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Abstract

We propose a simple model selection test for choosing among two parametric likelihoods which can

be applied in the most general setting without any assumptions on the relation between the candidate

models and the true distribution. That is, both, one or neither is allowed to be correctly specified or

misspecified, they may be nested, non-nested, strictly non-nested or overlapping. Unlike in previous

testing approaches, no pre-testing is needed, since in each case, the same test statistic together with

a standard normal critical value can be used. The new procedure controls asymptotic size uniformly

over a large class of data generating processes. We demonstrate its finite sample properties in a

Monte Carlo experiment and its practical relevance in an empirical application comparing Keynesian

versus new classical macroeconomic models.
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1 Introduction

Model selection is an important step in most empirical work and, accordingly, there exists a vast literature

devoted to this issue. Since Akaike (1973, 1974), the Kullback-Leibler (KL) information criterion has

become a popular measure for descriminating among models taking the form of parametric likelihoods.

One strand of the literature (Nishii (1988), Vuong (1989), Sin and White (1996), Inoue and Kilian (2006),

among others) uses this criterion together with earlier ideas about embedding the model selection problem

into a classical hypothesis testing framework (e.g. Hotelling (1940) and Chow (1980)). In essence, this

approach uses the maximum of the likelihood function as a goodness-of-fit measure. If model A is found

to have a statistically significantly larger maximum likelihood than model B, then model A is to be

preferred.

In an influential paper, Vuong (1989) has established that, unfortunately, the difference between the

KL information criterion (KLIC) of two competing models exhibits a wide variety of limiting distributions

(normal, χ2 or even mixtures of χ2), depending on whether the two models are overlapping or not, or

whether one of the models is correctly specified or not. As a result, using the KLIC typically requires

pre-testing to establish which distribution to use for the computation of critical values for the tests.

This situation considerably complicates the model selection procedure. Even if it is easy to analytically

establish that competing models are non-nested, the two may be close in terms of KLIC so that the

finite sample distribution of model selection tests can suffer from distortions. Therefore, it is desirable to

have a model selection procedure that does not require the knowledge of whether the models are nested,

non-nested or overlapping.

To address this issue, we introduce a simple method that delivers a model selection criterion based

on the KL discrepancy and yet only involves a test statistic that is asymptotically N(0, 1)-distributed in

all of the cases mentioned above, under the null that the two models fit the data equally well. Therefore,

no pre-testing is required and complicated limiting distributions are entirely avoided. This advantage

does come at the expense of some occasional power loss, but our results indicate that the extent of this

effect seems insufficient to offset the advantages of the method. The general idea is to cast the model

selection problem as a set of overidentifying moment restrictions that can be tested within a general M-

or Z-estimation framework (e.g. GMM). Specifically, we test the hypothesis that two models have the

same KL discrepancy to the true distribution versus one of them being smaller. In case of a rejection, the

model with the smaller discrepancy is retained, otherwise the criterion suggests both models fit the data

equally well. Our approach remains valid even if both models are misspecified and enables the selection of

the least misspecified of the two. This capability fits nicely within the context of valid likelihood inference

under potential model misspecification (White (1982)). We handle the possibility of overlapping models

by devising an estimator of the KLIC that smoothly interpolates between a conventional sample-splitting

scheme (e.g., Yatchew (1992), Whang and Andrews (1993)) when the competing models overlap and

a conventional full-sample estimator when the models do not overlap. In this fashion, the statistic of

interest is never degenerate. The relative weights of the split-sample and the full-sample statistics are

governed by a regularization parameter that we choose so as to trade off power and size of the test. The

optimal regularization parameter requires only estimates of variance terms and therefore is very easy to
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compute from a given sample. In this fashion, we avoid having to consider higher-order terms of the

test’s asymptotic expansion (as in Vuong (1989), or, in a different hypothesis testing context, Fan and Li

(1996)).

Besides deriving the local asymptotic power of our test we also show that it is of correct asymptotic

level uniformly over a large class of data generating process. This is a very desirable property of a test,

particularly in the model selection context as it may be difficult to judge a priori whether competing

models are “close” to each other – a case in which the Vuong test exhibits potentially very large finite

sample distortions. We also demonstrate our procedure’s small sample properties in a Monte Carlo study

and illustrate its practical usefulness in testing Keynesian versus new classical macroeconomic models.

Finally, we discuss how our approach may be extended in various directions such as time series data or

models defined by moment conditions. Importantly, we can also apply our sample-splitting idea to tests

comparing the accuracy of forecasts (such as those made popular by Diebold and Mariano (1995)) to

gain asymptotic uniform size control.

Numerous alternative approaches to model selection are well known in the literature, for example

methods based on Cox tests (Cox (1961, 1962)) for non-nested hypotheses which generalize the likelihood

ratio tests for nested hypotheses. Also, Atkinson (1970) proposes to nest competing models into a larger

model and then use standard tests for nested hypotheses. Mizon and Richard (1986) suggest the use of

a closely related concept, the so-called encompassing principle, as a model building device that unifies

the nested and non-nested approaches. Gourieroux and Monfort (1994) provide an excellent survey of

this large stream of the literature. Notable more recent contributions include the specification tests

proposed by Chesher and Smith (1997), the non-nested tests in moment condition frameworks by Smith

(1992, 1997) and Ramalho and Smith (2002), the conditional Kolmogorov test of Andrews (1997) and

the moment and model selection procedures by Andrews (1999), Andrews and Lu (2001), Hong, Preston,

and Shum (2003) and Kitamura (2003).

Apart from hypothesis testing, another popular approach to model selection is to embed the problem

into a decision-theoretic framework and to specify a loss function over models. The model implying the

smallest loss is found either from a Bayesian perspective by updating prior knowledge about model space

(see Zellner (1971) for a comprehensive treatment of this idea) or based on model selection criteria like

the Akaike Information Criterion, for instance, which trade off how well a model fits the data and its

complexity (see Leamer (1983) for a survey of this approach). Sin and White (1996) more recently show

how information criteria can be employed to select among possibly nested, non-nested or overlapping as

well as potentially misspecified models.

Finally, Shi (2013) complements our approach in an interesting way. She proposes a modified Vuong

test for non-nested models which uniformly controls size. While our test possesses similar uniformity

properties, our main goals are to propose a test statistic for model selection whose limiting distribution

is the same irrespectively of whether the competing models are nested, non-nested, overlapping, correctly

specified or misspecified. In consequence, unlike Shi (2013) we do not require solving potentially high-

dimensional optimization problems to find critical values. Our simulations suggest that neither Shi’s nor

our test generally dominates the other in terms of power or its ability to control size.

Since the first draft of this paper, the idea of altering a model selection test statistic so that it preserves
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a normal distribution in all cases has been exploited in related contexts. More specifically, Hsu and Shi

(2013) considers the selection among conditional moment inequality models and argues that an effect

similar to sample splitting can be accomplished by adding a generated independent normal noise to a

non-normal statistic, to obtain a test statistic that is always normally distributed.

The next section describes the model selection framework in which Section 3 and 4 introduce our new

test statistic and model selection test, respectively. Section 5 derives the local asymptotic power and

uniformity properties of the test for general, possibly random, regularization parameters. Section 6 then

derives the optimal regularization parameter that trades off power and size of the resulting test. Section 7

discusses straightforward extensions to time series models and moment condition models, among other

useful generalizations. Sections 8 and 9 report a Monte Carlo study and the empirical application in

which our model selection procedure’s practical relevance is demonstrated. Section 10 concludes and the

appendix contains all mathematical proofs.

2 Setup

In this paper, we define a model to consist of a set of probability distributions over the sample space of

observed variables, indexed by a finite-dimensional parameter. For example, we subsequently use models

A and B defined as

PA := {PθA ∈ P : θA ∈ ΘA},

PB := {PθB ∈ P : θB ∈ ΘB},

where P denotes the set of all probability measures and ΘA and ΘB are some finite-dimensional parameter

sets. Such a set of distributions could, for example, be the set of all normal distributions indexed by

their means and variances. An integral part in any model selection procedure consists of choosing a

criterion which measures “closeness” of two models. We consider the KLIC here because it has a variety

of convenient properties one of which being that maximum likelihood estimators of θA in model A, say,

are known to minimize the KL distance1 between model A and the true data generating process (White

(1982)). Consequently, the so-called pseudo-true parameter value θ∗A which maximizes the population

likelihood of model A delivers a distribution Pθ∗A equal to the true distribution P0 if model A is correctly

specified, and can be interpreted as the best approximating model (in terms of KL distance) in the case

that model A is misspecified.

More formally, define the KL distance between two distributions P and Q,2 or if they possess densities

p and q, respectively, as

K(P : Q) :=

∫
ln

(
dP

dQ

)
dP = EP

[
ln

(
p(X)

q(X)

)]
.

The pseudo-true value θ∗A of a model A is then defined as the one which minimizes the KL distance

1Even though the KL discrepancy is not a distance metric, we will use the two terms interchangeably.
2Assume that P is absolutely continuous with respect to Q. Otherwise, we define the KL distance to equal +∞.
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between model A and the true distribution P0, viz.

θ∗A := arg min
θA∈ΘA

K(P0 : PθA), (1)

and similarly for model B,

θ∗B := arg min
θB∈ΘB

K(P0 : PθB ). (2)

Under standard conditions, (quasi-) maximum likelihood estimators consistently estimate this parameter

(Akaike (1973) and Sawa (1978)). If model A is correctly specified, defined as P0 ∈ PA, then there is a

true parameter θ0 ∈ ΘA such that P0 = Pθ∗A = Pθ0 . We call model B nested in model A if PB ⊂ PA,

non-nested if neither model is nested in the other, overlapping if PB ∩ PA 6= ∅ and non-overlapping (or

strictly non-nested) otherwise.

The goal of this paper is to propose a model selection test for determining the model that fits the

data “better”. We define a model to be better if it is closer to the true distribution in the KL sense. Pθ∗A
and Pθ∗B are the distributions in PA and PB which are closest to the truth, P0, respectively. Formally,

model A is defined to be better than model B if model A’s KL distance to the truth is smaller than that

of model B, i.e. K(P0 : Pθ∗A) < K(P0 : Pθ∗B ). If the two KL distances are equal, then we say models A

and B are equivalent. The procedure proposed in the next two sections selects the better model based

on performing a test of

H0 : K(P0 : Pθ∗A) = K(P0 : Pθ∗B ),

i.e. models A and B are equivalent, against model A is better,

HA : K(P0 : Pθ∗A) < K(P0 : Pθ∗B ),

or model B is better,

HB : K(P0 : Pθ∗A) > K(P0 : Pθ∗B ).

Before proceeding to the actual model selection test, we conclude this section with the collection of a

few formal definitions. To that end, let Xi : Ω 7→ X , i = 1, 2, . . ., be random vectors on the probability

space (Ω,F , Q0) with F a σ-algebra and Q0 a probability measure on Ω. Further, suppose X is a Polish

space X , i.e. a complete separable metric space, and Bx the Borel σ-algebra on X . Denote by µ some

underlying σ-finite measure on (X ,Bx), e.g. the Lebesgue measure on X = Rk. Finally, let P be the set

of all distributions on X which have a measurable density with respect to µ.

3 The Test Statistic

To simplify the presentation of our test, we first consider the case of what we call observationally distinct

models whose assumptions rule out the overlapping models case. In the second part of this section, we

then show how the test can be generalized to transparently handle both the observationally distinct and

the overlapping case.
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Let θ := (θ′A, θ
′
B)′ ∈ Θ := ΘA×ΘB ⊂ Rp, let ∇θk denote gradient vectors with respect to θk, k = A,B,

and define the moment conditions

EP0
g(X; θ) := EP0

[(
∇θA ln fA(X; θA)

∇θB ln fB(X; θB)

)]
= 0

which are satisfied by the pseudo-true value θ∗ := (θ∗A
′, θ∗B

′)′ as defined in (1) and (2). Let d∗ :=

EP0 [ln fA(X, θ∗A)− ln fB(X, θ∗B)] be the pseudo-true log-likelihood ratio of the two models. Assume that

we have an i.i.d. sample X1, . . . , Xn from P0 and let ĝ(θ) :=
∑n
i=1 g(Xi; θ)/n. Let θ̂ := (θ̂′A, θ̂

′
B)′ be an

estimator that solves the empirical analog of (3), i.e. ĝ(θ̂) = 0, typically called a “Z-estimator”3. GMM,

GEL, and maximum likelihood estimators of θ are possible examples.

3.1 The Case of Observationally Distinct Models

The following assumptions are the standard conditions for Z-estimators to be asymptotically normal.

They can be weakened substantially, but serve as a simple basis to discuss the relevant issues in our

model selection framework.

Assumption 1. Θ ⊂ Rdθ is compact and ln fk(x; ·), k = A,B, are twice continuously differentiable in a

neighborhood of θ∗k for all x ∈ X .

Assumption 2. (i) X1, . . . , Xn is an i.i.d. sequence of random variables with common distribution

P0 ∈ P.

(ii) There is a unique θ∗ ∈ int(Θ) so that EP0g(X; θ∗) = 0.

(iii) EP0 [∇2
θk

ln fk(X; θ∗k)], k = A,B, are invertible.

For k = A,B, let ∇2
θk

denote the Hessian matrix of a function of θk, containing derivatives with

respect to elements of θk.

Assumption 3. (i) EP0
[supθk∈Nk | ln fk(X; θk)|2] < ∞, where Nk is some neighborhood of θ∗k, and

EP0 [‖∇θk ln fk(X; θ∗k)‖2] <∞ for k = A,B.

(ii) There exists a function F̄ (x) such that EP0 F̄ (X) < ∞ and, for k = A,B, for all θk ∈ Θk

and for all x ∈ X , we have (a) | ln fk(x; θk)| ≤ F̄ (x), (b) ‖∇θk ln fk(x; θk)‖ ≤ F̄ (x), and (c)

‖vec(∇2
θk

ln fk(x; θk))‖ ≤ F̄ (x).

Assumption 4. σ2 > 0.

Let d̂ be the empirical log-likelihood ratio d̂ := n−1
∑n
i=1 ln(fA(Xi; θ̂A)/fB(Xi; θ̂B)) and define the

standard variance estimators σ̂2
k of σ2

k := V arP0(ln fk(X; θ∗k)), k = A,B, and the covariance estimator σ̂AB

of σAB := CovP0(ln fA(X; θ∗A), ln fB(X; θ∗B)), i.e. σ̂2
k := n−1

∑n
i=1(ln fk(Xi; θ̂k) − ln fk)2 where ln fk :=

n−1
∑n
i=1 ln fk(Xi; θ̂k) and similarly for σ̂AB . The variance of the likelihood ratio, σ2 = σ2

A−2σAB +σ2
B ,

we then estimate by and σ̂ := σ̂2
A − 2σ̂AB + σ̂2

B .

3See van der Vaart (1998, Chapter 5) for an introduction.
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Define tn to be the t-statistic for testing H0 : d∗ = 0, i.e.

tn :=

√
nd̂

σ̂
. (3)

This statistic is equivalent to the one Vuong (1989) proposes when the two candidate models are known

to be nonnested. All asymptotic results are for n→∞.

Theorem 1. If Assumptions 1–4 hold, then, under H0, tn →d N(0, 1), and, under HA∪HB, |tn| →p ∞.

Assumption 2(ii) can be overly restrictive because likelihoods with a unique global maximizer may

possess more than one root of the corresponding first-order conditions. This means Θ has to be chosen

sufficiently small so as to exclude roots not corresponding to the global maximum. The assumption is

made here to simplify the exposition. In practice, however, one may simply estimate θA and θB separately

by standard maximum likelihood assuming that there is a unique global maximizer.

The remainder of Assumption 2 and Assumptions 1, 3 are not very restrictive and could be termed

standard regularity conditions.

The type of degeneracy ruled out by Assumption 4, however, poses a standard challenge encountered

in parametric model selection testing. Assumption 4 requires that the variance of the log-likelihood ratio

evaluated at the pseudo-true values is nonzero. This condition is violated when both models A and B

are observationally equivalent, i.e. when both are correctly specified which implies that (i) they must be

overlapping (including the nested case) and (ii) the truth must be an element of their intersection. Then

the pseudo-true densities are identical, fA(·; θ∗A) ≡ fB(·; θ∗B), which in turn implies that the variance σ2

is zero.

The common solution in the literature has been to either assume this case away or develop a pre-test

for testing whether degeneracy holds or not. See Vuong (1989), Kitamura (2000) and Kitamura (2003)

for a discussion of issues related to degeneracy and pre-tests that have been suggested.

In the next subsection, we show how to regularize the t-statistic so that the observationally equivalent

case can be handled as well.

3.2 The General Case

We subsequently show that our proposed test statistic tn can be slightly modified in such a way that the

asymptotic results from Theorem 1 transparently extend to the observationally equivalent models case.

The new statistic, called t̃n, can be used in all possible situations, whether Assumption 4 holds or not.

There are several ways one could think of regularizing the model selection problem. The approach

we present here is based on reweighting the individual log-likelihoods, which is very simple to implement

and results in desirable properties of the resulting test (see Section 5). Furthermore, the efficiency loss

in the “nondegenerate” observationally distinct case seems to be small in finite samples and is, in fact,

asymptotically negligible under simple conditions.

For simplicity of exposition assume that the sample size n is an even number. We propose to reweight

the individual log-likelihoods

ˆ̃
d :=

1

n

n∑
i=1

(
ωi(ε̂n) ln fA(Xi; θ̂A)− ωi+1(ε̂n) ln fA(Xi; θ̂B)

)
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with the weights

ωk(ε̂n) :=

{
1, k odd

1 + ε̂n, k even
, k = 1, . . . , n+ 1 (4)

that depend on a possibly data-dependent, real-valued regularization parameter ε̂n. With this modified

estimator of d∗ and an appropriately adjusted variance estimator

ˆ̃σ := (1 + ε̂n) σ̂2 +
ε̂2
n

2

(
σ̂2
A + σ̂2

B

)
,

we can construct a new t-statistic t̃n defined as

t̃n :=

√
n

ˆ̃
d

ˆ̃σ
.

If ε̂n = 0, then ˆ̃σ = σ̂ and
ˆ̃
d = d̂, and the modified and unmodified t-statistics are equivalent, i.e. t̃n = tn.

Now, suppose ε̂n 6= 0. In the observationally distinct models case, the two statistics differ only in that

some observations are weighted by 1 + ε̂n rather than by one. To understand how the weights ωk(ε̂n)

regularize the t-statistic in the equivalent models case, rewrite the new statistic as

t̃n =

√
n(d̂+ ε̂nd̂split)

ˆ̃σ

with

d̂split :=
1

n

n/2∑
i=1

(
ln fA(X2i−1; θ̂A)− ln fB(X2i; θ̂B)

)
.

This represenation shows that the numerator of t̃n is equal to a weighted sum of the conventional full-

sample log-likelihood ratio d̂ and the split-sample log-likelihood ratio d̂split which computes the log-

likelihood of model A from the odd observations and that of model B from the even observations. As

the data are assumed to be i.i.d., the variance of the split-sample statistic is always nonzero regardless of

whether the models are observationally distinct or equivalent. The parameter ε̂n determines how much

of the split-sample statistic should be added to the full-sample counterpart. Equivalent models lead to

identical densities, i.e. ln fA(·; θ∗A) ≡ ln fB(·; θ∗B) and, therefore, d̂ = σ̂ = 0 and tn has a degenerate

distribution. The new statistic t̃n, however, continues to be nondegenerate because of the split-sample

term. When ε̂n →p 0 at a suitable rate,4 the net effect of the proposed regularization approach is to

reduce to a sample splitting device in the observationally equivalent models case, while smoothly reverting

to the conventional full-sample expression as the models move away from perfect overlap.

The benefit of the regularization scheme is that the strong nonsingularity condition Assumption 4 can

be replaced by the following very weak condition.

Assumption 5. For k = A,B, σ2
k > 0, V arP0

((ln fk(X; θ∗k))2) > 0, and V arP0
(∇θk ln fk(X; θ∗k)) is

nonsingular.

4Notice that the assumptions of Theorem 2 below do not actually require the regularization parameter to vanish with

the sample size. We only need it to be bounded in probability.
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We also need to slightly strengthen Assumption 3.

Assumption 6. (i) EP0
[‖∇θk ln fk(X, θ∗k)‖2+δ] < ∞ and EP0

[| ln fk(X, θ∗k)|4+δ] < ∞ for k = A,B

and some δ > 0.

(ii) There exists a function F̄1(x) such that EP0
F̄1(X) <∞ and, for j, k = A,B, for all θ = (θ′A, θ

′
B)′ ∈

Θ, for all x ∈ X , and for h(x; θ) being any of the functions ln fk(x; θk), vec(∇2
θk

ln fk(x; θk)) and

ln fk(x; θk)∇θj ln fj(x; θj), we have ‖h(x; θ)‖ ≤ F̄1(x).

(iii) There exists a function F̄2(x) such that EP0
[|F̄2(X)|2+δ] < ∞ and ‖∇θk ln fk(x; θk)‖ ≤ F̄2(x) for

all x ∈ X and k = A,B.

Finally, we place restrictions on the regularization parameter. First, we define the set of positive

sequences that are O(1) but converge to zero only at a rate slower than n−1/4.

Definition 1. Let E be the set of sequences {εn} in R such that εn > 0 for all n ≥ 1, n1/4εn →∞, and

ε := limn→∞ εn <∞.

Assumption 7. ε̂n is a sequence of real-valued, measurable functions of X1, . . . , Xn such that there exists

a sequence {εn} ∈ E with |ε̂n − εn| = OP0
(n−1/2).

Notice that this assumption allows for constant (ε̂n ≡ ε 6= 0), deterministic and random sequences

of regularization parameters {ε̂n} as long as they do not vanish too quickly and {ε̂n} lies in the n−1/2-

neighborhood of some deterministic sequence {εn} in E .

The following theorem establishes that the regularized t-statistic is asymptotically standard normal

regardless of whether the two models are observationally equivalent or not.

Theorem 2. If Assumptions 1, 2, and 5–7 hold, then, under H0, t̃n →d N(0, 1) and, under HA ∪HB,

|t̃n| →p ∞.

Remark 1. Conditional densities can be accommodated just as in Vuong (1989).

Remark 2. The requirement εn 6= 0 (but possibly εn → 0) is necessary only for the limiting distribution

of t̃n to be nondegenerate in the observationally equivalent case. Therefore, if it is known a priori that the

two models A and B are observationally distinct (e.g. strictly non-nested), εn ≡ 0 is permitted. However,

Section 5 below shows that tests based on sequences that do satisfy the requirements of E uniformly control

size. Since observationally distinct models can be “close” to observationally equivalent in finite samples,

one may want to employ nonzero sequences {ε̂n} even in such cases.

Remark 3. For ease of presentation, we chose to split the sample into two groups by selecting odd and

even observations. As Theorem 2 shows, the limiting distribution of our test statistic does not depend

on this definition of the groups. In fact, any other partition of the sample into two groups would yield

the same asymptotic distribution. One can even show a somewhat stronger statement, viz. that our test

statistic is asymptotically equivalent to a statistic that is computed in the same way except that o(n) of

observations from the even group are exchanged with observations from the odd group.
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Remark 4. The functional form of the weights ωk(ε) in (4) can be seen as a normalization in the

following sense. In Section 6, we provide an optimal data-driven choice of ε̂n given the functional form

of 1 + ε̂n for weighting the even observations. For any other functional form of the weight, say w(ε̂n),

the optimal ε̂n would then be such that w(ε̂n) = 1 + ε̂n as long as the range of the function w is large

enough. On the other hand, consider choosing some constant, say c, other than 1 for weighting the

odd group together with the appropriate adjustment to the standard deviation in the denominator of t̃n.

This modified test statistic is numerically equivalent to our test statistic when the optimal epsilon, now

c(1 + ε̂n)− 1 with ε̂n the optimal choice under c = 1, is employed.

4 The Model Selection Test

The results of the previous section suggest a very simple model selection procedure based on a two-sided5

t-test.

Step 1: Choose some nominal level α ∈ (0, 1) and some finite ε̂n such as the optimal choice proposed in

Section 6.

Step 2: Compute the test statistic t̃n and compare its absolute value to the (1 − α/2)-quantile z1−α/2

of the N(0, 1) distribution.

Step 3: If |t̃n| > z1−α/2, then reject the null that model A and B are equally close to the truth. The

rejection is in favor of model A if t̃n > z1−α/2 and in favor of model B if t̃n < −z1−α/2.

Absolutely no pre-testing is necessary and, in contrast to available methods, no complicated asymptotic

distributions6 ever need to be used.

Interestingly, once the best model has been selected (say, A), asymptotically valid confidence regions

for its parameters can be readily obtained by using the first-order conditions of its likelihood maximization

problem. This scheme automatically recovers the well-known “sandwich” formula for misspecification-

robust estimation of the asymptotic variance (White (1982), Owen (2001)). Of course, model estimation

following a model selection procedure always carries the risk that the model selection step may influence

the significance levels of subsequent tests. As our approach selects the best model of the two with

probability approaching one, the model selection step has, asymptotically, no effect on further pointwise

inference.7 In finite samples, however, some effect cannot be completely excluded. Fortunately, effective

methods have been developed to quantify the effect (White (2000)).

5Alternatively, one could use a one-sided t-test with obvious modifications to the procedure.
6The simulation of critical values from the mixture of χ2 distributions in Vuong (1989)’s test requires the estimation

of eigenvalues of a potentially large matrix which are then to be used as the mixture weights. Such estimators may be

quite imprecise in small samples and can induce further distortions. Shi (2013)’s test, on the other hand, requires some

conservative critical value because the exact limiting critical value cannot be estimated consistently. The conservative

critical value is then determined as the supremum over a potentially very large space of nuisance parameters which can be

an expensive numerical task.
7Of course, if one allows for drifting sequences of models, then the probability of correct model selection may not approach

1 asymptotically.
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In the presence of a priori information justifying the exclusion of the observationally equivalent models

case, the same test can be performed using the test statistic tn instead of t̃n. In certain modeling

situations, it might be straight-forward to check whether Assumption 4 is satisfied. For example, one

might have reasons to believe that both models are only crude approximations to the truth so that both

are misspecified. If, in addition, it can be established analytically that the models do not overlap, then

Assumption 4 holds and the test without regularization can be used.

5 Large Sample Properties of the Test

5.1 Uniformity

In this section, we have to be more specific about which distribution certain quantities are constructed

from. Define θ∗(P ) := (θ∗A(P )′, θ∗B(P )′)′ to be the parameter value that satisfies EP g(Xi; θ
∗(P )) = 0 and

d∗(P ) := EP [ln fA(X; θ∗A(P ))− ln fB(X; θ∗B(P ))]. Let σ2
k(P ) := V arP (ln fk(X; θ∗k(P )), σ̃2(θ, P, ε) := (1+

ε)σ2(P )+ε2(σ2
A(P )+σ2

B(P ))/2, abbreviate σ̃2(θ∗(P ), P, ε) by σ̃2(P, ε), andHk(P ) := EP [∇2
θk

ln fk(X; θ∗k(P ))])

for k = A,B.

We define the set P to contain all distributions under which the moment conditions and the regularity

conditions from the previous section hold. Then we show that our regularized test controls size uniformly

over those distributions in P that also satisfy the null hypothesis.

In view of the impossibility result by Bahadur and Savage (1956) and its extensions in Romano (2004),

we cannot hope to gain uniform size control over general nonparametric classes of distributions. It has

been recognized before (see section 11.4.2 in Lehmann and Romano (2005), for instance) that Lyapounov’s

condition8 places sufficient restrictions on the space of distributions so that one can establish uniformity

for t-statistics. The following definition of the set of distributions P follows that route and ensures that

the Lyapounov condition holds for several components of our test statistic.

Definition 2. For some fixed δ, κ > 0, and 0 < M ≤ M < ∞, let P be the set of distributions P on X
that satisfy the following conditions for X ∼ P :

(i) There exists a unique θ∗(P ) ∈ Θ such that EP g(X; θ∗(P )) = 0 and Bκ(θ∗(P )) ⊆ Θ, where Bκ(θ)

denotes a ball in Rdθ with radius κ around θ.

(ii) There exists a function D(x) such that EP [|D(X)|2+δ] ≤M and, for all x ∈ X ,

|ln fA(x; θ∗A(P ))− ln fB(x; θ∗B(P ))| ≤ D(x)
(
EP

[
|ln fA(X; θ∗A(P ))− ln fB(X; θ∗B(P ))|2

])1/2

, (5)

where θ∗(P ) := (θ∗A(P )′, θ∗B(P )′)′. Further, we have EP [| ln fk(X; θ∗k(P ))|4+δ] ≤ M and, similarly,

EP [|∇θk ln fk(X; θ∗k(P ))|2+δ] ≤M for k = A,B.

(iii) There exists a function F̄ (x) such that EP F̄ (X) ≤M and, for j, k = A,B, for all θ = (θ′A, θ
′
B)′ ∈ Θ,

for all x ∈ X , and for h(x; θ) being any of the functions ln fk(X; θk), ∇θk ln fk(X; θk), vec(∇2
θk

ln fk(x; θk))

and ln fk(x; θk)∇θj ln fj(x; θj), we have ‖h(x; θ)‖ ≤ F̄ (x).

8see, for instance, equation (23.35) in Davidson (1994)
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(iv) For k = A,B, we have M ≤ λmin(Hk(P )) and λmax(Hk(P )) ≤ M , where λmin(A) and λmax(A),

respectively, denote the smallest and largest eigenvalue of a matrix A. Furthermore, for h(x; θ) being

any of the functions log fk(x; θk), (log fk(x; θk))2, and ∇θk log fk(x; θk), k = A,B, θ := (θ′A, θ
′
B)′,

we have M ≤ V ar(h(X; θ∗(P )) ≤M for k = A,B.

Before stating the uniformity theorem, we slightly modify Assumption 7 to hold under sequences of

distributions.

Assumption 8. Let ε̂n be a sequence of real-valued, measurable functions of X1, . . . , Xn such that, for

every sequence {Pn} in P, there exists a sequence {εn} ∈ E with |ε̂n − εn| = OPn(n−1/2).

In Section 6, we verify Assumption 8 for our proposed data-driven regularization parameter selection

rule.

Theorem 3. Suppose Assumptions 1 and 8 hold. Let P0 be the subset of distributions in P that satisfy

the null hypothesis d∗(P ) = 0. Then the regularized t-test of nominal level α is uniformly asymptotically

of level α, viz.

lim
n→∞

sup
P∈P0

P
(
|t̃n| > z1−α/2

)
= α

and

lim
n→∞

sup
P∈P0

P
(
t̃n > z1−α

)
= α.

This uniformity property of our test is very desirable in the model selection context and, to the best

of our knowledge, the only result of this kind besides that of Shi (2013). Uniform control of the level over

all distributions in P0 is both important and often difficult to establish because the distributions in the

null hypothesis can be nested, non-nested or overlapping. In tests such as the Vuong test, for example,

these different cases give rise to different limiting distributions of the test statistic so that even, in, say,

non-nested models which are “close” to overlapping, substantial finite sample size distortions can occur.

The uniformity of the level over P0 guarantees that such distortions do not occur or, at least, vanish in

large samples.

Remark 5. Theorem 3 continues to hold when one replaces the dominance condition (5) by the assump-

tion that the tuning parameter εn is bounded away from zero. In that case, our test statistic uniformly

controls size even under sequences of distributions Pn approaching the overlapping case in such a way

that second moments, σ2(Pn), vanish at a faster rate than first moments, d∗(Pn).

5.2 Local Power

Theorem 2 shows that the limiting distribution of our test statistic is independent of the regularization

parameter ε̂n. Therefore, our test controls size (by Theorem 3 even uniformly) and is consistent against

fixed alternatives, independently of the specific choice of the sequence {ε̂n}. However, as we show in this

section, the local asymptotic power of our test depends on the probability limit of {ε̂n}.
Since sequences of alternatives approaching the null at rate n−1/2 are the only ones leading to non-

trivial asymptotic power of our test, we consider local alternatives δ so that
√
nd∗(Pn) → δ. The set
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P(δ) contains all sequences of distributions that satisfy the assumptions placed on P and along which
√
nd∗(Pn) converges to δ.

Definition 3. Let P(δ) be the set of sequences {Pn} in P such that
√
nd∗(Pn) → δ and such that,

for any (θA,∞, θB,∞, σ
2
A, σ

2
B , σAB) ∈ ΘA × ΘB × R+ × R+ × R, θ∗A(Pn) → θA,∞, θ∗B(Pn) → θB,∞,

σ2
A(Pn)→ σ2

A, σ2
B(Pn)→ σ2

B, and σAB(Pn)→ σAB, where σ2
A(P ) := V arP (ln fA(X; θ∗A(P ))), σ2

B(P ) :=

V arP (ln fB(X; θ∗B(P ))) and σAB(P ) := CovP (ln fA(X; θ∗A(P )), ln fB(X; θ∗B(P ))).

Importantly, alternatives in P(δ) are allowed to approach both, observationally equivalent (σ2 = 0) or

observationally distinct (σ2 6= 0) data-generating processes, in the null. The following theorem presents

the power of our test against all local alternatives in P(δ).

Theorem 4. Suppose Assumptions 1 and 8 hold. Let {Pn} ∈ P(δ) for some localization parameter

δ ∈ R ∪ {−∞,+∞} and ε := plimn→∞ε̂n under Pn. Then, under Pn,

t̃n →d N(λ̃, 1)

with mean

λ̃ :=
δ(1 + ε/2)√

(1 + ε)σ2 + ε2(σ2
A + σ2

B)/2
,

and σ2 = σ2
A − 2σAB + σ2

B.

As Figure 1 illustrates and a simple calculation based on the expression for λ̃ confirms, the local

asymptotic power is maximized at ε = 0. On the other hand, when models overlap at the truth, then

we require a nonzero sequence of regularization parameters, possibly converging to zero, to guarantee

a nondegenerate limiting distribution of our test statistic. In finite samples, we typically encouter an

intermediate case: we would prefer not to regularize (ε̂n = 0) if we knew that the two candidate models

are “sufficiently far apart” from each other, but we would choose a positive regularization parameter

when the two candidate models are “close” to overlapping to minimize size distortions. The next section

formalizes the trade-off between power in the distinct models case and size control in the equivalent

models case, and shows how this trade-off determines an optimal regularization parameter that can

easily be estimated from a finite sample.

6 Data-driven Choice of the Regularization Parameter

Theorem 4 shows that as long as ε̂n is nonzero and converges to zero in probability under Pn, the particular

choice of regularization parameter sequence has no first-order effect on the asymptotic distribution of our

test statistic. However, in finite samples, we cannot rule out that the particular choice of ε̂n has an effect

on the finite sample distribution of t̃n.

In this section, we provide bounds on the higher-order size distortion and power loss of our test

and derive the regularization parameter ε̂n that trades off these two worst case errors. Interestingly,

it turns out to possess a very simple analytic expression. Let Ĥk and V̂k, k = A,B, be estimates

of Hk := Hk(P0) and Vk := Vk(P0), where Vk(P ) := EP [∇θk ln fk (Xi, θ
∗
k(P )) (∇θk ln fk (Xi, θ

∗
k(P )))′],
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obtained by replacing expectations by sample averages. Then the the optimal regularization parameter

is

ε̂n = ĉαn
−1/4
√

ln lnn (6)

with

ĉα :=

√
4φ(z1−α)Λ̂

φ(zb)(zb + z1−α)(σ̂2
A + σ̂2

B)

Λ̂ := max
{∣∣∣tr(Ĥ−1

A V̂A)
∣∣∣ , ∣∣∣tr(Ĥ−1

B V̂B)
∣∣∣}

and zb := 1
2 (−z1−α + (4 + z2

1−α)1/2), which can be shown to be the location of the largest power loss of

our test. z1−α denotes the (1−α)-quantile of the standard normal distribution. The proposed parameter

(6) can easily be estimated as it requires only estimates of the matrices Hk and Vk, which have to be

computed for the “sandwich” variance estimator for potentially misspecified models anyway, and the

sample variances σ̂2
A and σ̂2

B . The remainder of this section formally discusses in what sense (6) is

optimal.

To allow for local alternatives in the power calculations, we consider a sequence Pn of generating

processes.

Assumption 9. For any n ∈ N, the Xni for i = 1, . . . , n are iid random variables taking value in X and

drawn from the probability measure Pn converging weakly to some measure P0 and each Pn(x) admits a

Radon-Nikodym derivative pn(x) with respect to P0(x).

Definition 4. We say that g : X ×Θ 7→ Rdg for dg ∈ N and Θ is compact (under some metric dθ(·, ·))

satisfies a triangular array dominance condition if

1. g(x, θ) is continuous in θ at each (x, θ) ∈ X ×Θ;

2. There exists G(x) such that EP0
[G(X0i)] <∞ (for X0i drawn from P0) and such that, for all θ ∈ Θ

and n ∈ N, ‖g(x, θ)‖pn(x) ≤ G(x) for all x ∈ X and for pn(x) as in Assumption 9;

3. There exists Ḡ <∞ such that EPn [‖g(Xni, θ)‖4] ≤ Ḡ for all i = 1, . . . , n, all n ∈ N and all θ ∈ Θ.

Assumption 10. ln fA(x, θA) and ln fB(x, θB) satisfy a triangular array dominance condition.

Assumption 11. ∇2
θA

ln fA(x, θA) and ∇2
θB

ln fB(x, θB) satisfy a triangular array dominance condition.

Assumption 12. ln fk(x, θk)∇θl ln fl(x, θl) for k = A,B and l = A,B satisfy a triangular array domi-

nance condition.

Assumption 13. EP0 [∇2
θk

ln fk(X, θ∗k(P0))] and EP0 [∇θk ln fk(X0i, θ
∗
k(P0))∇′θk ln fk(X0i, θ

∗
k(P0))] for k =

A,B are invertible.

Assumption 14. For some δ > 0, we have supn∈NEPn [‖∇θA ln fA(Xni, θ
∗
A(Pn))‖4+δ] < ∞ and, simi-

larly, supn∈NEPn [‖∇θB ln fB(Xni, θ
∗
B(Pn))‖4+δ] <∞.
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Assumption 15. For some δ > 0, we have supn∈NEPn [‖ ln fA(Xni, θ
∗
A(Pn))‖8+δ] < ∞ and, similarly,

supn∈NEPn [‖ ln fB(Xni, θ
∗
B(Pn))‖8+δ] <∞.

Assumption 16. For some δ > 0, we have supn∈NEPn [‖∇2
θA

ln fA(Xni, θ
∗
A(Pn))‖4+δ] < ∞ and, simi-

larly, supn∈NEPn [‖∇2
θB

ln fB(Xni, θ
∗
B(Pn))‖4+δ] <∞.

Assumption 17. ∇3
θA

ln fA(x, θA) and ∇3
θB

ln fA(x, θB) satisfy a triangular array dominance condition.

Assumption 18. supn∈NEPn [‖∇θk ln fk(Xni, θ
∗
k(Pn))∇θl ln fl(Xni, θ

∗
l (Pn))‖4+δ] <∞ for k = A,B and

l = A,B for some δ > 0.

Assumption 19. ∇2
k ln fk(x, θk)∇θl ln fl(x, θl) for k = A,B and l = A,B satisfy a triangular array

dominance condition.

Theorem 5. For α ∈ (0, 1), let z1−α denote the (1− α)-quantile of the standard normal distribution, φ(·)
the standard normal density, and define M := 1

2φ(zb)(zb+z1−α)cα with Λ := max{|tr(H−1
A VA)|, |tr(H−1

B VB)|}
and

cα :=

√
4φ(z1−α)Λ

φ(zb)(zb + z1−α)(σ2
A + σ2

B)
.

Under Assumptions 1 and 9–19, if ε̂n is of the form (6), then, for any distribution P0 satisfying the null

hypothesis, i.e. d∗(P0) = 0,∣∣P0

(
t̃n ≥ z1−α

)
− α

∣∣ ≤Mn−1/4
√

ln lnn+ o
(
n−1/4

√
ln lnn

)
(7)

while, for sequences of local alternatives {Pn} satisfying P0 = limn→∞ Pn and d∗(Pn) = δn−1/2 for any

given δ ∈ R,

Pn (tn ≥ z1−α)− Pn
(
t̃n ≥ z1−α

)
≤Mn−1/4

√
ln lnn+ o

(
n−1/4

√
ln lnn

)
(8)

where tn is the unregularized statistic as in (3). Moreover, ε̂n satisfies Assumption 7, and Assumption 8

with P replaced by the set of distributions satisfying the assumptions of this theorem.

Remark 6. By Theorems 3 and 4 we expect ε̂n not to affect our test’s first-order asymptotic properties

such as power and size. Theorem 5 reflects this fact in the sense that both, size distortion (7) and power

loss (8) converge to zero. Equation (6) provides the unique value of ε̂n that not only equalizes the rate at

which both, size distortion and power loss, converge to zero, but also the constants in front of the rate.

Remark 7. Theorem 5 also verifies that the optimal epsilon (6) satisfies Assumptions 7 and 8, implying

that all theorems in the previous sections hold with ε̂n replaced by the optimal expression in (6).

7 Extensions

To simplify the presentation of our basic model selection procedure we restrict attention to a simple and

stylized framework: we compare two fully specified parametric likelihood based on the KL criterion, i.i.d.
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data and a t-statistic. In this section, we argue that our procedure applies much more generally and

discuss some important, but mostly straightforward, extensions.

Our model selection test measures distance between the candidate models by KL distance. One could,

however, consider other goodness-of-fit criteria such as in-sample or out-of-sample fit rather than KL-

distance. Rivers and Vuong (2002) propose such extensions of the Vuong test which would be completely

analogous in our setting. An important example would be comparing the accuracy of competing fore-

casts. Consider two forecasts {y(1)t}Tt=1 and {y(2)t}Tt=1 of {yt}Tt=1 and let {e(k)t}Tt=1, k = 1, 2, be the

corresponding forecast errors. In an influential paper, Diebold and Mariano (1995) discuss procedures

for testing the hypothesis that the two forecasts are equally accurate, viz.

H0 : Eg(e(1)t) = Eg(e(2)t)

versus the alternative that the expectations are not equal, where g is some given loss function. Diebold

and Mariano (1995) consider a test statistic d̄ := T−1/2
∑T
t=1[g(e(1)t)− g(e(2)t)] which is asymptotically

N(0, σ2) under standard assumptions. Therefore, we can test H0 by simply comparing d̄ to a normal crit-

ical value. In this setting, we can apply our sample splitting scheme to obtain a test that is asymptotically

uniformly of correct level, i.e. consider the modified statistic

˜̄d :=
T−1/2

∑T
t=1

[
ωt(ε̂T )g(e(1)t)− ωt+1(ε̂T )g(e(2)t)

]√
(1 + ε̂T )σ̂2 + ε̂2

T (σ̂2
1 + σ̂2

2)/2
,

where ωt(ε) is defined as in (4), and σ̂2, σ̂2
1 , and σ̂2

2 are estimators of σ2, and the asymptotic variances of

T−1/2
∑T
t=1 g(e(1)t) and T−1/2

∑T
t=1 g(e(2)t), respectively.

A useful extension of theorems relaxes the i.i.d. assumption on the data generating process. In the

case of comparing parametric likelihoods, our theory allows for conditional densities, so that time series

dependence over a finite number of lags (e.g. AR(p)) can be accommodated simply by conditioning on the

lagged variables. More generally, the limiting distribution of our test statistic ultimately only depends on

the asymptotic normality of certain sample averages and it is clear that our results can easily be secured

under a much wider range of conditions, including general stationary time series data.

Our testing procedure is based on estimating parameters from moment conditions. For simplicity of

exposition we considered a Z-estimator which is simply the root of the empirical estimating equations.

Clearly one could use any estimation procedure that estimates solutions to moment conditions. Our

procedure requires only asymptotic normality of the resulting estimator which is readily established for a

wide range of estimators (e.g. generalized method of moments (GMM), generalized empirical likelihood

(GEL), minimum distance) using standard conditions available in the literature (see, for example, Hansen

(1982), Newey and McFadden (1994), Newey and Smith (2004) and van der Vaart (1998)). Also, test

statistics for testing H0 : d∗ = 0 other than the t-statistic can be used, e.g. a Wald, Lagrange Multiplier

or distance metric statistic. These are first-order asymptotically equivalent to our statistic under standard

conditions.

In the present context, M-estimators are also attractive because terms can be added to the criterion

function in order to penalize certain types of models. For example, one may want to avoid the selection

of models with too many parameters and add a correction term that is increasing in the number of
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parameters in a model. See, for instance, Vuong (1989, p. 318), Sin and White (1996) and references

therein for correction terms that can be interpreted through information criteria such as AIC and BIC.

Interestingly, our method can also be extended to compare models defined by moment conditions

rather than parametric likelihoods. In that case, one would replace the parametric scores EP0
[∇θA ln fA(X; θ∗A)] =

0 and EP0
[∇θB ln fB(X; θ∗B)] = 0 by the first-order derivatives of an empirical likelihood objective func-

tion and the KL-difference between the parametric densities by the difference in the respective objective

functions. Other GEL objective functions could be used as well with the small difference being that they

minimize divergence measures other than KL and so one may want to adjust our third moment condition

accordingly. Notice, however, that comparisons based on GMM objective functions depend on the chosen

weighting matrix and can, therefore, be very misleading (Hall and Pelletier (2011)).

We propose a regularization scheme which, in the observationally equivalent case, splits consecutive

observations into two subsamples. The sample could, of course, be split in other ways as well. For

example, one could consider the following reweighting scheme:

ˆ̃
d :=

1

n

n∑
i=1

(
(1 + εi,n) ln fA(Xi; θ̂A)− (1− εi,n) ln fA(Xi; θ̂B)

)
where εi,n is an i.i.d. random variable independent of the sample and with a variance that shrinks to

zero with the sample size n. This type of regularization does not assign special status to any observation,

but on the other hand introduces more randomness, thereby reducing the power of the test. One could

also deviate from our proposed even/odd splitting scheme and our procedure would work in the exact

same way as discussed above. However, splitting into two halves is optimal in the sense that it minimizes

the sum of the variances arising from the two half-samples. Furthermore, one can imagine splitting up

the sample in many different ways and averaging over the resulting test statistics, but this procedure

would lead to a complicated limiting distribution due to the nontrivial correlations among the individual

statistics.

Finally, we could use our test to rank more than two models by incorporating it into a multiple testing

framework in the usual way (see, for instance, the survey Romano, Shaikh, and Wolf (2010)).

8 Simulations

This section reports Monte Carlo simulation results for four pairs of models. The next section then shows

how our procedure can be useful in an empirical application that has attracted a lot of attention in the

past.

All simulations are based on 1, 000 Monte Carlo samples. Our test based on the regularized statistic

t̃n is compared to the two-step Vuong procedure (see p. 321 in Vuong (1989)) and to Shi (2013)’s modified

Vuong test.9 We consider our test statistic for various choices of the regularization parameter: εn = 0

(“no reg”), εn = 0.5, εn = 1, and the optimal ε̂n as defined in (6). The two-step Vuong procedure for a

level-α test is implemented by setting the level equal to α in both individual steps.

9Shi (2013) also compares her test to ours but does not use the optimal regularization parameter selection rule described

in the present version of the paper.
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Example 1 (Joint Normal Location). This example is similar to one of Shi (2013)’s who constructed it

in order to illustrate the potentially poor power of Vuong’s test.

P0 := N

((
0

µ

)
,

(
25 0

0 1

))

PA :=

{
N

((
µA

0

)
,

(
1 0

0 1

))
: µA ∈ ΘA

}

PB :=

{
N

((
0

µB

)
,

(
1 0

0 1

))
: µB ∈ ΘB

}
The null and alternative models are generated by varying µ in [0, 2.5]. µ = 0 corresponds to the null

hypothesis (d = 0) and values in (0, 2.5] to alternatives d = µ2/2. Notice that the two models are

observationally equivalent under the null, but misspecified.

Example 2 (Misspecified Normals). Let the true distribution of the random variables Xi, i = 1, . . . , n,

be N(µ, 5). The two parametric families to be compared are

PA := {N(µA, 1) : µA ∈ ΘA}

PB := {N(0, σ2
B) : σB ∈ ΘB}

The null and alternative models are generated by varying the true mean according to µ =
√
e2d+4 − 5

with d ∈ [−1, 1]. Both models are misspecified under the null (µ∗A =
√
e4 − 5 and σ∗B = e2) and the

alternatives. With ΘA not containing the origin, the two models are non-overlapping.

Example 3 (Correctly Specified Normals). Let the true distribution of the random variables Xi, i =

1, . . . , n, be N(µ, σ2) and the two parametric families to be compared as in the previous example. The null

and alternative models are generated by varying (µ, σ2) according to µ =
√
e2d−1+σ2 − σ2 with σ2 ∈ [1, 5]

and d ∈ [−1, 1]. The two models are correctly specified under the null (µA = µ = 0, σB = σ = 1),

illustrating the case in which the two models overlap at the truth and thus are observationally equivalent

under the null. Under the alternatives, they are both misspecified.

Example 4 (Nonnested Regressions). This example is similar to one of Shi (2013)’s who constructed it in

order to illustrate the potentially poor size control of Vuong’s test. Let the random vector (Yi,Wi1, . . . ,Wi10),

i = 1, . . . , n, satisfy the regression equation

Yi = 1 +
τ√
9

9∑
k=1

Wik + τWi10 + εi, εi ∼ N(0, 22)

and (Wi1, . . . ,Wi14) ∼ N(0, I). Consider model A,

Yi = α0 +

9∑
k=1

αkWik + εi, εi ∼ N(0, σ2
A),

and model B,

Yi = β0 + β1Wi10 + εi, εi ∼ N(0, σ2
B).
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For any value of τ 6= 0, the two models have the same distance to the true model, but are both misspecified.

We vary τ in [0, 2].

In Examples 1–3, we estimate means and variances with the sample means and variances and, in

Example 4, we estimate the regressions by ordinary least-squares. Notice that these estimators are just

the maximum-likelihood estimators in the particular models considered here. Table 1 reports the finite

sample size of the different tests. Example 4 is the only one in which we consider a family of null

hypotheses whereas, in all other examples, we study the properties of our test as the true distance |d∗|
increases from zero (the null hypothesis) to a range of positive values (alternatives). Figure 2 shows the

null rejection probabilities for Example 4 and Figures 3–6 the power curves for Examples 1–3. In all

examples, we report results for 5%-level tests. In addition, we also show power results at the 1% level in

Example 1. The black horizontal lines in the power and size graphs mark the level of the tests.

The two main findings from this simulation experiment can be summarized as follows. (i) In Table 1

and Figure 2, we see that all three tests control size well with our test having size very close to nominal

size across all examples. Vuong’s and Shi’s test, on the other hand, tend to have size well below nominal

size. (ii) Our new test and Shi’s test can have significantly higher power than Vuong’s test; see Figures 3

and 4. Since our test has size closer to nominal size than Shi’s, ours possesses more power to detect

alternatives close to the null, i.e. models that are difficult to distinguish. For alternatives further away

from the null, our test can have higher (Figure 4) or lower (Figure 3) power than Shi’s test.

Besides the main findings we observe that our optimal epsilon choice better controls size and leads

to a more powerful test compared to εn = 0.5 and εn = 1, thus confirming the theoretical findings from

Section 6. All tests perform well in the examples of misspecified and the correctly specified normals.

They control size and all possess similar power curves.

These simulations suggest that our test performs well in practice, with performance comparable and

sometimes superior to existing methods. These results are especially encouraging in light of our method’s

conveniently straightforward implementation.

9 Empirical Application

A major part of the debate over (New) Keynesian versus (new) classical macroeconomic theory has

focused on whether government policies, monetary or fiscal, can have any systematic impact on outcomes

such as output or unemployment (Dadkhah (2009) gives a nice general overview of the literature and

how it has evolved more recently). Under the new classical hypothesis of rational expectations (“RE”)

and natural rate of unemployment (“NR”), it has been shown (Sargent and Wallace (1975)) that, under

certain assumptions, there is no such effect. Consequently, a lot of effort has been devoted to testing

the joint NR/RE hypothesis. In an influential paper, Barro (1977) proposes such a test based on a two

equation system, one for money growth (DMt),

DMt = Z ′tθ1 + ε1t (9)

and one for unemployment (UNt),

UNt = X ′tθ2 + ε2t (10)
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where Xt and Zt are exogenous explanatory variables known at time t−1. Specifically, he suggests the co-

variates Zt := (1, DMt−1, DMt−2, FEDVt, UNt−1) andXt := (1, DMRt, DMRt−1, DMRt−2,MILt,MINWt)

with FEDVt a measure of federal government expenditure, DMRt := ε1t the unanticipated part of DMt,

MILt a measure of military conscription and MINWt a minimum wage variable.10 The NR/RE hy-

pothesis implies that unemployment deviates from its so-called natural level (here proxied by MILt and

MINWt) only due to unanticipated changes in money growth (DMRt, DMRt−1, DMRt−2). Therefore,

equation (10) fitting the data well Barro interprets as evidence supporting the NR/RE hypothesis.

Pesaran (1982) criticizes this approach arguing that failing to reject the NR/RE hypothesis in a

particular model is necessary, but not sufficient for failing to reject it against rival hypotheses. Therefore,

he proposes to test it against “proper” or “genuine” alternatives, in particular against three different

models with Keynesian features that satisfy (9) and (10) with the following set of covariates:

K1 : Xt := (1, DMt, DMt−1, DGt,MILt,MINWt, t),

K2 : Xt := (1, DMt, DMt−1, DMt−2, DGt,MILt,MINWt, t),

K3 : Xt := (1, DMt, DMt−1, DMRt, DGt,MILt,MINWt, t),

where DGt is a measure of government spending. Subsequently, we test each of these models against

Barro’s new classical model and a slight variant with a time trend in the unemployment equation:

B1 : Xt := (1, DMRt, DMRt−1, DMRt−2,MILt,MINWt),

B2 : Xt := (1, DMRt, DMRt−1, DMRt−2,MILt,MINWt, t).

We refer the reader to Pesaran (1982) for specifics about these five models and their theoretical founda-

tions.

Based on Barro (1977)’s annual data from 1946 to 1973, we estimate each of the models in two different

ways. First, we estimate both equations (9) and (10) jointly by full-information maximum likelihood

(FIML) assuming that the errors in the two equations are jointly normal. Second, we estimated only the

unemployment equation (10) by maximum likelihood, again assuming normality of the errors and taking

the estimated series {DMRt} from Barro (1977) as given.

Table 2 and the upper panel of Table 3 report the FIML estimates of θ1 and θ2, respectively, with

misspecification-robust (White (1982)) standard errors in parentheses. The lower panel of Table 3 shows

the ML estimates of θ2 based on equation (10) alone. The FIML estimates slightly differ from the two-

step OLS estimates in Barro (1977). The differences arise from at least three different sources. First,

joint estimation by FIML requires a slightly shorter sample for the money growth equation compared

with Barro’s sample because data for the unemployment equation is available only for a shorter period.

A lower R2 in the money growth equation is one noticable consequence. More importantly, however, as in

Barro’s results, the R2 values in the unemployment equation are relatively high, reflecting the consistency

of the data with the NR/RE hypothesis. Second, FIML jointly estimates both equations and takes into

account correlation among the residuals ε1t and ε2t whereas OLS does not. Third, numerical differences

between the maximizer of the finite sample likelihood and the OLS estimator may occur.

10For exact definitions of the variables involved, see Barro (1977). He also studies output, but we confine our discussion

here to unemployment as the outcome of interest.
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The results of the pairwise model selection tests of new classical models versus Keynesian models are

reported in Tables 4–11. Table 4 displays estimates of the optimal epsilon as defined in (6) and Table 5 the

values of our test statistic t̃n based on those estimated optimal epsilons. As a sensitivity analysis we also

perform our test for epsilon values in a range from 0.1 to 1.2, which includes the optimal epsilon estimates

and shows that the conclusions derived with the optimal epsilon do not change. Tables 7–9 report Vuong

(1989)’s first-step statistic nσ̂2, the corresponding simulated critical values at 5% nominal level, and

the second-step likelihood ratio statistic. Vuong’s two-step procedure rejects the null hypothesis of two

models being equally far away from the truth when both of the two tests reject. Tables 10 and 11 show

Shi (2013)’s test statistic and the corresponding critical values for 5% nominal level, respectively. When

we compare Keynesian and new classical models based only the unemployment equation, all three tests

fail to reject the hypothesis that the models are equally distant from the truth. Even adding the money

growth equation does not lead to rejections. The sign of our test static suggests that the Keynesian

models are closer to the truth than the new classical model B1, but further away from the the truth

than B2. However, none of these statements is statistically significant at reasonable levels of confidence.

Since, in the simulations, our new test tends to reject at a higher rate, both, under the null and under

alternatives, with significantly higher power in some scenarios, the fact that our test fails to reject in all

12 model comparisons strenghtens the findings of the Vuong test. The Vuong test’s failure to distinguish

the two theories is therefore less likely to be due to it underrejecting under the null or to its potentially

low power. In conclusion, we interpret the findings as there not being enough information in the present

dataset do discriminate between the candidate new classical and Keynesian models. A larger sample or

more imposing more structure on the models might lead to different conclusions.

There are some interesting differences in these findings compared to the results reported in Pesaran

(1982). He compares models based only on the unemployment equation employing an F-test as well as a

Cox-type test for non-nested models. In the latter testing procedure, the null hypothesis is that model A

is the true data generating process to be tested against the alternative that model B is the truth. In terms

of the F-test, no model in {B1, B2} is found to be superior to any model in {K1,K2,K3}. His application

of the Cox-type test, however, results in any model in {B1, B2} being rejected against any alternative

in {K1,K2,K3} and vice versa. The testing outcomes of the Cox-type procedure are not possible in

our test because both models are treated symmetrically: As soon as our test rejects equivalence between

any two models, the one with the smaller KL distance to the truth is concluded superior to the other.

Even though the null hypothesis in our test does not assume correct specification of any model, we still

do not reject any model combination. Small (1979) and Pesaran (1982) criticize Barro’s specification of

the model and argue that the estimates of the unemployment equation may be sensitive to variations in

the specification of the money growth equation. Our test results show that, at least based on the present

data set, including or not including the money growth equation has no implications for whether the new

classical or the Keynesian theory is superior to the other.
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10 Conclusions

We propose a model selection test for choosing among parametric families of densities in the most general

case in which no restrictions are imposed, neither on the relation between the two families nor on the

relation between the families and the true distribution of the data. The test is based on a modified

likelihood ratio statistic that is easy to compute and has an asymptotic standard normal distribution under

all possible scenarios, regardless of whether none, one or both of the candidate models are misspecified,

and regardless of whether they are overlapping, nested or nonnested. A consequence of this simple

limit theory is that our test is able to uniformly controls size. We achieve this result by introducing

a regularization parameter that ensures nondegeneracy of our test statistic in the limit. We provide a

data-driven choice for this tuning parameter which optimally trades off power and size of our test. This

optimality property translates into favorable finite sample properties as shown in our simulation study.

In particular, the power gains relative to existing tests can be substantial. In the empirical section, we

review the selection among Keynesian and new classical models of unemployment. Finally, we argue that

the procedure can easily be extended to cover much more general types of models such as time series and

moment condition models, for instance.
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A Simulations for Nested Models

In this section, we briefly demonstrate that our test also performs well for selecting among nested models.

Typically, one can easily establish whether models are nested or not by inspection of the two parametric

families. When they are in fact nested, the standard likelihood ratio test with a chi-square critical value

is the most powerful test under well-known conditions.

Example 5 (Nested Regressions with one Additional Regressor). Let the random vector (Yi,Wi, Zi),

i = 1, . . . , n, satisfy the regression equation

Yi = Wi + τWiZi + εi, εi ∼ N(0, 1)

with Wi ∼ N(3, 1), Zi ∼ N(0, 1) and εi ∼ N(0, 1) all i.i.d. and mutually independent random variables.

Consider model A,

Yi = α1 + α2Wi + εi, εi ∼ N(0, σ2
A),

and model B,

Yi = β1 + β2Wi + β3Zi + εi, εi ∼ N(0, σ2
B).

Null and alternative models are generated by varying τ over [0, 1.6]. Under the null (τ = 0), both models

are correctly specified and model B nests model A while, under the alternatives, both are misspecified.

Example 6 (Nested Regressions with two Additional Regressors). This example is similar to the previous

one, except that model B has one more regressor, viz.

Yi = β1 + β2Wi + β3Zi + β4Z
2
i + εi, εi ∼ N(0, σ2

B),

and the alternatives are generated from within model B:

Yi = Wi + τZi + εi, εi ∼ N(0, 1).

Therefore, the two models are nested, correctly specified under the null and the larger model is correctly

specified even under the alternatives. This is the standard testing situation in which the second step of

Vuong’s procedure is equivalent to a Neyman Pearson (“NP”) test of the hypothesis H0 : β3 = β4 = 0.

Figures 7 and 8 show the power plots for both examples. The lower two panels of Table 1 report the

empirical rejection probabilities under the null. In both examples, compared to Vuong’s and Shi’s test,

our test is more powerful for alternatives close to the null whereas the other two dominate for alternatives

further away from the null. All three tests control size reasonably well, with Vuong’s and Shi’s test almost

not rejecting under the null at all.

B Proofs

For θ = (θ′A, θ
′
B)′, let di(x; θ, ε) := ωi(ε) ln fA(x; θA) − ωi+1(ε) ln fB(x; θB) and abbreviate di(θ, ε) :=

di(Xi,n; θ, ε). Define Ĝ(θ) := ∇θĝ(θ) and G(θ) := EP0
[∇θg(X; θ)].
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Lemma 1. Suppose {εn} ∈ E. Then, under any sequence Pn in P,

1.
1√
n

n∑
i=1

di(θ
∗(Pn), εn)− (1 + εn/2)d∗(Pn)

σ̃(Pn, εn)
→d N(0, 1).

2.
1

n

n∑
i=1

(
(ln fk(Xi,n; θ∗k(Pn)))2 − EPn [(ln fk(Xi,n; θ∗k(Pn)))2]

)
= OPn(n−1/2).

3. ĝ(θ∗(Pn)) = OPn(n−1/2).

Proof. For the first part, we start by showing that the following Lyapounov condition holds: for some

δ > 0 as n→∞,

n/2∑
i=1

EPn

[∣∣∣∣Λ2i−1(Pn) + Λ2i(Pn) + εnΛ2i,2i−1(Pn)− (2 + εn)d∗(Pn)√
nσ̃(Pn, εn)

∣∣∣∣2+δ
]
→ 0, (11)

where Λi,j(P ) := ln fA(Xi; θ
∗(P ))− ln fB(Xj ; θ

∗(P )) and Λi(P ) := Λi,i(P ). By the cr-inequality,

n/2∑
i=1

EPn

[∣∣∣∣Λ2i−1(Pn) + Λ2i(Pn) + εnΛ2i,2i−1(Pn)− (2 + εn)d∗(Pn)√
nσ̃(Pn, εn)

∣∣∣∣2+δ
]

≤ 22+2δ

nδ/2

n/2∑
i=1

EPn

[
|Z2i−1,n|2+δ

+ |Z2i,n|2+δ
+ |Zi,n,split|2+δ

+

∣∣∣∣ (2 + εn)d∗(Pn)

σ̃(Pn, εn)

∣∣∣∣2+δ
]

(12)

with Zi,n := Λi(Pn)/σ̃(Pn, εn) and Zi,n,split := εnΛ2i,2i−1(Pn)/σ̃(Pn, εn). Consider the first of the four

terms. If σ(Pn) ≥ c for some c > 0, then

EPn

[
|Zi,n|2+δ

]
= EPn

[∣∣∣∣ ln fA(X; θ∗A(Pn))− ln fB(X; θ∗B(Pn))

σ̃(Pn, εn)

∣∣∣∣2+δ
]

≤ EPn

[
|ln fA(X; θ∗A(Pn))− ln fB(X; θ∗B(Pn))|2+δ

(1 + εn)1+δ/2σ2+δ(Pn)

]

≤
EPn

[
|D(X)|2+δ

]
σ2+δ(Pn)

(1 + εn)1+δ/2σ2+δ(Pn)

= (1 + εn)−1−δ/2EPn
[
|D(X)|2+δ

]
≤M

where the first inequality follows from the fact that σ̃2(P, ε) = (1 + ε)σ2(P ) + ε2(σ2
A(P ) + σ2

B(P ))/2 is

larger than either (1 + ε)σ2(P ) or ε2(σA(P ) + σ2
B(P ))/2 (as ε ≥ 0). The second inequality is implied

by the dominance condition (5). Since M is independent of Pn, we have supn≥1EPn [|Z2i−1,n|2+δ] ≤ M ,

even if σ(Pn) → 0 as n → ∞. Therefore, the first and second expectation in (12) are finite uniformly

over n.
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Next, consider the third expectation in (12):

EPn

[
|Zi,n,split|2+δ

]
= EPn

[∣∣∣∣εn (ln fA(X2i; θ
∗
A(Pn))− ln fB(X2i−1; θ∗B(Pn)))

σ̃(Pn, εn)

∣∣∣∣2+δ
]

≤ EPn

∣∣∣∣∣εn (ln fA(X2i; θ
∗
A(Pn))− ln fB(X2i−1; θ∗B(Pn)))

εn
√

(σ2
A(Pn) + σ2

B(Pn))/2

∣∣∣∣∣
2+δ


= EPn

∣∣∣∣∣ ln fA(X2i; θ
∗
A(Pn))− ln fB(X2i−1; θ∗B(Pn))√
(σ2
A(Pn) + σ2

B(Pn))/2

∣∣∣∣∣
2+δ


≤M−1/221+δ
{
EPn

[
|ln fA(X2i; θ

∗
A(Pn))|2+δ

]
+ EPn

[
|ln fB(X2i−1; θ∗B(Pn))|2+δ

]}
≤M−1/222+δM

This bound is again valid uniformly over n.

Finally, by Lyapounov’s Inequality, we have (1 + εn/2)d∗(Pn) ≤ σ̃(Pn, εn), uniformly in n, so that

the fourth expectation in (12) is also finite, uniformly in n. In conclusion, we have established (11).

Lyapounov’s Central Limit Theorem (e.g. Theorem 23.11 in Davidson (1994)) then implies that, under

any sequence Pn in P,

1√
n

n∑
i=1

di(θ
∗(Pn), εn)− (1 + εn/2)d∗(Pn)

σ̃(Pn, εn)

=
1√
n

n/2∑
i=1

Λ2i−1(Pn) + Λ2i(Pn) + εnΛ2i,2i−1(Pn)− (2 + εn)d∗(Pn)

σ̃(Pn, εn)
→d N(0, 1).

For the second part of the lemma, notice that

EP

[∣∣∣∣ (ln fk(X; θ∗k(P )))2 − EP [(ln fk(X; θ∗k(P )))2]

V arP ((ln fk(X; θ∗k(P )))2)1/2

∣∣∣∣2+δ
]
≤MM−1, k = A,B, (13)

for all P ∈ P because V arP ((ln fk(X; θ∗k(P )))2) is bounded away from zero by the definition of P and

because the numerator is bounded from above by M . Therefore, we can apply the Lyapounov Central

Limit Theorem as in the first part of the proof and the result follows. The third part of the lemma can

be proved in exactly the same fashion as the second. Q.E.D.

Lemma 2. Let Xn,1, . . . , Xn,n be an i.i.d. sample from Pn and Assumption 1 hold. Suppose there exists a

unique θ∗(Pn) ∈ int(Θ) such that EPng(X; θ∗(Pn)) = 0 and that there is a root θ̂ satisfying the empirical

analogue ĝ(θ̂) = 0. Further, assume the following conditions hold:

(i) ε̂n is a sequence of measurable functions of Xn,1, . . . , Xn,n and there is a sequence {εn} in E such

that |ε̂n − εn| = oPn(1).

(ii) For h(x; θ) being any of the functions ln fk(x; θk) and ∇ ln fk(x; θk), k = A,B, θ = (θ′A, θ
′
B)′, we

have

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi; θ)− EPnh(Xi; θ)

∥∥∥∥∥ = oPn(1).
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Then, ‖θ̂ − θ∗(Pn)‖ = oPn(1) and |d̂− (1 + εn/2)d∗(Pn)| = oPn(1).

Proof. Let Ψn(θ) := EPn [g(Xn,i; θ)]. The continuity of the moment function g(x; ·), the compactness of

Θ and θ∗(Pn) being the unique root of Ψn(θ) = 0 imply that, for any κ > 0,

inf
θ:‖θ−θ∗(Pn)‖≥κ

‖Ψn(θ)‖ > 0.

The proof of ‖θ̂−θ∗(Pn)‖ = oPn(1) then follows that of Theorem 5.9 in van der Vaart (1998). The second

conclusion can be established as follows. A Taylor expansion around (θ∗(Pn), εn) yields

ˆ̃
d =

1

n

n∑
i=1

di(θ̂, ε̂n) =
1

n

n∑
i=1

di(θ
∗(Pn), εn) +

1

n

n∑
i=1

∇(ε,θ)di(θ̄n, ε̄n)

(
ε̂n − εn

θ̂ − θ∗(Pn)

)
= 0 (14)

where (θ̄n, ε̄n) lies on the line segment joining (θ̂, ε̂n) and (θ∗(Pn), εn). By (ii), the triangle inequality

and ε̄n = OPn(1), we have n−1
∑n
i=1∇(ε,θ)di(θ̄n, ε̄n) = OPn(1), so that∣∣∣∣∣d̂− 1

n

n∑
i=1

di(θ
∗(Pn), εn)

∣∣∣∣∣ = oPn(1) (15)

follows from ‖θ̂ − θ∗(Pn)‖ = oPn(1) and |ε̂n − εn| = oPn(1). By (ii) and the triangle inequality, we also

have∣∣∣∣∣ 1n
n∑
i=1

di(θ
∗(Pn), εn)−

(
1 +

εn
2

)
d∗(Pn)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

di(θ
∗(Pn), εn)− EPndi(θ∗(Pn), εn)

∣∣∣∣∣ = oPn(1). (16)

Together, (15) and (16) imply the second result. Q.E.D.

Lemma 3. Let Xn,1, . . . , Xn,n be an i.i.d. sample from Pn and that the following conditions hold:

(i) ε̂n is a sequence of measurable functions of Xn,1, . . . , Xn,n such that there is a sequence {εn} in E
satisfying |ε̂n − εn| = OPn(n−1/2).

(ii) For h(x; θ) being any of the functions ln fk(X; θk), ln fk(x; θk)∇ ln fj(x; θj), and ∇ ln fk(X; θk),

j, k = A,B, θ = (θ′A, θ
′
B)′, we have

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi; θ)− EPnh(Xi; θ)

∥∥∥∥∥ = oPn(1),

and
1

n

n∑
i=1

(
(ln fk(Xi,n; θ∗k(Pn)))2 − EPn [(ln fk(Xi,n; θ∗k(Pn)))2]

)
= OPn(n−1/2).

(iii) ‖θ̂ − θ∗(Pn)‖ = OPn(n−1/2),

(iv) There are constants 0 < M ≤M <∞ such that M ≤ σk(Pn) ≤M for all n and k = A,B.
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Then, for ˆ̃σ2 = ˆ̃σ2(θ̂, ε̂n), ∣∣∣∣ σ̃2(Pn, εn)

ˆ̃σ2
− 1

∣∣∣∣→Pn 0.

Proof. First, we establish∣∣σ̂2 − σ2(Pn)
∣∣ = OPn(n−1/2) and

∣∣σ̂2
k − σ2

k(Pn)
∣∣ = OPn(n−1/2), k = A,B. (17)

Notice that by a Taylor expansion around θ∗(Pn), under Pn, we have∣∣σ̂2 − σ̂2(θ∗(Pn))
∣∣ ≤ ∣∣∣∇θσ̂2(θ̄n)

(
θ̂ − θ∗(Pn)

)∣∣∣ = OPn(n−1/2)

where θ̄n lies on the line segment joining θ̂ and θ∗(Pn). Uniform convergence of ln fk(X; θk), ∇ ln fk(X; θk)

and ln fk(x; θk)∇ ln fj(x; θj), j, k = A,B, in (ii) together with the Cauchy-Schwartz inequality imply

‖∇θσ̂2(θ̄n)‖ = OPn(1) so that the equality above follows from the consistency requirement in (iii). Simi-

larly, |σ̂2
k − σ̂2

k(θ∗k(Pn))| = OPn(n−1/2) for k = A,B. By the second part of (ii) and the Hölder inequality,

|σ̂2
k(θ∗(Pn))− σ2

k(Pn)| = OPn(n−1/2) for k = A,B, and the desired result (17) follows.

The remainder of the proof separately treats the two cases σ2(Pn)→ σ2
∞ > 0 and σ2(Pn)→ 0. First,

consider σ2(Pn) → σ2
∞ > 0. In this case, by (iv) and the definition of E , σ̃2(Pn, εn) also converges to a

finite, nonzero constant. Thus, (17) and (i) directly yield |ˆ̃σ2 − σ̃2(Pn, εn)| = OPn(n−1/2) so that∣∣∣∣ σ̃2(Pn, εn)

ˆ̃σ2
− 1

∣∣∣∣ =

∣∣∣∣ σ̃2(Pn, εn)

σ̃2(Pn, εn) +OPn(n−1/2)
− 1

∣∣∣∣ = oPn(1).

Now, consider σ2(Pn) → 0. We further split this case into three subcases: (a) σ2(Pn)/ε2
n → 0 which

means that either σ2(Pn) and ε2
n both vanish, but σ2(Pn) at a faster rate, or that σ2(Pn) converges to

zero at an arbitrary rate while ε2
n stays bounded away from zero; (b) σ2(Pn)/ε2

n → ∞, i.e. σ2(Pn) and

ε2
n both vanish, but ε2

n at a faster rate; (c) σ2(Pn)/ε2
n → c 6= 0, i.e. both vanish at the same rate.

Consider subcase (a). By Assumption (i), we have

ε̂n
εn

= 1 +
ε̂n − εn
εn

= 1 +OPn(n−1/2ε−1
n ) = 1 + oPn(1).

Similarly, by (17),

σ̂2

ε2
n

=
σ2(Pn)

ε2
n

+
σ̂2 − σ2(Pn)

ε2
n

= o(1) +OPn(n−1/2ε−2
n ) = oPn(1).

Therefore,

σ̃2(Pn, εn)

ˆ̃σ2
=

(1 + εn)σ2(Pn) +
ε2n
2 (σ2

A(Pn) + σ2
B(Pn))

(1 + ε̂n)σ̂2 +
ε̂2n
2 (σ̂2

A + σ̂2
B)

=

1
2 (σ2

A(Pn) + σ2
B(Pn)) +O(σ

2(Pn)
ε2n

)

ε̂2n
ε2n2 (σ̂2

A + σ̂2
B) +OPn( σ̂

2

ε2n
)

=
1
2 (σ2

A(Pn) + σ2
B(Pn)) + o(1)

1
2 (σ2

A(Pn) + σ2
B(Pn) + oPn(1)) + oPn(1)

= 1 + oPn(1)
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In subcase (b), we use a similar reasoning as above to show that ε̂2
n/σ

2(Pn) = oPn(1) and σ̂2/σ2(Pn) =

1 + oPn(1). Therefore,

σ̃2(Pn, εn)

ˆ̃σ2
=

(1 + εn)σ2(Pn) +
ε2n
2 (σ2

A(Pn) + σ2
B(Pn))

(1 + ε̂n)σ̂2 +
ε̂2n
2 (σ̂2

A + σ̂2
B)

=
(1 + εn) +O(ε2

n/σ
2(Pn))

(1 + ε̂n) σ̂2

σ2(Pn) +OPn(ε̂2
n/σ

2(Pn))

=
1 + o(1)

1 + oPn(1)
= 1 + oPn(1)

In subcase (c), we also have σ̂2/σ2(Pn) = 1 + oPn(1) and ε̂2
n/σ

2(Pn) = ε2
n/σ

2(Pn) + oPn(1) so that

σ̃2(Pn, εn)

ˆ̃σ2
=

(1 + εn)σ2(Pn) +
ε2n
2 (σ2

A(Pn) + σ2
B(Pn))

(1 + ε̂n)σ̂2 +
ε̂2n
2 (σ̂2

A + σ̂2
B)

=
σ2(Pn) +

ε2n
2 (σ2

A(Pn) + σ2
B(Pn)) + o(ε2

n)

σ̂2 +
ε̂2n
2 (σ̂2

A + σ̂2
B) +OPn(ε̂nσ̂2)

=
1 +

ε2n
2σ2(Pn) (σ2

A(Pn) + σ2
B(Pn)) + o(ε2

n/σ
2(Pn))

σ̂2

σ2(Pn) +
ε̂2n

2σ2(Pn) (σ2
A(Pn) + σ2

B(Pn)) + oPn(ε2
n/σ

2(Pn))

= 1 + oPn(1)

which uses the fact that OPn(ε̂nσ̂
2) = OPn(εn(σ2(Pn) + n−1/2)) = oPn(ε2

n). Q.E.D.

Lemma 4. Suppose Assumption 1 holds. Let ε̂n be a sequence of real-valued, measurable functions of the

triangular array Xn,1, . . . , Xn,n, an i.i.d. sample from Pn, and Q be some subset of P. Assume that, for

every sequence {Pn} in Q, there is a sequence {εn} ∈ E with |ε̂n − εn| = OPn(n−1/2). Let δ̄ ∈ [−∞,+∞]

be such that
√
nd∗(Pn)(1 + εn/2)/σ̃(Pn, εn)→ δ̄. Then, under any sequence {Pn} in Q, if |δ̄| <∞,

√
n

ˆ̃
d

ˆ̃σ
→d N(δ̄, 1).

If |δ̄| =∞, then |
√
n

ˆ̃
d/ˆ̃σ| →Pn ∞.

Proof. Suppose |δ̄| < ∞. First, we establish two auxiliary results, viz. the orders of σ̃(Pn, εn)−1 and

θ̂ − θ∗(Pn). To that end, consider two cases: (a) Pn approaches the observationally equivalent case, i.e.

σ(Pn)→ 0; (b) Pn satisfies σ(Pn)→ c 6= 0. In the first case, since by part (iv) of Definition 2, σ2
k(Pn) is

bounded away from zero and n1/4εn →∞,

nσ̃2(Pn, εn) = n(1 + εn)σ2(Pn) + nε2
n(σ2

A(Pn) + σ2
B(Pn))/2→∞

so that σ̃(Pn, εn)−1 = o(n1/2). In the second case, σ̃(Pn, εn) → c 6= 0 so that σ̃(Pn, εn)−1 = O(1) =

o(n1/2). In conclusion,

σ̃(Pn, εn)−1 = o(n1/2). (18)

Next, consider the order of θ̂ − θ∗(Pn). A Taylor expansion with θ̄ on the line segment joining θ̂ and

θ∗(Pn) yields θ̂ − θ∗(Pn) = −Ĝ(θ̄)−1ĝ(θ∗(Pn)). By Assumption 1, parts (i) and (iii) of Definition 2, and

28



Lemma 2.4 of Newey and McFadden (1994), Ĝ(θ) converges in probability, under Pn, uniformly over Θ.

Part (i) and (iii) of Definition 2 together with Assumption 1 imply Assumption (ii) of Lemma 2, so that

we can use it to obtain consistency of θ̂ and θ̄ under Pn. Therefore, letting GP (θ) := EP [∇θg(X; θ)] and

Gn := GPn(θ∗(Pn)), we have∥∥∥Ĝ(θ̄)−Gn
∥∥∥ ≤ ∥∥∥Ĝ(θ̄)−GPn(θ̄)

∥∥∥+
∥∥GPn(θ̄)−Gn

∥∥
≤ sup
θ∈Θ

∥∥∥Ĝ(θ)−GPn(θ)
∥∥∥+ oPn(1) = oPn(1).

Furthermore, by (iv) of Definition 2, Ĝ(θ̄) is invertible with probability approaching one, under Pn. By

part 3. of Lemma 1, ĝ(θ∗(Pn)) = OPn(n−1/2), so that, in conclusion,

θ̂ − θ∗(Pn) = −Ĝ(θ̄)−1ĝ(θ∗(Pn)) = OPn(n−1/2). (19)

With the auxialiary results established, we now consider the following decomposition:

√
n

ˆ̃
d

σ̃(Pn, εn)
=

√
nd∗(Pn)(1 + ε̂n

2 )

σ̃(Pn, εn)
+

1√
n

∑n
i=1

(
di(θ̂, ε̂n)− d∗(Pn)(1 + ε̂n

2 )
)

σ̃(Pn, εn)
.

The assumption |ε̂n − εn| = OPn(n−1/2) and a Taylor expansion of di(θ̂, ε̂n) − d∗(Pn)(1 + ε̂n/2) around

(θ∗(Pn), εn) yield

√
n

ˆ̃
d

σ̃(Pn, εn)
= δ̄ + oPn(1) +

1√
n

∑n
i=1

(
di(θ

∗(Pn), εn)− d∗(Pn)(1 + εn
2 )
)

σ̃(Pn, εn)

+

1√
n

∑n
i=1∇θdi(θ∗(Pn), εn)(θ̂ − θ∗(Pn))

σ̃(Pn, εn)

+

1√
n

∑n
i=1

(
∇εdi(θ∗(Pn), εn)− 1

2d
∗(Pn)

)
(ε̂n − εn)

σ̃(Pn, εn)
+Rn (20)

where, for some (θ̄n, ε̄n) on the line segment joining (θ̂, ε̂n) and (θ∗(Pn), εn),

|Rn| ≤
√
nσ̃(Pn, εn)−1

∥∥∥∥∥ 1

n

n∑
i=1

∇2
θdi(θ̄n, ε̄n)

∥∥∥∥∥ ∥∥∥θ̂ − θ∗(Pn)
∥∥∥2

+
√
nσ̃(Pn, εn)−1

∣∣∣∣∣ 1n
n∑
i=1

∇2
εdi(θ̄n, ε̄n)

∣∣∣∣∣ ‖ε̂n − εn‖2
=
√
no(n1/2)OPn(1)OPn(n−1) + 0 = oPn(1).

The first equality holds for the following reason. By Assumption 1, parts (i) and (iii) of Definition 2,

and Lemma 2.4 of Newey and McFadden (1994), ‖n−1
∑n
i=1∇2

θ ln fk(Xn,i; θ)‖, k = A,B, converges in

probability, under Pn, uniformly over Θ. By the triangle inequality and the fact that ε̂n = OPn(1), and

thus ε̄n = OPn(1), we also have ‖n−1
∑n
i=1∇2

θdi(θ̄n, ε̄n)‖ = OPn(1). (18), (19), and the assumption

|ε̂n − εn| = OPn(n−1/2) then imply the equality.
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We now separately consider each of the remaining three terms in (20). By part 1. of Lemma 1, the first

term is asymptotically N(0, 1) under Pn. For the second term, notice that n−1
∑n
i=1∇θdi(θ∗(Pn), εn)

is a linear transformation of ĝ(θ∗(Pn)) and, thus by part 3. of Lemma 1 and εn = O(1), OPn(n−1/2).

Therefore, (18) and (19) imply

1√
n

∑n
i=1∇θdi(θ∗(Pn), εn)(θ̂ − θ∗(Pn))

σ̃(Pn, εn)
= OPn(1)OPn(n−1/2)o(n1/2) = oPn(1).

In the third term,

1

n

n∑
i=1

(
∇εdi(θ∗(Pn), εn)− d∗(Pn)

2

)

=
1

n

n∑
i=1

(
ln fA(Xn,2i−1; θ∗A(Pn))− ln fB(Xn,2i; θ

∗
B(Pn))− d∗(Pn)

2

)
= OPn(n−1/2)

by a similar argument as in part 1. of Lemma 1, so that

1√
n

∑n
i=1

(
∇εdi(θ∗(Pn), εn)− 1

2d
∗(Pn)

)
(ε̂n − εn)

σ̃(Pn, εn)
= OPn(1)OPn(n−1/2)o(n1/2) = oPn(1).

In conclusion,
√
n

ˆ̃
d/σ̃(Pn, εn) →d N(δ̄, 1) under Pn. The corresponding result with the estimated stan-

dard deviation, ˆ̃σ, in the denominator rather than σ̃(Pn, εn) follows from Lemma 3, using (19). The case

|δ̄| =∞ follows from a similar argument. Q.E.D.

Proof of Theorem 1. Assumptions 1, 2(i) and 3(ii.a) imply the conditions of Lemma 2.4 in Newey and

McFadden (1994) so that n−1
∑n
i=1 ln fk(x; θk) converges uniformly in probability over Θk. By Assump-

tions 1 and 2(ii), for any κ > 0, infθ:‖θ−θ∗‖≥κ ‖EP0
g(X; θ)‖ > 0 so that we can apply Theorem 5.9 in

van der Vaart (1998) to show consistency of θ̂.

The standard Taylor expansion argument with θ̄ on the line segment joining θ̂ and θ∗ yields
√
n(θ̂ −

θ∗) = Ĝ(θ̄)−1
√
nĝ(θ∗). Assumptions 1, 2(i) and 3(ii.c) imply the conditions of Lemma 2.4 in Newey and

McFadden (1994) so that n−1
∑n
i=1∇2

θk
ln fk(x; θk) converges uniformly in probability over Θk. Since θ̂

is consistent, θ̄ is as well and Ĝ(θ̄)→p G(θ∗). The limit is invertible by Assumption 2(iii) and, thus, Ĝ(θ̄)

is invertible with probability approaching one. Furthermore, by the finite variance in Assumption 3(i),

the CLT implies that
√
nĝ(θ∗) is asymptotically normal, so that

√
n(θ̂ − θ∗) = OP0

(1).

Assumptions 1, 2(i) and 3(ii.b) imply the conditions of Lemma 2.4 in Newey and McFadden (1994)

so that n−1
∑n
i=1∇θk ln fk(x; θk) converges uniformly in probability over Θk. Furthermore, by the finite

variance in Assumption 3(i), the CLT implies that n−1/2
∑n
i=1 di(θ

∗) is asymptotically normal, so that

√
nd̂ =

1√
n

n∑
i=1

[
di(θ

∗) +∇θdi(θ̄)
(
θ̂ − θ∗

)]
=

1√
n

n∑
i=1

di(θ
∗) + oP0

(1)→d N(0, σ2).

By Assumptions 1, 2(i), 3(i), consistency of θ̂, and Lemma 4.3 of Newey and McFadden (1994), σ̂2
k,

k = A,B, and σ̂AB are consistent estimators, so that σ̂ is consistent as well. Slutsky’s Theorem then

yields the desired result. Q.E.D.
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Proof of Theorem 2. We show the result by applying Lemma 4. Let Q = {P0} and δ̄ = 0. Part (i) of

Definition 2 holds by Assumption 2(ii). Part (iii) by Assumption 6(ii). Finally, part (iv) of Definition 2

holds because of Assumptions 2(iii) and 5, and Assumption 7 implies Assumption 8. The uniform moment

bounds in (ii) of Definition 2 hold because of Assumption 6(i).

It remains to show that the dominance condition (5) in (ii) of Definition 2 holds. This can be seen as

follows. In the non-overlapping case, σ2 > 0, (5) is implied by Assumption 6(i). In the overlapping case,

the information matrix equality holds, so that V arP0(∇θk ln fk(X; θ∗k)) = EP0 [∇2
θk

ln fk(X; θ∗k)], k = A,B,

is invertible by Assumption 2(iii). Let λmin be the minimum of the eigenvalues of both matrices and note

that it must be strictly larger than zero. Then it is easy to show that (5) holds for D(x) :=
√

2F̄2(x)/λmin

because of Assumption 6(iii). Q.E.D.

Proof of Theorem 3. Lemma 4, whose assumptions are satisfied by setting Q = P0 and by Assumptions 1

and 8, implies that
√
n

ˆ̃
d/ˆ̃σ →d N(δ̄, 1) under any sequence {Pn} in P0. Using this result, the theorem

follows from analogous reasoning as in the proof of Theorem 11.4.5 of Lehmann and Romano (2005).

Q.E.D.

Proof of Theorem 4. The result follows directly from Lemma 4. Q.E.D.

Proof of Theorem 5. The proof proceeds by decomposing the statistic into an asymptotically normal

component and non-normal remainder terms that are negligible in an almost sure sense. We first obtain

some generic asymptotic expansions that hold for triangular arrays (as needed for local power calculation).

These expansions, specialized to the case of sequences, are also used for size calculations.

We first observe that, by Assumptions 9 and 10, Lemma 5 implies that n−1
∑n
i=1 ln fA(Xni, θA)

converges almost surely uniformly for all θA ∈ ΘA to EP0
[ln fA(X0i, θA)] This in turn implies that

θ̂A →as θ
∗
A := θ∗A(P0) by the usual argument for consistency of MLE, adapted for almost sure convergence.

We then expand the first order condition for θ̂A as

0 =
1

n

n∑
i=1

∇θA ln fA

(
Xni, θ̂A

)
=

1

n

n∑
i=1

∇θA ln fA (Xni, θ
∗
A) +

1

n

n∑
i=1

∇2
θA ln fA

(
Xni, θ̄A

) (
θ̂A − θ∗A

)
where θ̄A is a mean value on the line segment joining θ̂A and θ∗A. By Assumptions 9 and 11, Lemma 5

implies that n−1
∑n
i=1∇2

θA
ln fA(Xni, θA) converges uniformly to EP0

[∇2
θA

ln fA(X0i, θA)] for all θA ∈ ΘA.

Since n−1
∑n
i=1∇2

θA
ln fA(Xni, θA) is continuous in θA at each n by Assumption 11 and the convergence

is uniform, it follows that the limit EP0 [∇2
θA

ln fA(X0i, θA)] is also continuous in θA. Since θ̂A →as θ
∗
A

and thefore θ̄A →as θ
∗
A, we have

1

n

n∑
i=1

∇2
θA ln fA(Xni, θ̄A) = EP0

[∇2
θA ln fA(X0i, θ

∗
A)] + oas(1)

and it follows, under Assumption 13, that

θ̂A − θ∗A = −
((
EP0

[
∇2
θA ln fA (X0i, θ

∗
A)
])−1

+ oas (1)
) 1

n

n∑
i=1

∇θA ln fA (Xni, θ
∗
A) . (21)
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Let ‖M‖F denote the largest eigenvalue of matrix M . Observe that, by Assumption 18 and dominated

convergence, VA(Pn)→ VA with ‖VA‖F <∞. Moreover VA is invertible by Assumption 13. We can then

write

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣ = lim sup
n→∞

∣∣∣∣∣VA(Pn)1/2VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
=
(

lim
n→∞

VA(Pn)1/2
)(

lim sup
n→∞

∣∣∣∣∣VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
)

= V
1/2
A

(
lim sup
n→∞

∣∣∣∣∣VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
)

≤ ‖VA‖1/2F lim sup
n→∞

∣∣∣∣∣VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
The summation term in (21) then has two possible behaviors: Either

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣ ≤ ‖VA‖1/2F

√
2 lnn (22)

almost surely for the general triangular array case (by Lemma 7 under Assumption 14 and the fact that

EP0 [∇θAj ln fA(Xni, θ
∗
A)] = 0), or

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

∇θAj ln fA (Xi, θ
∗
A)

∣∣∣∣∣ ≤ ‖VA‖1/2F

√
2 ln lnn (23)

almost surely when Xni reduces to a sequence (Xni = Xi and VA(Pn) = VA), by the Law of Iterated

Logarithm (LIL) (Hartman and Wintner (1941)), since Assumption 14 implies existence of the variance.

In either case, it follows that11

θ̂A − θ∗A = Oas

(
n−1/2

√
ln◦s n

)
(24)

with s = 1 (for arrays) or s = 2 (for sequences), where ln◦s represents s application(s) of the ln function.

A similar result holds for θ̂B .

We now consider each term in the statistic t̃n = (ε̂nL̂S + L̂J)/ˆ̃σ where

L̂S := n−1/2
∑
i even

ln fA

(
Xni, θ̂A

)
− n−1/2

∑
i odd

ln fB

(
Xni, θ̂B

)
,

L̂J := n−1/2
n∑
i=1

(
ln fA

(
Xni, θ̂A

)
− ln fB

(
Xni, θ̂B

))
.

11For some random sequence Rn and some deterministic sequence rn, we write Rn = Oas(rn) if and only if there exists

a finite C such that P (lim supn→∞ |Rn/rn| ≤ C) = 0.
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Write ε̂nL̂S = εnLS + (ε̂n − εn)LS + ε̂n(RθA −RθB ) with

εn := cαn
−1/4
√

ln lnn

LS := n−1/2
∑
i even

ln fA (Xni, θ
∗
A)− n−1/2

∑
i odd

ln fB (Xni, θ
∗
B)

RθA := n−1/2
∑
i even

ln fA

(
Xni, θ̂A

)
− n−1/2

∑
i even

ln fA (Xni, θ
∗
A)

RθB := n−1/2
∑
i odd

ln fB

(
Xni, θ̂B

)
− n−1/2

∑
i odd

ln fB (Xni, θ
∗
B)

We can bound RθA (and similarly RθB ) using an expansion to second order about θA = θ∗A:

RθA = n−1/2
∑
i even

ln fA

(
Xni, θ̂A

)
− n−1/2

∑
i even

ln fA (Xni, θ
∗
A)

= n−1/2
∑
i even

ln fA (Xni, θ
∗
A) +

(
θ̂A − θ∗A

)′
n−1/2

∑
i even

∇θA ln fA (Xni, θ
∗
A)

+
1

2

(
θ̂A − θ∗A

)′(
n−1/2

∑
i even

∇2
θA ln fA

(
Xni, θ̄A

))(
θ̂A − θ∗A

)
− n−1/2

∑
i even

ln fA (Xni, θ
∗
A)

=
(
θ̂A − θ∗A

)′
n1/2n−1

∑
i even

∇θA ln fA (Xni, θ
∗
A)

+
n1/2

4

(
θ̂A − θ∗A

)′(
(n/2)

−1
∑
i even

∇2
θA ln fA

(
Xni, θ̄A

))(
θ̂A − θ∗A

)
where θ̄A is a mean value on the line segment joining θ̂A and θ∗A. Then, we use (24) and Lemma 5 applied

to n−1
∑
i even∇2

θA
ln fA

(
Xni, θ̄A

)
under Assumptions 9 and 11:

‖RθA‖ = Oas

(
n−1/2

√
ln◦s n

)
n1/2Oas

(
n−1/2

√
ln◦s n

)
+ n1/2Oas

(
n−1/2

√
ln◦s n

)
(O (1) + oas (1))Oas

(
n−1/2

√
ln◦s n

)
= Oas

(
n−1/2 ln◦s n

)
Next, L̂J = LJ + LJ2A − LJ2B where

LJ := n−1/2
n∑
i=1

(ln fA(Xni, θ
∗
A)− ln fB(Xni, θ

∗
B))

LJ2A := n−1/2
n∑
i=1

(
ln fA(Xni, θ̂A)− ln fA(Xni, θ

∗
A)
)

LJ2B := n−1/2
n∑
i=1

(
ln fA(Xni, θ̂B)− ln fB(Xni, θ

∗
B)
)
.
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The terms LJ2A and LJ2B can be bounded using the same techniques as for RθA and we have:

|LJ2A| = Oas

(
n−1/2

√
ln◦s n

)
and similarly for LJ2B . Next, let σ2

S := 1
2 (σ2

A + σ2
B), σ2

k := σ2
k(P0), and σ̂2

S := 1
2 (σ̂2

A + σ̂2
B). We have

σ̂2
A =

1

n

n∑
i=1

(
ln fA

(
Xni, θ̂A

))2

−

(
1

n

n∑
i=1

ln fA

(
Xni, θ̂A

))2

=
1

n

n∑
i=1

(ln fA (Xni, θ
∗
A))

2
+
(
θ̂A − θ∗A

)′ 1

n

n∑
i=1

ln fA
(
Xni, θ̄A

)
∇θA ln fA

(
Xni, θ̄A

)
−

(
1

n

n∑
i=1

ln fA (Xni, θ
∗
A) +Oas

(
n−1ln◦sn

))2

= EP0

[
(ln fA (Xni, θ

∗
A))

2
]
− EP0([ln fA (Xni, θ

∗
A)])

2
+Oas

(
n−1/2

√
ln◦s n

)
+Oas

(
n−1/2

√
ln◦s n

)
(O (1) + oas (1))

= σ2
A +Oas

(
n−1/2

√
ln◦s n

)
where the rate of convergence of the first term follows from Lemma 7 (under Assumption 15) while

the one of the second term follows from (24) and Lemma 5 under Assumptions 9 and 12. Simiarly, we

have σ̂2
B = σ2

B + Oas(n
−1/2
√

ln◦s n) and, thus, σ̂2
S = σ2

S + Oas(n
−1/2
√

ln◦s n). By a similar reasoning,

by Assumptions 16–19, we have Ĥk = Hk + Oas(n
−1/2
√

ln◦s n) and V̂k = Vk + Oas(n
−1/2
√

ln◦s n) for

k = A,B. Below, we will use ln lnn = O(lnn) to simplify some expressions. From the convergence of σ̂2
S ,

Ĥk and V̂k, it also follows that

ε̂n = εn + n−1/4
√

ln lnnOas

(
n−1/2

√
ln◦s n

)
= εn +Oas

(
n−3/4

√
ln lnn

√
ln◦s n

)
= εn +Oas

(
n−3/4 ln◦s n

)
and similarly,

ε̂2
n =

(
εn +Oas

(
n−3/4 ln◦s n

))2

= ε2
n +O

(
n−1/4

√
ln lnn

)
Oas

(
n−3/4 ln◦s n

)
= ε2

n +Oas

(
n−1 (ln◦s n)

3/2
)
.

Next, one can handle σ̂2 by a similar reasoning, invoking Assumptions 9 and 12 and Lemma 5 to yield:

σ̂2 = σ2 +Oas

(
n−1/2

√
ln◦s n

)
.

Letting σ̃2(εn) := ε2
nσ

2
S + (1 + εn)σ2, we can also write

ˆ̃σ2 = ε2
nσ

2
S + (1 + εn)σ2 + ε2

n

(
σ̂2
S − σ2

S

)
+
(
ε̂2
n − ε2

n

)
σ̂2
S + (ε̂n − εn)σ2 + (1 + ε̂n)

(
σ̂2 − σ2

)
= σ̃2(εn) +O

(
n−1/2 ln lnn

)
Oas

(
n−1/2

√
ln◦s n

)
+Oas

(
n−1 (ln◦s n)

3/2
)
Oas (1)
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+Oas

(
n−3/4 ln◦s n

)
O (1) +

(
1 +O

(
n−1/4

√
ln lnn

))
Oas

(
n−1/2

√
ln◦s n

)
= σ̃2(εn) +O

(
n−1 (ln lnn)

3/2
)

+Oas

(
n−1 (ln◦s n)

3/2
)

+Oas

(
n−3/4 ln◦s n

)
+Oas

(
n−1/2

√
ln◦s n

)
= σ̃2(εn) +Oas

(
n−1/2

√
ln◦s n

)
Collecting all remainder terms for the triangular array case (s = 1), we have

t̃n =
ε̂nL̂S + L̂J

ˆ̃σ
=
εnLS + (ε̂n − εn)LS + ε̂n (RθA −RθB ) + LJ + LJ2A − LJ2B

ˆ̃σ

=
εnLS +Oas

(
n−3/4 lnn

)
Oas (1) +Oas

(
n−1/4

√
lnn

)
Oas

(
n−1/2 lnn

)
σ̃(εn) +Oas

(
n−1/2

√
lnn

)
+

LJ +Oas
(
n−1/2 lnn

)
σ̃(εn) +Oas

(
n−1/2

√
lnn

)
=
εnLS + LJ +Oas

(
n−1/2 lnn

)
σ̃(εn) +Oas

(
n−1/2

√
lnn

) =
εnLS + LJ
σ̃(εn)

+Oas

(
n−1/2 lnn

)
,

that is, t̃n = tn + ∆tn with

tn :=
εnLS + LJ
σ̃(εn)

|∆tn| ≤ ∆t̄n a.s.

for ∆t̄n := Bn−1/2 lnn for some constant B and where “a.s.” denotes “almost surely as n → ∞” , i.e.,

the event |∆tn| > ∆t̄n has probability zero for all n ≥ n0 with n0 sufficiently large.

When the models are not overlapping, both LS and LJ are asymptotically normal, since they are

iid sample averages (evaluated at the true parameter values) of bounded variance quantities. Moreover,

by the Berry-Esseen bound (since Assumption 10 implies that the third moments of the log-likelihood

function exist and are uniformly bounded), we have that the deviations from normality of finite sample

distribution of the normalized statistic (εnLS + LJ)/σ̃(εn) are uniformly bounded by Cn−1/2 for some

universal constant C (this remains true for triangular arrays, since the constant is independent of the

distribution among distributions sharing the same upper bound on the third moments). Let Φ and φ

respectively denote the cdf and pdf of a standard normal. We then have for z > 0 and n ≥ n0,∣∣Pn (t̃n ≤ z)− Φ (z)
∣∣ = |Pn (tn + ∆tn ≤ z)− Φ (z)|

= |Pn (tn + ∆tn ≤ z | |∆tn| ≤ ∆t̄n)Pn (|∆tn| ≤ ∆t̄n) +

+ Pn (tn + ∆tn ≤ z | |∆tn| > ∆t̄n)Pn (|∆tn| > ∆t̄n)− Φ (z)|

= |Pn (tn + ∆tn ≤ z | |∆tn| ≤ ∆t̄n) · 1

+Pn (tn + ∆tn ≤ z | |∆tn| > ∆t̄n) · 0− Φ (z)|
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= |Pn (tn + ∆tn ≤ z | |∆tn| ≤ ∆t̄n)− Φ (z)|

≤ sup
|u|≤∆t̄n

|Pn (tn + u ≤ z)− Φ (z)| = sup
|u|≤∆t̄n

|Pn (tn ≤ z − u)− Φ (z)|

≤ sup
|u|≤∆t̄n

|Φ (z − u)− Φ (z)|+ Cn−1/2 = sup
|u|≤∆t̄n

φ (z + ū) |u|+ Cn−1/2

≤ sup
|ū|≤∆t̄n

φ (z + ū) ∆t̄n + Cn−1/2

= φ (z+o(1)) ∆t̄n + Cn−1/2 = O (∆t̄n) (25)

where ū is a mean value satisfying |ū| ≤ |u| ≤ ∆t̄n= o(1) and by continuity of φ(·), we have φ(z+o(1)) =

φ(z)+o(1). The above display implies that the normal approximation can be used to calculate the power

loss, as long as the power loss is not smaller than O (∆t̄n) = O(n−1/2 lnn).

We now calculate the power in the nonoverlapping case. Consider a critical value z1−α > 0 and any

alternative hypothesis δ ∈ R. The worst-case power loss due to taking εn instead of 0 when calculating

t̃n is given by

sup
δ∈R

∣∣∣∣Φ( δ

σ̃(εn)
− z1−α

)
− Φ

(
δ

σ
− z1−α

)∣∣∣∣ = sup
δ∈R

∣∣∣∣φ( δσ − z1−α

)
δ

σ2

∂σ̃(ε)

∂ε

∣∣∣∣
ε=0

εn +O
(
ε2
n

)∣∣∣∣
= sup

δ∈R

∣∣∣∣φ( δσ − z1−α

)
δεn
2σ

+O
(
ε2
n

)∣∣∣∣
=

1

2
φ (zb) (zb + z1−α)εn +O

(
ε2
n

)
where zb = δ∗

σ − z1−α and δ∗ := σ
2 (z1−α + (4 + z2

1−α)1/2). The first and second equality use σ̃(ε) = σ for

ε = 0 and
∂σ̃(ε)

∂ε

∣∣∣∣
ε=0

=
∂

∂ε

√
ε2σ2

S + (1 + ε)σ2

∣∣∣∣
ε=0

=
1

2

(
2εσ2

S + σ2
)√

ε2σ2
S + (1 + ε)σ2

∣∣∣∣∣
ε=0

=
σ

2
.

The third equality above follows by taking the derivative of φ( δσ − z1−α) δεn2σ with respect to δ, setting it

to zero and noticing that the solution δ∗ is, in fact, the global maximum. Substituting in εn then gives

sup
δ∈R

∣∣∣∣Φ( δ

σ̃(εn)
− z1−α

)
− Φ

(
δ

σ
− z1−α

)∣∣∣∣ = Mn−1/4
√

ln lnn+ o
(
n−1/4

√
ln lnn

)
.

We now calculate the size distortion when the models are overlapping. In the overlapping case, we

need to provide a more precise bound on the remainder terms of L̂J = LJ + LJ2A − LJ2B , because the

leading term vanishes (LJ = 0) due to the overlap. Drifting sequences of models are not needed for the

size calculation, so the triangular array Xni can be replaced by a simple iid sequence Xi drawn from P0.

Letting ĝA := 1
n

∑n
i=1 (∇θA ln fA (Xi, θ

∗
A)), we have

LJ2A =
n1/2

2
ĝ′A
(
H−1
A + oas (1)

)
ĝA

=
n1/2

2
ĝ′AV

−1/2
A V

1/2
A

(
H−1
A + oas (1)

)
V

1/2
A V

−1/2
A ĝA

= −n
1/2

2
Z ′AV

1/2
A

(
−H−1

A + oas (1)
)
V

1/2
A ZA
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where ZA := V
−1/2
A ĝA. The matrix V

1/2
A (−HA)

−1
V

1/2
A is symmetric so it is diagonalizable, with eigenval-

ues λj and orthogonal eigenvectors vj (normalized to ‖vj‖ = 1). Moreover, the eigenvalues are all positive

(because both −HA and VA are positive-definite) and we can write V 1/2 (−H)
−1
V 1/2 =

∑dim θA
j=1 vjλjv

′
j

and thus:

|LJ2A| = −LJ2A =
n1/2

2
Z ′A

dim θA∑
j=1

vjλjv
′
j + oas (1)

ZA.

=
n1/2

2

dim θA∑
j=1

Z ′Avjλjv
′
jZA + oas (1)

n1/2

2
Z ′AZA

=
n1/2

2

dim θA∑
j=1

λj
(
v′jZA

)2
+ oas (1)

n1/2

2
Z ′AZA

By construction, the covariance matrix of the v′jZA is the identity matrix I. We can then use the Law

of the Iterated Logarithm (Hartman and Wintner (1941)) to conclude |v′jZ| ≤ n−1/2
√

2 ln lnn almost

surely. We then have

|LJ2A| ≤
n1/2

2

dim θA∑
j=1

λj

(
n−1/2

√
2 ln lnn

)2

+ oas (1)
n1/2

2
(dim θA)

(
n−1/2

√
2 ln lnn

)2

=
(
n−1/2 ln lnn

) dim θA∑
j=1

λj + oas

(
n−1/2 ln lnn

)
=

(
n−1/2 ln lnn

)
tr
(
V

1/2
A (−HA)

−1
V

1/2
A

)
+ oas

(
n−1/2 ln lnn

)
=

∣∣tr (H−1
A VA

)∣∣ (n−1/2 ln lnn
)

+ oas

(
n−1/2 ln lnn

)
A similar reasoning holds for |LJ2B | and since both LJ2A and LJ2B have the same sign and LJ = 0, we

have ∣∣∣L̂J ∣∣∣ = |LJ + LJ2A − LJ2B | = |LJ2A − LJ2B |

≤ max {|LJ2A| , |LJ2B |} ≤ max
{∣∣tr (H−1

A VA
)∣∣ , ∣∣tr (H−1

B VB
)∣∣}n−1/2 ln lnn a.s.

= Λn−1/2 ln lnn,

where Λ := max{|tr(H−1
A VA)|, |tr(H−1

B VB)|}. In the overlapping case, σ̃2(ε) = ε2σ2
S + (1 + ε)σ2

J = ε2σ2
S

since σ2
J = 0. We can now compute the worst-case size distortion in t̃n. Collecting the order of all

remainders, we have,

t̃n =
ε̂nL̂S + L̂J

ˆ̃σ
=
εnLS + (ε̂n − εn)LS + ε̂n (RθA −RθB ) + LJ + LJ2A − LJ2B

σ̃ (εn) +Oas

(
n−1/2

√
ln lnn

)
=
εnLS +Oas

(
n−3/4 ln lnn

)
Oas (1) +Oas

(
n−1/4

√
ln lnn

)
Oas

(
n−1/2 ln lnn

)
εnσS +Oas

(
n−1/2

√
ln lnn

)
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+
LJ2A − LJ2B

εnσS +Oas

(
n−1/2

√
ln lnn

)
=
εnLS + (LJ2A − LJ2B) +Oas

(
n−3/4 (ln lnn)

3/2
)

εnσS +Oas

(
n−1/2

√
ln lnn

)
=
LS
σS

εn + (LJ2A − LJ2B) /LS +Oas

(
n−3/4 (ln lnn)

3/2
)

εn +Oas

(
n−1/2

√
ln lnn

)
=
LS
σS

1 + (LJ2A − LJ2B) / (εnLS) +Oas

(
n−3/4 (ln lnn)

3/2
/εn

)
1 +Oas

(
n−1/2

(√
ln lnn

)
/εn

)
=

(
LS
σS

+
(LJ2A − LJ2B)

εnσS
+Oas

(
n−3/4 (ln lnn)

3/2
/εn

))
×

× 1(
1 +Oas

(
n−1/2

(√
ln lnn

)
/εn

))
=
LS
σS

+
(LJ2A − LJ2B)

εnσS
+Oas

(
n−1/2

√
ln lnn/εn

)
=
LS
σS

+
(LJ2A − LJ2B)

εnσS
+Oas

(
n−1/2

√
ln lnn/

(
n−1/4

√
ln lnn

))
=
LS
σS

+ ∆tn

where ∆tn := (LJ2A − LJ2B)/(εnσS) +Oas(n
−1/4). We can bound ∆tn as follows, substituting in εn:

|∆tn| =
|LJ2A − LJ2B |

εnσS
+Oas

(
n−1/4

)
≤ Λn−1/2 ln lnn

εnσS
+Oas

(
n−1/4

)
a.s.

=
Λn−1/2 ln lnn

σScαn−1/4
√

ln lnn
+Oas

(
n−1/4

)
= Bn−1/4

√
ln lnn+Oas

(
n−1/4

)
where B := Λ/(σScα). The size distortion for a given critical value z1−α is then given by a similar

calculation as in (25) with ∆t̄n = Bn−1/4
√

ln lnn+ B̃n−1/4 with sufficiently large B̃:∣∣P0

(
t̃n ≤ z1−α

)
− Φ (z1−α)

∣∣ = φ(z1−α)Bn−1/4
√

ln lnn+ Cn−1/2 +O
(
n−1/4

)
.

for some universal constant C. Noticing that M = φ(z1−α)B then yields the desired result.

Finally, we observe that εn is in E by construction and since we have shown that ε̂n = εn +

Oas
(
n−3/4 ln◦s n

)
, we automatically have ε̂n − εn = Op

(
n−1/2

)
, for either sequences (s = 2) or tri-

angular arrays (s = 1), and it follows that ε̂n satisfies Assumptions 7 and 8. Q.E.D.

38



C Auxiliary Lemmas

The following Lemma provides a uniform strong law of large numbers for triangular arrays. It is stated

for scalars, but can also be used, element by element, for vectors valued g(x, θ).

Lemma 5. For n ∈ N, let Xni for i = 1, . . . , n be iid random variables taking value in RdX and drawn

from the probability measure Pn. Assume that the measures Pn converge weakly to some measure P0 and

that each Pn(x) admits a Radon-Nikodym derivative pn(x) with respect to P0(x). For Θ compact (under

some metric dθ(·, ·)), let g : RdX × Θ 7→ R be continuous in x at each θ ∈ Θ. Assume further that there

exists G(x) such that EP0 [G(X0i)] <∞ (for X0i drawn from P0) and such that, for all θ ∈ Θ and n ∈ N,

|g (x, θ)| pn (x) ≤ G (x)

and that there exists Ḡ <∞ such that EPn [|g(Xni, θ)|4] ≤ Ḡ for all i = 1, . . . , n, all n ∈ N and all θ ∈ Θ.

Then,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θ)− g (θ)

∣∣∣∣∣ as→ 0

for g(θ) := EP0
[g(X0i, θ)], where X0i is drawn from P0.

Proof. This proof parallels the one of Lemma 1 in Tauchen (1985), but adapted for triangular arrays.

Define

u (x, θ, d) = sup
θ̃:dθ(θ̃,θ)≤d

∣∣∣g (x, θ̃)− g (x, θ)
∣∣∣ .

By almost sure continuity of g(x, θ), limd→0 u(x, θ, d) = 0 almost surely, for a given θ. Also observe that,

by Pn converging weakly to P0, we must have that pn(x) → 1 pointwise for all x in a set of probability

1 under P0. To study the convergence of EPn [u(X, θ, d)] as d → 0 and n → ∞, we employ dominated

convergence. We have

EPn [u (X, θ, d)] =

∫
u (x, θ, d) dPn (x) =

∫
u (x, θ, d) pn (x) dP0 (x)

where

|u (x, θ, d) pn (x)| ≤ sup
d∞(θ̃,θ)≤d

∣∣∣g (x, θ̃)∣∣∣ pn (x) + |g (x, θ)| pn (x) ≤ G (x) +G (x) = 2G (x) ,

where
∫
G(x)dP0(x) <∞. Thus, for a given ε > 0, there exists d̄(θ) and N̄(θ, ε) such that EPn [u(Xni, θ, d)] ≤

ε whenever d ≤ d̄(θ) and n ≥ N̄(θ, ε). By a similar reasoning, |g(θ̃)− g(θ)| ≤ ε whenever d(θ̃, θ) ≤ d̄(θ).

Let B(θ) be the open ball of radius d̄(θ) about θ. By compactness of Θ, there exists a finite covering
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Bk = B(θk), k = 1, . . . ,K. Let dk = d̄(θk) and µk = E[u(X, θk, dk)] and write, for θ ∈ Bk,∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θ)− g (θ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

g (Xni, θ)− g (Xni, θk)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θk)− EP0
[g (X0i, θk)]

∣∣∣∣∣
+ |EP0

[g (X0i, θk)]− g (θ)|

≤

∣∣∣∣∣ 1n
n∑
i=1

u (Xni, θk, dk)− µk

∣∣∣∣∣+ µk +

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θk)− EP0 [g (X0i, θk)]

∣∣∣∣∣
+ |g (θk)− g (θ)|

:= R1 + µk +R2 + |g (θk)− g (θ)|

By construction, µk ≤ ε and |g(θk) − g(θ)| ≤ ε for all n ≥ N̄(θk, ε). To apply a strong law of large

number for triangular arrays (Lemma 6) for R1 and R2 above, we need to calculate fourth moments of

the summands. We have

E
[
|g (Xni, θk)− EP0

[g (X0i, θk)]|4
]
≤ 8

(
E
[
|g (Xni, θk)|4

]
+ |EP0

[g (X0i, θk)]|4
)

≤ 16E
[
|g (Xni, θ)|4

]
≤ 16Ḡ

by the Cr and Jensen’s inequalities and by the uniform boundedness of the fourth moment assumption.

Similarly,

E
[
|u (Xni, θk, dk)|4

]
= E


∣∣∣∣∣∣ sup
θ̃:dθ(θ̃,θk)≤dk

∣∣∣g (Xni, θ̃
)
− g (Xni, θ)

∣∣∣
∣∣∣∣∣∣
4
 = E

[
|g (Xni, θ

∗)− g (Xni, θ)|4
]

for some θ∗, by compactness of (the closure of) B(θk). By the Cr inequality, we have E[|g(x, θ∗) −
g(x, θ)|4] ≤ 16Ḡ. Hence, we can apply Lemma 6 to conclude that there exists Nk(ε) such that R1 ≤ ε

and R2 ≤ ε almost surely for all n ≥ Nk(ε). Thus,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θ)− g (θ)

∣∣∣∣∣ ≤ 4ε

for n ≥ maxk max{Nk(ε), N̄(θk, ε)} almost surely. Since ε was arbitrary, the conclusion follows. Q.E.D.

The following lemma is a strong law of large number for triangular arrays.

Lemma 6. Let Yni be a triangular array (n ∈ N, i = 1, . . . , n) of random variables, iid across i = 1, . . . , n.

If, for all n ∈ N, i = 1, . . . , n, E [Yni] = 0 and E
[
|Yni|4

]
≤ Ȳ <∞, then n−1

∑n
i=1 Yni

as→ 0.

Proof. The principle of this proof is borrowed from Example 5.41 in Romano and Siegel (1986). Note

that

P

[∣∣∣∣∣ 1n
n∑
i=1

Yni

∣∣∣∣∣ ≥ ε
]
≤
E
[∣∣ 1
n

∑n
i=1 Yni

∣∣4]
ε4
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where

E

( 1

n

n∑
i=1

Yni

)4
 = n−4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E [Yni1Yni2Yni3Yni4 ]

= n−4
n∑

i1=1

n∑
i2=1

E
[
|Yni1 |

2 |Yni2|2
]

+ n−4
n∑

i1=1

E
[
|Yni1 |

4
]

= n−2E
[
|Yni|2

]
E
[
|Yni|2

]
+ n−3E

[
|Yni|4

]
≤ n−2E

[
|Yni|4

]1/2 (
E
[
|Yni|4

])1/2

+ n−3E
[
|Yni|4

]
≤ n−2Ȳ + n−3Ȳ .

Hence,
∞∑
n=1

P

[∣∣∣∣∣ 1n
n∑
i=1

Yni

∣∣∣∣∣ ≥ ε
]
≤ Ȳ

∞∑
n=1

n−2 + Ȳ

∞∑
n=1

n−3 <∞

and, by the Borel-Cantelli Lemma, the event
∣∣n−1

∑n
i=1 Yni

∣∣ ≥ ε occurs finitely often almost surely for

any ε > 0, i.e. n−1
∑n
i=1 Yni

as→ 0. Q.E.D.

The following provides a law of the “iterated” logarithm for triangular arrays.

Lemma 7. Let Yni be a triangular array (n ∈ N, i = 1, . . . , n) of random variables, iid across i = 1, . . . , n.

If, for all n ∈ N, i = 1, . . . , n, E [Yni] = 0, E
[
Y 2
ni

]
> 0 and E

[
|Yni|4+δ

]
≤ Ȳ <∞, then

P

[
lim sup
n→∞

|
∑n
i=1 Yni|√

2E [Y 2
ni]n lnn

→ 1

]
= 1. (26)

Proof. We use Theorem 1 in Rubin and Sethuraman (1965), in the special case of iid variables across the

i dimension, noting that our assumptions imply their Assumptions (7), (8), (9) and (11) for their N set

to n and their constants q and c set to q = 4 + δ and c2 = 2 + ε for any ε < δ. Their Theorem 1 then

shows that

sn := P

[∣∣∣∣∣
n∑
i=1

Yni

∣∣∣∣∣ > c
√
E [Y 2

ni]n lnn

]
= (1 + o (1))

n−c
2/2

c
√

2π lnn
,

which can be used with the Borel-Cantelli Lemma. Indeed, the sn for c2 = 2+ε are such that
∑∞
n=2 sn <

∞ for any ε > 0 since
∞∑
n=2

n−1n−ε/2(√
2 + ε

)√
2π lnn

≤ C
∞∑
n=2

n−1−ε/2 <∞

for some universal constant C and for any ε > 0. It follows that the event{
n−1

n∑
i=1

Yni >
√

2 + εE
[
Y 2
ni

]
n−1/2

√
lnn

}

occurs only finitely often for any ε > 0 arbitrarily close to 0. By a similar reasoning,
∑∞
n=2 sn → ∞ for

ε < 0 and that event occurs infinitely often for any ε < 0 arbitrarily close to 0 and the conclusion (26)
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follows. (See also Theorem 3 in Hu and Weber (1992) for a similar use of this inequality, in a context

where independence across n is also assumed, although it is not needed for the application of Theorem 1

in Rubin and Sethuraman (1965).) Q.E.D.
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our test

n no reg εn = 0.5 εn = 1 optimal Vuong Shi NP

bivariate normal location

100 0.000 0.041 0.045 0.028 0.000 0.000

200 0.000 0.046 0.045 0.035 0.000 0.000

500 0.000 0.039 0.037 0.038 0.000 0.000

misspecified normals

100 0.062 0.073 0.076 0.068 0.062 0.051

200 0.062 0.053 0.059 0.058 0.062 0.044

500 0.059 0.062 0.062 0.062 0.059 0.044

correctly specified normals

100 0.003 0.035 0.039 0.018 0.003 0.000

200 0.000 0.043 0.045 0.032 0.000 0.000

500 0.000 0.036 0.034 0.033 0.000 0.000

nested regressions with one additional regressor

100 0.001 0.039 0.044 0.040 0.001 0.000

200 0.000 0.047 0.052 0.047 0.000 0.000

500 0.000 0.056 0.056 0.056 0.000 0.000

nested regressions with two additional regressors

100 0.008 0.049 0.050 0.049 0.006 0.000 0.063

200 0.003 0.049 0.049 0.047 0.002 0.000 0.054

500 0.002 0.059 0.058 0.059 0.002 0.000 0.045

Table 1: Null rejection probabilities of our, Vuong’s, Shi’s, and the Neyman Pearson (‘NP’) test for the

different examples and different sample sizes (‘n’). ‘no reg’, ‘ε̂n = 0.5’, ‘ε̂n = 1’, and ‘optimal’ refer to

our test using ε̂n = 0, ε̂n = 0.5, ε̂n = 1, and the optimal epsilon defined in (6).
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Figure 1: Plots of the noncentrality parameter λ̃ as a function of ε, when σ2
A = σ2

B = 1, δ = 1, and the

models are either equivalent (σAB = 1⇒ σ2 = 0) or distinct (σAB = 0.5⇒ σ2 6= 0).
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Figure 2: Example 4 (nonnested regressions): Null rejection probabilities of Vuong’s, Shi’s, and our test.

‘no reg’, ‘epsilon=0.5’, ‘epsilon=1’, and ‘optimal epsilon’ refer to our test using ε̂n = 0, ε̂n = 0.5, ε̂n = 1,

and the optimal epsilon in (6).
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Figure 3: Example 1 (bivariate normal location model, α = 0.05): Power curves of Vuong’s, Shi’s, and

our test. ‘no reg’, ‘epsilon=0.5’, ‘epsilon=1’, and ‘optimal epsilon’ refer to our test using ε̂n = 0, ε̂n = 0.5,

ε̂n = 1, and the optimal epsilon in (6).
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Figure 4: Example 1 (bivariate normal location model, α = 0.01): Power curves of Vuong’s, Shi’s, and

our test. ‘no reg’, ‘epsilon=0.5’, ‘epsilon=1’, and ‘optimal epsilon’ refer to our test using ε̂n = 0, ε̂n = 0.5,

ε̂n = 1, and the optimal epsilon in (6).
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Figure 5: Example 2 (misspecified normals): Power curves of Vuong’s, Shi’s, and our test. ‘no reg’,

‘epsilon=0.5’, ‘epsilon=1’, and ‘optimal epsilon’ refer to our test using ε̂n = 0, ε̂n = 0.5, ε̂n = 1, and the

optimal epsilon in (6).
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Figure 6: Example 3 (correctly specified normals): Power curves of Vuong’s, Shi’s, and our test. ‘no reg’,

‘epsilon=0.5’, ‘epsilon=1’, and ‘optimal epsilon’ refer to our test using ε̂n = 0, ε̂n = 0.5, ε̂n = 1, and the

optimal epsilon in (6).
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Figure 7: Example 5 (nested regressions with one additional regressor): Power curves of Vuong’s, Shi’s,

and our test. ‘no reg’, ‘epsilon=0.5’, ‘epsilon=1’, and ‘optimal epsilon’ refer to our test using ε̂n = 0,

ε̂n = 0.5, ε̂n = 1, and the optimal epsilon in (6).
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Figure 8: Example 6 (nested regressions with two additional regressors): Power curves of Vuong’s, Shi’s,

and our test. ‘NP’ refers to the Neyman-Pearson likelihood ratio test, and ‘no reg’ and ‘optimal epsilon’

to our test using ε̂n = 0 and the optimal epsilon in (6), respectively.
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B1 B2 K1 K2 K3

const. 0.103 (0.031) 0.109 (0.03) 0.112 (0.023) 0.112 (0.021) 0.110 (0.024)

DMt−1 0.329 (0.142) 0.350 (0.114) 0.358 (0.167) 0.363 (0.167) 0.349 (0.172)

DMt−2 0.406 (0.098) 0.417 (0.089) 0.421 (0.174) 0.424 (0.179) 0.416 (0.175)

FEDVt 0.092 (0.021) 0.097 (0.017) 0.099 (0.03) 0.100 (0.03) 0.100 (0.03)

UNt−1 0.035 (0.01) 0.037 (0.011) 0.038 (0.008) 0.039 (0.008) 0.038 (0.008)

R2 0.644 0.650 0.652 0.652 0.650

Table 2: Estimation results for the money equation (θ1) with standard errors in parentheses.

B1 B2 K1 K2 K3

both equations

const. -3.078 (0.987) -2.864 (0.709) -2.431 (0.123) -2.253 (0.126) -2.410 (0.174)

DMt -2.552 (1.412) -2.254 (1.387) -3.212 (3.298)

DMt−1 -8.091 (1.069) -6.791 (1.301) -7.896 (1.374)

DMt−2 -2.325 (1.003)

DMRt -5.835 (2.185) -4.146 (2.485) 0.862 (4.373)

DMRt−1 -12.089 (1.903) -11.858 (1.295)

DMRt−2 -4.167 (1.412) -4.312 (1.223)

DGt -1.068 (0.16) -1.219 (0.149) -1.064 (0.159)

MILt -4.637 (0.945) -3.638 (1.15) -2.581 (0.618) -3.424 (0.656) -2.547 (0.643)

MINWt 0.970 (0.861) -0.605 (0.81) -1.551 (0.512) -1.764 (0.549) -1.625 (0.761)

trend 0.014 (0.006) 0.027 (0.004) 0.025 (0.004) 0.028 (0.009)

R2 0.787 0.831 0.814 0.838 0.815

only unemployment equation

const. -3.078 (0.143) -2.864 (0.14) -2.431 (0.122) -2.252 (0.129) -2.410 (0.185)

DMt -2.552 (1.437) -2.255 (1.359) -3.212 (4.043)

DMt−1 -8.091 (1.006) -6.791 (1.282) -7.896 (1.296)

DMt−2 -2.325 (1.001)

DMRt -5.835 (1.939) -4.146 (1.822) 0.862 (5.093)

DMRt−1 -12.089 (1.67) -11.858 (1.361)

DMRt−2 -4.167 (1.682) -4.312 (1.562)

DGt -1.069 (0.159) -1.218 (0.148) -1.064 (0.158)

MILt -4.637 (0.719) -3.638 (0.698) -2.581 (0.618) -3.424 (0.654) -2.547 (0.65)

MINWt 0.970 (0.423) -0.605 (0.623) -1.551 (0.513) -1.765 (0.557) -1.625 (0.732)

trend 0.014 (0.004) 0.027 (0.005) 0.025 (0.004) 0.028 (0.008)

R2 0.787 0.831 0.814 0.838 0.815

Table 3: Estimation results for the unemployment equation (θ2) with standard errors in parentheses.
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K1 K2 K3

both equations B1 0.689 0.637 0.701

B2 0.713 0.664 0.725

only unemployment equation B1 0.627 0.613 0.692

B2 0.658 0.649 0.722

Table 4: Estimates of the optimal ε̂n.

K1 K2 K3

both equations B1 -0.292 -0.854 -0.274

B2 0.721 0.088 0.734

only unemployment equation B1 -0.560 -1.089 -0.547

B2 0.409 -0.232 0.421

Table 5: Value of our regularized model selection test statistic t̃n based on the optimal ε̂n. At 5% nominal

level, the test rejects when |t̃n| > 1.96. Rejection with a positive sign of the test statistic means that the

new classical model (B) is preferred over the Keynesian model (K).
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ε̂n K1 K2 K3

both equations 0.1 B1 -0.626 -1.156 -0.606

0.1 B2 0.487 -0.162 0.499

0.3 B1 -0.493 -1.037 -0.475

0.3 B2 0.601 -0.053 0.612

0.5 B1 -0.379 -0.924 -0.364

0.5 B2 0.673 0.033 0.684

0.8 B1 -0.249 -0.782 -0.237

0.8 B2 0.735 0.126 0.746

1 B1 -0.184 -0.706 -0.173

1 B2 0.759 0.170 0.770

1.2 B1 -0.132 -0.642 -0.122

1.2 B2 0.774 0.204 0.786

optimal B1 -0.292 -0.854 -0.274

optimal B2 0.721 0.088 0.734

only unemployment equation 0.1 B1 -0.582 -1.076 -0.583

0.1 B2 0.418 -0.200 0.417

0.3 B1 -0.576 -1.087 -0.572

0.3 B2 0.418 -0.215 0.422

0.5 B1 -0.567 -1.090 -0.559

0.5 B2 0.414 -0.226 0.423

0.8 B1 -0.551 -1.086 -0.540

0.8 B2 0.405 -0.237 0.419

1 B1 -0.541 -1.080 -0.528

1 B2 0.399 -0.242 0.416

1.2 B1 -0.531 -1.074 -0.516

1.2 B2 0.393 -0.246 0.412

optimal B1 -0.560 -1.089 -0.547

optimal B2 0.409 -0.232 0.421

Table 6: Sensitivity analysis: Value of our regularized model selection test statistic t̃n for different values

of ε̂n. At 5% nominal level, the test rejects when |t̃n| > 1.96. Rejection with a positive sign of the test

statistic means that the new classical model (B) is preferred over the Keynesian model (K).
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K1 K2 K3

both equations B1 10.319 12.047 10.479

B2 9.160 10.464 9.310

only unemployment equation B1 11.118 13.264 11.133

B2 9.772 11.257 9.748

Table 7: Value of the 1st step Vuong statistic.

K1 K2 K3

both equations B1 29.285 30.987 29.800

B2 34.637 33.698 33.358

only unemployment equation B1 29.285 30.987 29.800

B2 34.637 33.698 33.358

Table 8: 5%-level critical values for the 1st step Vuong statistic.

K1 K2 K3

both equations B1 -0.696 -1.212 -0.675

B2 0.410 -0.226 0.423

only unemployment equation B1 -0.583 -1.066 -0.586

B2 0.416 -0.190 0.412

Table 9: Value of the 2nd step Vuong statistic. At the 5% nominal level, the test rejects when the

absolute value of the test statistic is larger than 1.96.

K1 K2 K3

both equations B1 -0.278 -0.753 -0.094

B2 0.576 0.172 0.744

only unemployment equation B1 -0.496 -0.918 -0.368

B2 0.409 -0.142 0.546

Table 10: Value of the Shi statistic.
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K1 K2 K3

both equations B1 2.098 2.068 2.070

B2 2.077 2.062 2.057

only unemployment equation B1 2.003 2.060 1.996

B2 1.972 2.047 1.996

Table 11: 5% nominal level critical values for the absolute value of the Shi statistic.
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