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Individual and Time Effects in Nonlinear Panel Models with Large N, T™

Ivdn Fernéandez-Valt Martin Weidner?
November 27, 2013

Abstract

Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known
incidental parameter problem. We develop analytical and jackknife bias corrections for nonlinear models
with both individual and time effects. Under asymptotic sequences where the time-dimension (") grows
with the cross-sectional dimension (IV), the time effects introduce additional incidental parameter bias.
As the existing bias corrections apply to models with only individual effects, we derive the appropriate
corrections for the case when both effects are present. The basis for the corrections are general asymptotic
expansions of fixed effects estimators with incidental parameters in multiple dimensions. We apply
the expansions to M-estimators with concave objective functions in parameters for panel models with
additive individual and time effects. These estimators cover fixed effects estimators of the most popular
limited dependent variable models such as logit, probit, ordered probit, Tobit and Poisson models. Our
analysis therefore extends the use of large-T bias adjustments to an important class of models. We also
develop bias corrections for functions of the data, parameters and individual and time effects including
average partial effects. In this case, the incidental parameter bias can be asymptotically of second order,
but the corrections still improve finite-sample properties.
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1 Introduction

Fixed effects estimators of nonlinear panel data models can be severely biased because of the well-known
incidental parameter problem (Neyman and Scott (1948), Heckman (1981), Lancaster (2000), and Greene
(2004)). A recent literature, surveyed in Arellano and Hahn (2007) and including Phillips and Moon
(1999), Hahn and Kuersteiner (2002), Lancaster (2002), Woutersen (2002), Hahn and Newey (2004),
Carro (2007), Arellano and Bonhomme (2009), Fernandez-Val (2009), Hahn and Kuersteiner (2011),
Fernandez-Val and Vella (2011), and Kato, Galvao and Montes-Rojas (2012), provides a range of so-
lutions, so-called large-T' bias corrections, to reduce the incidental parameter problem in long panels.
These papers derive the analytical expression of the bias (up to a certain order of the time dimension 7'),
which can be employed to adjust the biased fixed effects estimators. While the existing large-T methods
cover a large class of models with individual effects, they do not apply to panel models with individual
and time effects. Time effects are important for economic modelling because they allow the researcher
to control for aggregate common shocks and to parsimoniously introduce dependence across individuals.

We develop analytical and jackknife bias corrections for nonlinear models with both individual and
time effects. To justify the corrections, we rely on asymptotic sequences where T grows with the
cross-sectional dimension N, as an approximation to the properties of the estimators in econometric
applications where T' is moderately large relative to N. Examples include empirical applications that
use U.S. state or country level panel data, or trade flows across countries. Under these asymptotics,
the incidental parameter problem becomes a finite-sample bias problem in the time dimension and the
presence of time effects introduces additional bias in the cross sectional dimension. As the existing bias
corrections apply to models with only individual effects, we derive the appropriate correction. This
correction corresponds to a properly adjusted sequential application of the existing corrections to each
dimension.

In addition to model parameters, we provide bias corrections for average partial effects, which are
often the ultimate quantities of interest in nonlinear models. These effects are functions of the data,
parameters and individual and time effects in nonlinear models. The asymptotic distribution of the
fixed effects estimators of these quantities depends on the sampling properties of the individual and
time effects, unlike for model parameters. We find that in general the incidental parameters problem
for average effects is of second order asymptotically, because the rate of convergence for these effects

is generally slower than for model parameters.!

The bias corrections, while not necessary to center
the asymptotic distribution, improve the finite-sample properties of the estimators specially in dynamic
models.

The basis for the bias corrections are asymptotic expansions of fixed effects estimators with incidental
parameters in multiple dimensions. Bai (2009) and Moon and Weidner (2010; 2013) derive similar
expansions for least squares estimators of linear models with interactive individual and time effects. We
consider non-linear models with additive individual and time effects. In our case, the nonlinearity of
the model introduces nonseparability between the estimators of the model parameters and incidental

parameters (individual and time effects). Moreover, we need to deal with an asymptotically infinite

!Galvao and Kato (2013) also found slow rates of convergence for fixed effects estimators in linear models with individual

effects under misspecification.



dimensional non-diagonal Hessian matrix for the incidental parameters. We focus on M-estimators with
concave objective functions in all the parameters, because concavity facilitates showing consistency in
our setting where the dimension of the parameter space grows with the sample size. This case covers
fixed effects estimators of the most popular limited dependent variable models such as logit, probit,
ordered probit, Tobit and Poisson models (Olsen (1978), and Pratt (1981)). Our analysis therefore
extends the use of large-T" bias adjustments to an important class of models.

Our corrections eliminate the leading term of the bias from the asymptotic expansions. Under
asymptotic sequences where N and T grow at the same rate, we find that this term has two components:
one of order O(T~1) coming from the estimation of the individual effects; and one of order O(N 1)
coming from the estimation of the time effects. We consider analytical methods similar to Hahn and
Newey (2004) and Hahn and Kuersteiner (2011), and suitable modifications of the split panel jackknife
of Dhaene and Jochmans (2010).2 However, the theory of the previous papers does not cover the models
that we consider, because, in addition to not allowing for time effects, they assume either identical
distribution or stationarity over time for the processes of the observed variables, conditional on the
unobserved effects. These assumptions are violated in our models due to the presence of the time
effects. We therefore need to extend the validity of the bias corrections to heterogenous processes in
multiple dimensions under weak time series dependence conditions.

Simulation evidence indicates that our corrections improve the estimation and inference performance
of the fixed effects estimators of parameters and average effects. The analytical corrections dominate the
jackknife corrections in probit and Poisson models for sample sizes that are relevant for empirical practice.
We illustrate the corrections with an empirical application on the relationship between competition and
innovation using a panel of U.K. industries, following Aghion, Blundell, Griffith, and Howitt (2005).
We find that the inverted-U pattern relationship found by Aghion et al is robust to relaxing the strict
exogeneity assumption of competition with respect to the innovation process and to the inclusion of
innovation dynamics. We also uncover substantial state dependence in the innovation process.

The large-T panel literature on models with individual and time effects is sparse. Regarding lin-
ear regression models, there is a literature on interactive fixed effects that includes some of the papers
mentioned above (e.g. Pesaran (2006), Bai (2009), Moon and Weidner (2010; 2013)). Furthermore,
Hahn and Moon (2006) considered bias corrected fixed effects estimators in panel linear autoregressive
models with additive individual and time effects. Regarding non-linear models, there is independent and
contemporaneous work by Charbonneau (2012), which extended the conditional fixed effects estimators
to logit and Poisson models with exogenous regressors and additive individual and time effects. She
differences out the individual and time effects by conditioning on sufficient statistics. The conditional
approach completely eliminates the asymptotic bias coming from the estimation of the incidental pa-
rameters, but it does not permit estimation of average partial effects and has not been developed for
models with predetermined regressors. We instead consider estimators of model parameters and average
partial effects in nonlinear models with predetermined regressors. The two approaches can therefore be
considered as complementary.

In Section 2, we introduce the model and fixed effects estimators. Section 3 describes the bias

2A similar split panel jackknife bias correction method was outlined in Hu (2002).



corrections to deal with the incidental parameters problem and illustrates how the bias corrections work
through an example. Section 4 provides the asymptotic theory. Sections 5 and 6 give Monte Carlo
and empirical results. We collect the proofs of all the results and additional technical details in the

Appendix.

2 Model and Estimators

2.1 Model

The data consist of N x T observations {(Y;+, X/,) : 1 <i < N,1 <t < T}, for a scalar outcome variable
of interest Y;; and a vector of explanatory variables X;;. We assume that the outcome for individual ¢

at time t is generated by the sequential process:
Yi ‘ Xf,()é,’%ﬂ ~ fY( | Xitaaia’ytvﬁ)v (Z = ]-,“‘aN;t = 17'~',T)a

where X! = (X;1,...,Xu), « = (a1,...,an), vy = (71,-..,77), fy is a known probability function, and
[ is a finite dimensional parameter vector.

The variables «; and 7; are unobserved individual and time effects that in economic applications cap-
ture individual heterogeneity and aggregate shocks, respectively. The model is semiparametric because
we do not specify the distribution of these effects nor their relationship with the explanatory variables.
The conditional distribution fy represents the parametric part of the model. The vector X;; contains
predetermined variables with respect to Y;;. Note that X;; can include lags of Y;; to accommodate
dynamic models.

We consider two running examples throughout the analysis:

Example 1 (Binary response model). Let Y;; be a binary outcome and F be a cumulative distribution
function, e.g. the standard normal or logistic distribution. We can model the conditional distribution of

Yi: using the single-index specification
fY(y | Xitvai77taﬁ) = F(Xz/tﬁ + (673 + ’Yt)y[l - F<X;t6 + (673 +’Yt)]1_y7 ) S {Oa 1}

Example 2 (Count response model). Let Y;; be a non-negative interger-valued outcome, and f(-;\)
be the probability mass function of a Poisson random wvariable with mean A > 0. We can model the

conditional distribution of Yy using the single index specification

fY(y | Xitaam’)’taﬁ) = f(%eXP[Xz{tﬂ + oy +'Vt])v ye {07 1,2, }

For estimation, we adopt a fixed effects approach treating the realization of the unobserved individual
and time effects as parameters to be estimated. We collect all these effects in the vector ¢y =
(a1, ..y an, Y1,y -, y7) - The model parameter 8 usually includes regression coefficients of interest, while
the unobserved effects ¢n7 are treated as a nuisance parameter. The true values of the parameters,

denoted by 8° and ¢ = (af, ...,a%,7?,...,7%), are the solution to the population problem

MAX (g 4y 1) eRdim fdim o np E¢ [»CNT(57 ¢NT)],

2.1
ﬁNT(ﬂ7¢NT) = (NT)il/Q {Zi,t long()/;t | Xityahfytaﬂ) - b(U;VTQbNT)z/Q}a ( )

4



for every N, T, where E4 denotes the expectation with respect to the distribution of the data conditional
on the unobserved effects and initial conditions, b > 0 is an arbitrary constant, vy = (1%, —1%), and
1y and 17 denote vectors of ones with dimensions N and 7. We will assume that the solution to the
population problem exists and is unique. This will be justified, for example, by a concavity assumption
on the objective function that we impose in Section 4. The second term of Ly7 is a penalty that
imposes a normalization needed to identify ¢ in models with scalar individual and time effects that
enter additively into the log-likelihood function as a; + 7;.> In this case, adding a constant to all oy,
while subtracting it from all ~;, does not change «; + ;. To eliminate this ambiguity, we normalize
PQr to satisfy v, X = 0, ie. >, af = 37, 4P, The penalty produces a maximizer of Ly that is
automatically normalized. We could equivalently impose the constraint v, ¢nr = 0 in the program,
but for technical reasons we prefer to work with an unconstrained optimization problem.* The pre-factor
(NT)='/2 in Ln7(B, ¢nr) is just a convenient rescaling when discussing the structure of the Hessian of
the incidental parameters below.

Other quantities of interest involve averages over the data and unobserved effects

S = E[An (8% d37)], Ant(B,¢nT) = (NT)™! Z A(Xit, B, o, ), (2:2)

it
where E denotes the expectation with respect to the joint distribution of the data and the unobserved
effects, provided that the expectation exists. They are indexed by N and T because the marginal
distribution of {(X, s, 7)1 1 <4 < N,1 <t <T} can be heterogeneous across ¢ and/or ¢; see Section
4.2. These averages include average partial effects (APEs), which are often the ultimate quantities of
interest in nonlinear models. Some examples of partial effects, motivated by the numerical examples of

Sections 5 and 6, are the following:
Example 1 (Binary response model). If X, , the kth element of X, is binary, its partial effect on
the conditional probability of Yy is

A(Xit, B, i) = F(Br + Xz(t,fkﬂfk +a; + ) — F(Xz{t,fkﬁfk +ai + ), (2.3)

where By is the kth element of B, and X _ and B_y include all elements of X and B except for the
kth element. If X, 1 is continuous and F is differentiable, the partial effect of X;: 1 on the conditional
probability of Y;; is

A(Xit, iy i) = BOF (X8 + i + 1), (2.4)

where OF is the derivative of F'.

3In Appendix B we derive asymptotic expansions that apply to more general models. In order to use these expansions
to obtain the asymptotic distribution of the panel fixed effects estimators, we need to derive the properties of the expected
Hessian of the incidental parameters, a matrix with increasing dimension, and to show the consistency of the estimator of
the incidental parameter vector. The additive specification «; + 7 is useful to characterize the Hessian and we impose strict

concavity of the objective function to show the consistency.
4There are alternative normalizations for ¢nT such as a1 = 0. The normalization has no effect on the model parameter and

average partial effects. Our choice is very convenient for certain intermediate results that involve the incidental parameters ¢ N,

their score vector and their Hessian matrix.



Example 2 (Count response model). If Xy includes Z;; and some known transformation H(Z;) with

coefficients By, and B;, the partial effect of Zi on the conditional expectation of Yi is

A(Xir, By iy vi) = [Be + B;0H (Zi)| exp(X[, B + i + 7). (2.5)

2.2 Fixed effects estimators

We estimate the parameters by solving the sample analog of problem (2.1), i.e.

Lyt (B, dNT)-

max

(B, nT)ERIIM B+dim &N
To analyze the properties of the estimator of 5 it is convenient to first concentrate out the nuisance
parameter ¢n7. For given 3, we define the optimal qAﬁNT(ﬂ) as

(/gNT(ﬁ) = argmax Lny7(B8, ¢nT) - (2.6)

d)NTG]Rdim ONT

The fixed effects estimators of 5% and ¢%,, are
Byt = argmax Ly7(B,9nT(B)) onT = OnT(B). (2.7)
BeRdimB
As in the population case, we will impose conditions guaranteeing that the solutions to the previous
programs exist and are unique a.s.

Estimators of APEs can be formed by plugging-in the estimators of the model parameters in the

sample version of (2.2), i.e.
ont = Ant (B, dnT)- (2.8)

3 Incidental parameter problem and bias corrections

In this section we give a heuristic discussion of the main results, leaving the technical details to Section 4.
We illustrate the analysis with numerical calculations based on a variation of the classical Neyman and

Scott (1948) variance example.

3.1 Incidental parameter problem

Fixed effects estimators in nonlinear or dynamic models suffer from the incidental parameter problem
(Neyman and Scott, 1948). The individual and time effects are incidental parameters that cause the
estimators of the model parameters to be inconsistent under asymptotic sequences where either N or T'
are fixed. To describe the problem let

Bt = argmax Eq [[/NT(BNENT(ﬁ))} . (3.1)
BeRdim 5

In general, plim_, . By # B° and plimy_, . Byr # B° because of the estimation error in QENT(B) when
one of the dimensions is fixed. If aNT (B) isreplaced by ¢y (8) = argmax,, cpaimonr Eo[LnT (8, OnT)],

then By, = B°. We consider analytical and jackknife corrections for the bias By, — 8°.



3.2 Bias Corrections

Some expansions can be used to explain our corrections. Under suitable sampling conditions, the bias
is small for large enough N and T, i.e., plimy ;o By = 8% For smooth likelihoods and under

appropriate regularity conditions, as N,T — oo,
Byt =B+ Boo/T + Do /N +0p(T~' VN, (3.2)

for some B and Do, that we characterize in Section 4. Unlike in nonlinear models without incidental
parameters, the order of the bias is higher than the inverse of the sample size (NT)~! due to the slow

rate of convergence of $NT. Note also that by the properties of the maximum likelihood estimator
v NT(BNT — Bnr) 2a N(0,Vo).

Under asymptotic sequences where N/T — k2 as N,T — oo, the fixed effects estimator is asymp-

totically biased because

VNT (Bt — 8°) = VNT(Byt — Byr) + VNT(Boo/T + Do /N + 0p(T71 VNTY))
=4 N(kBoo + £ ' Do, Vo). (3.3)

This is the large-N large-T version of the incidental parameters problem that invalidates any inference
based on the asymptotic distribution. Relative to fixed effects estimators with only individual effects,
the presence of time effects introduces additional asymptotic bias through D.

The analytical bias correction consists of removing estimates of the leading terms of the bias from
the fixed effect estimator of 5°. Let B N7 and ﬁNT be estimators of Bs, and Dy, respectively. The

bias corrected estimator can be formed as

By = Byt — Byr/T — Dyr/N.
If N/T — k2, Byt —p B, and Dyt —p Do, then

VNT(Br — B°) =a N(0, Vo).

The analytical correction therefore centers the asymptotic distribution at the true value of the parameter,
without increasing asymptotic variance.

We consider a jackknife bias correction method that does not require explicit estimation of the bias,
but is computationally more intensive. This method is based on the split panel jackknife (SPJ) of
Dhaene and Jochmans (2010) applied to the two dimensions of the panel.> To describe it, let ENﬁT/Q
be the average of the 2 split jackknife estimators that leave out the first and second halves of the time
periods, and let BN/g,T be the average of the 2 split jackknife estimators that leave out half of the

individuals. In choosing the cross sectional division of the panel, we might want to take into account

® Alternative jackknife corrections based on the leave-one-observation-out panel jackknife (PJ) of Hahn and Newey (2004)
and combinations of PJ and SPJ are also possible. We do not consider corrections based on PJ because they are theoretically

justified by second-order expansions of 8y, that are beyond the scope of this paper.



individual clustering structures to preserve and account for cross sectional dependencies.® The bias
corrected estimator is

Bir = 3BnT — Bnj2 — Bnjar (3.4)

To give some intuition about how the corrections works, note that
Bir — Bo= Byt — Bo) — (B2 — Byr) — (Bnj2,r — Ba),

where B/N’T/z — BT = Boo/T +op(T~1 v N~1) and EN/Q’T — Byt = Do /N 4 op(T~1 v N71). The

time series split removes the bias term B, and the cross sectional split removes the bias term Doo.

3.3 Illustrative Example

To illustrate how the bias corrections work in finite samples, we consider a simple model where the
solution to the population program (3.1) has closed form. This model corresponds to the classical
Neyman and Scott (1948) variance example with individual and time effects, Yy | o, v, 8 ~ N (a; +74, 5)-

It is well-know that in this case

2 _ - 2
Byr = (NT)™' Y (Yu—Yi =Y+ V)",
it
where Y; =771 > Y, Y, =N"1 > Y, and Y. =(NT)! Zi,t Y;:. Moreover,
(N —-1)(T-1)

B = Balfr) = g = (1= - 5+ 7).

so that Boo = —B° and Do, = —f°.
To form the analytical bias correction we can set ENT = —ENT and IA)NT = —BNT, This yields
BA, = Byr(1+1/T + 1/N) with

A 11 11 1
Bnt =EolBnrl =8 <1_TQ_N2_NT+NT2+N2T .

This correction reduces the order of the bias from (T-'VN~!) to (T~2VN~2), and introduces additional
higher order terms. The analytical correction increases finite-sample variance because the factor (1 +
1/T +1/N) > 1. We compare the biases and standard deviations of the fixed effects estimator and the
corrected estimator in a numerical example below.

For the Jackknife correction, straightforward calculations give

B 3 3 7 2 1
BiT = Eaﬁ[ﬁz{f:r] =3BNr — 5N,T/2 - BN/Q,T = (1 - NT) .

The correction therefore reduces the order of the bias from (T-' Vv N~1) to (TN)~ 1.7

5When T is odd we define EN,T/Q as the average of the 2 split jackknife estimators that use overlapping subpanels with
t <(T+1)/2 and t > (T +1)/2. We define Bx/2, 1 similarly when N is odd.

In this example it is possible to develop higher-order jackknife corrections that completely eliminate the bias because we
know the entire expansion of 8 yp. For example, Ey [4B\NT — 2B’N7T/2 — QEN/Q’T +EN/27T/2] = 3°, where EN/gyT/g is the average
of the four split jackknife estimators that leave out half of the individuals and the first or the second halves of the time periods.

See Dhaene and Jochmans (2010) for a discussion on higher-order bias corrections of panel fixed effects estimators.



Table 1 presents numerical results for the bias and standard deviations of the fixed effects and bias
corrected estimators in finite samples. We consider panels with N, T € {10,25,50}, and only report
the results for T < N since all the expressions are symmetric in N and 7. All the numbers in the
table are in percentage of the true parameter value, so we do not need to specify the value of 3°. We
find that the analytical and jackknife corrections offer substantial improvements over the fixed effects
estimator in terms of bias. The first and fourth row of the table show that the bias of the fixed effects
estimator is of the same order of magnitude as the standard deviation, where Vyr = Var[B\NT] =
2(N — 1)(T — 1)(B°)?/(NT)? under independence of Y;; over i and ¢ conditional on the unobserved
effects. The last row shows the increase in standard deviation due to analytical bias correction is small

compared to the bias reduction, where VﬁT = Var[4,] = (1+1/N +1/T)2V yo.

Table 1: Biases and Standard Deviations for Yy | a, v, 8 ~ N (a; + ¢, B)

N = 10 N=25 N=50
T=10| T=10 T=25| T=10 T=25 T=50
Byr — /8% | -19 | -14  -08 | -12  -06  -.04
Bar—B%/8° -03 | -02 .00 | -01 -0l .00
(Bar — 8°/8° | -.01 00 .00 | .00 .00 .00
VVnr/B° 13 .08 .05 .06 .04 .03
\/ﬁ/ﬂo 14 09 .06 | .06 .04 .03

Table 2 illustrates the effect of the bias on the inference based on the asymptotic distribution. It
shows the coverage probabilities of 95% asymptotic confidence intervals for 5% constructed in the usual
way as

Clos(B) = B+ 1.96Vy/7 = B(1+1.96\/2/(NT))
where 3 = {ENT»E}?/T} and Vyr = 232/(NT) is an estimator of the asymptotic variance V. /(NT) =
2(8°)2/(NT). To find the exact probabilities, we use that NTBy7/B° ~ X{n 1)1y and Ba, =
(1+1/N+1 /T)B ~n7- These probabilities do not depend on the value of 5% because the limits of the
intervals are proportional to B As a benchmark of comparison, we also consider confidence intervals
constructed from the unbiased estimator Syp = NTByr/[(N — 1)(T — 1)]. Here we find that the
confidence intervals based on the fixed effect estimator display severe undercoverage for all the sample
sizes. The confidence intervals based on the corrected estimators have high coverage probabilities, which
approach the nominal level as the sample size grows. Moreover, the bias corrected estimator produces

confidence intervals with very similar coverage probabilities to the ones from the unbiased estimator.

4 Asymptotic Theory for Bias Corrections

In nonlinear panel data models the population problem (3.1) generally does not have closed form solution,

so we need to rely on asymptotic arguments to characterize the terms in the expansion of the bias (3.2)



Table 2: Coverage probabilities for Yy | a,v, 8 ~ N (a; + v, B)

N =10 N=25 N=50
T=10|T=10 T=25|T=10 T=25 T=50
Clos(Bnr) | .56 55 65 | 44 63 .68
Clos(B,) | .89 92 93 | 92 .94 94
Clos(Bnr) | 91 93 94 93 94 94

Nominal coverage probability is .95.

and to justify the validity of the corrections.

4.1 Asymptotic distribution of model parameters

We consider panel models with scalar individual and time effects that enter the likelihood function
additively through m;; = a;+7;. In these models the dimension of the incidental parameters is dim ¢ 7 =
N+T. The leading cases are single index models, where the dependence of the likelihood function on the
parameters is through an index X/, + «; + ;. These models cover the probit and Poisson specifications
of Examples 1 and 2. Moreover, the additive structure only applies to the unobserved effects, so we
can allow for scale parameters to cover the Tobit and negative binomial models. We focus on these
additive models for computational tractability and because we can establish the consistency of the fixed
effects estimators under a concavity assumption in the log-likelihood function with respect to all the
parameters.

The parametric part of our panel models takes the form

log fy (Yit | Xit, iy ve, B) = Lig (B, mar). (4.1)

We denote the derivatives of the log-likelihood function €;; by 93¢ (8, ) 1= 0 (B8, ) /0B, Opplir(B, ) :=
0%0;1(B,m)/(0BOB), Onalis(B,7) := 0UH(B,m)/On9, ¢ = 1,2,3, etc. We drop the arguments § and 7
when the derivatives are evaluated at the true parameters 8° and 7% = o? + 9, e.g. Opalyy =
Oralir(B°, 7). We also drop the dependence on NT from all the sequences of functions and parameters,
e.g. we use L for Ly and ¢ for ¢onp.

We make the following assumptions:

Assumption 4.1 (Panel models). Let v > 0 and p > 4(8 + v)/v. Let e > 0 and let B? be a subset of
RA™M B+ that contains an e-neighbourhood of (3°,7%) for all i,t,N,T.

» it
(i) Asymptotics: we consider limits of sequences where N/T — k2, 0 < k < o0, as N,T — oo.
(ii) Sampling: conditional on ¢, {(Y;I,XT) : 1 < i < N} is independent across i and, for each i,
{(Yit, Xit) : 1 <t < T} is a-mizing with mizing coefficients satisfying sup; a;(m) = O(m™*) as
m — oo, where

a;(m) := sup sup |P(AN B) — P(A)P(B)|,

t AcAi,BEBi,,,
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and for Zy = (Yit, Xit), Al is the sigma field generated by (Zit, Zit—1,...), and Bi is the sigma
field generated by (Zi, Z; 141, - - .).

(iii) Model: for X! = {X;s:s =1,...,t}, we assume that for all i,t,N,T,
Y"L‘t | Xf7¢35 ~ exp[‘eit(ﬂuai +’yt)]

The realizations of the parameters and unobserved effects that generate the observed data are de-

noted by B° and ¢°.

(iv) Smoothness and moments: We assume that (8,7) — Ly(B8,7) is four times continuously differen-
tiable over B a.s. The partial derivatives of £;1(3,7) with respect to the elements of (B3, 7) up to
fourth order are bounded in absolute value uniformly over (3,7) € B® by a function M(Z;;) > 0
a.s., and max; ; By[M(Z;)%%"] is a.s. uniformly bounded over N,T.

(v) Concavity: For all N,T, (8,¢) — L(8,¢) = (NT)’l/Q{ZM Lit(By i +vi) — b(v'9)?/2} is strictly
concave over RE™BAHNAT o o Furthermore, there exist constants bmin and bmax such that for all
(B,7) € B, 0 < bin < —Eg [0720i4(B,m)] < bmax a.s. uniformly over i,t, N,T.

Assumption 4.1(¢) defines the large-T asymptotic framework and is the same as in Hahn and Kuer-
steiner (2011). Assumption 4.1(4¢) does not impose identical distribution nor stationarity over the time
series dimension, conditional on the unobserved effects, unlike most of the large-T panel literature, e.g.,
Hahn and Newey (2004) and Hahn and Kuersteiner (2011). These assumptions are violated by the
presence of the time effects, because they are treated as parameters. The mixing condition is used to
bound covariances and moments in the application of laws of large numbers and central limit theorems
— it could replaced by other conditions that guarantee the applicability of these results.

Assumption 4.1(éii) is the parametric part of the panel model. We rely on this assumption to
guarantee that dgl; and 0,¢;; have martingale difference properties. Moreover, we use certain Bartlett
identities implied by this assumption to simplify some expressions, but those simplifications are not
crucial for our results. Assumption 4.1(iv) imposes smoothness and moment conditions in the log-
likelihood function and its derivatives. These conditions guarantee that the higher-order stochastic
expansions of the fixed effect estimator that we use to characterize the asymptotic bias are well-defined,
and that the remainder terms of these expansions are bounded. The most commonly used nonlinear
models in applied economics such as logit, probit, ordered probit, Poisson, and Tobit models have smooth
log-likelihoods functions that satisfy the concavity condition of Assumption 4.1(v), provided that all the
elements of X;; have cross sectional and time series variation.

To describe the asymptotic distribution of the fixed effects estimator B , it is convenient to introduce
some additional notation. Let H be the (N +T') x (N +T) expected Hessian matrix of the log-likelihood

with respect to the nuisance parameters evaluated at the true parameters, i.e.

_ H, H, b
H=Ey[~0pp L] = ( THaa) - o) ) + o, (4.2)
Hiam]  Hiym VNT

where H .y = diag(>>, Eg[~0r2lit]) /VNT, Hyorpir = EBg[—0n2lis] /VNT, and H,.y = diag(Y; Eg[—0r2li])/VNT.
Furthermore, let ﬁ(_ala), ﬁ(_alv), ﬂ(_vla), and ﬁ(_vlv) denote the N x N, N xT, T x N and T x T blocks

11



. 1 = . . . -
of the inverse H = of H. It is convenient to define the dim S-vector Z;; and the operator Dgr« by

N T
- 1 1 1 1 1
Sit S T T == Z Z H(aa)ij + H(woz)tj + H(a'y)i'r + H('y'y)t'r E¢ (8B7r€jf) )
vVNT
j=11=1
Dgraliy := Opraliy — Oga+1lisZit, 4.3
B B

with ¢ = 0,1,2. The k-th component of Z;; corresponds to the population least squares projection
of Ey(0p,rlit) /Ep(Or2€;;) on the space spanned by the incidental parameters under a metric given by
E¢(—8ﬂ2£it), i.e

- o - : Eg(9pinlit) ’
Eitk = O + Vs (aks ) = gf§g32;E¢(—8w2fit) (W — Qik — Ve k) -
The operator Dgrqs generalizes the individual and time differencing transformations from linear models to
nonlinear models. To see this, consider the normal linear model Y;; | X}, o, e ~ N(X[,8 + i + v, 1).
Then, S = T Y/ Eg[Xur + N7V EglXar] — (NT) T S0, S0, B[ Xudl, Dlir = —Xurear,
Dgrliy = *th, and Dgq2€;; = 0, where ;4 = Yy — X[,8—a; — v and Xit = X;; — Z;; is the individual
and time demeaned explanatory variable.

Let E := plimy ;.. The following theorem establishes the asymptotic distribution of the fixed

effects estimator B .

Theorem 4.1 (Asymptotic distribution of ﬁ) Suppose that Assumption 4.1 holds, that the following

limits exist

o
8

|

|
&=

M N

=1 Z it Sorei By (OnluDpelin) + 3301, E¢(D6w2£it)1
I Y1 g (9r20it)

— E 3 67 D Trfq, D 7r2éz

I 7zzzl¢ tDprlic + 5Dp t)l’
t=1 Zz 1E¢>( ’Mit)

N T
o . 1 —_ =
Wo = -E T E: Ezl Eg (Oppliv — aﬂ2€it:‘it:2t)‘| ;

]

and that W > 0. Then,

VNT (B 8°) =4 W N (5o + 5 Doc, Weo).

Sketch of the Proof. The detailed proof of Theorem 4.1 is provided in the appendix. Here we include
a summary of the main ideas behind the proof.

We start by noting that the existing results for large N, T panels, which were developed for models
with only individual effects, cannot be sequentially applied to the two dimensions of the panel to derive
the asymptotic distribution of our estimators. These results usually start with a consistency proof that
relies on partitioning the log-likelihood in the sum of individual log-likelihoods that depend on a fixed
number of parameters, the model parameter 8 and the corresponding individual effect «;. Then, the

maximizers of the individual log-likelihood are shown to be consistent estimators of all the parameters
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as T becomes large using standard arguments . In the presence of time effects there is no partition of
the data that is only affected by a fixed number of parameters, and whose size grows with the sample
size. We thus require a new approach.

Our approach consists of deriving an asymptotic approximation to the score of the profile log-
likelihood, 85£(6,$(6)), which is valid locally around B8 = B°. We use this approximation to show
that there is a solution to the first order condition BBE(B,qZ(ﬂ)) = 0 that is close to 8° asymptoti-
cally, and to characterize the asymptotic properties of this solution. Under the assumption that the
log-likelihood is strictly concave, the solution to dgL(3, qg(ﬁ)) = 0 uniquely determines the maximizer
B, so that we do not need a separate proof of consistency to obtain the asymptotic distribution of our
estimators.

We derive the asymptotic approximation to dgL(8 ,QAS(B)) using a second-order Taylor stochastic
expansion. This expansion does not rely on the panel structure of the model, but it requires sufficient
differentiability of £(8, ¢) and that each incidental parameter affects a subset (namely all observations
from individual i for each individual effect oy, and all observations from time period ¢ for each time
effect v;) whose size grows with the sample size. For our panel model, the latter implies that the score

of the incidental parameters,

| S Orta(Bo0i )|
[Wl\TT ity Onlin(By i+ %)}

is of a smaller order at the true parameters (3°, ¢°) than it is at other parameter values. The entries

i=1,....N

S(B,9) = 0sL(B,¢) =

t=1,..,T

of §(B,¢) are of order one generically as N and T grow at the same rate, while the entries of S :=
S(B°,¢°) are of order 1/v/N or 1/+/T. This allows us to bound the higher-order terms in a expansion
of aﬁﬂ(,é’,a(,é’)) in 8 and §(8, ¢) around Sy and S.

The stochastic expansion of dgL(8, Q/;(ﬁ)) can be obtained in different ways. We find convenient to do
it through the Legendre-transformed objective function £*(5, S) = maxy [L(5, ¢) — ¢’S]. This function
has the properties: £*(5, 0) = E(@(E(ﬁ)), L¥(B,S) = L(B,9") — VS, and 9zL(B,9°) = 95L*(B, S).
The expansion of d3L(5, 5(6)) = 0gL*(B, 0) can therefore be obtained as a Taylor stochastic expansion
of 9gL*(B, S) in (B, S) around (3°,S) and evaluated at (3,0), see Appendix B for details.

Theorem B.1 gives the stochastic expansion. To obtain the asymptotic distribution of B from the
expansion, we need to analyze the expected Hessian of the incidental parameters H, which is defined
in (4.2) for our panel model. More precisely, we need to characterize the asymptotic properties of the
inverse of H, because this inverse features prominently in the expansion. For models with only individual
effects, H is diagonal and its inversion poses no difficulty. In our case H has strong diagonal elements

—1/2 The off-diagonal elements reflect that the

of order 1 and off-diagonal elements of order (NT)
individual and time effects are compounded in a non-trivial way. They are of smaller order than the
strong diagonal elements, but cannot simply be ignored in the inversion because the number of them is
very large and grows with the sample size. For example, the Hessian " without penalty has the same
structure as H, but is not invertible. Lemma D.8 shows that # is invertible, and that ﬁ_l has the same
structure as H, namely strong diagonal elements of order 1 and off-diagonal elements of order (N T)_l/ 2,
This result explains why the double incidental parameter problem due to the individual and time effects

decouples asymptotically, so we get that the bias has two leading terms of orders T—! and N—!. This
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result agrees with the intuition that one would draw from analyzing separately the incidental parameter
problem in each dimension, but without a formal derivation it was not clear that the asymptotic bias

also has the simple additive structure in the joint analysis. |

Remark 1 (Bias expressions for Conditional Moment Models). In the derivation of the asymptotic bias,
we apply Bartlett identities implied by Assumption 4.1(iii) to simplify the expressions. The following
expressions of the bias do not make use of these identities and therefore remain valid in conditional

moment settings that do not specify the entire conditional distribution of Yi:

N T

1 3 S T Ey (awfitDﬁw&r)]
N i=1 23:1 E¢ (87r2€it)

Lo | L g E Bol(@ntin)?) Sy By (Dpm i)
2 | N T 2
= (S By (Oatia)]

T N

1 Z 21:1 E¢> [67T£itDB7r£it]‘|

+

T t=1 Zzlil E¢ (aﬂgit)

1@ l 3 Zivzl E¢[(aﬂ€it)2} vazl E¢(Dﬂﬂ2£it)
2 T 2
t=1 {Zfi1 E¢> (aﬂ'zéit)}

Doo = -E

+

For example, consider the least squares fized effects estimator in a linear model Yy = X[+ o + v + €4t

with Ele; | XE, ¢, 8] = 0. Applying the previous expressions to L (B, 7) = —(Yie — X},8—c; —v¢)? yields

and Dy, = 0. The expression for Bs, corresponds to Nickell (1981) bias formula when X;; = Yii1. If
Eleys | XTI, ¢,8] =0, i.e. Xy is strictly ezogenous with respect to i, then we get the well-known result

for linear models of no asymptotic bias, Bo, = Dog = 0.

It is instructive to evaluate the expressions of the bias in our running examples.

Example 1 (Binary response model). In this case
Cin(B,m) = Yiglog F(Xj,8 +7) + (1 = Yig) log[1 — F(XG,8 + 7)),

so that Oxly = Hy(Yy — Fy), 0gly = OxlyXi, Ox2ly = —HyuOFy + 0Hy (Y — Fit), Opplis =
a7r2€itXith{ty aﬁﬂgit = Op2ly Xy, Opsly = — ita2Fit — 20H;,0F; + 62Hit(Yz‘t - Fit)7 and 3ﬁw2fz‘t =
Opalis Xy, where Hy = OF;/[Fiy(1 — Fy)],and Gy := 8jG(Z)\Z:X£t50+,rgt for any function G and
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7 =0,1,2. Substituting these values in the expressions of the bias of Theorem 4.1 yields

5 - i Zthl {Eqﬁ[HitazFitXit] +2 ZTT:tﬂ Eg [Hit(yit - Fit)wiTXiT:| }
- 2N ¢ Y1 Eg (win) ’

D. - -E

1ZZLmMﬁm&W
2T t=1 Zf\; Eg (Wit)

Weo E

where w;; = H;;0F; and )N(it 1s the residual of the population projection of X;; on the space spanned
by the incidental parameters under a metric weighted by Ey(wi). For the probit model with all the

components of X;; strictly exogenous,

Z Zz 1 E¢7 wm‘thX ] BO
27 t=1 Zz 1 Eg (wit)

The asymptotic bias is therefore a positive definite matricz weighted average of the true parameter value

as in the case of the probit model with only individual effects (Ferndndez-Val, 2009).

Bu = ZZt Polon X Xi) o 3
2N t= 1E<z> (wit)

Example 2 (Count response model). In this case
Ciy(B,m) = (X8 4 7)Yiy — exp(X; 8 + 7) — log Yi!,

50 that Oxly = Y — wit, 0pliy = OnlyyXip, Or2liy = Orslyy = —wir, Opprliy = Ox2ly Xy Xy, and Oprly =
Opr2liy = &rs&tXit, where wy; = exp(X[,B8° + 7%,). Substituting these values in the expressions of the
bias of Theorem 4.1 yields

T T nd
Zt:l Z‘r:tJrl E¢ |:(Y'1t - wit)wiTXi‘r:|

Boo

I

l\
Z| =
KMZ

_ = ;
i=1 21 Eo (wit)

. 1 LI .

Woo = E ﬁ ; ;E¢[wtiti{t]] 5

and Do = 0, where Xy is the residual of the population projection of X;+ on the space spanned by the
incidental parameters under o metric weighted by Eq(w;). If in addition all the components of X;; are

strictly exogenous, then we get the no asymptotic bias result Bo, = Doy = 0.

4.2 Asymptotic distribution of APEs

In nonlinear models we are often interested in APEs, in addition to the model parameters. These effects
are averages of the data, parameters and unobserved effects; see expression (2.2). For the panel models
of Assumption 4.1 we specify the partial effects as A(Xt, 8, i, vt) = Ait(B, 7). The restriction that

the partial effects depend on «; and ; through m;; is natural in our panel models since

E[Y; | X!, ciowe, Bl = /yeXp[&t(& mie)|dy,
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and the partial effects are usually defined as differences or derivatives of this conditional expectation
with respect to the components of X;;. For example, the partial effects for the probit and Poisson models
described in Section 2 satisfy this restriction.

The distribution of the unobserved individual and time effects is not ancillary for the APEs, unlike for
model parameters. We therefore need to make assumptions on this distribution to define and interpret
the APEs, and to derive the asymptotic distribution of their estimators. Here, there are several possi-
bilities depending on whether we define the APE conditional or unconditional on the unobserved effects.
For conditional APEs, we treat the unobserved effects as deterministic. In this case E[A;] = E4[Ay]
and 6%, = (NT)~! > it E¢[Ai] can change over 7" and N in a deterministic fashion. For uncondi-
tional APEs, we control the heterogeneity of the partial effects assuming that the individual effects
and explanatory variables are identically distributed cross sectionally and/or stationary over time. If
(Xit, i, ) is identically distributed over i and can be heterogeneously distributed over ¢, E[A;;] = 67
and 6, = T-1 30/, 69 changes only with T. If (X, c,:) is stationary over ¢t and can be hetero-
geneously distributed over i, E[A;] = 60 and 6%, = Nt vazl 89 changes only with N. Finally, if
(Xit, i, vt) is identically distributed over i and stationary over ¢, E[A;;] = 5?VT and 610VT = 6° does not
change with N and T.

We also impose smoothness and moment conditions on the function A that defines the partial effects.
We use these conditions to derive higher-order stochastic expansions for the fixed effect estimator of the
APEs and to bound the remainder terms in these expansions. Let {a;}n = {a; : 1 < i < N},
{vi}r ={n:1<t<T}, and {Xit, s, e} vt = {(Xit, i, 1) : 1 <i < N, 1 <t <T}.

Assumption 4.2 (Partial effects). Let v >0, € > 0, and B2 all be as in Assumption 4.1.
(i) Sampling: for all N,T, (a) {a;}n and {y:}7 are deterministic; or (b) { X, i, v+ } N1 s identically
distributed across i and/or stationary across t.

(1) Model: for all i,t, N, T, the partial effects depend on «; and ~y; through o; + ;-
A(Xit, By o, v) = B (B, o + 7).

The realizations of the partial effects are denoted by Ay := Ay (B2, a9 +47).

(#ii) Smoothness and moments: The function (B, ) — Ay (B, ) is four times continuously differentiable
over B a.s. The partial derivatives of A(B, ) with respect to the elements of (B,7) up to fourth
order are bounded in absolute value uniformly over (B,m) € BY by a function M(Z;;) > 0 a.s., and
max; ¢ Eg[M(Zy)3] is a.s. uniformly bounded over N,T. Also, min; [E(A%) — E(A;)?] > 0,

uniformly over N, T.

Analogous to E;; in equation (4.3) we define

T
1 — 1 -1 1 I
Wi= e DY (Ftanyis + Frares + Fiayir + Homyer ) O e, (4.4)

j=17=1

which is the population projection of 0x A, /Eg[0r20;:] on the space spanned by the incidental parameters
under the metric given by Ey[—0:20;]. We use analogous notation to the previous section for the

derivatives with respect to 8 and higher order derivatives with respect to 7.
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Let 6%, and 8 be the APE and its fixed effects estimator, defined as in equations (2.2) and (2.8)
with A(Xit, 8, i, ve) = Ait(B, i +7¢).8 The following theorem establishes the asymptotic distribution
of 8.

Theorem 4.2 (Asymptotic distribution of S) Suppose that the assumptions of Theorem 4.1 and As-
sumption 4.2 hold, and that the following limits exist:

1 N

T Z ZE¢ 8@ it T H7,158 Azt)

=1 t=1

(DsA), =E

)

—

-0 Z Zt 1 ]E¢ (8 &taﬂzﬁnllf”)

i=1 Et 1]E¢>( 7r2£it)

Sy [Eg(0n2Aiy) — B (Onalit)Eg (Uit)]
[ Z Zt 1E¢( 25%)

Z Zz 1Eg (07431072054 ¥ 1)
t 1 Zz 1E¢>( 7r2£it)

=1 ET: Sisy [Bo(9n2Ait) — By (Drs lit) B (V)]
2T

/\

= (DsA) W B +E

b

D). = (DsA) W Do + E

= S By (Dn2lit) ’
s 2 N T N T ! N T
v -E{ Brg (zz”(zz@ oy b
=1 t=1 =1 t=1 =1 t=1

for some deterministic sequence rNT — o0 such that ryr = O(VNT) and V‘; > 0, where Ay =
Ait —E(Azt) and th = (DﬁA) W Dﬂﬁzt —E¢( it)&réit. Then,

it — 0%y — T1BY. — N~ID°) =4 N(0, V2).

Remark 2 (Convergence rate, bias and variance). Under Assumption 4.2(i)(a), {di :1 <i< N,1<
t <} is independent across i and a-mizing across t by Assumption 4.1(i7), so that rnyy = VNT and

2 N T T

—5 — r ~ o~

V., =E {N{ZV%”Q § E(A;AL) + E E(Fitl“gt)] } }
i=1 Lt,7=1 t=1

Bias and variance are of the same order asymptotically under the asymptotic sequences of Assump-
tion 4.1(i). Under Assumption 4.2(i)(b), the rate of convergence depends on the sampling properties of
the unobserved effects. For example, if {a;}n and {y:}r are independent sequences, and «; and -y are
independent for all i,t, then ryT = /NT/(N +1T),

N T
V. =E ]QZV;Z > E(AwA;) +ZZE Ai) Z (Cal) | ¢ s

i=1 |t,7=1 j#i t=1 t=1

and the asymptotic bias is of order T=Y/2 4+ N~12. The bias and the last term ofVio are asymptotically

negligible in this case under the asymptotic sequences of Assumption 4.1(i).

8We keep the dependence of 6%+ on NT to distinguish 6%7 from 6° = limn,7—00 SX7-
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Remark 3 (Average effects from bias corrected estimators). The first term in the expressions of the
-0 =0
biases B, and D, comes from the bias of the estimator of B. It drops out when the APFEs are constructed

from asymptotically unbiased or bias corrected estimators of the parameter 3, i.e.

= A(B,6(B)),
where 5 is such that \/NT(E— B%) —4 N(O,Wo_ol). The asymptotic variance ofg is the same as in
Theorem 4.2.

In the following examples we assume that the APEs are constructed from asymptotically unbiased

estimators of the model parameters.

Example 1 (Binary response model). Consider the partial effects defined in (2.3) and (2.8) with
Ai(B,m) = F(Br + Xiy 1Bk +7) — F(Xj Bk +7) and Diyy(B,7) = BOF (X8 + ).

Using the notation previously introduced for this example, the components of the asymptotic bias ofg
are

=E

oo

>y Eg(wir)

i iv: pOH [2 Zz:t+1 Eg (Hit(Yz‘t*Fit)wir‘i’iq—)*Ep(\I’it)]]i¢(Hit32Fit)+E¢(3,r2 Ait)]
2N ’

7| L 3 Sy [“Eg (Wit By (Hit0? Fiy) + B (052 D) ]
2r t=1 Zi:1 Eg (wit) ’

where Wy, is the residual of the population regression of Oz A /Eglwir] on the space spanned by the inci-
dental parameters under the metric given by Eg[w;r]. If all the components of Xy are strictly exogenous,

the first term of B, is zero.

Example 2 (Count response model). Consider the partial effect

A’it (53 7T) = it (5) eXp(Xz{tﬁ + 77)7

where g;; does not depend on m. For example, gi+(8) = Pr + Bjh(Zit) in (2.5). Using the notation

previously introduced for this example, the components of the asymptotic bias are

1 EN: it Ermi B [(Yir — wit)wir i)
N3 Zt:l Eg (wit)

and Do = 0, where Gy is the residual of the population projection of gi; on the space spanned by

By, =E

the incidental parameters under a metric weighted by Eylwy]. The asymptotic bias is zero if all the
components of X;t are strictly exogenous or g;t(B) is constant. The latter arises in the leading case of
the partial effect of the k-th component of X since g;1(8) = Bx. This no asymptotic bias result applies

to any type of regressor, strictly exogenous or predetermined.

4.3 Bias corrected estimators

The results of the previous sections show that the asymptotic distributions of the fixed effects estimators

of the model parameters and APEs can have biases of the same order as the variances under sequences
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where T' grows at the same rate as N. This is the large-T" version of the incidental parameters problem
that invalidates any inference based on the asymptotic distribution. In this section we describe how to
construct analytical bias corrections for panel models and give conditions for the asymptotic validity of
analytical and jackknife bias corrections.

The jackknife correction for the model parameter § in equation (3.4) is generic and applies to the

panel model. For the APEs, the jackknife correction is formed similarly as
0% = 30Nt — gN,T/2 - gN/Q,Ta

where SN)T /2 is the average of the 2 split jackknife estimators of the APE that leave out the first and
second halves of the time periods, and let JNN/Q,T is the average of the 2 split jackknife estimators of the
APE that leave out half of the individuals.

The analytical corrections are constructed using sample analogs of the expressions in Theorems 4.1
and 4.2, replacing the true values of 8 and ¢ by the fixed effects estimators. To describe these corrections,
we introduce some additional notation. For any function of the data, unobserved effects and parameters
9itj (B, 0 + v, 0 + % ;) with 0 < j < ¢, let Gy = gzt(ﬁ,al + A, O + Ye—j) denote the fixed effects
estimator, e.g., E, [&Tz&t] denotes the ﬁxed effects estimator of E,[02¢;]. Let 7—{ H(av H(Wla),
H ' denote the blocks of the matrix H~ , Where

g:< ey 7filw>>+ b
[ Ekav)] Hzﬁw)

ey = ding(— 3, Eg[0,20))/VNT, T3, = diag(— 3, Eg[0r20i)) /VNT, and H;

ay)it
Let

and

(“/)

3

_E¢@it} / VNT.

—

T
VNT Z Z ( (aa)u (voc)tj + H(a"/)w + /H("/’Y)tT) Eg (9prlsr)-

j=17=1

[I]>

The k-th component of Z;; corresponds to a least squares regression of Ey (0s,xljr)/Ep(Or2lit) on the
space spanned by the incidental parameters weighted by Ey(—0z20:).

The analytical bias corrected estimator of 3° is
BA =B—B/T - D/N,
where
L . T — T —
1 a Zj:O[T/(T —J)] Zt=j+1 Ey (Oxli— jDﬁﬂgit) + % thl E¢(D5W2£¢t)
N i=1 Zt 1E¢( Or2liy)
PR o Y [Es (0ntieDpntic) + 3Eo (Dgmatir)
= S By (0ralir)

and L is a trimming parameter for estimation of spectral expectations such that L — oo and L/T — 0

(Hahn and Kuersteiner, 2011). The factor T/(T — j) is a degrees of freedom adjustment that rescales

the time series averages 7! Z?: i1 by the number of observations instead of by T'. Unlike for variance
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estimation, we do not need to use a kernel function because the bias estimator does not need to be

positive. Asymptotic (1 — p)-confidence intervals for the components of 4% can be formed as

B+ 21 WL /(NT), k={1,..,dims°},

where z1_,, is the (1 — p)—quantile of the standard normal distribution, and /I/I?k*kl is the (k, k)-element
of the matrix W ! with

N T
= —(NT) DN (B @prti) — o (0ralanZahy)] - (4.5)

=1 t=1

The analytical bias corrected estimator of 6% is
64 =6-B°/T — D°/N,

where 0 is the APE constructed from a bias corrected estimator of 5. Let

N 1 NI .
Vie = _ﬁ ; g ( (aa)m (W)tj + /H(cw + /H("/’Y)t‘f) OrBjr-

The fixed effects estimators of the components of the asymptotic bias are

’\5 _ i i ZJZ'I:O
N

[T/(T - S 541E0 Ontia—i0rtir i)
Zt 1E¢( 7r2€zt)

=1

1N (B0 Bi) — By (00l Eg (Vi)

NG S By (O ﬂzm

XTI S [Bo (0l Vi) — SEo(0s D) + SE (O i) B (V30)|

Zz 1E¢( 7T2€zt)

The estimator of the asymptotic variance depends on the assumptions about the distribution of the
unobserved effects and explanatory variables. Under Assumption 4.2(i)(a) we need to impose an ho-
mogeneity assumption on the distribution of the explanatory variables to estimate the first term of the

asymptotic variance. For example, if {X;; : 1 <i < N,1 <t < T} is identically distributed over i, we

can form
~ 72 N &l /: =1 T
A 9l popns Y Al (19
=1 Lt,7=1 t=1

for Ay = ﬁit — N1 Zfil ﬁit. Under Assumption 4.2(i)(b) and the independence assumption on the

unobserved effects of Remark 2,

T ~ o~ T
V= ]\rfng"2 Z ity ZZ Jt+ZE¢ (Laliy) | (4.7)
tr=1 t=1 j#i

t=1

3 N _ N R . . e Y
where A;; = Ay — N1 > i1 A under identical distribution over i, Ay = Ay — -1 Zt 1 Ay under

stationarity over ¢, and A;; = ﬁit — 5 under both. Note that we do not need to spe(nfy the convergence
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rate to make inference because the standard errors \/% /rnr do not depend on ryp. Bias corrected
estimators and confidence intervals can be constructed in the same fashion as for the model parameter.

We use the following homogeneity assumption to show the validity of the jackknife corrections for
the model parameters and APEs. It ensures that the asymptotic bias is the same in all the partitions

of the panel. The analytical corrections do not require this assumption.

Assumption 4.3 (Unconditional homogeneity). The sequence {(Yit, Xit, i, 7)1 1 <i < N, 1 <t <T}

is identically distributed across i and strictly stationary across t, for each N,T.

This assumption might seem restrictive for dynamic models where X;; includes lags of the dependent
variable because in this case it restricts the unconditional distribution of the initial conditions of Yj;.
Note, however, that Assumption 4.3 allows the initial conditions to depend on the unobserved effects. In
other words, it does not impose that the initial conditions are generated from the stationary distribution
of Y;; conditional on X;; and ¢. Assumption 4.3 rules out structural breaks in the processes for the
unobserved effects and observed variables. For APEs, it also imposes that these effects do not change
with 7 and N, i.e. 6% = &°.

The following theorems are the main result of this section. They show that the analytical and jack-
knife bias corrections eliminate the bias from the asymptotic distribution of the fixed effects estimators of
the model parameters and APEs without increasing variance, and that the estimators of the asymptotic

variances are consistent.

-~

Theorem 4.3 (Bias corrections for 8). Under the conditions of Theorems 4.1,

—

W —P Wooa

and, if L — oo and L/T — 0,
VNT(B4 = %) 54 N0, W ).

Under the conditions of Theorems 4.1 and Assumption 4.3,

VNT(B7 = B%) =4 N (0, W ).

Theorem 4.4 (Bias corrections for A). Under the conditions of Theorems 4.1 and 4.2,

%4 —p VOO,

and, if L — oo and L/T — 0,
rar(84 = 8%7) —a N(0,V2,).

Under the conditions of Theorems 4.1 and 4.2, and Assumption 4.3,
rar(87 = 6%) =g N(0,V2).

Remark 4 (Rate of convergence). The rate of convergence rnt depends on the properties of the sampling

process for the explanatory variables and unobserved effects (see remark 2).
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5 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of fixed effects estimators of model parameters
and APEs in static models with strictly exogenous regressors and dynamic models with predetermined
regressors such as lags of the dependent variable. We analyze the performance of uncorrected and bias-
corrected fixed effects estimators in terms of bias and inference accuracy of their asymptotic distribution.
In particular we compute the biases, standard deviations, and root mean squared errors of the estimators,
the ratio of average standard errors to the simulation standard deviations (SE/SD); and the empirical
coverages of confidence intervals with 95% nominal value (p; .95).% Overall, we find that the analytically
corrected estimators dominate the uncorrected and jackknife corrected estimators. All the results are

based on 500 replications.

5.1 Example 1: binary response models

The designs correspond to static and dynamic probit models. We consider panels with a cross sectional

size of 52 individuals, motivated by applications to U.S. states.

5.1.1 Static probit model

The data generating process is
Y;t = l{Xltﬂ + o + e > Eit}; (’L = ]., ,N, t= 17...7T),

where a; ~ N(0,1/16), v ~ N(0,1/16), e;x ~ N (0,1), and 8 = 1. We consider two alternative designs
for X;: correlated and uncorrelated with the individual and time effects. In the first design, X;; =
Xit—1/24 ai +v +vit, vy ~ N(0,1/2), and X;0 ~ N (0,1). In the second design, X;s = X; 1—1/2+ vit,
vie ~ N(0,3/4), and X;0 ~ N (0,1). In both designs X;; is strictly exogenous with respect to &
conditional to the individual and time effects, and has an unconditional variance equal to one. The
variables «;, V¢, €it, Vi, and X;o are independent and 4.i.d. across individuals and time periods. We
generate panel data sets with NV = 52 individuals and three different numbers of time periods T 14, 26
and 52.

Table 3 reports the results for the probit coefficient 8, and the APE of X;;. We compute the APE
using (2.4). Throughout the table, MLE-FETE corresponds to the probit maximum likelihood estimator
with individual and time fixed effects, Analytical is the bias corrected estimator that uses the analytical
correction, and Jackknife is the bias corrected estimator that uses SPJ in both the individual and time
dimensions. The cross-sectional division in the jackknife follows the order of the observations. All the
results are reported in percentage of the true parameter value.

We find that the bias is of the same order of magnitude as the standard deviation for the uncorrected
estimator of the probit coefficient causing severe undercoverage of the confidence intervals. This result

holds for both designs and all the sample sizes considered. The bias corrections, specially Analytical,

9The standard errors are computed using the expressions (4.5), (4.6) and (4.7) evaluated at uncorrected estimates of the

parameters.
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remove the bias without increasing dispersion, and produce substantial improvements in rmse and cov-
erage probabilities. For example, Analytical reduces rmse by more than 40 % and increases coverage by
20% in the correlated design with 7' = 14. As in Hahn and Newey (2004) and Fernandez-Val (2009),
we find very little bias in the uncorrected estimates of the APE, despite the large bias in the probit

coefficients.
5.1.2 Dynamic probit model
The data generating process is

Yit
Yio

1 {}/i,t—lﬁy + ZitﬁZ + (673 + Yt > Eit}a (Z = 17 7N7 t= 1) "'7T)a
1{Ziofz + i +v > €0},

where o; ~ N(0,1/16), v ~ N(0,1/16), e ~ N(0,1), By = 0.5, and 8z = 1. We consider two
alternative designs for Z;;: correlated an uncorrelated with the individual and time effects. In the first
design, Zy = Zj1-1/2 + o + v + Vi, vie ~ N(0,1/2), and Z;p ~ N(0,1). In the second design,
Zit = Zit—1/2 4 vig, vir ~ N(0,3/4), and Z;o ~ N(0,1). The unconditional variance of Z;; is one in
both designs. The variables «;, V¢, €it, Vi, and Z;g are independent and i.i.d. across individuals and
time periods. We generate panel data sets with N = 52 individuals and three different numbers of time
periods T: 14, 26 and 52.

Table 4 reports the simulation results for the probit coefficient Sy and the APE of Y;; ;. We
compute the partial effect of Y; ;1 using the expression in equation (2.3) with X, = Y;,—1. This
effect is commonly reported as a measure of state dependence for dynamic binary processes. Table 5
reports the simulation results for the estimators of the probit coefficient 8z and the APE of Z;. We
compute the partial effect using (2.4) with X;; , = Z;;. Throughout the tables, we compare the same
estimators as for the static model. For the analytical correction we consider two versions, Analytical
(L=1) sets the trimming parameter to estimate spectral expectations L to one, whereas Analytical (L=2)
sets L to two. Again, all the results in the tables are reported in percentage of the true parameter value.

The results in table 4 show important biases toward zero for both the probit coeflicient and the
APE of Y; ;1 in the two designs. This bias can indeed be substantially larger than the corresponding
standard deviation for short panels yielding coverage probabilities below 70% for T' = 14. The analytical
corrections significantly reduce biases and rmse, bring coverage probabilities close to their nominal
level, and have little sensitivity to the trimming parameter L. The jackknife corrections reduce bias
but increase dispersion, producing less drastic improvements in rmse and coverage than the analytical
corrections. The results for Z;; in table 5 are similar to the static probit model. There are significant
bias and undercoverage of confidence intervals for the coefficient, which are removed by the corrections,

whereas there are little bias and undercoverage in the APEs.

5.2 Example 2: count response models

The designs correspond to static and dynamic Poisson models with additive individual and time effects.

Motivated by the empirical example in next section, we calibrate all the parameters and exogenous
variables using the dataset from Aghion, Bloom, Blundell, Griffith and Howitt (2005) (ABBGH). They
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estimated the relationship between competition and innovation using an an unbalanced panel dataset of

17 industries over the 22 years period 1973-1994. The dependent variable is number of patents.

5.2.1 Static Poisson model

The data generating process is
}/:it | Z7,Ta Q, 7y ~ P(exp[Zitﬁl + ZZBZ + (673 + ’yt])a (Z = ]-7 eeey N7 t= ]-7 "'7T)7

where P denotes the Poisson distribution. The variable Z;; is fixed to the values of the competition
variable in the dataset and all the parameters are set to the fixed effect estimates of the model. We
generate unbalanced panel data sets with 7" = 22 years and three different numbers of industries N: 17,
34, and 51. In the second (third) case, we double (triple) the cross-sectional size by merging two (three)
independent realizations of the panel.

Table 6 reports the simulation results for the coefficients 81 and 32, and the APE of Z;;. We com-
pute the APE using the expression (2.5) with H(Z;;) = Z2. Throughout the table, MLE corresponds
to the pooled Poisson maximum likelihood estimator (without individual and time effects), MLE-TE
corresponds to the Poisson estimator with only time effects, MLE-FETE corresponds to the Poisson
maximum likelihood estimator with individual and time fixed effects, Analytical (L=l) is the bias cor-
rected estimator that uses the analytical correction with L = [, and Jackknife is the bias corrected
estimator that uses SPJ in both the individual and time dimensions. The analytical corrections are
different from the uncorrected estimator because they do not use that the regressor Z;; is strictly ex-
ogenous. The cross-sectional division in the jackknife follows the order of the observations. The choice
of these estimators is motivated by the empirical analysis of ABBGH. All the results in the table are
reported in percentage of the true parameter value.

The results of the table agree with the no asymptotic bias result for the Poisson model with exogenous
regressors. Thus, the bias of MLE-FETE for the coefficients and APE is negligible relative to the
standard deviation and the coverage probabilities get close to the nominal level as NV grows. The
analytical corrections preserve the performance of the estimators and have very little sensitivity to the
trimming parameter. The jackknife correction increases dispersion and rmse, specially for the small
cross-sectional size of the application. The estimators that do not control for individual effects are

clearly biased.

5.2.2 Dynamic Poisson model

The data generating process is
Yie | Y71 ZE oy ~ PlexplBy log(1+ Y1) + ZuBr + Z3 B2 + i + 7)), (i=1,.,Nit=1,...T).

The competition variable Z;; and the initial condition for the number of patents Y;y are fixed to the
values in the dataset and all the parameters are set to the fixed effect estimates of the model. To generate
panels, we first impute values to the missing observations of Z;; using forward and backward predictions
from a panel AR(1) linear model with individual and time effects. We then draw panel data sets with

T = 21 years and three different numbers of industries N: 17, 34, and 51. As in the static model, we
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double (triple) the cross-sectional size by merging two (three) independent realizations of the panel. We
make the generated panels unbalanced by dropping the values corresponding to the missing observations
in the original dataset.

Table 7 reports the simulation results for the coefficient 5y and the APE of Y; ;1. The estimators
considered are the same as for the static Poisson model above. We compute the partial effect of Y; ;1
using (2.5) with Z;; =Y, 11, H(Z;:) = log(1 + Z;;), and dropping the linear term. Table 8 reports the
simulation results for the coefficients 4 and 9, and the APE of Z;. We compute the partial effect
using (2.5) with H(Z;;) = Z2. Again, all the results in the tables are reported in percentage of the true
parameter value.

The results in table 7 show biases of the same order of magnitude as the standard deviation for
the fixed effects estimators of the coefficient and APE of Y;;_;, which cause severe undercoverage
of confidence intervals. Note that in this case the rate of convergence for the estimator of the APE is
ryr = VNT , because the individual and time effects are hold fixed across the simulations. The analytical
corrections reduce bias by more than half without increasing dispersion, substantially reducing rmse and
bringing coverage probabilities closer to their nominal levels. The jackknife corrections reduce bias and
increase dispersion leading to lower improvements in rmse and coverage probability than the analytical
corrections. The results for the coefficient of Z;; in table 8 are similar to the static model. The results

for the APE of Z;; are imprecise, because the true value of the effect is close to zero.

6 Empirical Example

To illustrate the bias corrections with real data, we revisit the empirical application of Aghion, Bloom,
Blundell, Griffith and Howitt (2005) that estimated a count data model to analyze the relationship
between innovation and competition. They used an unbalanced panel of seventeen U.K. industries
followed over the 22 years between 1973 and 1994. The dependent variable, Y}, is innovation as measured
by a citation-weighted number of patents, and the explanatory variable of interest, Z;;, is competition
as measured by one minus the Lerner index in the industry-year. Following ABBGH we consider a

quadratic static Poisson model with industry and year effects where
Yie | Z1, i,y ~ P(explBr Ziv + B2 25, + i + 1)),

for (i =1,...,17;¢t = 1973,...,1994), and extend the analysis to a dynamic Poisson model with industry

and year effects where
Yie | Yitila Zita iyt~ P(exp|By log(1 +Y; 1) + f1Zit + 5QZi2t + i + 7)),

for (i =1,...,17;t = 1974, ...,1994). In the dynamic model we use the year 1973 as the initial condition
for Y;;.

Table 9 reports the results of the analysis. Columns (2) and (3) for the static model replicate the
empirical results of Table I in ABBGH (p. 708), adding estimates of the APEs. Columns (4) and (5)
report estimates of the analytical corrections that do not assume that competition is strictly exogenous

with L = 1 and L = 2, and column (6) reports estimates of the jackknife bias corrections described in
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(3.4). Overall, the corrected estimates, while numerically different from the uncorrected estimates in
column (3), agree with the inverted-U pattern in the relationship between innovation and competition
found by ABBGH. The close similarity between the uncorrected and bias corrected estimates gives some
evidence in favor of the strict exogeneity of competition with respect to the innovation process.

The results for the dynamic model show substantial positive state dependence on the innovation
process that is not explained by industry heterogeneity. Uncorrected fixed effects underestimates the
coefficient and APE of lag patents relative to the bias corrections, specially relative to the jackknife.
The pattern of the differences between the estimates is consistent with the biases that we find in the
numerical example in Table 7. Accounting for state dependence does not change the inverted-U pattern,

but flattens the relationship between innovation and competition.

7 Concluding remarks

In this paper we develop analytical and jackknife corrections for fixed effects estimators of model pa-
rameters and APEs in semi parametric nonlinear panel models with additive individual and time effects.
Our analysis applies to conditional maximum likelihood estimators with concave log-likelihood functions,
and therefore covers logit, probit, ordered probit, ordered logit, Poisson, negative binomial, and Tobit
estimators, which are the most popular nonlinear estimators in empirical economics.

We are currently developing similar corrections for nonlinear models with interactive individual and
time effects (Chen, Ferndndez-Val, and Weidner (2013)). Another interesting avenue of future research
is to derive higher-order expansions for fixed effects estimators with individual and time effects. These
expansions are needed to justify theoretically the validity of alternative corrections based on the leave-

one-observation-out panel jackknife method of Hahn and Newey (2004).
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Appendix

A Notation and Choice of Norms

We write A’ for the transpose of a matrix or vector A. We use 1,, for the n x n identity matrix, and
1,, for the column vector of length n whose entries are all unity. For square n x n matrices B, C, we
use B > C (or B > C) to indicate that B — C is positive (semi) definite. We write wpal for “with
probability approaching one” and wrt for “with respect to”. All the limits are taken as N,T — oo
jointly.

As in the main text, we usually suppress the dependence on NT of all the sequences of functions

and parameters to lighten the notation, e.g. we write £ for Ly and ¢ for ¢n7. Let

8(57¢) = a¢£(ﬁv ¢)7 H(ﬂ7¢) = _8¢¢’£(ﬁv ¢)7

where 0, f denotes the partial derivative of f with respect to x, and additional subscripts denote higher-
order partial derivatives. We refer to the dim ¢-vector S(3, ¢) as the incidental parameter score, and to
the dim ¢ x dim ¢ matrix H(3, ¢) as the incidental parameter Hessian. We omit the arguments of the
functions when they are evaluated at the true parameter values (8%, ¢°), e.g. H = H(B%,¢"). We use
a bar to indicate expectations conditional on ¢, e.g. dsL = E4[05L], and a tilde to denote variables in
deviations with respect to expectations, e.g. 9sL = gL — dpL.

We use the Euclidian norm ||.|| for vectors of dimension dim /3, and we use the norm induced by the
Euclidian norm for the corresponding matrices and tensors, which we also denote by ||.||. For matrices
of dimension dim 8 x dim g this induced norm is the spectral norm. The generalization of the spectral
norm to higher order tensors is straightforward, e.g. the induced norm of the dim 8 x dim 8 x dim 8

tensor of third partial derivatives of L(3,¢) wrt [ is given by

dim 8

> u v dss5 LB, 9)|-

k=1

OsssL(f, = max
1950 £05, 011 =, e A2t ooy
This choice of norm is immaterial for the asymptotic analysis because dim § is fixed with the sample
size.

In contrast, it is important what norms we choose for vectors of dimension dim ¢, and their corre-

sponding matrices and tensors, because dim ¢ is increasing with the sample size. For vectors of dimension

dim ¢ 1/q
Il = (Z |</>g|Q> :

g=1

dim ¢, we use the £,-norm

11

where 2 < ¢ < 00.1% The particular value ¢ = 8 will be chosen later.!’ We use the norms that are

induced by the f,-norm for the corresponding matrices and tensors, e.g. the induced g-norm of the

10We use the letter g instead of p to avoid confusion with the use of p for probability.
"The main reason not to choose ¢ = oo is the assumption |||l = op(1) below, which is used to guarantee that | H |, is

of the same order as \|ﬁ71||q. If we assume ||[H ™|, = Op(1) directly instead of ||ﬁ71“q = Op(1), then we can set g = co.
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dim ¢ x dim ¢ x dim ¢ tensor of third partial derivatives of L(8, ¢) wrt ¢ is

dim ¢
0w L(B, 0| = max Ug Uy Opg, 6, L(B, D) || - Al
10006 L(B, D), tewerm e T oy g;l 9 0h Doy, L(B; D) (A1)

q

Note that in general the ordering of the indices of the tensor would matter in the definition of this norm,
with the first index having a special role. However, since partial derivatives like Jy, 4,4, L£(3, ¢) are fully
symmetric in the indices g, h, [, the ordering is not important in their case.
For mixed partial derivatives of L(3, ¢) wrt 5 and ¢, we use the norm that is induced by the Euclidian
norm on dim -vectors and the g-norm on dim ¢-indices, e.g.
1958000 £08: D)0 =, cmam Py oty memam e T _o. atoz)

dim 8 dim ¢

SN ukviwg wn s, 00,0, LB D) (A.2)

k=1 g,h=1
g q

where we continue to use the notation ||.||,, even though this is a mixed norm.
Note that for w,z € R4 % and ¢ > 2,

jw'e| < [lwllglllly/q-1) < (dim @) T2/ |w]l]| ],

Thus, whenever we bound a scalar product of vectors, matrices and tensors in terms of the above norms

we have to account for this additional factor (dim ¢)(4=2)/4. For example,

dim B dim ¢

DY wviwr anys 0piepogen LB, 8)| < (dim @) D Ul o]l wllg 12]lq 1ullg 1085066L (8, D), -
k=1 f,g,h=1

For higher-order tensors, we use the notation 0yssL(f, @) inside the g-norm ||.||; defined above, while
we rely on standard index and matrix notation for all other expressions involving those partial deriva-
tives, e.g. Ogprg,L(B,¢) is a dim¢ x dim ¢ matrix for every g = 1,...,dim¢. Occasionally, e.g. in
Assumption B.1(vi) below, we use the Euclidian norm for dim ¢-vectors, and the spectral norm for
dim ¢ x dim ¢-matrices, denoted by ||.||, and defined as ||.||; with ¢ = 2. Moreover, we employ the
matrix infinity norm [|4|| = max; 3, [A4;;], and the matrix maximum norm [[All,,,, = max;; Al
to characterize the properties of the inverse of the expected Hessian of the incidental parameters in
Section D.4.

For r > 0, we define the sets B(r, 3%) = {8 : |8 — B°|| < r}, and By(r,¢°) = {¢: ¢ — ¢°llg < r},

which are closed balls of radius 7 around the true parameter values 4° and ¢°, respectively.

B Asymptotic Expansions

In this section, we derive asymptotic expansions for the score of the profile objective function, £(3, QAS(B)),
and for the fixed effects estimators of the parameters and APEs, B\ and 5. We do not employ the panel
structure of the model, nor the particular form of the objective function given in Section 4. Instead, we

consider the estimation of an unspecified model based on a sample of size N7 and a generic objective
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function £(8,¢), which depends on the parameter of interest 8 and the incidental parameter ¢. The
estimators cg(ﬁ) and 3 are defined in (2.6) and (2.7).
We make the following high-level assumptions. These assumptions might appear somewhat abstract,

but will be justified by more primitive conditions in the context of panel models.

-~

Assumption B.1 (Regularity conditions for asymptotic expansion of 3). Let ¢ > 4 and 0 < € <
1/8 —1/(2q). Letrg =rgnr >0, 16 = 1o N7 > 0, with rg = o [(NT)"Y2D=¢] and ry, = o[(NT)™€].
We assume that

(i) %—nz,()<a<oo.
(i) (B,9) — L(B, ¢) is four times continuously differentiable in B(rg, B°) x By(res, ¢°), wpal.
(i) s [[6(8) = = on(ro).

BEB(rs,8°)

(iv) H >0, and Hﬂ‘luq = 0p (1).

(v) For the g-norm defined in Appendiz A,

ISlly = Op ((NT)~V441/@0) - Yjg,z) = 0p(1), 1#lly = 0r (1),

08¢ LI, = Op ((NT)l/(zq)) : 1088/ LIl = Op(VNT), 10840 Lll, = Op((NT)°),
1056 LI, = Op (NT)),

and
s s [|933L(8, 6)| = Op (VNT),
BEB(rp,B0) GEB,(ry,6°)
s sup [|90L(8, 9), = Op ((NT)V/CD),
BEB(rs,8°) $€B,(14,4°)
sup sup  [0ppss L(B, 9)Il, = Op (NT)),
BEB(rp,B°) pEBG(r¢,4°)
sup sup  [|9ppgsL(B, D), = Op (NT)),
BEB(rg,B°) p€By(ry,9°)
sup sup  [|0pppe L(B,d)||, = Op (NT)°).
BEB(r3,8°) $€Bq(r4,6°)
(vi) For the spectral norm ||.| = ||.|2,

17 = op ((NT)75) 050 L] = 0p (VNT), |90 = o (NT)715),
dim ¢ L

(050 ]| = 0r (1), || Y2 Bso,0 LI SI A Slu|| = op ((NT)7114) .
g,h=1

Let 0gL(8, gg(ﬂ)) be the score of the profile objective function.!? The following theorem is the main
result of this appendix.

12Note that %ﬂ(ﬁ, (E(ﬂ)) = 0 L(B, a(ﬁ)) by the envelope theorem.
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Theorem B.1 (Asymptotic expansions of QAS(B) and 0gL(f, $(5))) Let Assumption B.1 hold. Then
R dim ¢
0(8) = ¢° = H7'S + H  [0sp LB — B°) + gH ™1 Y [Bpero, LIHT'S[HT'S]y + R(B),

g=1
and
s L(B,6(8)) = U =W VNT(8 - 8°) + R(B),

where U = U + UM | and

— 1 —_ 1 _

W =——x (0sg L+ [0 L] H ~[0s5L]),

JNT ( e L+ [0 LI H [0 ])
U© =050 + [0 L) H 'S,
dim ¢

R 1 ——1

PO -1~ =1 — — a1 =\ 5—1
U = [0pg LIH S — [0s9 LIH HH S+ > (8ﬂ¢’¢g£+[8ﬂ¢’£]7'l (05070, ]) [(HSlgH S

g=1
The remainder terms of the expansions satisfy

(NT)1/2—1/(2<J) ”R¢(5)”
sup L =o0p(1

|R(B)|| —op(1).
BeB(rs,80) 1+ VNT|B -

sup =
BeB(rs,80) 1 + VNTI| B — B

Remark 5. The result for QAS(@’) — ¢ does not rely on Assumption B.1(vi). Without this assumption we

can also show that

9sL(B,H(B)) = OpL + [0pp L + (Dgp LYH " (0grpL)] (B — B°) + (Dpe LYH 'S
+ % > (0p6r9, L + (055 LI H D09, L]) [H'S|gHT'S + Ra(B),

with Ry (B) satisfying the same bound as R(B). Thus, the spectral norm bounds in Assumption B.1(vi)
for dim ¢-vectors, matrices and tensors are only used after separating expectations from deviations of
expectations for certain partial derivatives. Otherwise, the derivation of the bounds is purely based on

the g-norm for dim ¢-vectors, matrices and tensors.

The proofs are given in Section B.1. Theorem B.1 characterizes asymptotic expansions for the
incidental parameter estimator and the score of the profile objective function in the incidental parameter
score S up to quadratic order. The theorem provides bounds on the the remainder terms R?(j3) and
R(B), which make the expansions applicable to estimators of § that take values within a shrinking rg-
neighborhood of Y wpal. Given such an rz-consistent estimator fj’\ that solves the first order condition
agﬁ(ﬁ,g(ﬁ)) = 0, we can use the expansion of the profile objective score to obtain an asymptotic

expansion for B . This gives rise to the following corollary of Theorem B.1 . Let W, := lim N, T—o0 w.

-~

Corollary B.2 (Asymptotic expansion of 38). Let Assumption B.1 be satisfied. In addition, let U =
Op(1), let W, ezist with W, > 0, and let ||B, B°|| = op(rg). Then

VNT(B %) =W, U +op(1).



The following theorem states that for strictly concave objective functions no separate consistency

proof is required for QAS(ﬁ) and for 3

Theorem B.3 (Consistency under Concavity). Let Assumption B.1(i), (ii), (iv), (v) and (vi) hold,
and let (B, ¢) — L(B,¢) be strictly concave over (3, ¢) € RI™B+Ime a1, Assume furthermore that
(NT)~V4+Y 29 = op(ry) and (NT)Y/CDrg = op(ry). Then,

sup
BeB(rs,8°)

608) = °] = op(ro).

i.e. Assumption B.1(iii) is satisfied. If, in addition, W, exists with W, > 0, then ||B— BO =
Op ((NT)~YV/4).

In the application of Theorem B.1 to panel models, we focus on estimators with strictly concave
objective functions. By Theorem B.3, we only need to check Assumption B.1(¢), (i), (iv), (v) and (vi),
as well as U = Op(1) and W, > 0, when we apply Corollary B.2 to derive the limiting distribution of
B. We give the proofs of Corollary B.2 and Theorem B.3 in Section B.1.

Expansion for Average Effects

We invoke the following high-level assumption, which is verified under more primitive conditions for

panel data models in the next section.

~

Assumption B.2 (Regularity conditions for asymptotic expansion of §). Let ¢, €, rg and r4 be defined

as in Assumption B.1. We assume that
(i) (B,®) — A(B, @) is three times continuously differentiable in B(rg, 3°) x By(rg, ¢°), wpal.
(i) |9sA] = Op(1), [0sAll, = Op (NT)VED=12) |84 All, = Op((NT)*1/?), and

sup  sup[[955A(8, 6)]| = Op (1),
BEB(rs,8°) $€B,(r4,4°)
s sup (9 A(B, @)l = Op ((NT)V/E071/2),
BEB(rp,B°) $€By(re,4°)
s sup (04628, 0), = Op (NT)1/2).

BEB(rs,8°) $€By(r4,4°)
(iii) 058 = 0r(1), [0A]| = Op (NT)74/2) , and |[9,5A = 0p (NT)=2/5).

The following result gives the asymptotic expansion for the estimator, 5 = A(ﬁ,q@(ﬁ)), wrt § =
A(B°,0°).
Theorem B.4 (Asymptotic expansion of 3) Let Assumptions B.1 and B.2 hold and let HB— B =
Op ((NT)’l/Q) =op (rg). Then

§—0= [85[ + 0y BDVH (D) | (B - %) + UL + UL +op (l/v NT) :
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where

U = (0, 8)H 'S,

UV = 0y AH 'S — (0, DVH HH 'S
dim ¢

+ %S/ﬁ_l 8¢¢/A+ Z 8¢¢/¢ T [ 6¢A)]

g=1

——1

H S

g9

Remark 6. The expansion of the profile score 85k£(5,$(5)) in Theorem B.1 is a special case of the
expansion in Theorem B.4, for A(B,¢) = ﬁ@gkﬁ(ﬁ, @). Assumptions B.2 also exactly match with the

corresponding subset of Assumption B.1.

B.1 Proofs for Appendix B (Asymptotic Expansions)

The following Lemma contains some statements that are not explicitly assumed in Assumptions B.1,
but that are implied by it.
Lemma B.5. Let Assumptions B.1 be satisfied. Then
(i) H(B,¢) >0 for all B € B(rg, B°) and ¢ € By(rs, ¢°) wpal,
sup sup 95 £(8, 9 = Op (VNT).

BEB(rp,B°) ¢€By(ry,4°)

s sup (95 £(58, 9)l, = Op ((NT)V/),
BEB(r3,8°) $€Bq(r4,6°)
sup sup  [|9peeL(B, 9)|l, = Op (NT)),
BEB(rs,0°) $EBq(rg,6°)
sup sup [0 L(B,B)|, = Op((NT)),
BEB(rp,B°) By (re,¢°)
sup sup [|H7H(B,9)|, = Op(D).

BEB(r5,8°) pEB,(re,¢°)

(ii) Moreover, ||S|| = Op (1), [#~!]| = 0p (1), [H"|| = 0p (1), ||t =F|| = 0p ((VT)~1/5),
ot = (" = HH )| = or (VD)) 1050 L] = Op ((NT)V4) , [9366L]) = Op (NT)),
HZg a¢¢/¢g£ [H—ls}g = 0p ((NT)—1/4+1/(2q)+6) . and Hzg a¢¢/¢g£ [ﬁ*ls]gH - 0p ((NT)—1/4+1/(2Q)+5) )
Proof of Lemma B.5. # Part (i): Let v € R and w,u € R¥™?¢. By a Taylor expansion of

aﬁ¢’¢g£(57 ¢) around (ﬁ07¢0)
Zug (05419, L(B, ¢)] w

= uge [%w%ﬁ + > (Br = B)Isper 6, LB, ) = D _(bn — &0)sers, 0, L(B, 95)] w,
g k h

with (3, ) between (8%, ¢°) and (8, ¢). Thus
10896 L(B, &), = sup  sup sup Zug (0406, L(8, ¢)] w

loll=1 flullq=1 llwllq/q—1)=1

<||BsgeLll, + 18 = 58 Sup H%ﬂwﬁ B.¢ H +[lo — ¢°ll, Sup Hf’wwﬁ(ﬁ,q})’ r
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where the supremum over (B , (;3) is necessary, because those parameters depend on v, w, u. By Assump-

tion B.1, for large enough N and T,

sup sup  98pp L(B, D), < 1086 L]l + 75  sup sup  [[0sp6 L(5, D),
BEB(rp,6°) GEB,(ry,6°) BEB(rp,B0) $EB, (rg,6°)
+7rg  sup sup [|9gpss L(B, D),

BEB(rp,°) pEBy(ry,¢°)

= Op[(NT)* +r3(NT)* + 1o(NT)] = Op (NT)").

The proofs for the bounds on [93r£(5, @), 194-L(5, D), and [19ssL(8, 9)], are analogous.
Next, we show that H(f, ) is non-singular for all 3 € B(rg, 3°) and ¢ € B,(rs,¢") wpal. By a

Taylor expansion and Assumption B.1, for large enough N and T,

sup sup || H(B,¢) —H|, <rp sup sup 946 L(B: D),
BEB(rs,6°) GEB, (14,6) BEB(rg,6°) $EB, (rg,8")
+71  sup sup |00 L(B, 9)ll, = 0op(1).  (B.1)

BEB(r5,8°) pEB,(re,¢°)

Define AH(B,6) =H ~ H(, ). Then |AH(B,6)], < |H(3,9) — Hll, + ||

, and therefore
q

sup sup [|AH(B, )], = or(1),
BEB(ra,B°) $€B, (rp,8°)

by Assumption B.1 and equation (B.1).

For any square matrix with ||A|l, < 1, |
Johnson (1985). Then

(1- A)_luq < (1- ||A||q)_1, see e.g. p.301 in Horn and

sup sup ||H_1(63 QZ))Hq = sup sup
BEB(r5,8°) pEB(re,¢°) BEB(r5,8°) pEB,(r4,¢°)

‘(ﬂ— AH(B,¢) "

q

= sup sup
BEB(r5,8°) pEB,(r¢,¢°)

ﬁ_l sup sup

9 BeB(rp,B0) pEBy(14,9°)

‘H_l (1 _ AH(B,gs)ﬂ‘l)_l

q

IN

‘(1 — AH(ﬂ,q&)ﬁ‘l)_

)

! sup sup <1 — HAH(B, ¢)W_l
94 BeB(rp,B°) p€By(ry,9°)

. (1—op(1))™ = Op(1).

IN

—1

H

IA

#Part (i1): By the properties of the £,-norm and Assumption B.1(v),
ISIF = 18112 < (dim ¢)'/2 14|l = Op(1).
Analogously,

190 £]) < (dim )/271/7 9], = Op (NT)!/1)

By Lemma D.4, ||ﬁ71|\q/(q,1) = Hﬁ%Hq because H s symmetric, and

77 =17, = VA a7l = 1 = 0p(0). (B.2)
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Analogously,

10896 LIl < (0896 LIl,, = Op (NT)),

> Oppro, LIH
g

> g0, LIH 'S,

g

q

< 10sps LIl 7], ISIl, = Op ((NT)—1/4+1/(2q)+e) 7

H 'S, H 'S,

q

7| 1S, = op (V1) /e
q

Assumption B.1 guarantees that Hﬂ_lH HﬁH < 1 wpal. Therefore,

H*lzﬂ‘l(wfm‘l)_ S ARy = E AT TS (A
s=0 s=2

<[ =

Note that Hﬁd 2212(7#%71)5

H )S, and therefore

7!
HHA (H ' w ' ! H < H H H H ) 1/4)
| N )
by Assumption B.1(vi) and equation (B.2).
The results for ||'H*1|| and H?—Fl - ﬂ_lu follow immediately. ]

B.1.1 Legendre Transformed Objective Function

We consider the shrinking neighborhood B(rg, 8°) x B,(re, ¢°) of the true parameters (8%, ¢°). State-
ment (¢) of Lemma B.5 implies that the objective function L£(8, ¢) is strictly concave in ¢ in this

shrinking neighborhood wpal. We define

LB, 8) = max [L(B, ¢)— ¢S], (8, §) = argmax [L(B, ¢) — ¢S], (B.3)

PEBG(r4,9°) $EBy(14,6°)

where 8 € B(rg,8°) and S € RY4™?. The function £*(8, S) is the Legendre transformation of the
objective function L£(8, ¢) in the incidental parameter ¢. We denote the parameter S as the dual
parameter to ¢, and L*(8, S) as the dual function to £(8, ¢). We only consider £*(8, S) and ®(3, S)
for parameters 3 € B(rg, 8°) and S € S(B, B,(r4, #°)), where the optimal ¢ is defined by the first order

conditions, i.e. is not a boundary solution. We define the corresponding set of pairs (3, S) that is dual

to B(rg,ﬁo) X Bq(r¢7¢0) by
SB, (8% ¢") = {(8,8) e RImFHdme . (3 0(B, S)) € B(rp, 8%) x By(ry, ¢°)} .

Assumption B.1 guarantees that for 8 € B(rg, %) the domain S(3, B,(r4, ¢°)) includes S = 0, the origin

of R4™ ¢ as an interior point, wpal, and that £*(3, S) is four times differentiable in a neighborhood
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of S = 0 (see Lemma B.6 below). The optimal ¢ = ®(8,S) in equation (B.3) satisfies the first order
condition S = S§(8, ¢). Thus, for given S, the functions ®(3,S) and S(B, ¢) are inverse to each other,
and the relationship between ¢ and its dual S is one-to-one. This is a consequence of strict concavity of

L(B, ¢) in the neighborhood of the true parameter value that we consider here.'® One can show that

_oLx(B, S)

oS ’
which shows the dual nature of the functions £(3, ¢) and L*(5, S). For S = 0 the optimization in (B.3)
is just over the objective function £(3, ¢), so that ®(5,0) = 5(5) and L£*(5,0) = L(B, qAS(B)), the profile
objective function. We already introduced S = S(8%,¢°), i.e. at 8 = 9 the dual of ¢° is S, and vica
versa. We can write the profile objective function £(8,(3)) = £*(3,0) as a Taylor series expansion of
L*(8, S) around (5, S) = (8Y,S), namely

(B, 5) =

L(8,3(68)) = £(8°,8) + (9 L)AB — AR (D5 £)S + L AF (D LIAB + .. |

where A = 3 — %, and here and in the following we omit the arguments of £*(3,S) and of its partial
derivatives when they are evaluated at (8%, S). Analogously, we can obtain Taylor expansions for the
profile score 85£(5,$(5)) = 0gL*(B,0) and the estimated nuisance parameter $(B) = —0sL*($,0) in
ApB and S, see the proof of Theorem B.1 below. Apart from combinatorial factors those expansions
feature the same coefficients as the expansion of £(8, (E(,B)) itself. They are standard Taylor expansions
that can be truncated at a certain order, and the remainder term can be bounded by applying the mean
value theorem.

The functions £(8, ¢) and its dual £*(3, S) are closely related. In particular, for given f their first
derivatives with respect to the second argument S(8, ¢) and ®(3, S) are inverse functions of each other.
We can therefore express partial derivatives of £*(8, S) in terms of partial derivatives of £(3, ¢). This
is done in Lemma B.6. The norms |[0gsssL*(8,5)||,,» [|0ssssL*(B,5)
(A.1) and (A.2).

I[,» etc., are defined as in equation

Lemma B.6. Let assumption B.1 be satisfied.

(i) The function L*(B,S) is well-defined and is four times continuously differentiable in SB,.(8°, ¢°),
wpal.

13 Another consequence of strict concavity of £(8, ¢) is that the dual function £*(8, S) is strictly convex in S. The original

L(B, ¢) can be recovered from L*(8, S) by again performing a Legendre transformation, namely

LB, ¢) = _min [L°(8, 8)+¢'5] .

SE]Rdim %3
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(ii) For L* = L*(8°,S),

OsL* = —gf)o, 8[3£* = 85/3, Oss L = —(84)4)/5)*1 = 7‘[71, (9,35/£* = —(8ﬁ¢/£)7‘[71,
Opp L* = Opgr L+ (05 LYH ™ (OprpL), Ossrs, L™= Z’H (Do, LYHLH 1) g,
Opssr L =H (O, LYH + D H  (Op, 000 L)H™ [H_laﬁmﬁlg’

g

s L = —(5ﬁkﬁl¢'ﬁ)7fl — (O30 LYH (s, 00 LYH ™ — (0po0 LYH (0,00 LYH "
- Z s LYH ™ (D00 LYH ™ M1 0p,6L]4,
08180 L° = 0 L+ Y (03,60 LYH ™ (D, 006 LYH ™ (0p10L)[H ™ D, L]
g
+ (0,00 LYH (0,00 g LYH ™ 0, L+ (05,00 LYH ™ (0p, 006 LYH ™ Dy, L
+ (03,0 LYH (05,000 LYH ' Opp, L
+ (0810 LYH ™ (0pr8,, L) + (05, 8,00 LYH (O 3, L) + (0p8,, 60 LYH ™ (013, L),

and

0s5/5,5, L = ZH (Opgrprp LYH™ YHY) g (H e
e
+ 3ZH (D00 LYHT (Dpgra, LYHTHH ™) gr (T nes

Oppss7s,L" = ZH (D s LYH T (Dpgron LYHTH H  gn
- ZH (D0 n LYH™H(Op,0r s YHTH H  gn
- ZH Oy LYH T HT (00 s LYH ™ gn
- Z H (g0 LYH ™ (Dpr 0, LYH T H ™ gn[H ™ 95,6 L]
- ZH (Oper o LYH ™ (D00 LYH ™ M gn[H 05,6 L] s
- ZH D 8 LYH T HT (D, 6 LYH ™ gn[H ™ 05,6 L ¢
- ZH (D sn LYH T H gn

—ZH (Do gn s LYH T H gn[H ™ (9p,6L)]5-
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(i4i) Moreover,

Sup 19855L* (8, 8)| = Op ( (NT) 1/2+1/<2q>+e)7
(8,9)€SB.-(8°,¢°)
Sup 10885 L*(B,9)], = Op ( (NT) UHE) 7
(8,5)€SB,.(8°,6°)
Sup 10sssL*(B,9)|, = Op ( (NT) 1/(2q)+e) ’
(8,5)€SB,(8°,4°)
sup 108s5sL*(B,9)|, = Op ( (NT)Y/(20) +2e) 7
(8,5)eSB,(8°,4°)
sup ||855’5'SL ﬁ S =0Op ( NT 2(—:)

(B,5)€SB-(8,¢°)

Proof of Lemma B.6. #Part (¢): According to the definition (B.3), £*(5,5) = L(B,®(5,95)) —
®(6,S5)'S, where ®(3,.5) solves the FOC, §(8,®(5,5)) = S, i.e. S(5,.) and ®(,.) are inverse functions
for every 8. Taking the derivative of S(8,®(5,S5)) =S wrt to both S and g yields

05 (8, 5) 05 (8, ®(8,9))']

1,
[055(8,2(8,9))'] + [0s(8, 5)'][0sS (B, ®(8, 9))'] = 0

(B.4)

By definition, S = S(B%,¢%). Therefore, ®(3,S5) is the unique function that satisfies the boundary
condition ®(3°,S) = ¢¥ and the system of partial differential equations (PDE) in (B.4). Those PDE’s

can equivalently be written as

95®(B,5) = —[H(B,®(8,5)) "
(B, 8) = [9s4 L(B, (B, 9))]|[H(B,2(8, )] " (B.5)

This shows that ®(3,5) (and thus £*(3, S)) are well-defined in any neighborhood of (3, 5) = (3%, S) in
which H (S5, ®(3,5)) is invertible (inverse function theorem). Lemma B.5 shows that H (5, ¢) is invertible
in B(rg, %) x By(rs, ¢°), wpal. The inverse function theorem thus guarantee that ®(8,S) and £*(83, S)
are well-defined in SB,.(8°, #°). The partial derivatives of £*(3, S) of up to fourth order can be expressed
as continuous transformations of the partial derivatives of L£(3, ¢) up to fourth order (see e.g. proof of
part (i7) of the lemma). Hence, £*(3, 5) is four times continuously differentiable because L£(3, ¢) is four

times continuously differentiable.

#Part (i4): Differentiating £*(3,5) = L(8,®(5,S)) — ®(8,5)'S wrt § and S and using the FOC of the
maximization over ¢ in the definition of £*(8,S) gives 93L*(3,S) = 05L(B, ®(B,S)) and dsL*(5,S) =
—®(B, ), respectively. Evaluating this expression at (3,5) = (8°,S) gives the first two statements of
part (7).

Using dsL*(8,S) = —®(8,.9), the PDE (B.5) can be written as

6SS’£*(67S) :H_1(6a¢(675))7
853’5*(575) = —[6ﬁ¢/£(5, @(B,S))}H_l(ﬂ,@(ﬂ75))

Evaluating this expression at (3,5) = (8%, S) gives the next two statements of part (ii).
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Taking the derivative of 9gL*(5,S) = IL(B, ®(B,S)) wrt to S and using the second equation of
(B.5) gives the next statement when evaluated at (3, S) = (8°,S).

Taking the derivative of dgs/ L*(8,S) = —[0se L(B, ®(B,5))] 7! wrt to S, and using the first equation
of (B.5) gives the next statement when evaluated at (3,5) = (3°,S).

Taking the derivative of dss/L*(3,5) = —[0ss L(B,P(B,5))]"! wrt to By and using the second
equation of (B.5) gives

.55 L*(B,8) =H"(B,9)08,6 6L (B, )| H (B, 9)
) S HTHB, 0) 00,66 LB ONHT (B, d){H (B, )[08,6L(B. 6)]} 4, (B.6)

g

where ¢ = ®(j3,S). This becomes the next statement when evaluated at (3, 5) = (8°,S).
We omit the proofs for ds, 5,5/ L*, 0, 5,sL", Os55,5, L™ and g, s5'5,L" because they are analogous.

##Part (iii): We only show the result for [[05ssL*(8, S)|,, the proof of the other statements is analogous.
By equation (B.6)

10555L* (B, S, < [[H (B, D) 10660 L(B, D)l + [H (B, )|, 10000L(B, O)I, 1050 L(B, D), -

where ¢ = ®(3,5). Then, by Lemma B.5

sup 108ssL™(8,5)]|, < sup su |1 (8, ¢) H 10866 L(B, D),
(B,5) €SB, (8°,6°) BEBUoA) EB (r60)

+[H B0 10000£068. 0, 030 5.1, | = 0 (V0%

To derive the rest of the bounds we can use that the expressions from part (i) hold not only for
(8°,S), but also for other values (f3,.59), provided that (38, ®(3,S) is used as the argument on the rhs

expressions. |

B.1.2 Proofs of Theorem B.1, Corollary B.2, and Theorem B.3

Proof of Theorem B.1, Part 1: Expansion of QZ(B) Let 8 = Bnr € B(B%rg). A Taylor expan-
sion of gL*(,0) around (8%, S) gives

~ 1
O(B) = —0sL7(8,0) = —0sL" — (Ospr L)AB + (055 L7)S — 5 D (0ss15,L7)88, + R?(),
g
where we first expand in 3 holding S = S fixed, and then expand in S. For any v € R4™ ¢ the remainder
term satisfies

o) = -3

5 2 0555, L7 (5. S)(AB)(ABK) + Y _[0555,L7(8°, S)IS(ABK)
k

k

1 _
+ 5 D _[0s55,5,L7(5, S)}Ssgsh},

g,h

where f is between 3° and 3, and S and S are between 0 and S. By part (i) of Lemma B.6,

B(B) — ° = H  (Oppr L)AB+H 'S + H D (9pir0, LHT'S(HTS)y + R2(B).

g
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Using that the vector norm ||.||q/(q—1) is the dual to the vector norm |.||,, Assumption B.1, and Lem-
mas B.5 and B.6 yields

[R*B)l,= sup  R(B)

lvlla/(a-1)=1

1 * (0 * a 1 * a
< 5 [|sssL* 3.8 1881 + 95578, 5)| 1814281 + G [9sss5L™ (8. S, IS
= Op [(NT)/¥erg || A| + (NT) "4 ot Ag| 4+ (NT)~/4+3/ o 2]

= op ((NT)7V/21/@0) 1 op (NT)VCD |5 — %] ),

uniformly over 8 € B(8°,r3) by Lemma B.6. |

Proof of Theorem B.1, Part 2: Expansion of profile score. Let 8 = Sy € B(3° 73). A Taylor
expansion of 95L*(83,0) around (3°,S) gives

O5L(,3(5)) = D5L£*(5,0) = oLL* + (Do LA — (D L)S + 1 3" (D5, £7)5S, + R (B),

g

where we first expand in 3 for fixed S = S, and then expand in S. For any v € R¥™# the remainder

term satisfies

v Ri(B) = v’{; > (0556, L7 (B, S)(AB)(ABE) = D [0 L (8, 5)IS(ABy)

F k
1 _
a 6 Z[aﬁS’SgS,lE*(ﬂo, S)]SSgSh},
g,h
where 3 is between 8° and 8, and S and S are between 0 and S. By Lemma B.6,

8ﬁ£(ﬂ, q/i)\(,B)) = (9/3[: + [3@5/£ + (8ﬂ¢/£)%71(8¢/5ﬁ)] (5 - BO) + (8[3¢/£)’H718
+ % > (0500, £+ 050 LI H ™ [Dppr0, L)) [ SIgH 'S + Ra(9),
g

where for any v € R4™ 5,

[R1(B)]| = sup v'Ry(B)

\vH 1
< 5 [0t Gos) 12817 + VD)2 a5 80, 5) | ISlalAg)
E(NT)U2 Y4\ 0psss (8, S ), IS11

Op [(NT)V/2H1/CO ey | AB| 4+ (NT)M/ /04| AG| 4 (NT) =V A+1/at2e]
= op(1) +op(VNT| 8 - 8°|),
uniformly over 3 € B(3°,r3) by Lemma B.6. We can also write
dsL(B,3(B)) = OpL — VNTW(AB) + (9pw LYH S+ (0p LYH 'S — (00 DH HH 'S
- % > (9806, L+ 050 TIH [0s000,2)) L' SIH 'S+ R(B),
9

=U - VNTW(AB) + R(B),
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where we decompose the term linear in S into multiple terms by using that

1 =11

—(Os5rL") = (Op YU = [0 L) + O D) [H = H"HH "+ ]
The new remainder term is

R(8) = Ru(B) + (05 £)AB + (95 LYH ™ (O L) = (050 DR (975E)] AB

+ Opor) (M= (A=A HH )| S = (0p0 OH AR 'S

1 _ _ —77—1 o 351
+ 5 | D Osero, LIHT'S]yH 13—23@'%5[7{ SlyH S
g

1 _ — 1 . ——1
+2[Z[8ﬂ¢’£]7'[ 0psrs, LIH 'Sy HT'S — Zazw osero, LIH SIH S|,

g9

By Assumption B.1 and Lemma B.5,

IR < 1R (D)) + |05 ]| 18811 + 10501 [ = F|| 00521 128
|G Z|| |7 (N0waLll + [00sZ]) 1281

st - (<151 [ oo [
Lot (1 ) 7 s

5[ Joreo] s

1 _
+ B Z[ag¢/£]7'[ 1[8¢¢/¢g£“7‘[ HLS — Z (9545 7‘[ 6¢¢¢ E][H S] H S

g9

~ IR(B) +0p(1) + op(VNTI|3 — 8°]) + O [WT) veren/eo]
= op(1) + op(VNT| - 5°|)),

uniformly over 3 € B(3°,r3). Here we use that

- - _ — a1 S Qp—
> (085 LI H  0pi00, LIH ' SgH 'S = [0ps LIH  [0p00, LIH Sl,H S
g

g9

<o 1+ 15

> g0, LIH 'S,
g

+0ser [ =T | |7 s HZ%/%L 'S,
g

+Jone ] [ 1

—1
> Ospra, LIH S,
g

+ lloss 21| 77| HZ OspyonLH ' S|yH 'Sl -
g,h

42



Proof of Corollary B.2. B solves the FOC

-~

95L(B,6(B)) = 0.
By HB— BOH = op(rg) and Theorem B.1,
0=05L(8,6(8)) = U~ W VNT(B ~ 5°) + op(1) + op(VNT||5 ~ 5°|)-

Thus, VNT(B — %) = WU + op(1) + op(VNT|B — ) = W U + 0p(1) + 0p(vVNT|B — 8°|)),
where we use that W = W, + op(1) is invertible wpal and that W= W;} + op(1). We conclude
that vV NT(3 — 8°) = Op(1) because U = Op(1), and therefore vVNT(5 — 8°) = W;IU +op(1). W

Proof of Theorem B.3. # Consistency of (E(ﬁ): Let n = nyr > 0 be such that n = op(ry),
(NT)~Y/4+1/ 29 = op(n), and (NT)Dr5 = 0p(n). For 8 € B(rg, 8°), define

o~

*(B) == argmin IS8, ®)|lq- (B.7)
{¢: llp—¢°llq<n}

Then, ||S(5, gg*(ﬁ))Hq < IS8, ¢0)||q, and therefore by a Taylor expansion of S(3,¢") around 8 = 3°,
1S(B,*(8)) — S(B,8")lq < IS(B, 6" (B))llg + IIS(B, )4 < 21IS(B, %)l
< 2|Slly + 2 [2up £(5.0)]| 18- °I

= Op [(NT) V41D 4 (NT) @05 - o)

uniformly over 3 € B(rg, 8°), where 3 is between 8° and 8, and we use Assumption B.1(v) and
Lemma B.5. Thus,

sup [[S(8,6"(8)) = S(8, 6"y = Op [(NT)~H/411/@0) 4 (NT)/ @05 ]
peB(rs,B°)

By a Taylor expansion of ®(83,.9) around S = S(3, ¢°),

7(8) - 0| =||e(8.5(8.58)) - 2(8.5(3.6)| < [los@(s.5y| |[s(8."(8) - 856"
= [ 28.9))| [508.5(8)) - 58.6")| = 0r(v)]|5(8.8"(8)) - S(8.6")|

)

where S is between S(3, ¢*(8)) and S(3,¢°) and we use Lemma B.5(i). Thus,

sup
BEB(rps,B8°)

3(8) )| = Op [(NT)/HH/CD 1 (NT) g = op(n).

This shows that ¢*(3) is an interior solution of the minimization problem (B.7), wpal. Thus, (8, ¢*(3)) =
0, because the objective function L£(8, ¢) is strictly concave and differentiable, and therefore q/ﬁ\* B) =

B(8). We conclude that  sup[6(8) ~ ¢°| = Op(m) = 0p(rs).
BEB(rp,B°) q

# Consistency of 3; We have already shown that Assumption B.1(i4) is satisfied, in addition to the
remaining parts of Assumption B.1, which we assume. The bounds on the spectral norm in Assump-
tion B.1(vi) and in part (i) of Lemma B.5 can be used to show that U = Op((NT)Y4).
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First, we consider the case dim(/3) = 1 first. The extension to dim(f) > 1 is discussed below. Let
n= 2(NT)*1/2W_1\U|. Our goal is to show that B € [B° —n, 8% + n]. By Theorem B.1,

LB +1,6(8° + 1) =U =W VNT) + 0p(1) + 0p(VNTn) = 0p(V'NTn) — W VNTy,
03L(8° =1, 6(8° — 1)) =U + W VNTn + 0p(1) + 0p(V'NTn) = op(VNTn) + W /NTn,

and therefore for sufficiently large N, T
A L(B° +n,8(8° +n)) <0< IsL(B° —n, d(B° — ).
Thus, since d3L(B,$(B)) = 0, for sufficiently large N, T,
LB +n,6(8" +n)) < LB, H(B)) < 0sL(B° — 1. H(8° — ).

The profile objective E(B,(Z(B)) is strictly concave in 8 because L(f,¢) is strictly concave in (3, ¢).
Thus, JgL(B, qAS(ﬁ)) is strictly decreasing. The previous set of inequalities implies that for sufficiently
large N, T

BO+n>pB>p—n.

We conclude that |3 — %] <1 = Op((NT)~"/4). This concludes the proof for dim(8) = 1.
To generalize the proof to dim(3) > 1 we define 31 = 5% £ ”g:gsn. Let (B_,B4) ={rp-+(1—
)B4+ | r € [0,1]} be the line segment between S_ and /3. By restricting attention to values 5 € (5_, )

we can repeat the above argument for the case dim(3) = 1 and thus show that Be (B—, B+), which
implies |8 — 8% < n = Op((NT)~1/4), n

B.1.3 Proof of Theorem B.4
Proof of Theorem B.4. A Taylor expansion of A(j3, ) around (3°,¢°) yields

A(B,9) = A+ 05 A)(B = B°) + (05 Al(d — ¢°) + 5 (¢ — 6°) [0s Al(¢ — ¢°) + R (B, 0),
with remainder term

R{(B,¢) = (B — B [0s5 A(B, $)](B — %) + (B — B°) [056: A(B°, §)](¢ — 8°)
+ 2 (6= 6" 0o, AB%, 9)](¢ — 6”6 — ¢,

where 3 is between 8 and 3°, and ¢ and ¢ are between ¢ and ¢°.
By assumption, |8 — 8°|| = op((NT)~1/4), and by the expansion of ¢ = ¢(3) in Theorem B.1,

16 = 6lly < |1, UST, + [, 19021,

B + 5 IR N0usel, ST + | BB |

= Op((NT)_1/4+1/(2‘1)).
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Thus, for R® := RlA(E, qg),

[RR| <180 s s [055A(8,0)]
BeB(rs,B%) p€Bq(rs,6°)

+ (NT)'279) 5 = B[ — ¢l sup sup  [[9p5 A(B, ),
BEB(r5,8°) pEB(re,¢°)

+ 5 (NT)29 16— ¢°2 sup sup  [|9ppsA(B, 0),
BEB(r5,80) $EB, (rs,8°)

=op(1/VNT).

Again by the expansion of qg = QZ(B) from Theorem B.1,

-~

5—0=AB,0) — A= (g A+ [0 Al H [0y L]) (B — B°)

+ [0 A H ™ <S +1 dlzm:d)[aw% ﬁ]%lsmls]g> + LS8 H 0y AIHT'S + RS, (B.S)
g=1
where
[R2| =[RS+ (0,AI R (B) + 16— 6° + H18) [0 A)(6 — 6° — HT1S)|
<[BP |+ (ND) Y 0,4, | B2B))|
VTG = 0+ S| 06w Al [} - 0~ 7S]

= op(1/VNT),

that uses ) b— ¢ — ’H‘lSHq = Op ((NT)~Y/2+1/a+¢) From equation (B.8), the terms of the expansion

for & — & are analogous to the terms of the expansion for the score in Theorem B.1, with A(S, ¢) taking
the role of ﬁagkﬁ(ﬁ, ®). u

C Proofs of Section 4

C.1 Application of General Expansion to Panel Estimators

We now apply the general expansion of appendix B to the panel fixed effects estimators considered in
the main text. For the objective function specified in (2.1) and (4.1), the incidental parameter score

evaluated at the true parameter value is

{ﬁ Zf:l aﬂgit} i=1,...,
{\/11\’7 Y 67%4 t=1,..,T

=1,...,

S:

The penalty term in the objective function does not contribute to S, because at the true parameter value
v'¢? = 0. The corresponding expected incidental parameter Hessian # is given in (4.2). Section D.4

. v 1. .
discusses the structure of H and H = in more detail. Define

—1

N T
1 — 1 1 1 _
v ;:1: ;:1: (Fawyis + oy + Hianyir + Hiyir ) Ol (C.1)
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and the operator DgA;; := dgAy; — 0Ny =y, which are similar to =;;, and Dgl;; in equation (4.3).
The following theorem shows that Assumption 4.1 and Assumption 4.2 for the panel model are
sufficient for Assumption B.1 and Assumption B.2 for the general expansion, and particularizes the

terms of the expansion to the panel estimators.

Theorem C.1. Consider an estimator with objective function given by (2.1) and (4.1). Let Assump-
tion 4.1 be satisfied and suppose that the limit W o, defined in Theorem 4.1 exists and is positive definite.
Let q=8, e =1/(16 + 2v), rg n7 = log(NT)(NT)~Y/® and ry yv = (NT)~Y/16. Then,

(i) Assumption B.1 holds and |3 — B°|| = Op((NT)~1/4).

(i) The approximate Hessian and the terms of the score defined in Theorem B.1 can be written as

N T
— 1 S
W = “NT Z Z Ey (Opp/lit — On2ltZ2iZ5,)
i=1 t=1
N T
U = 1 ZZDMM,
VNT i=1 t=1
N T
U0 = L SOSY L A (Dantis — Bo(Dpalia)] + 202 By (Dgratie)
= \/ﬁ it Brtit ¢ Brtit 2 it T Br2tit .

1t=1

.
Il

(iii) In addition, let Assumption 4.2 hold. Then, Assumption B.2 is satisfied for the partial effects
defined in (2.2). By Theorem B.4,

VNT (5= 8) = V" + V" + op(1),

- 97

(0) 1 ——1 (0) 1
Va — E Es(DgA; WUV — — E Eg(Wit)Orlit,
NT 4 #(Dpbie)| Weo VNT 4 (Fir)Onli

- a7

1 — 1
VA(l) =\ w7 ZE¢(D5Ait) WOOIU(l) + ﬁ ZAit (Vi1 0n2lit — Eg (Vi) Eg(Or2lit)]

it it

2\/—2 it (B (0r2 Ajt) — B (Ora lit)Eg (Wit)] -

Proof of Theorem C.1, Part (i). Assumption B.1(7) is satisfied because limpy 700 (\1/7 limy 700 \/7 =

K+ K1
Assumption B.1(i4) is satisfied because £;;(3,m) and (v'$)? are four times continuously differentiable
and the same is true for £(5, ¢).

Let D = diag (ﬁ:aa),ﬁ?w)). Then, Hf_IH = Op(1) by Assumption 4.1(v). By the properties
of the matrix norms and Lemma D.8, Hﬁ_l 75_1H < (N+T) Hﬁ_l 75_1’ = Op(1). Thus,
Hﬂ_lu < ‘ ﬁ_lH < Hﬁ_lH + Hﬁ_l — 5_1H = Op(1) by Lemma D.4 and the triangle inequality.

q 00 oo o]

We conclude that Assumption B.1(iv) holds.

We now show that the assumptions of Lemma D.7 are satisfied:
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(i) By Lemma D.2, y; = ﬁ >, 05, lir satisfies Ey(x?) < B. Thus, by independence across i

2

2
1 1 1
E —— ) 054 =E — ; =—Y Eux?<B,
? WZ i ¢ (fszi:XJ NZ_: X

and therefore ﬁ > i1 0, li = Op(1). Analogously, 7 >, , {9s,,lit — Eg [0p,5,Li]} = Op(1/VNT) =

op(1). Next,
2
1
Ey4 sup sup 08,18 Lit (B> Tit)
BEB(rg,8°) By (rs,4°) NT ; o
2 2
1 1
<Es| sup su 08.6,8, Lit (B, min)| | < By | 7 D M(Zi)
5€B(T’g50 ¢€B (7’¢ ¢O) NT; b Nle,t:

< E¢ﬁ > M(Za)* = ﬁ > EyM(Zi)* = Op(1),
.t 3

7,t
and therefore supge(,, 30) SUPen, (r,,40) = > it 08818, Lit (B, mit) = Op(1). A similar argument
gives = > it s lie = Op(1).
(i) For &i(B,¢) = Opynlit(B, mit) or (B, ¢) = Oy pynlit (B, mit),

Eq sup sup €:(8, ) ]
LEB(raﬂo) ¢EB, (r¢ o T Z
<E4 sup £n(5.9) |
BEB(rg,5) ¢>eB % 60 T Z (N Z
q

1 1

<E¢ Z( ZM zt) _E¢ TZNZM(ZM)(I
t i

= %Z N Z]Equ(Zit)q = OP(I)a

le. SUPgep(ry,p0) SUPER, (ry,¢0) DD &t(ﬁ,@‘q = Op(1). Analogously, it follows that
SUD BB (ry,80) SUPGEB, (ry d0) W 2ot |7 2o Sit (B, 0)|" = Op (1).

(iii) For &£i(B,¢) = Onrlin(B, i), with r € {3,4}, or £ (B, ¢) = Igparlin(B, ™), with r € {2,3}, or
Eir(B,0) = aﬁkﬂlw2€it(ﬁ,ﬂit)7

1 (84v)
Eg ( sup sup miaX T Z 1€t (B, ¢)>
t

BEB(rp,B°) p€By(ry,¢°)

(8+v)
=[E4 |max sup sup |§zt B, 9)|
i (ﬁesw, 59 6B, (ra00) T Z

(84v)

(84v)
<E Z ( sup Z €ie(5.6) ) <Ey > (fp ZM%))

BEB(rs,89) ¢eB <r¢ o T

<E, Z ZM 7)) 1 =y % > EyM(Ziy)®T) = Op(N).
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Thus, SUPgep(r,,30) SUPHEB, (ry,¢0) MAX; L3 6 (B,9)| = Op (NYE)) = Op (N?9). Analo-
gously, it follows that supgep(r,,30) SUPgeB, (r,,0) MaAXt + 3 1€ (B, 9)| = Op (N?9).

(iv) Let x; = ﬁZz Orlit. By cross-sectional independence and E,(9:0;1)® < E4M(Zy)® = Op(1),
EgX§ = Op(1) uniformly over t. Thus, E47% >, x§ = Op(1) and therefore 7 Y, ﬁ > Ol !
Op (1), with ¢ = 8.
Let x; = %Zt Oxlit(B%,7%). By Lemma D.2 and E4(0,¢;
Esx8 = Op(1) uniformly over i. Here we use pp > 4/[1—8/(8+v

| = 4(8 + v)/v that is imposed in

)T < EgM(Zy)*" = Op(1),
) q
| Seontu] = 0p (1), with

Assumption B.1. Thus, E,% >, x§ = Op(1) and therefore 4 >
q=28.

The proofs for £ 3, ﬁ > i 08unlit — Eg [0, lit) g Op (1) and + Y,
Op (1) are analogous.

2

= 3, g lis—Ey [0, n ]

(v) It follows by the independence of {(¢;1,...,¢;r) : 1 < i < N} across i, conditional on ¢, in
Assumption B.1(iz).
(Vl) Let fit = aﬂ—r&t(ﬂo, ’/T?t) — E¢ [aﬂ—r&t}, Wlth re {2, 3}, or git = 35k772€it(50, ’/Tz(')t) — E¢ [(%Wzﬂ-t] . FOI'

U =v, max; Eg [ﬁffﬁ] = Op(1) by assumption. By Lemma D.1,

ZE¢ [gitfis] = Z ‘COV¢ (gita gu)|

_ v v11/(84v »11/(8+v
< Y Ballt - s [Byle#]E [Ble

S

00 o
OS> mrli=2/E50) < 63 =t = Gt 90,
m=1

m=1

where C' is a constant. Here we use that > 4(8 + ) /v implies [l —2/(8 4 v) > 4. We thus have
shown max; max; ) Eg [§i€js] < Crt/90 =: C.

8
Analogous to the proof of part (iv), we can use Lemma D.2 to obtain max; E { [ﬁ Do fit} } <C,

8
and independence across 4 to obtain max; Eg { [\/% D &t] } < C. Similarly, by Lemma D.2

4
max E \% Z [€it&jt —Eg (fz‘tfjt)]] <0,

1,7
which requires p > 2/[1 — 4/(4 + v/2)], which is implied by the assumption that u > 4(8 + v)/v.
(vii) We have already shown that HﬁA ) = Op (1).
q

Therefore, we can apply Lemma D.7, which shows that Assumption B.1(v) and (vi) hold. We have al-
ready shown that Assumption B.1(3), (ii), (iv), (v) and (vi) hold. One can also check that (NT)~1/4+1/(20) =
op(rg) and (NT)Y/(2Dys = op(ry) are satisfied. In addition, £(3, ¢) is strictly concave. We can therefore
invoke Theorem B.3 to show that Assumption B.1(ii7) holds and that |3 — 8% = Op((NT)"Y/4). m

Proof of Theorem C.1, Part (ii). For any N xT matrix A we define the N x T matrix P A as follows

(PA);: = af +7, (a%,7%) € argmin Y " Ey(—0r2lis) (Ait — i — 7)° . (C.2)

oLy it
>
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Here, the minimization is over o € RY and v € R”. The operator [P is a linear projection, i.e. we have
PP =1P. It is also convenient to define
At

PA=TPA h Ay = — .
y whnere t E¢(—8W2£lt)

(C.3)
PP is a linear operator, but not a projection. Note that A and Z defined in (C.1) and (4.3) can be written
as A =PA and 5, = INPBk, where A;; = —0,0;x and By it = —E4(9p,2lit), for k=1,...,dim 3.1
By Lemma D.11(z4),
1

N T
— 1 — — =1
W =——= (0gg L+ [0 L] H ~[Opp = - [Eg (s lit) + Ey (—0r2lis) 2=,
W(BB [0 L] [Opp L ) NT;;¢ﬁﬁt ¢ (—On2lit) EirZgy] -

By Lemma D.11(4),

N T
o 1 1
U = 05L + [0 LI H 'S = ——=>_ (9plis — Zit Onlic) E:E:D&-.
B8 [ﬂ¢> } ﬁNT (ﬁt t t NT Brit

it i=1 t=1

We decompose UM = U1 + ()| with

U1 = (050 LH 'S — [0s0 L) H  HH 'S,
dim ¢

— — 1 =\ 5—-1 ~57—1
U = 3 (D500, L+ (050 LV (O, L)) 7SI 'S, /2

g=1

By Lemma D.11(¢) and (4i7),

1 N T
U(la) = —7\/7 Zt (8ﬁ7r it T hmf aﬂ'Zé’Lt) = - NT ; ; Azt Dﬁﬂ' it T E¢(Dﬁ7"€”)] ’
and
b)) — Z [E¢ aﬁwQ&t) [6/3¢/ ]H E¢(8¢8 26115)} s

,t

where for each i,¢, 050520 is a dim ¢-vector, which can be written as 04507205 = (A/l ) foran N x T
matrix A with elements A;; = 0,s¢;; if j =i and 7 =t, and A, = 0 otherwise. Thus, Lemma D.11(%)
gives [0y L] ﬂ718¢8ﬂ2€it =— Ej L Zir1(i = j)1(t = 7)0x3liy = —E;40r3l;s. Therefore

N T
1
b — ; F Z AZEy (Dppalis — ZisOnslis) = D> AL EG(Dgrali).

i=1 t=1

2
N

Proof of Theorem C.1, Part (iii). Showing that Assumption B.2 is satisfied is analogous to the
proof of Lemma D.7 and of part (i) of this Theorem.

4B, and Z are N x T matrices with entries B, i+ and Zg ¢, respectively, while B;; and =;; are dim S-vectors with entries

Bk,it and Ek,it«
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In the proof of Theorem 4.1 we show that Assumption 4.1 implies that U = Op(1). This fact
together with part (i) of this theorem show that Corollary B.2 is applicable, so that v NT' (B - 8% =
W:U +op(1) = Op(1), and we can apply Theorem B.4.

By Lemma D.11 and the result for \/W(E— B%),

/

VNT |95 8 + (05 DVH (9 L)| (B — 8°) = %ZEdDaAn) W (U0 +UD) +0p(1),

it

(C.4)
We apply Lemma D.11 to U ) and UA) defined in Theorem B.4 to give
VNTUO = ST Ey(U;)0,4ir,
A JNT Z 6 (Wit)Orliy
VN UAI) \/— Z Nit (Wit 0n2liy — B (Vi) Eg (Or2lit)]
(0r20it) —Eg(0rslis)Egp(Vst)] . (C.5)

+ A% [E

2 \/NT E; o
The derivation of (C.4) and (C.5) is analogous to the proof of the part (i7) of the Theorem. Combining
Theorem B.4 with equations (C.4) and (C.5) gives the result. |

C.2 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. # First, we want to show that U(©) — N (0, W). In our likelihood setting,

Ey08L = 0, E4S = 0, and, by the Bartlett identities, Ey(93L0s L) = —ﬁ@g@f, Ey(05LS") =

L and E4(SS') = ﬁ (ﬁ— \/%m/). Furthermore, S'v = 0 and dgg Lv = 0. Then, by
i = = 1 -1 =

definition of W = — ﬁ (85/3/5 + [8/3¢/[,] H [aﬁg/ﬁ}) and U = 8513 + [8,34)/ ]7‘[ S

E, (U(°>) —0, Var (U<0>) - W,

which implies that imy 7o Var (U®) = limy,7—0c W = Wa. Moreover, part (ii) of Theorem C.1
yields

7 — Liip 2
\/ﬁ BLit,

i=1 t=1
where Dgl;y = 0gliy — Orli+Z;+ is a martingale difference sequence for each ¢ and independent across 1,
conditional on ¢. Thus, by Lemma D.3 and the Cramer-Wold device we conclude that
U® =y NV [0, lim Var (U(O))] ~ N0, Wa).

T—o0
# Next, we show that UV —p kB 4k 'Dy. Part (ii) of Theorem C.1 gives UM = yte) 4 (1),
with

N T
1
UM = ——=3"3" Ayt [Dpnlic — Eg(Dprliv)]
NT =1 t=1
N T
gan — 1 Z ZA?t Eg(Dgrzlis).
2 v NT i=1 t=1



Plugging-in the definition of Ay, we decompose U(14) = yel) L y(a.2) 4 y(1aed) 4 1ad) where

U(la 1 _ N Z—fl (Z 87r€j‘r

Z [Dprlit — E¢(Dprlit)]

O0xljr

a2 — = Z ’H w)tj [DBﬂ&t Ey(Darlit)]

Z Orlr Dﬁ‘rrgit —Egy(Dpgrlis)] -

%

1 ___
Uied = — 37 o )ir (Za eﬁ) [Dgnlic — Eg(Dprlis)],
ad) _ *—1

SO

By the Cauchy-Schwarz inequality applied to the sum over ¢ in U(1%2)

2

2
(U(1“’2)>2 < ﬁ Z Zﬁ(_vla)tjaw[ﬁ Z (Z [Dpnlic — ]E‘f’(Dﬁ”é“)])

t 7T t i

By Lemma D.8, 7—[ wa)tj = Op(1/V/NT), uniformly over ¢, j. Using that both \/NTﬂala)tjaijT and

Dgrlyy —Ey(Dgrl;) are mean zero, independence across ¢ and Lemma D.2 across ¢, we obtain

2

1 1 ?
Eq ﬁ;[m 'ya)tj]a b | =0p(1), Eg (\/ﬁzi:[DﬁwEit —]E¢(D,Brr£it)]> = Op(1),

. — 1 2
uniformly over ¢. Thus, >, (Zjﬁ H(W)tjaﬂfﬁ) = Op(T) and >, (>, [Dprlit _E¢(Dﬁﬂ‘€zt)])2 =
Op(NT). We conclude that

(U(lw))z B (NlT)zoP(T)OP(NT) = Op(1/N) = op(1),

and therefore that U(1%2) = op(1). Analogously one can show that U(13) = 0p(1).
. -1
By Lemma D.8, ’H(ala) = —diag [(\/L ZtT—1 E (8ﬂz€it) ] +Op(1/v NT). Analogously to the

proof of U1%2) = op(1), one can show that the Op(1/v/NT) part of H(aq) has an asymptotically
negligible contribution to U1, Thus,

Z (ZT 871'&'7’) Zt [Dﬂﬂ'éit - E(ﬁ(Dﬁﬂgit)]
VNT 2 >, (020

::U’i(la,l)

U(1a71) —

+op(1).

Our assumptions guarantee that Eg [(U(la 1)) ] = Op(1), uniformly over i. Note that both the de-

(1a,1) are of order T'. For the denominator this is obvious because of

nominator and the numerator of U;
the sum over T. For the numerator there are two sums over 7', but both 0,¢; and Dgrl;y —Eys(Darlit)

are mean zero weakly correlated processes, so that their sums are of order v/T'. By the WLLN over i,

o1



N7y, Ui(l“’l) = N‘1]E¢Ui(1a’1) + op(1), and therefore

~E D
U(la,l) - _ Z Zt 1 ¢ (a Cit /Bﬂ'e“') +0P(1)
i=1 Zt 1E¢( Or2liy)

— /B
Here, we use that Ey (0:¢;Dgr¥;-) = 0 for t > 7. Analogously,
/T 1 Ey (OxlitDprls
U(la,4) - _ Z Z’L 1 ¢’ B t) +0P(1)
t 1 Zz 1E¢( 7r2€it)
Y R

We conclude that U019 = kB 4+ k1D + op(1).
Next, we analyze U(1*). We decompose A;; = Al(fl) + Al(?) A(B) + Alt , where

(€0)

N T N
1 ——1 2 1 -
AV = H . Orlir, AP = H Orlir,
it \/ﬁ ]Z:; (aar)ij ; J it \/ﬁ ]z:: 'ya)tj Tz:l J
(3) RS (4) R
3 4 =5
S W SR IR DL 3
This decomposition of A;; induces the following decomposition of U (1?)
4
s — Z U(llwuq)7 U bp.a) — Z ZAzt E(b(DBW?gn)

p,g=1 i=1 t=1

Due to the symmetry U029 = 7(1%:¢:7) this decomposition has 10 distinct terms. Start with U(1%1:2)
noting that

(b12) _ :E : yliet

\/7
1e-1,2) 1 ZE (D 2€_t)71 EN {NT”H H_l } E O0xl; 1 ET Oxl; .
i oT yat o) B2ty N2 P (aa)ijr TH(ya)tja \/‘ JiT /T — 2T

By E¢(0xtit) = 0, E¢(0x4it0r¢;-) = 0 for (i,t) # (j, ), and the properties of the inverse expected Hessian
from Lemma D.8, E, [Ui(lb’l’Q)} = Op(1/N), uniformly over i, Ey4 {(U(lb b 2)) } = Op(1), uniformly

over i, and Eg [Ui(lb’l’z)U;lb’l’Z)} = Op(1/N), uniformly over i # j. This implies that Ez U(1"12) =
Op(1/N) and E, [(U(lbﬂ) —E, U<1b7172>)2] = Op(1/V/'N), and therefore U(**12) = op(1). By similar

arguments one obtains U (1079 = op(1) for all combinations of p,q = 1,2, 3,4, except for p = ¢ =1 and

p=q=4

Forp=q=1,
by Z b1, 1)
=1
( 1 N T T
16,1,1)
Uz 2T ZE¢ Dﬂﬂ'zgzt)Ni Z |:NTH (o) z]lH(aa)132:| ( Z J1T> ( Z ]27’) .
Ji,J2=1 T=1 T=1
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Analogous to the result for U(1%:1.2) | [(U(lb’l’l Eg U(lb’l’l)f] = Op(1/VN), and therefore U1 =
E, UL 4 6(1). Furthermore,

N 3L Eo(Dartin)Eg |(056)’]

E, UL = QF Z - 3 +o(1)
i=1 [thl Eg4 (aﬁzfit)}
Es(D
\f Z i1 Bo(Dareti) +o(1).
Z E¢( 7r2€it)
=/ TB®
Analogously,
Ubad) — g, yabad 4 o) \/? Zz 1 E¢(Dgr2lit) +o(1).
Zz 1 ]E¢ ( Qgit)

(2 (1)

+op(1). Since By, = limy Tooo|B
Doo = limy 700[D" " + D( )] we thus conclude UM = kB, 4+ k' Dy + 0p(1).

# We have shown U©) —; N(0, W), and UV —p kB ++'Dy. Then, part (ii) of Theorem C.1
yields \/W(B\— B2) =4 W;IN(KEOO + K5 Do, Wao). [ |

We have thus shown that U(10) = /@E(Q) k1D +B

(1

(2)] and

Proof of Theorem 4.2. We consider the case of scalar A;; to simplify the notation. Decompose

~ —6 —4 r = —5 —5
rar(0 = 0%y = Boo/T = Deo/N) = rvr(8 = 0r) + —2=VNT(6 = 8 = Boo /T = Do /N).

# Part (1): Limit of v/ NT(g— 0 — EiO/T - EiO/N). An argument analogous to to the proof of
Theorem 4.1 using Theorem C.1(i4¢) yields

VNT(3 - 6) %d./\/<liB +&1D0, v‘s“)

where Viil) =E {(NT)’1 it Eg [Fft]} , for the expressions of Eio, ﬁio, and T';; given in the statement
of the theorem. Then, by Mann-Wald theorem

VNT( =6 = Bl /T = Do /N) »a N (0,V").

6(2)) for the rates

# Part (2): Limit of ryr(6 — 6%p). Here we show that ryr (6 — 0%7) —a N(0,V oo
of convergence ryp given in Remark 2, and characterize the asymptotic variance Viiz). We determine
rnr through E[(§ — 6%,)%] = O(ry3) and ryz = O(E[(§ — 6%4)?]), where

2

1 ~ 1 ~ ~
E[((s - 59\7T)2] =E NT ;Ait = N2T2 Z E [AitAjs} ) (C'G)

i4t,s

for Ay = Ay — E(Ay). Then, we characterize Vo ) s V(;(Q) = E{r3+E[(§ — 0%+)?]}, because E[§ —

8%+] = 0. The order of E[(§ — 6%7)?] is equal to the number of terms of the sums in equation (C.6) that
are non zero, which it is determined by the sample properties of {( Xy, i, 7:) : 1 <i < N, 1<t <T)}.
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Under Assumption 4.2(i)(a),

1 ~ = _
E[(6 — 6r)?] = N2 ZE [AitAis:| =O(N),
i,t,8
because {Elt :1<i< N;1<t<T} is independent across ¢ and a-mixing across t.
Under Assumption 4.2(i)(b), if {a;}n and {y:}r are independent sequences, and «; and 7; are
independent for all i, ¢, then E[A;A ;] = E[A;]E[A,,] = 0if i # j and t # s, so that

1 . - . N+T
0 2] _ 2]\ _
E[(6 — 6%r)?) = 7o § DO E [Buelis] + D E (Rl - Y E[AY] b =0 ( = ) ,
ity it it
because E[A;A;,] < IE[EM&%)]1/2E[E¢(£i)]1/2 < C by the Cauchy-Schwarz inequality and Assump-
tion 4.2(i4). We conclude that ryr = /NT/(N +T) and

7O _g Z:ZV%? SE {Eit&-s} +> E [&tﬁjt}
ists i#j,t
Note that in both cases ry7 — oo and ryr = O(W)
# Part (3): limit of ry7(6 — 0%, — T*1§i0 - Nflﬁio). The conclusion of the Theorem follows
because (6 — §%,) and (g— J— T*IEio - Nflﬁio) are asymptotically independent and Vio =74
75(1) lmpy 700 (TNT/\/W)Q. [ ]

C.3 Proofs of Theorems 4.3 and 4.4

We start with a lemma that shows the consistency of the fixed effects estimators of averages of the data
and parameters. We will use this result to show the validity of the analytical bias corrections and the

consistency of the variance estimators.

Lemma C.2. Let G(B,¢) := [N(T = 5)]7' 32, 1541 9(Xits Xio—j, By i + i +ve—j) for 0 < j < T,
and BY be a subset of RY™A+2 that contains an e-neighborhood of (ﬂ77T?t,7T?7t_j) for all i,t,5, N, T,
and for some ¢ > 0. Assume that (B,m1,m2) — gitj(B,m1,m2) = 9(Xst, Xit—j, B, m1,m2) is Lipschitz
continuous over BY a.s, i.e. |git;(B1,m11,m21) — itj (Bos 105 T20)| < Mits || (81,711, 721) — (B, 710, T20) ||
for all (By,m11,m21) € B, (B1,m11,m21) € B, and some My; = Op(1) for all i,t,j,N,T. Let (3,) be
an estimator of (8, ¢) such that HE— B —p 0 and ||(;AS— #°||cc —p 0. Then,

G(Ea Q/b\) —P E[G(ﬂoa ¢O)]7
provided that the limit exists.

Proof of Lemma C.2. By the triangle inequality

|G(B. ) —E[G(8°,¢")]| < |G(B, ) — G(8°,¢")] + op (1),
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because |G (6%, #°) —E[G(B°, ¢°)]| = op(1). By the local Lipschitz continuity of g;;; and the consistency
of (B, 9),

1

G(B,6) =GB N < grr—3y 2 Muall(B.@+ 70,80 +Fiy) = (8% 0 +9f! of +9)

it>j+1

1 _ R
S va—g o MaillB =81+ 416 - ¢le)
B,t>j+1
wpal. The result then follows because [N (T —j)] ! szt M, = Op(1) and (\\B*BOII+4||¢A57¢0||OO) _
op(1) by assumption. i

Proof of Theorem 4.3. We separate the proof in three parts corresponding to the three statements
of the theorem.

Part T: Proof of W — p Wa. The asymptotic variance and its fixed effects estimators can be
expressed as Woo = E[W(8°,¢°)] and W = W (B, $), where W (3, ¢) has a first order representation as
a continuously differentiable transformation of terms that have the form of G(f, ¢) in Lemma C.2. The
result then follows by the continuous mapping theorem noting that ||3 — 8% —p 0 and [|¢ — ¢°||ec <
|6 — ¢°|l; —=p 0 by Theorem C.1.

Part II: Proof of VNT(84 — 8°) —4 N(O,W;l). By the argument given after equation (3.3) in the
text, we only need to show that B — p Boo and D — p Doo. These asymptotic biases and their fixed
effects estimators have a similar structure to W, and W in part I, so that the consistency follows by a
similar argument using that L — oo and L/T — 0 guarantee that the trimmed estimators are consistent
for the spectral expectations; see Lemma 6 in Hahn and Kuersteiner (2011).

Part IIL: Proof of VNT(B7 — 8°) —q N(0,W). For Ti = {1,..., (T +1)/2]}, o = {|T/2] +
L....,TH To=ThUTs, Ni ={1,...,[(N+1)/2]}, No = {|N/2| + 1,...,N}, and Ny = N7 UN3, let
BUK) be the fixed effect estimator of B in the subpanel defined by i € Nj and t € T;.'® In this notation,

37 = 3p00) _ 3(10)/2 _ 3(20)/2 _ 3(01)/2 _ 3(02)/2.

We derive the asymptotic distribution of vV NT' (EJ — B%) from the joint asymptotic distribution of

the vector B = \/NT(B(OO) — B9, g0 — g0 3(20) _ g0 3O _ 50 5(02) _ 30} with dimension 5 x dim 3.
By Theorem C.1,

21(j>0)21(k>0)

VNT(EUM - 5%) = ———

(it + by + di] +op(1),
iEN; t€Ty

for iy = W Dplis, by = W [ULY + U], and dyy = W [ULY + U] where the U
is implicitly defined by U() = (NT)~1/2 Dois Ui(t'). Here, none of the terms carries a superscript (jk)
by Assumption 4.3. The influence function 1;; has zero mean and determines the asymptotic variance

-1 . . . = = .
W , whereas b;; and d;; determine the asymptotic biases B, and D, but do not affect the asymptotic

5Note that this definition of the subpanels covers all the cases regardless of whether N and T are even or odd.
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variance. By this representation,

I@—m./\/ K

NN = ==

1
2
®@Boo+ k1| 2 | ®Da,
1
1

—_ = = =

1
2
0
1
1

L V=
S N = =

1
1
1 | oW |,
0
2

where we use that {1 : 1 <i < N,1 <t < T} is independent across i and martingale difference across
t and Assumption 4.3.
The result follows by writing v/ NT(,EJ—[?O) =(3,-1/2,-1/2,-1/2, —1/2)@ and using the properties

of the multivariate normal distribution. | |

Proof of Theorem 4.4. We separate the proof in three parts corresponding to the three statements
of the theorem.

Part I: V° —p Vio. v
Theorem 4.3, so that the consistency follows by an analogous argument.

Part II: v NT (64 — 8% 1) —a N(O,Vio). As in the proof of Theorem 4.2, we decompose

o and V9 have a similar structure to W o and W in part I of the proof of

- - _
TNT((SA — %) = (6 — 0%p) + \/%\/NT((;A — ).

Then, by Mann-Wald theorem,

VNT(3A — 6) = VNT(3 — B )T — D°/N — §) —4 N (0,7,

5(2)

o0

provided that B% —p Eio and D° —p 5(;, and rn7(0 — 0%7) —a N(0,V "), where Viil) and Vif)

are defined as in the proof of Theorem 4.2. The statement thus follows by using a similar argument to
part IT of the proof of Theorem 4.3 to show the consistency of BY and ﬁ5, and because (§ — 6%5) and
(64 — ) are asymptotically independent, and Vio S Al Al limy 700 (rnr/VNT)?,

Part III: v/ NT(SJ —8%7) —d N(O,Vio). As in part II, we decompose

~ ’,“ ~
’I"NT((SJ — 59\71«) = TNT(é - 5?VT) + \/%V NT((SJ — (5)

Then, by an argument similar to part III of the proof of Theorem 4.3,

79(1)

VNT(57 = 6) =q N(0, Vo),

5(2)

oo

), where Viil) and Vii?) are defined as in the proof of Theorem 4.2.

and TNT(5 — 59VT) —d N(O,V

The statement follows because (§ — d%,) and (67 — §) are asymptotically independent, and Vio =

V(S(z) + Vé(l) limNyTﬁoo(TNT/\/W)? |

D Useful Lemmas

D.1 Some Properties of Stochastic Processes

Here we collect some known properties of a-mixing processes, which are useful for our proofs.
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Lemma D.1. Let {&} be an a-mizing process with mixing coefficients a(m). Let E|&|P < oo and

E|¢i1m|? < 0o for some p,q > 1 and 1/p+1/q < 1. Then,
[Cov (&, &rm)| < 8 alm)/” [EJ&[P]" (Bl
where r = (1 —1/p—1/q)~ .
Proof of Lemma D.1. See, for example, Proposition 2.5 in Fan and Yao (2003). [ |

The following result is a simple modification of Theorem 1 in Cox and Kim (1995).

Lemma D.2. Let {&} be an a-mizing process with mizing coefficients a(m). Let r > 1 be an integer,
andlet § > 2r, u>r/(1—-2r/5), ¢ >0 and C > 0. Assume that sup, E |§t\5 < C and that a(m) < cm™*
for allm € {1,2,3,...}. Then there exists a constant B > 0 depending on r, §, u, ¢ and C, but not

depending on T or any other distributional characteristics of &, such that for any T > 0,

1 T 2r
E||{—= &t <B.
The following is a central limit theorem for martingale difference sequences.

Lemma D.3. Consider the scalar process &t = Enrat, 1 =1,...,N, t =1,...,T. Let {(&z1,-..,&7) :
1 < i < N} be independent across i, and be a martingale difference sequence for each i, N, T. Let
E|&i¢|*1° be uniformly bounded across i,t, N, T for some § > 0. Let @ = a1 > A > 0 for all sufficiently
large NT, and let 1= >kl —52 —p0as NT — 00.1¢ Then,

1
it — N 0,1).
- \/ﬁ lzt: g t d ( )
Proof of Lemma D.3. Define &, = {arm = Enryi, Wwith M = NT and m =T(i—1)+t € {1,..., M}.
Then {&,,, m = 1,..., M} is a martingale difference sequence. With this redefinition the statement of
the Lemma is equal to Corollary 5.26 in White (2001), which is based on Theorem 2.3 in Mcleish (1974),
. M
and which shows that E\}M Yoot &m —a N(0,1). [ ]

D.2 Some Bounds for the Norms of Matrices and Tensors

The following lemma provides bounds for the matrix norm ||.||, in terms of the matrix norms ||.||1, |||z,
[|-lloo, and a bound for ||z in terms of ||.|[; and [|.|[g/(q—1). For sake of clarity we use notation |.||2 for
the spectral norm in this lemma, which everywhere else is denoted by ||.||, without any index. Recall
that [|Alloe = max; 33, |Ag;| and | Ally = |4 .

Lemma D.4. For any matriz A we have

1 _

1Al < (1A} )1Al1L 2, forq>1,
2 _

1Al < A5 AllL %9, forq>2,

[All2 < 4/l Allgl[Allg/q-1), forq=>1.

Y%Here can allow for an arbitrary sequence of (N, T) with NT — co.
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Note also that ||Allq/(q—1) = [|A"|lq for ¢ > 1. Thus, for a symmetric matriz A, we have ||Alls < [|Allq <
|A]loo for any g > 1.

Proof of Lemma D.4. The statements follow from the fact that log||All; is a convex function of
1/q, which is a consequence of the Riesz-Thorin theorem. For more details and references see e.g.
Higham (1992). |

The following lemma shows that the norm ||.||; applied to higher-dimensional tensors with a special
structure can be expressed in terms of matrix norms ||.||,. In our panel application all higher dimensional
tensors have such a special structure, since they are obtained as partial derivatives wrt to o and « from
the likelihood function.

Lemma D.5. Let a be an N-vector with entries a;, let b be a T-vector with entries by, and let ¢ be an

N x T matrixz with entries c;z. Let A be an N x N x ... x N tensor with entries

p times
ail ifilzigz...:ip,
Ajjig.iy = ,
0 otherwise.
Let B be anT xT x ... x T tensor with entries
—_——
r times
by, ifti=to=...=t,,
Btltz...tr = .
0 otherwise.
Let C bean N X N x ... x NxT xT x...xT tensor with entries
p times T times
Ciitq ifi1:i2:...:ipandt1:t2:...:t7~,
Civig..iptity...ty = .
0 otherwise.

Let CbeanT xT x ... xTx N x N x ... x N tensor with entries

r times p times
5 - Ciitq ifilzigz...:ipandt1:t2:...:tr,
tito.. . tririn..ip — O Othersze‘
Then,

Al = masx]asl, forp =2,
1By = masx|bi], forr =2,
ICllg < el forp>1,r>1,
ICllg < 11€/ s forp>1,r>1,

where ||.||q refers to the g-norm defined in (A.1) with ¢ > 1.
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Proof of Lemma D.5. Since the vector norm |.||4/(q—1) is dual to the vector norm ||.||, we can rewrite

the definition of the tensor norm [|C], as follows

Icl, = max max max
v las@-n=1 |[uPlg =1 [o®]q =1

k=2,...,p l=1,...,r

T
Z Z u£11) g) : Ef)vzgll)vg)"'Ut(:)oilz‘z...iptm...tr

i1i2...ip=11t1t2...t,.=1

The specific structure of C yields

N
IC|., = max max max ugl)ugz u(p)v(l) @ ey
T IOl =1 u®)y = 1 1ol = ;; Ch
k=2,...,p l=1,.
max UiViCit | = ||Cllq>
lullostoon <1 lollg21 2; | = lell
where we define v € RY with elements u; = u( )u(z) : uz(-p) and v € RT with elements v; = vt(l)v,§2) e v,ﬁ’”),
and we use that |[u®|, = 1, for k = 2,...,p, and |Jv®|, = 1, for | = 2,...,r, implies |u;| < |u(1)|
and |v| < \vg )|, and therefore [|ull,/1-q) < [[uM||y/1—g) = 1 and [Jo, < ||v(1 ll; = 1. The proof of

||CHq < ||¢|l4 is analogous.
Let A(®) —= A, as defined above, for a particular value of p. For p = 2, A®) s a diagonal N x N

matrix with diagonal elements a;, so that [[A®) |, < [[A®@|//1)|A@||1 Y7 = max; |a,|. For p > 2,

N
AP = max max Z uMu?. "U(-p)Ai Qo
& - (k) no o
¢ Nullas@-n=1 Ju®llg =1 1|; ;77 1
k=2...,p
N
= max max Z Ul(-l)%@) e ngil)uy))Az(jQ')
lu®la/@-=t Ju®g=1 |Z=;
k=2,...,p
N T
max = [ A®)]; < max ;]
Il g <1 [vllg=1 22 o
where we define u € RY with elements u; = u( )u(2) : 'ngil) and v = u(P), and we use that [|[u(* lp =1,

for k = 2,...,p— 1, implies |u;| < |u£1 | and therefore [ullq/(q—1) < ||u(1)||q/(q,1) = 1. We have thus
shown ||A(p)|| < max; |a;|. From the definition of ||A(p)||q above, we obtain ||A(”)Hq > max; |a;| by
choosing all u®) equal to the standard basis vector, whose i*’th component equals one, where i* €

argmax; |a;|.

A(p)Hq = max; |a;| for p > 2. The proof for ||B||, = max; |b| is analogous. |

The following lemma provides an asymptotic bound for the spectral norm of N x T matrices, whose
entries are mean zero, and cross-sectionally independent and weakly time-serially dependent conditional

on ¢.

Lemma D.6. Let e be an N x T matriz with entries e;;. Let 62 T Zt 1Ey(e2), let Q be the T x T
matriz with entries Qs = % Zi\il Ey(eiress), and let n;; = ﬁthl leitejt — Eg(eie;i)]. Consider
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asymptotic sequences where N, T — oo such that N/T converges to a finite positive constant. Assume
that

(i) The distribution of e;; is independent across i, conditional on ¢, and satisfies Ey(e;) = 0.
- N [_on4 N N
(i) % Zi:l (01‘2) = 0p(1), %TT(QZL) = Op(1), % Zi:l Eq (n?i) = 0p(1), % Zz’,j:l Eq (77?]‘) =
Op(1).
Then, Eylle||® = Op(N®), and therefore ||e|| = Op(N*/®).

Proof of Lemma D.6. Let ||.||r be the Frobenius norm of a matrix, i.e. ||Al|lr = /Tr(AA’). For
o} = (07)%, 07 = (67)" and &3, = 1(j = k),

N N T 2
le]l® = llee’ee|* < |lee’ee |7 = > <Z > ez'tektekrejf>

ij=1 \k=1t,7=1

N 2
[ (nzk+T/6ku)(77k+T/5] )]
k

=1

T2

|
-Mz

1,7=1

T2

™M=

N 2
(Z nienji + 2T 2067 + T5ij0?>
k=1

I |
-

4,J

\ /\

N 2
<Z NikNjk —|—4T77” f —|—T25U*8
k=1

N 2
(Z 777k"]]k> +127° Z aing + 3T?’ZUZ,

k=1 i,j=1

H MZ I MZ

where we used that (a + b+ ¢)? < 3(a? + b? + ¢3). By the Cauchy Schwarz inequality,

[ T N N N
Byl < 37°E, z(zmkm) + 1279 (NZO§> S Byt | +3703 o8
4,j=1 i=1 i,j=1 i=1

9
= 3T2E¢ z (Z 771k77]k> + OP(T3N2) + OP(TSN).

z]l
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Moreover,

N N 2 N
Eg Z( 771‘k77jk> = Eg(misnjsnung) = Eo(nignismmms)
i,j=1 \k=1 i,k =1 3,5,k 1=1
N
= Z Eg (mijnienema) | + 4 Z iji B (MiatijMiknni) | »
1,5,k 1 i4,k=1
mutually different
3y 1/4
N N
< > By (ngmirnwma) | +44 | Y Bsi)| | D Eolni)
ivjvkvl ’i,j,k:l i1j7k‘=1
mutually different
3y 1/4
1 & 1 &
= Z Eg (nijnjknmimi) +4N? [N ZEcﬁ(ﬂﬁ')} N2 ZE¢(77?J')
i,7,k, 1 i=1 i,j=1
mutually different
= > Ey (minixnwami) | + Op(N?).
i7j7k7l

mutually different
where in the second step we just renamed the indices and used that n;; is symmetric in 4,j; and
a;ji € [0,1] in the second line is a combinatorial pre-factor; and in the third step we applied the
Cauchy-Schwarz inequality.
Let Q; be the T' x T' matrix with entries €2, ;s = Eg(e;eis) such that Q = % Zivzl Q;. For i, j,k,l
mutually different,

T

1
Eg (nijnjknemi) = T Z Eg(eitejiejserseruciuCiviv)
t,s,u,v=1
T
1 1
= ﬁ Z E¢(eiveit)]E¢(ejtejs)E¢(ekseku)E¢(eluelv) = ﬁTI‘(QinQle) Z 0
t,s,u,v=1
because 2; > 0 for all . Thus,
1
> Eg (mignjxneimi) | = > Eg (mignienrimi) = T2 > Tr (€282 0:82)
i, 5k, 1 i, .k, i, 5, k1
mutually different mutually different mut. different
1 & N*
<7 > Tr(9,;00) = ﬁTr(sz‘*) = Op(N*/T).
i,5,k,l=1

Combining all the above results gives Eylle||® = Op(N®), since N and T are assumed to grow at the

same rate. [

D.3 Verifying the Basic Regularity Conditions in Panel Models

The following Lemma provides sufficient conditions under which the panel fixed effects estimators in the

main text satisfy the high-level regularity conditions in Assumptions B.1(v) and (vi).
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Lemma D.7. Let L(8,¢) = ﬁ [Zi,t i (B, min) — g(v’gi))ﬂ , where Ty = a; + v, a = (a1,...,an),
v = Ys--01), ¢ = (&), and v = (I, 1%). Assume that £;(.,.) is four times continuously
differentiable in an appropriate neighborhood of the true parameter values (8°,¢°). Consider limits as
N, T — oo with N/T — k% > 0. Let 4 < ¢ < 8 and 0 < e < 1/8 —1/(2q). Let 13 = rgn7 > 0,
re =roNT >0, with g =0 [(NT)"/CD=¢] and ry, = o[(NT)~¢]. Assume that

(i) For k;,l,m €{1,2,..., dimﬁ}
1
F Zaﬁk i =Op(1) NT Zaﬂkﬂz it = Op(1), NT ; {aﬁkﬁlfﬁ —Eq [aﬁkﬁzgit]} =op(1),

sup sup 08,18 Lit (B, Tit) = Op(1).
BEB(rp,°) $€B, (rs,0°) NT 2; o

(“) Let k,1 € {1,27 cee ,dimﬁ}. For fit(ﬂ ¢) = aﬂkﬂgit(ﬂaﬂit) or fit(ﬂ ¢) = aﬁkﬁlﬂgit(ﬁvﬂit);

sup &(B,9)| =0p(1),
BEB(rs,8°) ¢€B r¢ oy T Z Z

sup Z&‘t(ﬂa ¢) =0p (1) :
BeB(m,BO)aSeB w ¢°) t

(’LZZ) Letk,l € {1, 2,..., dlmﬂ} FOTgit(B, d)) = a.,r'rf“(ﬂ,ﬂit), with r € {3,4}, 07’5#(5, gf)) = 8Bkﬂ-r€it(ﬁ77'rit),
with r € {2a 3}; or fit(ﬁv ¢) = 8ﬁkﬁlﬂ'2’€it(67ﬂ—it))

sup sup maX* Z €it(B, )| = Op (N*),
BEB(rp,8°) p€By(r4,¢°)
sup sup max— Z 1&i(8,9)| = Op (NZE)

BEB(rp,B°) dp€By(ry,4°)

(iv) Moreover,

q
1 1
TZ|\/N2871-£115 :Op R it OP 1)7
T Z | \/> Zaﬁk"" it E¢ [8ﬂk7r zt] =0p ( )
2
Zaﬁm it = Eg [Opnlir]| = Op (1).
(v) The sequence {(éila oo bir) 11 <1 < N} s independent across @ conditional on ¢.

(Ui) Let k € {1,2,...,dimﬁ}. For git = Oprlyy — E¢ [aﬂ—r&t}, with r € {2,3}, or fit = aﬁkﬂ'r‘)fit —
Ey [(%Mzéit], and some v > 0,

8
% Zfit] S Ca

max Eg [gft"";} <C, max mtaXZ]E¢, [€i&is) < C, max Eq

mtax Eg

1
% Z [€it&jt — Eg (fitfjt)]] <,

8
1
— i <C, max E
E6| pee e,

uniformly in N, T, where C' > 0 is a constant.
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(vii) ”ﬁ*Hq — 0p (1).

Then, Assumptions B.1(v) and (vi) are satisfied with the same parameters q, €, rg = rg.NT and vy =

To,NT used here.

Proof of Lemma D.7. The penalty term (v'¢)? is quadratic in ¢ and does not depend on 3. This
term thus only enters 9,L(5, ¢) and Jpe L5, ¢), but it does not effect any other partial derivative of
L(B, ¢). Furthermore, the contribution of the penalty drops out of S = 9,L(8%, ¢°), because we impose
the normalization v'¢° = 0. It also drops out of L, because it contributes the same to H and H. We can
therefore ignore the penalty term for the purpose of proving the lemma (but it is necessary to satisfy

the assumption Hﬂle = Op(1)).
q
# Assumption (¢) implies that [|9L]| = Op(1), |9ss L] = Op(vVNT), aﬂﬁ/EH = op(v/NT), and

sup sup  ||08ssL(B, d)|| = Op (\/ NT). Note that it does not matter which norms we use
BEB(rs,8°) $€B,(r4,4°)
here because dim f is fixed.
# By Assumption (ii), |9y L], = Op (NT)Y/(9) and  sup sup  |[0ssL(B, D), =
BEB(r5,8°) $€Bq(14,4°)

Op ((NT)l/(Qq)>. For example, 0, o, L = \/% >+ 08, xlix and therefore

q\ 1/q
) —0p (Nl/q) = 0p ((NT)Wq)) )

1
08raLll, = (Z ‘\/ﬁ > Opnlic
i t

Analogously, (|9, L], = Op ((NT)Y/(9)), and therefore 1086 LI, < 1980 Ll +198.4Lll, = Op ((NT)V/22).
This also implies that [|0gg L], = Op ((NT)Y29)) because dim 3 is fixed.
# By Assumption (i), (|06 L, = Op (NT)), 108p6Ll, = Op((NT)°),

sup sup  [|9ppgL(B, 9)ll, = Op (NT)),  sup sup  [|9pgg6L(B; D), = Op (NT)°),
BeB(rg,p%) $€Bq(ry,¢°) BEB(rs,8°) d€Bq(r4,¢°)
and  sup sup  [|0ppps L(B, B[, = Op ((NT)°). For example,

BEB(rp,6°) pEBy(r¢,¢°)

10666 L 1, < 0aaallly + 1aarLll, + [0arall, + 19as- L],
+ 10500 Ll, + 10507 LY, + 10550 Lll, + 1057+ L],
< 0raaLll, + 10y L1, + 3 10rar Lll, +310mraLll,
< NOraalllo + 10ma7 Ll oo + 3 10rar L2 T [Onra LIl + 3| Onay L1 2 |0l

1-1/q 1/q

= \/% [mlax zt: O3 liy zl: Op3lis| +3 <mlaxzt: |8ﬁs£it|> (m?xzt: |87r3€it|>

1/q 1-1/q
+3 (m?xzt: |a,rseit|> <m?x§t: |aﬂ3eit|> ]

1-1/q 1/q

m?XZt: |Orslit| + m?Xzi: |Orslit] +3 (m?XZt: |87T3€it|> (mtaxzt: 87r3€it>
1/q 1-1/q

+3 (mzaxz |87r3£it|> (mtaXZ |87r3£it|>
t t

-+ max
t

IN

1
VNT

— Op(N¥) = Op((NTY).
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Here, we use Lemma D.5 to bound the norms of the 3-tensors in terms of the norms of matrices,
e.g. [[0aarLll, < [|0rayLll,, because du;a,+, L = 0if i # j and Ja,a,7, L = (NT)"Y204,+,-'7 Then,
we use Lemma D.4 to bound ¢g-norms in terms of co-norms, and then explicitly expressed those oco-
norm in terms of the elements of the matrices. Finally, we use that |Y, Oxsly| < >, [0x30;| and
1> Onslir] <>, |Orslsy|, and apply Assumption (#4i).

# By Assumption (iv), [|S||l; = Op ((NT)~1/4+1/(29) and "aﬁ¢/z“ = Op (1). For example,

q
4 t t i

# By Assumption (v) and (vi), | H|| = Op ((NT)=3/16) = op ((NT)~1/8) and H@BWZH =Op ((NT)~#/1%) =
Opaol

a\ 1/a
> =0p (N—1/2+1/q) =0p ((NT)—1/4+1/(2Q)> .

op ((NT)~'/8). We now show it ||#||. The proof for
By the triangle inequality,

is analogous.

1N = 196 £ = Eg (050 L]l < 0acr £ = Eg [Oaar LUl + 1039 £ = B (059 L1 +2 10 £ = Eqs [Bary L]

Let &; = On2liyy — Eg [Or20;]. Since Ouo L is a diagonal matrix with diagonal entries \/%Zt Eit,
1000’ £ — Ey [Oaar L]|| = max; ﬁ > &it, and therefore

8
1
Eg |00 £ — Ey [3aa/£]”8 =E4 |max ( Zglt>
i VNT <

1 i 1\* Ly
<Ey Z<m¥&t> <CN (\/]V) =Op(N™7).

i

Thus, [|0aa’ L — Eg [Oua L]|| = Op(N73/8). Analogously, |04 L — Eg [0y, L] = Op(N~3/8).

Let € be the N x T matrix with entries £;;. We now show that £ satisfies all the regularity condition of
Lemma D.6 with e;; = &;. Independence across i is assumed. Furthermore, 52 = % Zthl Ey( 2) < cl/4
so that & Y, (52)" = Op(1). For Q= & XL, Eg(Guis),

4
1
ST < ) < [0, = (mngE¢ [@@4) <c=o0p().
F 1 NT S 1) L - E.rt < C. which i lies L NE 1) — Op(1
Or Nij = 7 >t [Git€ie ¢(&it&je)] we assume My = U, which 1implies >i=1E¢ (Uu) = 0p(1)
and 53 37, By (nfj) = Op(1). Then, Lemma D.6 gives [|¢[| = Op(N/%). Note that £ = —A—= o~ £ —
Eg [0ay L] and therefore ||0n, L — Eg [Oay L]]| = Op(N~3/8). We conclude that ||7-[|| = Op(N~3/8) =

Op ((NT)=3/16).
# Moreover, for §;; = 020y, — Eg [0r24:]

841U
~ el 1 1
Byl M| = Eq (m m?XZKit) = E, max (WZm)
t t

1 8+7 T NS [ s
+v | _
§E¢Xi: (\/ﬁzt]&ﬂ) S]E¢Zi:<\/ﬁ> <th:|fit| ) = Op(N),

8+v

1"With a slight abuse of notation we write dra~L for the N x T matrix with entries (NT) ™20, 3¢;; = (NT)"Y/28,354;;, and
analogously for Oraal, Oryy L, and Orya L.
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and therefore ||H oo = 0p(N'/8). Thus, by Lemma D.4
[Hll < [FIE RIS = op (NHEES/at=2101) = op (NTHIER) < 0p(1),

where we use that ¢ < 8.
# Finally we show that Hzgfhmjl 8¢¢g¢h£~[ﬁ_1$]g[ﬁ_18]hu =op ((NT)~1/4). First,

dim ¢
e —
Y Oso,0n LI SIg[H Sl
g,h=1
dim ¢ dim ¢
< || D" Ouvyn LI SIH " Sha| +{| D Do LI SIS
g,h=1 g,h=1
Let (v,w)" = ﬁfls, where v is a N-vector and w is a T-vector. We assume Hﬁ% = Op(1). By
q
Lemma B.5 this also implies Hﬁ‘lH — Op (1) and ||S|| = Op (1). Thus, |jv] < ]ﬁ I1S|| = Op (1),

— 1 ——1 _
< [ 1S = 0p (). vl < lelly < [77']| 1Sl = Op (NT)7/451/@0), fulsc < flully <
Hﬂﬂ H [Sllq = Op (NT)~1/4+1/(29))  Furthermore, by an analogous argument to the above proof for
q

||ﬁ||, Assumption (v) and (vi) imply that ‘ 87rw’ZH =

Op(N’g’/S). Then,

Onaa L = Op(N=219), |

Onay || = O(N51%), |

dim ¢ N

PR R —
Z aai¢g¢h£ [H S]g[% S]h = Z (804 aJO‘k Uﬂ)k + 222 % a]’)’t v]wf + Z z’Yr’Ye wtws
g,h=1 jk=1 j=1t=1 ts=1

Mz

(Or U +2 E iy £ Uzwt + E Qe wtv

1

J
and therefore

dim ¢
~ =1 ——1
>~ Oavyo LI SISl <|

g,h=1

Onaar L) I0/l10]lo0 +2 |

Orcr L Neol1wllo + [rcr Z]| sl el

= Op(N3/30p ((NT)—1/4+1/(2q)) - 0p ((NT)71/473/16+1/(2q)) — op ((NT)*I/‘*) ’

where we use that ¢ > 4. Analogously, ‘

dah dimg 1 Ovoyon L [ﬁilS]g[ﬁils]hH = op ((NT)~'/*) and thus
also Hzg,hjl 6¢¢g¢h [H S]g[H 5 hH = Op (NT)—1/4).18 m

18Given the structure of this last part of the proof of Lemma D.7 one might wonder why, instead of
szmﬂf) Opdgon L CIH S] [H S]hH = op ((NT) 1/4)7 we did not directly impose H(’)% ¢/£H = op ((NT) 1/<2q)) as
a high-level condition in Assumption B.1(vi). While this alternative high-level assumption would indeed be more elegant and

sufficient to derive our results, it would not be satisfied for panel models, because it involves bounding ), aarw’ZH and

2

&,MOL«EH, which was avoided in the proof of Lemma D.7.
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D.4 Properties of the Inverse Expected Incidental Parameter Hessian

The expected incidental parameter Hessian evaluated at the true parameter values is

=%

— H H, b
H = E(z) [8¢>¢>’ E] = ( 7#5()(&) , 7S<a"/) > + /U’Ul,
[H(M)] H(w)

where v = vy = (v, =15)', Hnay = diag( iz 3y Eol=0r2bit]), Hianyit = 7azEol—0Or2lur], and
Hiyy) = diag( Az 3, B[~ 0r2Lus]).

In panel models with only individual effects, it is straightforward to determine the order of magnitude
of ﬁA in Assumption B.1(iv), because H contains only the diagonal matrix ﬁzaa). In our case, H is
no longer diagonal, but it has a special structure. The diagonal terms are of order 1, whereas the
-1/ H- diag@yw),ﬂzw))umx = Op((NT)~1/?).

off-diagonal terms are of order (NT) . Moreover,

These observations, however, are not sufficient to establish the order of ﬁfl because the number of
non-zero off-diagonal terms is of much larger order than the number of diagonal terms; compare O(NT)
to O(N +T). Note also that the expected Hessian without penalty term 7" has the same structure as 7
itself, but is not even invertible, i.e. the observation on the relative size of diagonal vs. off-diagonal terms
is certainly not sufficient to make statements about the structure of H ', The result of the following
lemma is therefore not obvious. It shows that the diagonal terms of A also dominate in determining the
order of H .

Lemma D.8. Under Assumptions 4.1,

HH ' _ diag (ﬂ}‘m),ﬁ‘w)_l = Op ((NT)*W) .

max

This result establishes that ﬁ_l can be uniformly approximated by a diagonal matrix, which
is given by the inverse of the diagonal terms of H without the penalty. The diagonal elements of
diag(ﬁ?aa) , ﬁ?w))’l are of order 1, i.e. the order of the difference established by the lemma is relatively
small.

Note that the choice of penalty in the objective function is important to obtain Lemma D.8. Different
penalties, corresponding to other normalizations (e.g. a penalty proportional to a?, corresponding to
the normalization «; = 0), would fail to deliver Lemma D.8. However, these alternative choices do
not affect the estimators B and g, i.e. which normalization is used to compute B and & in practice is

irrelevant (up to numerical precision errors).

D.4.1 Proof of Lemma D.8
The following Lemmas are useful to prove Lemma D.8. Let £*(8,¢) = (NT)~/? > i lit(By i + ).

Lemma D.9. If the statement of Lemma D.8 holds for some constant b > 0, then it holds for any
constant b > 0.

Proof of Lemma D.9. Write H = H 4+ —2=vv/, where H = E, [ o E*] Since H v =0,

VNT T 0¢0¢’
T
7= (1) + () :(%*)ubmﬂf:(H*)ub(ﬂwc
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where 1 refers to the Moore-Penrose pseudo-inverse. Thus, if 7 is the expected Hessian for b = b; > 0

and H is the expected Hessian for b = by > 0, Hﬂl_l —ﬂ;l‘ H(— - —) (NJIFVTT)QUU =
max max

O ((NT)~1/2). [

-1
Lemma D.10. Let Assumption 4.1 hold and let 0 < b < bpyin (1 + % g‘;‘“‘) . Then,

b

bmax

— 1 — — 1 —
H””%a)“f‘(av)”w <l-3—, and HHm)"H(wa)

<1l-—
)

bmax

Proof of Lemma D.10. Let h;; = E4(—0z2¢;), and define

Jt_b

hit = his — b —
o b—1+z<2hﬁ TS

By definition, H(aa) = H(aa) + bIn1y/VNT and Hay) = H(ay) — blnly/VNT. The matrix H
is diagonal with elements >, h;/v NT. The matrix WZM) has elements h;;/vNT. The Woodbury
identity states that

=1 =*—1 _ -1 ; A7x—1

H(aa) == H(aa) 7‘[ 1]\[ (\/ b + 1 H(aa)lN) INH(aa)
Then, ﬁ;ala) Hiay) = "H(aa)H /V/NT, where H is the N x T matrix with elements h;;. Therefore
St [P
Zt it .

Assumption 4.1(iv) guarantees that bmax > hit > bmin, which implies hjy — b > bpmin — b > 0, and

— 1 —
HH(OCQ)H(Q“/) H = max

~ 1 it — b N bmax
hi hz 71 ] mln -b |1 T > 0.
P EJ: > e (+Tbmm)0
We conclude that
>, i 1 hjr —b
"Haa'H H = max £ —1—m1n b+ — J
H (o) > hit zt hit b+ 3 (0, hye) zj: S hir
b
<1-
leaX
Analogously, ﬂ(_ylv)ﬂ(w) <1—g. ]

min(N,T) bmin
for large enough N and T, so that Lemma D.10 becomes applicable. The choice of b has no effect on

-1 _
Proof of Lemma D.8. We choose b < byin (1 + max(x2, I@'_Q)Zl’;:ﬁ) . Then, b < bpin (1 4 max(N,7) bma")

the general validity of the lemma for all b > 0 by Lemma D.9.

By the inversion formula for partitioned matrices,

— 1
T ( A A My )
Ay Hiay A iy + Hiomy Hiya) Ay Hiomy
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with A := (H(aa) — ﬁ(aﬁ,)ﬂa{/)ﬂ(w))_l. The Woodbury identity states that

— 1 O —— — w1 I ——
H(aa) == H(aa) - H(aa)lj\[ (\/ NT/b + 1/1VH(aa)1N> 1§VH(aa)’

=:C(aa)

— 1 [ —— — — R
Ry =Ry —Hiylr ( NT/b+ 1/TH(W)IT) 1rH () -

=:Cyy)
. —x—1 —x—1 —%
By Assumption 4.1(v), [Hqa)llec = Or(1), [[H 1y llec = Or(1), [[H(ay)llmax = Op(1/VNT). There-
fore!®
=+—1 *—1 -1
[Claallnne < [y I N Ul (VAT /54 1 Fiody 1) = Op(1/VNT),
-1 k—1
[H (aa)lloe < 1 (aalloo + N1ICaa) [lmax = Op(1).
— — —x
Analogously, [|C(y)llmax = Op(1/VNT) and [H,.)llcc = Op(1). Furthermore, ||H (ary)llmax < [[H(aqy)lmax+
b/VNT = Op(1/v/NT). Define
) —1 = 1 — -1 1 1 — n
B:= (ﬂN - H(aaﬂ(av)H(w)H(w)) —lv =) (Waa)”(avﬂfmﬂf(wa))
n=1
S R — w1 —1 —1 = 1 —
Then, A =Hn0) + H(aa)B = H(aa) = Claa) + H(aa)B- By Lemma D.10, [|H 40y H(amn) H (1) Hva) lloo <
—1 — — 1 — 2
1 et Ha o iy Higeo oo < (1= 52 ) < 1, and

no——1 ——1
I

= —1 = —1 — — —
1Bllmax < 3 (1) Ftan Fiom Fira oo ) 1P oy llow P oo Iy o I
n=0

< 0-n)

n=0

1 1 _
T HH(aa)||OO||H('y'y)HOOHH(’YQ)H?naX = OP(l/ v NT)

By the triangle inequality,
——1 ——1
[Alloe < [H(aalloc + NIH (aa) lloo | Bllmax = Op(1).
Thus, for the different blocks of

pa— -1 — — —1
ﬂ71 _ ( H(aa) 79 ) _ ( 714;: }ﬂaa) L —A Hiay) HL,Y:/l) ) ’
0 Hy) “Hy Haa) A Hiyy) Hiva) AMar) Hiyry) = Clam

Sx—1

—1
|4 =T = [P = G

max

—1 ——

< ||H(aa)||OOHB||mﬂX - ”C(aa)Hmax = OP(I/ NT),
— — 1 — ——1

|- 4%y e | < 1A e P e = O (1 VAT,

—1 = — — — — —
[Pty Ferey ATt Bty = Coom |, < 1) W2 Pl Aol P s+ 1Ciy)

—1

< N H o 2l Alloc [ 0 e + €3 llmax = Op(1/VNT).

“Here and in the following me make use of the inequalities || AB||max < || Allco || Bllmax; [|AB|lmax < || A]lmax||B’[loo, || Al

n|| Amax||, which hold for any m X n matrix A and n X p matrix B.
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The bound Op(1/v/ NT) for the max-norm of each block of the matrix yields the same bound for the

max-norm of the matrix itself. |

D.5 A Useful Algebraic Result

Let P be the linear operator defined in equation (C.3), and and let IP be the related projection operator
defined in (C.2). Lemma D.11 shows how in the context of panel data models some expressions that
appear in the general expansion of Appendix B can be conveniently expressed using the operator P.

This lemma is used extensively in the proof of part (ii) of Theorem C.1.

Lemma D.11. Let A, B and C be N x T matrices, and let the expected incidental parameter Hessian
H be invertible. Define the N + T vectors A and B and the (N +T) x (N +T) matriz C as follows*

a1 (A1 s_ L (Blr o_ L (dag(Clr) ©
T NT\A'1y )’ T NT\B'ly)’ ~ NT ¢ diag (C'1y) )

Then,

__ 1 ~ 1 ~

j AA T B=——= (PA)uBy = — (PB); Ay,

(i) \/W;( )it Bit NT”( )itAit

1 1 ~ ~
(ii) AH B=—= Ey(—020i)(PA)i(PB)is,

VNT 4

(@)  AH CH B=Y (PAuCu(PB)u.

it

Proof. Let & +7f = (lel)it = (I?’A)it, with A as defined in equation (C.3). The first order condition of

.. . . . .. e . a7*rat .
the minimization problem in the definition of (IPA);; can be written as \/]1\]77—[ (‘;) = A. One solution to

this equation is ) = /NT ﬁilA this is the solution that imposes the normalization ) . a = ¥,
5 [t t

but this is of no importance in the following). Thus,

d*

li
_ 1 1 ~
AH 1B(~>B S aiBiu+ Y AiBu| = = (PA)yBi.
o VNT |4 ! ”% ! \/NT”( Jie Bt

This gives the first equality of Statement (7). The second equality of Statement (i) follows by symmetry.

Statement (i) is a special case of of Statement (i47) with C = ﬁﬂ*, so we only need to prove
Statement (4i7).
Let af +vf = (Pé)it = (HSB)H7 where Bj; = W. By an argument analogous to the one

. * 771 . e . .
given above, we can choose (f‘/*) =+ NTH "B as one solution to the minimization problem. Then,

571 771 ~ % * ~ % * ~ % * ~ % * ™ ™
AH CH B= Z [a; Cira + a; Cyy + 77 Cirey +7; Ciyf] = Z(IPA)itCit(PB)it-

it it

20Note that Al is simply the N-vectors with entries Zt At and A’ly is simply the T-vector with entries Zl Ajt, and
analogously for B and C.
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Table 3: Finite sample properties of static probit estimators (N = 52)

Coefficient Average Effect
Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95
Design 1: correlated individual and time effects
T=14
MLE-FETE 13 12 17 0.88 0.76 1 8 8 0.93 0.93
Analytical 0 10 10 1.05 0.96 -1 8 8 0.95 0.95
Jackknife -7 11 13 0.89 0.85 0 9 9 0.80 0.88
T=26
MLE-FETE 8 8 11 0.93 0.81 0 6 6 0.94 0.95
Analytical 0 7 7 1.03 0.95 0 6 6 0.95 0.95
Jackknife -3 7 8 0.97 0.91 0 6 6 0.89 0.92
T =52
MLE-FETE 5 5 7 0.98 0.83 0 4 4 0.99 0.94
Analytical 0 5 5 1.05 0.96 0 4 4 0.99 0.94
Jackknife -1 5 5 0.99 0.95 0 4 4 0.94 0.93
Design 2: uncorrelated individual and time effects
T=14
MLE-FETE 12 9 15 0.93 0.74 0 5 5 1.06 0.97
Analytical -1 8 8 1.11 0.97 -1 5 5 1.08 0.97
Jackknife -7 9 11 0.94 0.84 -1 6 7 0.83 0.90
T=26
MLE-FETE 7 6 10 0.93 0.75 0 4 4 0.98 0.95
Analytical 0 6 6 1.03 0.96 0 4 4 0.99 0.95
Jackknife -2 6 6 1.00 0.92 0 4 4 0.90 0.93
T=052
MLE-FETE 5 4 6 1.00 0.79 0 2 2 1.07 0.96
Analytical 0 4 4 1.07 0.97 0 2 2 1.07 0.96
Jackknife 0 4 4 1.04 0.96 0 2 2 1.00 0.94

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated
from the probit model: Y = 1(BX; + a; + v; > €y), with g ~ i.i.d. N(0,1), q; ~ i.i.d. N(0,1/16), y; ~
i.i.d. N(0, 1/16) and B = 1. In design 1, Xi = X1/ 2 + Q; + Y + Vi, Ve ~ i.i.d. N(O, 1/2), and Xjo ~
N(0,1). In design 2, X = X1 / 2 + Vi, Vie ~ i.i.d. N(O, 3/4), and X, ~ N(0O,1), independent of a; y v; .
Average effect is B E[@(BXi; + a; + y;)], where ¢() is the PDF of the standard normal distribution. MLE-

FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical is the
bias corrected estimator that uses an analytical correction; and Jackknife is the bias corrected estimator
that uses split panel jackknife in both the individual and time dimension.
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Table 4: Finite sample properties of dynamic probit estimators (N = 52)

Coefficient Y4 Average Effect Y,

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD  p; .95

Design 1: correlated individual and time effects

T=14
MLE-FETE -44 30 53 0.96 0.67 -52 26 58 0.96 0.43
Analytical (L=1) -5 26 26 1.10 0.96 -6 27 28 0.90 0.91
Analytical (L=2) -4 28 28 1.03 0.95 -4 29 30 0.85 0.90
Jackknife 12 33 35 0.88 0.89 -4 33 33 0.76 0.85
T=26
MLE-FETE -23 21 30 0.98 0.79 -29 19 35 0.98 0.65
Analytical (L=1) -4 19 19 1.05 0.96 -3 20 20 0.96 0.94
Analytical (L=2) -1 20 20 1.02 0.96 -1 21 21 0.92 0.93
Jackknife 2 22 22 0.93 0.94 -1 23 23 0.85 0.91
T =052
MLE-FETE -9 14 17 0.99 0.90 -14 14 20 0.98 0.82
Analytical (L=1) -1 13 13 1.04 0.95 -1 14 14 0.97 0.94
Analytical (L=2) O 14 14 1.02 0.95 1 15 15 0.96 0.94
Jackknife 1 14 14 0.98 0.94 0 15 15 0.91 0.92
Design 2: uncorrelated individual and time effects
T=14
MLE-FETE -38 28 47 0.94 0.66 -46 24 52 0.95 0.45
Analytical (L=1) -5 24 25 1.07 0.97 -6 25 26 0.91 0.92
Analytical (L=2) -4 26 26 1.01 0.95 -4 26 27 0.86 0.89
Jackknife 9 31 32 0.85 0.89 -3 31 31 0.75 0.84
T=26
MLE-FETE -19 19 27 0.97 0.80 -26 18 31 0.96 0.67
Analytical (L=1) -4 17 18 1.05 0.95 -4 18 18 0.95 0.93
Analytical (L=2) -2 18 18 1.02 0.95 -2 19 19 0.92 0.93
Jackknife 1 19 19 0.94 0.94 -1 20 20 0.84 0.90
T=52
MLE-FETE -8 13 15 0.98 0.90 -12 12 17 0.98 0.82
Analytical (L=1) -1 12 12 1.03 0.95 -1 12 13 0.98 0.94
Analytical (L=2) O 12 12 1.01 0.94 0 13 13 0.96 0.94
Jackknife 0 13 13 0.98 0.95 0 13 13 0.93 0.92

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the
probit model: Y = 1(ByYit1 + BzZi + @i + Y¢ > &), With Yg = 1(BzZjo + a; + Yo > €p), & ~ i.i.d. N(0,1), a; ~ i.i.d.
N(0,1/16), y ~ i.i.d. N(O, 1/16), By = 0.5, and Bz = 1. Indesign 1, Zix = Ziy1 / 2 + @, + Y¢ + Vi, Vie ~ i.i.d. N(O,
1/2), and Zj; ~ N(0,1). In design 2, Z;y = Zi+y / 2 + Vi, Vi ~ i.i.d. N(O, 3/4), and Z;, ~ N(0,1), independent of a; y v,
Average effect is E[®(By + BzZi + a; + Vi) - ©(BZix + a; + V)], where ®() is the CDF of the standard normal
distribution. MLE-FETE is the probit maximum likelihood estimator with individual and time fixed effects; Analytical
(L = 1) is the bias corrected estimator that uses an analytical correction with | lags to estimate the spectral

expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and
time dimension.
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Table 5: Finite sample properties of dynamic probit estimators (N = 52)

Coefficient Z;; Average Effect Z;;

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

Design 1: correlated individual and time effects

T=14
MLE-FETE 20 13 23 0.86 0.59 4 10 10 0.86 0.90
Analytical (L=1) 2 11 11 1.06 0.97 1 9 9 0.88 0.93
Analytical (L=2) 2 11 11 1.05 0.97 1 10 10 0.87 0.93
Jackknife -9 14 16 0.81 0.81 3 11 12 0.74 0.86
T =26
MLE-FETE 10 8 13 0.94 0.74 2 7 7 0.92 0.92
Analytical (L=1) 0 7 7 1.06 0.96 1 7 7 0.93 0.94
Analytical (L=2) 0 7 7 1.06 0.96 1 7 7 0.93 0.94
Jackknife -3 8 8 0.97 0.91 1 7 7 0.86 0.91
T=52
MLE-FETE 6 5 8 0.94 0.75 1 5 5 0.94 0.92
Analytical (L=1) 0 5 5 1.01 0.96 0 5 5 0.94 0.92
Analytical (L=2) 0 5 5 1.01 0.96 0 5 5 0.94 0.92
Jackknife -1 5 5 0.99 0.94 0 5 5 0.94 0.93
Design 2: uncorrelated individual and time effects
T=14
MLE-FETE 17 10 20 0.92 0.58 3 6 6 1.07 0.93
Analytical (L=1) 1 8 8 1.13 0.97 0 6 6 1.08 0.97
Analytical (L=2) 1 8 8 1.12 0.97 0 6 6 1.08 0.96
Jackknife -8 11 14 0.84 0.82 2 7 8 0.84 0.90
T=26
MLE-FETE 10 7 12 0.92 0.68 2 4 5 1.03 0.94
Analytical (L=1) 1 6 6 1.03 0.96 0 4 4 1.03 0.96
Analytical (L=2) 0 6 6 1.04 0.96 0 4 4 1.03 0.96
Jackknife -3 6 7 0.98 0.90 0 5 5 0.94 0.93
T=52
MLE-FETE 6 5 7 0.92 0.74 1 3 3 1.01 0.93
Analytical (L=1) 0 4 4 0.99 0.95 0 3 3 1.01 0.94
Analytical (L=2) 0 4 4 0.99 0.95 0 3 3 1.01 0.95
Jackknife -1 4 5 0.95 0.94 0 3 3 0.95 0.94

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. Data generated from the probit
model: Y = 1(ByYie1 + BzZie + Qi + V¢ > &), with Yo = 1(BzZio + a; + Yo > &), & ~ i.i.d. N(0,1), q; ~ i.i.d. N(0,1/16),
Yt ~ i.i.d. N(O, 1/16), By = 0.5, and Bz = 1. Indesign 1, Zy = Z;r; / 2 + a; + V¢ + Vi, Vie ~ i.i.d. N(O, 1/2), and Z;y ~
N(0,1). In design 2, Zy = Zir.y / 2 + Vi, Vi ~ i.i.d. N(O, 3/4), and Z;, ~ N(0,1), independent of a; y y.. Average effect is
Bz E[@(ByYit1 + BzZi + a; + Yi)], where @() is the PDF of the standard normal distribution. MLE-FETE is the probit
maximum likelihood estimator with individual and time fixed effects; Analytical (L = 1) is the bias corrected estimator

that uses an analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected
estimator that uses split panel jackknife in both the individual and time dimension.
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Table 6: Finite sample properties of static Poisson estimators
Coefficient Z; Coefficient Z;> Average Effect Z;

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95 Bias  Std. Dev. RMSE SE/SD p; .95

N =17, T = 22, unbalanced

MLE -59 14 60 1.04 0.01 -58 14 60 1.03 0.01 222 113 248 1.15 0.60
MLE-TE -62 14 64 1.01 0.01 -62 14 64 1.01 0.01 -9 139 139 1.04 0.94
MLE-FETE -2 17 17 1.02 0.96 -2 17 17 1.02 0.96 -15 226 226 1.49 1.00
Analytical (L=1) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -9 225 225 1.50 1.00
Analytical (L=2) -1 17 17 1.02 0.96 -1 17 17 1.02 0.96 -6 225 225 1.50 1.00
Jackknife -3 25 25 0.69 0.83 -3 25 25 0.70 0.83 -15 333 333 1.01 0.95
N = 34, T = 22, unbalanced
MLE -58 10 59 1.03 0.00 -57 10 58 1.03 0.00 226 81 240 0.98 0.20
MLE-TE -61 10 62 1.00 0.00 -61 10 62 1.00 0.00 -3 97 97 0.95 0.94
MLE-FETE 0 12 12 0.99 0.96 0 13 13 0.99 0.96 -6 158 158 1.12 0.98
Analytical (L=1) 0 12 12 0.99 0.96 0 13 13 0.99 0.96 0 159 158 1.11 0.98
Analytical (L=2) 1 13 13 0.99 0.96 1 13 13 0.99 0.96 3 159 159 1.11 0.98
Jackknife -1 14 14 0.90 0.93 -1 14 14 0.90 0.93 -15 208 208 0.85 0.90
N =51, T = 22, unbalanced
MLE -58 8 58 1.00 0.00 -57 8 57 1.00 0.00 228 66 238 0.96 0.06
MLE-TE -61 8 61 1.00 0.00 -61 8 61 1.00 0.00 -1 77 77 0.95 0.94
MLE-FETE 0 10 10 0.97 0.94 0 11 11 0.97 0.94 -4 128 128 1.04 0.96
Analytical (L=1) 0 10 10 0.97 0.94 0 11 11 0.97 0.94 2 129 128 1.04 0.96
Analytical (L=2) 1 10 11 0.96 0.94 1 11 11 0.96 0.94 5 129 129 1.04 0.96
Jackknife 0 11 11 0.90 0.93 0 11 11 0.90 0.94 -12 169 170 0.79 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is: Y;. ~ Poisson(exp{B;Xi + B-Xi> + a; + y}) with all

the variables and coefficients calibrated to the dataset of ABBGH. Average effect is E[(B; + 2B, Xi.)exp(B:Xi; + mmx_m + a; + yy)]. MLE is the Poisson maximum likelihood
estimator without individual and time fixed effects; MLE-TE is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum
likelihood estimator with individual and time fixed effects;Analytical (L = I) is the bias corrected estimator that uses an analytical correction with | lags to estimate the
spectral expectations; and Jackknife is the bias corrected estimator that uses split panel jackknife in both the individual and time dimension.
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Table 7: Finite sample properties of dynamic Poisson estimators

Coefficient Y, 1y Average Effect Y4

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95

N =17,T = 21, unbalanced

MLE 135 3 135 1.82 0.00 158 2 158 3.75 0.00
MLE-TE 142 3 142 1.95 0.00 163 3 163 4.17 0.00
MLE-FETE -17 15 23 0.96 0.78 -17 15 22 1.38 0.89
Analytical (L=1) -7 15 17 0.98 0.91 -8 14 16 1.41 0.97
Analytical (L=2) -5 15 16 0.96 0.92 -5 15 16 1.38 0.98
Jackknife 4 20 21 0.73 0.85 4 20 20 1.03 0.95
N = 34, T = 21, unbalanced
MLE 135 2 135 1.76 0.00 158 2 158 2.82 0.00
MLE-TE 141 2 141 1.77 0.00 162 2 162 2.69 0.00
MLE-FETE -16 11 19 0.93 0.65 -16 10 19 1.05 0.71
Analytical (L=1) -7 11 13 0.95 0.89 -7 10 12 1.08 0.92
Analytical (L=2) -4 11 12 0.93 0.91 -4 10 11 1.05 0.94
Jackknife 3 13 14 0.77 0.85 3 13 13 0.86 0.89
N =51, T = 21, unbalanced
MLE 135 2 135 1.81 0.00 158 1 158 2.58 0.00
MLE-TE 141 2 141 1.79 0.00 162 2 162 2.41 0.00
MLE-FETE -15 8 17 0.97 0.55 -15 8 17 1.03 0.55
Analytical (L=1) -6 8 10 0.99 0.90 -6 8 10 1.05 0.91
Analytical (L=2) -3 8 9 0.97 0.93 -4 8 9 1.03 0.93
Jackknife 3 11 11 0.77 0.87 3 10 11 0.80 0.88

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is:
Yic ~ Poisson(exp{By log(1 + Y4) + B1Z; + B,Zi* + a; + y}), where all the exogenous variables, initial condition and
coefficients are calibrated to the application of ABBGH_ Average effect is By E[exp{((By - 1)log(1 + Y;1) + B:1Z; +

B,Zi> + a; + Yi}]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE

is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood
estimator with individual and time fixed effects; Analytical (L = 1) is the bias corrected estimator that uses an
analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator
that uses split panel jackknife in both the individual and time dimension.
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Table 8: Finite sample properties of dynamic Poisson estimators
Coefficient Z; Coefficient Z;> Average Effect Z;,

Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p; .95 Bias Std. Dev. RMSE SE/SD p,; .95

N =17, T = 21, unbalanced

MLE -76 27 81 1.13 0.29 -76 27 80 1.13 0.30 760 351 837 1.65 0.89
MLE-TE -65 28 71 1.12 0.44 -65 29 71 1.12 0.45 541 356 647 1.75 0.99
MLE-FETE 9 40 41 0.95 0.92 9 41 42 0.95 0.92 -3 1151 1150 1.08 0.99
Analytical (L=1) 4 40 40 0.97 0.94 4 40 40 0.97 0.94 11 1117 1116 1.11 0.99
Analytical (L=2) 3 39 39 0.97 0.94 3 40 40 0.97 0.94 15 1110 1109 1.12  0.99
Jackknife 3 57 57 0.68 0.82 3 57 57 0.68 0.81 24 1653 1651 0.75 0.86
N = 34, T = 21, unbalanced
MLE -75 19 77 1.18 0.04 -74 19 77 1.18 0.05 777 252 817 1.47 0.42
MLE-TE -65 19 67 1.18 0.15 -64 19 67 1.18 0.15 534 248 589 1.65 0.88
MLE-FETE 6 28 28 0.97 0.94 6 28 29 0.97 0.94 -68 734 736 1.03 0.94
Analytical (L=1) 2 27 27 0.99 0.95 2 28 28 0.99 0.95 -51 713 714 1.06 0.95
Analytical (L=2) 0 27 27 0.99 0.95 0 27 27 1.00 0.95 -47 706 707 1.07 0.95
Jackknife 2 31 31 0.87 0.92 2 31 31 0.87 0.92 -38 1012 1012 0.74 0.85
N =51, T = 21, unbalanced
MLE -74 15 76 1.17 0.00 -73 15 75 1.17 0.00 768 201 794 1.48 0.18
MLE-TE -63 16 65 1.15 0.05 -63 16 65 1.15 0.05 535 197 570 1.68 0.74
MLE-FETE 8 22 23 1.01 0.93 8 22 24 1.01 0.93 -27 606 606 0.99 0.95
Analytical (L=1) 4 21 22 1.02 0.95 4 22 22 1.02 0.95 -11 588 587 1.02 0.96
Analytical (L=2) 2 21 21 1.03 0.95 2 22 22 1.03 0.95 -5 581 580 1.03 0.96
Jackknife 3 25 25 0.89 0.91 4 25 25 0.89 0.91 8 838 837 0.71 0.83

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data generating process is: Y;; ~ Poisson(exp{By log(1 + Y1) + B1Zi + B2Zi?
+ a; + v¢r), where all the exogenous variables, initial condition and coefficients are calibrated to the application of ABBGH. Average effect is E[(B; + 2B,Z;;) exp{Bylog(1

+ Yie1) + BiZi + B,Zi> + a; + Y¢}]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE is the Poisson maximum
likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood estimator with individual and time fixed effects; Analytical (L = 1) is the bias
corrected estimator that uses an analytical correction with | lags to estimate the spectral expectations; and Jackknife is the bias corrected estimator that uses split
panel jackknife in both the individual and time dimension.
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Table 9: Poisson model for patents

(1) () (3) (4) (5) (6)

Dependent variable: citation-
weighted patents

Static model

Competition 165.12 152.81 387.46 389.99 401.88 401.51
(54.77)  (55.74) (67.74)

-20.00 -6.43 -5.98 -5.49 -6.25 -4.74
(7.74) (8.61) (19.68)

Competition squared -88.55 -80.99 -204.55 -205.84 -212.15 -214.03

(29.08) (29.61) (36.17)

Dynamic model

Lag-patents 1.05 1.07 0.46 0.48 0.50 0.70
(0.02) (0.03) (0.05)

0.86 0.87 0.36 0.38 0.39 0.56
(0.02) (0.03) (0.07)

Competition 62.95 95.70 199.68 184.70 184.64 255.44
(62.68) (65.08) (76.66)

-12.78 -9.03 -1.68 -0.15 -0.43 -18.45
(7.54) (8.18)  (15.53)

Competition squared -34.15 -51.09 -105.24 -97.23 -97.22 -136.97

(33.21) (34.48)  (40.87)

Year effects Yes Yes Yes Yes Yes
Industry effects Yes Yes Yes Yes
Bias correction A A J
(number of lags) 1 2

Notes: Data set obtained from ABBGH. Competition is measured by (1-Lerner index) in the
industry-year. All columns are estimated using an unbalanced panel of seventeen industries
over the period 1973 to 1994. First year available used as initial condition in dynamic
model. The estimates of the coefficients for the static model in columns (2) and (3) replicate
the results in ABBGH. A is the bias corrected estimator that uses an analytical correction
with a number lags to estimate the spectral expectations specified at the bottom cell. Jis
the jackknife bias corrected estimator that uses split panel jackknife in both the individual
and time dimensions. Standard errors in parentheses and average partial effects in italics.
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