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GAUSSIAN APPROXIMATION OF SUPREMA OF

EMPIRICAL PROCESSES

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. We develop a new direct approach to approximating suprema
of general empirical processes by a sequence of suprema of Gaussian
processes, without taking the route of approximating whole empirical
processes in the supremum norm. We prove an abstract approximation
theorem that is applicable to a wide variety of problems, primarily in sta-
tistics. In particular, the bound in the main approximation theorem is
non-asymptotic and the theorem does not require uniform boundedness
of the class of functions. The proof of the approximation theorem builds
on a new coupling inequality for maxima of sums of random vectors, the
proof of which depends on an effective use of Stein’s method for normal
approximation, and some new empirical process techniques. We study
applications of this approximation theorem to local empirical processes
and series estimation in nonparametric regression where the classes of
functions change with the sample size and are not Donsker-type. Impor-
tantly, our new technique is able to prove the Gaussian approximation
for the supremum type statistics under weak regularity conditions, es-
pecially concerning the bandwidth and the number of series functions,
in those examples.

1. Introduction

This paper is concerned with the problem of approximating suprema of
empirical processes by a sequence of suprema of Gaussian processes. To
formulate the problem, let X1, . . . ,Xn be i.i.d. random variables taking
values in a measurable space (S,S) with common distribution P . Suppose
that there is a sequence Fn of classes of measurable functions S → R, and
consider the empirical process indexed by Fn:

Gnf =
1√
n

n∑

i=1

(f(Xi)− E[f(X1)]), f ∈ Fn.
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2 CHERNOZHUKOV, CHETVERIKOV, AND KATO

For a moment, we implicitly assume that each Fn is “nice” enough and post-
pone the measurability issue. This paper tackles the problem of approximat-

ing Zn = supf∈Fn
Gnf by a sequence of random variables Z̃n equal in dis-

tribution to supf∈Fn
Bnf , where each Bn is a centered Gaussian process in-

dexed by Fn with covariance function E[Bn(f)Bn(g)] = Cov(f(X1), g(X1))
for all f, g ∈ Fn. We look for conditions under which there exists a sequence

of such random variables Z̃n with

|Zn − Z̃n| = OP(rn), (1)

where rn → 0 as n→ ∞ is a sequence of constants1.
The study of asymptotic and non-asymptotic behaviors of the supremum

of the empirical process is one of the central issues in probability theory, and
dates back to the classical work of [31]. The (tractable) distributional ap-
proximation of the supremum of the empirical process is of particular impor-
tance in mathematical statistics. A leading example is uniform inference in
nonparametric estimation, such as construction of uniform confidence bands
and specification testing in nonparametric density and regression estimation
where critical values are given by quantiles of supremum type statistics [see,
e.g., 3, 34, 46, 27, 26, 12]. Another interesting example appears in econo-
metrics where there is an interest in estimating a parameter that is given as
the extremum of an unknown function such as a conditional mean function.
[13] proposed a precision-corrected estimate for such a parameter. In con-
struction of their estimate, approximation of quantiles of a supremum type
statistic is needed, to which the Gaussian approximation of the supremum
type statistics plays a crucial role.

A related but different problem is that of approximating whole empirical
processes by a sequence of Gaussian processes in the supremum norm. This
problem is stronger than (1). Indeed, (1) is implied if there exists a sequence
of versions of Bn (which we denote by the same symbol Bn) such that

‖Gn −Bn‖Fn := sup
f∈Fn

|(Gn −Bn)f | = OP(rn). (2)

There is a large literature on the latter problem (2). Notably, Komlós
et al. [33] (henceforth, abbreviated as KMT) proved that ‖Gn − Bn‖F =

Oa.s.(n
−1/2 log n) for S = [0, 1], P = uniform distribution on [0, 1], and F =

{1[0,t] : t ∈ [0, 1]}. See [38] and [7] for refinements of KMT’s result. [39],
[32] and [46] developed extensions of the KMT construction to more general
classes of functions.

The KMT construction is a powerful tool in addressing the problem (2),
but when applied to general empirical processes, it typically requires strong
conditions on classes of functions and distributions. For example, Rio [46] re-
quired that Fn are uniformly bounded classes of functions having uniformly
bounded variations on S = [0, 1]d, and P has a continuous and positive

1These results have immediate statistical implications; see Remark 2.5 ahead.
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Lebesgue density on [0, 1]d. Such conditions are essential to the KMT con-
struction since it depends crucially on the Haar approximation and binomial
coupling inequalities of Tusnády. Note that [32] directly made an assump-
tion on the accuracy of the Haar approximation of the class of functions,
but still required similar side conditions to [46] in concrete applications; see
Section 11 in [32]. [19], [2] and [47] considered the problem of Gaussian
approximation of general empirical processes with different approaches and
thereby without such side conditions. [19] used a finite approximation of
a (possibly uncountably) infinite class of functions and apply a coupling
inequality of [54] to the discretized empirical process (more precisely, [19]
used a version of Yurinskii’s inequality proved by [17]). [2] and [47], on
the other hand, used a coupling inequality of [55] instead of Yurinskii’s and
some recent empirical process techniques such as Talagrand’s [50] concentra-
tion inequality, which leads to refinements of Dudley and Philipp’s results
in some cases. However, the rates that [17], [2] and [47] established do not
lead to tight conditions for the Gaussian approximations in non-Donsker
cases, with important examples being the suprema of empirical processes
arising in nonparametric statistics, namely the the suprema of local and
series empirical processes (see Section 3 for detailed treatment).

We develop here a new direct approach to the problem (1), without taking
the route of approximating whole empirical processes in the supremum norm
and with different technical tools than those used in the aforementioned pa-
pers (especially the approach taken does not rely on the Haar expansion
and hence differs from the KMT type approximation). We prove an ab-
stract approximation theorem (Theorem 2.1) that leads to results of type
(1) in several situations. The proof of the approximation theorem builds on
a number of technical tools that are of interest in their own rights: notably,
1) a new coupling inequality for maxima of sums of random vectors (Theo-
rem 4.1), where Stein’s method for normal approximation (building here on
[9] and originally due to [48, 49]) plays an important role (see also [45] and
[40]); 2) a deviation inequality for suprema of empirical processes that only
requires finite moments of envelope functions (Theorem 5.1), due essentially
to the recent work of [5], complemented with a new “local” maximal in-
equality for the expectation of suprema of empirical processes that extends
the work of [53] (Theorem 5.2). We study applications of this approxima-
tion theorem to local and series empirical processes arising in nonparametric
regression, and demonstrate that our new technique is able to provide the
Gaussian approximation for the supremum type statistics under weak reg-
ularity conditions, especially concerning the bandwidth and the number of
series functions, in those examples.

It is instructive to briefly summarize here the key features of the main
approximation theorem. First, the theorem establishes a non-asymptotic

bound between Zn and its Gaussian analogue Z̃n. The theorem requires
that each Fn is pre-Gaussian (i.e., assuming the existence of a version of
Bn that is a tight Gaussian random element in ℓ∞(Fn); see below for the
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notation), but allows for the case where the “complexity” of Fn increases
with n, which places the function classes outside any fixed Donsker class;
moreover, neither the process Gn nor the supremum statistic Zn need to be
weakly convergent as n → ∞ (even after suitable normalization). Second,
the bound in Theorem 2.1 is able to exploit the “local” properties of the
class of functions, thereby, when applied to, say, the supremum deviation
of kernel type statistics, it leads to tight conditions on the bandwidth for
the Gaussian approximation (see the discussion after Theorem 2.1 for details
about these features). Note that our bound does not rely on “smoothness” of
Fn (in contrast to [46] where the bound on the Gaussian approximation for
empirical processes depends on the total variation norm of functions), which
is helpful in deriving good conditions on the number of series functions for
the Gaussian approximation of the supremum deviation of projection type
statistics handled in Section 3.2 since, e.g., the total variation norm is typi-
cally large or difficult to control well for such type of statistics. Lastly, the
theorem only requires finite moments of the envelope function, which should
be contrasted with [32, 46, 2, 47] where the classes of functions studied are
assumed to be uniformly bounded. Hence the theorem is readily applicable
to a wide class of statistical problems to which the previous results are not,
at least immediately.

We note that, to the best of our knowledge, [43] is the only previous work
that considered the problem of directly approximating the distribution of
the supremum of the empirical process by that of the corresponding Gauss-
ian process. However, they only cover the case where the class of functions
is independent of n and Donsker as the constant C in their master Theo-
rem 2 is dependent on F (and how C depends on F is not specified), and
their condition (1.4) essentially excludes the case where the “complexity”
of F grows with n, which means that their results are not applicable to the
statistical problems handled in this paper (see Remark 2.5 or Lemma 6.1
ahead). Moreover, their approach is significantly different from ours.

In this paper, we substantially rely on modern empirical process theory.
For general references on empirical process theory, we refer to [36], [52],
[18] and also [4]. Section 9.5 of [18] has excellent historical remarks on the
Gaussian approximation of empirical processes. For textbook treatments of
Yurinskii’s and KMT’s couplings, we refer to [15] and Chapter 10 in [44].

1.1. Organization. The rest of the paper is organized as follows. In Section
2, we present the main approximation theorem (Theorem 2.1). We give a
proof of Theorem 2.1 in Section 6. In Section 3, we study applications of
Theorem 2.1 to local and series empirical processes arising in nonparametric
regression. Sections 4 and 5 are devoted to developing some technical tools
needed to prove Theorem 2.1 and its supporting Lemma 2.2. In Section 4,
we prove a new coupling inequality for maxima of sums of random vectors,
and in Section 5, we prepare some inequalities for empirical processes. We
put some additional technical proofs in Appendix.



GAUSSIAN APPROXIMATION OF SUPREMA 5

1.2. Notation. We shall obey the following notation. Let (Ω,A,P) denote
the underlying probability space. We assume that the probability space
(Ω,A,P) is rich enough, in the sense that there exists a uniform random
variable on (0, 1) defined on (Ω,A,P) independent of the sample at hand.

For a real-valued random variable ξ, let ‖ξ‖q = (E[|ξ|q])1/q, 1 ≤ q <∞. For
two random variables ξ and η, we write

ξ
d
= η

if they have the same distribution.
For any probability measure Q on a measurable space (S,S), we use the

notation Qf :=
∫
fdQ. Let Lp(Q), p ≥ 1 denote the space of all measurable

functions f : S → R such that ‖f‖Q,p := (Q|f |p)1/p < ∞. We also use the
notation ‖f‖∞ := supx∈S |f(x)|. Denote by eQ the L2(Q)-semimetric:

eQ(f, g) = ‖f − g‖Q,2, f, g ∈ L2(Q).

For an arbitrary set T , let ℓ∞(T ) denote the space of all bounded functions
T → R, equipped with the uniform norm ‖f‖T := supt∈T |f(t)|. We endow
ℓ∞(T ) with the Borel σ-field induced from the norm topology. A random
element in ℓ∞(T ) refers to a Borel measurable map from Ω to ℓ∞(T ). For
ε > 0, an ε-net of a semimetric space (T, d) is a subset Tε of T such that
for every t ∈ T there exists a point tε ∈ Tε with d(t, tε) < ε. The ε-
covering number N(T, d, ε) of T is the infimum of the cardinality of ε-nets
of T , i.e., N(T, d, ε) := inf{Card(Tε) : Tε is an ε-net of T} (formally define
N(T, d, 0) := limε↓0N(T, d, ε), where the right limit, possibly being infinite,
exists as the map ε 7→ N(T, d, ε) is non-increasing). For a subset A of a
semimetric space (T, d), let Aδ denotes the δ-enlargement of A, i.e., Aδ =
{x ∈ T : d(x,A) ≤ δ} where d(x,A) = infy∈A d(x, y).

The standard Euclidean norm is denoted by | · |. The transpose of a vector
x is denoted by xT . For a smooth function f : Rp → R, we use the notation
∂jf(x) = ∂f(x)/∂xj , ∂j∂kf(x) = ∂2f(x)/∂xj∂xk, and so on.

We write a . b if there exists a universal constant C > 0 such that a ≤ Cb.
For a given parameter q, we write a .q b if there exists a constant C(q) > 0
depending only on q such that a ≤ C(q)b. For a, b ∈ R, a ∨ b = max{a, b},
a+ = a ∨ 0. Unless otherwise stated, c, C > 0 denote universal constants of
which the values may change from line to line.

Lastly, for a sequence {zi}ni=1, we write En[zi] = n−1
∑n

i=1 zi, i.e., En ab-
breviates the symbol n−1

∑n
i=1. For example, En[f(Xi)] = n−1

∑n
i=1 f(Xi).

2. Abstract approximation theorem

We begin with reviewing the setup. Let X1, . . . ,Xn be i.i.d. random vari-
ables taking values in a measurable space (S,S) with common distribution
P . In all what follows, we assume n ≥ 3. Let F be a class of measurable
functions S → R. We assume that the class F is P -centered, i.e.,

Pf = 0, ∀f ∈ F .
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This does not lose generality since otherwise we may replace F by {f −Pf :
f ∈ F}. Denote by F a measurable envelope of F , i.e., F is a non-negative
measurable function S → R such that

F (x) ≥ sup
f∈F

|f(x)|, ∀x ∈ S.

In this section the sample size n is fixed, and hence the possible dependence
of F and F (and other quantities) on n is dropped.

We make the following assumptions.

(A1) The class F is pointwise measurable, i.e., it contains a countable
subset G such that for every f ∈ F there exists a sequence gm ∈ G
with gm(x) → f(x) for every x ∈ S.

(A2) For some q ≥ 2, F ∈ Lq(P ).
(A3) The class F is P -pre-Gaussian, i.e, there exists a tight Gaussian ran-

dom element GP in ℓ∞(F) with mean zero and covariance function

E[GP (f)GP (g)] = P (fg) = E[f(X1)g(X1)], ∀f, g ∈ F .

Assumption (A1) is made to avoid measurability complications. See Sec-
tion 2.3.1 of [52] for further discussion. This assumption ensures that, e.g.,
supf∈F Gnf = supf∈G Gnf , and hence the former supremum is a measur-
able map from Ω to R. Note that by Example 1.5.10 in [52], assumption
(A3) implies that F is totally bounded for eP , and GP has sample paths
a.s. uniformly eP -continuous.

To state the main result, we prepare some notation. For ε > 0, define
Fε = {f − g : f, g ∈ F , eP (f, g) < ε‖F‖P,2}. Note that by Theorem 3.1.1 in
[18], under assumption (A3), one can extend GP to the linear hull of F in
such a way that GP has linear sample paths. With this in mind, let

φn(ε) = E[‖Gn‖Fε ] ∨ E[‖GP ‖Fε ].

For the notational convenience, let us write

Hn(ε) = log(N(F , eP , ε‖F‖P,2) ∨ n). (3)

Note that since F is totally bounded for eP (because of assumption (A3)),
Hn(ε) is finite for every 0 < ε ≤ 1. Moreover, write M = max1≤i≤n F (Xi)
and F · F = {fg : f ∈ F , g ∈ F}. The following is the main theorem of this
paper. The proof of the following theorem will be given in Section 6.

Theorem 2.1 (Gaussian approximation to suprema of empirical processes).
Suppose that assumptions (A1), (A2) with q ≥ 3, and (A3) are satisfied.
Let Z = supf∈F Gnf . Let κ > 0 be any positive constant such that κ3 ≥
E[‖En[|f(Xi)|3]‖F ]. Then for every ε ∈ (0, 1] and γ ∈ (0, 1), there exists a

random variable Z̃
d
= supf∈F GP f such that

P

{
|Z − Z̃| > K(q)∆n(ε, γ)

}
≤ γ {1 + δn(ε, γ)} +

C log n

n
,
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where K(q) > 0 is a constant that depends only on q, and

∆n(ε, γ) := φn(ε) + γ−1/qε‖F‖P,2 + n−1/2γ−1/q‖M‖q + n−1/2γ−2/q‖M‖2
+ n−1/4γ−1/2(E[‖Gn‖F·F ])

1/2H1/2
n (ε) + n−1/6γ−1/3κH2/3

n (ε).

δn(ε, γ) :=
1

4
P{(F/κ)31(F/κ > cγ−1/3n1/3Hn(ε)

−1/3)}.

Remark 2.1. The factor 1/4 on the right side has no special meaning. It
can be replaced by a smaller positive constant, but at the cost of increasing
the constant K(q). We do not pursue the generality in this direction. �

Recall that we have extended GP to the linear hull of F in such a way
that GP has linear sample paths. Hence

‖Gn‖F = sup
f∈F∪(−F)

Gnf, ‖GP ‖F = sup
f∈F∪(−F)

GP f,

where−F := {−f : f ∈ F}, from which one can readily deduce the following
corollary. Henceforth we only deal with supf∈F Gnf .

Corollary 2.1. The conclusion of Theorem 2.1 continues to hold with Z

replaced by Z = ‖Gn‖F , Z̃ replaced by Z̃
d
= ‖GP ‖F , and with different

constants.

Theorem 2.1 is useful only if there are suitable bounds on the following
triple of terms, appearing in its statement:

φn(ε), E[‖En[|f(Xi)|3]‖F ] and E[‖Gn‖F·F ]. (4)

To this end, the entropy method or the more general generic chaining method
[51] are useful. We will derive bounds on these terms using the entropy
method since typically it leads to readily computable bounds. However, we
leave the option of bounding the terms in (4) by other means , e.g., generic
chaining methods (in some applications the latter is known to give sharper
bounds than the entropy approach).

Consider the (uniform) entropy integral

J(δ) = J(δ,F , F ) =
∫ δ

0
sup
Q

√
1 + logN(F , eQ, ε‖F‖Q,2)dε,

where the supremum is taken over all finitely discrete probability measures
on (S,S). We assume the integral is finite:

(A4) J(1,F , F ) <∞.

Remark 2.2. In applications F and F (and even S) may change with n,
i.e., F = Fn and F = Fn. In that case, assumption (A4) is interpreted as
J(1,Fn, Fn) < ∞ for each n, but let us keep in mind that it does allow for
the case where J(1,Fn, Fn) → ∞ as n→ ∞. �

We first note the following (standard) fact.

Lemma 2.1. Assumptions (A2) and (A4) imply assumption (A3).
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For the sake of completeness, we verify this lemma in Appendix. The
following lemma provides bounds on the quantities in (4). The proof of the
following lemma is given in Appendix.

Lemma 2.2 (Entropy-based bounds on the triple (4)). Suppose that as-
sumptions (A1), (A2) and (A4) are satisfied. Then for ε ∈ (0, 1],

φn(ε) . J(ε)‖F‖P,2 + n−1/2ε−2J2(ε)‖M‖2.
Moreover, suppose that assumption (A2) is satisfied with q ≥ 4, and for k =
3, 4, let δk ∈ (0, 1] be any positive constant such that δk ≥ supf∈F ‖f‖P,k/‖F‖P,k.
Then

E[‖En[|f(Xi)|3]‖F ]− sup
f∈F

P |f |3

. n−1/2‖M‖3/23

[
J(δ

3/2
3 ,F , F )‖F‖3/2P,3 +

‖M‖3/23 J2(δ
3/2
3 ,F , F )√

nδ33

]
,

E[‖Gn‖F·F ] . J(δ24 ,F , F )‖F‖2P,4 +
‖M‖24J2(δ24 ,F , F )√

nδ44
.

Remark 2.3 (The necessity of the above bounds). The bounds provided
above are carefully derived to give sharp results in applications of Section
3. Some readers may wonder if the following simpler bounds would suffice
instead:

E[‖En[|f(Xi)|3]‖F ] ≤ ‖F‖3P,3, E[‖Gn‖F·F ] . J(1,F , F )‖F‖2P,4.
The latter estimate is deduced from Theorem 2.14.1 of [52] together with
the fact that

sup
Q
N(F · F , eQ, 2ε‖F 2‖Q,2) ≤ sup

Q
N2(F , eQ, ε‖F‖Q,2), (5)

which is deduced from Lemma A.5 in Appendix. These simple bounds, how-
ever, become too non-sharp when PF 3 and PF 4 are significantly larger than
the supremum of “weak” moments supf∈F P |f |3 and supf∈F Pf

4, respec-
tively, which is the case for all the examples studied in Section 3. �

Remark 2.4 (Key features of Theorem 2.1). Before going to the appli-
cations, we discuss the key features of Theorem 2.1. First, Theorem 2.1 does
not require uniform boundedness of F , and requires only finite moments of
the envelope function. This should be contrasted with the fact that many
papers working on the Gaussian approximation of empirical processes in the
supremum norm, such as [32, 46, 2, 47], required that classes of functions
are uniformly bounded. There are, however, many statistical applications
where uniform boundedness of the class of functions is too restrictive, and
the generality of Theorem 2.1 in this direction will turn out to be useful.
One drawback is that γ, which in applications we take as γ = γn → 0, is
typically at most O(n−1/6), and hence Theorem 2.1 gives only “in proba-
bility bounds” rather than “almost sure bounds”. The second feature of
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Theorem 2.1 is that it is able to exploit the “local” properties of the class of
functions F . By Lemma 2.2, typically, we may take κ3 ≈ supf∈F P |f |3 and

E[‖Gn‖F·F ] ≈ supf∈F
√
Pf4 (up to logarithmic in n factors). In some ap-

plications, e.g., nonparametric kernel and series problems considered in the
next section, the class F = Fn changes with n and supf∈Fn

‖f‖P,k/‖Fn‖P,k
with k = 3, 4 decrease to 0 where Fn is an envelope function of Fn. The
bound in Theorem 2.1 (with help of Lemma 2.2) effectively exploits this
information and leads to tight conditions on, say, the bandwidth and the
number of series functions, for the Gaussian approximation. This feature
will be clear from the proofs for the applications in the following section. �

Remark 2.5 (Gaussian approximation in Kolmogorov distance). Theorem
2.1 combined with Lemma 2.2 can be used to show that the result (1) holds
for some sequence of constants rn → 0 (subject to some conditions; possible
rates of rn are problem-specific). In statistical applications, however, one
is typically interested in the result of the form (here we follow the notation
used in Section 1)

sup
t∈R

|P(Zn ≤ t)− P(Z̃n ≤ t)| = o(1), n→ ∞. (6)

That is, the approximation of the distribution of Zn by that of Z̃n in the
Kolmogorov distance (recall that the Kolmogorov distance between the dis-
tributions of two random variables ξ1 and ξ2 is defined by supt∈R |P(ξ1 ≤
t)− P(ξ2 ≤ t)|). To derive (6) from (1), we invoke the following lemma.

Lemma 2.3 (Gaussian approximation in Kolmogorov distance: non-asymp-
totic result). Consider the setting described in the beginning of this section.
Suppose that assumptions (A1)-(A3) are satisfied, and that there exist con-
stants σ, σ̄ > 0 such that σ2 ≤ Pf2 ≤ σ̄2 for all f ∈ F . Moreover, suppose

that there exist constants r1, r2 > 0 and a random variable Z̃
d
= supf∈F GP f

such that P{|Z − Z̃| > r1} ≤ r2. Then

sup
t∈R

|P(Z ≤ t)− P(Z̃ ≤ t)| ≤ Cσr1

{
E[Z̃] +

√
1 ∨ log(σ/r1)

}
+ r2,

where Cσ is a constant depending only on σ and σ̄.

It is now not difficult to give conditions to deduce (6) from (1). Formally,
we state the following lemma.

Lemma 2.4 (Gaussian approximation in Kolmogorov distance: asymptotic
result). Suppose that there exists a sequence of (P -centered) classes Fn of
measurable functions S → R satisfying assumptions (A1)-(A3) with F = Fn

for each n, and that there exist constants σ, σ̄ > 0 (independent of n) such
that σ2 ≤ Pf2 ≤ σ̄2 for all f ∈ Fn. Let Zn = supf∈Fn

Gnf , and denote
by Bn a tight Gaussian random element in ℓ∞(Fn) with mean zero and
covariance function E[Bn(f)Bn(g)] = P (fg) for all f, g ∈ Fn. Moreover,

suppose that there exist a sequence of random variables Z̃n
d
= supf∈Fn

Bnf
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and a sequence of constants rn → 0 such that |Zn − Z̃n| = OP(rn) and

rnE[Z̃n] = o(1) as n → ∞. Then as n → ∞, supt∈R |P(Zn ≤ t) − P(Z̃n ≤
t)| = o(1).

Note here that we allow the case where E[Z̃n] → ∞. In the examples

handled in the following section, typically, we have E[Z̃n] = O(
√
log n).

�

3. Applications

This section studies applications of Theorem 2.1 to local and series em-
pirical processes arising in nonparametric regression. In both examples, the
classes of functions change with the sample size n and the corresponding
Gn processes do not have tight limits. Hence regularity conditions for the
Gaussian approximation for the suprema will be of interest. All the proofs
in this section are gathered in Appendix.

3.1. Local empirical processes. This section applies Theorem 2.1 to the
supremum deviation of kernel type statistics. Let (Y1,X1), . . . , (Yn,Xn) be
i.i.d. random variables taking values in the product space Y × R

d, where
(Y,AY) is an arbitrary measurable space. Suppose that there is a class G
of measurable functions Y → R. Let k(·) be a kernel function on R

d. By
“kernel function”, we simply mean that k(·) is integrable with respect to the
Lebesgue measure on R

d and its integral on R
d is normalized to be 1, but do

not assume that k(·) is non-negative, i.e., higher order kernels are allowed.
Let hn be a sequence of positive constants such that hn → 0 as n→ ∞, and
let I be an arbitrary Borel subset of Rd. Consider the kernel-type statistics

Sn(x, g) =
1

nhdn

n∑

i=1

g(Yi)k(h
−1
n (Xi − x)), (x, g) ∈ I × G.

Typically, under suitable regularity conditions, Sn(x, g) will be a consistent
estimator of E[g(Y1) | X1 = x]p(x), where p(·) denotes a Lebesgue density
of the distribution of X1 (assuming its existence). For example, when g ≡ 1,
Sn(x, g) will be a consistent estimator of p(x); when Y = R and g(y) = y,
Sn(x, g) will be a consistent estimator of E[Y1 | X1 = x]p(x); and when
Y = R and g(·) = 1(· ≤ y), y ∈ R, Sn(x, g) will be a consistent estimator of
P(Y1 ≤ y | X1 = x)p(x). In statistical applications, it is often of interest to
approximate the distribution of the following quantity:

Wn = sup
(x,g)∈I×G

cn(x, g)
√
nhdn(Sn(x, g) − E[Sn(x, g)]),

where cn(x, g) is a suitable normalizing constant. A typical choice of cn(x, g)
would be such that

Var

(√
nhdnSn(x, g)

)
= cn(x, g)

−2 + o(1).
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Limit theorems for Wn are developed in [3], [34], [16], [46], [21], and [37],
among others.

[21] called the process g 7→
√
nhdn(Sn(x, g) − E[Sn(x, g)]) a “local” em-

pirical process at x (the original definition of the local empirical process
in [21] is slightly more general in that hn is replaced by a sequence of bi-
measurable functions). With a slight abuse of terminology, we also call the

process (x, g) 7→
√
nhdn(Sn(x, g)− E[Sn(x, g)]) a local empirical process.

We consider the problem of approximating Wn by a sequence of suprema
of Gaussian processes. For each n ≥ 1, let Bn be a centered Gaussian process
indexed by I × G with covariance function

E[Bn(x, g)Bn(x̌, ǧ)]

= h−d
n cn(x, g)cn(x̌, ǧ)Cov[g(Y1)k(h

−1
n (X1 − x)), ǧ(Y1)k(h

−1
n (X1 − x̌))].

(7)

Intuitively, it is expected that under suitable regularity conditions, there is a

sequence W̃n of random variables such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and

as n→ ∞, |Wn−W̃n| P→ 0. We shall argue the validity of this approximation
with explicit rates.

Before stating the assumptions, we recall the notion of VC type class.

Definition 3.1 (VC type class). Let F be a class of measurable functions
on a measurable space (S,S), to which a measurable envelope F is attached.
We say that F is VC type with envelope F if there are constants A, v > 0
such that supQN(F , eQ, ε‖F‖Q,2) ≤ (A/ε)v for all 0 < ε ≤ 1, where the
supremum is taken over all finitely discrete probability measures on (S,S).

We make the following assumptions.

(B1) G is a pointwise measurable class of functions Y → R uniformly
bounded by a constant b > 0, and is VC type with envelope ≡ b.

(B2) k(·) is a bounded and continuous kernel function on R
d, and such

that the class of functions K = {t 7→ k(ht + x) : h > 0, x ∈ R
d} is

VC type with envelope ≡ ‖k‖∞.
(B3) The distribution of X1 has a bounded Lebesgue density p(·) on R

d.
(B4) hn → 0 and log(1/hn) = O(log n) as n→ ∞.
(B5) CI×G := supn≥1 sup(x,g)∈I×G |cn(x, g)| < ∞. Moreover, for every

fixed n ≥ 1 and for every (xm, gm) ∈ I × G with xm → x ∈ I and
gm → g ∈ G pointwise, cn(xm, gm) → cn(x, g).

We note that [42], Lemma 22, gives simple sufficient conditions under which
K is VC type.

We first assume that G is uniformly bounded, which will be relaxed later.

Proposition 3.1 (Gaussian approximation to suprema of local empirical
processes: bounded case). Suppose that assumptions (B1)-(B5) are satis-
fied. Then for every n ≥ 1, there is a tight Gaussian random element Bn

in ℓ∞(I × G) with mean zero and covariance function (7), and there is a
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sequence W̃n of random variables such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and

as n→ ∞,

|Wn − W̃n| = OP{(nhdn)−1/6 log n+ (nhdn)
−1/4 log5/4 n+ (nhdn)

−1/2 log3/2 n}.
Even when G is not uniformly bounded, a version of Proposition 3.1 con-

tinues to hold provided that suitable restrictions on the moments of the
envelope of G are assumed. Instead of assumption (B1), we make the fol-
lowing assumption.

(B1)′ G is a pointwise measurable class of functions Y → R with mea-
surable envelope G such that E[Gq(Y1)] < ∞ for some q ≥ 4 and
supx∈Rd E[G4(Y1) | X1 = x] < ∞. Moreover, G is VC type with
envelope G.

Then we have the following proposition.

Proposition 3.2 (Gaussian approximation to suprema of local empirical
processes: unbounded case). Suppose that assumptions (B1)′ and (B2)-(B5)
are satisfied. Then the conclusion of Proposition 3.1 continues to hold, ex-
cept for that the speed of approximation is

OP{(nhdn)−1/6 log n+ (nhdn)
−1/4 log5/4 n+ (n1−2/qhdn)

−1/2 log3/2 n}.
Remark 3.1 (Discussion and comparison to other results). It is instructive
to compare Propositions 3.1 and 3.2 with the implications of Theorem 1.1
of Rio [46], which is a very sharp result on the Gaussian approximation (in
the supremum norm) of general empirical processes indexed by uniformly
bounded VC type classes of functions having locally uniformly bounded
variation.

1. Rio’s [46] Theorem 1.1 is not applicable to the case where the envelope
function G is not bounded. Hence Proposition 3.2 is not covered by [46].
Indeed, we are not aware of any previous result that leads to the conclusion of
Proposition 3.2, at least in this generality. For example, [34] considered the
Gaussian approximation of Wn in the case where Y = R and g(y) = y, but
also assumed that the support of Y1 is bounded. [21] proved in their Theorem
1.1 a weak convergence result for local empirical processes, which, combined
with the Skorohod representation and Lemma 4.1 ahead, implies a Gaussian
approximation result for Wn even when G is not uniformly bounded (but
without explicit rates); however, their Theorem 1.1 (and also Theorem 1.2)
is tied with the single value of x , i.e. x is fixed, since both theorems assume
that the “localized” probability measure, localized at a given x, converges
(in a suitable sense) to a fixed probability measure (see assumption (F.ii) in
[21]). The same comment applies to [22]. In contrast, our results apply to
the case where the supremum is taken over an uncountable set of values of x,
which is relevant to statistical applications such as construction of uniform
confidence bands.

2. In the special case of kernel density estimation (i.e., g ≡ 1), Rio’s
Theorem 1.1 implies (subject to some regularity conditions) that |Wn −
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W̃n| = Oa.s.{(nhdn)−1/(2d)
√
log n+(nhdn)

−1/2 log n} for d ≥ 2 (the d = 1 case
is formally excluded from [46]). Hence Rio’s error rates are better than ours
when d = 2, 3, but ours are better when d ≥ 4 (aside from the difference
between “in probability” and almost sure bounds).

3. Consider, as a second example, kernel regression estimation (i.e., Y = R

and g(y) = y). In order to formally apply Rio’s Theorem 1.1 to this exam-
ple, we need to assume that, e.g., (Y1,X1) is generated in such a way that
(Y1,X1) = (h(U,X1),X1) where the joint distribution (U,X1) has support
[0, 1]d+1 with continuous and positive Lebesgue density on [0, 1]d+1, and h
is a function [0, 1]d+1 → R which is bounded and of bounded variation.2

Subject to such side conditions, Rio’s Theorem 1.1 leads to the following

error rate: |Wn − W̃n| = Oa.s.{(nd/(d+1)hdn)
−1/(2d)

√
log n+ (nhdn)

−1/2 log n}.
See, e.g., [13], Theorem 8. In contrast, Propositions 3.1 and 3.2 do not
require such side conditions. Moreover, aside from the difference between
“in probability” and almost sure bounds, as long as hn = O(n−a) for some
a > 0, our error rates are always better when d ≥ 2. When d = 1, our rate
is better as long as nh4n/ log

c n → 0 (and vice versa) where c > 0 is some
constant. �

Remark 3.2 (Converting coupling to convergence in Kolmogorov distance).
By Remark 2.5, we can convert the results in Propositions 3.1 and 3.2 into
convergence of the Kolmogorov distance between the distributions of Wn

and its Gaussian analogue W̃n. In fact, under either the assumptions of
Proposition 3.1 or 3.2, by Dudley’s inequality for Gaussian processes [52,

Corollary 2.2.8], it is not difficult to deduce that E[W̃n] = O(
√
log n). Hence

if moreover there exists a constant σ > 0 (independent of n) such that

Var(cn(x, g)
√
nhdnSn(x, g)) ≥ σ2 for all (x, g) ∈ I × G (giving primitive

regularity conditions for this assumption is a standard task)3, we have

|Wn − W̃n| = oP(log
−1/2 n) ⇒ sup

t∈R
|P(Wn ≤ t)− P(W̃n ≤ t)| = o(1).

Note that |Wn − W̃n| = oP(log
−1/2 n) (i) if nhdn/ log

c n → ∞ under the
assumptions of Proposition 3.1, and (ii) if n(1−2/q)hdn/ log

c n → ∞ under
the assumptions of Proposition 3.2, where c > 0 is some constant. These
conditions on the bandwidth hn are mild, and interestingly they essentially
coincide with the conditions on the bandwidth used in establishing exact
rates of uniform strong consistency of kernel type estimators in [23, 24]. �

2For example, let F−1

Y1|X1
(· | x) denote the quantile function of the conditional distri-

bution of Y1 given X1 = x and take U uniformly distributed on (0, 1) independent of X1.

Then (Y1, X1)
d
= (F−1

Y1|X1

(U | X1), X1), X1), but for the above condition to be met, we

need to assume that F−1

Y1|X1
(u | x) is (bounded and) of bounded variation as a function of

u and x, which is not a typical assumption in estimation of the conditional mean.
3Under either the assumptions of Proposition 3.1 or 3.2, Var(cn(x, g)

√

nhd
nSn(x, g)) is

bounded from above uniformly in (x, g) ∈ I × G.
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3.2. Series empirical processes. Here we consider the following prob-
lem. Let (η1,X1), . . . , (ηn,Xn) be i.i.d. random variables taking values in
the product space E × R

d, where (E ,AE ) is an arbitrary measurable space.
Suppose that the support of X1 is normalized to be [0, 1]d, and for each
K ≥ 1, there are K basis functions ψK,1, . . . , ψK,K defined on [0, 1]d. Let

ψK(x) = (ψK,1(x), . . . , ψK,K(x))T . Examples of such basis functions are
Fourier series, splines, Cohen-Daubechies-Vial (CDV) wavelet bases [14],
Hermite polynomials and so on. Let Kn be a sequence of positive constants
such that Kn → ∞ as n → ∞. Let G be a class of measurable functions
E → R such that E[g2(η1)] <∞ and E[g(η1) | X1] = 0 a.s. for all g ∈ G, and
let I be an arbitrary Borel measurable subset of [0, 1]d. Suppose that there
are sequences of Kn×Kn matrices A1n(g) and A2n(g) indexed by g ∈ G. We
assume that smin(A2n(g)) > 0 for all g ∈ G. In what follows, we let smin(A)
and smax(A) denote the minimum and maximum singular values of a matrix
A, respectively. Consider the following empirical process:

Sn(x, g) =
ψKn(x)TA1n(g)

T

|A2n(g)ψKn(x)|

[
1√
n

n∑

i=1

g(ηi)ψ
Kn(Xi)

]
, x ∈ I, g ∈ G,

which we shall call the “series empirical process” (we shall formally follow
the convention 0/0 = 0). The problem here is the Gaussian approximation
of the supremum of this series empirical process:

Wn := sup
(x,g)∈I×G

Sn(x, g).

We address this problem in what follows. The study of distributional approx-
imation of this statistic is motivated by the following statistical problems.

Example 3.1 (Forms of Sn(x, g) arising in nonparametric mean regression).
Here we explain which forms of Sn(x, g) arise in the nonparametric series or
sieve mean regression. Consider a (generally heteroscedastic) nonparametric
regression model

Yi = m(Xi) + ηi, E[ηi | Xi] = 0, E[η2i | Xi = x] = σ2(x), 1 ≤ i ≤ n,

where Yi is a scalar response variable, Xi is a d-vector of covariates of which
the support = [0, 1]d, and ηi is a scalar unobservable error term. We assume
that the data (Y1,X1), . . . , (Yn,Xn) are i.i.d. The parameter of interest is
the conditional mean function m(x) = E[Y1 | X1 = x].

Consider series estimation of m(x). The idea of series estimation is to

approximate m(x) by
∑Kn

j=1 θKn,jψKn,j(x) with Kn → ∞ as n → ∞ and to

estimate the vector θKn = (θKn,1, . . . , θKn,Kn)
T by the least squares method:

θ̂Kn = arg min
θKn∈RKn

n∑

i=1

(
Yi − ψKn(Xi)

T θKn
)2
.

The resulting estimate of m(x) is given by m̂(x) = ψKn(x)T θ̂Kn.
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The asymptotic properties of the series estimate have been thoroughly
investigated in the literature. Importantly, under suitable regularity con-
ditions, the rescaled and recentered estimator admits an asymptotic linear
form:

S̃n(x) =

√
n(m̂(x)−m(x))

|A2nψKn(x)| ≈ ψKn(x)TA1n

|A2nψKn(x)|

[
1√
n

n∑

i=1

ηiψ
Kn(Xi)

]
=: Sn(x),

where A1n = (E[ψKn(X1)ψ
Kn(X1)

T ])−1 and

A2n = (E[σ2(X1)ψ
Kn(X1)ψ

Kn(X1)
T ])1/2A1n.

See, e.g., [41]. Here S̃n(x) ≈ Sn(x) means that S̃n(x) = Sn(x)+oP(log
−1/2 n)

uniformly in x ∈ I (the remainder term could be faster, but oP(log
−1/2 n)

is fast enough to make the remainder term negligible in approximating (in

the Kolmogorov distance) the distribution of supx∈I S̃n(x) by that of the
Gaussian analogue of supx∈I Sn(x) as the expectation of the latter is typi-
cally O(

√
log n); see Remark 2.5 and Lemma 6.1). Hence, for the purpose

of making uniform inference on m(x) over a Borel subset I of [0, 1]d, it is
desirable to have a (tractable) distributional approximation of the quantity
Wn = supx∈I Sn(x).

Note that obtaining this approximation requires the use of undersmooth-
ing to make the effect of the approximation bias negligible relative to the
variance, i.e., we have to take Kn → ∞ faster than those leading to the
optimal rate of convergence in the supremum norm. However, we skip the
discussion of regularity conditions for obtaining this approximation, because
this is outside the scope of the paper. Rather the focus of this paper is on
studying the supremum of the empirical process Sn and not on how we
obtain the process Sn per se. �

Example 3.2 (Forms of Sn(x, g) arising in nonparametric quantile regres-
sion). Here we explain which forms of Sn(x, g) arise in the nonparametric
series or sieve quantile regression. Let (Y1,X1), . . . , (Yn,Xn) be i.i.d. ran-
dom variables taking values in R × R

d where the support of X1 = [0, 1]d.
Suppose that the parameter of interest is the conditional quantile function:

Q(τ, x) = inf{y : FY |X(y | x) ≥ τ}, x ∈ [0, 1]d, τ ∈ (0, 1),

where FY |X(y | x) = P(Y1 ≤ y | X1 = x) is the conditional distribution
function. Consider series estimation of Q(τ, x). A standard way is to solve
the following minimization problem:

θ̂Kn(τ) = arg min
θKn∈RKn

n∑

i=1

ρτ
(
Yi − ψKn(Xi)

T θKn
)
,

where ρτ (y) = {τ − 1(y ≤ 0)}y is called the check function [30], and where

Kn → ∞ as n → ∞. A series estimate of Q(τ, x) is obtained by Q̂(τ, x) =

ψKn(x)T θ̂Kn(τ). Let T be an arbitrary closed interval in (0, 1). Suppose
that the conditional distribution function FY |X(y | x) has a Lebesgue density
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fY |X(y | x). Then, subject to some regularity conditions, the rescaled and
recentered estimator admits an asymptotically linear form:

S̃n(x, τ) =

√
n(Q̂(τ, x)−Q(τ, x))√

τ(1− τ)|A2n(τ)ψKn(x)|

≈ ψKn(x)TA1n(τ)√
τ(1− τ)|A2n(τ)ψKn(x)|

[
1√
n

n∑

i=1

{τ − 1(Yi ≤ Q(τ,Xi))}ψKn(Xi)

]

=: Sn(x, τ),

whereA1n(τ) = Jn(τ)
−1, Jn(τ) = E[fY |X(Q(τ,X1) | X1)ψ

Kn(X1)ψ
Kn(X1)

T ],

A2n(τ) = (E[ψKn(X1)ψ
Kn(X1)

T ])1/2Jn(τ)
−1 (note that τ(1−τ) comes from

the conditional variance of 1(Yi ≤ Q(τ,Xi)) given Xi). Here too S̃n(x, τ) ≈
Sn(x, τ) means that S̃n(x, τ) = Sn(x, τ)+oP(log

−1/2 n) uniformly in (x, τ) ∈
I × T ; see [28] and Belloni et al. [1, Theorem 2]. Note that

Yi ≤ Q(τ,Xi) ⇔ ηi ≤ τ, with ηi = FY |X(Yi | Xi),

and ηi are uniform random variables on (0, 1), independent of X1, . . . ,Xn.
So letting gτ (η) = τ − 1(η ≤ τ), we have the expression

Sn(x, τ) =
ψKn(x)TA1n(τ)√

τ(1− τ)|A2n(τ)ψKn(x)|

[
1√
n

n∑

i=1

gτ (ηi)ψ
Kn(Xi)

]
.

For the purpose of making uniform inference on Q(τ, x) over (τ, x) ∈ T ×I, it
is desirable to have a (tractable) distributional approximation of the quantity
Wn = sup(x,τ)∈I×T Sn(x, τ). �

The preceding examples explain and motivate various forms of Sn arising
in mathematical statistics. We now go back to the analysis of the supremum
Wn of Sn. Let Bn be a centered Gaussian process indexed by I × G with
covariance function

E[Bn(x, g)Bn(x̌, ǧ)]

= αn(x, g)
T
E[g(η1)ǧ(η1)ψ

Kn(X1)ψ
Kn(X1)

T ]αn(x̌, ǧ), (8)

where αn(x, g) = A1n(g)ψ
Kn(x)/|A2n(g)ψ

Kn(x)|. Intuitively, it is expected

that under suitable regularity conditions, there is a sequence W̃n of random

variables such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and as n→ ∞, |Wn−W̃n| P→

0. We shall establish the validity of this approximation with explicit rates.
We make the following assumptions.

(C1) G is a pointwise measurable VC type class of functions E → R with
measurable envelope G such that E[g2(η1)] <∞ and E[g(η1) | X1] =
0 a.s. for all g ∈ G.

(C2) There exist some constants c1, C1 > 0 such that smax(A2n(g)) ≤ C1

and smin(A2n(g)) ≥ c1 for all g ∈ G and n ≥ 1.
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(C3) bn := supx∈[0,1]d |ψKn(x)| ∨ 1 < ∞ and there exists a constant C2 >

0 such that smax(E[ψ
Kn(X1)ψ

Kn(X1)]) ≤ C2 for all n ≥ 1. The
map (x, g) 7→ A1n(g)ψ

Kn(x)/|A2n(g)ψ
Kn(x)| =: αn(x, g) is Lipschitz

continuous with Lipschitz constant ≤ Ln(≥ 1) in the following sense:

|αn(x, g) − αn(x̌, ǧ)| ≤ Ln{|x− x̌|+ (E[(g(η1)− ǧ(η1))
2])1/2},

∀x, x̌ ∈ [0, 1]d,∀g, ǧ ∈ G. (9)

Here bn and Ln are allowed to diverge as n→ ∞.
(C4) log bn = O(log n) and logLn = O(log n) as n→ ∞.

For many commonly used basis functions such as Fourier series, splines
and CDV wavelet bases, bn = O(

√
Kn) as n → ∞. See [41]. The Lipschitz

condition (9) is satisfied if infx∈[0,1]d |ψKn(x)| ≥ c2 > 0, |ψKn(x)−ψKn(x̌)| ≤
L1n|x− x̌|, and ‖A1n(g)−A1n(ǧ)‖op∨‖A2n(g)−A2n(ǧ)‖op ≤ L2n(E[(g(η1)−
ǧ(η1))

2])1/2, where c2 > 0 is a fixed constant and L1n, L2n are sequences of
constants possibly divergent as n → ∞ (‖A‖op denotes the operator norm
of a matrix A). Then (9) is satisfied with Ln = O(L1n ∨ L2n). Assumption
(C4) states mild growth restrictions on Kn and Ln and is usually satisfied.

Proposition 3.3 (Gaussian approximation to suprema of series empirical
processes). Suppose that assumptions (C1)-(C4) are satisfied. Moreover,
suppose either (i) G is bounded (i.e., ‖G‖∞ < ∞), or (ii) E[Gq(η1)] < ∞
for some q ≥ 4 and supx∈[0,1]d E[G

4(η1) | X1 = x] < ∞. Then for every

n ≥ 1, there is a tight Gaussian random element Bn in ℓ∞(I × G) with

mean zero and covariance function (8), and there exists a sequence W̃n of

random variables such that W̃n
d
= sup(x,g)∈I×G Bn(x, g) and as n→ ∞,

|Wn − W̃n|

=

{
OP{n−1/6b

1/3
n log n+ n−1/4b

1/2
n log5/4 n+ n−1/2bn log

3/2 n}, (i),

OP{n−1/6b
1/3
n log n+ n−1/4b

1/2
n log5/4 n+ n−1/2+1/qbn log

3/2 n}, (ii).

Remark 3.3 (Discussion and comparisons with other approximations).
Proposition 3.3 is a new result, and its principal attractive feature is the
weak requirement on the number of series functions (Kn). Another approach
to deduce a result similar to Proposition 3.3 is to apply Yurinskii’s coupling
(see Theorem 4.2 ahead) to random vectors g(ηi)ψ

Kn(Xi), which, however,
requires a rather stringent restriction on Kn, namely K5

n/n → 0, for ensur-

ing |Wn − W̃n| P→ 0 even in the simplest case where E = R and g(η) = η.
See, e.g., [13], Theorem 7. Moreover, the use of Rio’s [46] Theorem 1.1 here
is not effective since the total variation bound is large or difficult to control
well in this example, which results in restrictive conditions on Kn (also Rio’s
[46] Theorem 1.1 does not cover case (ii) where G may not be bounded). �

Remark 3.4 (Converting coupling to convergence in Kolmogorov distance).
As before, we can convert the results in Proposition 3.3 into convergence of
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the Kolmogorov distance between the distributions of Wn and its Gaussian

analogue W̃n. By Dudley’s inequality for Gaussian processes [52, Corol-

lary 2.2.8], it is not difficult to deduce that E[W̃n] = O(
√
log n) under the

assumptions of Proposition 3.3. Hence if moreover there exists a constant
σ > 0 (independent of n) such that Var(Sn(x, g)) ≥ σ2 for all (x, g) ∈ I ×G,
by Lemma 2.4, we have

|Wn − W̃n| = oP(log
−1/2 n) ⇒ sup

t∈R
|P(Wn ≤ t)− P(W̃n ≤ t)| = o(1).

Note that |Wn − W̃n| = oP(log
−1/2 n) if Kn(log n)

c/n → 0 in case (i) and

Kn(log n)
c/n1−2/q → 0 in case (ii), where c > 0 is some constant. These

requirements on Kn are mild, in view of the fact that at least Kn/n → 0 is
needed for consistency (in the L2-norm) of the series estimator [see 29]. �

4. A coupling inequality for maxima of sums of random vectors

The main ingredient in the proof of Theorem 2.1 is a new coupling in-
equality for maxima of sums of random vectors, which is stated below. A
related Gaussian approximation inequality was obtained in [10] with a dif-
ferent technique, but the current Theorem 4.1 is more convenient for the
purpose of this paper.

Theorem 4.1 (A coupling inequality for maxima of sums of random vec-
tors). Let X1, . . . ,Xn be independent random vectors in R

p with mean zero
and finite absolute third moments, i.e., E[Xij ] = 0 and E[|Xij |3] < ∞ for
all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Consider the statistic

Z = max
1≤j≤p

n∑

i=1

Xij.

Let Y1, . . . , Yn be independent random vectors in R
p such that

Yi ∼ N(0,E[XiX
T
i ]), 1 ≤ i ≤ n.

Then for every β > 0 and δ > 1/β, there exists a random variable Z̃
d
=

max1≤j≤p
∑n

i=1 Yij such that

P(|Z − Z̃| > 2β−1 log p+ 3δ) ≤ ε+ Cβδ−1{B1 + β(B2 +B3)}
1− ε

,

where ε = εβ,δ is given by

ε =
√
e−α(1 + α) < 1, α = β2δ2 − 1 > 0,
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and

B1 = E

[
max

1≤j,k≤p
|

n∑

i=1

(XijXik − E[XijXik])|
]
,

B2 = E

[
max
1≤j≤p

n∑

i=1

|Xij |3
]
,

B3 =
n∑

i=1

E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > β−1/2

)]
.

The following corollary is useful for many applications. Recall n ≥ 3.

Corollary 4.1 (An applied coupling inequality for maxima of sums of ran-
dom vectors). Consider the same setup as in Theorem 4.1. Then for every

δ > 0, there exists a random variable Z̃
d
= max1≤j≤p

∑n
i=1 Yij such that

P(|Z−Z̃| > 16δ) . δ−2{B1+δ
−1(B2+B4) log(p∨n)} log(p∨n)+

log n

n
, (10)

where B1 and B2 are as in Theorem 4.1, and

B4 =
n∑

i=1

E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > δ/ log(p ∨ n)
)]

.

Proof of Corollary 4.1. In Theorem 4.1, take β = 2δ−1 log(p ∨ n). Then
α = β2δ2 − 1 = 4 log2(p ∨ n) − 1 ≥ 2 log(p ∨ n) (recall n ≥ 3 > e), so that
ε ≤ 2 log(p ∨ n)/(p ∨ n) ≤ 2n−1 log n. This completes the proof. �

Theorem 4.1 is a coupling inequality similar in nature to Yurinskii’s [54]
coupling for sums of random vectors (as opposed to the maxima of such
vectors as in the current theorem). Before proving Theorem 4.1, let us first
recall Yurinskii’s coupling inequality.

Theorem 4.2 (Yurinskii’s coupling for sums of random vectors; [54]; see
also [35]). Consider the same setup as in Theorem 4.1. Let Sn =

∑n
i=1Xi.

Then for every δ > 0, there exists a random vector Tn
d
=
∑n

i=1 Yi such that

P(|Sn − Tn| > 3δ) . B0

(
1 +

| log(1/B0)|
p

)
,

where B0 = pδ−3
∑n

i=1 E[|Xi|3].
For the proof, see [44], Section 10.4. Because of the general fact that

max1≤j≤n |xj | ≤ |x| for x ∈ R
p, one has

| max
1≤j≤p

(Sn)j − max
1≤j≤n

(Tn)j| ≤ max
1≤j≤p

|(Sn − Tn)j| ≤ |Sn − Tn|.

Hence if we take Z̃ = max1≤j≤p(Tn)j ,

P(|Z − Z̃| > 3δ) . B0

(
1 +

| log(1/B0)|
p

)
. (11)
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Unfortunately, when p is large, the right side needs not be small. This is
because B0 is proportional to

∑n
i=1 E[|Xi|3] and this quantity may be larger

than what we want.
To better understand the difference between (10) and (11), consider the

situation where p is indexed by n and p = pn → ∞ as n → ∞. Moreover,
consider the simple case where Xij = xij/

√
n and |xij | ≤ b (xij are random;

b is a fixed constant). Then

B1 = O(n−1/2 log1/2 pn), B2 +B4 = O(n−1/2).

The former estimate is deduced from the fact that, using the symmetriza-
tion and the maximal inequality for Rademacher averages conditional on
X1, . . . ,Xn [use 52, Lemmas 2.2.2 and 2.2.7], one has

B1 .
√

log(1 + p)E

[
max
1≤j≤p

(

n∑

i=1

X4
ij)

1/2

]
.

On the other hand,

pn

n∑

i=1

|Xi|3 = O(n−1/2p5/2n ).

Therefore, to make |Z − Z̃| P→ 0, the former (10) allows pn to be of an

exponential order (pn can be as large as log pn = o(n1/4); hence, e.g., pn
can be of order en

α
for 0 < α < 1/4), while the latter (11) restricts pn

to be pn = o(n1/5). Note that, under the exponential moment condition,
instead of Yurinskii’s coupling, we can use Zaitsev’s coupling inequality [55,

Theorem 1.1] but it still requires pn = o(n1/5) to deduce that |Z − Z̃| P→ 0
(although by using Zaitsev’s coupling, we indeed have an exponential type

inequality for |Z − Z̃|).
Remark 4.1 (Connection to Theorem 2.1). The importance of Theorem
4.1 in the context of the proof of Theorem 2.1 is described as follows. In the
proof of Theorem 2.1, we make a finite approximation of F by a minimal
ε‖F‖P,2-net of (F , eP ) and apply Theorem 4.1 to the “discretized” empiri-
cal process; hence in this application, p = N(F , eP , ε‖F‖P,2). The fact that
Theorem 4.1 allows for “large” p means that a “finer” discretization is possi-
ble, and as a result, the bound in Theorem 2.1 depends on the covering num-
ber N(F , eP , ε‖F‖P,2) only through its logarithm: logN(F , eP , ε‖F‖P,2). �

We will use a version of Strassen’s theorem to prove Theorem 4.1. We
state it for the reader’s convenience.

Lemma 4.1 (An implication of Strassen’s theorem). Let µ and ν be Borel
probability measures on R, and let V be a random variable defined on a
probability space (Ω,A,P) with distribution µ. Suppose that the probability
space (Ω,A,P) admits a uniform random variable on (0, 1) independent of
V . Let ε > 0 and δ > 0 be two positive constants. Then there exists
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a random variable W , defined on (Ω,A,P), with distribution ν such that
P(|V −W | > δ) ≤ ε if and only if µ(A) ≤ ν(Aδ) + ε for every Borel subset
A of R.

Proof. The “only if” part is trivial, and hence we prove the “if” part. By
Strassen’s theorem [see 44, Section 10.3], there are random variables V ∗ and
W ∗ with distributions µ and ν such that P(|V ∗ −W ∗| > δ) ≤ ε. V ∗ may be
different from V . Let F (w | v) be a regular conditional distribution function
ofW ∗ given V ∗ = v. Denote by F−1(τ | v) the quantile function of F (w | v),
i.e., F−1(τ | v) = inf{w : F (w | v) ≥ τ}. Generate a uniform random
variable U on (0, 1) independent of V and take W (ω) = F−1(U(ω) | V (ω)).

Then it is routine to verify that (V,W )
d
= (V ∗,W ∗). �

Proof of Theorem 4.1. For the notational convenience, write eβ = β−1 log p.
Construct Y1, . . . , Yn independent of X1, . . . ,Xn. By Lemma 4.1, the con-
clusion follows if we can prove that for every Borel subset A of R,

P(Z ∈ A) ≤ P(Z̃∗ ∈ A2eβ+3δ) +
ε+ Cβδ−1{B1 + β(B2 +B3)}

1− ε
,

where Z̃∗ := max1≤j≤p
∑n

i=1 Yij. Let Sn =
∑n

i=1Xi and Tn =
∑n

i=1 Yi. Fix
any Borel subset A of R. We divide the proof into several steps.

Step 1: We approximate the non-smooth map x 7→ 1A(max1≤j≤p xj) by a
smooth function. The first step is to approximate the map x 7→ max1≤j≤p xj
by a smooth function. Consider the function Fβ : Rp → R defined by

Fβ(x) = β−1 log




p∑

j=1

eβxj


 ,

which gives a smooth approximation of max1≤j≤p xj. Indeed, an elementary
calculation gives the following inequality: for every x = (x1, . . . , xp)

T ∈ R
p,

max
1≤j≤p

xj ≤ Fβ(x) ≤ max
1≤j≤p

xj + β−1 log p. (12)

See [8]. Hence we have

P(Z ∈ A) ≤ P(Fβ(Sn) ∈ Aeβ) = E[1Aeβ (Fβ(Sn))].

Step 2: The next step is to approximate the indicator function t 7→ 1A(t)
by a smooth function. This step is rather standard.

Lemma 4.2. Let β > 0 and δ > 1/β. For every Borel subset A of R,
there exists a smooth function g : R → R such that ‖g′‖∞ ≤ δ−1, ‖g′′‖∞ ≤
Cβδ−1, ‖g′′′‖∞ ≤ Cβ2δ−1, and

(1− ε)1A(t) ≤ g(t) ≤ ε+ (1− ε)1A3δ (t), ∀t ∈ R,

where ε = εβ,δ is given by

ε =
√
e−α(1 + α) < 1, α = β2δ2 − 1 > 0.
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Proof of Lemma 4.2. The proof is due to [44], Lemma 10.18 (p. 248). Let
ρ(·, ·) denote the Euclidean distance on R. Then consider the function h(t) =
(1−ρ(t, Aδ)/δ)+. Note that h is Lipschitz continuous with Lipschitz constant
≤ δ−1. Construct a smooth approximation of h(t) by

g(t) =
β√
2π

∫

R

h(s)e−
1

2
β2(s−t)2ds =

1√
2π

∫

R

h(t+ β−1s)e−
1

2
s2ds.

Then the map t 7→ g(t) is infinitely differentiable, and

‖g′‖∞ ≤ δ−1, ‖g′′‖∞ ≤ Cβδ−1, ‖g′′′‖∞ ≤ Cβ2δ−1.

The rest of the proof is the same as [44], Lemma 10.18 and omitted. �

Apply Lemma 4.2 to A = Aeβ to construct a suitable function g. Then

E[1Aeβ (Fβ(Sn))] ≤ (1− ε)−1
E[g ◦ Fβ(Sn)].

Step 3: The next step uses Stein’s method to compare E[g ◦Fβ(Sn)] and
E[g ◦ Fβ(Tn)]. The following argument is inspired by [9], Theorem 7. We
first make some complimentary computations.

Lemma 4.3. Let β > 0. For every g ∈ C3(R),

p∑

j,k=1

|∂j∂k(g ◦ Fβ)(x)| ≤ ‖g′′‖∞ + 2‖g′‖∞β, (13)

p∑

j,k,l=1

|∂j∂k∂l(g ◦ Fβ)(x)| ≤ ‖g′′′‖∞ + 6‖g′′‖∞β + 6‖g′‖∞β2. (14)

Moreover, let Ujkl(x) := sup{|∂j∂k∂l(g ◦Fβ)(x+ y)| : y ∈ R
p, |yj | ≤ β−1, 1 ≤

∀j ≤ p}. Then

p∑

j,k,l=1

Ujkl(x) ≤ C(‖g′′′‖∞ + ‖g′′‖∞β + ‖g′‖∞β2). (15)

Proof of Lemma 4.3. Let δjk = 1(j = k). A direct calculation gives

∂jFβ(x) = πj(z), ∂j∂kFβ(x) = βwjk(x), ∂j∂k∂lFβ(x) = β2qjkl(x),

where

πj(x) = eβxj/
∑p

k=1e
βxk , wjk(x) = (πjδjk − πjπk)(x),

qjkl(x) = (πjδjlδjk − πjπlδjk − πjπk(δjl + δkl) + 2πjπkπl)(x).

By these expressions, we have

πj(x) ≥ 0,

p∑

j=1

πj(x) = 1,

p∑

j,k=1

|wjk(x)| ≤ 2,

p∑

j,k,l=1

|qjkl(x)| ≤ 6.
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Inequalities (13) and (14) follow from these relations and the following com-
putation.

∂j(g ◦ Fβ)(x) = (g′ ◦ Fβ)(x)πj(x),

∂j∂k(g ◦ Fβ)(x) = (g′′ ◦ Fβ)(x)πj(x)πk(x) + (g′ ◦ Fβ)(x)βwjk(x),

∂j∂k∂l(g ◦ Fβ)(x) = (g′′′ ◦ Fβ)(x)πj(x)πk(x)πl(x)

+ (g′′ ◦ Fβ)(x)β(wjk(x)πl(x) + wjl(x)πk(x) + wkl(x)πj(x))

+ (g′ ◦ Fβ)(x)β
2qjkl(x).

For the last inequality (15), it is standard to see that whenever |yj| ≤
β−1, 1 ≤ ∀j ≤ p,

πj(x+ y) ≤ e2πj(x),

from which the desired inequality follows. �

For i = 1, . . . , n, let X ′
i be an independent copy of Xi. Let I be a uniform

random variable on {1, . . . , n} independent of all the other variables. Define

S′
n = Sn −XI +X ′

I .

For λ ∈ R
p,

E[e
√
−1λTS

′
n ] =

1

n

n∑

i=1

E[e
√
−1λT (Sn−Xi+X′

i)]

=
1

n

n∑

i=1

E[e
√
−1λT (Sn−Xi)]E[e

√
−1λTX′

i ] =
1

n

n∑

i=1

∏

j 6=i

E[e
√
−1λTXj ]E[e

√
−1λTXi ]

=

n∏

i=1

E[e
√
−1λTXi ] = E[e

√
−1λTSn ].

Hence S′
n

d
= Sn. Also with Xn

1 = {X1, . . . ,Xn},
E[S′

n − Sn | Xn
1 ] = E[X ′

I −XI | Xn
1 ]

=
1

n

n∑

i=1

E[X ′
i −Xi | Xn

1 ] = −n−1Sn, (16)

and

E[(S′
n − Sn)(S

′
n − Sn)

T | Xn
1 ] = E[(X ′

I −XI)(X
′
I −XI)

T | Xn
1 ]

=
1

n

n∑

i=1

E[(X ′
i −Xi)(X

′
i −Xi)

T | Xn
1 ] =

1

n

n∑

i=1

(E[XiX
T
i ] +XiX

T
i )

=
2

n

n∑

i=1

E[XiX
T
i ] +

1

n

n∑

i=1

(XiX
T
i − E[XiX

T
i ])

=
2

n

n∑

i=1

E[XiX
T
i ] + n−1V, (17)
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where V is the p× p matrix defined by

V = (Vjk)1≤j,k≤p =
1

n

n∑

i=1

(XiX
T
i − E[XiX

T
i ]).

For the notational convenience, write f = g ◦ Fβ. Consider

h(x) =

∫ 1

0

1

2t
E[f(

√
tx+

√
1− tTn)− f(Tn)]dt.

Then Lemma 1 of [40] implies

p∑

j=1

xj∂jh(x) −
p∑

j,k=1

n∑

i=1

E[XijXik]∂j∂kh(x) = f(x)− E[f(Tn)],

and especially

E[f(Sn)]− E[f(Tn)] = E




p∑

j=1

n∑

i=1

Xij∂jh(Sn)




− E




p∑

j,k=1

n∑

i=1

E[XijXik]∂j∂kh(Sn)


 . (18)

Denote by ∇h(x) and Hessh(x) the gradient vector and the Hessian ma-
trix of h(x), respectively. Let

R = h(S′
n)− h(Sn)− (S′

n − Sn)
T∇h(Sn)

− 2−1(S′
n − Sn)

T (Hessh(Sn))(S
′
n − Sn).

Then one has

0 = nE[h(S′
n)− h(Sn)] (as S′

n
d
= Sn)

= nE[(S′
n − Sn)

T∇h(Sn) + 2−1(S′
n − Sn)

T (Hess h(Sn))(S
′
n − Sn) +R]

= nE
[
E[(S′

n − Sn)
T | Xn

1 ]∇h(Sn)

+ 2−1 Tr
(
(Hess h(Sn))E[(S

′
n − Sn)(S

′
n − Sn)

T | Xn
1 ]
)
+R

]

= E


−

p∑

j=1

n∑

i=1

Xij∂jh(Sn) +

p∑

j,k=1

n∑

i=1

E[XijXik]∂j∂kh(Sn)




+ E


1
2

p∑

j,k=1

Vjk∂j∂kh(Sn) + nR


 (by (16) and (17))

= −E[f(Sn)] + E[f(Tn)] + E


1
2

p∑

j,k=1

Vjk∂j∂kh(Sn) + nR


 , (by (18))
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that is,

E[f(Sn)]− E[f(Tn)] = E


1
2

p∑

j,k=1

Vjk∂j∂kh(Sn) + nR


 .

Using Lemma 4.3, one has

|
p∑

j,k=1

Vjk∂j∂kh(Sn)| ≤ max
1≤j,k≤p

|Vjk|
p∑

j,k=1

|∂j∂kh(Sn)| ≤ Cβδ−1 max
1≤j,k≤p

|Vjk|,

and with ∆i := (∆i1, . . . ,∆ip)
T := X ′

i −Xi,

|E[nR]| =

∣∣∣∣∣∣
E


1
2

n∑

i=1

p∑

j,k,l=1

∆ij∆ik∆il(1− θ)2∂j∂k∂lh(Sn + θ∆i)



∣∣∣∣∣∣

(θ ∼ U(0, 1) independent of all the other variables)

≤ 1

2
E




n∑

i=1

p∑

j,k,l=1

|∆ij∆ik∆il| · |∂j∂k∂lh(Sn + θ∆i)|


 . (19)

Let χi = 1(max1≤j≤p |∆ij | ≤ β−1) and χc
i := 1− χi. Then

(19) =
1

2
E

[
n∑

i=1

χi∗
]
+

1

2
E

[
n∑

i=1

χc
i∗
]
=:

1

2
[(A) + (B)] .

Observe that

(A) ≤ E




p∑

j,k,l=1

max
1≤i≤n

(χi · |∂j∂k∂lh(Sn + θ∆i)|)× max
1≤j,k,l≤p

n∑

i=1

|∆ij∆ik∆il|




≤ Cβ2δ−1
E

[
max

1≤j,k,l≤p

n∑

i=1

|∆ij∆ik∆il|
]

(by (15))

≤ Cβ2δ−1
E

[
max
1≤j≤p

n∑

i=1

|∆ij|3
]
≤ Cβ2δ−1

E

[
max
1≤j≤p

n∑

i=1

|Xij |3
]
= Cβ2δ−1B2,

and

(B) ≤ Cβ2δ−1
n∑

i=1

E

[
χc
i max
1≤j≤p

|∆ij|3
]

(by (14))

≤ Cβ2δ−1
n∑

i=1

E

[
χc
i max
1≤j≤p

|Xij |3
]
. (by symmetry)

Because

χc
i ≤ 1

(
max
1≤j≤p

|Xij | > β−1/2

)
+ 1

(
max
1≤j≤p

|X ′
ij | > β−1/2

)
,
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we have

E

[
χc
i max
1≤j≤p

|Xij |3
]
≤ E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > β−1/2

)]

+ E

[
max
1≤j≤p

|Xij |3
]
· P
(
max
1≤j≤p

|Xij | > β−1/2

)
. (20)

We here recall Chebyshev’s association inequalities stated in the following
lemma.

Lemma 4.4 (Chebyshev’s association inequalities). Let ϕ and ψ be func-
tions defined on an interval I in R, and let ξ be a random variable such that
P(ξ ∈ I) = 1. Suppose that E[|ϕ(ξ)|] <∞,E[|ψ(ξ)|] <∞ and E[|ϕ(ξ)ψ(ξ)|] <
∞. Then Cov(ϕ(ξ), ψ(ξ)) ≥ 0 if ϕ and ψ are monotone in the same direc-
tion, and Cov(ϕ(ξ), ψ(ξ)) ≤ 0 if ϕ and ψ are monotone in the opposite
direction.

Proof of Lemma 4.4. See, e.g., Theorem 2.14 in [4]. �

Since the maps t 7→ t3 and t 7→ 1(t > β−1/2) are non-decreasing on [0,∞),
the second term on the right side of (20) is not larger than the first term.
Hence

(B) ≤ Cβ2δ−1
n∑

i=1

E

[
max
1≤j≤p

|Xij |3 · 1
(
max
1≤j≤p

|Xij | > β−1/2

)]
= Cβ2δ−1B3.

Therefore,

|E[f(Sn)]− E[f(Tn)]| ≤ Cβδ−1{B1 + β(B2 +B3)}.
Step 4: Combining Steps 1-3, one has

P(Z ∈ A) ≤ (1− ε)−1
E[g ◦ Fβ(Tn)] +

Cβδ−1{B1 + β(B2 +B3)}
1− ε

≤ P(Fβ(Tn) ∈ Aeβ+3δ) +
ε+ Cβδ−1{B1 + β(B2 +B3)}

1− ε
(by construction of g)

≤ P(Z̃∗ ∈ A2eβ+3δ) +
ε+ Cβδ−1{B1 + β(B2 +B3)}

1− ε
. (Lemma 12)

This completes the proof. �

5. Inequalities for empirical processes

In this section, we shall provide some inequalities for empirical processes
that will be used in the proofs of Theorem 2.1 and Lemma 2.2. These
inequalities are of interest in their own rights. Consider the same setup as
in Section 2, i.e., let X1, . . . ,Xn be i.i.d. random variables taking values
in a measurable space (S,S) with common distribution P . Let F be a
pointwise measurable class of functions S → R, to which a measurable
envelope F is attached. In this section, however, we do not assume that F is



GAUSSIAN APPROXIMATION OF SUPREMA 27

P -centered. Consider the empirical process Gnf = n−1/2
∑n

i=1(f(Xi)−Pf).
Let σ2 > 0 be any positive constant such that supf∈F Pf

2 ≤ σ2 ≤ ‖F‖2P,2.
Let M = max1≤i≤n F (Xi).

Theorem 5.1 (A useful deviation inequality for suprema of empirical pro-
cesses). Suppose that F ∈ Lq(P ) for some q ≥ 2. Then for every t ≥ 1, with

probability > 1− t−q/2,

‖Gn‖F ≤ (1 + α)E[‖Gn‖F ] +K(q)
[
(σ + n−1/2‖M‖q)

√
t

+ α−1n−1/2‖M‖2t
]
, ∀α > 0,

where K(q) > 0 is a constant depending only on q.

Remark 5.1. Theorem 5.1 gives a deviation inequality for suprema of em-
pirical processes that only requires finite moments of envelope functions.
Talagrand’s [50] inequality gives an exponential type deviation inequality
for the supremum but requires uniform boundedness of F , which is violated
in our applications. Another known deviation inequality similar in nature
to Theorem 5.1 is a Fuk-Nagaev type inequality proved in [20] (see their
Theorem 3.1). For the purpose of this paper, however, Theorem 5.1 is more
convenient.

Proof of Theorem 5.1. The theorem essentially follows from [5], Theorem
12, which states that

‖(‖Gn‖F − E[‖Gn‖F ])+‖q .
√
q(Σ + σ) + qn−1/2(‖M‖q + σ),

where Σ2 = E[‖n−1
∑n

i=1(f(Xi)−Pf)2‖F ]. By Lemma 7 of the same paper,

Σ2 ≤ σ2 + 64n−1/2‖M‖2E[‖Gn‖F ] + 32n−1‖M‖22.
Hence, using the simple inequality 2

√
ab ≤ βa+ β−1b,∀β > 0, one has

‖(‖Gn‖F − E[‖Gn‖F ])+‖q .
√
qβE[‖Gn‖F ] +

√
q(1 + β−1)n−1/2‖M‖2

+
√
qσ + qn−1/2(‖M‖q + σ).

Therefore, by Markov’s inequality, for every t ≥ 1, with probability> 1−t−q,

‖Gn‖F ≤ E[‖Gn‖F ] + (‖Gn‖F − E[‖Gn‖F ])+
≤ (1 + C

√
qβt)E[‖Gn‖F ]

+ C
√
q(1 + β−1)n−1/2‖M‖2t

+ C
√
qσt+Cqn−1/2(‖M‖q + σ)t, ∀β > 0.

The final conclusion follows from taking β = C−1q−1/2t−1α. �

The proof of Lemma 2.2 relies on the following moment inequality for
suprema of empirical processes, which is an extension of [53], Theorem 2.1,
to possibly unbounded classes of functions (Theorem 3.1 of [53] derives a
moment inequality applicable to the case where the envelope F has q > 4
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moments, but the form of the inequality in Theorem 5.2 is more convenient
in our applications; note that Theorem 5.2 only requires F ∈ L2(P ), as
opposed to F ∈ Lq(P ) with q > 4 in Theorem 3.1 of [53], and Theorem 5.2
is not covered by [53]). Recall the uniform entropy integral J(δ,F , F ).
Theorem 5.2 (A useful maximal inequality). Suppose that F ∈ L2(P ). Let
δ = σ/‖F‖P,2. Then

E[‖Gn‖F ] . J(δ,F , F )‖F‖P,2 +
‖M‖2J2(δ,F , F )

δ2
√
n

.

In Appendix, we give a full proof of Theorem 5.2 for the sake of complete-
ness, although the the proof is essentially similar to the proof of Theorem
2.1 in [53].

The bound in Theorem 5.2 will be explicit as soon as a suitable bound
on the covering number is available. For example, the following corollary is
an extension of [25], Proposition 2.1. For its proof, see Appendix A.3.

Corollary 5.1 (Maximal inequality specialized to VC type classes). Con-
sider the same setup as in Theorem 5.2. Suppose that there exist constants
A ≥ e and v ≥ 1 such that

sup
Q
N(F , eQ, ε‖F‖Q,2) ≤ (A/ε)v , 0 < ∀ε ≤ 1.

Then

E[‖Gn‖F ] .
√
vσ2 log

(
A‖F‖P,2

σ

)
+
v‖M‖2√

n
log

(
A‖F‖P,2

σ

)
.

6. Proofs of Theorem 2.1, Lemmas 2.3 and 2.4

6.1. Proof of Theorem 2.1. We make use of Lemma 4.1 to prove the
theorem. Construct a tight Gaussian random element GP in ℓ∞(F) given
in assumption (A3), independent of X1, . . . ,Xn. We note that one can
extend GP to the linear hull of F in such a way that GP has linear sample
paths [see 18, Theorem 3.1.1]. Let {f1, . . . , fN} be a minimal ε‖F‖P,2-
net of (F , eP ) with N = N(F , eP , ε‖F‖P,2). Then for every f ∈ F , there
exists a function fj, 1 ≤ j ≤ N such that eP (f, fj) < ε‖F‖P,2. Recall
Fε = {f − g : f, g ∈ F , eP (f, g) < ε‖F‖P,2} and define

Zε = max
1≤j≤N

Gnfj, Z̃
∗ = sup

f∈F
GP f, Z̃

∗ε = max
1≤j≤N

GP fj.

Observe that

|Z − Zε| ≤ ‖Gn‖Fε , |Z̃∗ε − Z̃∗| ≤ ‖GP ‖Fε .

We shall apply Corollary 4.1 to Zε. Recall that log(N ∨ n) = Hn(ε).
Then for every Borel subset A of R and δ > 0,

P(Zε ∈ A)−P(Z̃∗ε ∈ A16δ) . δ−2{B1+δ
−1(B2+B4)Hn(ε)}Hn(ε)+n

−1 log n,
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where

B1 = n−1
E

[
max

1≤j,k≤N
|

n∑

i=1

(fj(Xi)fk(Xi)− P (fjfk))|
]
,

B2 = n−3/2
E

[
max

1≤j≤N

n∑

i=1

|fj(Xi)|3
]
,

B4 = n−1/2
E

[
max

1≤j≤N
|fj(X1)|3 · 1

(
max

1≤j≤N
|fj(X1)| > δ

√
nHn(ε)

−1

)]
.

Clearly B1 ≤ n−1/2
E[‖Gn‖F·F ], B2 ≤ n−1/2κ3, and

B4 ≤ n−1/2P [F 31(F > δ
√
nHn(ε)

−1)].

Hence choosing δ > 0 in such a way that

Cδ−2n−1/2
E[‖Gn‖F·F ]Hn(ε) ≤

γ

4
, Cδ−3n−1/2κ3H2

n(ε) ≤
γ

4
,

that is,

δ ≥ Cmax
{
γ−1/2n−1/4(E[‖Gn‖F·F ])

1/2H1/2
n (ε), γ−1/3n−1/6κH2/3

n (ε)
}
,

we have

P(Zε ∈ A) ≤ P(Z̃∗ε ∈ A16δ)+
γ

2
+
γ

4
κ−3P [F 31(F > δ

√
nHn(ε)

−1)]+
C log n

n
.

Note that δ ≥ cγ−1/3n−1/6κH
2/3
n (ε), so that

P [F 31(F > δ
√
nHn(ε)

−1)] ≤ P [F 31(F/κ > cγ−1/3n1/3Hn(ε)
−1/3)].

Hence

P(Zε ∈ A) ≤ P(Z̃∗ε ∈ A16δ) +
γ

2

+
γ

4
P [(F/κ)31(F/κ > cγ−1/3n1/3Hn(ε)

−1/3)] +
C log n

n

=: P(Z̃∗ε ∈ A16δ) +
γ

2
+ error. (21)

By Theorem 5.1, with probability > 1− γ/4,

‖Gn‖Fε ≤ K(q)
{
φn(ε) + (ε‖F‖P,2 + n−1/2‖M‖q)γ−1/q

+ n−1/2‖M‖2γ−2/q
}
=: a, (22)

where K(q) is a constant that depends only on q. Moreover, by the Borell-
Sudakov-Tsirel’son inequality [52, Proposition A.1], with probability > 1−
γ/4, we have

‖GP ‖Fε ≤ φn(ε) + ε‖F‖P,2
√

2 log(4/γ) =: b. (23)
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Therefore, for every Borel subset A of R,

P(Z ∈ A) ≤ P(Zε ∈ Aa) +
γ

4
(by (22))

≤ P(Z̃∗ε ∈ Aa+16δ) +
3

4
γ + error (by (21))

≤ P(Z̃∗ ∈ Aa+b+16δ) + γ + error. (by (23))

The conclusion follows from Lemma 4.1. �

6.2. Proof of Lemma 2.3. The proof of Lemma 2.3 depends on the fol-
lowing lemma on anti-concentration of suprema of Gaussian processes.

Lemma 6.1 (An anti-concentration inequality). Let (S,S, P ) be a prob-
ability space, and let F ⊂ L2(P ) be a P -pre-Gaussian class of functions.
Denote by GP a tight Gaussian random element in ℓ∞(F) with mean zero
and covariance function E[GP (f)GP (g)] = CovP (f, g) for all f, g ∈ F where
CovP (·, ·) denotes the covariance under P . Suppose that there exist constants
σ, σ̄ > 0 such that σ2 ≤ VarP (f) ≤ σ̄2 for all f ∈ F . Then for every ǫ > 0,

sup
x∈R

P

{∣∣∣∣∣supf∈F
GP f − x

∣∣∣∣∣ ≤ ǫ

}
≤ Cσǫ

{
E

[
sup
f∈F

GP f

]
+
√

1 ∨ log(σ/ǫ)

}
,

where Cσ is a constant depending only on σ and σ̄.

Proof of Lemma 6.1. The proof of this lemma is the same as that of Theo-
rem 2.1 in [12] with the exception that we now apply Theorem 3, part (ii)
instead of Theorem 3, part (i) from [11]. �

Going back to the proof of Lemma 2.3, for every t ∈ R, we have

P(Z ≤ t) = P({Z ≤ t} ∩ {|Z − Z̃| ≤ r1}) + P({Z ≤ t} ∩ {|Z − Z̃| > r1})
≤ P(Z̃ ≤ t+ r1) + r2

≤ P(Z̃ ≤ t) + Cσr1{E[Z̃] +
√

1 ∨ log(σ/r1)}+ r2,

where we have used Lemma 6.1 to deduce the last inequality. A similar
argument leads to the reverse inequality. This completes the proof. �

6.3. Proof of Lemma 2.4. Take βn → ∞ sufficiently slowly such that

βnrn(1 ∨E[Z̃n]) = o(1). Then since P(|Zn − Z̃n| > βnrn) = o(1), by Lemma
2.3, we have

sup
t∈R

|P(Zn ≤ t)− P(Z̃n ≤ t)| = O{rn(E[Z̃n] + | log(βnrn)|)}+ o(1) = o(1).

This completes the proof. �



GAUSSIAN APPROXIMATION OF SUPREMA 31

References

[1] Belloni, A., Chernozhukov, V. and Fernández-Val, I. (2011). Con-
ditional quantile processes based on series or many regressors.
arXiv:1105.6154.

[2] Berthet, P. and Mason, D.M. (2006). Revisiting two strong approxima-
tion results of Dudley and Philipp. In: High Dimensional Probability,
IMS Lecture Notes-Monograph Series, Vol. 51, pp.155-172.

[3] Bickel, P.J. and Rosenblatt, M. (1973). On some global measures of the
deviations of density function estimates. Ann. Statist. 1 1071-1095.

[4] Boucheron, S., Lugosi, G. and Massart, P. (2013). Concentration In-
equalities: A Nonasymptotic Theory of Independence. Oxford Univer-
sity Press.

[5] Boucheron, S., Bousquet, O., Lugosi, G. and Massart, P. (2005). Mo-
ment inequalities for functions of independent random variables. Ann.
Probab. 33 514-560.

[6] Boyd, S. and Vanderberghe, L. (2004). Convex Optimization. Cam-
bridge University Press.

[7] Bretagnolle, J. and Massart, P. (1989). Hungarian construction from
the non asymptotic viewpoint. Ann. Probab. 17 239-256.

[8] Chatterjee, S. (2005). An error bound in the Sudakov-Fernique inequal-
ity. arXiv:math/0510424.

[9] Chatterjee, S. and Meckes, E. (2008). Multivariate normal approxima-
tion using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat.
4 257-283.

[10] Chernozhukov, V., Chetverikov, D. and Kato, K. (2012). Gaussian ap-
proximations and multiplier bootstrap for maxima of sums of high-
dimensional random vectors. Ann. Statist., to appear.

[11] Chernozhukov, V., Chetverikov, D. and Kato, K. (2012). Comparison
and anti-concentration bounds for maxima of Gaussian random vectors.
arXiv:1301.4807v3.

[12] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Anti-
concentration and adaptive honest confidence bands. arXiv:1303:7152.

[13] Chernozhukov, V., Lee, S., and Rosen, A. (2013). Intersection bounds:
estimation and inference. arXiv:0907.3503v4. To appear in Economet-
rica.

[14] Cohen, A., Daubechies, I., and Vial, P. (1993). Wavelets on the interval
and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1 54-81.

[15] Csörgo, M. and Horváth, L. (1993). Weighted Approximations in Prob-
ability and Statistics. Wiley.

[16] Deheuvels, P. and Mason, D.M. (1994). Functional laws of the iterated
logarithm for local empirical processes indexed by sets. Ann. Probab.
22 1619-1661.

[17] Dehling, H. (1983). Limit theorems for sums of weakly dependent Ba-
nach space valued random variables. Z. Warhsch. Verw. Gabiete 63



32 CHERNOZHUKOV, CHETVERIKOV, AND KATO

393-432.
[18] Dudley, R.M. (1999). Uniform Central Limit Theorems. Cambridge

University Press.
[19] Dudley, R.M. and Philipp, W. (1983). Invariance principles for sums

of Banach space valued random elements and empirical processes. Z.
Warhsch. Verw. Gabiete 62 509-552.

[20] Einmahl, U. and Li, D. (2008). Characterization of LIL behavior in
Banach space. Trans. Amer. Math. Soc. 360 6677-6693.

[21] Einmahl, U. and Mason, D.M. (1997). Gaussian approximation of local
empirical processes indexed by functions. Probab. Theory Related Fields
107 283-311.

[22] Einmahl, U. and Mason, D.M. (1998). Strong approximations to the
local empirical process. In: High Dimensional Probability (eds. E. Eber-
lein, M. Hahn and M. Talagrand) pp. 75-92.

[23] Einmahl, U. and Mason, D.M. (2000). An empirical process approach to
the uniform consistency of kernel-type function estimators. J. Theoret.
Probab. 13 1-37.

[24] Einmahl, U. and Mason, D.M. (2005). Uniform in bandwidth consis-
tency of kernel-type function estimators. Ann. Statist. 33 1380-1403.
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Appendix A. Additional proofs

A.1. Proof of Lemma 2.1. We first note that by approximation [see 52,
Problem 2.5.1], assumption (A4) implies that

∫ 1

0

√
logN(F , eP , ε‖F‖P,2)dε <∞.

Let GP be a centered Gaussian process indexed by F with covariance func-
tion E[GP (f)GP (g)] = P (fg). Recall that F is P -centered, and by Example
1.3.10 in [52], F is P -pre-Gaussian if and only if (F , eP ) is totally bounded
and GP has a version that has sample paths almost surely uniformly eP -
continuous. Dudley’s criterion for sample continuity of Gaussian processes
states that when ∫ ∞

0

√
logN(F , eP , ε)dε <∞, (24)

there exists a version of GP that has sample paths uniformly eP -continuous
[52, p.100-101] (note that (24) implies that N(F , eP , ε) is finite for every
ε > 0, i.e., F is totally bounded for eP ). The lemma readily follows from
these observations. �

A.2. Proof of Theorem 5.2. We first prove the following technical lemma.

Lemma A.1. Write J(δ) for J(δ,F , F ) and suppose that J(1) is finite (and
hence J(δ) is finite for all δ). Then (i) the map δ 7→ J(δ) is concave; (ii)
J(cδ) ≤ cJ(δ), ∀c ≥ 1; (iii) the map δ 7→ J(δ)/δ is non-increasing; (iv) the

map [0,∞) × (0,∞) ∋ (x, y) 7→ J(
√
x/y)

√
y is concave.

Proof. Let λ(ε) = supQ
√
1 + logN(F , eQ, ε‖F‖Q,2). Part (i) follows from

the fact that the map ε 7→ λ(ε) is non-increasing. Part (ii) follows from the
inequality ∫ cδ

0
λ(ε)dε = c

∫ δ

0
λ(cε)dε ≤ c

∫ δ

0
λ(ε)dε.

Part (iii) follows from the identity

J(δ)

δ
=

∫ 1

0
λ(δε)dε.

The proof of part (iv) uses some facts in convex analysis. Proofs of the
following lemmas can be found in, e.g., [6], Section 3.2.

Lemma A.2. Let D be a convex subset of R
n, and let f : D → R be a

concave function. Then the perspective (x, t) 7→ tf(x/t), {(x, t) ∈ R
n+1 :

x/t ∈ D, t > 0} → R, is also concave.

Lemma A.3. Let D1 be a convex subset of Rn, and let gi : D1 → R, 1 ≤
i ≤ k be concave functions. Let D2 denote the convex hull of the set
{(g1(x), . . . , gk(x)) : x ∈ D1}. Let h : D2 → R be concave and nonde-
creasing in each coordinate. Then f(x) = h(g1(x), . . . , gk(x)),D1 → R, is
concave.
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Let h(s, t) = J(s/t)t, g1(x, y) =
√
x and g2(x, y) =

√
y. Then h is concave

and nondecreasing in each coordinate, and gi, i = 1, 2 are concave. Hence
J(
√
x/y)

√
y = h(g1(x, y), g(x, y)) is concave. �

We will use a version of the contraction principle for Rademacher averages.
Recall that a Rademacher random variable is a random variables taking ±1
with equal probability.

Lemma A.4 (A contraction principle, [36]). Let ε1, . . . , εn be i.i.d. Rademacher
random variables independent of X1, . . . ,Xn. Then

E

[∥∥∥∥∥

n∑

i=1

εif
2(Xi)

∥∥∥∥∥
F

]
≤ 4E

[
M

∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
.

Proof. See [36], Theorem 4.12, and the discussion following the theorem. �

We will also use the following form of the Hoffmann-Jørgensen inequality.

Theorem A.1 (A Hoffmann-Jørgensen-type inequality, [36]). Let ε1, . . . , εn
be i.i.d. Rademacher random variables independent of X1, . . . ,Xn. Then for
every 1 < q <∞,

(
E

[∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥

q

F

])1/q

.q E

[∥∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
+ ‖M‖q.

Proof. See, e.g., [36], Theorem 6.20. �

We are now in position to prove Theorem 5.2.

Proof of Theorem 5.2. We may assume that J(1) is finite since otherwise
J(δ) is infinite and there is nothing to prove. Moreover, without loss of
generality, we may assume that F is everywhere positive. Let Pn denote
the empirical distribution that assigns probability n−1 to each Xi. Let
σ2n = supf∈F n

−1
∑n

i=1 f
2(Xi). For i.i.d. Rademacher random variables

ε1, . . . , εn independent of X1, . . . ,Xn, the symmetrization inequality gives

E[‖Gn‖F ] ≤ 2E

[∥∥∥∥∥
1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
.

Here the standard entropy integral inequality gives

E

[∥∥∥∥∥
1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
F
| X1, . . . ,Xn

]
≤ C

∫ σn

0

√
1 + logN(F , ePn , ε)dε

≤ C‖F‖Pn,2

∫ σn/‖F‖Pn,2

0

√
1 + logN(F , ePn , ε‖F‖Pn,2)dε

≤ C‖F‖Pn,2J(σn/‖F‖Pn,2).
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Hence by Lemma A.1 (iv) and Jensen’s inequality,

Z := E

[∥∥∥∥∥
1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
F

]
≤ C‖F‖P,2J(

√
E[σ2n]/‖F‖P,2).

By the symmetrization inequality, the contraction principle (Lemma A.4)
and the Cauchy-Schwarz inequality,

E[σ2n] ≤ σ2 + E
[∥∥En[(f

2(Xi)− Pf2)]
∥∥
F
]
≤ σ2 + 2E

[∥∥En[εif
2(Xi)]

∥∥
F
]

≤ σ2 + 8E [M ‖En[εif(Xi)]‖F ] ≤ σ2 + 8‖M‖2
(
E

[
‖En[εif(Xi)]‖2F

])1/2
.

Here by the Hoffmann-Jørgensen inequality (Theorem A.1),
(
E

[
‖En[εif(Xi)]‖2F

])1/2
. E [‖En[εif(Xi)]‖F ] + n−1‖M‖2,

so that, √
E[σ2n] ≤ C‖F‖P,2(∆ ∨

√
DZ),

where ∆2 := max{σ2, n−1‖M‖22}/‖F‖2P,2 ≥ δ2 andD := ‖M‖2/(
√
n‖F‖2P,2).

Therefore, using Lemma A.1 (ii), we have

Z ≤ C‖F‖P,2J(∆ ∨
√
DZ)

We consider the following two cases:
(i)

√
DZ ≤ ∆. In this case, J(∆ ∨

√
DZ) ≤ J(∆), so that Z ≤

C‖F‖P,2J(∆). Since the map δ 7→ J(δ)/δ is non-increasing (Lemma A.1
(iii)),

J(∆) = ∆
J(∆)

∆
≤ ∆

J(δ)

δ
= max

{
J(δ),

‖M‖2J(δ)√
nδ‖F‖P,2

}
.

Since J(δ)/δ ≥ J(1) ≥ 1, the last expression is bounded by

max

{
J(δ),

‖M‖2J2(δ)√
nδ2‖F‖P,2

}
.

(ii)
√
DZ ≥ ∆. In this case, J(∆∨

√
DZ) ≤ J(

√
DZ), and since the map

δ 7→ J(δ)/δ is non-increasing (Lemma A.1 (iii)),

J(
√
DZ) =

√
DZ

J(
√
DZ)√
DZ

≤
√
DZ

J(∆)

∆
≤

√
DZ

J(δ)

δ
.

Therefore,

Z ≤ C‖F‖P,2
√
DZ

J(δ)

δ
,

that is

Z ≤ C‖F‖2P,2D
J2(δ)

δ2
=
C‖M‖2J2(δ)√

nδ2
.

This completes the proof. �
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A.3. Proof of Corollary 5.1. Observe that

J(δ) ≤
∫ δ

0

√
1 + v log(A/ε)dε ≤ A

√
v

∫ ∞

A/δ

√
1 + log ε

ε2
dε.

An integration by parts gives
∫ ∞

c

√
1 + log ε

ε2
dε =

[
−
√
1 + log ε

ε

]∞

c

+
1

2

∫ ∞

c

1

ε2
√
1 + log ε

dε

≤
√
1 + log c

c
+

1

2

∫ ∞

c

√
1 + log ε

ε2
dε, if c ≥ e.

by which we have
∫ ∞

c

√
1 + log ε

ε2
dε ≤ 2

√
1 + log c

c
≤ 2

√
2
√
log c

c
, if c ≥ e,

Since A/δ ≥ A ≥ e, we have

J(δ) ≤ 2
√
2vδ
√

log(A/δ).

Applying Theorem 5.2, we obtain the desired conclusion. �

A.4. Proof of Lemma 2.2. Before proving Lemma 2.2, we shall recall the
following lemmas. The proofs of these lemmas are implicit in [52], Section
2.10.3, and hence omitted.

Lemma A.5. Let F and G be classes of measurable functions S → R, to
which measurable envelopes F and G are attached, respectively. Denote by
F · G the pointwise product of F and G. Then for every 0 < ε ≤ 1,

sup
Q
N(F·G, eQ, 2ε‖FG‖Q,2) ≤ sup

Q
N(F , eQ, ε‖F‖Q,2) sup

Q
N(G, eQ, ε‖G‖Q,2),

where the suprema are taken over all finitely discrete probability measures Q
on (S,S).
Lemma A.6. Let F be a class of measurable functions S → R, to which a
measurable envelope F is attached. For every q ≥ 1, let F(q) = {|f |q : f ∈
F}. Then

sup
Q
N(F(q), eQ, qε‖F q‖Q,2) ≤ sup

Q
N(F , eQ, ε‖F‖Q,2), 0 < ∀ε ≤ 1,

where the suprema are taken over all finitely discrete probability measures Q
on (S,S).
Proof of Lemma 2.2. For the first inequality, noting that J(δ,Fε, 2F ) .
J(δ,F , F ) = J(δ), by Theorem 5.2, we have

E[‖Gn‖Fε ] . J(ε)‖F‖P,2 + n−1/2ε−2J2(ε)‖M‖2.
Moreover, by Dudley’s inequality [52, Corollary 2.2.8], E[‖GP ‖Fε ] . J(ε)‖F‖P,2.
Note that by approximation [see 52, Problem 2.5.1], we have

∫ δ

0

√
1 + logN(F , eP , τ‖F‖P,2)dτ . J(δ).
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Hence the first inequality is proved.
The third inequality is deduced from Theorem 5.2 together with the cov-

ering number estimate (5). Hence we shall prove the second inequality. We
first observe that

En[|f(Xi)|3] = P |f |3 + n−1/2
Gn(|f |3),

by which we have

E
[
‖En[|f(Xi)|3]‖F

]
≤ sup

f∈F
P |f |3 + n−1/2

E[‖Gn(|f |3)‖F ].

Let ε1, . . . , εn be i.i.d. Rademacher random variables independent ofX1, . . . ,Xn.
By the symmetrization inequality,

E[‖Gn(|f |3)‖F ] ≤ 2E

[∥∥∥∥∥
1√
n

n∑

i=1

εi|f(Xi)|3
∥∥∥∥∥
F

]
.

By the contraction principle together with the Cauchy-Schwarz inequality,

E

[∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3
∥∥∥∥∥
F

]
. E

[
M3/2

∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥
F

]

≤ ‖M‖3/23


E



∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥

2

F






1/2

.

Moreover, by the Hoffmann-Jørgensen inequality,

E



∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥

2

F






1/2

. E

[∥∥∥∥∥

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥
F

]
+ ‖M‖3/23 .

By Theorem 5.2 together with Lemma A.6, we have

E

[∥∥∥∥∥
1√
n

n∑

i=1

εi|f(Xi)|3/2
∥∥∥∥∥
F

]
. J(δ

3/2
3 ,F , F )‖F 3/2‖P,2

+
‖M3/2‖2J2(δ

3/2
3 ,F , F )√

nδ33
,

by which we have

E
[
‖En[|f(Xi)|3]‖F

]
− sup

f∈F
P |f |3 . n−1‖M‖33

+ n−1/2‖M‖3/23

[
J(δ

3/2
3 ,F , F )‖F‖3/2P,3 +

‖M‖3/23 J2(δ
3/2
3 ,F , F )√

nδ33

]
.

A further simplification is possible. By Lemma A.1 (iii), the map δ 7→
J(δ,F , F )/δ is non-increasing, so that J2(δ

3/2
3 ,F , F )/δ33 ≥ J2(1,F , F ) ≥ 1.

Hence the first term on the right side is not larger than

‖M‖33J2(δ
3/2
3 ,F , F )/(nδ33).
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This completes the proof. �

A.5. Proofs of Propositions 3.1-3.3. We will freely use the following
simple lemmas. The proofs are straightforward and hence omitted.

Lemma A.7. Let ξ be a real-valued random variable such that E[|ξ|q] <∞
for some q ≥ 1. Then for every 1 ≤ r ≤ q and τ > 0,

E[|ξ|r1(|ξ| > τ)] ≤ E[|ξ|q]
τ q−r

.

Lemma A.8. Let ξ1, . . . , ξm be arbitrary real-valued random variables such
that max1≤i≤m E[|ξi|q] <∞ for some q ≥ 1. Then for every 1 ≤ r ≤ q

‖ max
1≤i≤m

|ξi|‖r ≤ ‖ max
1≤i≤m

|ξi|‖q ≤ m1/q max
1≤i≤m

‖ξi‖q.

In particulrar, E[max1≤i≤m |ξi|r] ≤ mr/q max1≤i≤m ‖ξi‖rq.

Proof of Proposition 3.1. For given x ∈ I, g ∈ G and h > 0, define

fx,g,h(y, t) = cn(x, g)g(y)k(h
−1(t− x)), (y, t) ∈ Y × R

d.

Consider the class of functions Fn = {fx,g,hn
− E[fx,g,hn

(Y1,X1)] : (x, g) ∈
I×G}. We shall apply Theorem 2.1 to Fn. Let Zn = supf∈Fn

Gnf . We first
note that |fx,g,h(y, t)| ≤ CI×Gb‖k‖∞ so that |fx,g,h(y, t)−E[fx,g,h(Y1,X1)]| ≤
2CI×Gb‖k‖∞ ≡ F . It is not difficult to see that Fn is pointwise measurable.
Using Lemma A.5, we can prove that there are constants A, v > 0 such that

sup
Q
N(Fn, eQ, 2εCI×Gb‖k‖∞) ≤ (A/ε)v , 0 < ∀ε ≤ 1, ∀n ≥ 1. (25)

Hence for every n ≥ 1, Fn is pre-Gaussian and there exists a tight Gaussian
random element Gn in ℓ∞(Fn) with mean zero and covariance function

E[Gn(f)Gn(f̌)] = Cov(f(Y1,X1), f̌(Y1,X1)), f, f̌ ∈ Fn.

To apply Theorem 2.1, we make some complimentary calculations. By
(25), J(δ,Fn, F ) = O(δ

√
log 1/δ) as δ → 0 uniformly in n. Moreover,

E[|fx,g,hn
(Y1,X1)|3]

= |cn(x, g)|3
∫

Rd

E[|g(Y1)|3 | X1 = t]|k(h−1
n (t− x))|3p(t)dt

= |cn(x, g)|3hdn
∫

Rd

E[|g(Y1)|3 | X1 = x+ hnt]|k(t)|3p(x+ hnt)dt

≤ C3
I×Gb

3‖p‖∞hdn
∫

Rd

|k(t)|3dt,
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and

E[|fx,g,hn
(Y1,X1)|4]

= |cn(x, g)|4hdn
∫

Rd

E[|g(Y1)|4 | X1 = x+ hnt]|k(t)|4p(x+ hnt)dt

≤ C4
I×Gb

4‖p‖∞hdn
∫

Rd

|k(t)|4dt.

Thus, by using Lemma 2.2, we have

E
[
‖En[|f(Yi,Xi)|3]‖Fn

]
= O(hdn + n−1 log n), and

E[‖Gn‖Fn·Fn ] = O(hd/2n

√
log n+ n−1/2 log n).

Choosing κ = κn = C1(h
d/3
n + n−1/3 log1/3 n) with a sufficiently large con-

stant C1, and ε = εn = n−1/6κn and γ = γn = (log n)−1, we have, after an
elementary calculation,

∆n(εn, γn) = O(n−1/6hd/3n log n+ n−1/4hd/4n log5/4 n+ n−1/2 log3/2 n).

Moreover, as κnγ
−1/3
n n1/3Hn(εn)

−1/3 → ∞, for large n,

1(F > cκnγ
−1/3
n n1/3Hn(εn)

−1/3) = 0.

Therefore, by Theorem 2.1, there exists a sequence Z̃n of random variables

such that Z̃n
d
= supf∈Fn

Gnf and as n→ ∞,

|Zn − Z̃n| = OP(n
−1/6hd/3n log n+ n−1/4hd/4n log5/4 n+ n−1/2 log3/2 n).

This implies the conclusion of the theorem. In fact, let

Bn(x, g) = h−d/2
n Gn(fx,g,hn

), (x, g) ∈ I × G,

and W̃n = h
−d/2
n Z̃n. Then Bn is the desired Gaussian process, and as

Wn = h
−d/2
n Zn, we have W̃n

d
= sup(x,g)∈I×G Bn(x, g) and

|Wn − W̃n| = h−d/2
n |Zn − Z̃n|

= OP{(nhdn)−1/6 log n+ (nhdn)
−1/4 log5/4 n+ n−1/2h−d/2

n log3/2 n}.
This completes the proof. �

Proof of Proposition 3.2. We shall follow the notation used in the proof of
Proposition 3.1. Take F (y, x) = CI×G‖k‖∞(G(y)+E[G(Y1)]) as an envelope
of Fn. A version of inequality (25) continues to hold with 2CI×Gb‖k‖∞
replaced by ‖F‖Q,2. Let D = supx∈Rd E[G4(Y1) | X1 = x]. Then we have

E[|fx,g,hn
(Y1,X1)|3] ≤ (1 +D)C3

I×G‖p‖∞hdn
∫

Rd

|k(t)|3dt,

and

E[|fx,g,hn
(Y1,X1)|4] ≤ DC4

I×G‖p‖∞hdn
∫

Rd

|k(t)|4dt.
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Thus, using Lemma 2.2, we have

E
[
‖En[|f(Yi,Xi)|3]‖Fn

]
= O(hdn + n−1+3/q log n), and

E[‖Gn‖Fn·Fn ] = O(hd/2n

√
log n+ n−1/2+2/q log n).

Choosing κ = κn = C1(h
d/3
n + n−1/3+1/q log1/3 n) with a sufficiently large

constant C1, and ε = εn = n−1/6κn and γ = γn = (log n)−1, we have, after
an elementary calculation,

∆n(εn, γn) = O(n−1/6hd/3n log n+ n−1/4hd/4n log5/4 n+ n−1/2+1/q log3/2 n).

We wish to check that

E[(F/κn)
31(F/κn > cγ−1/3

n n1/3Hn(εn)
−1/3)] = o(1).

In fact, the left side is bounded by

κ−3
n (cγ−1/3

n κnn
1/3Hn(εn)

−1/3)3−q
E[F q] = O(n1−q/3κ−q

n ) = o(1).

The rest of the proof is the same as in the previous one. �

Proof of Proposition 3.3. We only deal with case (ii). The proof for case (i)
is similar. Observe first that by condition (C2),

|αn(x, g)| ≤
C1|ψKn(x)|
c1|ψKn(x)| ≤ C3,

where C3 = C1/c1. For given n ≥ 1, x ∈ I and g ∈ G, define
fn,x,g(η, t) = g(η)αn(x, g)

TψKn(t), (η, t) ∈ E × [0, 1]d.

Consider the class of functions Fn = {fn,x,g : (x, g) ∈ I × G}. We shall
apply Theorem 2.1 to Fn. Note that Wn = supf∈Fn

Gnf . First, we have
|fn,x,g(η, t)| ≤ C3bn|G(η)| =: Fn(η, t). Second, observe that Fn = H1 · H2n,
where H1 = {(η, t) 7→ g(η) : g ∈ G} and H2n = {(η, t) 7→ αn(x, g)

TψKn(t) :
(x, g) ∈ I × G}. By condition (C3),

|αn(x, g)
TψKn(t)−αn(x̌, ǧ)

TψKn(t)| ≤ Lnbn{|x−x̌|+(E[(g(η1)−ǧ(η1))2)1/2},
so that, using the fact that G is VC type, we deduce that there are constants
A, v > 0 such that

sup
Q
N(H2n, eQ, εC3bn) ≤ (ALn/ε)

v , 0 < ∀ε ≤ 1, ∀n ≥ 1.

Using again the fact that G is VC type and Lemma A.5, we deduce that
there are constants A′, v′ > 0 such that

sup
Q
N(Fn, eQ, ε‖Fn‖Q,2) ≤ (A′Ln/ε)

v′ , 0 < ∀ε ≤ 1, ∀n ≥ 1. (26)

Hence for every n ≥ 1, there exists a tight Gaussian random element Gn in
ℓ∞(Fn) with mean zero and covariance function

E[Gn(f)Gn(f̌)] = Cov(f(η1,X1), f̌(η1,X1)), f, f̌ ∈ Fn.
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To apply Theorem 2.1, we make some complimentary calculations. Note
that, by (26), for every δn ↓ 0 with log(1/δn) = O(log n), J(δn,Fn, Fn) =
O(δn

√
log n). Let D = supx∈[0,1]d E[G

4(η1) | X1 = x]. Then for n ≥ 1,

E[|g(η1)αn(x, g)
TψKn(X1)|3]

≤ E[E[G3(η1) | X1]|αn(x, g)
TψKn(X1)|3]

≤ C3(1 +D)bnE[|αn(x, g)
TψKn(X1)|2]

= C3(1 +D)bnαn(x, g)
T
E[ψKn(X1)ψ

Kn(X1)
T ]αn(x, g)

≤ C3
3C2(1 +D)bn,

and

E[|g(η1)αn(x, g)
TψKn(X1)|4] ≤ C4

2C2Db
2
n.

Thus, using Lemma 2.2, we have

E
[
‖En[|f(ηi,Xi)|3]‖Fn

]
= O(bn + n−1+3/qb3n log n), and

E[‖Gn‖Fn·Fn ] = O(bn
√

log n+ n−1/2+2/qb2n log n).

Choosing κ = κn = C4(b
1/3
n + n−1/3+1/qbn log

1/3 n) with a sufficiently large

constant C4, and ε = εn = n−1/2 and γ = γn = (log n)−1, we have

∆n(εn, γn) = O(n−1/6b1/3n log n+ n−1/4b1/2n log5/4 n+ n−1/2+1/qbn log
3/2 n).

We wish to check that

E[(Fn/κn)
31(Fn/κn > cγ−1/3

n n1/3Hn(εn)
−1/3)] = o(1).

In fact, the left side is bounded by

κ−3
n (cκnγ

−1/3
n n1/3Hn(εn)

−1/3)3−q
E[F q

n ] = O(n1−q/3κ−q
n bqn) = o(1).

Finally, let Bn(x, g) = Gn(fn,x,g), (x, g) ∈ I × G. Then Bn is the desired

Gaussian process, and by Theorem 2.1, there exists a sequence W̃n of random

variables such that W̃n
d
= supf∈Fn

Gnf = sup(x,g)∈I×G Bn(x, g) and as n →
∞, |Wn − W̃n| = OP(∆n(εn, γn)). This completes the proof. �
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