i /∈ {i1, i2},Wi ≤ x}

...

∪ {∀i, x < Wi ≤ x+ ε}
=: Ax,ε

1 ∪Ax,ε
2 ∪ · · · ∪Ax,ε

p .

Note that the events Ax,ε
1 , Ax,ε

2 , . . . , Ax,ε
p are disjoint. For Ax,ε

1 , since

Ax,ε
1 = ∪p

i=1{x < Wi ≤ x+ ε and Wj ≤ x,∀j 6= i},
where the events on the right side are disjoint, we have

P(Ax,ε
1 ) =

p∑

i=1

P(x < Wi ≤ x+ ε and Wj ≤ x,∀j 6= i)

=

p∑

i=1

∫ x+ε

x
P(Wj ≤ x,∀j 6= i | Wi = u)φ(u− µi)du,

where µi := E[Wi]. We show that for every 1 ≤ i ≤ p and a.e. x ∈ R,
the map u 7→ P(Wj ≤ x,∀j 6= i | Wi = u) is right continuous at x. Let
Xj = Wj − µj so that Xj are standard Gaussian random variables. Then

P(Wj ≤ x,∀j 6= i | Wi = u) = P(Xj ≤ x− µj,∀j 6= i | Xi = u− µi).

Pick i = 1. Let Vj = Xj − E[XjX1]X1 be the residual from the orthogonal
projection of Xj on X1. Note that the vector (Vj)2≤j≤p and X1 are jointly
Gaussian and uncorrelated, and hence independent, by which we have

P(Xj ≤ x− µj, 2 ≤ ∀j ≤ p | X1 = u− µ1)

= P(Vj ≤ x− µj − E[XjX1](u− µ1), 2 ≤ ∀j ≤ p | X1 = u− µ1)

= P(Vj ≤ x− µj − E[XjX1](u− µ1), 2 ≤ ∀j ≤ p).

Define J := {j ∈ {2, . . . , p} : E[XjX1] ≤ 0} and Jc := {2, . . . , p}\J . Then
P(Vj ≤ x− µj − E[XjX1](u− µ1), 2 ≤ ∀j ≤ p)

→ P(Vj ≤ xj ,∀j ∈ J, Vj′ < xj′ ,∀j′ ∈ Jc), as u ↓ x,

where xj = x− µj −E[XjX1](x− µ1). Here each Vj either degenerates to 0
(which occurs only when Xj and X1 are perfectly negatively correlated, i.e.,
E[XjX1] = −1) or has a non-degenerate Gaussian distribution, and hence
for every x ∈ R expect for at most (p− 1) points (µ1 + µj)/2, 2 ≤ j ≤ p,

P(Vj ≤ xj ,∀j ∈ J, Vj′ < xj′ ,∀j′ ∈ Jc) = P(Vj ≤ xj , 2 ≤ ∀j ≤ p)

= P(Wj ≤ x, 2 ≤ ∀j ≤ p | W1 = x).
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Hence for i = 1 and a.e. x ∈ R, the map u 7→ P(Wi ≤ x,∀j 6= i | Wi = u)
is right continuous at x. The same conclusion clearly holds for 2 ≤ i ≤ p.
Therefore, we conclude that, for a.e. x ∈ R, as ε ↓ 0,

1

ε
P(Ax,ε

1 ) →
p∑

i=1

P(Wj ≤ x,∀j 6= i | Wi = x)φ(x− µi)

= φ(x)

p∑

i=1

eµix−µ2

i /2P(Wj ≤ x,∀j 6= i | Wi = x).

In the rest of the proof, we show that, for every 2 ≤ i ≤ p and x ∈ R,
P(Ax,ε

i ) = o(ε) as ε ↓ 0, which leads to the desired conclusion. Fix any
2 ≤ i ≤ p. The probability P(Ax,ε

i ) is bounded by a sum of terms of
the form P(x < Wj ≤ x + ε, x < Wk ≤ x + ε) with j 6= k. Recall that
Corr(Wj ,Wk) < 1. Assume that Corr(Wj,Wk) = −1. Then for every
x ∈ R, P(x < Wj ≤ x + ε, x < Wk ≤ x + ε) is zero for sufficiently small
ε. Otherwise, (Wj ,Wk)

T obeys a two-dimensional, non-degenerate Gaussian
distribution and hence P(x < Wj ≤ x+ ε, x < Wk ≤ x+ ε) = O(ε2) = o(ε)
as ε ↓ 0 for every x ∈ R. This completes the proof. �

Proof of Lemma 6. Since E[W0] ≥ 0, the map x 7→ exp(E[W0]x− (E[W0])
2)

is non-decreasing. Thus it suffices to show that the map

x 7→ P(W1 ≤ x, . . . ,Wp ≤ x | W0 = x) (19)

is non-decreasing. As in the proof of Lemma 5, let Xj = Wj − E[Wj] and
let Vj = Xj −E[XjX0]X0 be the residual from the orthogonal projection of
Xj on X0. Note that the vector (Vj)1≤j≤p and X0 are independent. Hence
the probability in (19) equals

P(Vj ≤ x− µj − E[XjX0](x− E[W0]), 1 ≤ ∀j ≤ p | X0 = x− E[W0])

= P(Vj ≤ x− µj − E[XjX0](x− E[W0]), 1 ≤ ∀j ≤ p),

where the latter is non-decreasing in x on R since E[XjX0] ≤ 1. �

Appendix A. Proof of Lemma 1

Lemma 1 follows from the following maximal inequality and Hölder’s in-
equality. Here we write a . b if a is smaller than or equal to b up to a
universal positive constant.

Lemma 8. Let Z1, . . . , Zn be independent random vectors in R
p with p ≥ 2.

Define M := max1≤i≤nmax1≤j≤p |Zij | and σ2 := max1≤j≤p
∑n

i=1 E[Z
2
ij].

Then

E[ max
1≤j≤p

|∑n
i=1(Zij − E[Zij ])|] . (σ

√
log p+

√
E[M2] log p).

We shall use the following lemma.
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Lemma 9. Let V1, . . . , Vn be independent random vectors in R
p with p ≥ 2

such that Vij ≥ 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then

E[ max
1≤j≤p

∑n
i=1Vij ] . max

1≤j≤p
E[
∑n

i=1Vij] + E[ max
1≤i≤n

max
1≤j≤p

Vij] log p.

Proof of Lemma 9. We make use of the symmetrization technique. Let
ε1, . . . , εn be independent Rademacher random variables (i.e., P(εi = 1) =
P(εi = −1) = 1/2) independent of V n

1 := {V1, . . . , Vn}. Then by the triangle
inequality and Lemma 2.3.1 in [25],

I := E[ max
1≤j≤p

∑n
i=1Vij ] ≤ max

1≤j≤p
E[
∑n

i=1Vij ] + E[ max
1≤j≤p

|∑n
i=1(Vij − E[Vij ])|]

≤ max
1≤j≤p

E[
∑n

i=1Vij ] + 2E[ max
1≤j≤p

|∑n
i=1εiVij|].

By Lemmas 2.2.2 and 2.2.7 in [25], we have

E[ max
1≤j≤p

|∑n
i=1εiVij | | V n

1 ] . max
1≤j≤p

(
∑n

i=1V
2
ij)

1/2
√

log p

≤
√

B log p max
1≤j≤p

(
∑n

i=1Vij)
1/2,

where B := max1≤i≤nmax1≤j≤p Vij. Hence by Fubini’s theorem and the
Cauchy-Schwarz inequality,

E[ max
1≤j≤p

|
∑n

i=1εiVij |] .
√

E[B] log p(E[ max
1≤j≤p

∑n
i=1Vij])

1/2

=
√

E[B] log p
√
I.

Therefore, we have

I . max
1≤j≤p

E[
∑n

i=1Vij ] +
√

E[B] log p
√
I =: a+ b

√
I.

Solving this inequality, we conclude that I . a+ b2. �

Proof of Lemma 8. Let ε1, . . . , εn be independent Rademacher random vari-
ables independent of Z1, . . . , Zn. Then arguing as in the previous proof, we
have

E[ max
1≤j≤p

|∑n
i=1(Zij − E[Zij])|] ≤ 2E[ max

1≤j≤p
|∑n

i=1εiZij |]

. E[ max
1≤j≤p

(
∑n

i=1Z
2
ij)

1/2]
√

log p

≤ (E[ max
1≤j≤p

∑n
i=1Z

2
ij])

1/2
√

log p. (Jensen)

By Lemma 9 applied to Vij = Z2
ij, we have

E[ max
1≤j≤p

∑n
i=1Z

2
ij ] . σ2 + E[M2] log p.

This implies the desired conclusion. �
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