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PIVOTAL ESTIMATION VIA SQUARE-ROOT LASSO IN

NONPARAMETRIC REGRESSION∗

By Alexandre Belloni, Victor Chernozhukov and Lie Wang

We propose a self-tuning
√
Lasso method that simultaneously re-

solves three important practical problems in high-dimensional regres-
sion analysis, namely it handles the unknown scale, heteroscedastic-
ity, and (drastic) non-Gaussianity of the noise. In addition, our anal-
ysis allows for badly behaved designs, for example perfectly collinear
regressors, and generates sharp bounds even in extreme cases, such
as the infinite variance case and the noiseless case, in contrast to
Lasso. We establish various non-asymptotic bounds for

√
Lasso in-

cluding prediction norm rate and sharp sparsity bound. Our analysis
is based on new impact factors that are tailored to establish pre-
diction rates. In order to cover heteroscedastic non-Gaussian noise,
we rely on moderate deviation theory for self-normalized sums to
achieve Gaussian-like results under weak conditions. Moreover, we
derive bounds on the performance of ordinary least square (ols) ap-
plied to the model selected by

√
Lasso accounting for possible mis-

specification of the selected model. Under mild conditions the rate of
convergence of ols post

√
Lasso is no worse than

√
Lasso even with

a misspecified selected model and possibly better otherwise. As an
application, we consider the use of

√
Lasso and post

√
Lasso as esti-

mators of nuisance parameters in a generic semi-parametric problem
(nonlinear instrumental/moment condition or Z-estimation problem).

1. Introduction. We consider a nonparametric regression model:

(1.1) yi = f(zi) + σǫi, i = 1, . . . , n,

where yi’s are the outcomes, zi’s are vectors of fixed basic covariates, ǫi’s
are independent noise, f is the regression function, and σ is an unknown
scaling parameter. The goal is to recover the values (fi)

n
i=1 = (f(zi))

n
i=1 of

the regression function f at zi’s. To achieve this goal, we use linear combi-
nations of technical regressors xi = P (zi) to approximate f , where P (zi) is
a dictionary of p-vector of transformations of zi. We are interested in the
high dimension low sample size case, where we potentially have p > n, to
attain a flexible functional form. In particular, we are interested in a sparse
model over the technical regressors xi to describe the regression function.

∗First arXiv version: 7 May 2011; current version: December 9, 2013.
AMS 2000 subject classifications: Primary 62G05, 62G08; secondary 62G35
Keywords and phrases: pivotal, square-root Lasso, model selection, non-Gaussian
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√
n-consistency and asymptotic normality after model selection
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The model above can be written as yi = x′iβ0 + ri + σǫi, where fi = f(zi)
and ri := fi − x′iβ0 is the approximation error. The vector β0 is defined
as a solution of an optimization problem to compute the oracle risk, which
balances bias and variance (see Section 2) . The cardinality of the sup-
port of coefficient β0 is denoted by s := ‖β0‖0. It is well known that or-
dinary least square (ols) is generally inconsistent when p > n. However,
the sparsity assumption, namely that s ≪ n, makes it possible to esti-
mate these models effectively by searching for approximately the right set
of the regressors. In particular, ℓ1-penalization have played a central role
[14, 15, 20, 34, 40, 53, 61, 59]. It was demonstrated that, under appropriate
choice of penalty level, the ℓ1-penalized least squares estimators achieve the
rate σ

√
s/n
√
log p, which is very close to the oracle rate σ

√
s/n achiev-

able when the true model is known. Importantly, in the context of linear
regression, these ℓ1-regularized problems can be cast as convex optimization
problems which make them computationally efficient (polynomial time). We
refer to [14, 15, 17, 18, 16, 25, 37, 38, 46, 53] for a more detailed review of
the existing literature which has been focusing on the homoscedastic case.

In this paper, we attack the problem of nonparametric regression under
non-Gaussian, heteroscedastic errors ǫi, having an unknown scale σ. We pro-
pose to use a self-tuning

√
Lasso which is pivotal with respect to the scaling

parameter σ, and which handles non-Gaussianity and heteroscedasticity in
the errors. The resulting rates and performance guarantees are very similar
to the Gaussian case, thanks due to the use of self-normalized moderate de-
viation theory. Such results and properties,1 particularly the pivotality with
respect to the scale, are in contrast to the previous results and methods on
others ℓ1-regularized methods, for example Lasso and Dantzig selector that
use penalty levels that depend linearly on the unknown scaling parameter
σ.

There is now a growing literature on high-dimensional linear models2 al-
lowing for unknown scale σ. [48] propose a ℓ1-penalized maximum likelihood
estimator for parametric Gaussian regression models. [12] considers

√
Lasso

for a parametric homoscedastic model with both Gaussian and non-Gaussian
errors and establish that the choice of the penalty parameter in

√
Lasso be-

comes pivotal with respect to σ. [49] considers an equivalent formulation

1Earlier literature, e.g. in bounded designs, [15] provide bounds using refinements of
Nemirovski’s inequality, see [36]. These provide rates as good as in the Gaussian case.
However, when the design is unbounded (e.g. regressors generated as realizations of Gaus-
sian), the rates of convergence provided by these techniques are no longer sharp. The use
of self-normalized moderate deviations in the present context allows to handle the latter
cases, with sharp rates.

2There is also a literature on penalized median regression, which can be used in the case
of symmetric errors, since some methods are independent of the unknown σ, cf. [4, 60].
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of the (homoscedastic)
√
Lasso to establish finite sample results and de-

rives primitive results in the parametric homoscedastic Gaussian setting.
[22] consider scaled Fused Dantzig selector to allow for different sparsity
patterns and provide primitive results under homoscedastic Gaussian er-
rors. [6] studies Lasso with a plug-in estimator based on Lasso iterations
in a parametric homoscedastic setting. [23] studies plug-in estimators and a
trade-off penalty choice between fit and penalty in the parametric case with
homoscedastic Gaussian errors under random support assumption (similarly
to [19]) using coherence condition. In a trace regression model for recovery
of a matrix, [33] proposed and analysed a version of the square-root lasso
under homoscedasticity. A comprehensive review on this literature is given
in [29]. All these works rely essentially on the restricted eigenvalue condi-
tion [14] and homoscedasticity and do not differentiate penalty levels across
components.

In order to address the nonparametric, heteroscedastic, and non-Gaussian
cases, we develop covariate-specific penalty loadings. To derive a practical
and theoretically justified choice of penalty level and loadings, we need to
account for the impact of the approximation error. We rely on moderate
deviation theory for self-normalized sums of [32] to achieve Gaussian-like
results in many non-Gaussian cases provided log p = o(n1/3), improving
upon results derived in the parametric case that required log p . log n,
see [12]. (In the context of standard Lasso, the self-normalized moderated
deviation theory was first employed in [3].)

Our first contribution is the proposal of new design and noise impact fac-
tors, in order to allow for more general designs. Unlike previous conditions,
these factors are tailored for establishing performance bounds with respect
to the prediction norm, which is appealing in nonparametric problems. In
particular, collinear designs motivate our new condition. In studying their
properties we further exploit the oracle based definition of the approximat-
ing function. (For instance, our results for rates in prediction norm remain
unaffected if repeated regressors are added.) The analysis based on these
impact factors complements the analysis based on restricted eigenvalue pro-
posed in [14] and compatibility condition in [54], which are more suitable
for establishing rates for ℓk-norms.

The second contribution is a set of finite sample upper bounds and lower
bounds for estimation errors under prediction norm, and upper bounds on
the sparsity of the

√
Lasso estimator. These results are “geometric,” in that

they hold conditional on the design and errors provided some key events
occur. We further develop primitive sufficient conditions that allow for these
results to be applied to heteroscedastic non-Gaussian errors. We also give
results for other norms in the Supplementary Material (SM).
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The third contribution develops properties of the estimator that applies
ordinary least squares (ols) to the model selected by

√
Lasso. Our focus is

on the case that
√
Lasso fails to achieve perfect model selection, including

cases where the oracle model is not completely selected by
√
Lasso. This

is usually the case in a nonparametric setting. This estimator intends to
remove the potentially significant bias towards zero introduced by the ℓ1-
norm regularization employed in the

√
Lasso estimator.

The fourth contribution is to study two extreme cases: (i) parametric
noiseless case and (ii) nonparametric infinite variance case.

√
Lasso does have

interesting theoretical guarantees for these two extreme cases. For case (i)√
Lasso achieves exact recovery in sharp contrast to Lasso, under some con-

ditions. For case (ii),
√
Lasso estimator can still be consistent with penalty

choice that does not depend on the scale of the noise. We develop the neces-
sary modifications of the penalty loadings and derive finite-sample bounds
for the case of symmetric noise. We provide specific bounds to the case
of Student’s t-distribution with 2 degrees of freedom where Gaussian-noise
rates up to a factor of log1/2 n.

The final contribution is to provide an application of
√
Lasso methods to

a generic semi-parametric problem, where some low-dimensional parameters
are of interest and these methods are used to estimate nonparametric nui-
sance parameters. These results extend the

√
n consistency and asymptotic

normality results of [8, 3] on a rather specific linear model to a generic non-
linear problem, which covers covers smooth frameworks in statistics and in
econometrics, where the main parameters of interest are defined via non-
linear instrumental variable/moment conditions or z-conditions containing
unknown nuisance functions (as in [21]). This and all the above results il-
lustrate the wide applicability of the proposed estimation procedure.

Notation. To make asymptotic statements, we assume that n→∞ and
p = pn →∞, and we allow for s = sn →∞. In what follows, all parameters
are indexed by the sample size n, but we omit the index whenever it does
not cause confusion. We work with i.n.i.d, independent but not necessarily
identically distributed data (wi)

n
i=1, with k-dimensional real vectors wi con-

taining yi ∈ R and zi ∈ Rpz , the latter taking values in a set Z. We use the
notation (a)+ = max{a, 0}, a ∨ b = max{a, b} and a ∧ b = min{a, b}. The
ℓ2-norm is denoted by ‖ · ‖, the ℓ1-norm is denoted by ‖ · ‖1, the ℓ∞-norm is
denoted by ‖ · ‖∞, and the ℓ0-“norm” ‖ · ‖0 denotes the number of non-zero
components of a vector. The transpose of a matrix A is denoted by A′. Given
a vector δ ∈ IRp, and a set of indices T ⊂ {1, . . . , p}, we denote by δT the
vector in which δTj = δj if j ∈ T , δTj = 0 if j /∈ T , and by |T | the cardinality
of T . For a measurable function f : IRk → IR, the symbol E[f(wi)] denotes
the expected value of f(wi); En[f(w)] denotes the average n−1

∑n
i=1 f(wi);
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Ē[f(w)] denotes the average expectation n−1
∑n

i=1 E[f(wi)]; and Gn(f(w))
denotes n−1/2

∑n
i=1(f(wi) − E[f(wi)]). We will work with regressor values

(xi)
n
i=1 generated via xi = P (zi), where P (·) : Z 7→ Rp is a measurable dic-

tionary of transformations, where p is potentially larger than n. We define
the prediction norm of a vector δ ∈ IRp as ‖δ‖2,n = {En[(x

′δ)2]}1/2, and
given values y1, . . . , yn we define Q̂(β) = En[(y−x′β)2]. We use the notation
a . b to denote a ≤ Cb for some constant C > 0 that does not depend on
n (and therefore does not depend on quantities indexed by n like p or s);
and a .P b to denote a = OP (b). Φ denotes the cumulative distribution of
a standard Gaussian distribution and Φ−1 its inverse function.

2. Setting and Estimators. Consider the nonparametric regression
model:

(2.1) yi = f(zi) + σǫi, ǫi ∼ Fi, E[ǫi] = 0, i = 1, . . . , n, Ē[ǫ2] = 1,

where zi are vectors of fixed regressors, ǫi are independent errors, and σ is
the scaling factor of the errors. In order to recover the regression function
f we consider linear combinations of the covariates xi = P (zi) which are p-
vectors of transformation of zi normalized so that En[x

2
j ] = 1 (j = 1, . . . , p).

The goal is to estimate the value of the nonparametric regression function
f at the design points, namely the values (fi)

n
i=1 := (f(zi))

n
i=1. In many

applications of interest, especially in the nonparametric settings, there is no
exact sparse model or, due to noise. However, there might be a sparse model
x′iβ0 that yields a good approximation to the true regression function f in
equation (2.1). One way to find such approximating model is to let β0 be a
solution of the following risk minimization problem:

(2.2) min
β∈IRp

En[(f − x′β)2] +
σ2‖β‖0
n

.

The problem (2.2) yields the so called oracle risk – an upper bound on the
risk of the best k-sparse least squares estimator in the case of homoscedastic
Gaussian errors, i.e. the best estimator among all least squares estimators
that use k out of p components of xi to estimate fi. The solution β0 achieves
a balance between the mean square of the approximation error ri := fi−x′iβ0
and the variance, where the latter is determined by the complexity of the
model (number of non-zero components of β0).

In what follows, we call β0 the target parameter value, T := supp(β0)
the oracle model, s := |T | = ‖β0‖0 the dimension of the oracle model, and
x′iβ0 the oracle or the best sparse approximation to fi. We note that T is
generally unknown. We summarize the preceding discussion as follows.
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Condition ASM. We have data {(yi, zi) : i = 1, . . . , n} that for each
n obey the regression model (2.1), where yi are the outcomes, zi are vectors
of fixed basic covariates, the regressors xi := P (zi) are transformations of
zi, and ǫi are i.n.i.d. errors. The vector β0 is defined by (2.2) where the
regressors xi are normalized so that En[x

2
j ] = 1, j = 1, . . . , p. We let

(2.3) T := supp(β0), s := |T |, ri := fi − x′iβ0, and c2s := En[r
2].

Remark 1 (Targeting x′iβ0 is the same as targeting fi’s.). We focus

on estimating the oracle model x′iβ0 using estimators of the form x′iβ̂, and
we seek to bound estimation errors with respect to the prediction norm
‖β̂ − β0‖2,n := {En[(x

′β0 − x′β̂)2]}1/2. The bounds on estimation error for
the ultimate target fi then follow from the triangle inequality, namely

(2.4)

√
En[(f − x′β̂)2] ≤ ‖β̂ − β0‖2,n + cs.

Remark 2 (Bounds on the Approximation error). The approximation
errors typically satisfy cs ≤ Kσ

√
(s ∨ 1)/n for some fixed constant K, since

the optimization problem (2.2) balances the (squared) norm of the approx-
imation error (the norm of the bias) and the variance, see [50, 5, 6] . In
particular, this condition holds for wide classes of functions, see Example S
of Section 4 dealing with Sobolev classes and SM’s Section C.

2.1. Heteroscedastic
√
Lasso. In this section we formally define the esti-

mators which are tailored to deal with heteroscedasticity.
We propose to define the

√
Lasso estimator as

(2.5) β̂ ∈ arg min
β∈IRp

√
Q̂(β) +

λ

n
‖Γβ‖1,

where Q̂(β) = En[(y − x′β)2], Γ = diag(γ1, . . . , γp) is a diagonal matrix
of penalty loadings. The scaled ℓ1-penalty allows component specific ad-
justments to more efficiently deal with heteroscedasticity.3 Throughout we
assume γj ≥ 1 for j = 1, . . . , p.

In order to reduce the shrinkage bias of
√
Lasso, we consider the post

model selection estimator that applies ordinary least squares (ols) to a model
T̂ that contains the model selected by

√
Lasso. Formally, let T̂ be such that

supp(β̂) = {j ∈ {1, . . . , p} : |β̂j | > 0} ⊆ T̂ ,
3In the traditional case of homoscedastic errors every penalty loading can be taken

equal to 1. In the heteroscedastic case, if λ and Γ are appropriate choices, then λ‖Γ‖∞
and Ip are also an appropriate choice but potentially conservative, i.e. leading to over
penalization and worse finite sample performance.
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and define the ols post
√
Lasso estimator β̃ associated with T̂

(2.6) β̃ ∈ arg min
β∈Rp

√
Q̂(β) : βj = 0 if j 6∈ T̂ .

A sensible choice for T̂ is simply to set T̂ = supp(β̂). We allow for additional
components (potentially selected through an arbitrary data-dependent pro-
cedure) to be added, which is relevant for practice.

2.2. Typical Conditions on the Gram Matrix. The Gram matrix En[xx
′]

plays an important role in the analysis of estimators in this setup. When
p > n, the smallest eigenvalue of the Gram matrix is 0, which creates iden-
tification problems. Thus, to restore identification, one needs to restrict the
type of deviation vectors δ corresponding to the potential deviations of the
estimator from the target value β0. Because of the ℓ1-norm regularization,
the following restricted set is important:

∆c̄ = {δ ∈ R
p : ‖ΓδT c‖1 ≤ c̄‖ΓδT ‖1, δ 6= 0}, for c̄ ≥ 1.

The restricted eigenvalue κc̄ of the Gram matrix En[xx
′] is defined as

κc̄ := min
δ∈∆c̄

√
s‖δ‖2,n
‖ΓδT ‖1

.(2.7)

The restricted eigenvalues can depend on n, T , and Γ, but we suppress the
dependence in our notations. The restricted eigenvalues (2.7) are variants of
the restricted eigenvalue introduced in [14] and of compatibility condition in
[54] that accommodate the penalty loadings Γ. They proved to be suitable
for many design of interest specially to establish ℓk-norm rates. Below we
discuss new variants of restricted eigenvalues and compatibility conditions
in [52] and [54] that are tailored for deriving prediction error rates.

The minimal and maximal m-sparse eigenvalues of a matrix M ,

(2.8) φmin(m,M) := min
‖δTc‖0≤m,δ 6=0

δ′Mδ

‖δ‖2 , φmax(m,M) := max
‖δTc‖0≤m,δ 6=0

δ′Mδ

‖δ‖2 .

Typically we consider M = En[xx
′] or M = Γ−1En[xx

′]Γ−1. When M is
not specified we mean M = En[xx

′], i.e. φmin(m) = φmin(m,En[xx
′]) and

φmax(m) = φmax(m,En[xx
′]). These quantities play an important role in

the sparsity and post model selection analysis. Moreover, sparse eigenvalues
provide a simple sufficient condition to bound restricted eigenvalues, see [14].

3. Finite-sample analysis of
√

Lasso. Next we establish several finite-
sample results regarding the

√
Lasso estimator. Importantly, these results
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are based on new impact factors that are invariant to the introduction of
repeated regressors and well-behaved if the restricted eigenvalue (2.7) is
well-behaved.

The following event plays a central role in the analysis

(3.1) λ/n ≥ c‖Γ−1S̃‖∞, where S̃ := En[x(σǫ + r)]/
√

En[(σǫ + r)2]

is the score of Q̂1/2 at β0. Throughout the section we assume such event
holds. Later we provide choices of λ and Γ based on primitive conditions
such that the event in (3.1) holds with high probability (see Lemma 7 for a
detailed finite sample analysis).

3.1. Noise and Design Impact Factors. In this section we propose new
impact factors that are tailored to establish prediction error rates which
will allow for more general designs than previous conditions proposed in the
literature [15]. We define the following noise and design impact factors:

̺c̄ := sup
δ ∈ ∆c̄, ‖δ‖2,n > 0

‖Γ(δ + β0)‖1 ≤ c̄‖Γβ0‖1

|S̃′δ|
‖δ‖2,n

,(3.2)

κ̄ := inf
‖ΓδTc‖1<‖ΓδT ‖1

√
s‖δ‖2,n

‖ΓδT ‖1 − ‖ΓδT c‖1
.(3.3)

These quantities depend on n, T , and Γ; in what follows, we suppress this
dependence whenever this is convenient.

An analysis based on the quantities ̺c̄ and κ̄ will be more general than
the one relying only on restricted eigenvalue condition (2.7). This follows
because (2.7) yields one possible way to bound both κ̄ and ̺c̄, namely,

κ̄ = inf
‖ΓδTc‖1<‖ΓδT ‖1

√
s‖δ‖2,n

‖ΓδT ‖1 − ‖ΓδT c‖1
≥ min

δ∈∆1

√
s‖δ‖2,n
‖ΓδT ‖1

≥ min
δ∈∆c̄

√
s‖δ‖2,n
‖ΓδT ‖1

= κc̄,

̺c̄ ≤ sup
δ∈∆c̄

‖Γ−1S̃‖∞‖Γδ‖1
‖δ‖2,n

≤ sup
δ∈∆c̄

‖Γ−1S̃‖∞(1 + c̄)‖ΓδT ‖1
‖δ‖2,n

≤ (1 + c̄)
√
s

κc̄
‖Γ−1S̃‖∞.

Moreover, we stress that the quantities κ̄ and ̺c̄ can be well-behaved even
in the presence of repeated regressors while restricted eigenvalues and com-
patibility constants proposed in the literature would be trivially zero in that
case.

The design impact factor κ̄ in (3.3) strictly generalizes the original re-
stricted eigenvalue (2.7) conditions proposed in [14] and the compatibility
condition defined in [54]. It also generalizes the compatibility condition in
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[52].4 Thus (3.3) is an interesting condition since it was shown in [14] and
[54] that the restricted eigenvalue and the compatibility assumptions are
relatively weak conditions.

The noise impact factor ̺c̄ also plays a critical role in our analysis. It de-
pends not only on the design but also on the error and approximation terms,
and can be controlled via empirical process techniques. Finally, the deviation
from β0 of the

√
Lasso estimator, δ = β̂ − β0, satisfies the two constraints

in the definition of ̺c̄ provided the penalty level λ is set appropriately. The
lemmas below summarize the above discussion.

Lemma 1 (Bounds on and Invariance of Design Impact Factor). Under
Condition ASM we have κ̄ ≥ κ1 ≥ κc̄. If |T | = 1 we have that κ̄ ≥ 1/‖Γ‖∞.
Moreover, if copies of regressors are included with the same corresponding
penalty loadings, κ̄ does not change.

Lemma 2 (Bounds on and Invariance of Noise Impact Factor). Under
Condition ASM we have ̺c̄ ≤ (1 + c̄)

√
s‖Γ−1S̃‖∞/κc̄. Moreover, if copies

of regressors are included with the same corresponding penalty loadings, ̺c̄
does not change.

Lemma 3 (Estimators belong to Restricted Sets). Assume that for some
c > 1 we have λ/n ≥ c‖Γ−1S̃‖∞, then we have for c̄ = (c+ 1)/(c − 1) that

(3.4) ‖Γβ̂T c‖1 ≤ c̄‖Γ(β̂T − β0)‖1 and ‖Γβ̂‖1 ≤ c̄‖Γβ0‖1.

3.2. Finite-sample bounds on
√
Lasso. In this section we derive finite-

sample bounds for the prediction norm of the
√
Lasso estimator. These

bounds are established under heteroscedasticity, without knowledge of the
scaling parameter σ, and using the impact factors proposed in Section 3.1.
For c > 1, let c̄ = (c+ 1)/(c − 1) and consider the event

(3.5) λ/n ≥ c‖Γ−1S̃‖∞ and ζ̄ := λ
√
s/(nκ̄) < 1.

Theorem 1 (Finite Sample Bounds on Estimation Error). Under Con-
dition ASM and (3.5) we have

‖β̂ − β0‖2,n ≤ 2

√
Q̂(β0)

̺c̄ + ζ̄

1− ζ̄2 .

4The compatibility condition defined in [52] would be stated in the current notation as
∃ν(T ) > 0 such that

inf
‖ΓδTc‖1<3‖ΓδT ‖1

√
s‖δ‖2,n

(1 + ν(T ))‖ΓδT ‖1 − ‖ΓδTc‖1
> 0.

By using ν(T ) = 0 and ∆1 which weakens the conditions ν(T ) > 0 and ∆3 required in
[52]. Allowing for ν(T ) = 0 is necessary to cover designs with repeated regressors.
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We recall that the choice of λ does not depend on the scaling parameter
σ. The impact of σ in the bound of Theorem 1 comes through the factor
Q̂1/2(β0) ≤ σ

√
En[ǫ2] + cs where cs is the size of the approximation error

defined in Condition ASM. Moreover, under the typical condition that imply
κc̄ is bounded away from zero, for example under Condition P of Section 4
and standard choice of penalty, we have with a high probability

̺c̄ + ζ̄

1− ζ̄2 .

√
s log(p ∨ n)

n
=⇒ ‖β̂ − β0‖2,n .

√
s log(p ∨ n)

n
.

Thus, Theorem 1 generally leads to the same rate of convergence as in the
case of the Lasso estimator that knows σ since En[ǫ

2] concentrates around
one under (2.1) and a law of large numbers holds. We derive performance
bounds for other norms of interest in the Supplementary Material (SM).

The next result deals with Q̂(β̂) as an estimator for Q̂(β0) and σ
2.

Theorem 2 (Estimation of σ). Under Condition ASM and (3.5)

−2̺c̄
√
Q̂(β0)

̺c̄ + ζ̄

1− ζ̄2 ≤
√
Q̂(β̂)−

√
Q̂(β0) ≤ 2ζ̄

√
Q̂(β0)

̺c̄ + ζ̄

1− ζ̄2 .

Under only Condition ASM we have
∣∣∣∣
√
Q̂(β̂)− σ

∣∣∣∣ ≤ ‖β̂ − β0‖2,n + cs + σ|En[ǫ
2]− 1|.

We note that further bounds on |En[ǫ
2] − 1| are implied by Vonbahr-

Esssen’s and Markov’s inequalities, or by self-normalized moderate deviation
(SNMD) theory as in Lemma 4. As a result, the theorem implies consistency
|Q̂1/2(β̂) − σ| = oP (1) under mild moment conditions; see Section 4. The
stated bounds on Q̂1/2(β̂) are also useful for establishing sparsity properties,
which is what we deal with in the next result.

Theorem 3 (Sparsity bound for
√
Lasso). Under Condition ASM and

(3.5), let m̂ := |supp(β̂) \ T | and Q̂(β0) > 0. If 2̺c̄(̺c̄+ζ̄)
1−ζ̄2

≤ 1/c̄, we have

|supp(β̂)| ≤ s · 4c̄2
(

1 + ̺c̄/ζ̄

κ̄(1− ζ̄2)

)2

min
m∈M

φmax(m,Γ
−1

En[xx
′]Γ−1)

where M = {m ∈ N : m > sφmax(m,Γ
−1En[xx

′]Γ−1) · 8c̄2
(

1+̺c̄/ζ̄

κ̄(1−ζ̄2)

)2
}.

Moreover, if κc̄ > 0 and ζ̄ < 1/
√
2 we have

|supp(β̂)| ≤ s · (4c̄2/κc̄)2 min
m∈M∗

φmax(m,Γ
−1

En[xx
′]Γ−1)

where M∗ = {m ∈ N : m > sφmax(m,Γ
−1En[xx

′]Γ−1) · 2(4c̄2/κc̄)2}.
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Remark 3 (On the Sparsity Bound). Section 4 will show that under
minimal and maximal sparse eigenvalues of order s log n bounded away from
zero and from above, the bound derived above implies that with a high
probability

|supp(β̂)| . s := |supp(β0)|,
that is the selected model’s size will be of the same order as the size of
the oracle model. We note however that the former condition is merely a
sufficient condition. The bound |supp(β̂)| . s will apply for other designs of
interest. This can be the case even if κc̄ = 0. For instance, this would be the
case for the aforemention design, if we change it by adding a single repeated
regressor. �

Remark 4 (Maximum Sparse Eigenvalue and Sparsity). Consider the
case of f(z) = z with p repeated regressors xi = (zi, . . . , zi)

′ where |z| ≤ B.
In this case one could set Γ = I ·B. In this setting, there is a sparse solution
for
√
Lasso, but there is also a solution which has p nonzero regressors.

Nonetheless, the bound for the prediction error rate will be well-behaved
since κ̄ and ζ̄ are invariant under repeated regressors and satisfy:

κ̄ ≥ 1/B and ̺c̄ = |En[ǫz]|/{En[ǫ
2]En[z

2]}1/2 .P 1/
√
n.

Thus, the sparsity bound above will become trivial because of the max-
imum sparse eigenvalue. Indeed, in this case φmax(m,Γ

−1En[xx
′]Γ−1) =

(m+1)En[z
2]/B2 and the setM becomes empty leading to the trivial bound

m̂ ≤ p. Note that in this case it is possible to use the goodness-of-fit based
thresholding procedure of [6] to get the model of the right sparsity. �

3.3. Finite-sample bounds on ols post
√
Lasso. Next we consider the ols

estimator applied to the models T̂ that was selected by
√
Lasso or includes

such model (plus other components that the data analyst may wish to in-
clude), namely supp(β̂) ⊆ T̂ . We are interested in the case when model
selection does not work perfectly, as occurs in applications.

The following result establishes performance bounds for the ols post
√
Lasso

estimator. Following [6], the analysis accounts for the data-driven choice of
components and for the possibly misspecified selected model (i.e. T 6⊆ T̂ ).

Theorem 4 (Performance of ols post
√
Lasso). Under Condition ASM

and (3.5), let supp(β̂) ⊆ T̂ , and m̂ = |T̂ \T |. Then we have that the ols post√
Lasso estimator based on T̂ satisfies

‖β̃ − β0‖2,n ≤
σ
√
s+ m̂‖En[xǫ]‖∞√

φmin(m̂)
+ 2cs + 2

√
Q̂(β0)

(
̺c̄ + ζ̄

)

1− ζ̄2 .
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The result is derived from the sparsity of the model T̂ and from its approx-
imating ability. Note the presence of the new term– ‖En[xǫ]‖∞. Bounds on
‖En [xǫ] ‖∞ can be derived using the same tools used to justify the penalty
level λ, via self-normalized moderate deviation theory [32] or using empir-
ical process inequalities as derived in [4]. Under mild conditions we have
‖En[xǫ]‖∞ ≤ C

√
log(pn)/n with probability 1− o(1).

3.4. Two extreme cases. Case (i): Parametric noiseless case. Consider
the case that σ = 0 and cs = 0. Therefore the regression function is exactly
sparse, f(zi) = x′iβ0. In this case

√
Lasso can exactly recover the regression

function under weak conditions.

Theorem 5 (Exact recovery for the parametric noiseless case). Under
Condition ASM, let σ = 0 and cs = 0. Suppose that λ > 0 obeys the growth
restriction ζ̄ = λ

√
s/[nκ̄] < 1. Then we have ‖β̂ − β0‖2,n = 0. Moreover, if

κ1 > 0, we have β̂ = β0.

Thus, a sufficient condition for exact recovery of the regression function
in the noiseless case depends on the design impact factor κ̄. If, further, the
restricted eigenvalue κ1 is bounded away from zero, the

√
Lasso estimator

will perfectly recover β0 under a wide range of penalty levels.

Remark 5 (Perfect Recovery and Lasso). It is worth mentioning that
for any λ > 0, unless β0 = 0, Lasso cannot achieve exact recovery. Moreover,
it is not obvious how to properly set the penalty level for Lasso even if we
knew a priori that it is a parametric noiseless model. In contrast,

√
Lasso

can automatically adapt to the noiseless case. �

Case (ii): Nonparametric infinite variance. We conclude this section with
the infinite variance case. The finite sample theory does not rely on Ē[ǫ2] = 1.
Instead it relies on the choice of penalty level and penalty loadings to satisfy
λ/n ≥ c‖Γ−1S̃‖∞. Under symmetric errors we exploit the self-normalized
theory to develop a choice of penalty level and loadings,

(3.6) λ = (1 + un)c
√
n(1 +

√
2 log(2p/α)) and γj = max

1≤i≤n
|xij |.

The sequence un is defined below and typically we can set un = o(1).

Theorem 6 (
√
Lasso prediction norm for symmetric errors). Consider

a nonparametric regression model with data (yi, zi)
n
i=1, yi = f(zi) + ǫi, xi =

P (zi) such that En[x
2
j ] = 1 (j = 1, . . . , p), ǫi’s are independent symmetric

errors, and β0 defined as any solution to (2.2). Let the penalty level and
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loadings as in (3.6) where un is such that P (En[σǫ
2] > (1 + un)En[(σǫ +

r)2]) ≤ η1. Moreover let P (En[ǫ
2] ≤ {1+un}−1) ≤ η2. If ζ̄ = λ

√
s/[nκ̄] < 1,

then with probability at least 1− α− η1 − η2 we have λ/n ≥ c‖Γ−1S̃‖∞ and

‖β̂ − β0‖2,n ≤
2(̺c̄ + ζ̄)

1− ζ̄2
(
cs + σ

√
En[ǫ2]

)
.

The rate of convergence will be affected by how fast En[ǫ
2] diverges. That

is, the final rate will depend on the particular tail properties of the distri-
bution of the noise. The next corollary establishes a finite-sample bound in
the case of ǫi ∼ t(2), i = 1, . . . , n.

Corollary 1 (
√
Lasso prediction norm for ǫi ∼ t(2)). Under the setting

of Theorem 6, suppose that ǫi ∼ t(2) are i.i.d. noise. Then for any τ ∈
(0, 1/2), with probability at least 1 − α − τ − 2 log(4n/τ)

nun/[1+un]
− 72 log2 n

n1/2(log n−6)2
, we

have λ/n ≥ c‖Γ−1S̃‖∞ and

‖β̂ − β0‖2,n ≤ 2

(
cs + σ

√
log(4n/τ) + 2

√
2/τ

)
̺c̄ + ζ̄

1− ζ̄2 .

Asymptotically, provided that regressors are uniformly bounded and sat-
isfy the sparse eigenvalues condition (4.3), we have that the restricted eigen-
value κc̄ is bounded away from zero for the choice of Γ. Because Corollary
1 ensures λ/n ≥ c‖Γ−1S̃‖∞ with the stated probability, by Lemmas 1 and
2 we have ̺c̄ + ζ̄ . λ

√
s/{nκc̄} .

√
s log(p ∨ n)/n. Therefore, under these

design conditions, if τ = 1/ log n, 1/α = o(log n) and s log(p/α) = o(n),
Corollary 1 yields that the

√
Lasso estimator satisfies

(3.7) ‖β̂ − β0‖2,n . (cs + σ
√

log n)

√
s log(p ∨ n)

n
,

with probability 1−α(1+ o(1)), where the scale σ <∞ is fixed. Despite the
infinite variance of the noise in the t(2) case, the bound (3.7) differs from
the Gaussian noise case by a

√
log n factor.

4. Asymptotics Analysis under Primitive Conditions. In this
section we formally state an algorithm to compute the estimators and we
provide rates of convergence results under simple primitive conditions.

We propose setting the penalty level as

(4.1) λ = c
√
nΦ−1(1− α/2p),

where α controls the confidence level, and c > 1 is a slack constant similar to
[14], and the penalty loadings according to the following iterative algorithm.
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Algorithm 1 (Estimation of Square-root Lasso Loadings). Choose α ∈
(1/n, 1), and a constant K ≥ 1 as an upper bound on the number of itera-
tions. (0) Set k = 0, λ as defined in (4.1), and set γ̂j,0 = max1≤i≤n |xij | for
each j = 1, . . . , p. (1) Compute the

√
Lasso estimator β̂ based on the current

penalty loadings {γ̂j,k, j = 1, . . . , p}. (2) Set

γ̂j,k+1 := 1 ∨
√

En[x
2
j (y − x′β̂)2]/

√
En[(y − x′β̂)2].

(3) If k > K, stop; otherwise set k ← k + 1 and go to step 1.

Remark 6 (Parameters of the Algorithm). The parameter 1 − α is a
confidence level which guarantees near-oracle performance with probability
at least 1 − α; we recommend α = 0.05/ log n. The constant c > 1 is the
slack parameter used as in [14]; we recommend c = 1.01. To invoke self-
normalized moderate deviations, we just need to be able to bound with a
high probability:

(4.2)
√

En[x
2
j ǫ

2]/
√

En[ǫ2] ≤ γj,0.

The choice of γ̂j,0 = max1≤i≤n |xij | automatically achieves (4.2). Nonethe-
less, we recommend iterating the procedure to avoid unnecessary overpenal-
ization since at each iteration more precise estimates of the penalty loadings
are achieved. These recommendations are valid either in finite or large sam-
ples under the conditions stated below. They are also supported by the
finite-sample experiments (see SM’s Section G). �

Remark 7 (Alternative Estimation of Loadings). Algorithm 1 relies
on the

√
Lasso estimator β̂. Another possibility is to use the post

√
Lasso

estimator β̃. This leads to similar theoretical and practical results. Moreover,
we can define the initial penalty loading as γ̂j,0 = W{En[x

4
j ]}1/4 where the

kurtosis parameter W > {Ē[ǫ4]}1/4/{Ē[ǫ2]}1/2 is pivotal with respect to
the scaling parameter σ, but we need to assume an upper bound for this
quantity. The purpose of this parameter is to bound the kurtosis of the
marginal distribution of errors, namely that of F̄ǫ(v) = n−1

∑n
i=1 P (ǫi ≤ v).

We recommendW = 2, which permits a wide class of marginal distributions
of errors, in particular it allows F̄ǫ to have tails as heavy as v−a with a > 5.
Either option is a reasonable way of achieving (4.2) and we analyze both
options in the SM’s Section C.1 under weaker conditions than Condition P
below. �

The following is a set of simple sufficient conditions which is used to com-
municate the results in a simple manner.
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Condition P. The noise and the covariates obey supn≥1 Ē[|ǫ|q] < ∞,
q > 4, infn≥1min1≤j≤p En[x

2
jE[ǫ

2]] > 0, supn≥1max1≤j≤p En[x
3
jE[ǫ

3]] < ∞
and

(4.3) sup
n≥1

φmax(s log n,En[xix
′
i])/φmin(s log n,En[xix

′
i]) <∞.

Moreover, we have that log p ≤ C(n/ log n)1/3, maxi≤n ‖xi‖4∞s log(p ∨ n) ≤
Cn/ log n, s ≥ 1, and c2s ≤ Cσ2(s log(p ∨ n)/n).

Condition P collects moment conditions that allow us to use results of the
self-normalized moderate deviation theory, weak requirements on (s, p, n),
well behaved sparse eigenvalue as a sufficient condition on the design to
bound the impact factors, and a mild condition on the approximation errors
(see Remark 2 for a discussion and references).

The proofs in this section rely on the following result due to [32].

Lemma 4 (Moderate deviations for self-normalized sums). Let X1,. . .,
Xn be independent, zero-mean random variables and δ ∈ (0, 1]. Let Sn,n =
nEn[X], V 2

n,n = nEn[X
2] and Mn = {Ē[X2]}1/2/{Ē|X|2+δ ]}1/{2+δ} > 0.

Suppose that for some ℓn →∞ such that n
δ

2(2+δ)Mn/ℓn ≥ 1. Then for some

absolute constant A, uniformly on 0 ≤ x ≤ n
δ

2(2+δ)Mn/ℓn − 1, we have
∣∣∣∣
P (|Sn,n/Vn,n| ≥ x)

2(1 − Φ(x))
− 1

∣∣∣∣ ≤
A

ℓ2+δ
n

→ 0.

The following theorem summarizes the asymptotic performance of
√
Lasso,

based upon Algorithm 1, for commonly used designs.

Theorem 7 (Performance of
√
Lasso and ols post

√
Lasso under Con-

dition P). Suppose Conditions ASM and P hold. Let α ∈ (1/n, 1/ log n),
c > 1.01, the penalty level λ be set as in (4.1) and the penalty loadings as
in Algorithm 1. Then for all n ≥ n0, with probability at least 1 − α{1 +
C̄/ log n} − C̄{n−1/2 log n} we have

‖β̂ − β0‖2,n ≤ σC̄
√

s log(n∨(p/α))
n ,

√
En[(f − x′β̂)2] ≤ σC̄

√
s log(n∨(p/α))

n

‖β̂ − β0‖1 ≤ σC̄
√

s2 log(n∨(p/α))
n and |supp(β̂)| ≤ C̄s,

where n0 and C̄ depend only on the constants in Condition P. Moreover, the
ols post

√
Lasso estimator satisfies with the same probability for all n ≥ n0,

‖β̃ − β0‖2,n ≤ σC̄
√

s log(n∨(p/α))
n ,

√
En[(f − x′β̃)2] ≤ σC̄

√
s log(n∨(p/α))

n

and ‖β̂ − β0‖1 ≤ σC̄
√

s2 log(n∨(p/α))
n
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Theorem 7 yields bounds on the estimation errors that are “Gaussian-
like,” namely the factor

√
log p/α and other constants in the performance

bound are the same as if errors were Gaussian, but the probabilistic guaran-
tee is not 1−α but rather 1−α(1+ o(1)), which together with mildly more
restrictive growth conditions is the cost of non-Gaussianity here. Lemma 7
in the SM Section C.1 derives a more precise calculation of the probability
of success under weaker conditions.

The results above establish that
√
Lasso achieves the same near oracle

rate of convergence of Lasso despite not knowing the scaling parameter σ.
It allows for heteroscedastic errors with mild restrictions on its moments.
Moreover, it allows for any number of iterations K in Algorithm 1. The
result also establishes that the upper bounds on the rates of convergence
of
√
Lasso and ols post

√
Lasso coincide. This is confirmed also by Monte-

Carlo experiments reported in the SM, with ols post
√
Lasso performing no

worse and often outperforming
√
Lasso due to having a much smaller bias.

Notably this theoretical and practical performance occurs despite the fact
that

√
Lasso may in general fail to correctly select the oracle model T as a

subset and potentially select variables not in T .

Example S. (Performance for Sobolev Balls and p-Rearranged Sobolev
Balls.) In this example we show how our results apply to an important
class of Sobolev functions, and illustrates how modern selection drastically
reduces the dependency on knowing the order of importance of the basis
functions.

Following [50], for an orthonormal bounded basis {Pj(·)}∞j=1 in L2[0, 1],
consider functions f(z) =

∑∞
j=1 θjPj(z) in a Sobolev space S(α,L) for some

α ≥ 1 and L > 0. This space consist of functions whose Fourier coefficients
θ satisfy

∑∞
j=1 |θj | <∞ and

θ ∈ Θ(α,L) =
{
θ ∈ ℓ2(N) :

∑∞
j=1 j

2αθ2j ≤ L2
}
.

We also consider functions in a p-Rearranged Sobolev space RS(α, p, L).
These functions take the form f(z) =

∑∞
j=1 θjPj(z) such that

∑∞
j=1 |θj | <∞

and θ ∈ ΘR(α, p, L), where

ΘR(α, p, L) =

{
θ ∈ ℓ2(N) :

∃ permutation Υ : {1, . . . , p} → {1, . . . , p}∑p
j=1 j

2αθ2Υ(j) +
∑∞

j=p+1 j
2αθ2j ≤ L2

}
.

Note that S(α,L) ⊂ RS(α, p, L).
In the SM, we show that the rate-optimal choice for the size of the sup-

port of the oracle model β0 is s . n1/[2α+1], with the supp(β0) consisting of
indices j that correspond to the s largest coefficients |θj|. The oracle pro-

jection estimator β̂or that uses these “ideal” s components with the largest
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coefficients achieves optimal prediction error rate under a (sequence of) re-
gression functions f ∈ S(α,L) or f ∈ RS(α, p, L):

√
En[{f −

∑∞
j=1

β̂orj Pj(z)}2] .P n−α/[2α+1].

Under mild regularity conditions, as in Theorem 7,
√
Lasso estimator β̂ that

uses xi = (P1(zi), ..., Pp(z))
′ achieves

√
En[(f − x′β̂)2] .P n−α/[2α+1]

√
log(n ∨ p),

without knowing the “ideal” s components amongst xi. The same statement
also holds for the post

√
Lasso estimator β̃.

Therefore the
√
Lasso or post

√
Lasso estimators achieves near oracle rates

uniformly over f ∈ S(α,L), provided conditions of preceding theorem hold
for any sequence of regression functions f ∈ S(α,L) and the corresponding
sequence of p. In the case function in a p-Rearranged Sobolev ball, the
adaptivity of the

√
Lasso estimator allows it to achieve the same uniform

rates over RS(α, p, L). Finally, consider the “naive oracle” series projection
estimator that consider the first s components of the basis, assuming that the
parameter space is S(α,L). This estimator achieves the optimal rate for the
Sobolev space S(α,L), but fails to be uniformly consistent over p-Rearranged
Sobolev space RS(α, p, L), since we can select a model f ∈ RS(α, p, L) such
that its first s Fourier coefficients are zero, and the remaining coefficients
are non-zero, therefore the “naive oracle” fit will be 0 plus some centered
noise, and the estimator will be inconsistent for this f . �

We proceed to state a result on estimation of σ2 under the asymptotic
framework.

Corollary 2 (Estimation of σ2 under Asymptotics). Suppose Condi-
tions ASM and P hold. Let α ∈ (1/n, 1/ log n), c > 1.01, the penalty level λ
be set as in (4.1) and the penalty loadings as in Algorithm 1. Then for all
n ≥ n0, with probability at least 1 − α{1 + C̄/ log n} − C̄{n−1/2 log n} − 2δ
we have

∣∣∣Q̂(β̂)− σ2
∣∣∣ ≤ σ2C̄s log(n ∨ (p/α))

n
+
σ2C̄

√
s log(p ∨ n)√
δn1−1/q

+
σ2C̄√
δn
.

Moreover, provided further that s2 log2(p ∨ n) ≤ Cn/ log n, we have that

{σ2ξn}−1n1/2
(
Q̂(β̂)− σ2

)
⇒ N(0, 1) where ξ2n = Ē[{ǫ2 − E[ǫ2]}2].

This result extends [6, 49] to the heteroscedastic, non-Gaussian cases.
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5. An application to a generic semi-parametric problem. In this
section we present a generic application of the methods of this paper to semi-
parametric problems, where some lower-dimensional structural parameter is
of interest and the

√
Lasso or ols post

√
Lasso are used to estimate the

high-dimensional nuisance function. We denote the true value of the target
parameter by θ0 ∈ Θ ⊂ Rd, and assume that it satisfies the following moment
condition:

(5.1) E[ψ(wi, θ0, h0(zi))] = 0, i = 1, ..., n,

where wi is a random vector taking values in W, containing vector zi tak-
ing values in Z as a subcomponent; the function (w, θ, t) 7→ ψ(w, θ, t) =
(ψj(w, θ, t))

d
j=1 is a measurable map from an open neighborhood of W ×

Θ× T , a subset of Euclidian space, to Rd, and z 7→ h0(z) = (hm0(z))
M
m=1 is

a vector of measurable nuisance functions mapping Z to T ⊂ RM . We note
that M and d are fixed and do not depend on n in what follows.

Perhaps the simplest, that is linear, example of this kind arises in the in-
strumental variable (IV) regression problem in [3, 8], where ψ(wi, θ0, h0(zi)) =
(ui − θ0di)h0(zi), where ui is the response variable, di is the endogenous
variable, zi is the instrumental variable, h0(zi) = E[di | zi] is the opti-
mal instrument, and E[(ui − θ0di) | zi] = 0. Other examples include par-
tially linear models, heterogeneous treatment effect models, nonlinear in-
strumental variable, Z-estimation problems as well as many others (see,
e.g., [1, 31, 30, 21, 3, 10, 62, 9, 28, 55, 11, 44, 13, 26, 7]), which all give
rise to bi-linear and nonlinear moment conditions with respect to the nui-
sance functions.

We assume that the nuisance functions h0 arise as conditional expecta-
tions of some variables that can be modelled and estimated in the approxi-
mately sparse framework, as formally described below. For instance, in the
example mentioned above, the function h0 is indeed a conditional expec-
tation of the endogenous variable given the instrumental variable. We let
ĥ = (ĥm)Mm=1 denote the estimator of h0, which obeys conditions stated be-

low. The estimator θ̂ of θ0 is constructed as any approximate ǫn-solution in
Θ to a sample analog of the estimating equation above:

(5.2) ‖En[ψ(w, θ̂, ĥ(z))]‖ ≤ ǫn, where ǫn = o(n−1/2).

The key condition needed for regular estimation of θ0 is the orthogonality
condition:

(5.3) E[∂tψ(wi, θ0, h0(zi))|zi] = 0, i = 1, ..., n,

where here and below we use the symbol ∂t to abbreviate ∂
∂t . For instance in

the IV example this condition holds, since ∂tψ(wi, θ0, h0(zi)) = (ui − θ0di)
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and E[(ui − θ0di)|zi] = 0 by assumption. In other examples, it is important
to construct the scores that have this orthogonality property. Generally, if
we have a score, which identifies the target parameter but does not have
the orthogonality property, we can construct the score that has the required
property by projecting the original score onto the orthocomplement of the
tangent space for the nuisance parameter; see, e.g., [57, 56, 35] for detailed
discussion.

The orthogonality condition reduces sensitivity to “crude” estimation of
the nuisance function h0. Indeed, under appropriate sparsity assumptions
stated below, the estimation errors for h0, arising as sampling, approxima-
tion, and model selection errors, will be of order oP (n

−1/4). The orthog-
onality condition together with other conditions will guarantee that these
estimation errors do not impact the first order asymptotic behavior of the
estimating equations, so that

(5.4)
√
nEn[ψ(w, θ̂, ĥ(z))] =

√
nEn[ψ(w, θ̂, h0(z))] + oP (1).

This leads us to a regular estimation problem, despite ĥ being highly non-
regular.

In what follows, we shall denote by c and C some positive constants, and
by Ln a sequence of positive constants that may grow to infinity as n→∞.

Condition SP. For each n, we observe the independent data vectors
(wi)

n
i=1 with law determined by the probability measure P = Pn. Uniformly

for all n the following conditions hold. (i) The true parameter values θ0
obeys (5.1) and is interior relative to Θ, namely there is a ball of fixed posi-
tive radius centered at θ0 contained in Θ, where Θ is a fixed compact subset
of Rd. (ii) The map ν 7→ ψ(w, ν) is twice continuously differentiable with
respect to ν = (νk)

K
k=1 = (θ, t) for all ν ∈ Θ × T , with derivatives of the

second order bounded in absolute value by Ln, uniformly for all w ∈ W. The
conditional second moments of the first derivatives are bounded as follows:
P-a.s. E

(
supν∈Θ×T |∂νkψj(wi, ν)|2 | zi

)
≤ C for each k, j, and i. (iii) The

orthogonality condition (5.3) holds. (iv) The following identifiability con-
dition holds: for all θ ∈ Θ, ‖Ē[ψ(w, θ, h0(z))]‖ ≥ 2−1(‖Jn(θ − θ0)‖ ∨ c),
where Jn = Ē[∂θψ(w, θ0, h0(z))] has eigenvalues bounded away from zero
and above. (v) Ē[‖ψ(w, θ0, h0(z))‖3] is bounded from above.

In addition to the previous conditions, Condition SP imposes standard
identifiability and certain smoothness on the problem, requiring second deriva-
tives to be bounded by Ln, which is allowed to grow with n subject to
restrictions specified below. It is possible to allow for non-differentiable ψ
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at the cost of a more complicated argument; see [11]. In what follows, let
δn ց 0 be a sequence of constants approaching zero from above.

Condition AS. The following conditions hold for each n. (i) The func-
tion h0 = (h0m)Mm=1 : Z 7→ T is approximately sparse, namely, for each m,
h0m(z)=

∑p
l=1 Pl(z)β0ml + rm(z), where Pl : Z 7→ T are measurable func-

tions, β0m = (β0ml)
p
l=1 obeys |supp(β0m)| ≤ s, s ≥ 1, and the approxima-

tion errors obey Ē[r2m(z)] ≤ Cs log(p∨ n)/n. There is an estimator ĥm(·) =∑p
l=1 Pl(·)β̂ml of h0m such that ĥ = (ĥm)Mm=1 maps Z into T , and with prob-

ability 1−δn, β̂m = (β̂ml)
p
l=1 satisfies ‖β̂m−β0m‖1 ≤ C

√
s2 log(p ∨ n)/n and

En(ĥm(z)−h0m(z))2 ≤ Cs log(p∨n)/n. (ii) The scalar variables ψ̇mjl(wi) :=
∂tmψj(wi, θ0, h0(z))Pl(zi) obey maxm,j,l En[|ψ̇mjl(w)|2] ≤ L2

n with probability
1−δn and maxm,j,l(Ē[|ψ̇mjl(w)|3])1/3/(Ē[|ψ̇mjl(w)|2])1/2 ≤ Bn. (iii) Finally,
the following growth restrictions hold as n→∞:

(5.5) L2
ns

2 log2(p ∨ n)/n→ 0 and log(p ∨ n)n−1/3B2
n → 0.

The assumption records a formal sense in which approximate sparsity is
used, as well as requires reasonable behavior of the estimator ĥ. In the pre-
vious sections, we established primitive conditions under which this behavior
occurs in problems where h0 arise as conditional expectation functions. By
virtue of (5.5) the assumption implies that {En(ĥm(z) − h0m(z))2}1/2 =
oP (n

−1/4). It is standard that the square of this term multiplied by
√
n

shows up as a linerization error for
√
n(θ̂ − θ0), and therefore this term

does not affect its first order behavior. Moreover, the assumption implies by
virtue of (5.5) that ‖β̂m − β0m‖1 = oP (L

−1
n (log(p ∨ n))−1), which is used to

control another key term in the linearization as follows:

√
nmax

j,m,l
|En[ψ̇mjl(w)]|‖β̂m−β0m‖1 .P Ln

√
log(p ∨ n)‖β̂m−β0m‖1 = oP (1),

where the bound follows from an application of the moderate deviation
inequalities for self-normalized sums. The idea for this type of control is
borrowed from [3], who used in the context of the IV example mentioned
above.

Theorem 8. Under Conditions SP and AS holding for each n, the es-
timator θ̂ that obeys equation (5.2) and θ̂ ∈ Θ with probability approach-
ing 1, satisfies

√
n(θ̂ − θ0) = −J−1

n
1√
n

∑n
i=1 ψ(wi, θ0, h0(zi)) + oP (1). Fur-

thermore, provided Ωn = Ē[ψ(w, θ0, h0(z))ψ(w, θ0, h0(z))
′] has eigenvalues

bounded away from zero, we have that

Ω−1/2
n Jn

√
n(θ̂ − θ0)⇒ N(0, I).
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This theorem extends the analogous result from [8, 3] for a specific linear
to a generic non-linear setting, and could be of independent interest in many
problems cited above.

APPENDIX A: PROOFS OF SECTION 3

Proof of Lemma 1. The first result holds by definition. Note that for
a diagonal matrix with positive entries, ‖v‖2,n ≥ ‖Γv‖2,n/‖Γ‖∞ and, since
En[x

2
j ] = 1, ‖v‖2,n ≤ ‖v‖1 for any v ∈ IRp. For any δ such that ‖ΓδT c‖1 <

‖ΓδT ‖1 we have that

‖δ‖2,n

‖ΓδT ‖1−‖ΓδTc‖1
≥ ‖Γ‖−1

∞ ‖Γδ‖2,n

‖ΓδT ‖1−‖ΓδTc‖1

≥ ‖Γ‖−1
∞ (‖ΓδT ‖2,n−‖ΓδTc‖2,n)

‖ΓδT ‖1−‖ΓδTc‖1
≥ ‖Γ‖−1

∞ (‖ΓδT ‖2,n−‖ΓδTc‖1)
‖ΓδT ‖1−‖ΓδTc‖1

.

The result follows since ‖ΓδT ‖2,n = ‖ΓδT ‖1 if |T | = 1.
To show the third statement note that T does not change by including

repeated regressors (that is, since T is selected by the oracle (2.2), T will
not contain repeated regressors). Next let δ1 and δ2 denote the vectors in
each copy of the regressors so that δ = δ1 + δ2. It follows that

‖δ‖2,n
‖ΓδT ‖1 − ‖ΓδT c‖1

=
‖δ‖2,n

‖Γδ1T ‖1 − ‖Γδ1T c‖1 − ‖Γδ2T ‖1 − ‖Γδ2T c‖1
which is minimized in the case that δ̃1 = δ, δ̃1T = δ1T + δ2T , δ̃

1
T c = δ1T c + δ2T c ,

and δ̃2 = 0. �

Proof of Lemma 2. The first part follows from Hölder’s inequality and
the definition of κc̄. To show the second part note that T does not change
by including repeated regressors. Next let δ1 and δ2 denote the vectors in
each copy of the regressors so that δ = (δ1

′
T , δ

1′
T c , δ2

′
T , δ

2′
T c)′. It follows that

|S̃′δ|/‖δ‖2,n = |S̃′δ̃|/‖δ̃‖2,n where δ̃T = (δ1
′

T +δ2
′

T , δ
1′
T c +δ2

′
T c , 0′, 0′)′, and δ̃T c =

δ − δ̃T . This transformation yields ‖Γ(δ̃ + β0)‖1 ≤ ‖Γ(δ + β0)‖1 and that
δ ∈ ∆c̄ implies δ̃ ∈ ∆c̄. Finally, the restriction of δ̃ to its first p components
is also considered into the definition of ̺c̄ without the repeated regressors.�

Proof of Lemma 3. See SM. �

Proof of Theorem 1. First note that by Lemma 3 we have δ̂ := β̂ −
β0 ∈ ∆c̄. By optimality of β̂ and definition of κ̄, ζ̄ = λ

√
s/[nκ̄] we have

(A.1)√
Q̂(β̂)−

√
Q̂(β0) ≤

λ

n
‖Γβ0‖1−

λ

n
‖Γβ̂‖1 ≤

λ

n
(‖Γδ̂T ‖1−‖Γδ̂T c‖1) ≤ ζ̄‖δ̂‖2,n.

Multiplying both sides by

√
Q̂(β̂)+

√
Q̂(β0) and since (a+b)(a−b) = a2−b2

(A.2) ‖δ̂‖22,n ≤ 2En[(σǫ + r)x′δ̂] +

(√
Q̂(β̂) +

√
Q̂(β0)

)
ζ̄‖δ̂‖2,n.
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From (A.1) we have

√
Q̂(β̂) ≤

√
Q̂(β0) + ζ̄‖δ̂‖2,n so that

‖δ̂‖22,n ≤ 2En[(σǫ + r)x′δ̂] + 2

√
Q̂(β0)ζ̄‖δ̂‖2,n + ζ̄2‖δ̂‖22,n.

Since |En[(σǫ + r)x′δ̂]| =
√
Q̂(β0)|S̃′δ̂| ≤

√
Q̂(β0)̺c̄‖δ̂‖2,n we obtain

‖δ̂‖22,n ≤ 2

√
Q̂(β0)̺c̄‖δ̂‖2,n + 2

√
Q̂(β0)ζ̄‖δ̂‖2,n + ζ̄2‖δ̂‖22,n,

and the result follows provided ζ̄ < 1. �

Proof of Theorem 2. Let δ := β̂ − β0 ∈ ∆c̄ under the condition that
λ/n ≥ c‖Γ−1S̃‖∞ by Lemma 3.

First we establish the upper bound. By optimality of β̂

√
Q̂(β̂)−

√
Q̂(β0) ≤

λ

n
(‖Γβ0‖1−‖Γβ̂‖1) ≤

λ

n
(‖ΓδT ‖1−‖ΓδT c‖1) ≤

λ
√
s

nκ̄
‖δ‖2,n

by definition of κ̄ (note that if δ /∈ ∆1 we have Q̂(β̂) ≤ Q̂(β0)). The result
follows from Theorem 1 to bound ‖δ‖2,n.

To establish the lower bound, by convexity of

√
Q̂ and the definition of

̺c̄ we have √
Q̂(β̂)−

√
Q̂(β0) ≥ −S̃′δ ≥ −̺c̄‖δ‖2,n.

Thus, by Theorem 1, letting ζ̄ := λ
√
s/[nκ̄] < 1, we obtain

√
Q̂(β̂)−

√
Q̂(β0) ≥ −2

√
Q̂(β0)

̺2c̄+̺c̄ ζ̄

1−ζ̄2
.

Moreover, we have
∣∣∣∣
√
Q̂(β̂)− σ

∣∣∣∣ ≤
∣∣∣∣
√
Q̂(β̂)− σ{En[ǫ

2]}1/2
∣∣∣∣+ σ

∣∣∣{En[ǫ
2]}1/2 − 1

∣∣∣

and the right side is bounded by ‖β̂ − β0‖2,n + cs + σ|En[ǫ
2]− 1|. �

Proof of Theorem 3. For notational convenience we denote φn(m) =
φmax(m,Γ

−1En[xx
′]Γ−1). We shall rely on the following lemma, whose proof

is given after the proof of this theorem:

Lemma 5 (Relating Sparsity and Prediction Norm). Under Condition

ASM, let G ⊆ supp(β̂). For any λ > 0 we have

λ

n

√
Q̂(β̂)

√
|G| ≤

√
|G|‖Γ−1S̃‖∞

√
Q̂(β0)+

√
φmax(|G \ T |,Γ−1En[xx′]Γ−1)‖β̂−β0‖2,n.
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In the event λ/n ≥ c‖Γ−1S̃‖∞, by Lemma 5

(A.3)

(√
Q̂(β̂)

Q̂(β0)
− 1

c

)
λ

n

√
Q̂(β0)

√
|supp(β̂)| ≤

√
φn(m̂)‖β̂ − β0‖2,n.

Under the condition ζ̄ = λ
√
s/[nκ̄] < 1, we have by Theorems 1 and 2 that

(
1− 2̺c̄(̺c̄ + ζ̄)

1− ζ̄2 − 1

c

)
λ

n

√
Q̂(β0)

√
|supp(β̂)| ≤

√
φn(m̂)2

√
Q̂(β0)

̺c̄ + ζ̄

1− ζ̄2 .

Since we assume 2̺c̄(̺c̄+ζ̄)
1−ζ̄2

≤ 1/c̄ we have

√
|supp(β̂)| ≤ 2c̄

√
φn(m̂)

n

λ

̺c̄ + ζ̄

1− ζ̄2 =
√
s
√
φn(m̂) 2c̄

1 + ̺c̄/ζ̄

κ̄(1− ζ̄2)

where the last equality follows from ζ̄ = λ
√
s/[nκ̄].

Let L := 2c̄ {1 + ̺c̄/ζ̄}/{κ̄(1 − ζ̄2)}. Consider any m ∈ M, and sup-
pose m̂ > m. Therefore by the well-known sublinearity of sparse eigen-
values, φn(ℓm) ≤ ⌈ℓ⌉φn(m) for ℓ ≥ 1, and m̂ ≤ |supp(β̂)| we have m̂ ≤
s ·
⌈
m̂
m

⌉
φn(m)L2. Thus, since ⌈k⌉ < 2k for any k ≥ 1 we have m <

s · 2φn(m)L2 which violates the condition of m ∈ M and s. Therefore,
we must have m̂ ≤ m. In turn, applying (A.4) once more with m̂ ≤ m we
obtain m̂ ≤ s · φn(m)L2. The result follows by minimizing the bound over
m ∈ M.

To show the second part, by Lemma 2 and λ/n ≥ c‖Γ−1S̃‖∞, we have
̺c̄ ≤ (λ/n)(

√
s/κc̄)(1+ c̄)/c. Lemma 1 yields κ̄ ≥ κc̄ so that ζ̄ ≤ λ√s/(nκc̄).

Therefore

n

λ

̺c̄ + ζ̄

1− ζ̄2 ≤
√
s

κc̄(1− ζ̄2)

{
1 + c̄

c
+ 1

}
=

c̄
√
s

κc̄(1− ζ̄2)
.

Thus, under the condition ζ̄ ≤ 1/
√
2,

(A.4) |supp(β̂)| ≤ s φn(m̂)

(
4c̄2

κc̄

)2

.

The same argument used before with L = 4c̄2/κc̄ yields the second result. �

Proof of Lemma 5. Recall that Γ = diag(γ1, . . . , γp). First note that
by strong duality

En [yâ] =
‖Y −Xβ̂‖√

n
+
λ

n

p∑

j=1

γj |β̂j |.
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Since En [xj â] β̂j = λγj |β̂j |/n for every j = 1, . . . , p, we have

En [yâ] =
‖Y −Xβ̂‖√

n
+

p∑

j=1

En [xj â] β̂j =
‖Y −Xβ̂‖√

n
+ En


â

p∑

j=1

xj β̂j


 .

Rearranging the terms we have En[(y − x′β̂)â] = ‖Y −Xβ̂‖/
√
n.

If ‖Y −Xβ̂‖ = 0, we have

√
Q̂(β̂) = 0 and the statement of the lemma

trivially holds. If ‖Y −Xβ̂‖ > 0, since ‖â‖ ≤ √n the equality can only hold

for â =
√
n(Y −Xβ̂)/‖Y −Xβ̂‖ = (Y −Xβ̂)/

√
Q̂(β̂).

Next, note that for any j ∈ supp(β̂) we have En [xj â] = sign(β̂j)λγj/n.

Therefore, for any subset G ⊆ supp(β̂) we have
√

Q̂(β̂)
√

|G|λ = ‖Γ−1(X ′(Y −Xβ̂))G‖
≤ ‖Γ−1(X ′(Y −Xβ0))G‖+ ‖Γ−1(X ′X(β0 − β̂))G‖
≤

√
|G| n‖Γ−1

En[x(σǫ + r)]‖∞ + n
√

φmax(|G|,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n
=

√
|G| n

√
Q̂(β0)‖Γ−1S̃‖∞ + n

√
φmax(|G \ T |,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n,

where we used

‖Γ−1(X ′X(β̂ − β0))G‖ ≤ sup‖αTc‖0≤|G\T |,‖α‖≤1 |α′Γ−1X ′X(β̂ − β0))|
≤ sup‖αTc‖0≤|G\T |,‖α‖≤1 ‖α′Γ−1X ′‖‖X(β̂ − β0)‖
≤ n

√
φmax(|G \ T |,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n.

�

Proof of Theorem 4. Let X = [x1; . . . ;xn]
′ denote a n by p matrix

and for a set of indices S ⊂ {1, . . . , p} we definePS = X[S](X[S]′X[S])−1X[S]′

denote the projection matrix on the columns associated with the indices in
S. We have that f−Xβ̃ = (I−PT̂ )f−σPT̂ ǫ where I is the identity operator.
Therefore we have

(A.5)

√
n‖β0 − β̃‖2,n = ‖Xβ0 −Xβ̃‖ = ‖f −Xβ̃ −R‖

= ‖(I − PT̂ )f − σPT̂ ǫ−R‖ ≤ ‖(I − PT̂ )f‖+ σ‖PT̂ ǫ‖+ ‖R‖

where we have ‖R‖ ≤ √ncs. Since for m̂ = |T̂ \ T |, we have

‖X[T̂ ](X[T̂ ]′X[T̂ ])−1‖op ≤
√

1/φmin(m̂,En[xx′]) =
√

1/φmin(m̂),

the term ‖PT̂ ǫ‖ in (A.5) satisfies

‖P
T̂
ǫ‖ ≤

√
1/φmin(m̂)‖X[T̂ ]′ǫ/

√
n‖ ≤

√
|T̂ |/φmin(m̂)‖X ′ǫ/

√
n‖∞.
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Therefore, we have

‖β̃ − β0‖2,n ≤
σ
√
s+ m̂‖En[xǫ]‖∞√

φmin(m̂)
+ cs + cT̂

where cT̂ = minβ∈IRp

√
En[(f − x′βT̂ )2]. Since supp(β̂) ⊆ T̂ and (3.5) holds,

cT̂ = min
β∈IRp

{En[(f − x′βT̂ )2]}1/2 ≤ {En[(f − x′β̂)2]}1/2

≤ cs + ‖β0 − β̂‖2,n ≤ cs + 2

√
Q̂(β0)

(̺c̄+ζ̄)
1−ζ̄2

.

where we have used Theorem 1. �

Proof of Theorem 5. Note that because σ = 0 and cs = 0, we have√
Q̂(β0) = 0 and

√
Q̂(β̂) = ‖β̂ − β0‖2,n. Thus, by optimality of β̂ we have

‖β̂−β0‖2,n+ λ
n‖Γβ̂‖1 ≤ λ

n‖Γβ0‖1. Therefore, ‖Γβ̂‖1 ≤ ‖Γβ0‖1 which implies

that δ = β̂ − β0 satisfies ‖ΓδT c‖1 ≤ ‖ΓδT ‖1. In turn ‖δ‖2,n ≤ λ
n(‖Γδ̂T ‖1 −

‖Γδ̂T c‖1) ≤ λ
√
s

nκ̄ ‖δ‖2,n. Since λ
√
s < nκ̄ we have ‖δ‖2,n = 0.

Next the relation 0 =
√
s‖δ‖2,n ≥ κ̄(‖ΓδT ‖1−‖ΓδT c‖1) implies ‖ΓδT ‖1 =

‖ΓδT c‖1 since κ̄ > 0 by our assumptions.
Also, if κ1 > 0, 0 =

√
s‖δ‖2,n ≥ κ1‖ΓδT ‖1 ≥ κ1‖Γδ‖1/2. Since Γ > 0, this

shows that δ = 0 and β̂ = β0. �

Proof of Theorem 6. If λ/n ≥ c‖Γ−1S̃‖∞, by Theorem 1, for ζ̄ =

λ
√
s/[nκ̄] < 1 we have ‖β̂ − β0‖2,n ≤ 2

√
Q̂(β0)

̺c̄+ζ̄
1−ζ̄2

, and the bound on the

prediction norm follows by

√
Q̂(β0) ≤ cs + σ

√
En[ǫ2].

Thus we need to show that the choice of λ and Γ is suitable for the desired
probability on the event λ/n ≥ c‖Γ−1S̃‖∞. Since γj = max1≤i≤n |xij | ≥
En[x

2
j ] = 1, by the choice of un we have

P
(
c‖Γ−1S̃‖∞ > λ

n

)
≤ P

(
c max
1≤j≤p

|En[(σǫ+r)xj]|
γj

√
En[(σǫ)2]

> λ
n(1+un)1/2

)
+ η1

≤ P
(

max
1≤j≤p

|En[ǫxj]|
γj

√
En[ǫ2]

>

√
2 log(2p/α)√

n

)
+ P

(
‖En[rx]‖∞√

En[(σǫ)2]
> (1+un)

1/2

√
n

)
+ η1.

We invoke the following lemma, proven in SM:

Lemma 6. Under Condition ASM we have ‖En[xr]‖∞ ≤ min
{

σ√
n
, cs

}
.

By Lemma 6 ‖En[rx]‖∞ ≤ σ/
√
n and P (En[ǫ

2] ≤ {1 + un}−1) ≤ η2 we

have P

(
‖En[rx]‖∞√
En[(σǫ)2]

> (1+un)1/2√
n

)
≤ P

(√
En[(σǫ)2] ≤ {1 + un}−1/2

)
≤ η2.
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To bound the last term we have

P


 max

1≤j≤p

√
n|En[ǫxj ]|

max
1≤i≤n

|xij |
√

En[ǫ2]
>

√
2 log(2p/α)


 ≤ P


 max

1≤j≤p

√
n|En[ǫxj ]|√
En[x2

j
ǫ2]

>
√

2 log(2p/α)




≤ p max
1≤j≤p

P




√
n|En[ǫxj ]|√
En[x2

jǫ
2]

>
√

2 log(2p/α)


 ≤ α

where we used the union bound and Theorem 2.15 of [24] because ǫi’s are
independent and symmetric. �

Proof of Lemma 6. First note that for every j = 1, . . . , p, we have

|En[xjr]| ≤
√

En[x2j ]En[r2] = cs. Next, by definition of β0 in (2.2), for j ∈ T
we have En[xj(f − x′β0)] = En[xjr] = 0 since β0 is a minimizer over the
support of β0. For j ∈ T c we have that for any t ∈ IR

En[(f − x′β0)2] + σ2
s

n
≤ En[(f − x′β0 − txj)2] + σ2

s+ 1

n
.

Therefore, for any t ∈ IR we have

−σ2/n ≤ En[(f − x′β0− txj)2]−En[(f − x′β0)2] = −2tEn[xj(f − x′β0)] + t2En[x
2
j ].

Taking the minimum over t in the right hand side at t∗ = En[xj(f − x′β0)]
we obtain −σ2/n ≤ −(En[xj(f−x′β0)])2 or equivalently, |En[xj(f−x′β0)]| ≤
σ/
√
n. �

Proof of Corollary 1. See SM. �

APPENDIX B: PROOFS OF SECTION 4

Proof of Theorem 7. Conditions ASM, P and the choice of penalty
level with α ∈ (1/n, 1/ log n) imply the assumptions of Lemma 7 with q = 4,
un = 1/ log log n, the slack constant as

√
c > 1, ℓn = log1/3 n, and η = 0

(given the choice of γ̂j,0) for n ≥ n0 for sufficiently large n0. Thus by Lemma

7 we have λ/n ≥ √c‖Γ̂−1S̃‖∞ with probability at least 1−α{1+ C̄/ log n}−
C̄{n−1/2 log n}.

Moreover, since c̄ = (c̄+ 1)/(c̄− 1), κc̄(Γ̂0) ≥ κc̄(I)/maxi≤n ‖xi‖∞, κc̄(I)
is bounded away from zero for large enough n0 by the sparse eigenvalue
conditions,

λ .
√
n log(p/α) .

√
n log(p ∨ n),

and the condition maxi≤n ‖xi‖4∞s log(p ∨ n) ≤ Cn/ log n, the side condi-
tion in Lemma 7. The results then follow from Theorems 1, 3 and 4 be-
cause κ̄ ≥ κc̄(Γ̂0) by Lemma 1, ¯̺c̄ ≤ Cλ

√
s/nκc̄(Γ̂0) by Lemma 2, and

ζ̄ ≤ Cλ√s/n. The result for the ℓ1-rate follows from ‖β̌−β0‖1 ≤
√
C̄ ′s‖β̌−

β0‖2,n/
√
φmin(C ′s) ≤ C ′′√s‖β̌ − β0‖2,n for β̌ = β̂ and β̌ = β̃. �

Proof of Corollary 2. See SM. �
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APPENDIX C: PROOFS FOR SECTION 5

Proof of Theorem 8. Throughout the proof we use the notation

B(w) := max
j,k

sup
ν∈Θ×T

|∂νkψj(w, ν)|, τn :=
√
s log(p ∨ n)/n.

Step 1. (A Preliminary Rate Result). In this step we claim that ‖θ̂ −
θ0‖ .P τn. By definition ‖Enψ(w, θ̂, ĥ(z))‖ ≤ ǫn and θ̂ ∈ Θ, which implies
via triangle inequality that:

∥∥∥[Ē[ψ(w, θ, h0(z))]|θ=θ̂

∥∥∥ ≤ ǫn + I1 + I2 .P τn,

where I1 and I2 are defined in Step 2 below, and the last bound also follows
from Step 2 below and from the numerical tolerance obeying ǫn = o(n−1/2)
by assumption. Since by condition SP(iv), 2−1(‖Jn(θ̂ − θ0)‖ ∨ c) is weakly
smaller than the left side of the display, we conclude that ‖θ̂ − θ0‖ .P

(mineig(Jn))
−1τn, which gives the stated claim since mineig(Jn) is bounded

away from zero uniformly in n by condition SP (v).
Step 2 (Define and bound I1 and I2.) We claim that:

I1 := sup
θ∈Θ

∥∥∥Enψ(w, θ, ĥ(z)) − Enψ(w, θ, h0(z))
∥∥∥ .P τn,

I2 := sup
θ∈Θ

∥∥Enψ(w, θ, h0(z))− Ēψ(w, θ, h0(z))
∥∥ .P n−1/2.

Using Taylor’s expansion, for h̃(z; θ, j) denoting a point on a line connect-
ing vectors h0(z) and h(z), which can depend on θ and j,

I1 ≤
d∑

j=1

M∑

m=1

sup
θ∈Θ

∥∥∥En[∂tmψj(w, θ, h̃(z; θ, j))(ĥm(z)− h0m(z))]
∥∥∥

≤ dM
√
d{EnB

2(w)}1/2 max
m
{En(ĥm(z)− h0m(z))2}1/2,

where the last inequality holds by definition of B(w) given earlier and the
Holder’s inequality. Since ĒB2(w) ≤ C by condition SP(ii), EnB

2(w) .P 1
by Markov’s inequality. By this, by condition AS(ii), by d and M fixed,
conclude that I1 .P τn.

Using Jain-Marcus theorem, as stated in Example 2.11.13 in [57], we
conclude that

√
nI2 .P 1. Indeed the hypotheses of that example follow

from the assumption that Θ is a fixed compact subset of Rd, and from the
Lipschitz property, ‖ψ(w, θ, h0(z))− ψ(w, θ̃, h0(z))‖ . B(w)‖θ̃ − θ‖ holding
uniformly for all θ and θ̃ in Θ, with ĒB2(w) ≤ C by condition SP(ii).
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Step 3. (Main Step) We have that
√
n‖Enψ(w, θ̂, ĥ(z))‖ ≤ ǫn

√
n. Appli-

cation of Taylor’s theorem and the triangle inequality gives
∥∥√nEnψ(w, θ0, h0(z)) + Jn

√
n(θ − θ0)

∥∥ ≤ ǫ
√
n+ ‖II1‖+ ‖II2‖+ ‖II3‖ = oP (1),

where the terms II1, II2, and II3 are defined and bounded below in Step
4; the oP (1) bound follows from Step 4 and from ǫn

√
n = o(1) holding by

assumption. Conclude using condition SP(iv) that
∥∥J−1

n

√
nEnψ(w, θ0, h0(z)) +

√
n(θ − θ0)

∥∥ ≤ oP (1)(mineg(Jn))
−1 = oP (1),

which verifies the first claim of the theorem. Application of Liapunov’s cen-
tral limit theorem in conjunction with condition SP(v) and the conditions
on Ωn imposed by the theorem imply the second claim.

Step 4. (Define and Bound II1, II2, and II3). Let II1 := (II1j)
d
j=1 and

II2 = (II2j)
d
j=1, where

II1j :=

M∑

m=1

√
nEn

[
∂tmψj(w, θ0, h0(z))(ĥm(z)− h0m(z))

]
,

II2j :=

K∑

r,k=1

√
nEn [∂νk∂νrψj(w, ν̃(w; j)){ν̂r(w)− ν0r(w)}{ν̂k(w) − ν0k(w)}] ,

II3 :=
√
n (En∂θψ(w, θ0, h0(z))− Jn) (θ − θ0),

where ν0(w) := (ν0k)
K
k=1 := (θ′0, h0(z)

′)′; K = d+M ; ν̂(w) := (ν̂k(w))
K
k=1 :=

(θ̂′, ĥ(z)′)′, and ν̃(w; j) is a vector on the line connecting ν0(w) and ν̂(w)
that may depend on j; and Jn = Ē∂θψ(w, θ0, h0(z)). We show in this step
that II1 + II2 + II3 .P τn,

The key portion of the proof is bounding II1j, which is very similar to
the argument first given in [3] (pp. 2421-2423). We repeat it here for com-
pleteness. In order to bound II1j we split it II1j = III1j + III2j , where

III1j :=

M∑

m=1

√
nEn

[
∂tmψj(w, θ0, h0(z))

p∑

l=1

Pl(z)(β̂ml − β0ml)

]
,

III2j :=

M∑

m=1

√
nEn

[
∂tmψj(w, θ0, h0(z))rm(z)

]
.

Using Holder inequality, maxj |III1j | ≤ M maxj,m,l |
√
nEnψ̇jml(w)|‖β̂m −

β0m‖1. Now maxm ‖β̂m − β0m‖1 ≤ C
√
sτn with probability at least 1 − δn

by condition AS(i). Moreover, using they key property that Eψ̇jml(wi) = 0
which holds by the orthogonality property and that maxj,m,l En|ψ̇jml(w)|2 ≤
L2
n with probability at least 1 − δn by condition AS(ii), we can apply the

moderate deviation inequality for self-normalized sum, following the idea in
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[3], to conclude that maxj |III1j | ≤
√

2 log(pn)Ln with probability 1− o(1).
Note that this application requires the side condition

√
2 log(pn)Bnn

−1/6 =
o(1) be satisfied for Bn defined in condition AS(ii), which indeed holds by
condition AS(iii). We now recall the details of this calculation:

P

(
max
j,m,l
|
√
nEnψ̇jml(w)| >

√
2 log(pn)Ln

)

≤ P
(
max
j,m,l
|
√
nEnψ̇jml(w)|/

√
En|ψ̇jml(w)|2 >

√
2 log(pn)

)
+ δn

≤ dMpmax
j,m,l

P

(
|
√
nEnψ̇jml(w)|/

√
En|ψ̇jml(w)|2 >

√
2 log(pn)

)
+ δn

≤ dMpΦ(
√

2 log(pn))(1 + o(1)) + δn ≤ dMp
1

pn
(1 + o(1)) + δn = o(1),

where the penultimate inequality occurs due to the application of the mod-
erate deviation theorems for self-normalized sums. Putting bounds together
we conclude that III1 .P Ln

√
log(p ∨ n)√sτn = o(1), where o(1) holds by

the growth restrictions imposed in condition AS(iii).
The bound on III2 also follows similarly to [3]. III2j is a n−1/2 times

the sums of M terms each having mean zero and variance of order s log(p∨
n)/n = o(1). Indeed, the mean zero occurs because

n−1
n∑

i=1

E [∂tmψj(wi, θ0, h0(zi))rm(zi)] = n−1
n∑

i=1

E[0 · rm(zi)] = 0,

for each m-th term, which holds by E[∂tmψj(wi, θ0, h0(zi))|zi] = 0, i.e. the
orthogonality property, and the law of iterated expectations. To derive the
variance bound, note that for each m-th term,

n−1
n∑

i=1

E[{∂tmψj(wi, θ0, h0(zi))}2r2m(zi)] ≤ CĒ[r2m(z)] ≤ C2s log(p ∨ n)/n,

which holds by E[{∂tmψj(wi, θ0, h0(zi))}2|zi] ≤ E[B2(w)|zi] ≤ C a.s. by
virtue of condition SP(iii), and the law iterated expectations; the last bound
in the display holds by AS(i). Hence var(III2j) ≤ nn−1M2C2s log(p∨ n)/n
. s log(p∨n)/n = o(1). Therefore, ‖III2‖ ≤

∑d
j=1 |III2j | .P s log(p∨n)/n

by Chebyshev’s inequality.
To deduce that ‖II2‖ = oP (1), we use condition AS(i)-(iii), the claim of

Step 1, and Holder inequalities, concluding that

max
j
|II2j | ≤

√
nK2Lnmax

k
En{ν̂k(w) − ν0k(w)}2 .P

√
nLnτ

2
n = o(1).



30 BELLONI, CHERNOZHUKOV AND WANG

Finally, since ‖II3‖ ≤
√
n‖ (En∂θψ(w, θ0, h0(z)) − Jn) ‖op‖θ̂ − θ0‖ and

since ‖En∂θψ(w, θ0, h0(z))− Jn‖op .P n−1/2 by Cbebyshev’s inequality, us-

ing that ĒB2(w) ≤ C by condition AS(ii), and ‖θ̂ − θ0‖ .P τn by Step 1,
conclude that ‖II3‖ .P τn. �
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Supplementary Material for the paper “Pivotal
Estimation via Square-root Lasso for

Nonparametric Regression”

APPENDIX A: ADDITIONAL RESULTS FOR SECTION 3

A.1. Bounds in Other Norms. This section contains bounds for ℓ1
and ℓ∞-rates and lower bounds on prediction norm Rates.

Theorem 9 (Lower Bound on Prediction Error). Under Condition ASM
and (3.5), let m̂ = |supp(β̂) \ T |. We have

‖β̂ − β0‖2,n ≥
λ

√
|supp(β̂)|

√
Q̂(β0)

n
√
φmax(m̂,Γ−1En[xx′]Γ−1)

(
1− 1

c
− 2̺c̄(̺c̄ + ζ̄)

1− ζ̄2
)
.

It is interesting to contrast the lower bound on the prediction norm above
with the corresponding lower bound for Lasso. In the case of Lasso, as de-
rived in [38], the lower bound does not have the term Q̂1/2(β0) since the
impact of the scaling parameter σ is accounted in the penalty level λ. Thus,
under Condition ASM and σ bounded away from zero and above, the lower
bounds for Lasso and

√
Lasso are very close.

Theorem 10 (ℓ1-rate of convergence). Under Condition ASM, if λ/n ≥
c‖Γ−1S̃‖∞, for c > 1 and c̄ := (c+ 1)/(c − 1), then

‖Γ(β̂ − β0)‖1 ≤ (1 + c̄)
√
s‖β̂ − β0‖2,n/κc̄.

Moreover, if ζ̄ = λ
√
s/[nκ̄] < 1, we have

‖Γ(β̂ − β0)‖1 ≤
2(1 + c̄)

√
s

κc̄

√
Q̂(β0)

(
̺c̄ + ζ̄

)

1− ζ̄2 .

The results above highlight that, in general, κ̄ alone is not suitable to
bound ℓ1 and ℓ2 rates of convergence. This is expected since repeated re-
gressors are allowed in the design.

Theorem 11 (ℓ∞-rate of convergence). Let ̥ = ‖Γ−1En[xx
′−I]Γ−1‖∞.

Under Condition ASM, if λ/n ≥ c‖Γ−1S̃‖∞, for c > 1 and c̄ = (c+1)/(c−1),
then we have

‖Γ−1(β̂ − β0)‖∞√
Q̂(β0)

≤ (1 + c)λ

cn
+
λ2

n2

√
s

κ̄

‖β̂ − β0‖2,n√
Q̂(β0)

+̥
‖Γ(β̂ − β0)‖1√

Q̂(β0)
.
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Moreover, if ζ̄ = λ
√
s/[nκ̄] < 1 we have

‖Γ−1(β̂ − β0)‖∞√
Q̂(β0)

≤ (1 + c)λ

cn
+

2λζ̄

n

̺c̄ + ζ̄

1− ζ̄2 + 2(1 + c̄)̥

√
s

κc̄

̺c̄ + ζ̄

1− ζ̄2 .

The ℓ∞-rate is bounded based on the prediction norm and the ℓ1-rate of
convergence. Since we have ‖ ·‖∞ ≤ ‖·‖1, the result is meaningful for nearly
orthogonal designs so that ‖Γ−1En[xx

′ − I]Γ−1‖∞ is small. In fact, near
orthogonality also allows to bound the restricted eigenvalue κc̄ from below.
In the homoscedastic case for Lasso (which corresponds to Γ = I) [14] and
[37] established that if for some u ≥ 1 we have ‖En[xx

′]−I‖∞ ≤ 1/(u(1+c̄)s)
then κc̄ ≥

√
1− 1/u. In that case, the first term determines the rate of

convergence in the ℓ∞-norm.

APPENDIX B: DEFERRED PROOFS FOR RESULTS AND
ADDITIONAL RESULTS FOR SECTION 3

B.1. Deferred Proofs for Results in Section 3.

Proof of Corollary 1. We will bound the probability of relevant events
to establish λ/n ≥ c‖Γ−1S̃‖∞ and consequentially the prediction norm
bound by Theorem 6.

Applying Lemma 13(ii) with a = 1/ log n we have η2 =
1

n1/2(1/6−1/ logn)2
=

36 log2 n
n1/2(logn−6)2

.

Applying Lemma 13(iii) with tn = 4n/τ , a = 1/ log n, and an = un/[1 +
un], where we note the simplification that

4σ2c2s log tn
n(c2s + anσ2a log n)2

≤ 2 log tn
nana log n

.

we have

P
(√

En[σ2ǫ2] ≤ (1 + un)
√
En[(σǫ + r)2]

)
≤ η1 :=

2 log(4n/τ)

nun/[1 + un]
+ η2 +

τ

2
.

Thus, by Theorem 6, since ζ̄ < 1, with probability at least 1− α− η1 − η2
we have

‖β̂−β0‖2,n ≤
2(1 + 1/c)

1− ζ̄2
√
Q̂(β0)(̺c̄+ζ̄) ≤

2(1 + 1/c)

1− ζ̄2 (cs+σ
√

En[ǫ2])(̺c̄+ζ̄).

Finally, by Lemma 13(i) we have En[ǫ
2] ≤ 2

√
2/τ + log(4n/τ) with prob-

ability at least 1− τ/2. �
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Proof of Lemma 3. In this step we show that δ̂ = β̂ − β0 ∈ ∆c̄ under
the prescribed penalty level. By definition of β̂

(B.1)

√
Q̂(β̂)−

√
Q̂(β0) ≤

λ

n
‖Γβ0‖1 −

λ

n
‖Γβ̂‖1 ≤

λ

n
(‖Γδ̂T ‖1 − ‖Γδ̂T c‖1),

where the last inequality holds because

(B.2)
‖Γβ0‖1 − ‖Γβ̂‖1 = ‖Γβ0T ‖1 − ‖Γβ̂T ‖1 − ‖Γβ̂T c‖1

≤ ‖Γδ̂T ‖1 − ‖Γδ̂T c‖1.

Note that using the convexity of

√
Q̂, −S̃ ∈ ∂

√
Q̂(β0), and if λ/n ≥

cn‖Γ−1S̃‖∞, we have

√
Q̂(β̂)−

√
Q̂(β0) ≥ −S̃′δ̂ ≥ −‖Γ−1S̃‖∞‖Γδ̂‖1(B.3)

≥ − λ

cn
(‖Γδ̂T ‖1 + ‖Γδ̂T c‖1)(B.4)

≥ − λ

cn
(‖Γβ0‖1 + ‖Γβ̂‖1).(B.5)

Combining (B.1) with (B.4) we obtain

(B.6) − λ

cn
(‖Γδ̂T ‖1 + ‖Γδ̂T c‖1) ≤

λ

n
(‖Γδ̂T ‖1 − ‖Γδ̂T c‖1),

that is

(B.7) ‖Γδ̂T c‖1 6
c+ 1

c− 1
· ‖Γδ̂T ‖1 = c̄‖Γδ̂T ‖1, or δ̂ ∈ ∆c̄.

On the other hand, by (B.5) and (B.1) we have

(B.8) − λ

cn
(‖Γβ0‖1 + ‖Γβ̂‖1)+ ≤

λ

n
(‖Γβ0‖1 − ‖Γβ̂‖1).

which similarly leads to ‖Γβ̂‖1 ≤ c̄‖Γβ0‖1. �

B.2. Proofs of Additional Results for Section 3.

Proof of Theorem 9. We can assume that Q̂(β0) > 0 otherwise the
result is trivially true. In the event λ/n ≥ c‖Γ−1S̃‖∞, by Lemma 5 with
G = supp(β̂) we have
(B.9)(√

Q̂(β̂)

Q̂(β0)
− 1

c

)
λ

n

√
Q̂(β0)

√
|G| ≤

√
φmax(m̂,Γ−1En[xx′]Γ−1)‖β̂ − β0‖2,n.
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Under the condition ζ̄ = λ
√
s/[nκ̄] < 1, we have by the lower bound in

Theorem 2

(
1− 1

c
− 2̺c̄(̺c̄ + ζ̄)

1− ζ̄2
)

λ

√
Q̂(β0)

√
|G|

n
√
φmax(m̂,Γ−1En[xx′]Γ−1)

≤ ‖β̂ − β0‖2,n.

�

Proof of Theorem 10. Let δ := β̂ − β0. Under the condition on λ
above, we have that δ ∈ ∆c̄. Thus, we have

‖Γδ‖1 ≤ (1 + c̄)‖ΓδT ‖1 ≤ (1 + c̄)

√
s‖δ‖2,n
κc̄

,

by the restricted eigenvalue condition. The result follows by Theorem 1 to
bound ‖δ‖2,n.

�

Proof of Theorem 11. Let δ := β̂ − β0. We have that

‖Γ−1δ‖∞ ≤ ‖Γ−1
En[xx

′δ]‖∞ + ‖Γ−1(En[xx
′δ]− δ)‖∞.

Note that by the first-order optimality conditions of β̂ and the assumption
on λ

‖Γ−1En[xx
′δ]‖∞ ≤ ‖Γ−1En[x(y − x′β̂)]‖∞ + ‖Γ−1S̃‖∞

√
Q̂(β0)

≤ λ
√

Q̂(β̂)
n +

λ
√

Q̂(β0)
cn

by the first-order conditions and the condition on λ.
Next let ej denote the jth-canonical direction.

‖Γ−1En[xx
′ − I]δ‖∞ = ‖Γ−1En[xx

′ − I]Γ−1Γδ‖∞
≤ ‖Γ−1En[xx

′ − I]Γ−1‖∞‖Γδ‖1.

Therefore, using the optimality of β̂ that implies

√
Q̂(β̂) ≤

√
Q̂(β0) +

(λ/n)(‖ΓδT ‖1 − ‖ΓδT c‖1) ≤
√
Q̂(β0) + (λ

√
s/[nκ̄])‖δ‖2,n, we have

‖Γ−1δ‖∞ ≤
(√

Q̂(β̂) +

√
Q̂(β0)
c

)
λ
n + ‖Γ−1En[xx

′ − I]Γ−1‖∞‖Γδ‖1

≤
(
1 + 1

c

) λ
√

Q̂(β0)
n + λ2

√
s

n2κ̄
‖δ‖2,n + ‖Γ−1En[xx

′ − I]Γ−1‖∞‖Γδ‖1.

The result follows from Theorem 1 and 10. �
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APPENDIX C: ADDITIONAL RESULTS FOR SECTION 4

C.1. An Analysis of the Penalty Level and Loadings for
√

Lasso.

Here we analyze the data-driven choice for the penalty level and loadings
proposed in Algorithm 1 which are pivotal with respect the scaling parameter
σ. Our focus is on establishing that λ/n dominates the rescaled score, namely

(C.1) λ/n ≥ c‖Γ−1S̃‖∞, where c > 1,

which implies that β̂ − β0 ∈ ∆c̄, c̄ = (c + 1)/(c − 1), so that the results
in the previous sections hold. We note that the principle of setting λ/n to
dominate the score of the criterion function is motivated by [14]’s choice of
penalty level for Lasso under homoscedasticity and known σ. Here, in order
to account for heteroscedasticity the penalty level λ/n needs to majorate
the score rescaled by the penalty loadings.

Remark 8 (Pivotality in the Parametric Case). In the parametric case,
ri = 0, i = 1, . . . , n, the score does not depend on σ nor β0. Under the
homoscedastic Gaussian assumption, namely Fi = Φ and Γ = I, the score is
in fact completely pivotal conditional on the covariates. This means that in
principle we know the distribution of ‖Γ−1S̃‖∞, or at least we can compute
it by simulation. Therefore the choice of λ can be directly made by the
quantile of ‖Γ−1S̃‖∞, see [12].

In order to achieve Gaussian-like behavior under heteroscedastic non-
Gaussian noise we have to rely on certain conditions on the moment of
the noise, the growth of p relative to n, and also consider α to be either
bounded away from zero or approaches zero not too rapidly. That is, under
these conditions the penalty level λ can be set to

√
nΦ−1(1 − α/[2p]) as in

the Gaussian noise case despite the non-Gaussian noise.
Let the penalty level λ be set to

(C.2) λ = (1 + un)c
√
n{Φ−1(1− α/[2p]) + 1 + un}

and the initial penalty loadings γ̂j,0 are given by

γ̂
(I)
j,0 = max

1≤i≤n
|xij | or γ̂

(II)
j,0 =W{En[x

4
j ]}1/4

where W > {Ē[ǫ4]}1/4/{Ē[ǫ2]}1/2 is the kurtosis parameter discussed in
Remark 7. In this section we focus on the following set of regularities con-
ditions.

Condition D. There exist a finite constant q ≥ 4 such that sup
n≥1

Ē[|ǫ|q] <

∞, and sup
n≥1

max
1≤j≤p

En[|xj |q] <∞.
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Condition R. Let wn =
(
α−1 log nCqĒ[|ǫ|q∨4]

)1/q
/n1/4 < 1/2, and set

un such that un/[1 + un] ≥ wn, un ≤ 1/2. Moreover, for 1 ≤ ℓn → ∞,
assume that

n1/6/ℓn ≥ (Φ−1(1− α/2p) + 1) max
1≤j≤p

(En[|x3j |E[|ǫ3|]])1/3/(En[x
2
jE[ǫ

2]])1/2.

In the following theorem we provide sufficient conditions for the validity
of the penalty level and loadings proposed. For convenience, we use the
notation that Γ̂k = diag(γ̂1,k, . . . , γ̂p,k) and Γ∗ = diag(γ∗1 , . . . , γ

∗
p) where

γ∗j = 1 ∨
√
En[x2j ǫ

2]/
√

En[ǫ2], j = 1, . . . , p.

Lemma 7. Suppose that Conditions ASM, D and R hold. Consider the
choice of penalty level λ in (C.2) and penalty loadings Γk, k ≥ 0, in Algo-
rithm 1. For k = 0 we have that

P

(
λ

n
≥ c‖Γ̂−1

0 S̃‖∞
)
≤ 1− α

(
1 +

A

ℓ3n
+

3

log n

)
− 4(1 + un)Ē[|ǫ|q]

un n1−[2/q]
− η

where η = 0 if γ̂
(I)
j,0 is used, and

η =
CqĒ[|ǫ|q∨8]

(W 4 − Ē[ǫ4])q/4nq/8
∧ 2Ē[|ǫ|q]
n1∧(q/4−1)(W 4 − Ē[ǫ4])q/4

if γ̂
(II)
j,0 is used. Moreover, conditioned on λ/n ≥ c‖Γ̂−1

0 S̃‖∞, provided

2 max
1≤i≤n

‖xi‖∞
(
2

√
Q̂(β0) max

Γ̃=Γ̂0,Γ∗

{
̺c̄(Γ̃) + ζ̄(Γ̃)

1− ζ̄2(Γ̃)

}
+ cs

)
≤ σ

√
En[ǫ2](

√
1 + un−1),

we have λ/n ≥ c‖Γ̂−1
k S̃‖∞ for all k ≥ 1.

The main insight of the analysis is the use of the theory of moderate devi-
ation for self normalized sums, [32] and [24]. The growth condition depends
on the number of bounded moments q of regressors and of the noise term.
Under condition D and α fixed, condition R is satisfied for n sufficiently large
if log p = o(n1/3). This is asymptotically less restrictive than the condition
log p ≤ (q− 2) log n required in [12]. However, condition D is more stringent
than some conditions in [12] thus neither set of condition dominates the
other.
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C.2. Performance in Sobolev classes. Here were provide additional
comparisons to projection estimators under orthonormal random design for
cases where the regression function belongs to the Sobolev space or rear-
ranged versions of the Sobolev space. We will also provide bounds on the
upper bounds on the sparsity s of the solution β0 of the oracle problem and
on the corresponding mean square of the approximation error cs.

Throughout this section we consider the nonparametric model (2.1) where
f is a function from [0, 1] to R, ǫi ∼ N(0, 1) and zi ∼ Uniform(0, 1), which
are independent across i = 1, . . . , n. We will assume that the given basis
{Pj(·), j ≥ 1} is bounded and orthonormal.

The projection estimator with k terms is defined as

(C.3) f̂ (k)(z) =
k∑

j=1

θ̂jPj(z) where θ̂j = En[yPj(z)].

Projection estimators are particularly appealing in orthonormal designs con-
sidered here but are applicable to other designs as well.

Example 1 Series Approximations in Sobolev Balls. Similarly to
[50], for an orthonormal bounded basis {Pj(·)}∞j=1 in L2[0, 1], consider func-
tions f(z) =

∑∞
j=1 θjPj(z) in a Sobolev space S(α,L) for some where α ≥ 1

and L > 0. This space consist of functions whose Fourier coefficients θ satisfy∑∞
j=1 |θj | <∞ and

θ ∈ Θ(α,L) =
{
θ ∈ ℓ2(N) :

∑∞
j=1 j

2αθ2j ≤ L2
}
.

Among the projection estimators defined in (C.3) the oracle projection
estimator picks k∗ to minimize the mean squared error. The following char-
acterize the performance of the projection estimators (C.3).

Lemma 8. Consider the nonparametric model (2.1) where f : [0, 1]→ R

belongs to the Sobolev space S(α,L) with α ≥ 1 and L > 0, and zi ∼
Uniform(0, 1), independent across i = 1, . . . , n. Given a bounded orthonor-
mal basis {Pj(·)}∞j=1, the coefficients of the projection estimator satisfy for

any k ≤
√
n/ log n

En[(f(z)− f̂ (k)(z))2] .P k−2α +
k

n
.

By selecting the optimal value of k∗ which balances (k∗)−2α and k∗/n, the

rate-optimal choice of the number of series terms k∗ satisfies k∗ ≤ ⌊V n
1

2α+1 ⌋
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(which is smaller than
√
n/ log n for n sufficiently large). In turn this implies

an upper bound on the oracle projection estimator risk given by

(k∗)−2α + σ2
k∗

n
. σ2n−

2α
2α+1

which achieves minimax bounds, see [50]. �

Example 2 Series Approximations in Rearranged Sobolev Balls.

Consider functions in a p-Rearranged Sobolev spaceRS(α, p, L). These func-
tions take the form f(z) =

∑∞
j=1 θjPj(z) such that

∑∞
j=1 |θj | < ∞ and

θ ∈ ΘR(α, p, L), where

ΘR(α, p, L) =

{
θ ∈ ℓ2(N) :

∃ permutation Υ : {1, . . . , p} → {1, . . . , p}∑p
j=1 j

2αθ2Υ(j) +
∑∞

j=p+1 j
2αθ2j ≤ L2

}
.

Note that S(α,L) ⊂ RS(α, p, L).
The class of rearranged Sobolev functions reduces significantly the rele-

vance of the order of the basis. For each function f , the permutation Υf

makes the sequence {|θΥf (j)|}
p
j=1 non-increasing. In particular, this weakly

improves upon the error due to truncation in the conventional series esti-
mator described in Example 1 since for any k

p∑

j=k+1

θ2j ≥
∑

j∈{1,...,p}\{Υf (1),...,Υf (k)}
θ2j .

Next we consider using the solution β0 of the oracle problem in the main
text to approximate a regression function f ∈ RS(α, p, L). Recall the oracle
problem of choosing the best s-dimensional subspace to approximate the
regression function. The oracle problem solves s ∈ argmink c

2
k + σ2 k

n where

c2k := min
‖β‖0≤k

En[(f −
∑p

j=1βjPj(z))
2].

Lemma 9 below bounds the sparsity s of the oracle solution β0 and also
bounds the mean squared of the approximation errors. Since

√
Lasso achieves

the oracle rates up to a
√

log(p ∨ n) factor, this result will allow us to
understand the performance of the

√
Lasso estimator for regression functions

in RS(α, p, L).

Lemma 9. Given a bounded orthonormal basis {Pj(·)}∞j=1, consider the
nonparametric model (2.1) where f : [0, 1] → R belongs to a p-Rearranged
Sobolev ball RS(α, p, L) with α ≥ 1 and L > 0, and zi ∼ Uniform(0, 1),
independent across i = 1, . . . , n. We have that with probability 1− o(1)

s ≤ K̄n
1

1+2α , c2s + s/n ≤ K̄n
−2α
1+2α
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where the constant K̄ depends only on α and L.

In general, the rate-optimal choice of the number of series terms is at least

as good as in Example 1, |T | = s ≤ K̄n
1

2α+1 , which implies an upper bound
on the oracle risk given by

s−2α + σ2
s

n
. σ2n−

2α
2α+1 .

However, in many cases the oracle approximation can improve substantially
over the standard series approximation associated with projection estima-
tors. For example, suppose that Fourier coefficients feature the following
pattern θj = 0 for j ≤ j0 and |θj| ≤ Kj−a for j > j0. In this case, the stan-

dard series approximation based on the first k ≤ j0 terms,
∑k

j=1 θjPj(z),
fails to provide any predictive power for f(z), and the corresponding stan-
dard series estimator based on k terms therefore also fails completely. On the
other hand, series approximation based on k > j0 terms carry unnecessary
j0 terms which increase the variance of the series estimator. For instance, if
θn+1 = 1 and θj = 0 for j 6= n+ 1, the standard series estimator fails to be
consistent.

In contrast, the oracle approximation avoids the first unnecessary n term
to achieve consistency. Furthermore, under these regularities conditions (see
Theorem 7), without knowing the exact support, the

√
Lasso estimator β̂

achieves with probability 1− o(1)

{En[(f(z)−
∑p

j=1β̂jPj(z))
2]}1/2 ≤ ‖β̂ − β0‖2,n + cs

. σ
√
s log(p ∨ n)/n+ cs

. n−α/[2α+1]
√

log(p ∨ n).

In the case of the sparse model described above in which the first n com-
ponents are not relevant, the adaptivity of

√
Lasso allows it to preserve its

rate while no series projection estimator will be consistent. �

APPENDIX D: DEFERRED PROOFS FOR RESULTS AND
ADDITIONAL RESULTS FOR SECTION 4

D.1. Deferred Proofs for Results in Section 4.

Proof of Corollary 2. Note that

(D.1)
Q̂(β̂)− σ2 = Q̂(β̂)− Q̂(β0) +

(
En[σ

2ǫ2i + 2σrǫ + r2]− σ2
)

= {Q̂(β̂)− Q̂(β0)}+ σ2En[ǫ
2 − E[ǫ2]] + 2σEn[rǫ] + En[r

2].
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The second term in (D.1) is standard since Ē[|ǫ|q] ≤ C for q > 4. Because
E[{En[ǫ

2 − E[ǫ2]]}2] = ξ2n/n, by Chebyshev’s inequality we have |En[ǫ
2 −

E[ǫ2]]| ≤ ξn/
√
δn with probability 1− δ.

Using Theorem 7, for all n ≥ n0, with probability at least 1 − α{1 +
C̄/ log n}− C̄{n−1/2 log n} the conditions for Theorem 2 hold. These condi-
tions and the bound on the second term in (D.1) imply that for n0 sufficiently
large |Q̂1/2(β0)−σ| ≤ σ/2. Therefore, by Theorem 2 we can bound the first
term in (D.1) as

∣∣∣Q̂(β̂)− Q̂(β0)
∣∣∣ = |Q̂1/2(β̂)− Q̂1/2(β0)| · |Q̂1/2(β̂) + Q̂1/2(β0)|
≤ 2Q̂1/2(β0)

(̺c̄+ζ̄)2

1−ζ̄2

(
2Q̂1/2(β0) + 2Q̂1/2(β0)

(̺c̄+ζ̄)2

1−ζ̄2

)

≤ σ2{C ′s log(p/α)/n}

where the last bound follows from Condition P.
The last term in (D.1) satisfies En[r

2] ≤ c2s ≤ σ2C ′s/n by Condition P.
The third term in (D.1) can be bound using Chebyshev’s inequality and that

Ē[{En[ǫr]}2] = Ē[ǫ2r2]/n ≤ c2s max
1≤i≤n

E[ǫ2i ]/n ≤ c2sĒ[|ǫ|q]2/qn−1+2/q.

Those imply that 2σ|En[rǫ]| ≤ 2σcsn
−1/2+1/q/δ1/2 ≤ σ2C̄s1/2n−1+1/q/δ1/2

with probability 1− δ.
For the second result of the theorem, note that Conditions ASM, P and

s2 log2(p ∨ n) ≤ Cn/ log n, implies that ̺c̄ + ζ̄ + cs ≤ C ′√s log(p ∨ n)/n ≤
C ′′n−1/4/ log n = o(n−1/4). We expand as before

n1/2
(
Q̂(β̂)− σ2

)
= n1/2

(
Q̂(β̂)− Q̂(β0)

)
+ n1/2

(
En[σ

2ǫ2i + 2σrǫ + r2]− σ2
)

= n1/2
(
Q̂(β̂)− Q̂(β0)

)
+ n1/2

(
σ2En[ǫ

2 − E[ǫ2]] + 2σEn[rǫ] + En[r
2]
)
.

By the first part and ̺c̄ + ζ̄ + cs ≤ C ′√s log(p ∨ n)/n ≤ C ′′n−1/4/ log n =
o(n−1/4) we have

n1/2
∣∣∣Q̂(β̂)− Q̂(β0)

∣∣∣ .P n1/2|̺c̄ + ζ̄|2 = o(1)

n1/2En[r
2] .P n1/2c2s . n1/2s/n = o(1)

n1/2|En[rǫ]| .P n1/2csn
1/q/n1/2 . n1/2s1/2n−1+1/q = o(1).

To control the term σ2n1/2(En[ǫ
2 − E[ǫ2]]), since Ē[ǫq] < C, by Lemma 4

with δ = q/4− 1 > 0 we have

(D.2)
n1/2En[ǫ

2 − E[ǫ2]]√
En[(ǫ2 − E[ǫ2])2]

⇒ N(0, 1).
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Since Ē[ǫq] < C for q > 4 (assume w.l.o.g q ≤ 8), by Vonbahr-Esseen’s LLN,
we have for any t > 0

P (|En[{ǫ2 − E[ǫ2]}2]− ξ2n| > t) ≤ Ē[|{ǫ2 − E[ǫ2]}|q/2]
tq/4nq/4−1

≤ 4C

tq/4nq/4−1
= o(1).

The result follows from (D.2). �

D.2. Proofs of Additional Results for Section 4 Concerning Penalty

Loadings.

Proof of Lemma 7. Let tn = Φ−1(1− α/2p) and recall we have

wn = (α−1 log nCqĒ[|ǫ|q∨4])1/q < 1/2

under Condition R. Thus
(D.3)

P
(
λ/n ≥ c‖Γ̂−1

k S̃‖∞
)
= P

(
(1 + un)(tn + 1 + un) ≥

√
n‖Γ̂−1

k S̃‖∞
)

≤ P (σ
√

En[ǫ2] ≤
√
1 + un

√
En[(σǫ + r)2])+

+P (1 + un ≥
√
n‖Γ̂−1

k En[xr]‖∞/σ
√

En[ǫ2])+

+P (tn ≥ max1≤j≤p
√
n|En[xjǫ]|/

√
En[x2jǫ

2])+

+P (
√
1 + unγ̂j,k ≥

√
En[x

2
jǫ

2]/En[ǫ2], j = 1, . . . , p).

Next we proceed to bound each term. We shall rely on the following lemma:

Lemma 10. Let r1, . . . , rn be fixed and assume ǫi are independent zero
mean random variables such that Ē[ǫ2] = 1. Suppose that there is q > 2 such
that Ē[|ǫ|q] <∞. Then, for un > 0 we have

P
(√

En[σ2ǫ2] >
√
1 + un

√
En[(σǫ + r)2]

)
≤ min

v∈(0,1)
ψ(v) +

2(1 + un) max
1≤i≤n

E[ǫ2i ]

un(1− v) n
,

where ψ(v) :=
CqĒ[|ǫ|q∨4]

vqnq/4 ∧ 2Ē[|ǫ|q]
n1∧(q/2−1)vq/2

. Further we have max1≤i≤n E[ǫ
2
i ] ≤

n2/q(Ē[|ǫ|q])2/q .

First Term of (D.3). By Lemma 10 with v = wn we have that

P (σ
√

En[ǫ2] ≤
√
1 + un

√
En[(σǫ + r)2]) ≤ ψ(wn) +

2(1+un)max1≤i≤n E[ǫ2i ]
(1−wn)un n

≤ α
logn + 4(1+un)(Ē[|ǫ|q])2/q

un n1−[2/q] .

Second Term of (D.3). By Lemma 6 and using that γ̂j,k ≥ 1,

‖Γ̂−1
k En[xr]‖∞ ≤ ‖En[xr]‖∞ ≤ σ/

√
n.
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Thus, since [2un + u2n]/[1 + un]
2 ≥ un/[1 + un] ≥ wn, we have

P ((1 + un)σ
√

En[ǫ2] ≥
√
n‖Γ̂−1

k En[xr]‖∞) ≤ P (
√

En[ǫ2] ≥ 1/(1 + un))

≤ P (|En[ǫ
2]− 1| ≥ 2un+u2

n

[1+un]2
)

≤ ψ(wn) ≤ α/ logn.

Third Term of (D.3). Let t̄ = min1≤j≤p(En[x
2
jE[ǫ

2]])1/2/(En[|x3j |E[|ǫ3|]])1/3 >
0. By Lemma 4 with δ = 1, since tn ≤ t̄ n1/6 − 1 by Condition R, we have
that there is an universal constant A, such that

P

(
max1≤j≤p

√
n|En[xjǫ]|√
En[x2

jǫ
2]
> tn

)
≤ p max1≤j≤p P

(
√
n|En[xjǫ]|√
En[x2

jǫ
2]
> tn

)

≤ 2p Φ̄(tn)
(
1 + A

ℓ3n

)
≤ α

(
1 + A

ℓ3n

)

where the last inequality follows from the definition of tn.
Fourth Term of (D.3). This term determines η. Let Γ̂k = diag(γ̂1,k, . . . , γ̂p,k).
We are interested on the event

(D.4)
√
1 + unγ̂j,0 ≥

√
En[x2j ǫ

2]/
√

En[ǫ2] for all j = 1, . . . , p.

For γ̂j,0 = γ̂
(I)
j,0 = max1≤i≤n |xij |, (D.4) follows automatically so η = 0. For

the initial choice of γ̂j,0 = γ̂
(II)
j,0 =W (En[x

4
j ])

1/4, (D.4) follows provided that√
1 + unW

√
En[ǫ2] ≥ (En[ǫ

4])1/4. We bound this probability

P (
√
1 + unW

√
En[ǫ2] < (En[ǫ

4])1/4) ≤ P (En[ǫ
4] > W 4) + P

(
En[ǫ

2] < 1
1+un

)

≤ CqĒ[|ǫ|q∨8]

vqnq/8 ∧ 2Ē[|ǫ|q]
n1∧(q/4−1)vq/4 + ψ

(
un

1+un

)

where v4 = (W 4 − Ē[ǫ4]) ∨ 0. The result follows since un/[1 + un] ≥ wn so
that ψ(un/[1 + un]) ≤ α/ log n.

To show the second result of the theorem, consider the iterations of Al-
gorithm 1 for k ≥ 1 conditioned on λ/n ≥ c‖Γ̂−1

k S̃‖∞ for k = 0. First we
establish a lower bound on γ̂j,k. Let x∞j = max1≤i≤n |xij |,

γ̂j,k = 1 ∨
√

En[x2
j (y−x′β̂)2]√

En[(y−x′β̂)2]
≥

√
En[x2

jǫ
2]−

√
En[x2

j{x′(β̂−β0)}2]/σ−
√

En[x2
jr

2]/σ√
En[ǫ2]+‖β̂−β0‖2,n/σ+

√
En[r2]/σ

≥
√

En[x2
jǫ

2]−x∞j(‖β̂−β0‖2,n+cs)/σ√
En[ǫ2]+(‖β̂−β0‖2,n+cs)/σ

.

Since γ̂j,k ≥ 1, it suffices to consider the case that En[ǫ
2] ≤ En[x

2
j ǫ

2]. There-

fore we have that (1 + ∆)γj ≥
√

En[x2jǫ
2]/
√

En[ǫ2] is implied by

(D.5) ∆ ≥ 2(‖β̂ − β0‖2,n + cs)x∞j/{σ
√

En[ǫ2]}.
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The choice of ∆ =
√
1 + un − 1 is appropriate under the extra condition

assumed in the theorem and by Theorem 1 to bound ‖β̂ − β0‖2,n. Thus,
λ/n ≥ c‖Γ̂−1

k S̃‖∞ for k = 1.
Next we establish an upper bound on γ̂j,k.

γ̂j,k = 1 ∨
√

En[x2
j (y−x′β̂)2]√

En[(y−x′β̂)2]
≤

√
En[x2

jǫ
2]+

√
En[x2

j{x′(β̂−β0)}2]/σ+
√

En[x2
jr

2]/σ√
En[ǫ2]−‖β̂−β0‖2,n/σ−

√
En[r2]/σ

≤
√

En[x2
jǫ

2]+x∞j(‖β̂−β0‖2,n+cs)/σ√
En[ǫ2]−(‖β̂−β0‖2,n+cs)/σ

.

Under the conditions that max1≤i≤n ‖xi‖∞(‖β̂−β0‖2,n+cs)/σ ≤ un
√

En[ǫ2]/2,
we have

γ̂j,k ≤ 1 ∨
√

En[x2
jǫ

2]+un

√
En[ǫ2]/2√

En[ǫ2]−un

√
En[ǫ2]/2

≤ 1 ∨ 1+un/2
1−un/2

√
En[x2

jǫ
2]√

En[ǫ2]
≤ (1+un/2)2

1−un/2
γ̂j,0.

Let Γ∗ = diag(γ∗1 , . . . , γ
∗
p) where γ∗j = 1 ∨

√
En[x2j ǫ

2]/
√

En[ǫ2], and re-

call that (2 + un)/(2 − un) ≤ 2 since un ≤ 2/3. We have that ̺c̄(Γ̂k) ≤
̺c̄‖Γ̂kΓ∗−1‖∞(Γ∗) ≤ ̺2c̄(Γ∗).

Also, letting δ̃ = Γ∗−1Γ̂kδ, note that

(D.6)

κ̄(Γ̂k) = min‖Γ̂kδTc‖1<‖Γ̂kδT ‖1

√
s‖δ‖2,n

‖Γ̂kδT ‖1−‖Γ̂kδTc‖1
= min‖Γ∗ δ̃Tc‖1<‖Γ∗ δ̃T ‖1

√
s‖Γ̂−1

k Γ∗δ̃‖2,n
‖Γ∗δ̃T ‖1−‖Γ∗δ̃Tc‖1

≥ κ̄(Γ∗)/‖(Γ̂−1
k Γ∗)−1‖∞.

Thus by Theorem 1 we have that the estimator with β̂ based on Γ̂k, k = 1,
also satisfies (D.5) by the extra condition assumed in the theorem. Thus the
same argument established k > 1. �

Proof of Lemma 10. Let cs = (En[r
2])1/2 and an = 1− [1/(1 + un)] =

un/(1 + un). We have that
(D.7)
P (En[σ

2ǫ2] > (1 + un)En[(σǫ + r)2]) = P (2En[ǫr] < −c2s − anEn[σ
2ǫ2]).

By Lemma 12 we have

P (
√

En[ǫ2] < 1− v) ≤ P (|En[ǫ
2]− 1| > v) ≤ ψ(v).

Thus,

P (En[σ
2ǫ2] > (1+un)En[(σǫ+r)

2]) ≤ ψ(v)+P (2En[σǫr] < −c2s−anσ2(1−v)).
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Since ǫi’s are independent of ri’s, we have

E[(2En[σǫr])
2] = 4σ2Ē[ǫ2r2]/n ≤ 4σ2

n
min

{
c2s max

1≤i≤n
E[ǫ2i ], max

1≤i≤n
r2i

}
.

By Chebyshev inequality we have

P
(√

En[σ2ǫ2] >
√
1 + un

√
En[(σǫ + r)2]

)
≤ ψ(v) +

4σ2c2s max
1≤i≤n

E[ǫ2i ]/n

(c2s + anσ2(1− v))2

≤ ψ(v) +
2(1+un) max

1≤i≤n
E[ǫ2i ]

(1−v)unn
.

The result follows by minimizing over v ∈ (0, 1).
Further, we have

max
1≤i≤n

E[ǫ2i ] ≤ E[ max
1≤i≤n

ǫ2i ] ≤ (E[ max
1≤i≤n

|ǫqi |])2/q ≤ n2/q(Ē[|ǫq|])2/q.

�

D.3. Proofs of Additional Results for Section 4 Concerning Per-

formance in Sobolev Spaces.

Proof of Lemma 8. The proof used the bound (D.9) in the proof of
Lemma 9. With probability 1 − o(1) En[(f −

∑k
j=1 θjPj(z))

2] ≤ K̄k−2α

for any k ≤
√
n/ log n ∧ n1− 1

2α , and also max1≤j 6=j′≤n |En[Pj(z)Pj′(z)]| ≤
C
√

log n/n. Therefore, for k ≤
√
n/ log n, with probability 1− o(1) we have

En[(f − f̂ (k))2] ≤ 2En[(
∑k

j=1(θj − θ̂jPj(z))
2] + 2En[(f −

∑k
j=1 θjPj(z))

2]

≤ 2En[
∑k

j=1(θj − θ̂j)2]maxj,i |Pj(zi)|2

+
(∑k

j=1 |θ̂j − θj|
)2
C
√
log n/n+ 2K̄k−2α

By Markov’s inequality and Lemma 11 we have

En[
∑k

j=1
(θj − θ̂j)2] .P k−2α +

k

n
.

�

Lemma 11. Consider the nonparametric model (2.1) where f : [0, 1] →
R belongs to the Sobolev space S(α,L) with α ≤ 1 and L > 0, and zi ∼
Uniform(0, 1), independent across i = 1, . . . , n. Given a bounded orthonor-
mal basis {Pj(·)}∞j=1, the coefficients of the projection estimator satisfy for
any k ≤ n

E[‖θ̂(k) − θ‖2|z1, . . . , zn] .P k−2α +
k

n

where θ̂(k) = (θ̂1, . . . , θ̂k, 0, 0, 0, . . .).



√
LASSO FOR NONPARAMETRIC REGRESSION 15

Proof of Lemma 8. Let Z = [z1, . . . , zn] and recall that yi = f(zi) +
σǫi, E[ǫi] = 0, E[ǫ2i ] = 1. Essentially by Proposition 1.16 of [50] we have

E[θ̂j |Z] = θj + γj , where γj = En[f(z)Pj(z)] − θj, and E[(θ̂j − θj)
2|Z] =

En[Pj(z)
2]σ2/n + γ2j .

Since f(z) =
∑

m≥1 θmPm(z) for any z ∈ [0, 1], we have for 1 ≤ j ≤ k ≤ k̄

γj =
∑∞

m=1 θmEn[Pm(z)Pj(z)]− θj

= θj(En[P
2
j (z)]− 1) +

k̄∑

m=1,m 6=j

θmEn[Pm(z)Pj(z)]+

+
∑

m≥k̄+1 θmEn[Pm(z)Pj(z)].

Next, note that θ satisfies
∑∞

m=1m
2αθ2m ≤ L, we have

(D.8)∑k̄
m=1 |θm| ≤ (

∑k̄
m=1m

2αθ2m)1/2(
∑k̄

m=1m
−2α)1/2 ≤ Cα,LL

1/2,∑∞
m=k̄ |θm| ≤ (

∑∞
m=1m

2αθ2m)1/2(
∑∞

m=k̄m
−2α)1/2 ≤ Cα,LL

1/2k̄−α+1/2.

For convenience define M = {1, . . . , k̄} so that

k∑

j=1

γ2j .

k∑

j=1

(En[θ
′
MPM (z)Pj(z)]− θj)2 +

k∑

j=1

∑

m≥k̄+1

|θm| .P
k

n
+ kk̄−α+1/2.

Indeed, note that since the basis is bounded and (D.8) holds, we have

|θ′MPM (zi)Pj(zi)− θj| . ‖θM‖1 . 1,

and thus Zj := En[θ
′
MPM (z)Pj(z) − θj ] satisfies EZ [Zj ] = 0 and EZ [Z

2
j ] .

1/n. Hence, by Markov’s inequality we have

k∑

j=1

Z2
j .P

k

n
.

For some constant V > 0, setting k =
⌊
V n1/[2α+1]

⌋
, k̄ = n, we have

k∑

j=1

En[Pj(z)
2]
σ2

n
. max

1≤j≤k
En[Pj(z)

2]
σ2k

n
. σ2n−1+1/[2α+1] . n−2α/[2α+1],

∑∞
m=k+1 θ

2
j . k−2α . n−2α/[2α+1],∑k

m=1 γ
2
m .P

k
n + kn−2α+1 . n−2α/[2α+1]

where we used the fact that the basis is bounded, max1≤j≤k En[Pj(z)
2] . 1,

and kn−2α+1 ≤ k/n for α ≥ 1. Finally,

E[‖θ̂(k) − θ‖2|Z] .
∑k

j=1En[Pj(z)
2]σ

2

n +
∑k

m=1 γ
2
m +

∑
m≥k+1 θ

2
m

.P
k
n + k−2α
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by the relations above.
�

Proof of Lemma 9. For the sake of exposition, without loss of gener-
ality, assume that the components are already rearranged. Note that

c2k ≤ En[(f −
∑k

j=1 θjPj(z))
2]

= En[(
∑∞

j=k+1 θjPj(z))
2]

≤ 2En[(
∑n

j=k+1 θjPj(z))
2] + 2En[(

∑∞
j=n+1 θjPj(z))

2]

≤ 2
∑n

j=k+1 θ
2
jEn[Pj(z)

2] + 2
(∑n

j=k+1 |θj|
)2

max
1≤j 6=j′≤n

|En[Pj(z)Pj′(z)]|

+2
(∑∞

j=n+1 |θj|
)2

maxj,z |Pj(z)|2

Since the basis is bounded, maxj En[Pj(z)
2] ≤ K1 and maxj,z |Pj(z)|2 ≤

K2. Because the basis is bounded and orthonormal, E[Pj(z)Pj′(z)] = 0 for
j 6= j′, for some constant K3, with probability 1− o(1), by Lemma 19 in [4],
we have

max
1≤j,j′≤n

∣∣En[Pj(z)Pj′(z)]
∣∣ ≤ K3

√
log n

n
.

Also, by f ∈ RS(α, p, L) we have

n∑

j=k+1

θ2jEn[Pj(z)
2] ≤ K1

n∑

j=k+1

θ2j ≤ K1k
−2α

n∑

j=k+1

j2αθ2j ≤ K1L
2k−2α

∞∑

j=k+1

|θj| ≤ {
∞∑

j=k+1

j2αθ2j}1/2{
∞∑

j=k+1

j−2α}1/2 ≤ Lk−α+1/2/
√
2α

Therefore, with probability at least 1− o(1)

c2k ≤ K1L
2k−2α + 2L2k−2α+1

√
log n/n+ 2L2n−2α+1

Consider the set of indices I = {k ∈ N : k
√

log n/n ≤ 1, k2α ≤ n2α−1}.
For all k ∈ I, with probability 1− o(1) we have

(D.9) c2k ≤ En[(f −
∑k

j=1
θjPj(z))

2] ≤ K̄k−2α.

Note that for any constant C, k∗ = Cn1/{1+2α} ∈ I for n sufficiently large
since α ≥ 1. Thus,

c2s + s/n ≤ K̄k−2α
∗ + k∗/n ≤ C ′n−2α/{1+2α}.

In particular, this implies s ≤ C ′n1/{1+2α}. �
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APPENDIX E: VARIOUS TECHNICAL LEMMAS

E.1. Lemmas bounding various empirical moments of ǫi.

Lemma 12. Let ǫi, i = 1, . . . , n, be independent random variables such
that Ē[ǫ2] = 1. Assume that there is q > 2 such that Ē[|ǫ|q] <∞. Then there
is a constant Cq, that depends on q only, such that for v > 0 we have

P (|En[ǫ
2]− 1| > v) ≤ ψ(v) := CqĒ[|ǫ|q∨4]

vqnq/4
∧ 2Ē[|ǫ|q∧4]
n1∧(q/2−1)vq/2

.

Proof of Lemma 12. This follows by by the application of either Rosen-
thal’s inequality [47] for the case of q > 4 or Vonbahr-Esseen’s inequalities
[58] for the case of 2 < q ≤ 4, and taking the best bound. �

Lemma 13. Consider ǫi ∼ t(2). Then, for τ ∈ (0, 1) we have that:
(i) P (En[ǫ

2] ≥ 2
√
2/τ + log(4n/τ)) ≤ τ/2.

(ii) For 0 < a < 1/6, we have P (En[ǫ
2] ≤ a log n) ≤ 1

n1/2(1/6−a)2
.

(iii) For un ≥ 0 and 0 < a < 1/6, we have

P
(√

En[σ2ǫ2] ≤ (1 + un)
√
En[(σǫ + r)2]

)
≤ 4σ2c2s log(4n/τ)

n(c2s+[un/(1+un)]σ2a log n)2+

+ 1
n1/2(1/6−a)2

+ τ
2 .

Proof of Lemma 13. To show (i) we will establish a bound on q(En[ǫ
2], 1−

τ). Recall that for a t(2) random variable, the cumulative distribution func-
tion and the density function are given by:

F (x) =
1

2

(
1 +

x√
2 + x2

)
and f(x) =

1

(2 + x2)3/2
.

For any truncation level tn ≥
√
2 we have

(E.1)

E[ǫ2i 1{ǫ2i ≤ tn}] = 2
∫ √

2
0

x2dx
(2+x2)3/2

+ 2
∫ √

tn√
2

x2dx
(2+x2)3/2

≤ 2
∫ √

2
0

x2dx
23/2

+ 2
∫ √

tn√
2

x2dx
x3

≤ log tn.

E[ǫ4i 1{ǫ2i ≤ tn}] ≤ 2
∫ √

2
0

x4dx
23/2

+ 2
∫ √

tn√
2

x4dx
x3 ≤ tn.

E[ǫ2i 1{ǫ2i ≤ tn}] ≥ 2
∫ 1
0

x2dx
33/2

+ 2
∫ √

2
1

x2dx
43/2

+ 2
2
√
2

∫√
tn√
2

dx
x

≥ log tn
2
√
2
.

Also, because 1−
√
1− v ≤ v for every 0 ≤ v ≤ 1,

(E.2) P (|ǫi|2 > tn) =

(
1−

√
tn

2 + tn

)
≤ 2/(2 + tn).
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Thus, by setting tn = 4n/τ and t = 2
√
2/τ we have by [27], relation (7.5),

(E.3)
P (|En[ǫ

2]− E[ǫ2i 1{ǫ2i ≤ tn}]| ≥ t) ≤
E[ǫ4i 1{ǫ2i≤tn}]

nt2 + nP (|ǫ2i | > tn)
≤ tn

nt2
+ 2n

2+tn
≤ τ/2.

Thus, (i) is established.
To show (ii), for 0 < a < 1/6, we have

(E.4)
P (En[ǫ

2] ≤ a logn) ≤ P (En[ǫ
21{ǫ2 ≤ n1/2}] ≤ a logn)

≤ P (|En[ǫ
21{ǫ2 ≤ n1/2}]− E[ǫ2i 1{ǫ2i ≤ n1/2}]| ≥ (16 − a) logn)

≤ 1
n1/2(1/6−a)2

by Chebyshev’s inequality and since E[ǫ2i 1{ǫ2i ≤ n1/2}] ≥ (1/6) log n.
To show (iii), let an = [(1+un)

2− 1]/(1 +un)
2 = un(2+un)/(1+un)

2 ≥
un/(1 + un) and note that by (E.1), (E.3), and (E.4) we have

P
(√

En[σ2ǫ2] > (1 + un)
√
En[(σǫ + r)2]

)
= P (2σEn[ǫr] > c2s + anEn[σ

2ǫ2])

≤ P (2σEn[ǫr1{ǫ2 ≤ tn}] > c2s + anσ
2a logn) + P (En[ǫ

2] ≤ a logn) + nP (ǫ2i ≤ tn)
≤ 4σ2c2s log tn

n(c2s+anσ2a logn)2 + 1
n1/2(1/6−a)2

+ τ/2.

�

APPENDIX F: PROBABILITY INEQUALITIES USED

F.1. Moment Inequalities.

Lemma 14 (Rosenthal Inequality). Let X1, . . . ,Xn be independent zero-
mean random variables, then for r ≥ 2

E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

r]
≤ C(r)max





n∑

t=1

E[|Xi|r],
(

n∑

t=1

E[X2
i ]

)r/2


 .

Corollary 3 (Rosenthal LLN). Let r ≥ 2, and consider the case of
independent and identically distributed zero-mean variables Xi with E[X2

i ] =
1 and E[|Xi|r] bounded by C. Then for any ℓn > 0

Pr

( |∑n
i=1Xi|
n

> ℓnn
−1/2

)
≤ 2C(r)C

ℓrn
,

where C(r) is a constant depend only on r.

Remark. To verify the corollary, note that by Rosenthal’s inequality we
have E [|∑n

i=1Xi|r] ≤ Cnr/2. By Markov’s inequality,

P

( |
∑n

i=1Xi|
n

> c

)
≤ C(r)Cnr/2

crnr
≤ C(r)C

crnr/2
,

so the corollary follows. We refer to [47] for proofs.
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Lemma 15 (Vonbahr-Esseen inequality). Let X1, . . . ,Xn be independent
zero-mean random variables. Then for 1 ≤ r ≤ 2

E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

r]
≤ (2− n−1) ·

n∑

k=1

E[|Xk|r].

We refer to [58] for proofs.

Corollary 4 (Vonbahr-Esseen’s LLN). Let r ∈ [1, 2], and consider the
case of identically distributed zero-mean variables Xi with E|Xi|r bounded
by C. Then for any ℓn > 0

Pr

( |∑n
i=1Xi|
n

> ℓnn
−(1−1/r)

)
≤ 2C

ℓrn
.

Remark. By Markov’s and Vonbahr-Esseen’s inequalities,

Pr

( |
∑n

i=1Xi|
n

> c

)
≤ E [|

∑n
i=1Xi|r]
crnr

≤ (2n − 1)E[|Xi|r]
crnr

≤ 2C

crnr−1
,

which implies the corollary.

F.2. Moderate Deviations for Self-Normalized Sums. We shall
be using the following result based on Theorem 7.4 in [24]. (This is restated
here for completeness.)

Lemma 16 (Moderate deviations for self-normalized sums). Let X1,n,. . .,
Xn,n be a triangular array of i.n.i.d, zero-mean random variables, and δ ∈
(0, 1]. Let

Sn,n =

n∑

i=1

Xi,n, V
2
n,n =

n∑

i=1

X2
i,n and Mn =

( 1n
∑n

i=1 EX
2
i,n)

1/2

( 1n
∑n

i=1 E|Xi,n|2+δ)1/{2+δ} > 0.

Suppose that for some ℓn →∞ such that n
δ

2(2+δ)Mn/ℓn ≥ 1. Then, for some

absolute constant A, uniformly on 0 ≤ x ≤ n
δ

2(2+δ)Mn/ℓn − 1, we have
∣∣∣∣
P (|Sn,n/Vn,n| ≥ x)

2Φ̄(x)
− 1

∣∣∣∣ ≤
A

ℓ2+δ
n

→ 0.

APPENDIX G: MONTE-CARLO PERFORMANCE OF
√
LASSO

G.1. Estimation performance of
√

Lasso, homoscedastic case.

In this section we use Monte carlo experiments to assess the finite-sample
performance of the following estimators:
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• the (infeasible) Lasso, which knows σ (which is unknown outside the
experiments),

• ols post Lasso, which applies ols to the model selected by (infeasible)
Lasso,

•
√
Lasso, which does not know σ, and

• ols post
√
Lasso, which applies ols to the model selected by

√
Lasso.

In the homoscedastic case there is no need to estimate the loadings so we
set γ̂j = 1 for all j = 1, . . . , p. We set the penalty level for Lasso as the
standard choice in the literature, λ = c2σ

√
nΦ−1(1 − α/2p), and

√
Lasso

according to λ = c
√
nΦ−1(1 − α/2p), both with 1− α = .95 and c = 1.1 to

both estimators.
We use the linear regression model stated in the introduction as a data-

generating process, with either standard normal or t(4) errors:

(a) ǫi ∼ N(0, 1) or (b) ǫi ∼ t(4)/
√
2,

so that E[ǫ2i ] = 1 in either case. We set the regression function as

(G.1) f(xi) = x′iβ
∗
0 , where β∗0j = 1/j3/2, j = 1, . . . , p.

The scaling parameter σ vary between 0.25 and 5. For the fixed design, as
the scaling parameter σ increases, the number of non-zero components in the
oracle vector s decreases. The number of regressors p = 500, the sample size
n = 100, and we used 100 simulations for each design. We generate regressors
as xi ∼ N(0,Σ) with the Toeplitz correlation matrix Σjk = (1/2)|j−k|.

We present the results of computational experiments for designs a) and
b) in Figures 1, 2, 3. The left plot of each figure reports the results for
the normal errors, and the right plot of each figure reports the results for
t(4) errors. For each model, the figures show the following quantities as a
function of scaling parameter σ for each estimator β̃:

• Figure 1 – the average empirical risk, E[‖β̃ − β0‖2,n],
• Figure 2 – the norm of the bias, ‖E[β̃ − β0]‖, and
• Figure 3 – the average number of regressors selected, E[|support(β̃)|].
Figure 1, left panel, shows the empirical risk for the Gaussian case. We see

that, for a wide range of the scaling parameter σ, Lasso and
√
Lasso perform

similarly in terms of empirical risk, although standard Lasso outperforms
somewhat

√
Lasso. At the same time, ols post Lasso outperforms slightly

ols post
√
Lasso for larger signal strengths. This is expected since

√
Lasso

over regularize to simultaneously estimate σ when compared to Lasso (since

it essentially uses

√
Q̂(β̂) as an estimate of σ). In the nonparametric model
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Fig 1. The average empirical risk of the estimators as a function of the scaling parameter
σ.
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Fig 2. The norm of the bias of the estimators as a function of the scaling parameter σ.

considered here, the coefficients are not well separated from zero. These two
issues combined leads to a smaller selected support.

Overall, the empirical performance of
√
Lasso and ols post

√
Lasso achieve

its goal. Despite not knowing σ,
√
Lasso performs comparably to the stan-

dard Lasso that knows σ. These results are in close agreement with our
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Fig 3. The average number of regressors selected as a function of the scaling parameter
σ.

theoretical results, which state that the upper bounds on empirical risk for√
Lasso asymptotically approach the analogous bounds for standard Lasso.
Figures 2 and 3 provide additional insight into the performance of the

estimators. On the one hand, Figure 2 shows that the finite-sample differ-
ences in empirical risk for Lasso and

√
Lasso arise primarily due to

√
Lasso

having a larger bias than standard Lasso. This bias arises because
√
Lasso

uses an effectively heavier penalty. Figure 3 shows that such heavier penalty
translates into

√
Lasso achieving a smaller support than Lasso on average.

Finally, Figure 1, right panel, shows the empirical risk for the t(4) case. We
see that the results for the Gaussian case carry over to the t(4) case. In fact,
the performance of Lasso and

√
Lasso under t(4) errors nearly coincides with

their performance under Gaussian errors. This is exactly what is predicted
by our theoretical results.

G.2. Estimation performance of
√

Lasso, heteroscedastic case.

In this section we use Monte carlo experiments to assess the finite-sample
performance under heteroscedastic errors of the following estimators:

• the (infeasible) oracle estimator,
• heteroscedastic

√
Lasso (as Algorithm 1),

• ols post heteroscedastic
√
Lasso, which applies ols to the model selected

by heteroscedastic
√
Lasso.

• the (infeasible) ideal heteroscedastic
√
Lasso (which uses exact load-
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ings),
• ols post ideal heteroscedastic

√
Lasso, which applies ols to the model

selected by ideal heteroscedastic
√
Lasso.

We use the linear regression model stated in the introduction as a data-
generating process. We set the regression function as

(G.2) f(xi) = x′iβ
∗
0 , where β∗0j = 1/j2, j = 1, . . . , p.

The error term ǫi is normal with zero mean and variance given by:

σ2i = σ2
|1 + x′iβ

∗
0 |2

En[{1 + x′β∗0}2

where the scaling parameter σ vary between 0.1 and 1. For the fixed design,
as the scaling parameter σ increases, the number of non-zero components
in the oracle vector s decreases. The number of regressors p = 200, the
sample size n = 200, and we used 500 simulations for each design. We
generate regressors as xi ∼ N(0,Σ) with the Toeplitz correlation matrix
Σjk = (1/2)|j−k|. We set the penalty level

√
Lasso according to the recom-

mended parameters of Algorithm 1.
Figure 4 displays the average sparsity achieve by each estimator and the

average empirical risk. The heteroscedastic
√
Lasso exhibits a stronger de-

gree of regularization. This is reflected by the smaller number of components
selected and the substantially larger empirical risk. Nonetheless, the selected
support seems to achieve good approximation performance since the ols post
heteroscedastic

√
Lasso performs very close to its ideal counterpart and to

the oracle.

APPENDIX H: COMPARING COMPUTATIONAL METHODS FOR
LASSO AND

√
LASSO

Next we proceed to evaluate the computational burden of
√
Lasso relative

to Lasso, from computational and theoretical perspective.

H.1. Computational performance of
√

Lasso relative to Lasso.

Since model selection is particularly relevant in high-dimensional problems,
the computational tractability of the optimization problem associated with√
Lasso is an important issue. It will follow that the optimization problem

associated with
√
Lasso can be cast as a tractable conic programming prob-

lem. Conic programming consists of the following optimization problem

minx c(x)
A(x) = b
x ∈ K
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Fig 4. For each estimator the top figure displays the corresponding sparsity and the bot-
tom figure displays the empirical risk as a function of the scaling parameter σ. The solid
line corresponds to the oracle estimator, the dotted line corresponds to the heteroscedastic√
Lasso, the dashed-dot line corresponds to the ideal heteroscedastic

√
Lasso. The dotted

line with circles corresponds to ols post heteroscedastic
√
Lasso and the dashed-dotted line

with circles corresponds to ols post ideal heteroscedastic
√
Lasso.

where K is a cone, c is a linear functional, A is a linear operator, and b is
an element in the counter domain of A. We are particularly interested in
the case where K is also convex. Convex conic programming problems have
greatly extended the scope of applications of linear programming problems5

in several fields including optimal control, learning theory, eigenvalue op-

5The relevant cone in linear programs is the non-negative orthant, minw{c′w : Aw =
b, w ∈ IRk

+}.
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timization, combinatorial optimization and others. Under mild regularities
conditions, duality theory for conic programs has been fully developed and
allows for characterization of optimal conditions via dual variables, much
like linear programming problems.

In the past two decades, the study of the computational complexity and
the developments of efficient computational algorithms for conic program-
ming have played a central role in the optimization community. In partic-
ular, for the case of self-dual cones, which encompasses the non-negative
orthant, second-order cones, and the cone of semi-definite positive matri-
ces, interior-point methods have been highly specialize. A sound theoretical
foundation, establishing polynomial computational complexity [43, 45], and
efficient software implementations [51] made large instances of these prob-
lems computational tractable. More recently, first-order methods have also
been propose to approximately solve even larger instances of structured conic
problem [41, 42, 39].

It follows that (2.5) can be written as a conic programming problem whose
relevant cone is self-dual. LettingQn+1 := {(t, v) ∈ IR×IRn : t ≥ ‖v‖} denote
the second order cone in IRn+1, we can recast (2.5) as the following conic
program:

(H.1)

min
t,v,β+,β−

t√
n
+
λ

n

p∑

i=1

(
γjβ

+
j + γjβ

−
j

)

vi = yi − x′iβ+ + x′iβ
−, i = 1, . . . , n

(t, v) ∈ Qn+1, β+ ≥ 0, β− ≥ 0.

Conic duality immediately yields the following dual problem

(H.2)

max
a∈IRn

En[ya]

|En[xja]| ≤ λγj/n, j = 1, . . . , p
‖a‖ ≤

√
n.

From a statistical perspective, the dual variables represent the normalized
residuals. Thus the dual problem maximizes the correlation of the dual vari-
able a subject to the constraint that a are approximately uncorrelated with
the regressors. It follows that these dual variables play a role in deriving
necessary conditions for a component β̂j to be non-zero and therefore on
sparsity bounds.

The fact that
√
Lasso can be formulated as a convex conic programming

problem allows the use of several computational methods tailored for conic
problems to compute the

√
Lasso estimator. In this section we compare three

different methods to compute
√
Lasso with their counterparts to compute

Lasso. We note that these methods have different initialization and stopping
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n = 100, p = 500 Componentwise First-order Interior-point

Lasso 0.2173 10.99 2.545√
Lasso 0.3268 7.345 1.645

n = 200, p = 1000 Componentwise First-order Interior-point

Lasso 0.6115 19.84 14.20√
Lasso 0.6448 19.96 8.291

n = 400, p = 2000 Componentwise First-order Interior-point

Lasso 2.625 84.12 108.9√
Lasso 2.687 77.65 62.86

Table 1

In these instances we had s = 5, σ = 1, and each value was computed by averaging 100
simulations.

criterion that could impact the running times significantly. Therefore we do
not aim to compare different methods but instead we focus on the compari-
son of the performance of each method to Lasso and

√
Lasso since the same

initialization and stopping criterion are used.
Table H.1 illustrates that the average computational time to solve Lasso

and
√
Lasso optimization problems are comparable. Table H.1 also rein-

forces typical behavior of these methods. As the size increases, the running
time for interior-point method grows faster than other first-order method.
Simple componentwise method is particular effective when the solution is
highly sparse. This is the case of the parametric design considered in these
experiments. We emphasize the performance of each method depends on the
particular design and choice of λ.

H.2. Discussion of Implementation Details. Below we discuss in
more detail the applications of these methods for Lasso and

√
Lasso. For

each method, the similarities between the Lasso and
√
Lasso formulations

derived below provide theoretical justification for the similar computational
performance. In what follows we were given data {Y = [y1, . . . , yn]

′,X =
[x1, . . . , xn]

′} and penalty {λ,Γ = diag(γ1, . . . , γp)}.
Interior-point methods. Interior-point methods (IPMs) solvers typi-

cally focus on solving conic programming problems in standard form,

(H.3) min
w
c′w : Aw = b, w ∈ K.

The main difficulty of the problem arises because the conic constraint will
be biding at the optimal solution.

IPMs regularize the objective function of the optimization with a barrier
function so that the optimal solution of the regularized problem naturally
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lies in the interior of the cone. By steadily scaling down the barrier function,
a IPM creates a sequence of solutions that converges to the solution of the
original problem (H.3).

In order to formulate the optimization problem associated with the Lasso
estimator as a conic programming problem (H.3), we let β = β+ − β−, and
note that for any vector v ∈ IRn and any scalar t ≥ 0 we have that

v′v ≤ t is equivalent to ‖(v, (t − 1)/2)‖ ≤ (t+ 1)/2.

Thus, we have that Lasso optimization problem can be cast

min
t,β+,β−,a1,a2,v

t

n
+
λ

n

p∑

j=1

γjβ
+
j + γjβ

−
j

v = Y −Xβ+ +Xβ−

t = −1 + 2a1
t = 1 + 2a2
(v, a2, a1) ∈ Qn+2, t ≥ 0, β+ ∈ IRp

+, β
− ∈ IRp

+.

The
√
Lasso optimization problem can be cast by similarly but without

auxiliary variables a1, a2:

min
t,β+,β−,v

t√
n
+
λ

n

p∑

j=1

γjβ
+
j + β−j

v = Y −Xβ+ +Xβ−

(v, t) ∈ Qn+1, β+ ∈ IRp
+, β

− ∈ IRp
+.

First-order methods. The new generation of first-order methods focus
on structured convex problems that can be cast as

min
w
f(A(w) + b) + h(w) or min

w
h(w) : A(w) + b ∈ K.

where f is a smooth function and h is a structured function that is pos-
sibly non-differentiable or with extended values. However it allows for an
efficient proximal function to be solved, see [2]. By combining projections
and (sub)gradient information these methods construct a sequence of iter-
ates with strong theoretical guarantees. Recently these methods have been
specialized for conic problems which includes Lasso and

√
Lasso. It is well

known that several different formulations can be made for the same opti-
mization problem and the particular choice can impact the computational
running times substantially. We focus on simple formulations for Lasso and√
Lasso.
Lasso is cast as

min
w
f(A(w) + b) + h(w)
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where f(·) = ‖·‖2/n, h(·) = (λ/n)‖·‖1, A = X, and b = −Y . The projection
required to be solved on every iteration for a given current point βk is

β(βk) = argmin
β

2En[x(y − x′βk)]′β +
1

2
µ‖β − βk‖2 + λ

n
‖Γβ‖1.

It follows that the minimization in β above is separable and can be solved
by soft-thresholding as

βj(β
k) = sign

(
β+
j

)
max

{∣∣β+
j

∣∣− λγj/[nµ], 0
}

where β+j = βkj + 2En[xj(y − x′βk)]/µ.
For
√
Lasso the “conic form” is given by

min
w
h(w) : A(w) + b ∈ K.

Letting Qn+1 = {(z, t) ∈ IRn × IR : t ≥ ‖z‖} and h(w) = f(β, t) =
t/
√
n+ (λ/n)‖Γβ‖1 we have that

min
β,t

t√
n
+
λ

n
‖Γβ‖1 : A(β, t) + b ∈ Qn+1

where b = (−Y ′, 0)′ and A(β, t) 7→ (β′X ′, t)′.
In the associated dual problem, the dual variable z ∈ IRn is constrained

to be ‖z‖ ≤ 1/
√
n (the corresponding dual variable associated with t is set

to 1/
√
n to obtain a finite dual value). Thus we obtain

max
‖z‖≤1/

√
n
inf
β

λ

n
‖Γβ‖1 +

1

2
µ‖β − βk‖2 − z′(Y −Xβ).

Given iterates βk, zk, as in the case of Lasso that the minimization in β is
separable and can be solved by soft-thresholding as

βj(β
k, zk) = sign

(
βkj + (X ′zk/µ)j

)
max

{∣∣∣βkj + (X ′zk/µ)j
∣∣∣− λγj/[nµ], 0

}
.

The dual projection accounts for the constraint ‖z‖ ≤ 1/
√
n and solves

z(βk, zk) = arg min
‖z‖≤1/

√
n

θk
2tk
‖z − zk‖2 + (Y −Xβk)′z

which yields

z(βk, zk) =
zk + (tk/θk)(Y −Xβk)
‖zk + (tk/θk)(Y −Xβk)‖

min

{
1√
n
, ‖zk + (tk/θk)(Y −Xβk)‖

}
.
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Componentwise Search. A common approach to solve unconstrained
multivariate optimization problems is to (i) pick a component, (ii) fix all
remaining components, (iii) minimize the objective function along the cho-
sen component, and loop steps (i)-(iii) until convergence is achieved. This is
particulary attractive in cases where the minimization over a single compo-
nent can be done very efficiently. Its simple implementation also contributes
for the widespread use of this approach.

Consider the following Lasso optimization problem:

min
β∈IRp

En[(y − x′β)2] +
λ

n

p∑

j=1

γj|βj |.

Under standard normalization assumptions En[x
2
j ] = 1 for j = 1, . . . , p.

Below we describe the rule to set optimally the value of βj given fixed the
values of the remaining variables. It is well known that Lasso optimization
problem has a closed form solution for minimizing a single component.

For a current point β, let β−j = (β1, β2, . . . , βj−1, 0, βj+1, . . . , βp)
′:

• if 2En[xj(y− x′β−j)] > λγj/n it follows that the optimal choice for βj
is

βj =
(
−2En[xj(y − x′β−j)] + λγj/n

)
/En[x

2
j ];

• if 2En[xj(y − x′β−j)] < −λγj/n it follows that the optimal choice for
βj is

βj =
(
−2En[xj(y − x′β−j)]− λγj/n

)
/En[x

2
j ];

• if 2|En[xj(y − x′β−j)]| ≤ λγj/n we would set βj = 0.

This simple method is particularly attractive when the optimal solution is
sparse which is typically the case of interest under choices of penalty levels
that dominate the noise like λ ≥ cn‖S‖∞.

Despite of the additional square-root, which creates a non-separable crite-
rion function, it turns out that the componentwise minimization for

√
Lasso

also has a closed form solution. Consider the following optimization problem:

min
β∈IRp

√
En[(y − x′β)2] +

λ

n

p∑

j=1

γj |βj |.

As before, under standard normalization assumptions En[x
2
j ] = 1 for j =

1, . . . , p. Below we describe the rule to set optimally the value of βj given
fixed the values of the remaining variables.
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• If En[xj(y − x′β−j)] > (λ/n)γj

√
Q̂(β−j), we have

βj = −
En[xj(y − x′β−j)]

En[x2j ]
+

λγj
En[x2j ]

√
Q̂(β−j)− (En[xj(y − x′β−j)]2/En[x2j ])√

n2 − (λ2γ2j /En[x2j ])
;

• if En[xj(y − x′β−j)] < −(λ/n)γj
√
Q̂(β−j), we have

βj = −
En[xj(y − x′β−j)]

En[x2j ]
− λγj
En[x2j ]

√
Q̂(β−j)− (En[xj(y − x′β−j)]2/En[x2j ])√

n2 − (λ2γ2j /En[x2j ])
;

• if |En[xj(y − x′β−j)]| ≤ (λ/n)γj

√
Q̂(β−j), we have βj = 0.
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[51] R. H. Tütüncü, K. C. Toh, and M. J. Todd. SDPT3 — a MATLAB software package

for semidefinite-quadratic-linear programming, version 3.0. Technical report, 2001.
Available at http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html.

[52] S. A. van de Geer. The deterministic lasso. JSM proceedings, 2007.
[53] S. A. van de Geer. High-dimensional generalized linear models and the lasso. Annals

of Statistics, 36(2):614–645, 2008.
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