
Kitagawa, Toru

Working Paper

A bootstrap test for instrument validity in heterogeneous
treatment effect models

cemmap working paper, No. CWP53/13

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Kitagawa, Toru (2013) : A bootstrap test for instrument validity in heterogeneous
treatment effect models, cemmap working paper, No. CWP53/13, Centre for Microdata Methods
and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2013.5313

This Version is available at:
https://hdl.handle.net/10419/97387

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2013.5313%0A
https://hdl.handle.net/10419/97387
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
A bootstrap test for instrument 
validity in heterogeneous 
treatment effect models 
 
 

Toru Kitagawa 

 

 

 
 

 

 

The Institute for Fiscal Studies 
Department of Economics, UCL 

 
cemmap working paper CWP53/13 



A Bootstrap Test for Instrument Validity in Heterogeneous

Treatment E¤ect Models

Toru Kitagawa�

CeMMAP and Department of Economics, UCL

This draft: October, 2013

Abstract

This paper develops a speci�cation test for the instrument validity conditions in the hetero-

geneous treatment e¤ect model with a binary treatment and a discrete instrument. A necessary

testable implication for the joint restriction of instrument exogeneity and instrument monotonic-

ity is given by nonnegativity of point-identi�able complier�s outcome densities. Our speci�cation

test infers this testable implication using a Kolmogorov-Smirnov type test statistic. We provide

a bootstrap algorithm to implement the proposed test and show its asymptotic validity. The

proposed test procedure can apply to both discrete and continuous outcome cases.
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1 Introduction

The instrumental variable method is a common tool to extract identifying information of causal

e¤ects when selection to treatment is present. As shown in Imbens and Angrist (1994), Angrist,

Imbens and Rubin (1996), Imbens and Rubin (1997), and Heckman and Vytracil (1999, 2001), an

instrument variable Z satisfying two key conditions enables us to identify the average treatment

e¤ects for those whose participation decision to treatment is a¤ected by the instrument (local

average treatment e¤ect), which is referred to as LATE, hereafter. The two key conditions are,

namely, (i) random treatment assignment (RTA): an instrument is assigned independently of any

unobserved heterogeneities a¤ecting one�s potential outcomes and treatment selection response,

and ii) monotonic selection response to instrument (MSR): every individual in the population has

weakly monotonic treatment selection response to the instrument.

When we analyze experimental data with treatment incompliance, we often use the initial

treatment assignment as an instrument. In this case, the instrumental validity assumptions would

be credible if the initial treatment assignment is strictly randomized and possible incompliance is

only one-sided, i.e., subjects who are allowed to switch their treatment status are only those who

are initially assigned to the treatment group. See, for example, Abadie, Angrist, and Imbens

(2002) and Kling, Liebman, and Katz (2007) for experimental data with one-sided incompliance.

In contrast, if the incompliance is allowed for every subject irrespective of their initial treatment

assignment status, validity of the instrument becomes less credible, since the sampling design cannot

guarantee MSR. Examples of data subject to the two-sided incompliance include the well-known

draft lottery data of Angrist (1991) and applications of the fuzzy regression discontinuity design

(Campbell (1969), Hahn, Todd, and Van der Klaauw (2001)), where eligibility for a treatment based

on one�s attribute is used as an instrument. In case of multi-valued treatment status, Angrist and

Imbens (1995) propose a speci�cation test for MSR by inferring the stochastic dominance of the

distribution functions of the treatment status conditional on the instrument; see also Barua and

Lang (2009) and Fiorini, Stevens, Taylor, and Edwards (2013) for applications of the Angrist and

Imbens test. In the binary treatment case, on the other hand, the Angrist and Imbens test cannot

be applied.

In case where observational data are used for LATE analysis, strict randomization of Z is no

longer guaranteed, so, not only violation of MSR, but also violation of RTA becomes a threat

for instrument validity. Although credibility of LATE estimate critically hinges on validity of

the employed instrument, there has been no test procedure proposed for empirically diagnosing

instrument validity for the case with a binary treatment. As a result, causal inference studies using

an instrument assumes its validity based solely on some background knowledge or indirect evidence
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outside of data, whose credibility often remains controversial in many empirical contexts.

The main contribution of this paper is to develop a speci�cation test for the instrument valid-

ity (the joint restriction of RTA and MSR) in the binary treatment case. Our speci�cation test

builds on the testable implication for instrument validity obtained by Balke and Pearl (1997) and

by Heckman and Vytlacil (2005, Proposition A.5). These testable implications can be equivalently

interpreted as the nonnegativity conditions for the density functions of complier�s potential out-

comes, which can be identi�ed under RTA and MSR as shown in Imbens and Rubin (1997). Imbens

and Rubin (1997) noted that the estimates of the complier�s outcome densities can be negative on

some region in the outcome support. Our test procedure focuses on this phenomenon as a clue

to refute the instrumental validity. That is, if the complier�s treated outcome or control outcome

density is estimated to be negative over some regions in the outcome support, we interpret it as

a counter-evidence for the joint restriction of RTA and MSR, since probability density function

cannot be negative by de�nition. We demonstrate that the refuting rule based on the negativity

of complier�s outcome densities is most powerful for screening out invalid instruments, in the sense

that any other feature of data distribution does not contribute to screening out more violations of

MSR or RTA.

We propose a variance-weighted Kolmogorov-Smirnov type test statistic to measure how serious

the nonnegativity of the compliers outcome density is violated in data. The asymptotic distribution

of the proposed test statistic is analytically less tractable. We therefore develop a resampling

algorithm to obtain asymptotically valid critical values, and demonstrate that the test procedure

attains asymptotically correct size uniformly over a large class of data generating processes. As

argued in Romano (1988), bootstrap is widely applicable and easy to implement to obtain the

critical values for general Kolmogorov-Smirnov type test statistic, and it has been instrumental in

the context of stochastic dominance testing; see, e.g., Abadie (2002), Barret and Donald (2003),

Horváth, Kokoszka, and Zitikis (2006), and Linton, Maasoumi, and Whang (2005).

It is important to note that the joint restriction of MSR and RTA is a refutable but non-

veri�able hypothesis. That is, rejecting the null hypothesis of nonnegativity of the complier�s

outcome densities enables us to reject validity of instrument, but accepting the null does not con�rm

that the instrument is valid. Such limitation on learnability of instrument validity condition is

common in other contexts, such as the classical over-identi�cation test in the generalized method

of moments, and the test of MSR in the multi-valued treatment case proposed by Angrist and

Imbens (1995). See Breusch (1986) for general discussion on hypothesis tests for refutable but

non-veri�able assumptions.

This paper concerns the exogeneity of instrument de�ned in terms of statistical independence.
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Given MSR, identi�cation of LATE in fact can be attained under a slightly weaker set of assump-

tions, where the instrument is statistically independent of the selection types while the potential

outcomes are only mean independent of Z conditional on each selection type. Huber and Mellace

(2011) show that this weaker LATE identifying condition has a testable implication given by the

�nite number of moment inequalities. Our test builds on the distributional restrictions implied

from statistical independence, and our test screens out a larger class of data generating processes

than the test of Huber and Mellace (2011). Also, the set of alternatives to which our test is consis-

tent is invariant to any monotonic transformation of the outcome variables, whereas this invariance

property does not hold with the mean independence type restrictions considered in the Huber and

Mellace�s approach.

The rest of the paper is organized as follows. In Section 2, we analyze the testable implication

of the instrumental validity in the heterogeneous treatment e¤ect model with a binary treatment.

Section 3 proposes a hypothesis test for the testable implication obtained in Section 2 and provide an

algorithm of the bootstrap procedure for a binary instrument case. Section 4 extends the analysis

to cases with a multi-valued instrument. Monte Carlo simulations and two empirical applications

are provided in Section 5. Proofs are provided in the appendices.

2 Model

We consider a model with a binary treatment, where observed treatment status is denoted by D;

D = 1 when one receives the treatment while D = 0 if she does not. Let Y1 be potential outcomes

with treatment, and Y0 be a potential outcome without the treatment, whose support is denoted by

Y �R. The observed outcome Y satis�es Y = Y1D+Y0(1�D): We denote an instrumental variable
by Z; which is assumed to be binary. We discuss an extension to a multi-valued Z in Section 4.

Following Angrist and Imbens (1994), we introduce D1 as the potential selection response that

one would take given Z = 1. Similarly, we de�ne D0 for Z = 0. Associated with the potential

selection indicators, we de�ne the individual type T that indicates individual selection response to

the instrument Z.

T = c: complier if D1 = 1; D0 = 0

T = n: never-taker if D1 = 0; D0 = 0

T = a: always-taker if D1 = 1; D0 = 1

T = df : de�er if D1 = 0; D0 = 1:
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The following two assumptions guarantee point-identi�cation of the local average treatment

e¤ects for compliers, and, simultaneously, the marginal distributions of the counterfactual outcomes

for compliers (see Imbens and Angrist (1994) and Imbens and Rubin (1997)) and the quantile

treatment e¤ects for compliers (Abadie, Angrist, and Imbens (2002)).

Assumption IV

1. Random Treatment Assignment (RTA): Z is jointly independent of (Y1; Y0; D1; D0).

2. Monotonic Selection Response to Instrument (MSR): Without loss of generality, assume

Pr(D = 1jZ = 1) � Pr(D = 1jZ = 0). The potential participation indicators satisfy

D1 � D0 with probability one.

Note that the above assumptions are de�ned in terms of the potential variables. RTA incor-

porates the instrument exogeneity and the instrument exclusion restrictions in the form of joint

statistical independence, and it can be interpreted that the instrument is assigned randomly with

respect to any of the individual unobserved heterogeneities a¤ecting treatment selection responses

and/or potential outcomes. MSR means that there are no de�ers in the population Pr(T = d) = 0.

Since we never observe all the potential variables of the same individual, we cannot directly ex-

amine these assumptions from data, and necessary and su¢ cient testable implications for these

assumptions are not available.

In order to present a necessary condition for the instrumental validity, we introduce the following

notations. Let P and Q be the conditional probability distributions of (Y;D) 2 Y � f1; 0g given
Z = 1 and Z = 0 respectively, which can be consistently estimated from data We view the data

generating processes to have the two-sample structure in terms of the assigned value of Z. For

Borel set B � Y and d = 1; 0, de�ne

P (B; d) = Pr(Y 2 B;D = djZ = 1);

Q(B; d) = Pr(Y 2 B;D = djZ = 0):

We now present the refutability result of the instrumental validity. A proof is provided in

Appendix A.

Proposition 2.1 If a population distribution of (Y1; Y0; D1; D0; Z) satis�es RTA and MSR, then,

the distribution of observables P and Q satis�es the following inequalities for every Borel set B in

Y,

P (B; 1) � Q(B; 1);
P (B; 0) � Q(B; 0):

(2.1)
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Conversely, if the data generating process P and Q satis�es these inequalities for all Borel set

B in Y, and P (�; d) and Q(�; d) are absolutely continuous with respect to a common dominating
measure on Y for each d = 0; 1, then there exists a joint probability law of (Y1; Y0; D1; D0; Z) that

is compatible with the data generating process P and Q; RTA, and MSR.

Balke and Pearl (1997) obtain the testable implication (2.1) for the case of binary Y and binary

Z, and Heckman and Vytlacil (2005) obtain a more general form of the testable implication, in which

Y and Z can be continuous. The converse statement of the proposition clari�es that the refuting

rule based on Proposition 1 is most powerful in screening out violations of the instrument validity,

and no other features of data distribution can further contributes to detecting invalid instrument.

Note that Proposition 2.1 does not give an if and only if statement for instrument validity, so

knowing that the data distribution satis�es (2.1) cannot guarantee that the instrument is valid. In

this sense, the instrument validity condition of RTA and MSR is refutable but non-veri�able.

Let p(y; d) and q(y; d) be the probability density function of P and Q on Y � fdg, de�ned by

P (A; d) =

Z
A
p (y; d) d�;

Q(A; d) =

Z
A
q(y; d)d�;

where � is a dominating measure on Y. In terms of these density functions, the inequalities of

(2.1) can be equivalently written as

p(y; 1) � q(y; 1); �-a.e.,

p(y; 0) � q(y; 0); �-a.e.

Figures 1 and 2 provide visual illustration of Proposition 1. There, the left-hand side �gures

correspond to Y1�s distribution and the right-hand side �gures corresponds to Y0�s distribution. The

solid lines represent p(y; d) and q(y; d), which are identi�able by data. The dotted line in each �gure

represents the marginal probability density of the potential outcomes, i.e., fY1(y) is the marginal

density of Y1 and fY0(y) is the marginal density of Y0, which are not identi�ed by data. Note that

integrations of p(y; d) and q(y; d) are equal to the probability of D = d conditional on Z, so the

areas of p(y; d) and q(y; d) are smaller than those of fYd(�) and fY0(�), respectively. Furthermore,

under RTA, both p(y; d) and q(y; d) must lie below the potential outcome densities fYd(�). If RTA
and MSR hold in the population, Proposition 2.1 implies that the two identi�able density functions

p(y; d) and q(y; d) must be nested as shown in Figure 1. For the treated outcome densities, p(y; 1)

must nest q(y; 1) and for the control outcome densities, q(y; 0) must nest p(y; 0). These nesting
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Figure 1: When we observe that the observable densities p(y;Dobs = 1) and q(y;Dobs = d) are

nested as in this �gure, the instrumental validity is not refuted.

structures of the subdensities are equivalent to nonnegativity of the complier�s potential outcome

densities since, under RTA and MSR, Imbens and Rubin (1997) show

p(y; 1)� q(y; 1) = fY1jT (yjT = c)� Pr(T = c) and

q(y; 0)� p(y; 0) = fY0jT (yjT = c)� Pr(T = c).

If we observe the densities like Figure 2, we can refute at least one of the instrumental validity

conditions since some of the inequalities (2.1) are violated on some subsets of the outcome support.

These subsets are labeled as V1 and V2 in Figure 2.
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Figure 2: When we observe the above con�guration of the densities, we can refute the instrumental

validity since at the subset V1 = [v1;1), the �rst inequality in Proposition 1 is violated. The right-
hand side picture shows that the second inequality in Proposition 1 is violated at V2 = (�1; v2].

3 Test Procedure

P and Q are point-identi�ed by the sampling process, and therefore we can examine inequalities

(2.1) by inferring whether estimators for P and Q satisfy them or not. Assume a sample consist

of N i.i.d observations of (Y;D;Z): We divide the sample into two subsamples based on the value

of Z. Let m be the sample size with Zi = 1 and n be the sample size with Zi = 0. We make our

asymptotic analysis conditional on a sequence of instrument values, fZ1; Z2 : : : g with �̂ = m=N ! �

as N ! 1, where � is bounded away from zero and one. Let (Y 1i ; D
1
i ); i = 1; : : : ;m be the

observations with Z = 1 and (Y 0j ; D
0
j ); j = 1; : : : ; n be those with Z = 0. Consider estimating P

and Q by the empirical distributions,

Pm(V; d) � 1

m

mX
i=1

IfY 1i 2 V;D1i = dg;

Qn(V; d) � 1

n

nX
j=1

IfY 0j 2 V;D0j = dg:

To test the null hypothesis given by inequalities (2.1), we consider a variance-weighted Kolmogorov-

Smirnov type statistic,

TN =
�mn
N

�1=2
max

8<: supV 2V1

n
��1Pm;Qn (V; 1) (Qn(V; 1)� Pm(V; 1))

o
;

supV 2V0

n
��1Pm;Qn (V; 1) (Pm(V; 0)�Qn(V; 0))

o 9=; ; (3.1)
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where V1 and V0 are collection of subsets in Y, and �2Pm;Qn (V; d) is a consistent estimator for the
asymptotic variance of

�
mn
N

�1=2
(Pm(V; d)�Qn(V; d)) ;

�2Pm;Qn (V; d) = (1� �̂)Pm (V; d) (1� Pm (V; d)) + �̂Qn (V; d) (1�Qn(V; d)):

If the sample counterpart of the �rst inequality of (2.1) is violated for some subset V , then, the

�rst supremum in the max operator is positive. Similarly, when the sample counterpart of the

second inequality of (2.1) is violated for some subset V , then the second term in the max operator

becomes positive. The weighting term ��1Pm;Qn (V; d) adjusts the sample variations of the di¤erence

of the empirical probabilities across di¤erent (V; d). Thus, the proposed test statistics quanti�es a

variance-adjusted maximal violation of the inequalities (2.1) over prespeci�ed class of subsets.

As far as asymptotically valid test size is concerned, we can also consider using a non-weighted

Kolmogorov-Smirnov statistic,

TN;nw =
�mn
N

�1=2
max

(
supV 2V1 fQn(V; 1)� Pm(V; 1)g ;
supV 2V0 fPm(V; 0)�Qn(V; 0)g

)
: (3.2)

As illustrated in the Monte Calro studies of Section 5, the null distribution of the non-weighted

statistics TN;nw can be better approximated by bootstrap in small sample situations. In cases where

the sample size is moderately large, on the other hand, TN appears to have a better �nite sample

power than TN;nw for a wide class of alternatives, since TN can better capture violations of the

inequalities (2.1) in the tail parts of the P and Q than TN;nw does. Our informal recommendation

is, therefore, to use TN when the two samples have moderate sample sizes, e.g., m � 500 and

n � 500, and to use TN;nw instead if either or both of the samples have small sample sizes.
Although the testable implication of Proposition 2.1 states that the inequalities hold for every

subset in Y, we cannot take V1 and V0 as rich as the Borel �-algebra unless Y is discrete. In order
for the above test statistic to have a nontrivial asymptotic distribution, a speci�ed V1 and V0 has
to guarantee the uniform convergence property of the empirical processes of Pm and Qn. As a

class of subsets which meets this requirement, we consider a Vapnik-µCervonenkis class (VC-class) of

subsets satisfying Assumption 1(a) below. See e.g., Dudley (1999) and van der Vaart and Wellner

(1996) for the de�nition and examples of a VC-class of subsets.

We will employ two speci�c constructions of a VC-class in our Monte Carlo studies and empirical

applications in the following sections. The �rst speci�cation is a half-unbounded-interval class

Vhalf , which is simply a collection of half-unbounded intervals,

Vhalf= f(�1; y] : y 2 Y�g [ f[y;1) : y 2 Y�g ; Y� � Y, (3.3)
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The second speci�cation is a union of Vhalf and a class of connected intervals, which we referred
to as an interval class

Vint = Vhalf [

264 [
h2[h;�h]

Vbin (h)

375 ;
where Vbin (h) is a collection of connected intervals with width h > 0,

Vbin (h) = f[y; y + h] : y 2 Y�g .

An advantage of considering this richer class over Vhalf is that the test statistics can asymptotically
screen out a larger class of data generating processes, while a potential drawback is that, given

�xed sample size, the quality of the asymptotic approximation may deteriorate as the VC-class

becomes richer. In Section 5, we provide a further discussion and a practical recommendation on

a convenient choice of the VC-class based on our Monte Carlo �ndings.

To obtain asymptotically valid critical values for the test, we focus on a data generating processes

on the boundary of the one-sided null hypothesis, such that P and Q are identical to some prob-

ability measure H. In order to determine H in a data-driven way, we focus on the following

representation of H,

H = (1� �)P + �Q, (3.4)

and aim to estimate the quantiles of the null distribution of the test statistic TN or TN;nw as if the

data are generated from P = Q = H.

As discussed in Romano (1988), the resampling method is an attractive approach to estimate

asymptotically valid critical values for the Kolmogorov-Smirnov type test statistic since its asymp-

totic distribution generally does not have an analytically tractable distribution function. Given

that our focus is on approximating the sampling distribution of the test statistic under P = Q = H,

we draw bootstrap samples from the empirical analogue of (3.4), HN = (1 � �̂)Pm + �̂Qn. Note

that this speci�cation of HN is di¤erent from the pooled empirical measure, �̂Pm+(1��̂)Qn, which
the standard resampling-based Kolmogorov-Smirnov uses to generate the bootstrap samples. The

reason that we focus on HN rather than the pooled empirical measure is that, for our non-standard

form of the one-sided null hypothesis, we can guarantee that the test with the bootstrap samples

being drawn from HN = (1� �̂)Pm+ �̂Qn achieve asymptotically uniformly correct test size with a
general construction of VC-classes, whereas we do not have a proof for the uniform validity of the

test if the bootstrap samples are drawn from the pooled empirical measure.
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We now summarize a bootstrap algorithm for obtaining critical values for TN .

Algorithm 3.1:

1. Sample (Y �i ; D
�
i ); i = 1; : : : ;m randomly with replacement from HN = (1� �̂)Pm + �̂Qn and

construct empirical distribution P �m: Similarly, sample (Y
�
j ; D

�
j ); j = 1; : : : ; n randomly with

replacement from HN and construct empirical distribution Q�n.
1

2. Let H�
N = (1� �̂)P �m + �̂Q�n and compute �2H�

N
(V; d) = max fH�

N (V; d)(1�H�
N (V; d)); �g for

every V 2 V1 or V0, and d 2 f1; 0g, where � > 0 is some positive constant smaller than �

de�ned in Condition RG (iv) below.

3. Calculate a bootstrap realization of test statistic

T �N =
�mn
N

�1=2
max

8<: supV 2V1

n
��1H�

N
(V; 1) (Q�n(V; 1)� P �m(V; 1))

o
;

supV 2V0

n
��1H�

N
(V; 0) (P �m(V; 0)�Q�n(V; 0))

o 9=; :
4. Iterate Step 1 - 3 many times and get the empirical distribution of T �N : For a chosen nominal

level � 2 (0; 1); we obtain the bootstrapped critical value cN;1�� from its empirical (1� �)-th
quantile .

5. Reject the null hypothesis if TN > cN;1��.

When the non-weighted test statistics TN;nw is used, Step 2 of Algorithm 3.1 is not needed,

while the rest of the steps is unchanged except that the bootstrap statistic is computed by

T �N;nw =
�mn
N

�1=2
max

(
supV 2V1 fQ�n(V; 1)� P �m(V; 1)g ;
supV 2V0 fP �m(V; 0)�Q�n(V; 0)g

)
.

To formally claim that the test procedure of Algorithm 3.1 is asymptotically valid uniformly

over a certain class of data generating processes, we introduce the following notations. Let P be a
1 In terms of the point mass measure, HN is written as

HN =

mX
i=1

n

Nm
�Y 1

i ;D
1
i
+

nX
j=1

m

Nn
�Y 0

j ;D
0
j
.

Hence, resampling from HN is done by sampling with replacement the observations in the original sample with the

corresponding probability weight, i.e, probability n
Nm

for the observations with Zi = 1 and probability m
Nn

for the

observations with Zi = 0.
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set of probability measures de�ned on the Borel �-algebra of Y �f0; 1g ; to which P and Q belong.
Denote by H0 the set of data generating processes satisfying the null,

H0 =
�
(P;Q) 2 P2 : inequalities (2.1) hold.

	
:

The uniform validity of our test procedure is based on the following set of regularity conditions.

Condition RG:

(a) V1 and V0 are VC-classes of subsets in Y.
(b) Probability measures in P have a common dominating measure � for Y-coordinate, and the
density functions p(y; d) � dP (�;d)

d� are bounded, i.e., there exists M < 1 such that p(y; d) � M

holds at �-almost every y 2 Y and d = 0; 1 for all P 2 P.
(c) P is uniformly tight, i.e., for arbitrary � > 0, there exists a compact set K � Y�f0; 1g such
that

sup
P2P

fP (Kc)g < �.

(d) Given the VC-classes V1 and V0 and � = limN!1 m
N ,

�2P;Q(V; d) � (1� �)P (V; d) (1� P (V; d)) + �Q (V; d) (1�Q(V; d))

is bounded away from zero uniformly over (V; d) and (P;Q) 2 H0, i.e., there exists � > 0 such that

inf
(P;Q)2H0;V 2V1

�2P;Q(V; d) � � and inf
(P;Q)2H0;V 2V0

�2P;Q(V; 0) � �:

For discrete Y case, what is relevant among these conditions is only Condition RG (d), requiring

that every point in the support of Y occurs with positive probability in terms of either P or Q.

For continuous Y case, Condition RG (b) imposes mild conditions on the density functions of P

and Q. Condition RG (d) requires that, at every V 2 Vd and every null data generating process,
P (V; d) or Q(V; d) is bounded away from zero. In practical term, this condition imposes that we

should specify V1 and V0 in such way that the the probabilities on each subset is well supported
by data generating processes.

The asymptotic validity of the proposed test is stated in the next proposition.

Proposition 3.1 Suppose Condition RG. Let � 2 (0; 1).
(i) The test procedure of Algorithm 3.1 has asymptotically uniformly correct size for null hy-

pothesis H0,

lim sup
N!1

sup
(P;Q)2H0

Pr (TN > cN;1��) � �:
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(ii) The test procedure of Algorithm 3.1 modi�ed for the non-weighted test statistic TN;nw has

asymptotically uniformly correct size for null hypothesis H0. This claim does not rely on Condition
RG (d).

(iii) Suppose Condition RG. If, for a �xed alternative, there exist some V 2 V1 or V 2 V0
at which the corresponding inequalities of (2.1) are violated, the tests based on TN and TN;nw are

consistent, i.e., the rejection probabilities converge to one as N !1.

Proof. A proof for claim (i) and (iii) are given in Appendix B. A proof for claim (ii) is omitted,

since the proof of claim (i) covers it.

This proposition establishes asymptotic uniform validity of the proposed test procedure over P
characterized by Condition RG (b)-(d). The third claim of the proposition is on the asymptotic

power of the test, and it emphasizes that the set of alternatives that can be consistently rejected

hinges on how V1 and V0 are speci�ed. Accordingly, in practical terms, a choice of V1 and V0
can re�ect the degree of importance on what alternatives should be detected or user�s opinion on

what type of alternatives is more likely to be true. For instance, consider the case where RTA is

guaranteed by a sampling design, while MSR is not so that it is the hypothesis of concern. Suppose

that there exists a behavioral model that says, if the de�ers are present, the ratio of the conditional

type probabilities given Y1,

Pr(T = djY1 = y)
Pr(T = cjY1 = y)

;

is weakly monotonically decreasing in y. If the set of alternatives are restricted to those, then spec-

ifying V1 to f(�1; y] : y 2 Yg su¢ ces to screen out every alternative violating the �rst inequality
of (2.1) at some subset.2

This example illustrates that a qualitative assumption imposed on the distribution of potential

outcomes and selection types can justify a parsimonious speci�cation of V1 and/or V0. With help
of such assumption, our test would become particularly attractive since the procedure does not

require any smoothing parameters even though the model and the hypothesis to be tested is fully

nonparametric.
2Consider a model where RTA holds, but de�ers can exist. Suppose that the ratio conditional type probabilities

given (Y1; Y0) satis�es

Pr(T = djY1 = y; Y0 = y0)
Pr(T = cjY1 = y; Y0 = y0)

� 1:

Then, we can show no alternatives violate the inequalities of (2.1), implying our test procedure has no power detecting

this type of violation of MSR. However, Chaisemartin (2013) shows that, even under this type of alternatives, the

Wald estimator still estimates an average causal e¤ects for a well-de�ned subpopulation of "comvivors".

13



In case no such assumption is available, our recommendation based on the following Monte

Carlo studies is to try Vint with various choice of smallest binwidth h.

4 Extension and Discussion

4.1 Multi-valued instrument

The test procedure proposed above can be extended to a case with a multi-valued discrete instru-

ment, Z 2 fz1; z2; : : : ; zKg. Let p(zk) = Pr(D = 1jZ = zk), and assume knowledge of the ordering
of p(zk), so that, without loss of generality, we assume p(z1) � � � � � p(zK). With the multi-valued
instrument, the following assumptions guarantees that the linear two-stage least squares estimator

can be interpreted as a weighted averages of the compliers average treatment e¤ects (Imbens and

Angrist (1994)).

Assumption IV*

1. RTA*: Z is jointly independent of (Y1; Y0; Dz1 ; : : : ; DzK ).

2. MSR*: Given p(z1) � � � � � p(zK), the potential selection indicators satisfy Dzk+1 � Dzk

with probability one for every k = 1; : : : ; (K � 1).

Let P (B; 1jzk) = Pr(Y 2 B;D = 1jZ = zk), k = 1; : : : ;K. The testable implication of the

binary instrument case is now generalized to the following set of inequalities; under RTA* and

MSR* of Assumption 2,

P (B; 1jz1) � P (B; 1jz2) � � � � � P (B; 1jzK) and

P (B; 0jz1) � P (B; 0jz2) � � � � � P (B; 0jzK)
(4.1)

holds with every measurable subset B in Y. Using the test statistic of the previous section to

measure the violation of the functional inequalities across the neighboring value of Z, we can

develop a statistic that jointly tests the inequalities of (4.1),

TN = max fTN;1; : : : ; TN;K�1g ; (4.2)
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where, for k = 1; : : : ; (K � 1);

TN;k =

�
mkmk+1

mk +mk+1

�1=2
max

(
supV 2V1;k

�
��1k (V; 1)

�
Pmk

(V; 1jzk)� Pmk+1
(V; 1jzk+1)

�	
;

supV 2V0;k
�
��1k (V; 0)

�
Pmk+1

(V; 0jzk+1)� Pmk
(V; 0jzk)

�	 )
;

�2k (V; d) =

�
mk

mk +mk+1

�
Pmk+1

(V; djzk+1)
�
1� Pmk+1

(V; djzk+1)
�

+

�
mk+1

mk +mk+1

�
Pmk

(V; djzk) (1� Pmk
(V; djzk));

mk = # fi : Zi = zkg, Pmk
is the empirical probability measure on Y�f1; 0g of the subsample with

Z = zk, and V1;k and V0;k are VC-class of subsets. Critical values can be obtained by applying a
resampling algorithm of the previous section to each TN;k simultaneously.

Algorithm 4.1:

1. Let HN;k (�) =
�

mk
mk+mk+1

�
Pmk+1

(�jzk+1) +
�

mk+1

mk+mk+1

�
Pmk

(�jzk) be a weighted average of
the two empirical measures of the sample of Zi = zk+1 and that of Zi = zk. Sample

(Y �i ; D
�
i ); i = 1; : : : ;mk+1 randomly with replacement from HN;k and construct the bootstrap

empirical distribution P �mk+1
(�jzk+1): Similarly, sample (Y �j ; D

�
j ); j = 1; : : : ;mk randomly

with replacement from HN;k and construct the bootstrap empirical distribution P �mk
(�jzk):

2. Apply step 1 for every k = 1; : : : ; (K�1), and obtain (K�1) pairs of the resampled empirical
measures, (P �m1

; P �m2
), (P �m2

; P �m3
); : : : ; (P �mK�1 ; P

�
mK
). De�ne, for k = 1; : : : ; (K � 1);

H�
N;k =

�
mk

mk +mk+1

�
P �mk+1

+

�
mk+1

mk +mk+1

�
P �mk

;

��2k (V; d) = H�
N;k(V; d)(1�H�

N;k(V; d));

T �N;k =

�
mkmk+1

mk +mk+1

�1=2
�max

8<: supV 2V1;k

n
���1k (V; 1)

�
P �mk

(V; 1jzk)� P �mk+1
(V; 1jzk+1)

�o
;

supV 2V0;k

n
���1k (V; 0)

�
P �mk+1

(V; 0jzk+1)� P �mk
(V; 0jzk)

�o 9=;
The bootstrap statistic T �N is computed accordingly by T

�
N = max

n
T �N;1; : : : ; T

�
N;K�1

o
.

3. Iterate Step 1 -3 many times and get the empirical distribution of T �N , and obtain the boot-

strapped critical value cN;1�� from its empirical (1� �)-th quantile .

4. Reject the null hypothesis if TN > cN;1��.
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4.2 Discussion: Improving Finite Sample Power and Alternative Approaches

The bootstrap procedure considered in this paper draws a critical value from a boundary null hy-

pothesis P = Q. As is known in the moment inequality literature, obtaining critical values from

a least favorable null may sacri�ce a �nite sample power for some alternatives. The �nite sample

power can be improved if critical values are obtained from the null distribution of the supremum sta-

tistic over estimated contact sets, fV 2 V1 : P (V; 1) = Q(V; 1)g and fV 2 V0 : P (V; 0) = Q(V; 0)g;
see Linton, Song, and Whang (2010)). By a similar idea, inference procedures for moment in-

equalities involving generalized moment selection (Andrews and Soares (2010), Andrews and Shi

(2013)) can apply to the current context and can improve the �nite sample power performance

of our test. In these approaches, estimation of the contact sets (the set of binding inequalities)

requires the user to specify a value of slackness parameters. To our knowledge, a recommended

choice for such tuning parameters is not known for the functional inequality case (cf. Andrews and

Barwick (2012)), and the test size can be sensitive to its choice. This paper therefore does not

pursue these approaches, and leave potential power improvement based on a reliable estimater for

the contact set for future research.

The asymptotic analysis in this paper assumes complexity of the VC-classes does not grow

with sample size. It results in limiting the set of alternatives that can be rejected consistently.

One way to enable the test to consistently screen out all the alternatives with the interval VC-

class Vint is to let h decrease to zero at a certain rate. Recently, Armstrong and Chan (2012)

derives an asymptotic distribution of the Kolmgorov-Smirnov statistic of such form, and demon-

strated its desirable asymptotic property. An alternative approach to screening out all the al-

ternatives of the functional inequalities (2.1) is to focus on a one-sided L1-type quantity, such

as
R
max fq(y; 1)� p(y; 1); 0g dy +

R
max fp(y; 0)� q(y; 0); 0g dy, and to form a statistic by plug-

ging in the kernel density estimators of p(y; d) and q(y; d) with bandwidth shrinking to zero as

N !1. Anderson, Linton, and Whang (2011) and Lee, Song, and Whang (2011) develop a test
for the functional inequalities based on such one-sided L1-type statistic. Applicability of these

approaches to the current instrument test, and comparisons of test performance between ours and

these approaches are worth examining in future work.

5 Monte Carlo Studies and Empirical Applications

5.1 Small sample performance

This section examines the �nite sample performance of the bootstrap test by Monte Carlo. We

consider a data generating process on a boundary of H0, so that the type I error of the test equals
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Table 1: Monte Carlo Test Size

Monte Carlo iterations 3000, Bootstrap iterations 500.

Speci�cation of V1 and V0
Vhalf Vint with h 2 f:3; :5; :7g Vint with h 2 f:1; :3; :5g

Test Statistic TN;nw TN TN;nw TN TN;nw TN

Nominal size .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

(m,n):(100,100) .12 .06 .01 .13 .07 .02 .11 .06 .01 .12 .06 .01 .11 .06 .01 .12 .06 .02

(100,500) .12 .06 .01 .15 .08 .02 .12 .06 .02 .15 .08 .02 .10 .06 .01 .14 .08 .02

(500,500) .11 .06 .01 .11 .06 .01 .10 .05 .01 .11 .06 .01 .11 .06 .01 .12 .06 .02

to a nominal size asymptotically.

p(y;D = 1) = q(y;D = 1) = 0:5�N (1; 1);

p(y;D = 0) = q(y;D = 0) = 0:5�N (0; 1):

We consider two speci�cations of V. One is the half-unbounded interval class Vhalf and the
other is a connected interval class Vint de�ned in Section 3. When Vd = Vhalf is used, we set Y�

at the 2.5% and 97.5% sample quantile range of the fDi = dg sample. We also look at When

Vd = Vint is used, we include
[

h2f:3;:5;:7g
Vbin (h) in addition to Vhalf , where Y� in the construction

of Vbin (h) is equally distanced 128 grid points between the 2.5% and 97.5% sample quantiles of the
fDi = dg sample. We set the trimming constant for the sample variance estimate at � = 10�4.

Table 1 shows the simulated test size. With balanced sample sizes, the test has good size

performance even with the sample sizes as small as (m;n) = (100; 100). The unbalanced sample

case, (m;n) = (100; 500), shows a slight size distortion for the variance weighted statistic. The

test size is not sensitive to whether Vhalf or Vint is used. Furthermore, Table 3 also shows that

making binwidths �ner in the construction of Vint does not distort the test size.

In order to see �nite sample power of our test procedure, we simulate the empirical rejection

rate of the bootstrap test against a �xed alternative. The data generating process is speci�ed as

p(y;D = 1) = 0:55�N (1; 1:44); q(y;D = 1) = 0:45�N (0:2; 1)

p(y;D = 0) = 0:45�N (0; 1); q(y;D = 0) = 0:55�N (0; 1):

17



Y

pr
ob

ab
ili

ty
 d

en
si

ty

0.1

0.2

0.3

0.4

­2 ­1 0 1 2 3

Y(1):Treated Outcome

­2 ­1 0 1 2 3

Y(0):Control Outcome

Z=1
Z=0
Potential outcome

Figure 3: Monte Carlo for Test Power: Speci�cation of Densities. The instrument validity

is refuted since for the treated outcomes the two observable densities intersect. In each panel, the

density function that covers the other two is a probability density function of the potential outcomes

that integrates to one.
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Table 2: Rejection Probabilities Against the Fixed Alternative

Monte Carlo iterations 3000, Bootstrap iterations 500.

Speci�cation of V1 and V0
Vhalf Vint with h 2f:3; :5; :7g Vint with h 2f:1; :3; :5g

Test Statistic TN;nw TN TN;nw TN TN;nw TN

Nominal Test Size .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01

(m,n): (100,100) .20 .06 .28 .13 .20 .06 .30 .14 .20 .05 .28 .13

(100,500) .33 .12 .37 .17 .33 .11 .39 .16 .33 .12 .40 .18

(500,500) .84 .61 .90 .77 .87 .63 .97 .86 .84 .60 .95 .80

Figure 4 presents the densities of the speci�ed data generating process. The treated outcome

densities since p(y;D = 1) intersects with q(y;D = 1) show counter-evidence to the instrument

validity since they intersect. Table 2 presents the simulated rejection probabilities. The �rst two

speci�cations of V1 and V0 in Table 2 are same as the ones employed in the Monte Carlo studies
of Table 1. In the third speci�cation of V1 and V0, we specify the set of binwidths to include a
�ner one, h 2 f0:15; 0:3; 0:45g, to see a sensitivity of the rejection probabilities when the class of
subsets include �ner bins. First, the weighted version of the test statistics has higher rejection

probabilities than the non-weighted one at every sample size.3 Second, the rejection probabilities

do not deteriorate as we enrich the class of subsets from Vhalf to Vint. Furthermore, a comparison
between Vint with h = 0:3 and Vint with h = 0:1 shows that the test power is not sensitive to a

choice of the smallest binwidths in the construction of Vint. Although this paper does not formally
demonstrate to what extent these Monte Carlo �ndings can be generalized to other speci�cations of

an alternative, we recommend Vint as a convenient choice for V1 and V0 in terms of robustness of
both size and power properties with respect to a choice of smallest binwidth h, and (ii) the ability

in screening out a large class of alternatives than Vhalf .

5.2 Empirical Applications

We illustrate a use of our test using the following two data sets. The �rst dataset is the draft

lottery data during Vietnam era used in Angrist (1991). The second dataset is from Card (1993)

on returns to schooling using geographical proximity to college as an instrument.
3 In the small sample and the unbalanced sample cases, the power gain of the weighted statistic can be driven by

its slight upward size distortion as seen in Table 1.
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5.2.1 Draft Lottery Data

The draft lottery data consist of a sample of 10,101 white men, born in 1950-1953 extracted from

March Current Population Surveys of 1979 and 1981-1985. The outcome variable is measured in

terms of the logarithm of weekly earnings imputed by the annual labor earnings divided by weeks

worked. The treatment is whether one has a Vietnam veteran status or not. Since the enrollment

for the military service possibly involves self-selection based on one�s future earning, the veteran

status is not considered to be randomly assigned. In order to solve this endogeneity issue, Angrist

(1991) constructs the binary indicator of the draft eligibility, which is randomly assigned based

on one�s birthdate through the draft lotteries. A justi�cation of the instrumental validity here is

that the instrument is generated being independent of any individual characteristics. Hence, it is

reasonable to argue that the instrument satis�es RTA. On the other hand, the validity of MSR

is less credible since the existence of de�ers are not eliminated by the sampling design, i.e., in the

sample there are observations who participate to the military service even though they are not

initially drafted.

As a exploratory tool for summarizing the shapes of p(y; d) and q(y; d), Figure 4 plots the kernel

density estimates for the observed outcome distribution multiplied by the selection probability. We

observe that, except for slight violations of the inequalities (2.1) at the tail parts of Y (0)�s densities,

the kernel densities overall exhibit the nested structures. Table 3 shows the result of our test. We

specify classes of subsets to be interval classes, V1 = V0 = Vint, where the binwidths for Vbin (h)
are 20 grid points between 0:1 and 2:0. The p-values of the bootstrap test are one for both TN;nw

and TN , so we do not refute the instrumental validity from the data.

5.2.2 Returns to Education: Proximity to College Data

The Card data is based on National Longitudinal Survey of Young Men (NLSYM) began in 1966

with age 14-24 men and continued with follow-up surveys through 1981. Based on the respondents�

county of residence at 1966, the Card data provides the presence of a 4-year college in the local labor

market. Observations of years of education and wage level are based on the follow-ups�educational

attainment and wage level responded in the interview in 1976.

The idea of using proximity to college as an instrument is stated as follows. Presence of a

nearby college reduces a cost of college education by allowing students to live at home, while one�s

inherited ability is presumably independent of his birthplace. Compliers in this context can be

considered to be those who grew up in relatively low-income families and who were not able to go

to college without living with their parents. We make the educational level as a binary treatment
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Figure 4: Kernel Density Estimates for the Draft Lottery Data. The Gaussian kernel

with bandwidth 0.06 is used. In each panel, we draw a normal density to illustrate the scale of the

subdensities.
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Table 3: Test Results of the Empirical Applications

Bootstrap iterations 500

Speci�cations of V1 and V0 V1=V0=Vint[

24 [
h2f:1;:2;:::;2:0g

Vbin (h)

35
Draft lottery data Proximity to college data

Full sample Full sample Restricted sample

sample size (m,n) (2780,7321) (2053,957) (1047,144)

Pr(D = 1jZ = 1); Pr(D = 1jZ = 0) 0.31, 0.19 0.29, 0.22 0.35,0.24

Test Statistics TN;nw TN TN;nw TN TN;nw TN

Bootstrap test, p-value 1.00 1.00 0.00 0.00 0.00 0.00

which indicates one�s education years to be greater or equal to 16 years, meaning that the treatment

can be roughly considered as a four year college degree.

We specify the measure of outcome to be the logarithm of weekly earnings. In the �rst

speci�cation, we do not control any demographic covariates. This simpli�cation raises a concern

for the violation of RTA. For instance, one�s region of residence, or whether they were born in

the standard metropolitan area or rural area may a¤ect one�s wage levels and the proximity to

colleges if the urban areas are more likely to have colleges and has higher wage level compared

with the rural areas. This kind of confounder may contaminate the validity of RTA. In fact, Card

(1993) emphasizes an importance of controlling for regions, residence in the urban area, race, job

experience, and parent�s education in order to make use of the college proximity as an instrument.

Figure 5 presents the kernel density estimates for observed outcome densities. In contrast to

Figure 4, we observe that the kernel density estimates in Figure 5 clearly intersect, especially, for

those of control outcome. Our test procedure yields zero p-value and this provides an empirical

evidence that, without controlling for any covariates, college proximity is not a valid instrument.

Consider next how the test result changes once we control for some covariates. Controlling

discrete covariates can be done by simply making the whole analysis conditional on the speci�ed

value of the covariates. We consider restricting the sample to be white workers (black dummy is

zero), not living in south states in 1966 (south66 dummy is zero ), and living in a metropolitan area

in 1966 (SMSA66 dummy is one). That is, we are controlling for race, whether or not one grew

up in southern states, and whether or not one grew up in urban area. The size of the restricted
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Figure 5: Kernel Density Estimates for the Proximity to College Data (No covariates

controlled). The Gaussian kernel with bandwidth 0.07 is used. In each panel, we draw a normal

density to illustrate the scale of the estimated subdensities.

sample is 1191 (m = 1047, n = 144). Figure 6 indicates that the kernel density estimates present

less evident violation of instrument validity compared with Figure 5. The p-value of our test turns

out to be zero. Hence, the instrument validity is refuted even with these covariates conditioned.

Note that the test results presented here do not invalidate the estimation results of Card (1993),

because he treats education years are treated as a multi-valued treatment and uses a richer set of

covariates including continuous ones.
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Figure 6: Kernel Density Estimates for the Proximity to College Data (white workers,

not living in south states, and living in a metropolitan area). The Gaussian kernel with

bandwidth 0.1 is used. In each panel, we draw a normal density to illustrate the scale of the

estimated subdensities.
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6 Concluding Remarks

In this paper, we develop a test procedure to empirically check the conditions of the instrumental

validity of Imbens and Angrist (1994). The test statistic measures negativity of the complier�s

outcome densities by the supremum statistic, and the bootstrap algorithm is developed for obtaining

the asymptotically valid critical values. Regarding a choice for classes of subsets V1 and V0, the
interval classes can be attractive speci�cations in terms of robustness of test performance and the

asymptotic screening power.

In every empirical study where a discrete instrument is used to infer causal e¤ects of a binary

treatment, we recommend to report the p-values of our test, with acknowledging that the instrument

validity is a refutable but non-veri�able assumption.

A Appendix A: Proof of Proposition 2.1

Proof of Proposition 1. Denote the population distribution of the types by �t � Pr(T = t),
t 2 fc; n; a; dfg. Under RTA, P (B; 1) for any Borel set B � Y is expressed as,

P (B; 1) = Pr(Y1 2 B;D1 = 1jZ = 1)

= Pr(Y1 2 B;D1 = 1)

= Pr (Y1 2 B; T 2 fa; cg)

= Pr(Y1 2 BjT = a)�a + Pr(Y1 2 BjT = c)�c: (A.1)

The �rst line follows because the event fY 2 B;D = 1jZ = 1g is identical to fY1 2 B;D1 = 1jZ = 1g.

The second equality follows by RTA, and the third equality follows by the de�nition of selection

types.
The similar operation to Q(B; 1) yields

Q(B; 1) = Pr(Y1 2 BjT = a)�a + Pr(Y1 2 BjT = df)�df : (A.2)

Under MSR, �df = 0, so the di¤erence between (A.1) and (A.2) is

P (B; 1)�Q(B; 1) = Pr(Y1 2 BjT = c)�c � 0:

This proves the �rst inequality of the proposition. The second inequality of the proposition is

proven in a similar way.
For a proof of converse statement, let P and Q satisfying the inequalities (2.1) be given. Let

p(y; d) and q(y; d) be the densities of P (�; d) and Q (�; d) with respect to a common dominating
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measure � on Y . In what follows, we show that there exists a joint distribution of (Y1; Y0; T; Z) that
is compatible with P and Q and satis�es RTA and MSR. Since the marginal distribution of Z is
not important in the following argument, we focus on constructing the conditional distribution of
(Y1; Y0; T ) given Z. Consider nonnegative functions hYd;t(y), d = 1; 0, t 2 fc; n; a; dfg,

hY1;c(y) = p(y; 1)� q(y; 1);

hY1;n(y) = 
Y1(y);

hY1;a(y) = q(y; 1);

hY1;df (y) = 0;

hY0;c(y) = q(y; 0)� p(y; 0);

hY0;n(y) = p(y; 0);

hY0;a(y) = 
Y0(y);

hY0;df (y) = 0:

where 
Y1(y) and 
Y0(y) are arbitrary nonnegative functions supported on Y that satisfy
R
Y 
Y1(y)d� =

P (Y; 0) and
R
Y 
Y0(y)d� = Q(Y; 1):We construct a probability law of (Y1; Y0; T ) given Z on the product

�-algebra as

Pr(Y1 2 B1; Y0 2 B0; T = cjZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = cjZ = 0)

�

8<:
R
B1

hY1;c(y)d�R
Y hY1;c(y)d�

�
R
B0

hY0;c(y)d�R
Y hY0;c(y)d�

� [P (Y; 1)�Q(Y; 1)] if [P (Y; 1)�Q(Y; 1)] > 0

0 if [P (Y; 1)�Q(Y; 1)] = 0
Pr(Y1 2 B1; Y0 2 B0; T = njZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = njZ = 0)

�

8<:
R
B1

hY1;n(y)d�R
Y hY1;n(y)d�

�
R
B0

hY0;n(y)d�R
Y hY0;n(y)d�

� P (Y; 0) if P (Y; 0) > 0

0 if P (Y; 0) = 0
Pr(Y1 2 B1; Y0 2 B0; T = ajZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = ajZ = 0)

�

8<:
R
B1

hY1;a(y)d�R
Y hY1;a(y)d�

�
R
B0

hY0;a(y)d�R
Y hY0;a(y)d�

�Q(Y; 1) if Q(Y; 1) > 0

0 if Q(Y; 1) = 0
Pr(Y1 2 B1; Y0 2 B0; T = df jZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = djZ = 0)

� 0

Note that this is a probability measure on the product sigma-algebra of Y2 � fc; a; n; dfg, since it is
nonnegative, additive, and sums up to one,X

t2fc;n;a;dfg

Pr(Y1 2 Y; Y0 2 Y; T = tjZ = z) = 1; z = 1; 0:

The proposed probability distribution of (Y1; Y0; T jZ) clearly satis�es RTA and MSR by the con-

struction, and it induces the given data generating process. i.e., Pr(Y 2 B;D = djZ = z) implied

by the proposed probability distribution of (Y1; Y0; T jZ) coincides with the given P and Q. This

completes the proof.

26



B Appendix B: Proof of Proposition 2

B.1 Notations

In addition to the notations introduced in the main text, we introduce the following notations that are
used throughout this appendix. Let F be a set of indicator functions de�ned on X� Y � f0; 1g
generated by the VC-classes V1 and V0.

F =
�
1fV;1g(Y;D) : V 2 V1

	
[
�
1fV;0g(Y;D) : V 2 V0

	
;

where 1fV;dg(Y;D) is an indicator function for event fY 2 V;D = dg. The Borel �-algebra of X is
denoted by B(X ). Note that, given V1 and V0 are VC-classes, F is a VC-class of functions. We
denote a generic element of F by f . For generic P 2P, let Pm be an empirical probability measure
constructed by a size m iid sample from P . we de�ne short-hand notations, P (f) � P (V; d) and
Pm(f) � Pm (V; d) for f = 1 fV; dg 2F . We denote the empirical process indexed by F by

Gm;P (�) =
p
m (Pm � P ) (�):

For a probability measure P on X , we denote the mean zero P -brownian bridge processes indexed by F by

GP (�). Let �P (f; f 0) = P (jf � f 0j) be a seminorm on F de�ned with respect to probability measure

P2 P. Given a deterministic sequence of the sizes of two samples, f(m(N); n(N)) : N = 1; 2; : : : g, let�
(P [m(N)]; Q[n(N)]) 2 P2 : N = 1; 2; : : :

	
be a sequence of the two samples probability measures that

drift with the sample sizes, where superscripts with brackets index a sequence. We often omit the

arguments of (m (N) ; n (N)) unless any confusion arises.
Let �2P (�; �) : F2 ! R+ denote the covariance kernel of P -brownian bridges, �2P (f; g) = P (fg) �

P (f)P (g). We denote by �2P;Q(f; g) : F2 ! R+ the covariance kernel of the independent two-sample
brownian bridge processes (1� �)1=2GP (�)� �1=2GQ (�),

�2P;Q(f; g) = (1� �)�2P (f; g) + ��2Q (f; g) ,

and �2Pm;Qn
(�; �) be its sample analogue,

�2Pm;Qn
(f; g) = (1� �̂) [Pm(fg)� Pm(f)Pm(g)] + �̂ [Qn(fg)�Qn(f)Qn(g)] .

Note that, with the current notation, �2Pm;Qm
(V; d) de�ned in Section 3 of the main text is equivalent to

�2Pm;Qn
(f; f), for f = 1fV;dg. For a sequence of random variables fWN : N = 1; 2; : : : g whose probability

law is governed by a sequence of two sample probability measures (P [m(N)]; Q[n(N)]); WN �!
P [m];Q[n]

c de-

notes convergence in probability in the sense that, for every � > 0, limN!1 PrP [m];Q[n] (jWN � cj > �) =

0. In particular, if WN �!
P [m];Q[n]

0, we notate as WN = oP [m];Q[n](1).

B.2 Auxiliary Lemmas

We �rst present a set of lemmas to be used in the proof of Proposition 2.
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Lemma B.1 Suppose Condition RG (a). Let
�
P [m] 2 P : m = 1; 2 : : :

	
be a sequence of probability

measures on X . Then,

sup
f2F

����P [m]m � P [m]
�
(f)
��� �!
P [m]

0:

Proof. The assumption that F is a class of indicator functions for a VC-class of subsets guarantees

application of the Glivenko-Cantelli theorem uniform in P (Theorem 2.8.1 of van der Vaart and

Wellner (1996)). Hence, this lemma follows as its corollary.

Lemma B.2 Suppose Condition RG (b) and (c). Let
�
P [m] 2 P : m = 1; 2 : : :

	
be a sequence of

data generating processes on X that weakly converges to P0 2P as m!1. Then,

sup
B2B(X )

����P [m] � P0� (B)���! 0 as m!1,

where B(X ) is the Borel �-algebra on X .

Proof. Suppose limm!1 supB2B(X )
���P [m] � P0� (B)�� = 0 is false, that is, there exists � > 0 and a

sequence fBm 2 B(X ) : m = 1; 2; : : : g such that lim supm!1
���P [m] � P0� (Bm)�� > � holds. By uniform

tightness of Condition RG (c), there exist a compact set K � B(X ) such that

lim sup
m!1

����P [m] � P0� (Bm \K)��� > �=2
holds. We metricize B(X ) by L1-metric, dB(X )(B;B0) = (� � �d)(B 4 B0); where � is the measure
de�ned in Condition RG (b) and �d is the mass measure on f0; 1g. Since fBm \K : m = 1; 2 : : : ; g is a
sequence in a compact subset of B(X ), there exists a subsequence bm, such thatfBbm \Kg converges
to B� 2 B (X ) in terms of metric dB(X )(�; �) and

lim sup
m!1

����P [bm] � P0� (Bbm \K)��� > �=2 (B.1)

holds. Under the bounded density assumption of Condition RG (b), it holds that, for a �nite
constant M of Condition RG (b),����P [bm] � P0� (Bbm \K)� �P [bm] � P0� (B�)���

� 2MdB(X )(Bbm \K;B�)! 0, as m!1.

Hence, (B.1) implies

lim sup
m!1

����P [bm] � P0� (B�)��� > �=2. (B.2)

By Condition RG (b), P0 as a weak limit of
�
P [m] : m = 1; 2; : : :

	
is absolutely continuous in

� � �d, so, for �B� the closure of B�, P0
�
�B�
�
= P0 (B

�) holds. Accordingly, by applying the

Portmanteau theorem (see, e.g., Theorem 1.3.4 of van der Vaart and Wellner (1996)), we obtain

limm!1
���P [m] � P0� (B�)�� = 0. This contradicts (B.2), so limm!1 supB2B(X )

���P [m] � P0� (B)�� = 0

holds.
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Lemma B.3 Suppose Condition RG (a)-(c). Let
�
P [m] 2 P : m = 1; 2 : : :

	
be a sequence of data

generating processes on X that weakly converges to P0 2P as m!1.

sup
f2F

����P [m]m � P0
�
(f)
��� �!
P [m]

0:

Proof. This lemma is a corollary of Lemma B.1 and B.2.

Lemma B.4 Suppose Condition RG (a)-(c). Let
�
(P [m(N)]; Q[n(N)]) 2 P2 : N = 1; 2; : : :

	
be a se-

quence of the two samples probability measures with sample size (m;n) = (m(N); n(N))! (1;1) as
N !1. We have

(i) sup
f;g2F

����2
P
[m]
m ;Q

[m]
n
(f; g)� �2P [m];Q[m](f; g)

��� �!
P [m];Q[n]

0;

(ii) sup
f;g2F

����P [m]
m ;Q

[m]
n
(f; g)� �P [m];Q[m](f; g)

��� �!
P [m];Q[n]

0; as N !1

Proof. Consider����2
P
[m]
m ;Q

[m]
n
(f; g)� �2P [m];Q[m](f; g)

��� (B.3)

� (1� �)
���P [m]m (fg)� P [m]m (f)P [m]m (g)� P [m](fg) + P [m](f)P [m](g)

���
+�
���Q[n]n (fg)�Q[n]n (f)Q[n]n (g)�Q[n](fg) +Q[n](f)Q[n](g)���+ o(1);

where o(1) is the approximation error of order
����̂� ����. Regarding the �rst term in the right-hand

side of this inequality, the following inequalities hold,

(1� �)
���P [m]m (fg)� P [m]m (f)P [m]m (g)� P [m](fg) + P [m](f)P [m](g)

���
�

����P [m]m � P [m]
�
(fg)

���+ ���P [m]m (f)P [m]m (g)� P [m](f)P [m](g)
���

�
����P [m]m � P [m]

�
(fg)

���+ ����P [m]m � P [m]
�
(f)P [m]m (g)

���+ ����P [m]m � P [m]
�
(g)P [m](f)

���
�

����P [m]m � P [m]
�
(fg)

���+ ����P [m]m � P [m]
�
(f)
���+ ����P [m]m � P [m]

�
(g)
��� : (B.4)

The second and the third term of (B.4) is oP [m] (1) uniformly in F by Lemma B.3. Furthermore,

since class of indicator functions ffg : f; g 2 Fg is also a VC-class, supf;g2F
����P [m]m � P [m]

�
(fg)

��� �!
P [m]

0

also holds by Lemma B.3. This proves the �rst term in the right-hand side of (B.3) converges

to zero uniformly in f; g 2F . So is the case for the second term of (B.3) by the same argument.

Hence, the �rst conclusion (i) follows. (ii) is an immediate corollary of (i).

Lemma B.5 Suppose Condition RG. Let
�
P [m] 2 P : m = 1; 2; : : :

	
be a sequence of probability

measures, which converges weakly to P0 2P. Then, the empirical processes Gm;P [m] (�) on index set

F converge weakly to P0-brownian bridges GP0 (�).
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Proof. To prove this lemma, we apply a combination of Theorem 2.8.2 and Lemma 2.8.8 of van der

Vaart and Wellner (1996) restricted to a class of indicator functions. It claims that, given F be a

class of measurable indicator functions and a sequence of probability measure
�
P [m] : m = 1; 2; : : :

	
in P, if (i)

R 1
0
supR

p
logN (�;F ; L2 (R))d� < 1; where R ranges over all �nitely discrete probability

measures and N (�;F ; L2 (R)) is the covering number of F with radius � in terms of L2 (R)-metric�
R(jf � f 0j2)

�1=2,4 and (ii) there exists P � 2P such that limm!1 supf;g2F fj�P [m](f; g)� �P�(f; g)jg = 0,

then Gm;P [m] (�) weakly converges to P �-brownian bridge process GP� (�). Condition (i) is known to

hold if F is a VC-class (see, e.g., Theorem 2.6.4 of van der Vaart and Wellner (1996)).
Therefore, what remains to show is Condition (ii). By the construction of seminorm �P (f; g),

we have

sup
f;g2F

����P [m](f; g)� �P0(f; g)
��	 � sup

B2B(X )

����P [m] � P0� (B)��� .
Hence, to validate Condition (ii) with P � = P0, it su¢ ces to have limm!1 supB2B(X )

���P [m] � P0� (B)�� =
0; which follows from Lemma B.2.

Lemma B.6 Suppose Condition RG. Let
�
(P [m(N)]; Q[n(N)]) 2 P2 : N = 1; 2; : : :

	
be a sequence of

probability measures of the two samples, which converges weakly to (P0; Q0), as N ! 1. Then,
stochastic processes indexed by VC-class of indicator functions F,

vN (�) =

�
1� �̂

�1=2
Gm;P [m] (�)� �̂

1=2
Gn;Q[n](�)

�
P
[m]
m ;Q

[n]
n
(�; �) (B.5)

converges weakly to mean zero Gaussian processes v0(�) =
(1��)1=2GP0

(�)��1=2GQ0
(�)

�P0;Q0 (�;�)
; where GP0 (�) and

GQ0
(�) are independent brownian bridge processes.

Proof. VC-class F is totally bounded with seminorm �P for any �nite measure P . Hence,
following Section 2.8.3 of van der Vaart and Wellner (1996), what we want to show for the weak
convergence of vN (�) are that (i) �nite dimensional marginal, (vN (f1); : : : ; vN (fK)), converges to that
of v0(�), (ii) vN (�) is asymptotically uniformly equicontinuous along a sequence of seminorms such
as, �P [m]+Q[n] =P [m] (jf � f 0j) +Q[m] (jf � f 0j), i.e., for arbitrary � > 0,

lim
�&0

lim sup
N!1

P �P [m];Q[n]

 
sup

�
P [m]+Q[n]

(f;g)<�

jvN (f)� vN (g)j > �
!
= 0; (B.6)

where P �
P [m];Q[n] is the outer probability, and (iii) supf;g2F

���P [m]+Q[n](f; g)� �P0+Q0
(f; g)

�� ! 0 as
N !1. Note that (i) is implied by Lemma B.4 (i) and Lemma B.5, and (iii) follows as a corollary

4The covering number N (�;F ; L2 (R)) is de�ned as the minimal number of balls of radious � needed to cover F .

30



of Lemma B.2. To verify (ii), consider, for f; g 2 F with �P [m]+Q[n](f; g) < �,

jvN (f)� vN (g)j �
����� 1

�
P
[m]
m ;Q

[m]
n
(f; f)

� 1

�
P
[m]
m ;Q

[m]
n
(g; g)

����� ���(1� �)1=2Gm;P [m] (g)� �1=2Gn;Q[n](g)
��� (B.7)

+
(1� �)1=2

��Gm;P [m] (f)�Gm;P [m] (g)
��+ �1=2 ��Gn;Q[n](f)�Gn;Q[n](g)

��
�
P
[m]
m ;Q

[m]
n
(g; g)

+ o
�����̂� ����� :

Note that����� 1

�
P
[m]
m ;Q

[m]
n
(f; f)

� 1

�
P
[m]
m ;Q

[m]
n
(g; g)

����� =

���� 1

�P [m];Q[n](f; f)
� 1

�P [m];Q[n](g; g)

����+ oP [m];Q[n](1)

=

���P [m];Q[n](f; f)� �P [m];Q[n](g; g)
��

�P [m];Q[n](f; f)�P [m];Q[n](g; g)
+ oP [m];Q[n](1)

� 1

�

���P [m];Q[n](f; f)� �P [m];Q[n](g; g)
��+ oP [m];Q[n](1); (B.8)

where the �rst equality follows from Lemma B.4 (i), and the third inequality follows by Condition
RG (d). Noting the following inequalities����2P [m];Q[m](f; f)� �2P [m];Q[m](g; g)

��� �
���(1� �)�P [m](f)� P [m](g)� (1� P [m](f)� P [m](g))���
+
�����Q[n](f)�Q[n](g)� (1�Q[n](f)�Q[n](g))���

�
���(1� �)�P [m](f)� P [m](g)����+ �����Q[n](f)�Q[n](g)����

�
��(1� �)�P [m](f; g) + ��Q[n](f; g)

��
� �P [m]+Q[n](f; g)

we have���P [m];Q[m](f; f)� �P [m];Q[m](g; g)
�� � �P [m]+Q[n](f; g)

2�1=2
. (B.9)

Combining (B.8) and (B.9) then leads to����� 1

�
P
[m]
m ;Q

[m]
n
(f; f)

� 1

�
P
[m]
m ;Q

[m]
n
(g; g)

����� � 1

2�3=2
�P [m]+Q[n](f; g) + oP [m];Q[m](1) (B.10)

� �

2�3=2
+ oP [m];Q[m](1):

Hence,

sup
�
P [m]+Q[n]

(f;g)<�

jvN (f)� vN (g)j � �

2�3=2

���(1� �)1=2Gm;P [m] (g)� �1=2Gn;Q[n](g)
��� (B.11)

+

�
1� �
�

�1=2
sup

�
P [m]+Q[n]

(f;g)<�

��Gm;P [m] (f)�Gm;P [m] (g)
��

+

�
�

�

�1=2
sup

�
P [m]+Q[n]

(f;g)<�

��Gn;Q[n](f)�Gn;Q[n](g)
��+ oP [m];Q[m](1).
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By noting �P [m](f; g) � �P [m]+Q[n](f; g) for every f; g 2 F , we have

sup
�
P [m]+Q[n]

(f;g)<�

��Gm;P [m] (f)�Gm;P [m] (g)
�� � sup

�
P [m] (f;g)<�

��Gm;P [m] (f)�Gm;P [m] (g)
��

= o�P [m] (�) ;

where o�
P [m] (�) denotes the convergence to zero in outer probability along

�
P [m]

	
as � & 0, and this

equality follows since the uniform convergence of Gm;P [m] (f) as established by Lemma B.5 implies

lim
�&0

lim sup
m!1

P �P [m]

 
sup

�
P [m] (f;g)<�

��Gm;P [m] (f)�Gm;P [m] (g)
�� > �! = 0.

Similarly, we obtain sup�
P [m]+Q[n]

(f;g)<�

��Gn;Q[n](f)�Gn;Q[n](g)
�� = o�

Q[n] (�).

Since
���(1� �)1=2Gm;P [m] (g)� �1=2Gn;Q[n](g)

��� converges weakly to the tight Gaussian processes, (B.11)
is written as

sup
�
P [m]+Q[n]

(f;g)<�

jvN (f)� vN (g)j = �OP [m];Q[n] (1) + o�P [m];Q[m](�) + oP [m];Q[m](1)

= o�P [m];Q[m](�)

where OP [m];Q[n] (1) stands for that limN!1 Pr
P [m];Q[n]

(jWN j > aN ) = 0 for every diverging sequence aN !

1. This establishes the asymptotic uniform equicontinuity (B.6).

B.3 Proof of Proposition 3.1

Let F1 =
�
1fV;1g(Y;D) : V 2 V1

	
and F0 =

�
1fV;0g(Y;D) : V 2 V0

	
be a subclass of F , corresponding

to the VC-class of subsets in Y with d = 1 and d = 0, respectively. We want to show

lim sup
N!1

sup
(P;Q)2H0

Pr (TN > cN;1��) � �; (B.12)

where

TN = max

8<: supf2F1

n
��1Pm;Qn

(f; f)
�
�̂
1=2
Qn(f)� (1� �̂)1=2Pm (f)

�o
supf2F0

n
��1Pm;Qn

(f; f)
�
(1� �̂)1=2Pm (f)� �̂

1=2
Qn(f)

�o
9=; .

Consider a sequence
�
P [m(N)]; Q[n(N)]

�
2 H0 at which PrP [m(N)];Q[n(N)] (TN > cN;1��) di¤ers from its

supremum over H0 by �N > 0 or less with �N ! 0 as N ! 1. Since
�
P [m(N)]; Q[n(N)]

�
2 P2 are

sequences in the uniformly tight class of probability measures (Condition RG(c)), there exists aN

subsequence of N such that
�
P [m(aN )]; Q[n(aN )]

�
converges weakly to (P0; Q0) 2 P2 as N !1. With

abuse of notations, we read aN as N and (m(aN ); n(aN )) as (m;n) with m + n = N . Along such

sequence, we aim to show lim sup
N!1

PrP [m];Q[n] (TN > cN;1��) � � holds.
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Using the notation of the weighted empirical processes introduced in Lemma B.6, we can write
the test statistic as

TN = max

(
supf2F1 f�vN (f)� hN (f)g
supf2F0 fvN (f) + hN (f)g

)
;

where

hN (f) =

r
mn

N

P [m](f)�Q[n] (f)
�
P
[m]
m ;Q

[n]
n
(f; f)

.

By the almost sure representation theorem (see, e.g., Theorem 9.4 of Pollard (1990)), weak con-
vergence of

�
vN (�); P [m]m (�); Q[n]n (�); �̂2P [m];Q[n](�; �)

�
to
�
v0(�); P0(�); Q0(�); �2P0;Q0

(�; �)
�
; as established in

Lemma B.3, B.4, and B.6, implies existence of a probability space (
;B(
);P) and random ob-
jects ~v0 (�), ~vN (�), ~P [m]m (�), ~Q[n]n (�), and ~�2

P
[m]
m ;Q

[n]
m
(�; �) de�ned on it, such that (i) ~v0 (�) has the same

probability law as v0 (�) (ii)
�
~vN (�) ; ~P [m]m (�); ~Q[n]n (�); ~�2

P
[m]
m ;Q

[n]
n
(�; �)

�
has the same probability law as�

vN (�) ; P [m]m (�); Q[n]n (�); �2
P
[m]
m ;Q

[n]
n

(�; �)
�
for all N , and (iii)

sup
f2F

j~vN (f)� ~v0 (f)j ! 0; (B.13)

sup
f2F

��� ~P [m]m (f)� P0(f)
��� ! 0, (B.14)

sup
f2F

��� ~Q[n]n (f)�Q0(f)��� ! 0, and (B.15)

sup
f;g2F

���~�2
P
[m]
m ;Q

[n]
m
(f; g)� �2P0;Q0

(f; g)
��� ! 0, as N !1 P-a.s. (B.16)

Let ~TN be the analogue of TN de�ned on probability space (
;B(
);P),

~TN = max

8<: supf2F1

n
�~vN (f)� ~hN (f)

o
supf2F0

n
~vN (f) + ~hN (f)

o 9=; ;
where ~hN (f) =

p
mn
N

P [m](f)�Q[n](f)
~�2
P
[m]
m ;Q

[n]
n

(f;f)
. Let ~cN;1�� be the bootstrap critical values, which we view as

a random object de�ned on the same probability space as
�
~vN ; ~P

[m]
m ; ~Q

[n]
n ; ~�

2

P
[m]
m ;Q

[n]
n

�
are de�ned.

Note that the probability law of ~cN;1�� under P is identical to the probability law of bootstrap

critical value cN;1�� under
�
P [m]; Q[n]

�
for every N , because the distributions of ~cN;1�� and cN;1��

are determined by the distributions of
�
~P
[m]
m ; ~Q

[n]
n

�
and

�
P
[m]
m ; Q

[n]
n

�
, respectively, and

�
~P
[m]
m ; ~Q

[n]
n

�
��

P
[m]
m ; Q

[n]
n

�
for every N , as claimed by the almost sure representation theorem.

By the Lemma B.7 shown below, ~cN;1�� ! c1�� as N ! 1, P-a.s. holds, where c1�� is the
(1� �)-th quantile of statistic

TH � max
(
supf2F1 f�GH0(f)=�P0;Q0 (f; f)g
supf2F0 fGH0

(f)=�P0;Q0
(f; f)g

)
, (B.17)

where H0 = (1� �)P0 + �Q0.
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Since PrP [m];Q[n] (TN > cN;1��) = P
�
~TN > ~cN;1��

�
for all N and ~cN;1�� ! c1�� as N ! 1, P-a.s,

if there exists a random variable ~T � de�ned on (
; B(
);P), such that

(A) : lim sup
N!1

~TN � ~T �, P-a.s., and

(B) : The cdf of ~T � is continuous at c1�� and P
�
~T � > c1��

�
� �,

then, the claim of the proposition follows from

lim sup
N!1

Pr
P [m];Q[n]

(TN > cN;1��) = lim sup
N!1

P
�
~TN > ~cN;1��

�
� P

�
~T � > c1��

�
� �.

Hence, in what follows, we aim to �nd random variable ~T � that satis�es (A) and (B).
Let �N be a deterministic sequence that satis�es �N ! 1 and �N=

p
N ! 0. Fix ! 2 
 and

de�ne a sequence of subclass of F1,

F1;�N =
n
f 2 F1 : ~hN (f) � �N

o
=

(
f 2 F1 :

q
�̂(1� �̂)P

[m](f)�Q[n](f)
~�2
P
[m]
m ;Q

[n]
n
(f; f)

� �Np
N

)
.

The �rst term in the maximum operator of ~TN satis�es

sup
f2F1

n
�~vN (f)� ~hN (f)

o
= max

8<: supf2F1;�N

n
�~vN (f)� ~hN (f)

o
supf2F1nF1;�N

n
�~vN (f)� ~hN (f)

o 9=;
� max

8<: supf2F1;�N
f�~vN (f)g

supf2F1nF1;�N

n
�~vN (f)� ~hN (f)

o 9=;
� max

8>><>>:
sup

f2
[

N0�N

F1;�
N0

f�~vN (f)g

supf2F1nF1;�N
f�~vN (f)g � �N

9>>=>>; , for every N , (B.18)

where the second line follows since ~hN (f) � 0 for all f 2 F1 under the assumption that
�
P [m]; Q[n]

�
2

H0, the third line follows because ~hN (f) � �N for all f 2 F1 n F1;�N . Since ~vN (�) is P-a.s. bounded
and �N !1, it holds

sup
f2F1nF1;�N

f�~vN (f)g � �N ! �1; as N !1, P-a.s. (B.19)

On the other hand, since ~vN (�) P-a.s converges to ~v0 (�) uniformly in F , we have

sup

f2
[

N0�N

F1;�
N0

f�~vN (f)g ! sup
f2F1;1

f�~v0 (f)g , as N !1; P-a.s., (B.20)
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where F1;1 = limN!1
[

N 0�N
F1;�N0 . Let F�1 = ff 2 F1 : P0(f) = Q0(f)g. By the construction of

F1;�N , every f 2 F1;1 satis�es

lim inf
N!1

(q
�̂(1� �̂)P

[m](f)�Q[n](f)
~�2
P
[m]
m ;Q

[n]
n
(f; f)

)
= 0. (B.21)

Since ~�2
P
[m]
m ;Q

[n]
n
(f; f) converges to a constant bounded away from zero by (B.16) and Condition RG

(c), and P [m](f)�Q[n](f) converges to P0(f)�Q0(f) by Lemma B.2, any f satisfying (B.21) belongs
to F�1. Hence, we have

sup
f2F1;1

f�~v0 (f)g � sup
f2F�

1

f�~v0 (f)g P-a.s. (B.22)

By combining (B.18), (B.19), (B.20), and (B.22), we obtain

lim sup
N!1

sup
f2F1

n
�~vN (f)� ~hN (f)

o
� sup

f2F�
1

f�~v0 (f)g , P-a.s.

In a similar manner, it can be shown that

lim sup
N!1

sup
f2F0

n
~vN (f) + ~hN (f)

o
� sup

f2F�
0

f~v0 (f)g ; P-a.s.,

where F�0 = ff 2 F0 : P0(f) = Q0(f)g. Hence, ~T � de�ned by

~T � = max

(
supf2F�

1
f�~v0(f)g

supf2F�
0
f~v0(f)g

)

satis�es condition (A).
Next, we show that the thus-de�ned ~T � satis�es (B). First, continuity of the cdf of ~T � at

c1�� follows by the absolute continuity theorem for the supremum of Gaussian processes (Tsirelson
(1975)). To establish the second requirement of (B), note that statistic TH de�ned in (B.17) can
be written as

TH = max

(
T �H ; sup

f2F1nF�
1

�
� GH0

(f)

�H0 (f; f)

�
; sup
f2F0nF�

0

�
GH0

(f)

�H0 (f; f)

�)
,

where T �H = max

(
supf2F�

1
f�GH0

(f)=�H0
(f; f)g

supf2F�
0
fGH0

(f)=�H0
(f; f)g

)
.

If the distribution of T �H is identical to ~T
�, then the distribution of TH stochastically dominates ~T �

so that we can ascertain (B). Hence, in what follows we show that T �H and ~T � follow the same
probability law. De�ne stochastic processes de�ned on subdomain of F , F� = F�1 [ F�0 ,

u(f) = �v0(f)1 ff 2 F�1 g+ v0(f)1 ff 2 F�0 g ;

uH(f) = � GH0(f)

�H0
(f; f)

1ff 2 F�1 g+
GH0(f)

�H0
(f; f)

1ff 2 F�0 g.
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Note that V ar(u(f)) = V ar(uH(f)) = 1 holds at every f 2 F�. As for the covariance kernels of u(�)
and uH(�), we have, for f; g 2 F�1 or f; g 2 F�0 ,

Cov(u(f); u(g)) =
(1� �) [P0(fg)� P0(f)P0(g)] + � [Q0(fg)�Q0(f)Q0(g)]

�P0;Q0
(f; f)�P0;Q0

(g; g)

=
[(1� �)P0 + �Q0] (fg)� P0(f)P0(g)

�P0;Q0
(f; f)�P0;Q0

(g; g)

=
H0(fg)�H0(f)H0(g)
�H0 (f; f)�H0 (g; g)

= Cov(uH(f); uH(g));

where the second equality follows since P0(�) = Q0(�) on f 2 F�, and the third equality follows since
H0(f) = P0(f) = Q0(f) and �H0

(f; f)= �P0;Q0 (f; f) holds for all f 2 F�. Also, for f 2 F�1 and
g 2 F�0 ,

Cov(u(f); u(g)) =
(1� �)P0(f)P0(g) + �Q0(f)Q0(g)

�P0;Q0 (f; f)�P0;Q0 (g; g)

=
H0(f)H0(g)

�H0 (f; f)�H0 (g; g)

= Cov(uH(f); uH(g)).

Equivalence of the covariance kernels imply equivalence of the probability laws of the mean zero

Gaussian processes, so we conclude T �H � ~T �. Hence, P
�
~T � > c1��

�
� Pr(TH > c1��) = �. This

completes the proof of Proposition 3.1 (i).

A proof of (ii) proceeds in a similar way, but slightly simpler than the proof of (i). We omit a proof of

(ii) for brevity.

To prove claim (iii), assume that the �rst inequality of (2.1) is violated at some f� 2 F1, i.e., the true
data generating process satis�es P (f�) < Q(f�). Then, we have

TN = max

8<: supf2F1

n
��1Pm;Qn

(f; f)
�
�̂
1=2
Qn(f)� (1� �̂)1=2Pm (f)

�o
supf2F0

n
��1Pm;Qn

(f; f)
�
(1� �̂)1=2Pm (f)� �̂

1=2
Qn(f)

�o
9=;

� ��1Pm;Qn
(f�; f�)

�
�̂
1=2
Gn;Q(f

�)� (1� �̂)1=2Gm;P (f�)
�
+

r
mn

N

Q(f�)� P (f�)
��1Pm;Qn

(f�; f�)
; (B.23)

where the second term of (B.23) diverges to positive in�nity, while the �rst term is stochastically bounded

asymptotically. Since the bootstrap critical values cN;1�� converges to c1�� < 1 irrespective of the null

holds true or not, the rejection probability converges to one.

B.4 Lemma on Convergence of the Bootstrap Critical Values

The proof of Proposition 3.1 given in the previous section assumes P-almost sure convergence of

the bootstrap critical value ~cN;1�� to c1��. This convergence claim is proven by the next lemma.
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The probability space (
; B(
);P) and the random objects with "tilde" referred to in what follows

are the ones de�ned in the proof of Proposition 3.1 (i) by the almost sure representation theorem.

Lemma B.7 Suppose Condition RG. Let ~cN;1�� be the bootstrap critical value of Algorithm 3.1
constructed from ~H

[N ]
N = (1 � �̂) ~P [m]m + �̂ ~Q

[n]
n ; which is viewed as a sequence of random variables

f~cN;1�� : N = 1; 2; : : : g de�ned on probability space (
;B(
);P). It holds that ~cN;1�� converges to
c1�� as N !1, P-a.s, where c1�� is the (1� �)-th quantile of statistic

TH = max

(
supf2F1 f�GH0

(f)=�H0
(f; f)g

supf2F0 fGH0
(f)=�H0

(f; f)g

)
,

where H0 = (1� �)P0 + �Q0.

Proof. Let sequence
n
~H
[N ]
N : N = 1; 2; : : :

o
be given, and let P �m and Q�n be the bootstrap empirical

probability measures with size m and size n; respectively, drawn iid from ~H
[N ]
N . De�ne bootstrap

weighted empirical processes indexed by f 2 F as

v�N (�) =

r
mn

N

P �m(�)�Q�n(�)
�H�

N
(�; �)

=
(1� �̂)1=2G�

m; ~H
[N]
N

(�)� �̂
1=2
G�0
n; ~H

[N]
N

(�)(f)

�H�
N
(�; �) ;

where G�
m; ~H

[N]
N

(�) =
p
m
�
P �m � ~H

[N ]
N

�
(�) and G�0

n; ~H
[N]
N

(�) =
p
n
�
Q�n � ~H

[N ]
N

�
(�) are two independent

bootstrap empirical processes given
n
~H
[N ]
N : N = 1; 2; : : :

o
. We shall show that G�

m;H
[N]
N

(�) converges

weakly to H0-brownian bridge processes GH0
(�) for P-almost every sequence

n
~H
[N ]
N : N = 1; 2; : : :

o
.

Let
�
X1
i 2 X : i = 1; : : : ;m

�
be the points of support of ~P [m]m and

�
X0
j 2 X : j = 1; : : : ; n

�
be the points

of support of ~Q[n]n . Using the multinomial random variables and the point mass measure �X ,
bootstrap empirical process G�

m; ~H
[N]
N

can be written as

G�
m; ~H

[N]
N

=
1p
m

mX
i=1

h
M1
N;i � (1� �̂)

i
�X1

i
+

�
1� �
�

�1=2
1p
n

nX
j=1

h
M0
N;j �

m

n
�̂
i
�X0

j
;

where
�
M1
N;1; : : : ;M

1
N;m;M

0
N;1; : : : ;M

0
N;n

�
are multinomial random variables following

�
M1
N;1; : : : ;M

1
N;m;M

0
N;1; : : : ;M

0
N;n

�
�MN (m; 1� �̂

m
; : : : ;

1� �̂
m

;
�̂

n
; : : : ;

�̂

n
),

and independent of
�
~P
[m]
m ; ~Q

[n]
n

�
. Following Theorem 3.6.1 of van der Vaart and Wellner (1996), we

can replace the multinomial random variables with the independent Poisson variables, and obtain
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the following approximations

G�
m; ~H

[N]
N

(�) =
1p
m

mX
i=1

h
~M1
N;i � (1� �)

i �
�X1

i
� P [m]

�
+

�
1� �
�

�1=2
1p
n

nX
j=1

�
~M0
N;j �

�2

1� �

� h
�X0

j
�Q[n]

i

+O

 
sup
f2F

��� ~P [m]m � P [m]
���!+O sup

f2F

��� ~Q[n]n �Q[n]
���! ;

where
�
~M1
N;i : i = 1; : : : ;m

�
are iid Poisson random variables with mean (1� �) and

�
~M0
N;j : j = 1; : : : ; n

�
are iid Poisson random variables with mean �2

1�� , and O
�
supf2F

��� ~P [m]m � P [m]
����+O �supf2F ��� ~Q[n]n �Q[n]

����=
o(1), P-a.s. by Lemma B.2 and the convergence properties of

�
~P
[m]
m ; ~Q

[n]
n

�
as given in (B.14) and

(B.15). By Lemma B.4, we have

1p
m

mX
i=1

�
�X1

i
� P [m]

�
(�)  GP0 (�) ,

1p
n

nX
j=1

�
�X0

j
�Q[n]

�
(�)  GQ0 (�) , GP0 (�) and GQ0 (�) are independent.

Accordingly, an application of the multiplier central limit theorem (Theorem 2.9.2 and Corollary
2.9.4 in van der Vaart and Wellner (1996)) with V ar( ~M1

N;i) = 1� � and V ar( ~M0
N;j) =

�2

1�� yields

G�
m; ~H

[N]
n
(�) (1� �)1=2GP0 (�) + �1=2GQ0

(�) , P-a.s. sequences of
n
~H
[N ]
N

o
. (B.24)

Since the covariance kernel of (1 � �)1=2GP0 (�) + �1=2GQ0
(�) coincides with that of H0-brownian

bridges, we conclude G�
m; ~H

[N]
N

(�)  GH0
(�), P-a.s. sequences of

n
~H
[N ]
N

o
. By the same argument,

it holds G�0
n; ~H

[N]
N

(�)  G0H0
(�), P-a.s. sequences of

n
~H
[N ]
N

o
, where G0H0

(�) are H0-brownian bridges

independent of GH0
(�).

Regarding the bootstrap covariance kernel, we have convergence of supf;g2F
����2H�

N
(f; g)� �2H0

(f; g)
��� to

zero (in probability in terms of the probability law of bootstrap resampling given ~H
[N ]
N ) for P-a.s. sequences

of
n
~H
[N ]
N

o
; since

sup
f;g2F

����2H�
N
(f; g)� �2H0

(f; g)
��� � sup

f;g2F

����2H�
N
(f; g)� �2~H[N]

N

(f; g)
���+ sup

f;g2F

����2~H[N]
N

(f; g)� �2H0
(f; g)

��� ;
(B.25)

where the �rst term in the right hand side follows by the Glivenko-Cantelli theorem for the triangular arrays

as stated in Lemma B.1, and the convergence of the second term follows from (B.14) and (B.15).

By putting together (B.24) and (B.25), and repeating the proof of the asymptotic uniform equicontinuity
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as given in (B.11) above, we obtain

v�N (�)  
(1� �)1=2GH0

(�)� �̂
1=2
G0H0

(�)
�H0(�; �)

� GH0
(�)

�H0
(�; �) ; as N !1, P-almost every sequence of

n
~H
[N ]
N

o
.

where the second line follows since the covariance kernel of the mean zero Gaussian processes
(1� �)1=2GH0

(�)� �̂
1=2
G0H0

(�) is identical to that of GH0
(�). The bootstrapped test statistics T �N is

a continuous functional of v�N (�), so the continuous mapping theorem leads to

T �N  TH = max

(
supf2F1 f�GH0

(f)=�H0
(f; f)g

supf2F0 fGH0(f)=�H0 (f; f)g

)
as N !1, P-almost every sequence of

n
~H
[N ]
N

o
.

Since TH has continuous cdf, the bootstrap critical values ~cN;1�� converges to c1��, P-a.s.
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