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UNIFORM POST SELECTION INFERENCE FOR LAD REGRESSION AND

OTHER Z-ESTIMATION PROBLEMS

A. BELLONI, V. CHERNOZHUKOV, AND K. KATO

Abstract. We develop uniformly valid confidence regions for regression coefficients in a high-dimensional

sparse least absolute deviation/median regression model. The setting is one where the number of regres-

sors p could be large in comparison to the sample size n, but only s ≪ n of them are needed to accurately

describe the regression function. Our new methods are based on the instrumental median regression es-

timator that assembles the optimal estimating equation from the output of the post ℓ1-penalized median

regression and post ℓ1-penalized least squares in an auxiliary equation. The estimating equation is im-

munized against non-regular estimation of nuisance part of the median regression function, in the sense

of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression

estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the

underlying sparse model. The resulting confidence regions are valid uniformly with respect to the un-

derlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate

that standard/naive post-selection inference breaks down over large parts of the parameter space, and

the proposed method does not. We then generalize our method to the case where p1 ≫ n regression

coefficients are of interest in a non-smooth Z-estimation framework with approximately sparse nuisance

functions, containing median regression with a single target regression coefficient as a very special case.

We construct simultaneous confidence bands on all p1 coefficients, and establish their uniform validity

over the underlying approximately sparse model.

Key words: uniformly valid inference, instruments, Neymanization, optimality, sparsity, model selec-

tion

1. Introduction

We consider the following regression model

yi = diα0 + x′iβ0 + ǫi, i = 1, . . . , n, (1.1)

where di is the “main regressor” of interest, whose coefficient α0 we would like to estimate and perform

(robust) inference on. The (xi)
n
i=1 are other high-dimensional regressors or “controls.” The regression

error ǫi is independent of di and xi and has median 0. The errors (ǫi)
n
i=1 are i.i.d. with distribution

Date: First version: May 2012, this version December 29, 2013. We would like to thank the participants of Luminy

conference on Nonparametric and high-dimensional statistics (December 2012), Oberwolfach workshop on Frontiers in

Quantile Regression (November 2012), 8th World Congress in Probability and Statistics (August 2012), and seminar at the

University of Michigan (October 2012). We are grateful to Sara van de Geer, Xuming He, Richard Nickl, Roger Koenker,

Vladimir Koltchinskii, Steve Portnoy, Philippe Rigollet, and Bin Yu for useful comments and discussions.
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2 UNIFORM POST SELECTION INFERENCE FOR Z-PROBLEMS

function F (·) and probability density function fǫ(·) such that F (0) = 1/2 and fǫ = fǫ(0) > 0. The

assumption on the error termmotivates the use of the least absolute deviation (LAD) or median regression,

suitably adjusted for use in high-dimensional settings.

The dimension p of “controls” xi is large, potentially much larger than n, which creates a challenge for

inference on α0. Although the unknown true parameter β0 lies in this large space, the key assumption

that will make estimation possible is its sparsity, namely T = supp(β0) has s < n elements (where s can

depend on n; we shall use array asymptotics). This in turn motivates the use of regularization or model

selection methods.

A standard (non-robust) approach towards inference in this setting would be first to perform model

selection via the ℓ1-penalized LAD regression estimator

(α̂, β̂) ∈ argmin
α,β

En[|y − dα− x′β|] + λ

n
‖Ψ(α, β′)′‖1, (1.2)

where λ is a penalty parameter and Ψ2 = diag(En[d
2],En[x

2
1], . . . ,En[x

2
p]) is a diagonal matrix with

normalization weights, and then to use the post-model selection estimator

(α̃, β̃) ∈ argmin
α,β

{
En[|y − dα− x′β|] : βj = 0 if β̂j = 0

}
(1.3)

to perform “usual” inference for α0. (The notation En[·] denotes the average over index 1 6 i 6 n.)

This standard approach is justified if (1.2) achieves perfect model selection with probability approach-

ing 1, so that the estimator (1.3) has the “oracle” property with with probability approaching 1. However

conditions for “perfect selection” are very restrictive in this model, in particular, requiring significant sep-

aration of non-zero coefficients away from zero. If these conditions do not hold, the estimator α̃ does

not converge to α0 at the
√
n-rate – uniformly with respect to the underlying model– which implies that

“usual” inference breaks down and is not valid. (The statements continue to apply if α is not penalized in

(1.2), α is restricted in (1.3), or if thresholding is applied.) We shall demonstrate the breakdown of such

naive inference in the Monte-Carlo experiements where non-zero coefficients in θ0 are not significantly

separated from zero.

Note that the breakdown of inference does not mean that the aforementioned procedures are not

suitable for prediction purposes. Indeed, the ℓ1-LAD estimator (1.2) and post ℓ1-LAD estimator (1.3)

attain (essentially) optimal rates
√
(s log p)/n of convergence for estimating the entire median regression

function, as has been shown in [28, 3, 15, 31] and in [3]. This property means that while these procedures

will not deliver perfect model recovery, they will only make “moderate” model selection mistakes (omitting

only controls with coefficients local to zero).

To achieve uniformly valid inferential performance we propose a procedure whose performance does

not require perfect model selection and allows potential “moderate” model selection mistakes. The latter

feature is critical in achieving uniformity over a large class of data generating processes, similarly to

the results for instrumental regression and mean regression studied in [2], [7], [32], [6]. This allows us to

overcome the impact of (moderate) model selection mistakes on inference, avoiding (in part) the criticisms

in [19], who prove that the “oracle property” sometime achieved by the naive estimators necessarily implies

the failure of uniform validity of inference and their semiparametric inefficiency [20].
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In order to achieve robustness with respect to moderate model selection mistakes, it will be necessary

to achieve the proper orthogonality condition between the main regressors and the control variables.

Towards that goal the following auxiliary equation plays a key role (in the homoscedastic case):

di = x′iθ0 + vi, E[vi | xi] = 0, i = 1, . . . , n; (1.4)

describing the relevant dependence of the regressor of interest di to the other controls xi. We shall assume

the sparsity of θ0, namely Td = supp(θ0) has at most s < n elements, and estimate the relation (1.4) via

Lasso or post-Lasso methods described below.

Given vi, which “partials out” the effect of xi from di, we shall use it as an instrument in the following

estimating equations for α0:

E[ϕ(yi − diα0 − x′iβ0)vi] = 0, i = 1, ..., n,

where ϕ(t) = 1/2−1(t < 1/2). We shall use the empirical analog of this equation to form an instrumental

median regression estimator of α0, using a plug-in estimator for x′iβ0. The estimating equation above

has the following feature:

∂

∂β
E[ϕ(yi − diα0 − x′iβ)vi]

∣∣∣∣
β=β0

= 0, i = 1, ..., n, (1.5)

As a result, the estimator of α0 will be “immunized” against “crude” estimation of x′iβ0, for example, via a

post-selection procedure or some regularization procedure. As we explain in Section 5, such immunization

ideas can be traced back to Neyman ([21, 22]).

Our estimation procedure has the following three steps.

Step 1: Estimation of the confounding function x′iβ0 in (1.1).

Step 2: Estimation of the instruments (residuals) vi in (1.4).

Step 3: Estimation of the main effect α0 based on the instrumental

median regression using vi as instruments for di.

Each step is computationally tractable, involving solutions of convex problems and a one-dimensional

search, and relies on a different identification condition which in turn requires a different estimation

procedure:

Step 1 constructs an estimate for the nuisance function x′iβ0 and not an estimate for α0. Here we

do not need a
√
n-rate consistency for the estimates of the nuisance function; slower rate like o(n−1/4)

will suffice. Thus, this can be based either on the ℓ1-LAD regression estimator (1.2) or the associated

post-model selection estimator (1.3).

Step 2 partials out the impact of the covariates xi on the main regressor di, obtaining the estimate

of the residuals vi in the decomposition (1.4). In order to estimate these residuals we rely either on

heteroscedastic Lasso [2], a version of the Lasso estimator of [27, 9]:

θ̂ ∈ argmin
θ

En[(d − x′θ)2] +
λ

n
‖Γ̂θ‖1 and set v̂i = di − x′iθ̂, i = 1, . . . , n, (1.6)
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where λ and Γ̂ are the penalty level and data-driven penalty loadings described in [2] (restated in Appendix

D), or the associated post-model selection estimator (Post-Lasso) [4, 2] defined as

θ̃ ∈ argmin
θ

{
En[(d − x′θ)2] : θj = 0 if θ̂j = 0

}
and set v̂i = di − x′iθ̃. (1.7)

Step 3 constructs an estimator α̌ of the coefficient α0 via an instrumental LAD regression proposed in

[12], using (v̂i)
n
i=1 as instruments. Formally, α̌ is defined as

α̌ ∈ arg inf
α∈A

Ln(α), where Ln(α) =
4|En[ϕ(y − x′β̂ − dα)v̂]|2

En[v̂2]
, (1.8)

ϕ(t) = 1/2 − 1{t 6 0} and A is a parameter space for α0. We will analyze the choice of A = [α̂ −
C log−1 n, α̂+ C log−1 n] with a suitable constant C > 0. 1 Several other choices for A are possible.

Our main result establishes conditions under which α̌ is root-n consistent for α0, asymptotically normal,

and achieves the semi-parametric efficiency bound for estimating α0 in the current homoscedastic setting,

provided that (s3 log3 p)/n→ 0 and other regularity conditions hold. Specifically, we show that, despite

possible model selection mistakes in Steps 1 and 2, the estimator α̌ obeys

σ−1
n

√
n(α̌− α0) N(0, 1), (1.9)

where σ2
n := 1/(4f2

ǫE[v
2]) with fǫ = fǫ(0). An alternative (and more robust) expression for σ2

n is given

by Huber’s sandwich:

σ2
n = J−1ΩJ−1, where Ω := E[v2]/4 and J := E[fǫdv]. (1.10)

We recommend to estimate Ω by the plug-in method and to estimate J by Powell’s method [23]. Fur-

thermore, we show that the criterion function at the true value α0 in Step 3 has the following pivotal

behavior

nLn(α0) χ2(1). (1.11)

This allows the construction of a confidence region Ân,ξ with asymptotic coverage 1 − ξ based on the

statistic Ln,

pr(α0 ∈ Ân,ξ) → 1− ξ where Ân,ξ = {α ∈ A : nLn(α) 6 (1− ξ)-quantile of χ2(1)}. (1.12)

Importantly, the robustness with respect to moderate model selection mistakes, which occurs because of

(1.5), allows the results (1.9) and (1.11) to hold uniformly over a large range of data generating processes,

similarly to the results for instrumental regression and partially linear mean regression model established

in [6, 32, 2]. One of our proposed algorithms explicitly uses ℓ1-regularization methods, similarly to [32]

and [2], while the main algorithm we propose uses post-selection methods, similarly to [6, 2].

Throughout the paper, we use array asymptotics – asymptotics where the model changes with n – to

better capture some finite-sample phenomena such as “small coefficients” that are local to zero. This

ensures the robustness of conclusions with respect to perturbations of the data-generating process along

various model sequences. This robustness, in turn, translates into uniform validity of confidence regions

over substantial regions of data-generating processes.

1For numerical experiments we used C = 10(En[d2])−1/2 and typically we normalize En[d2] = 1.
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In Section 3 we generalize the LAD regression to a more general setting by (i) allowing p1 target

parameters defined via Huber’s Z-problems are of interest, with dimension p1 potentially much larger

than the sample size, and (ii) also allowing for approximately sparse models. This framework covers

many other semi-parametric models since we cover smooth and non-smooth score functions. We provide

sufficient conditions to derive a uniform Bahadur representation. Finally, building up on [11], we verify

the validity of a multiplier bootstrap procedure.

1.1. Notation and convention. Denote by (Ω,F , pr) the underlying probability space. The notation

En[·] denotes the average over index 1 6 i 6 n, i.e., it simply abbreviates the notation n−1
∑n

i=1[·].
For example, En[x

2
j ] = n−1

∑n
i=1 x

2
ij . For a function f : R × R × Rp → R, we write Gn(f) =

n−1/2
∑n

i=1(f(yi, di, xi) − E[f(yi, di, xi)]). The l2-norm is denoted by ‖ · ‖, and the l0-norm, ‖ · ‖0,
denotes the number of non-zero components of a vector. Denote by ‖ · ‖∞ the maximal absolute element

of a vector. For a sequence (zi)
n
i=1 of constants, we write ‖z‖2,n =

√
En[z2]. For example, for a vector

δ ∈ R
p, ‖x′δ‖2,n =

√
En[(x′δ)2] denotes the prediction norm of δ. Given a vector δ ∈ R

p, and a set of

indices T ⊂ {1, . . . , p}, we denote by δT ∈ Rp the vector such that (δT )j = δj if j ∈ T and (δT )j = 0

if j /∈ T . Also we write the support of δ as supp(δ) = {j ∈ {1, ..., p} : δj 6= 0}. We use the notation

(a)+ = max{a, 0}, a ∨ b = max{a, b}, and a ∧ b = min{a, b}. We also use the notation a . b to denote

a 6 cb for some constant c > 0 that does not depend on n; and a .P b to denote a = OP (b). The arrow

 denotes convergence in distribution. We assume that the quantities such as p (the dimension of xi),

s (a bound on the numbers of non-zero elements of β0 and θ0), and hence yi, xi, β0, θ0, T and Td are all

dependent on the sample size n, and allow for the case where p = pn → ∞ and s = sn → ∞ as n → ∞.

However, for the notational convenience, we shall omit the dependence of these quantities on n. For a

class of measurable functions F equipped with the envelope F = supf∈F |f |, let N(ǫ,F , ‖ · ‖Q,2) denote

the ǫ-covering number of the class of functions F with respect to the L2(Q) seminorm ‖ · ‖Q,2, where Q is

finitely discrete, and let ent(ε,F) = log supQN(ε‖F‖Q,2,F , ‖ ·‖Q,2) denote the uniform covering entropy.

2. The Methods, Conditions, and Results

2.1. The methods. Each of the steps outlined before uses a different identification condition. Several

combinations are possible to implement each step, two of which are the following.

Algorithm 1 (Based on Post-Model Selection estimators).

(1) Run Post-ℓ1-penalized LAD (1.3) of yi on di and xi; keep fitted value x′iβ̃.

(2) Run Post-Lasso (1.7) of di on xi; keep the residual v̂i := di − x′iθ̃.

(3) Run Instrumental LAD regression (1.8) of yi − x′iβ̃ on di using v̂i as the instrument for di to

compute the estimator α̌. Report α̌ and/or perform inference based upon (1.9) or (1.12).

Algorithm 2 (Based on Regularized Estimators).

(1) Run ℓ1-penalized LAD (1.2) of yi on di and xi; keep fitted value x′iβ̂.

(2) Run Lasso of (1.6) di on xi; keep the residual v̂i := di − x′iθ̂.

(3) Run Instrumental LAD regression (1.8) of yi − x′iβ̂ on di using v̂i as the instrument for di to

compute the estimator α̌. Report α̌ and/or perform inference based upon (1.9) or (1.12).
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Comment 2.1 (Penalty Levels). In order to perform ℓ1-LAD and Lasso, one has to suitably choose the

penalty levels. In the Supplementary Appendix F we provide implementation details including penalty

choices for each step of the algorithm, and in all what follows we shall obey the penalty choices described

in Appendix F.

Comment 2.2 (Differences). Algorithm 1 relies on Post-ℓ1-LAD and Post-Lasso while Algorithm 2 relies

on ℓ1-LAD and Lasso. Since Algorithm 1 refits the non-zero coefficients without the penalty term it has

a smaller bias. Therefore it does rely on ℓ1-LAD and Lasso obtaining sparse solutions which in turn

typically relies on restricted isometry conditions [3, 2]. Algorithm 2 relies on penalized estimators. Step

3 of both algorithms relies on instrumental LAD regression with estimated data.

Comment 2.3 (Alternative Implementations). As discussed before, the three step approach proposed

here can be implemented with several different methods each with specific features. For instance, Dantzig

selector, square-root Lasso or the associated post-model selection could be used instead of Lasso or Post-

Lasso. Moreover, the instrumental LAD regression can be substituted by a 1-step estimator from the

ℓ1-LAD estimator α̂ of the form α̌ = α̂+ (En[fǫv̂
2])−1En[ϕ(y − dα̂− x′β̂)v̂] or by a LAD regression with

all the covariates selected in Steps 1 and 2.

2.2. Regularity Conditions. Here we provide regularity conditions that are sufficient for validity of

the main estimation and inference results. The behavior of the population Gram matrix E[x̃x̃′], where

x̃i = (di, x
′
i)

′, plays an important role in the analysis. It suffices to have good behavior of smaller

submatrices despite the fact that whenever p+ 1 > n, the empirical Gram matrix En[x̃x̃
′] does not have

full rank and in principle is not well-behaved. Define the minimal and maximal m-sparse eigenvalue of a

matrix M as

φmin(m,M) := min
16‖δ‖06m

δ′Mδ

‖δ‖2 and φmax(m,M) := max
16‖δ‖06m

δ′Mδ

‖δ‖2 . (2.13)

We denote φ̄min(m) := φmax(m,E[x̃x̃
′]) and φ̄max(m) := φmax(m,E[x̃x̃

′]). To assume that φ̄min(m) > 0

requires that all population Gram submatrices formed by any m components of x̃i are positive definite.

Next we state our main condition, which contains the previously defined approximate sparsity as well as

other more technical assumptions. Throughout the paper, let c and C be positive constants independent

of n, and let ℓn ր ∞, δn ց 0, and ∆n ց 0 be sequences of positive constants.

Condition 1. (i) (ǫi)
n
i=1 is a sequence of i.i.d. random variables with common distribution function F

such that F (0) = 1/2, independent of the random vectors {(di, x′i)′}ni=1. {(yi, di, x′i)′}ni=1 is a sequence of

i.i.d. random vectors generated according to models (1.1) and (1.4). (ii) c 6 E[v2 | x] and E[|v|3 | x] 6 C,
a.s., and E[d4] + E[v4] + max16j6p(E[x

2
jd

2] + E[|xjv|3]) 6 C. (iii) There exists s = sn > 1 such that

‖β0‖0 6 s and ‖θ0‖0 6 s. (iv) The error distribution F is absolutely continuous with continuously

differentiable density fǫ(·) such that fǫ(0) > c > 0 and fǫ(t) ∨ |f ′
ǫ(t)| 6 C for all t ∈ R, (v) with prob-

ability 1 −∆n we have Kx > max16i6n ‖xi‖∞ and (K4
x +K2

xs
2 + s3) log3(p ∨ n) 6 nδn. (vi) We have

c 6 φ̄min(ℓns) 6 φ̄max(ℓns) 6 C.

Comment 2.4. Condition 1(i) imposes the setting discussed in the previous section with the zero

conditional median of the error distribution. Condition 1(ii) imposes moment conditions on the structural
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errors and regressors to ensure good model selection performance of Lasso applied to equation (1.4). The

approximate sparsity 1 (iii) imposes sparsity of the high-dimensional vectors β0 and θ0. In the theorems

below we provide the required technical conditions on the growth of s log p since it is dependent on the

choice of algorithm. Condition 1(iv) is a set of standard assumptions in the LAD literature (see [16])

and in the instrumental quantile regression literature [12]. Condition 1(v) restricts the sparsity index, so

that s3 log3(p ∨ n) = o(n) is required; this is analogous to the restriction p3(log p)2 = o(n) made in [13]

in the problem without selection. Most importantly, no assumptions on the separation from zero of the

non-zero coefficients of θ0 and β0 are made.

Comment 2.5. Condition 1(vi) is quite plausible for many designs of interest. Combined with Condition

1(v), an equivalence between the norms induced by the empirical Gram matrix and the population Gram

matrix over s-sparse vectors follows. Other examples of such equivalence are: Theorem 3.2 in [25] (see

also [33] and [1]) for i.i.d. zero-mean sub-Gaussian regressors and s log2(n ∨ p) 6 δnn; Theorem 1.8 [25]

(see also Lemma 1 in [4]) for i.i.d. uniformly bounded zero-mean regressors and s(log3 n) log(p∨n) 6 δnn.

2.3. Results. We begin with considering the estimators generated by Algorithms 1 and Algorithm 2.

Theorem 1 (Robust Estimation and Inference). Let α̌ and Ln be obtained by Algorithm 1 or Algorithm

2. Suppose that Condition 1 is satisfied for all n > 1. Moreover, suppose that with probability at least

1−∆n, ‖β̂‖0 6 Cs. Then, as n→ ∞ and for σ2
n = 1/(4f2

ǫ E[v
2]),

σ−1
n

√
n(α̌− α0) N(0, 1) and nLn(α0) χ2(1).

Theorem 1 establishes the first main result of the paper. Algorithm 1 relies on the post model se-

lection estimators which in turn hinge on achieving sufficiently sparse estimates β̂ and θ̂. Sparsity of

the former can be directly achieved under sharp penalty choices for optimal rates as discussed in the

Supplementary Appendix F.2. The sparsity for the latter potentially requires heavier penalty as shown

in [3]. Alternatively, sparsity for the estimator in Step 1 can also be achieved by truncating the smallest

components of estimate β̂.2 Algorithm 2 relies on the regularized estimators instead of the post-model

selection estimators. Theorem 1 establishes that Algorithm 2 achieves the same inferential guarantees as

Algorithm 1.

An important consequence of these results is the following corollary. Here Pn denotes a collection of dis-

tributions for {(yi, di, x′i)′}ni=1 and for Pn ∈ Pn the notation prPn
means that under prPn

, {(yi, di, x′i)′}ni=1

is distributed according to the law determined by Pn.

Corollary 1 (Uniformly Valid Confidence Intervals). Let α̌ be the estimator of α0 constructed

according to Algorithm 1 or Algorithm 2, and let Pn be the collection of all distributions of {(yi, di, x′i)′}ni=1

for which Condition 1 and ‖β̂‖0 6 Cs holds with with probability at least 1−∆n for given n > 1. Then

as n→ ∞,

sup
Pn∈Pn

∣∣∣prPn
(α0 ∈ [α̌± σnzξ/2/

√
n])− (1 − ξ)

∣∣∣ = o(1), sup
Pn∈Pn

∣∣∣prPn
(α0 ∈ Ân,ξ)− (1− ξ)

∣∣∣ = o(1),

2Lemma 3 in Appendix D.2 formally shows that a suitable truncation preserves the rate of convergence under our

conditions.
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where zξ/2 = Φ−1(1 − ξ/2) and Ân,ξ = {α ∈ A : nLn(α) 6 (1− ξ)-quantile of χ2(1)}.

Corollary 1 establishes the second main result of the paper; it highlights the uniformity nature of the

results. As long as the overall sparsity requirements hold, imperfect model selection in Steps 1 and 2 do

not compromise the results. The robustness of the approach is also apparent from the fact that Corollary

1 allows for the data-generating process to change with n. This result is new even under the traditional

case of fixed-p asymptotics. Condition 1 explicitly characterize regions of data-generating processes for

which the uniformity result holds. Simulations results discussed next also provide an additional evidence

that these regions are substantial.

2.4. Generalization to Many Target Coefficients and Approximate Sparsity. We consider the

following generalization to the previous model:

y =

p1∑

ℓ=1

dℓαℓ + g(u) + ǫ, ǫ ∼ F, F (0) = 1/2.

where (d, u) are regressors, and ǫ is the noise with distribution function F that is independent of regressors,

and has median 0, i.e. F (0) = 1/2. The coefficients αℓ for each ℓ ∈ L = {1, ..., p1} are now the high-

dimensional parameter of interest.

We can rewrite this model as p1 models of the previous form:

y = αℓdℓ + gℓ(zℓ) + ǫ, dℓ = mℓ(zℓ) + vℓ, E[vℓ|zℓ] = 0, (ℓ ∈ L), (2.14)

where αℓ is the target coefficient, gℓ(zℓ) =
∑p1

l 6=ℓ dlαl + g(u), mℓ(zℓ) = E[dℓ | zℓ] and zℓ = (d, u) \ dℓ. We

would like to estimate and perform inference on each of the p1 coefficients αℓ simultaneously. Moreover,

we would like to allow regression functions gℓ and mℓ that are approximately sparse in terms of some

dictionary of technical regressors, generalizing the previous exact sparsity. By approximate sparsity

we mean that we can decompose the regression function into a sum of a sparse approximation and an

approximation error,

gℓ(zℓ) =

p∑

k=1

fℓk(zℓ)θℓk + rgℓ(zℓ), mℓ =

p∑

k=1

fℓk(zℓ)ϑℓk + rmℓ
(zℓ) (2.15)

where the sparse approximation is formulated in terms of a dictionary {fℓk}Kk=1 of technical regressors

containing (dl)l 6=ℓ as a subvector. Moreover, we require that the sparse approximations have dimension

1 6 s < n and the resulting squared approximation errors are small in expectation, namely for each ℓ ∈ L

‖(θℓk)pk=1‖0 6 s, ‖(ϑℓk)
p
k=1‖0 6 s, E[r2gℓ(zℓ)] 6 Cs/n, E[r2mℓ

(zℓ)] 6 Cs/n.

The approximately sparse framework above is quite general, in particular it contains traditional linear

sieve/series framework which uses s = o(n) dictionary terms to approximate and estimate regression

functions. Here we allow for the same possibility, except that we assume no a priori knowledge of the

most important dictionary terms. It is important to note that we allow for the regression functions to

have non-zero Fourier coefficients associated with each term in the dictionary, but we do require that

keeping the largest s coefficients while setting to zero the rest does produce a good approximation to the

target regression function.
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Given the setting, we can apply our previous instrumental median regression to estimate the sparse ap-

proximations to the function hℓ = (gℓ,mℓ) appearing in equation (2.14), and each of the target parameters

(αℓ)ℓ∈L can be identified and estimated by working with the system of “immunized” equations:

E[ψℓ{wℓ, αℓ, hℓ(zℓ)}] = 0,

where ψℓ(wℓ, α, t) = ϕ(y − dℓα − t1)(dℓ − t2) and wℓ = (y, dℓ, zℓ), and ∂tE[ψℓ(wℓ, αℓ, t)|zℓ]|t=hℓ(zℓ) = 0

is the “immunization” property. We will treat this generalization as a special case of a more general,

unified framework of the next section.

3. Inference on Many Target Parameters in Z-Problems with Approximately Sparse

Nuisance Functions

In this section we generalize the previous example to a more general setting, where p1 target parameters

defined via Huber’s Z-problems are of interest, with dimension p1 potentially much larger than the sample

size. This framework covers the median regression example, its generalization discussed above, as well

many other semi-parametric models.

The interest lies in p1 real-valued target parameters αℓ indexed by ℓ ∈ L = {1, . . . , p1}. We assume

that αℓ ∈ Aℓ ⊂ A for each ℓ, where A is a fixed compact interval in R. For each ℓ ∈ L the true value αℓ

is identified as a unique solution of the following moment condition:

E[ψℓ{wℓ, αℓ, hℓ(zℓ)}] = 0. (3.16)

Here for each ℓ ∈ L, vector wℓ is a random vector taking values in Wℓ ⊂ R
dw , containing vector zℓ taking

values in Zℓ as a subcomponent; the function (w,α, t) 7→ ψℓ(w,α, t) is a measurable map from an open

neighborhood of Wℓ × Aℓ × Tℓ to R, and z 7→ hℓ(z) = {hℓm(z)}Mm=1 is a measurable map from Zℓ to

Tℓ ⊂ RM , where M is fixed. The latter map is the nuisance parameter, possibly infinite-dimensional.

We assume that the nuisance functions (hℓ)ℓ∈L are approximately sparse in the sense of Condition 3

given below. We also assume that these functions can be estimated via sparse estimators, generated by

the use of the post-selection or ℓ1-penalized methods; with examples being given in the previous section.

We let ĥℓ = (ĥℓm)Mm=1 denote the estimator of hℓ, which obeys Condition 3 stated below. The estimator

α̂ℓ of αℓ is constructed as an Z-estimator, which solves the sample analogue of the equation (3.16):

|En[ψℓ{wℓ, α̂ℓ, ĥℓ(z)}]| 6 inf
α∈Aℓ

|En[ψ{wℓ, α, ĥℓ(z)}]|+ ǫn, (3.17)

where ǫn = o(b−1
n n−1/2) is the numerical tolerance parameter, and bn =

√
log(ep1).

In order to achieve robust inference results, we shall need to rely on the condition of orthogonality

(“immunity”) of the scores with respect to small perturbations in the value of the nuisance parameters,

which we can express in the following condition:

∂tE[ψℓ(wℓ, αℓ, t)|zℓ]|t=hℓ(zℓ) = 0, a.s., (3.18)

where here and below we use the symbol ∂t to abbreviate ∂/∂t. It is important to construct the scores ψℓ

to have property (3.18). Generally, we can construct the scores ψℓ that obey (3.18) by projecting some
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initial non-orthogonal scores onto the orthocomplement of the tangent space for the nuisance parameter

(see [30, 29, 17]). Sometimes the resulting construction generates additional nuisance parameters, for

example, the auxiliary regression function in the case of the median regression problem in Section 2.

In what follows, we shall denote by ς , c0, c, n0, and C some positive constants.

Condition 2. For each n, we observe independent and identically distributed copies of (wi)
n
i=1 of

the random vector w = (wℓ)ℓ∈L, whose law is determined by the probability measure P ∈ Pn. Uni-

formly for all n > n0 and P ∈ Pn and ℓ ∈ L, the following conditions hold. (i) The true param-

eter values αℓ obeys (3.16); there is an interval of fixed positive radius centered at αℓ contained in

Aℓ ⊂ A, where A is a fixed compact set in R. (ii) For each ν = (νk)
1+M
k=1 = (α, t) ∈ Aℓ × Tℓ, the

map ν 7→ E{ψℓ(wℓ, ν)|zℓ} is twice continuously differentiable a.s., and E[supν∈Aℓ×Tℓ
|∂νrE{ψℓ(wℓ, ν) |

zℓ}|2] 6 C, supν∈Aℓ×Tℓ
|∂νk∂νrE{ψℓ(wℓ, ν) | zℓ}| 6 C for each r = 1, . . . ,K and k = 1, . . . ,K;

moreover, sup(ν,ν̄)∈(Aℓ×Tℓ)2 E[{ψℓ(wℓ, ν) − ψℓ(wℓ, ν̄)}2|zℓ] 6 C‖ν − ν̄‖ς almost surely. (iii) The or-

thogonality condition (3.18) holds. (iv) The following global and local identifiability condition holds:

2|E[ψℓ{wℓ, α, hℓ(zℓ)}]| > |Γℓ(α − αℓ)| ∨ c0 for all α ∈ Aℓ, where Γℓ = ∂αE[ψℓ{wℓ, αℓ, hℓ(zℓ)}], with c 6
|Γℓ| 6 C for all ℓ ∈ L. (v) The moments of the scores are well-behaved: c 6 (E[ψ2

ℓ{wℓ, αℓ, hℓ(zℓ)}])1/2 6
(E[|ψℓ{wℓ, αℓ, hℓ(zℓ)}|q])1/q 6 C, for q > 4.

These conditions impose rather mild assumptions for Z-estimation problems, in particular, allowing

for non-smooth scores ψℓ such as those arising in median regression. These conditions are analogous to

assumptions imposed in the p = o(n) setting, e.g., in [13]. In what follows, let δn ց 0 and ρn ց 0

be a sequence of constants approaching zero from above. Let an = max(p1, p, n, e) and recall that

bn =
√
log(ep1).

Condition 3. Uniformly for all n > n0 and P ∈ Pn and ℓ ∈ L, the following conditions hold: (i) The

nuisance functions hℓ = (hℓm)Mm=1 : Zℓ 7→ Tℓ ⊂ R
M , where M is fixed, are approximately sparse with

sparsity index at most s = sn > 1, namely, z 7→ hℓm(z)=
∑p

k=1 fℓmk(z)βℓkm+ rℓm(z), where fℓmk : Zℓ 7→
R are approximating functions, βℓm = (βℓmk)

p
k=1 obeys |supp(βℓm)| 6 s, and the approximation errors

(rℓm)Mm=1 : Zℓ → R obey ‖rℓm‖P,2 6 C{s log(an)/n}1/2 for all m and ℓ. (ii) There is a sparse estimator

ĥℓ = (ĥℓm)Mm=1 of hℓ with good sparsity and rate properties, namely with probability 1 − δn, ĥℓ ∈ Hℓ,

where Hℓ = ×M
m=1Hℓm consists of functions (h̄ℓm)Mm=1 : Zℓ → Tℓ, where z 7→ h̄ℓm(z) =

∑p
k=1 fℓmk(z)β̄ℓk

is such that |supp(β̄ℓm)| 6 Cs and ‖∑p
k=1 fℓmk(zℓ)(β̄ℓmk − βℓmk)‖P,2 6 C{s log(an)/n}1/2 for all m

and ℓ. (iii) Application of ψℓ to Aℓ and Hℓ does not increase the entropy too much, namely Fℓ =

[ψℓ{wℓ, α, h(zℓ)}, α ∈ Aℓ, h ∈ Hℓm ∪ {hℓ}] has ent(ε,Fℓ) 6 C{log(e/ε) +
∑M

m=1 ent(ε/C,Hℓm)}. (iv) For

Fℓ denoting the envelope of Fℓ, and F = maxℓ∈L Fℓ, we have ‖F‖P,q 6 C for q > 4. (v) The dimensions

p1, p, and s obey the following growth conditions with respect to n:

n−1/2
(√

s log an + n−1/2sn
1
q log an

)
6 ρn, ρς/2n

√
s log an 6 δnb

−1
n . (3.19)

Condition 2(i), (ii), (v) records a formal sense in which approximate sparsity of hℓ is used, as well

as requires reasonable behavior of sparse estimators ĥℓ. In the previous section, this type of behavior

occurred in the cases where hℓ consisted of (a part of) median regression function and a conditional



UNIFORM POST SELECTION INFERENCE FOR Z-PROBLEMS 11

expectation function in an auxiliary equation. There are lots of conditions in the literature that imply

these conditions from various primitive assumptions. Note that for the case with q = ∞, condition (v)

implies the following restrictions on the sparsity indices: s2 log3 an/n → 0 for the case where ς = 2

(smooth ψℓ) and s3 log5 an/n → 0 for the case where ς = 1 (non-smooth ψℓ). Condition (iii) is a

mild condition on ψℓ – it holds for example, when ψℓ is generated by applying monotone and Lipschitz

transformations to its arguments, as was the case in median regression (see [30] for many other ways).

The condition (iv) bounds the moments of the envelopes, and it can be relaxed to a bound that grows

with n, with an appropriate strengthening of the growth condition (3.19).

Define, for each ℓ ∈ L,

σ2
ℓ = E[Γ−2

ℓ ψ2
ℓ (wℓ, αℓ, hℓ(zℓ))], φℓ(w) = −σ−1

ℓ Γ−1
ℓ ψℓ(wℓ, αℓ, hℓ(zℓ)).

Theorem 2 (Uniform Bahadur Representation). Under Conditions 2 and 3 , uniformly in P ∈ Pn, with

probability 1− o(1), as n→ ∞,

max
ℓ∈L

∣∣∣
√
n

(
α̂ℓ − αℓ

σℓ

)
− 1√

n

n∑

i=1

φℓ(w)
∣∣∣ 6 o(b−1

n ).

An immediate implication is a corollary on the uniform in P ∈ Pn and ℓ ∈ L asymptotic normality,

which follows from Liapunov’s central limit theorem for triangular arrays.

Corollary 2 (Uni-Dimensional Central Limit Theorem). Under conditions of Theorem 2, as n→ ∞,

max
ℓ∈L

sup
P∈Pn

sup
t∈R

∣∣∣prP
{√

n

(
α̂ℓ − αℓ

σℓ

)
6 t

}
− prP {N(0, 1) 6 t}

∣∣∣ = o(1).

This implies, in particular, that for c̄1−a = (1− a/2)-quantile of N(0, 1) variable,

max
ℓ∈L

sup
P∈Pn

∣∣∣prP
{
αℓ ∈ [α̂ℓ ± σ̂ℓc̄1−a/2n

−1/2]
}
− (1− a)

∣∣∣ = o(1),

provided maxℓ∈L |σ̂ℓ − σℓ| = oP (1) uniformly in P ∈ Pn.

This result construct pointwise confidence bands for αℓ, and shows that they are valid uniformly in

P ∈ P and in ℓ ∈ L.

Another useful implication is the high-dimensional central limit theorem uniformly over rectangles in

Rp1 , provided that (log p1)
7 = o(n), which follows from [11]’s central limit theorem for p1-dimensional

(approximate) sample means, with p1 potentially much larger than n. Let

N = (Nℓ)ℓ∈L = N(0,Ω)

be a random vector with normal distribution with mean zero and variance matrix Ω, where Ωℓℓ̄ =

E{ψ̄ℓ(w)ψ̄ℓ̄(w)} for (ℓ, ℓ̄) ∈ L2. Let R be a collection of rectangles R in Rp1 of the form

R =

{
z ∈ R

p1 : max
ℓ∈A

zℓ 6 t,max
ℓ∈B

−zℓ 6 t
}

(t ∈ R, A ⊂ L, B ⊂ L).
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Corollary 3 (High-Dimensional Central Limit Theorem over Rectangles). Under conditions of Theorem

2, provided that (log p1)
7 = o(n),

sup
P∈Pn

sup
R∈R

∣∣∣prP
{√

n

(
α̂ℓ − αℓ

σℓ

)

ℓ∈L
∈ R

}
− prP {N ∈ R}

∣∣∣ = o(1). (3.20)

This implies, in particular, that for c1−a = (1− a)-quantile of maxℓ∈L |Nℓ|,

sup
P∈Pn

∣∣∣prP
{
αℓ ∈ [α̂ℓ ± c1−an

−1/2], for all ℓ ∈ L
}
− (1− a)

∣∣∣ = o(1).

The result provides simultaneous confidence bands for (αℓ)ℓ∈L, which are valid uniformly in P ∈ Pn.

Moreover, the result (3.20) is immediately useful for performing multiple hypotheses testing about (αℓ)ℓ∈L

via the step-down methods of [24] which control the family-wise error rates– we refer the reader to [11]

for further discussion and details of multiple testing with p1 ≫ n.

In practice the distribution of N is unknown due to the unknown covariance matrix, but it can be

approximated by the Gaussian multiplier bootstrap procedure, which generates a vector N ∗ as follows:

N ∗ = (N ∗
ℓ)ℓ∈L =

{
1√
n

n∑

i=1

ξiφ̂ℓ(wi)

}

ℓ∈L
, (3.21)

where (ξi)
n
i=1 are i.i.d. draws ofN(0, 1) variables, which are independently distributed of the data (wi)

n
i=1,

and φ̂ℓ are any estimators of ψ̄ℓ, such that max(ℓ,ℓ̄)∈L |En[φ̂ℓ(w)φ̂ℓ̄(w)] − En[φℓ(w)φℓ̄(w)]| = oP (b
−4
n )

uniformly in P ∈ Pn.

[11]’s results for multiplier bootstrap then imply the following theorem.

Corollary 4 (Validity of Multiplier Bootstrap). Under conditions of Theorem 2, provided that (log p1)
7 =

o(n), uniformly in P ∈ Pn with probability 1− o(1),

sup
P∈Pn

sup
R∈R

∣∣∣prP {N ∗ ∈ R | (wi)
n
i=1} − prP {N ∈ R}

∣∣∣ = o(1). (3.22)

This implies, in particular, that for ĉ1−a = (1− a)-quantile of maxℓ∈L |N ∗
ℓ |,

sup
P∈Pn

∣∣∣prP
{
αℓ ∈ [α̂ℓ ± ĉ1−an

−1/2], for all ℓ ∈ L
}
− (1− a)

∣∣∣ = o(1).

4. Monte-Carlo Experiments

In this section we examine the finite sample performance of the proposed estimators. We focus on the

estimator associated with Algorithm 1 based on post-model selection methods.

We considered the following regression model:

y = dα0 + x′(cyθ0) + ǫ, d = x′(cdθ0) + v, (4.23)

where α0 = 1/2, θ0j = 1/j2, j = 1, . . . , 10, and θ0j = 0 otherwise, x = (1, z′)′ consists of an intercept and

covariates z ∼ N(0,Σ), and the errors ǫ and v are independently and identically distributed as N(0, 1).

The dimension p of the covariates x is 300, and the sample size n is 250. The regressors are correlated

with Σij = ρ|i−j| and ρ = 0.5. The coefficients cy and cd are used to control the R2 of the reduce
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form equation. For each equation, we consider the following values for the R2: {0, 0.1, 0.2, . . . , 0.8, 0.9}.
Therefore we have 100 different designs and results are based on 500 repetitions for each design. For each

repetition we draw new vectors xi’s and errors ǫi’s and vi’s.

The design above with x′(cyθ0) is a sparse model. However, the decay of the components of θ0 rules

out typical “separation from zero” assumptions of the coefficients of “important” covariates (since the

last component is of the order of 1/n), unless cy is very large. Thus, we anticipate that “standard”

post-selection inference procedures – which rely on model selection of the outcome equation only – work

poorly in the simulation study. In contrast, based upon the prior theoretical arguments, we anticipate

that our instrumental median estimator– which works off both equations in (4.23)– to work well in the

simulation study.

The simulation study focuses on Algorithm 1. Standard errors are computed using the formula (1.10).

(Algorithm 2 worked similarly, though somewhat worse due to larger biases). As the main benchmark

we consider the standard post-model selection estimator α̃ based on the post ℓ1-penalized LAD method,

as defined in (1.3).

In Figure 1, we display the (empirical) rejection probability of tests of a true hypothesis α = α0,

with nominal size of tests equal to 0.05. The left-top plot shows the rejection frequency of the standard

post-model selection inference procedure based upon α̃ (where the inference procedure assumes perfect

recovery of the true model). The rejection frequency deviates very sharply from the ideal rejection

frequency of 0.05. This confirms the anticipated failure (lack of uniform validity) of inference based upon

the standard post-model selection procedure in designs where coefficients are not well separated from zero

(so that perfect recovery does not happen). In sharp contrast, the right top and bottom plots show that

both of our proposed procedures (based on estimator α̌ and the result (1.9) and on the statistic Ln and

the result (1.12)) perform well, closely tracking the ideal level of 0.05. This is achieved uniformly over all

the designs considered in the study, and this confirms our theoretical results established in Corollary 1.

In Figure 2, we compare the performance of the standard post-selection estimator α̃ (defined in (1.3))

and our proposed post-selection estimator α̌ (obtained via Algorithm 1) . We display results in three

different metrics of performance – mean bias (top row), standard deviation (middle row), and root mean

square error (bottom row) of the two approaches. The significant bias for the standard post-selection

procedure occurs when the indirect equation (1.4) is nontrivial, that is, when the main regressor is

correlated to other controls. Such bias can be positive or negative depending on the particular design.

The proposed post-selection estimator α̌ performs well in all three metrics. The root mean square error

for the proposed estimator α̌ are typically much smaller than those for standard post-model selection

estimators α̃ (as shown by bottom plots in Figure 2). This is fully consistent with our theoretical results

and minimax efficiency considerations given in Section 5.
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Appendix

Appendix A. Generalization of Section 3 to Heteroscedastic Case

We emphasize that both proposed algorithms exploit the homoscedasticity of the model (1.1) with

respect to the error term ǫi. The generalization to the heteroscedastic case can be achieved as follows.

In order to achieve the semiparametric efficiency bound we need to consider the weighted version of the

auxilliary equation (1.4). Specifically, we can rely on the following of weighted decomposition:

fidi = fix
′
iθ

∗
0 + v∗i , E[fiv

∗
i | xi] = 0, i = 1, . . . , n, (A.24)

where the weights are conditional densities of error terms ǫi evaluated at their medians of 0,

fi = fǫi(0|di, xi), i = 1, . . . , n, (A.25)

which in general vary under heteroscedasticity. With that in mind it is straightforward to adapt the

proposed algorithms when the weights (fi)
n
i=1 are known. For example Algorithm 1 becomes as follows.

Algorithm 1′ (Based on Post-Model Selection estimators).

(1) Run Post-ℓ1-penalized LAD of yi on di and xi; keep fitted value x′iβ̃.

(2) Run Post-Lasso of fidi on fixi; keep the residual v̂∗i := fi(di − x′iθ̃).

(3) Run Instrumental LAD regression of yi − x′iβ̃ on di using v̂
∗
i as the instrument for di to compute

the estimator α̌. Report α̌ and/or perform inference.

An analogous generalization of Algorithm 2 based on regularized estimator results from removing the

word “Post” in the algorithm above.

Under similar regularity conditions, uniformly over a large collectionP∗
n of distributions of {(yi, di, x′i)′}ni=1,

the estimator α̌ above obeys

(4E[v∗2])1/2
√
n(α̌− α0) N(0, 1). (A.26)

Moreover, the criterion function at the true value α0 in Step 3 also has a pivotal behavior, namely

nLn(α0) χ2(1), (A.27)

which can also be used to construct a confidence region Ân,ξ based on the Ln-statistic as in (1.12) with

coverage 1− ξ uniformly over the collection of distributions P∗
n.

In practice the density function values (fi)
n
i=1 are typically unknown and need to be replaced by

estimates (f̂i)
n
i=1. The analysis of the impact of such estimation is very delicate and is developed in the

companion work [8], which considers the more general problem of uniformly valid inference for quantile

regression models in approximately sparse models.

Appendix B. Additional Discussion for Section 3

B.1. Connection to Neymanization. In this section we make some connections to Neyman’s C(α)

test ([21, 22]). For the sake of exposition we assume that (yi, di, xi)
n
i=1 are i.i.d. but we shall use the
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heteroscedastic setup introduced in the previous section. We consider the estimating equation for α0:

E[ϕ(yi − diα0 − x′iβ0)vi] = 0.

Our problem is to find useful instruments vi such that

∂

∂β
E[ϕ(yi − diα0 − x′iβ)vi]|β=β0 = 0.

If this property holds, the estimator of α0 will be “immunized” against “crude” or nonregular estimation

of β0, for example, via a post-selection procedure or some regularization procedure. Such immunization

ideas are in fact behind Neyman’s classical construction of his C(α) test, so we shall use the term

“Neymanization” to describe such procedure. There will be many instruments vi that can achieve the

property stated above, and there will be one that is optimal.

The instruments can be constructed by taking vi := zi/fi, where zi is the residual in the regression

equation:

widi = wim0(xi) + zi, E[wizi|xi] = 0, (B.28)

where wi is a nonnegative weight, a function of (di, zi) only, for example wi = 1 or wi = fi (the latter

choice will in fact be optimal). Note that function m0(xi) solves the least squares problem

min
h∈H

E
[
{wd − wh(x)}2

]
, (B.29)

where H is the class of measurable functions h(x) such that E[w2h2(x)] < ∞. Our assumption is that

the m0(x) is a sparse function x′θ0, with ‖θ0‖0 6 s so that

widi = wix
′
iθ0 + zi, E[wizi|xi] = 0. (B.30)

In finite samples, the sparsity assumption allows to employ post-Lasso and Lasso to solve the least squares

problem above approximately, and estimate zi. Of course, the use of other structured assumptions may

motivate the use of other regularization methods.

Arguments similar to those in the proofs show that, for
√
n(α− α0) = O(1),

√
n{En[ϕ(y − dα− x′β̂)v]− En[ϕ(y − dα− x′β0)v]} = oP (1),

for β̂ based on a sparse estimation procedure, despite the fact that β̂ converges to β0 at a slower rate

than 1/
√
n. That is, the empirical estimating equations behave as if β0 is known. Hence for estimation

we can use α̂ as a minimizer of the statistic:

Ln(α) = c−1
n |√nEn[ϕ(y − dα − x′β̂)v]|2,

where cn = En[v
2]/4. Since Ln(α0) χ2(1), we can also use the statistic directly for testing hypotheses

and for construction of confidence sets.

This is in fact a version of Neyman’s C(α) test statistic, adapted to the present non-smooth set-

ting. The usual expression of C(α) statistic is different. To see a more familiar form, note that

θ0 = E[w2xx′]−E[w2dx′], where A− denotes a generalized inverse of A, and write

vi = (wi/fi)di − (wi/fi)x
′
iE[w

2xx′]−E[w2dx′], and ϕ̂i := ϕ(yi − diα− x′iβ̂),
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so that,

Ln(α) = c−1
n |√n{En[ϕ̂(w/f)d]− En[ϕ̂(w/f)x]

′E[w2xx′]−E[w2dx′]}|2.
This is indeed a familiar form of a C(α) statistic.

The estimator α̂ that minimizes Ln up to oP (1), under suitable regularity conditions,

σ−1
n

√
n(α̂− α0) N(0, 1), σ2

n =
1

4
E[fdv]−2E[v2].

It is easy to show that the smallest value of σ2
n is achieved by using vi = v∗i induced by setting wi = fi:

σ∗2
n =

1

4
E[v∗2]−1. (B.31)

Thus, setting wi = fi gives an optimal instrument amongst all “immunizing” instruments generated by

the process described above. Obviously, this improvement translates into shorter confidence intervals and

better testing based on either α̂ or Ln. While wi = fi is optimal, fi will have to be estimated in practice,

resulting actually in more stringent condition than when using non-optimal, known weights, e.g., wi = 1.

The use of known weights may also give better behavior under misspecification of the model. Under

homoscedasticity, wi = 1 is an optimal weight.

B.2. Minimax Efficiency. There is also a clean connection to the (local) minimax efficiency analysis

from the semiparametric efficiency analysis. [18] derives an efficient score function for the partially linear

median regression model:

Si = 2ϕ(yi − diα0 − x′iβ0)fi[di −m∗
0(x)],

where m∗
0(xi) is m0(xi) in (B.28) induced by the weight wi = fi:

m∗
0(xi) =

E[f2
i di|xi]

E[f2
i |xi]

.

Using the assumption m∗
0(xi) = x′iθ

∗
0 , where ‖θ∗0‖0 6 s≪ n is sparse, we have that

Si = 2ϕ(yi − diα0 − x′iβ0)v
∗
i ,

which is the score that was constructed using Neymanization. It follows that the estimator based on the

instrument v∗i is actually efficient in the minimax sense (see Theorem 18.4 in [17]), and inference about

α0 based on this estimator provides best minimax power against local alternatives (see Theorem 18.12

in [17]).

The claim above is formal as long as, given a law Pn, the least favorable submodels are permitted as

deviations that lie within the overall model. Specifically, given a law Pn, we shall need to allow for a

certain neighborhood Pδ
n of Pn such that Pn ∈ Pδ

n ⊂ Pn, where the overall model Pn is defined similarly

as before, except now permitting heteroscedasticity (or we can keep homoscedasticity fi = fǫ to maintain

formality). To allow for this we consider a collection of models indexed by a parameter t = (t1, t2):

yi = di(α0 + t1) + x′i(β0 + t2θ
∗
0) + ǫi, ‖t‖ 6 δ, (B.32)

fidi = fix
′
iθ

∗
0 + v∗i , E[fiv

∗
i |xi] = 0, (B.33)

where ‖β0‖0 ∨ ‖θ∗0‖0 6 s/2 and conditions as in Section 2 hold. The case with t = 0 generates the model

Pn; by varying t within δ-ball, we generate models Pδ
n, containing the least favorable deviations. By [18],
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the efficient score for the model given above is Si, so we cannot have a better regular estimator than

the estimator whose influence function is J−1Si, where J = E[S2
i ]. Since our model Pn contains Pδ

n,

all the formal conclusions about (local minimax) optimality of our estimators hold from theorems cited

above (using subsequence arguments to handle models changing with n). Our estimators are regular,

since under Pt
n with t = (O(1/

√
n), o(1)), their first order asymptotics do not change, as a consequence

of Theorems in Section 2. (Though our theorems actually prove more than this.)

Appendix C. Instrumental LAD Regression with Estimated Inputs

Throughout this section (xi)
n
i=1 are non-stochastic, and let Ē[f(y, d, x)] := En[E[f(y, d, x) | x]],

ψα,β,θ(yi, di, xi) = (1/2− 1{yi 6 x′iβ + diα})(di − x′iθ) = (1/2− 1{yi 6 x′iβ + diα}){vi − x′i(θ − θ0)}

and Gn(f) = n−1/2
n∑

i=1

{f(yi, di, xi)− E[f(yi, di, xi)]}.

For fixed α ∈ R and β, θ ∈ Rp, define the function

Γ(α, β, θ) := Ē[ψα̃,β̃,θ̃(y, d, x)]
∣∣∣
α̃=α,β̃=β,θ̃=θ

where the expectation is conditional on (xi)
n
i=1. For the notational convenience, let h = (β′, θ′)′, h0 =

(β′
0, θ

′
0)

′ and ĥ = (β̂′, θ̂′)′. The partial derivative of Γ(α, β, θ) with respect to α is denoted by Γ1(α, β, θ)

and the partial derivative of Γ(α, β, θ) with respect to h = (β′, θ′)′ is denoted by Γ2(α, β, θ). Consider

the following high-level condition. Here (β̂′, θ̂′)′ is a generic estimator of (β′
0, θ

′
0)

′ (and not necessarily

ℓ1-LAD and Lasso estimators, reps.), and α̌ is defined by α̌ ∈ argminα∈A Ln(α) with this (β̂′, θ̂′)′, where

A here is also a generic (possibly random) compact interval. We assume that (β̂′, θ̂′)′,A and α̌ satisfy

the following conditions.

Condition ILAD. Let {(yi, di)′}ni=1 be a sequence of independent random vectors generated according

to models (1.1) and (1.4). Suppose (i) fǫ(t)∨|f ′
ǫ(t)| 6 C for all t ∈ R, Ē[v2] > c > 0, and Ē[v4]∨Ē[d4] 6 C.

Moreover, for some sequences δn ց 0 and ∆n ց 0, with probability at least 1−∆n,

(ii) {α : |α− α0| 6 n−1/2/δn} ⊂ A, where A is a (possibly random) compact interval;

(iii) the estimated parameters (β̂′, θ̂′)′ satisfy

{
1 ∨ max

16i6n
(E[|vi| | xi] ∨ |x′i(θ̂ − θ0)|)

}1/2‖x′(β̂ − β0)‖2,n 6 δnn−1/4, ‖x′(θ̂ − θ0)‖2,n 6 δnn−1/4, (C.34)

sup
α∈A

|Gn(ψα,β̂,θ̂ − ψα,β0,θ0)| 6 δn; (C.35)

(iv) the estimator α̌ satisfies |α̌− α0| 6 δn.

Comment C.1. Condition ILAD suffices to make the impact of the estimation of instruments negligible

on the first order asymptotics of the estimator α̌. We note that Condition ILAD covers several different

estimators including both estimators proposed in Algorithms 1 and 2.

The following lemma summarizes the main inferential result based on the high level Condition ILAD.
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Lemma 1. Under Condition ILAD we have, for σ2
n = 1/(4f2

ǫ Ē[v
2]),

σ−1
n

√
n(α̌ − α0) N(0, 1) and nLn(α0) χ2(1),

Proof of Lemma 1. We shall separate the proof into two parts.

Part 1. (Proof for the first assertion). Observe that

En[ψα̌,β̂,θ̂(y, d, x)] = En[ψα0,β0,θ0(y, d, x)] + En[ψα̌,β̂,θ̂(y, d, x) − ψα0,β0,θ0(y, d, x)]

= En[ψα0,β0,θ0(y, d, x)] + Γ(α̌, β̂, θ̂)

+ n−1/2
Gn(ψα̌,β̂,θ̂ − ψα̌,β0,θ0) + n−1/2

Gn(ψα̌,β0,θ0 − ψα0,β0,θ0)

= I + II + III + IV.

By Condition ILAD(iii) (C.35) we have with probability at least 1 − ∆n that |III| 6 δnn
−1/2. We

wish to show that ∣∣II + (fǫĒ[v
2])(α̌ − α0)

∣∣ .P δnn
−1/2 + δn|α̌− α0|. (C.36)

Observe that

Γ(α, β̂, θ̂) = Γ(α, β0, θ0) + Γ(α, β̂, θ̂)− Γ(α, β0, θ0)

= Γ(α, β0, θ0) + {Γ(α, β̂, θ̂)− Γ(α, β0, θ0)− Γ2(α, β0, θ0)
′(ĥ− h0)} + Γ2(α, β0, θ0)

′(ĥ− h0).

Since Γ(α0, β0, θ0) = 0, by Taylor’s theorem, there exists some point α̃ between α0 and α such that

Γ(α, β0, θ0) = Γ1(α̃, β0, θ0)(α− α0). By its definition, we have

Γ1(α, β, θ) = −Ē[fǫ(x
′(β−β0)+d(α−α0))d(d−x′θ)] = −Ē[fǫ(x

′(β−β0)+d(α−α0))d{v−x′(θ− θ0)}].

Since fǫ = fǫ(0) and di = x′iθ0 + vi with E[vi | xi] = 0, we have Γ1(α0, β0, θ0) = −fǫĒ[dv] = −fǫĒ[v2].
Also

|Γ1(α, β0, θ0)− Γ1(α0, β0, θ0)| 6 |Ē[{fǫ(0)− fǫ(d(α − α0))dv]| 6 C|α− α0|Ē[|d2v|].
Hence Γ1(α̌, β0, θ0) = −fǫĒ[v2] +O(1)|α̌ − α0|.

Observe that

Γ2(α, β, θ) =

(
−Ē[fǫ(x

′(β − β0) + d(α − α0))(d − x′θ)x]

−Ē[(1/2− 1{y 6 x′β + dα})x]

)
.

Note that since Ē[fǫ(0)(d − x′θ0)x] = fǫĒ[vx] = 0 and Ē[(1/2− 1{y 6 x′β0 + dα0})x] = Ē[(1/2− 1{ǫ 6
0})x] = 0, we have Γ2(α0, β0, θ0) = 0. Moreover,

|Γ2(α, β0, θ0)
′(ĥ− h0)| = |{Γ2(α, β0, θ0)− Γ2(α0, β0, θ0)}′(ĥ− h0)|

6 |Ē[{fǫ(d(α− α0))− fǫ(0)}vx′](β̂ − β0)|

+ |Ē[{F (d(α − α0))− F (0)}x′](θ̂ − θ0)]|

6 O(1){‖x′(β̂ − β0)‖2,n + ‖x′(θ̂ − θ0)‖2,n}|α− α0|
= OP (δn)|α− α0|.

Hence |Γ2(α̌, β0, θ0)
′(ĥ− h0)| .P δn|α̌− α0|.
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Denote by Γ22(α, β, θ) the Hessian matrix of Γ(α, β, θ) with respect to h = (β′, θ′)′. Then

Γ22(α, β, θ) =

(
−Ē[f ′

ǫ(x
′(β − β0) + d(α− α0))(d − x′θ)xx′] Ē[fǫ(x

′(β − β0) + d(α − α0))xx
′]

Ē[fǫ(x
′(β − β0) + d(α− α0))xx

′] 0

)
,

so that

(ĥ− h0)
′Γ22(α, β, θ)(ĥ − h0) 6 |(β̂ − β0)

′Ē[f ′
ǫ(x

′(β − β0) + d(α − α0))(d − x′θ)xx′](β̂ − β0)|

+ 2|(β̂ − β0)
′Ē[fǫ(x

′(β − β0) + d(α− α0))xx
′](θ̂ − θ0)|

6 C{ max
16i6n

E[|di − x′iθ| | xi]‖x′(β̂ − β0)‖22,n + 2‖x′(β̂ − β0)‖2,n · ‖x′(θ̂ − θ0)‖2,n}.

Here |di−x′iθ| = |vi−x′i(θ−θ0)| 6 |vi|+ |x′i(θ−θ0)|. Hence by Taylor’s theorem together with ILAD(iii),

we conclude that

|Γ(α̌, β̂, θ̂)− Γ(α̌, β0, θ0)− Γ2(α̌, β0, θ0)
′(ĥ− h0)| .P δnn

−1/2.

This leads to the expansion in (C.36).

We now proceed to bound the fourth term. By Condition ILAD(iii) we have with probability at least

1−∆n that |α̌− α0| 6 δn. Observe that

(ψα,β0,θ0 − ψα0,β0,θ0)(yi, di, xi) = (1{yi 6 x′iβ0 + diα0} − 1{yi 6 x′iβ0 + diα})vi
= (1{ǫi 6 0} − 1{ǫi 6 di(α− α0)})vi,

so that |(ψα,β0,θ0 − ψα0,β0,θ0)(yi, di, xi)| 6 1{|ǫi| 6 δn|di|}|vi| whenever |α − α0| 6 δn. Since the class of

functions {(y, d, x) 7→ (ψα,β0,θ0 −ψα0,β0,θ0)(y, d, x) : |α−α0| 6 δn} is a VC subgraph class with VC index

bounded by some constant independent of n, using (a version of) Theorem 2.14.1 in [30], we have

sup
|α−α0|6δn

|Gn(ψα,β0,θ0 − ψα0,β0,θ0)| .P (Ē[1{|ǫi| 6 δn|di|}v2i ])1/2 .P δ1/2n .

This implies that |IV | .P δ
1/2
n n−1/2.

Combining these bounds on II, III and IV, we have the following stochastic expansion

En[ψα̌,β̂,θ̂(y, d, x)] = −(fǫĒ[v
2])(α̌ − α0) + En[ψα0,β0,θ0(y, d, x)] +OP (δ

1/2
n n−1/2) +OP (δn)|α̌− α0|.

Let α∗ = α0+(fǫĒ[v
2])−1En[ψα0,β0,θ0(y, d, x)]. Then α

∗ ∈ A with probability 1−o(1) since |α∗−α0| .P

n−1/2. It is not difficult to see that the above stochastic expansion holds with α̌ replaced by α∗, so that

En[ψα∗,β̂,θ̂(y, d, x)] = −(fǫĒ[v
2])(α∗ − α0) + En[ψα0,β0,θ0(y, d, x)] +OP (δ

1/2
n n−1/2) = OP (δ

1/2
n n−1/2).

Therefore, |En[ψα̌,β̂,θ̂(y, d, x)]| 6 |En[ψα∗,β̂,θ̂(y, d, x)]| = OP (δ
1/2
n n−1/2), so that

(fǫĒ[v
2])(α̌ − α0) = En[ψα0,β0,θ0(y, d, x)] +OP (δ

1/2
n n−1/2),

which immediately implies that σ−1
n

√
n(α̌− α0) N(0, 1) since by the Lyapunov CLT,

(Ē[v2]/4)−1/2
√
nEn[ψα0,β0,θ0(y, d, x)] N(0, 1).
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Part 2. (Proof for the second assertion). First consider the denominator of Ln(α0). We have that

|En[v̂
2]− En[v

2]| = |En[(v̂ − v)(v̂ + v)]| 6 ‖v̂ − v‖2,n‖v̂ + v‖2,n
6 ‖x′(θ̂ − θ0)‖2,n(2‖v‖2,n + ‖x′(θ̂ − θ0)‖2,n) .P δn,

where we have used the fact that ‖v‖2,n .P (Ē[v2])1/2 = O(1) (which is guaranteed by ILAD(i)).

Next consider the numerator of Ln(α0). Since Ē[ψα0,β0,θ0(yi, di, xi)] = 0 we have

En[ψα0,β̂,θ̂
(y, d, x)] = n−1/2

Gn(ψα0,β̂,θ̂
− ψα0,β0,θ0) + Γ(α0, β̂, θ̂) + En[ψα0,β0,θ0(y, d, x)].

By Condition ILAD(iii) and the previous calculation, we have

|Gn(ψα0,β̂,θ̂
− ψα0,β0,θ0)| .P δn and |Γ(α0, β̂, θ̂)| .P δnn

−1/2.

Therefore, using the simple identity that nA2
n = nB2

n + n(An − Bn)
2 + 2nBn(An −Bn) with

An = En[ψα0,β̂,θ̂
(y, d, x)] and Bn = En[ψα0,β0,θ0(y, d, x)] .P (Ē[v2])n−1/2,

we have

nLn(α0) =
4n|En[ψα0,β̂,θ̂

(y, d, x)]|2
En[v̂2]

=
4n|En[ψα0,β0,θ0(y, d, x)]|2

Ē[v2]
+OP (δn)

since Ē[v2] > c is bounded away from zero. The result then follows since

(Ē[v2]/4)−1/2√nEn[ψα0,β0,θ0(y, d, x)] N(0, 1).

�

Comment C.2 (On 1-step procedure). An inspection of the proof leads to the following stochastic

expansion:

En[ψα̂,β̂,θ̂(y, d, x)] = −(fǫĒ[v
2])(α̂− α0) + En[ψα0,β0,θ0(y, d, x)]

+OP (δ
1/2
n n−1/2 + δnn

−1/4|α̂− α0|+ |α̂− α0|2),

where α̂ is any consistent estimator of α0. Hence provided that |α̂ − α0| = oP (n
−1/4), the remainder

term in the above expansion is oP (n
−1/2), and the 1-step estimator α̌ defined by

α̌ = α̂+ (En[fǫv̂
2])−1

En[ψα̂,β̂,θ̂(y, d, x)]

has the following stochastic expansion:

α̌ = α̂+ {fǫĒ[v2] + oP (n
−1/4)}−1{−(fǫĒ[v

2])(α̂− α0) + En[ψα0,β0,θ0(y, d, x)] + oP (n
−1/2)}

= α0 + (fǫĒ[v
2])−1

En[ψα0,β0,θ0(y, d, x)] + oP (n
−1/2),

so that σ−1
n

√
n(α̌ − α0) N(0, 1).
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Appendix D. Proofs for Section 3

D.1. Proof of Theorem 1. The proof of Theorem 1 uses the properties of Post-ℓ1-LAD and Post-

Lasso. We will collect these properties together with required regularity conditions in Appendix F.

In what follows we denote φmin(m) := φmin(m,En[x̃x̃
′]), φmax(m) := φmax(m,En[x̃x̃

′]), φ̄min(m) :=

φmin(m,E[x̃x̃
′]), φ̄max(m) := φmax(m,E[x̃x̃

′]). The proof focuses on Algorithm 1, while the proof for

Algorithm 2 is deferred to the Supplementary Appendix, since it is basically the same proof.

We will verify Condition ILAD and the desired result then follows from Lemma 1 and noting that

|En[E[v
2 | x]]− E[v2]| .P δn and E[v2] is bounded away from zero under Condition 1.

The assumptions on the error density fǫ(·) in Condition ILAD(i) are assumed in Condition 1(iv). The

moment conditions on di and vi in Condition ILAD(i) are assumed in Condition 1(ii).

Because Condition 1(v) and (vi), by Lemma 4 we have for some ℓ̃n → ∞ we have κ′ 6 φmin(ℓ̃n) 6

φmax(ℓ̃n) 6 κ
′′ with probability 1−∆n. In turn, κc is bounded away from zero with probability 1−∆n

for n sufficiently large, see [9].

Step 1 relies on Post-ℓ1-LAD. By assumption with probability 1−∆n we have ŝ = ‖β̃‖0 6 Cs. Thus,
φmin(ŝ + s) is bounded away from zero since ŝ + s 6 ℓns for large enough n with probability 1 − ∆n.

Moreover, Condition PLAD in Appendix F is implied by Condition 1. The required side condition of

Lemma 6 is satisfied by relations (H.52) and (H.53). By Lemma 6 we have |α̂−α0| .P

√
s log(p ∨ n)/n 6

o(1) log−1 n under s3 log3(p ∨ n) 6 δnn. Note that this implies {α : |α − α0| 6 n−1/2 logn} ⊂ A (with

probability 1−o(1)) which is required in ILAD(ii) and the (shrinking) definition ofA establishes the initial

rate of ILAD(iv). By Lemma 7 in Appendix F we have ‖x′(β̃ − β0)‖2,n .P

√
s log(n ∨ p)/n since the

required side condition holds. Indeed, for x̃i = (di, x
′
i)

′ and δ = (δd, δ
′
x)

′, because φmin(ŝ+ s) is bounded

away from zero, φmax(ŝ+ s) is bounded from above, and the fact that En[|d|3] .P E[|d|3] = O(1),

inf
‖δ‖06s+Cs

‖x̃′δ‖3
2,n

En[|x̃′δ|3] > inf
‖δ‖06s+Cs

{φmin(s+Cs)}3/2‖δ‖3

4En[|x′δx|3]+4|δd|3En[|d|3]

> inf
‖δ‖06s+Cs

{φmin(s+Cs)}3/2‖δ‖3

4Kx‖δx‖1φmax(s+Cs)‖δx‖2+4‖δ‖3En[|d|3]

>
{φmin(s+Cs)}3/2

4Kx

√
s+Csφmax(s+Cs)+4En[|d|3] &P

1
Kx

√
s
.

Therefore, since K2
xs

2 log2(p ∨ n) 6 δnn and λ .
√
n log(p ∨ n) we have

n
√

φmin(s+Cs)

λ
√
s+
√

sn log(p∨n)
inf

‖δ‖06s+Cs

‖x̃′δ‖3
2,n

En[|x̃′δ|3] &P

√
n

Kxs log(p∨n) → ∞.

Step 2 relies on Post-Lasso. Condition HL in Appendix F is implied by Condition 1. Indeed, En[x
2
j ]

is bounded away from zero and from above with probability 1 − o(1) by Conditions 1 (v) and (vi) and

Lemma 4. Next note that by c 6 E[v2 | x] and E[|v|3 | x] 6 C so that max16j6p{En[|xj |3E[|v|3 |
x]]}1/3/{En[x

2
jE[v

2 | x]]}1/2 6 K
1/3
x C′ with probability 1 − ∆n. Thus, Condition HL(ii) holds under

K
1/3
x

√
log(p ∨ n) = o(n1/6). Condition HL(iii) follows by Lemma 2 applied twice with ζi = vi and

ζi = di under the condition that K4
x log p 6 δnn. By Lemma 9 in Appendix F we have ‖x′(θ̃− θ0)‖2,n .P√

s log(n ∨ p)/n and ‖θ̃‖0 . s with probability 1− o(1).
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The rates established above for θ̃ and β̃ imply (C.34) in ILAD(iii) since by Condition 1(ii) E[|vi|] 6
(E[v2i ])

1/2 = O(1) and max16i6n |x′i(θ̃ − θ0)| .P Kx

√
s2 log(p ∨ n)/n = o(1).

We now verify the last requirement in Condition ILAD(iii). Consider the following class of functions

Fs = {(y, d, x) 7→ 1{y 6 x′β + dα} : α ∈ R, ‖β‖0 6 Cs},

which is the union of
(

p
Cs

)
VC-subgraph classes of functions with VC indices bounded by C′s. Hence

logN(ε,Fs, ‖ · ‖Pn,2) . s log p+ s log(1/ε).

Likewise, consider the following class of functions Gs,r = {(y, d, x) 7→ x′θ : ‖θ‖0 6 Cs, ‖x′θ‖2,n 6 r}.
Then

logN(ε‖Gs,r‖Pn,2,Gs, ‖ · ‖Pn,2) . s log p+ s log(1/ε),

where Gs,r(y, d, x) = max‖θ‖06Cs,‖x′θ‖2,n6r |x′θ|.

Note that

sup
α∈A

|Gn(ψα,β̃,θ̃ − ψα,β0,θ0)| 6 sup
α∈A

|Gn(ψα,β̃,θ̃ − ψα,β̃,θ0
)| (D.37)

+ sup
α∈A

|Gn(ψα,β̃,θ0
− ψα,β0,θ0)|. (D.38)

Consider to bound (D.37). Observe that

ψα,β,θ(yi, di, xi)− ψα,β,θ0(yi, di, xi) = −(1/2− 1{yi 6 x′iβ + diα})x′i(θ − θ0),

and consider the class of functions H1
s,r = {(y, d, x) 7→ (1/2− 1{y 6 x′β+dα})x′(θ− θ0) : α ∈ R, ‖β‖0 6

Cs, ‖θ‖0 6 Cs, ‖x′(θ − θ0)‖2,n 6 r} with r .
√
s log(p ∨ n)/n. Then by Lemma 11 together with the

above entropy calculations (and some straightforward algebras), we have

sup
g∈H1

s,r

|Gn(g)| .P

√
s log(p ∨ n)

√
s log(p ∨ n)/n = oP (1),

where s2 log2(p ∨ n) 6 δnn is used. Since ‖x′(θ̃ − θ0)‖2,n .P

√
s log(n ∨ p)/n and ‖β̃‖0 ∨ ‖θ̃‖0 . s with

probability 1− o(1), we conclude that (D.37) = oP (1).

Lastly consider to bound (D.38). Observe that

ψα,β,θ0(yi, di, xi)− ψα,β,θ0(yi, di, xi) = −(1{yi 6 x′iβ + diα} − 1{yi 6 x′iβ0 + diα})vi,

where vi = di − x′iθ0, and consider the class of functions H2
s,r = {(y, d, x) 7→ (1{y 6 x′β + dα} − 1{y 6

x′β0 + dα})(d − x′θ0) : α ∈ R, ‖β‖0 6 Cs, ‖x′(β − β0)‖2,n 6 r} with r .
√
s log(p ∨ n)/n. Then by

Lemma 11 together with the above entropy calculations (and some straightforward algebras), we have

sup
g∈H2

s,r

|Gn(g)| .P

√
s log(p ∨ n) sup

g∈H2
s,r

√
En[g(y, d, x)2] ∨ E[g(y, d, x)2].

Here we have

E[g(y, d, x)2] 6 C‖x′(β − β0)‖2,n(E[v4])1/2 .
√
s log(p ∨ n)/n.
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On the other hand,

sup
g∈H2

s,r

En[g(y, d, x)
2] 6 n−1/2 sup

g∈H2
s,r

Gn(g
2) + sup

g∈H2
s,r

E[g(y, d, x)2], (D.39)

and apply Lemma 11 to the first term on the right side of (D.39). Then we have

sup
g∈H2

s,r

Gn(g
2) .P

√
s log(p ∨ n) sup

g∈H2
s,r

√
En[g(y, d, x)4] ∨ E[g(y, d, x)4]

.
√
s log(p ∨ n)

√
En[v4] ∨ E[v4] .P

√
s log(p ∨ n)

√
E[v4].

Since ‖x′(β̃ − β0)‖2,n .P

√
s log(n ∨ p)/n and ‖β̃‖0 6 Cs with probability 1−∆n, we conclude that

(D.38) .P

√
s log(p ∨ n)(s log(p ∨ n)/n)1/4 = o(1),

where s3 log3(p ∨ n) 6 δnn is used.

D.2. Auxiliary Technical Results for Proofs of Section 3. In this section we collect two auxiliary

technical results. Their proofs are given in the supplementary appendix.

Lemma 2. Let x1, . . . , xn be non-stochastic vectors in Rp with max16i6n ‖xi‖∞ 6 Kx. Let ζ1, . . . , ζn

be independent random variables such that E[|ζi|q] < ∞ for some q > 4. Then with probability at least

1− 8τ ,

max
16j6p

|(En − E)[x2jζ
2]| 6 4

√
log(2p/τ)

n
K2

x(E[|ζ|q]/τ)4/q.

Lemma 3. Let T = supp(β0), |T | = ‖β0‖0 6 s and ‖β̂T c‖1 6 c‖β̂T − β0‖1. Moreover, let β̂(2m)

denote the vector formed by the largest 2m components of β̂ in absolute value and zero in the remaining

components. Then for m > s we have that β̂(2m) satisfies

‖x′(β̂(2m) − β0)‖2,n 6 ‖x′(β̂ − β0)‖2,n +
√
φmax(m)/m c‖β̂T − β0‖1,

where φmax(m)/m 6 2φmax(s)/s and ‖β̂T − β0‖1 6
√
s‖x′(β̂ − β0)‖2,n/κc.

Lemma 4. Under Condition 1, for x̃i = (di, x
′
i)

′, there is ℓ̃n → ∞ such that with probability 1− o(1) we

have

sup
‖δ‖06ℓ̃ns

∣∣∣∣
‖x̃′δ‖2,n
‖x̃′δ‖P,2

− 1

∣∣∣∣ = o(1).

Appendix E. Proofs for Section 4

E.1. A Maximal Inequality. For a class of measurable functions F equipped with the envelope F =

supf∈F |f |, let N(ǫ,F , ‖·‖Q,2) denote the ǫ-covering number of the class of functions F with respect to the

L2(Q) seminorm ‖ · ‖Q,2, where Q is finitely discrete, and let ent(ε,F) = log supQN(ε‖F‖Q,2,F , ‖ · ‖Q,2)

denote the uniform covering entropy.

Lemma 5 ([10]). Let F be a suitably measurable class of functions. Suppose that F = supf∈F |f | with
‖F‖Q,q < ∞ for some q > 2. Let MP,q = {E|maxi6n F (wi)|q}1/q. Suppose that there exist constants
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a > e and s > 1 such that ent(ε,F) 6 s{log a+ log(1/ε)}, 0 < ε 6 1. Then for σ > 0 denoting a positive

constant such that supf∈F ‖f‖P,2 6 σ 6 ‖F‖P,2:

E sup
f∈F

|Gn(f)| .
√
sσ2 log (a‖F‖P,2/σ) + n−1/2sMP,2 log (a‖F‖P,2/σ) .

Moreover, for every t > 1 and all µ > 0, with probability not less than 1− t−q/2,

sup
f∈F

|Gn(f)| 6 (1 + µ)E sup
f∈F

|Gn(f)| + K(q)
{
(σ + n−1/2MP,q)

√
t + µ−1n−1/2MP,2t

}
,

where K(q) > 0 is a constant depending only on q.

E.2. Proof of Theorem 2. It suffices to establish the result under any sequence P = Pn ∈ Pn. We

shall suppress the dependency of P on n in the proof. We use C as a generic constant that may differ in

each appearance, but that does not depend on the sequence P ∈ Pn. Let

B(w) = max
k6K

sup
νℓ∈Aℓ×Tℓ,ℓ∈L

|∂νkE{ψℓ(w, ν) | zℓ}|, ρn = n−1/2[{s log(an)}1/2 + n−1/2sn
1
q log(an)].

Step 1. (Preliminary Rate). In this step we claim that w.p. 1− o(1), maxℓ∈L |α̂ℓ−αℓ| 6 Cρn for some

constant C, independent of n. By definition |Enψℓ{wℓ, α̂ℓ, ĥℓ(zℓ)}| 6 infα∈Aℓ
|Enψℓ{wℓ, α, ĥℓ(zℓ)}| +

ǫn for each ℓ ∈ L, which implies via triangle inequality and Step 2 that w.p. 1− o(1) uniformly in ℓ ∈ L,

|E[ψℓ{wℓ, α, hℓ(zℓ)}]|
∣∣∣
α=α̂ℓ

6 ǫn + 2I1 + 2I2 . ρn, (E.40)

where we define I1 and I2 in Step 2. The second inequality in (E.40) is by Step 2 and by the assumption

ǫn = o(b−1
n n−1/2). Since by Condition 2 2−1{|Γℓ(α̂ℓ − αℓ)| ∨ c0} is weakly smaller than the left side of

(E.40) and infn>1,ℓ∈L |Γℓ| > c, conclude maxℓ∈L |α̂ℓ − αℓ| . (ρn/c) . ρn w. p. 1− o(1).

Step 2. (Define and bound I1 and I2) We claim that w. p. 1− o(1):

I1 = sup
α∈Aℓ,ℓ∈L

|Enψℓ{wℓ, α, ĥℓ(zℓ)} − Enψℓ{wℓ, α, hℓ(zℓ)}| . ρn,

I2 = sup
α∈Aℓ,ℓ∈L

|Enψℓ{wℓ, α, hℓ(zℓ)} − Eψℓ{wℓ, α, hℓ(zℓ)}| . ρn.

To show this, we can bound I1 6 I1a + I1b and I2 6 I1a, where w. p. 1− o(1),

I1a = sup
α∈Aℓ,ℓ∈L,h∈Hℓ∪{hℓ}

|Enψℓ{wℓ, α, h(zℓ)} − Eψℓ{wℓ, α, h(zℓ)}| . ρn,

I1b = sup
α∈Aℓ,ℓ∈L,h∈Hℓ∪{hℓ}

|Eψℓ{wℓ, α, h(zℓ)} − Eψℓ{wℓ, α, hℓ(zℓ)}| . ρn.

The latter bounds hold by the following arguments.

By Taylor’s expansion and triangle inequality, for h̄ℓα(zℓ) on a line connecting h(zℓ) and hℓ(zℓ),

I1b 6

M∑

m=1

sup
α∈Aℓ,ℓ∈L,h∈Hℓ

∣∣E
[
∂tmE

[
ψℓ{wℓ, α, h̄ℓα(zℓ)} | zℓ

]
{hm(zℓ)− hℓm(zℓ)}

]∣∣

6 M max
m6M

‖B‖P,2‖hm − hℓm‖P,2 . ρn,



UNIFORM POST SELECTION INFERENCE FOR Z-PROBLEMS 25

where the penultimate inequality holds by definition of B and Holder’s inequality, and the final inequality

holds since by Condition 2 ‖B‖P,2 6 C and by Condition 3 M is fixed and ‖hm−hℓm‖P,2 . ρn uniformly

for all h ∈ Hℓ and all m 6M .

To bound I1a we apply Lemma 5 to the empirical process indexed by F ′ = ∪ℓ∈LFℓ with the envelope

F ′ 6 F , where Fℓ = [ψℓ{w,α, h(zℓ)}, α ∈ A, h ∈ Hℓ ∪ {hℓ}]. We note that ent(ε,F ′) . log(p1) +

maxℓ∈L ent(ε,Fℓ). Since ent(ε,Hℓm) . s log(p/ε) by Hℓm consisting of p choose at most Cs VC subgraph

classes, we concluded by Condition 3 that ent(ε,Fℓ) . {log(e/ε) +Ms log(an/ε)}. Thus, recalling that

an = max(p1, p, n, e), ent(ε,F ′) . s log(an/ε) and 1 . σ2 6 ‖F‖P,2. By Lemma 5 with t = logn, we

conclude that there exists a constant C > 0 such that with probability 1− o(1),

I1a 6 supf∈F ′ |Gn(f)| 6 Cn−1/2
(
‖F‖P,2

√
s log an + n−1/2sn

1
q ‖F‖P,q log an

)
. ρn.

To arrive at the conclusion, we used the assumption that ‖F‖P,q 6 C, an > n, and s > 1, and the

elementary inequality MP,2 6 n
1
q ‖F‖P,q.

Step 3. (Linearization) By definition

√
n|Enψℓ{wℓ, α̂ℓ, ĥℓ(zℓ)}| 6 inf

α∈Aℓ

√
n|Enψℓ{wℓ, α, ĥℓ(zℓ)}|+ ǫnn

1/2.

Application of Taylor’s theorem and the triangle inequality gives that with probability 1− o(1)

max
ℓ∈L

∣∣∣
√
nEnψℓ{w,αℓ, hℓ(zℓ)} + Γℓ

√
n(α̂ℓ − αℓ) + ∆ℓ(ĥℓ − hℓ)

∣∣∣

6 ǫn
√
n+max

ℓ∈L

[
inf

α∈Aℓ

√
n|Enψℓ{wℓ, α, ĥℓ(zℓ)}|+ |II1(ℓ)|+ |II2(ℓ)|

]
= o(b−1

n ),

where II1 and II2 are defined in Step 4; the o(b−1
n ) bound follows from Step 4, the assumption ǫn

√
n =

o(b−1
n ), and Step 5; and

∆ℓ(ĥℓ − hℓ) =

M∑

m=1

√
nE∂tmE[ψℓ{wℓ, αℓ, hℓ(zℓ)} | zℓ]{hm(zℓ)− hℓm(zℓ)}

∣∣∣
hm=ĥm

= 0,

where the last equality occurs because of the orthogonality condition (3.18). Conclude using Condition

2 that with probability 1− o(1):

max
ℓ∈L

|Γ−1
ℓ

√
nEnψℓ{w,αℓ, hℓ(zℓ)} +

√
n(α̂ℓ − αℓ)| 6 o(b−1

n )max
ℓ∈L

{mineg(Γℓ)}−1 = o(b−1
n ),

which implies the main claim of the theorem, since 1 . σℓ . 1 for all ℓ ∈ L by Condition 2.

Application of Lemma 5 to the empirical process indexed by [Γ−1
ℓ ψℓ{w,αℓ, hℓ(zℓ)}, ℓ ∈ L] and that

‖F‖P,q 6 C gives that with probability 1− o(1) for some constant C:

max
ℓ∈L

|Γ−1
ℓ

√
nEnψℓ{w,αℓ, hℓ(zℓ)}| 6 C

√
log(p1 ∨ n).

Step 4. (Define and Bound II1 and II2). Define K = 1 +M , µℓ(zℓ) = {µℓk(zℓ)}Kk=1 = {α, h̃ℓ(zℓ)′}′,
where zℓ 7→ h̃ℓ(zℓ) is a generic measurable function Zℓ → Tℓ, νℓ(zℓ) = {αℓ, hℓ(zℓ)

′}′, {νℓk(zℓ)}Kk=1 =
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{αℓ, hℓ(zℓ)
′}′; ν̂ℓ(zℓ) = {ν̂ℓk(zℓ)}Kk=1 = {α̂ℓ, ĥℓ(zℓ)

′}′, and let ν̄ℓ(zℓ) be a vector on the line connecting

νℓ(w) and µℓ(w). We define

II1(ℓ) =

K∑

r,k=1

√
nE (∂νk∂νrE[ψℓ{wℓ, ν̄ℓ(zℓ)}|zℓ]{µℓr(zℓ)− νℓr(zℓ)}{µℓk(zℓ)− νℓk(zℓ)}) ,

II2(ℓ) = Gn

[
ψℓ{wℓ, α, h̃ℓ(zℓ)} − ψℓ{wℓ, αℓ, hℓ(zℓ)}

]
,

with expressions above are evaluated at µℓk(·) = ν̂ℓk(·), µℓr(·) = ν̂ℓr(·), α = α̂ℓ, h̃ℓ(·) = ĥℓ(·) after comput-

ing expectations. Using Condition 3 and the claim of Step 1, we conclude that with probability 1− o(1)

uniformly in ℓ ∈ L:

|II1(ℓ)| 6
K∑

r,k=1

√
nE {C|µℓr(zℓ)− νℓr(zℓ)||µℓk(zℓ)− νℓk(zℓ)|}

6 C
√
nK2 max

k6K
‖µℓk − νℓk‖2P,2 .

√
nρ2n = o(b−1

n ),

where expressions above are evaluated at µℓk(·) = ν̂ℓk(·), µℓr(·) = ν̂ℓr(·) after computing expectations.

With probability 1− o(1) we have maxℓ∈L |II1(ℓ)| . supf∈F ′′ |Gn(f)| where

F ′′ = [ψℓ{w,α, h(zℓ)} − ψℓ{w,αℓ, hℓ(zℓ)} : ℓ ∈ L, h ∈ Hℓ, α ∈ Aℓn]

and Aℓn := {α ∈ Aℓ : |α − αℓ| 6 Cρn}. We note that similarly to Step 2, ent(ε,F ′′) . s log(p1an/ε) .

s log(an/ε). We wish to apply Lemma 5. We can choose σ in Lemma 5 so that supf∈F ′′ ‖f‖P,2 6 σ . τ
ς/2
n .

Indeed, this follows from the following calculation:

sup
f∈F ′′

‖f‖2P,2 6 sup
ℓ∈L,µℓ∈Aℓn×Hℓ

E
{
E
(
[ψℓ{w, µℓ(zℓ)} − ψℓ{w, νℓ(zℓ)}]2 | zℓ

)}
,

6 sup
ℓ∈L,µℓ∈Aℓn×Hℓ

E{C‖µℓ(zℓ)− νℓ(zℓ)‖ς},

= sup
ℓ∈L,µℓ∈Aℓn×Hℓ

C‖µℓ − νℓ‖ςP,ς 6 sup
ℓ∈L,µℓ∈Aℓn×Hℓ

C‖µℓ − νℓ‖ςP,2 . ρ
ς
n,

where µℓ is defined as before. Here the first inequality follows by the law of iterated expectations; the

second inequality follows by Condition 3; and the last inequality follows from ς ∈ [1, 2] by Condition 3

and the monotonicity of the norm ‖‖P,q in q ∈ [1,∞]. Application of Lemma 5 and of the inequality

MP,2 6 n
1
q ‖F‖P,q gives that with probability 1− o(1):

max
ℓ∈L

|II2(ℓ)| 6 sup
f∈F ′′

|Gn(f)| 6 C
(
ρς/2n

√
s log an + n−1/2sn

1
q ‖F1‖P,q log an + ρn

)
= o(b−1

n ),

for some constant C, where the last equality follows from the growth conditions of Condition 3.

Step 5. (Auxiliary). We show that with probability 1−o(1), infα∈Aℓ

√
n|Enψℓ{wℓ, α, ĥℓ(zℓ)}| = o(b−1

n ).

We have that with probability 1 − o(1), infα∈Aℓ

√
n|Enψℓ{wℓ, α, ĥℓ(zℓ)}| 6

√
n|Enψℓ{wℓ, ᾱℓ, ĥℓ(zℓ)}|,

where ᾱℓ = αℓ − Γ−1
ℓ Enψℓ{wℓ, αℓ, hℓ(z)}, since ᾱℓ ∈ Aℓ for all ℓ ∈ L with probability 1 − o(1), and in

fact maxℓ∈L |ᾱℓ − αℓ| .
√
log(p1 ∨ n)/n = o(1) by the last sentence of Step 3. Then, arguing similarly

to Steps 3 and 4, we can conclude that with probability 1− o(1): uniformly in ℓ ∈ L,
√
n|Enψℓ{wℓ, ᾱℓ, ĥℓ(zℓ)}| 6

√
n|Enψℓ{wℓ, αℓ, hℓ(zℓ)} + Γℓ(ᾱℓ − αℓ) + ∆ℓ(ĥℓ − hℓ)|+ o(b−1

n ),
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where the first term on the right side vanishes by definition of ᾱℓ and by ∆ℓ(ĥℓ − hℓ) = 0. �
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Figure 1. The figure displays the empirical rejection probabilities of the nominal 5% level tests of a

true hypothesis based on different testing procedures: the top left plot is based on the standard post-

model selection procedure based on α̃, the top right plot is based on the proposed post-model selection

procedure based on α̌, and the bottom left plot is based on another proposed procedure based on the

statistic Ln. The results are based on 500 replications for each of the 100 combinations of R2’s in the

primary and auxiliary equations in (4.23). Ideally we should observe the 5% rejection rate (of a true

null) uniformly across the parameter space (as in bottom right plot).
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Figure 2. The figure displays mean bias (top row), standard deviation (middle row), and root mean

square error (bottom row) for the the proposed post-model selection estimator α̌ (right column) and the

standard post-model selection estimator α̃ (left column). The results are based on 500 replications for

each of the 100 combinations of R2’s in the primary and auxiliary equations in (4.23).
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Supplementary Appendix for “Uniform Post Selection Inference
for LAD Regression Models”

Appendix F. Auxiliary Results for ℓ1-LAD and Heteroscedastic Lasso

In this section we state relevant theoretical results on the performance of the estimators ℓ1-LAD, Post-

ℓ1-LAD, heteroscedastic Lasso, and heteroscedastic Post-Lasso. There results were developed in [3] and

[2]. The main design condition relies on the restricted eigenvalue proposed in [9], namely for x̃i = (di, x
′
i)

′

κc = inf
‖δTc‖16c‖δT ‖1

‖x̃′δ‖2,n/‖δT‖, (F.41)

where c = (c+ 1)/(c− 1) for the slack constant c > 1, see [9]. It is well known that well behaved sparse

eigenvalues imply that κc is bounded away from zero if c is bounded for any subset T ⊂ {1, . . . , p} with

|T | 6 s.

F.1. ℓ1-Penalized LAD. For a data generating process such that pr(yi 6 x̃
′
iη0 | x̃i) = 1/2, independent

across i (i = 1, . . . , n) we consider the estimation of η0 via the ℓ1-penalized LAD regression estimate

η̂ ∈ argmin
η

En[|y − x̃′η|] + λ

n
‖Ψη‖1

where Ψ2 = diag(En[x̃
2
1], . . . ,En[x̃

2
p]) is a diagonal matrix of penalty loadings. As established in [3] and

[31], under the event that
λ

n
> 2c‖Ψ−1

En[(1/2− 1{y 6 x̃′η0})x̃]‖∞, (F.42)

the estimator above achieves good theoretical guarantees under mild design conditions. Although η0 is

unknown, we can set λ so that the event in (F.42) holds with high probability. In particular, the pivotal

rule discussed in [3] proposes to set λ = c′nΛ(1− γ | x̃) for c′ > c and γ → 0 where

Λ(1− γ | x̃) := (1− γ)-quantile of 2‖Ψ−1
En[(1/2− 1{U 6 1/2})x̃]‖∞, (F.43)

and where Ui are independent uniform random variables on (0, 1), independent of x̃1, . . . , x̃n. We suggest

γ = 0.1/ logn and c′ = 1.1c. This quantity can be easily approximated via simulations. Below we

summarize required regularity conditions.

Condition PLAD. Assume that ‖η0‖0 = s > 1, c 6 En[x̃
2
j ] 6 C for all 1 6 j 6 p, the conditional

density of yi given di, denoted by fi(·), and its derivative are bounded by f̄ and f̄ ′, respectively, and

fi(x̃
′
iη0) > f > 0 is bounded away from zero uniformly in n.

Condition PLAD is implied by Condition 1. The assumption on the conditional density is standard

in the quantile regression literature even with fixed p or p increasing slower than n (see respectively [16]

and [5]). Next we present bounds on the prediction norm of the ℓ1-LAD estimator.

Lemma 6 (Estimation Error of ℓ1-LAD). Under Condition PLAD, and using λ = c′nΛ(1 − γ | x̃), we
have with probability 1− 2γ − o(1) for n large enough

‖x̃′(η̂ − η0)‖2,n .
λ
√
s

nκc
+

1

κc

√
s log(p/γ)

n
,
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provided

{
nκc

λ
√
s
+ nκc√

sn log([p∨n]/γ)

}
f̄ f̄ ′

f inf
δ∈∆c

‖x̃′δ‖32,n
En[|x̃′δ|3]

→ ∞.

Lemma 6 establishes the rate of convergence in the prediction norm for the ℓ1-LAD estimator in

a parametric setting. The extra growth condition required for identification is mild. For instance we

typically have λ .
√
log(n ∨ p)/n and for many designs of interest we have infδ∈∆c

‖x̃′δ‖32,n/En[|x̃′δ|3]
bounded away from zero (see [3]). For more general designs we have

inf
δ∈∆c

‖x̃′δ‖32,n
En[|x̃′δ|3]

> inf
δ∈∆c

‖x̃′δ‖2,n
‖δ‖1maxi6n ‖x̃i‖∞

>
κc√

s(1 + c)maxi6n ‖x̃i‖∞
which implies the extra growth condition under K2

xs
2 log(p ∨ n) 6 δnκ2cn.

In order to alleviate the bias introduced by the ℓ1-penalty, we can consider the associated post-model

selection estimate associated with a selected support T̂

η̃ ∈ argmin
η

{
En[|y − x̃′η|] : ηj = 0 if j 6∈ T̂

}
. (F.44)

The following result characterizes the performance of the estimator in (F.44), see [3] for the proof.

Lemma 7 (Estimation Error of Post-ℓ1-LAD). Assume the conditions of Lemma 6 hold, supp(η̂) ⊆ T̂ ,

and let ŝ = |T̂ |. Then we have for n large enough

‖x̃′(η̃ − η0)‖2,n .P

√
(ŝ+ s) log(n ∨ p)
nφmin(ŝ+ s)

+
λ
√
s

nκc
+

1

κc

√
s log(p/γ)

n
,

provided

{
n
√

φmin(ŝ+s)

λ
√
s

+
n
√

φmin(ŝ+s)√
sn log([p∨n]/γ)

}
f̄ f̄ ′

f inf
‖δ‖06ŝ+s

‖x̃′δ‖3
2,n

En[|x̃′δ|3] →P ∞.

Lemma 7 provides the rate of convergence in the prediction norm for the post model selection estimator

despite of possible imperfect model selection. The rates rely on the overall quality of the selected model

(which is at least as good as the model selected by ℓ1-LAD) and the overall number of components ŝ.

Once again the extra growth condition required for identification is mild. For more general designs we

have

inf
‖δ‖06ŝ+s

‖x̃′δ‖32,n
En[|x̃′δ|3]

> inf
‖δ‖06ŝ+s

‖x̃′δ‖2,n
‖δ‖1maxi6n ‖x̃i‖∞

>

√
φmin(ŝ+ s)√

ŝ+ smaxi6n ‖x̃i‖∞
.

Comment F.1. In Step 1 of Algorithm 2 we use ℓ1-LAD with x̃i = (di, x
′
i)

′, δ̂ := η̂−η0 = (α̂−α0, β̂
′−β′

0)
′,

and we are interested on rates for ‖x′(β̂ − β0)‖2,n instead of ‖x̃′δ̂‖2,n. However, it follows that

‖x′(β̂ − β0)‖2,n 6 ‖x̃′δ̂‖2,n + |α̂− α0| · ‖d‖2,n.

Since s > 1, without loss of generality we can assume the component associated with the treatment

di belongs to T (at the cost of increasing the cardinality of T by one which will not affect the rate of

convergence). Therefore we have that

|α̂− α0| 6 ‖δ̂T‖ 6 ‖x̃′δ̂‖2,n/κc.

In most applications of interest ‖d‖2,n and 1/κc are bounded from above with high probability. Similarly,

in Step 1 of Algorithm 1 we have that the Post-ℓ1-LAD estimator satisfies

‖x′(β̃ − β0)‖2,n 6 ‖x̃′δ̃‖2,n
(
1 + ‖d‖2,n/

√
φmin(ŝ+ s)

)
.
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F.2. Heteroscedastic Lasso. In this section we consider the equation (1.4) in the form

di = x′iθ0 + vi, E[vi | xi] = 0, (F.45)

where we observe {(di, x′i)′}ni=1, (xi)
n
i=1 are non-stochastic, and (vi)

n
i=1 are independent across i but not

necessary identically distributed. The unknown support of θ0 is denoted by Td and it satisfies |Td| 6 s.

To estimate θ0 and consequently vi, we compute

θ̂ ∈ argmin
θ

En[(d − x′θ)2] +
λ

n
‖Γ̂θ‖1 and set v̂i = di − x′iθ̂, i = 1, . . . , n, (F.46)

where λ and Γ̂ are the associated penalty level and loadings which are potentially data-driven. In this

case the following regularization event plays an important role

λ

n
> 2c‖Γ̂−1

En[x(d − x′θ0)]‖∞. (F.47)

As discussed in [9], [4] and [2], the event above implies that the estimator θ̂ satisfies ‖θ̂T c
d
‖1 6 c‖θ̂Td

−θ0‖1
where c = (c + 1)/(c − 1). Thus rates of convergence for θ̂ and v̂i defined on (F.46) can be established

based on the restricted eigenvalue κc defined in (F.41) with x̃i = xi and T = Td.

The following are sufficient high-level conditions where again the sequences ∆n and δn go to zero and

C is a positive constant independent of n, and let Ē[f(d, x)] := 1
n

∑n
i=1 E[f(di, xi)].

Condition HL. For the model (F.45), for s = sn > 1 we have ‖θ0‖0 6 s and

(i) c 6 En[x
2
j ] 6 C for all j = 1, . . . , p; c 6 E[v2i | xi] 6 C for all i = 1, . . . , n,

(ii) max
16j6p

{(Ē[|xjv|3])1/3/(Ē[|xj |v|2])1/2}Φ−1(1 − γ/2p) 6 δnn
1/6,

(iii) max
16j6p

|(En − Ē)[x2jv
2]|+max

j6p
|(En − Ē)[x2jd

2]| 6 δn, with probability 1−∆n.

Condition HL is implied by Condition 1. Several primitive moment conditions imply the various

cross moments bounds. These conditions also allow us to invoke moderate deviation theorems for self-

normalized sums from [14] to bound some important error components. Despite heteroscedastic non-

Gaussian noise, Those results allows a sharp choice of penalty level and loadings was analyzed in [2]

which is summarized by the following lemma.

Valid options for setting the penalty level and the loadings for j = 1, . . . , p, are

initial γ̂j =
√
En[x2j (d − d̄)2], λ = 2c

√
nΦ−1(1− γ/(2p)),

refined γ̂j =
√
En[x2j v̂

2], λ = 2c
√
nΦ−1(1− γ/(2p)),

(F.48)

where c > 1 is a constant, γ ∈ (0, 1), d̄ := En[d] and v̂i is an estimate of vi based on Lasso with the

initial option (or iterations). [2] established that using either of the choices in (F.48) implies that the

regularization event (F.47) holds with high probability. Next we present results on the performance of

the estimators generated by Lasso.

Lemma 8. Under Condition HL and setting λ = 2c′
√
nΦ−1(1− γ/2p) for c′ > c > 1, and using penalty

loadings as in (F.48), there is an uniformly bounded c such that we have

‖v̂ − v‖2,n = ‖x′(θ̂ − θ0)‖2,n .P
λ
√
s

nκc
and ‖v̂i − vi‖∞ 6 ‖θ̂ − θ0‖1max

i6n
‖xi‖∞.
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Associated with Lasso we can define the Post-Lasso estimator as

θ̃ ∈ argmin
θ

{
En[(d − x′θ)2] : θj = 0 if θ̂j = 0

}
and set ṽi = di − x′iθ̃. (F.49)

That is, the Post-Lasso estimator is simply the least squares estimator applied to the covariates selected

by Lasso in (F.46). Sparsity properties of the Lasso estimator θ̂ under estimated weights follows similarly

to the standard Lasso analysis derived in [2]. By combining such sparsity properties and the rates in the

prediction norm we can establish rates for the post-model selection estimator under estimated weights.

The following result summarizes the properties of the Post-Lasso estimator and relies on sparse eigenvalues

of the empirical Gram matrix

κ′ 6 min
‖δ‖06ℓns

‖x′δ‖22,n
‖δ‖2 6 max

‖δ‖06ℓns

‖x′δ‖22,n
‖δ‖2 6 κ′′ (F.50)

Lemma 9 (Model Selection Properties of Lasso and Properties of Post-Lasso). Suppose that Condition

HL and (F.50) hold. Consider the Lasso estimator with penalty level and loadings specified as in Lemma

8. Then the data-dependent model T̂d selected by the Lasso estimator θ̂ satisfies with probability 1−∆n:

‖θ̃‖0 = |T̂d| . s. (F.51)

Moreover, the Post-Lasso estimator obeys

‖ṽ − v‖2,n = ‖x′(θ̃ − θ0)‖2,n .P

√
s log(p ∨ n)

n
.

Appendix G. Alternative Implementation via Double Selection

An alternative proposal for the method is reminiscent of the double selection method proposed in [6]

for partial linear models. This version replaces Step 3 with a LAD regression of y on d and all covariates

selected in Steps 1 and 2 (i.e. the union of the selected sets). The method is described as follows:

Algoritm 3. (A Double Selection Method)

Step 1 Run Post-ℓ1-LAD of yi on di and xi:

(α̂, β̂) ∈ argmin
α,β

En[|y − dα− x′β|] + λ1
n
‖Ψ(α, β′)′‖1.

Step 2 Run Heteroscedastic Lasso of di on xi:

θ̂ ∈ argmin
θ

En[(d − x′θ)2] +
λ2
n
‖Γ̂θ‖1.

Step 3 Run LAD regression of yi on di and the covariates selected in Step 1 and 2:

(α̌, β̌) ∈ argmin
α,β

{En[|y − dα − x′β|] : supp(β) ⊆ supp(β̂) ∪ supp(θ̂)}.

The double selection algorithm has three steps: (1) select covariates based on the standard ℓ1-LAD

regression, (2) select covariates based on heteroscedastic Lasso of the treatment equation, and (3) run a

LAD regression with the treatment and all selected covariates.
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This approach can also be analyzed through Lemma 1 since it creates instruments implicitly. To see

that let T̂ ∗ denote the variables selected in Step 1 and 2: T̂ ∗ = supp(β̂) ∪ supp(θ̂). By the first order

conditions for (α̌, β̌) we have

‖En[ϕ(y − dα̌− x′β̌)(d, x′
T̂∗

)′]‖ = O{( max
16i6n

|di|+Kx|T̂ ∗|1/2)(1 + |T̂ ∗|)/n},

which creates an orthogonal relation to any linear combination of (di, x
′
iT̂∗

)′. In particular, by taking the

linear combination (di, x
′
iT̂∗

)(1,−θ̃′
T̂∗

)′ = di − x′
iT̂∗

θ̃T̂∗ = di − x′iθ̃ = ẑi, which is the instrument in Step 2

of Algorithm 1, we have

En[ϕ(y − dα̌ − x′β̌)ẑ] = O{‖(1,−θ̃′)′‖( max
16i6n

|di|+Kx|T̂ ∗|1/2)(1 + |T̂ ∗|)/n}.

As soon as the right side is oP (n
−1/2), the double selection estimator α̌ approximately minimizes

L̃n(α) =
|En[ϕ(y − dα− x′β̌)ẑ]|2
En[{ϕ(y − dα̌− x′β̌)}2ẑ2]

,

where ẑi is the instrument created by Step 2 of Algorithm 1. Thus the double selection estimator can be

seen as an iterated version of the method based on instruments where the Step 1 estimate β̃ is updated

with β̌.

Appendix H. Proof of Theorem 1: Algorithm 2

Proof of Theorem 1, Algorithm 2. We will verify Condition ILAD and the desired result then follows

from Lemma 1 and noting that |En[E[v
2 | x]]−E[v2]| .P δn and E[v2] is bounded away from zero under

Condition 1.

The assumptions on the error density fǫ(·) in Condition ILAD(i) are assumed in Condition 1(iv). The

moment conditions on di and vi in Condition ILAD(i) are assumed in Condition 1(ii).

Because Condition 1(v) and (vi), by Lemma 4 we have for some ℓ̃n → ∞ we have κ′ 6 φmin(ℓ̃n) 6

φmax(ℓ̃n) 6 κ
′′ with probability 1−∆n. In turn, κc is bounded away from zero with probability 1−∆n

for n sufficiently large, see [9].

Step 1 relies on ℓ1-LAD. Condition PLAD is implied by Condition 1. By Lemma 6 and Comment F.1

we have

‖x′(β̂ − β0)‖2,n .P

√
s log(n ∨ p)/n and |α̂− α0| .P

√
s log(p ∨ n)/n . o(1) log−1 n

because s3 log3(n ∨ p) 6 δnn and the required side condition holds. Indeed, without loss of generality

assume that T contains the treatment so that for x̃i = (di, x
′
i)

′, δ = (δd, δ
′
x)

′, because κc is bounded away

from zero, and the fact that En[|d|3] .P E[|d|3] = O(1), we have

infδ∈∆c

‖x̃′δ‖3
2,n

En[|x̃′δ|3] > infδ∈∆c

‖x̃′δ‖2
2,n‖δT ‖κc

4En[|x′δx|3]+4En[|dδd|3] > infδ∈∆c

‖x̃′δ‖2
2,n‖δT ‖κc

4Kx‖δx‖1En[|x′δx|2]+4|δd|3En[|d|3]

> infδ∈∆c

‖x̃′δ‖2
2,n‖δT ‖κc

4Kx‖δx‖1{‖x̃′δ‖2,n+‖δdd‖2,n}2+4|δd|2En[|d|3]‖δT ‖1

> infδ∈∆c

‖x̃′δ‖2
2,n‖δT ‖1κc/

√
s

8Kx(1+c)‖δT ‖1‖x̃′δ‖2
2,n+8Kx(1+c)‖δT ‖1|δd|2{‖d‖2

2,n+En[|d|3]}

>
κc/

√
s

8Kx(1+c){1+‖d‖2
2,n/κ

2
c
+En[|d|3]/κ2

c
} &P

1√
sKx

.

(H.52)
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Therefore, since λ .
√
n log(p ∨ n) we have

nκc

λ
√
s+

√
sn log(p ∨ n)

inf
δ∈∆c

‖x̃′δ‖32,n
En[|x̃′δ|3]

&P

√
n

Kxs log(p ∨ n)
→P ∞ (H.53)

under K2
xs

2 log2(p ∨ n) 6 δnn. Note that the rate for α̂ and the definition of A implies {α : |α − α0| 6
n−1/2 logn} ⊂ A (with probability 1− o(1)) which is required in ILAD(ii). Moreover, by the (shrinking)

definition of A we have the initial rate of ILAD(iv). Step 2 relies on Lasso. Condition HL is implied by

Condition 1 and Lemma 2 applied twice with ζi = vi and ζi = di under the condition that K4
x log p 6 δnn.

By Lemma 8 we have ‖x′(θ̂−θ0)‖2,n .P

√
s log(n ∨ p)/n. Moreover, by Lemma 9 we have ‖θ̂‖0 . s with

probability 1− o(1).

The rates established above for θ̂ and β̂ imply (C.34) in ILAD(iii) since by Condition 1(ii) E[|vi| |
xi] 6 (E[v2i | xi])1/2 = O(1) and max16i6n |x′i(θ̂ − θ0)| .P Kx

√
s2 log(p ∨ n)/n = o(1).

To verify Condition ILAD(iii) (C.35), arguing as in the proof of Theorem 1, we can deduce that

sup
α∈A

|Gn(ψα,β̂,θ̂ − ψα,β0,θ0)| = oP (1).

This completes the proof.

�

Appendix I. Proof of Auxiliary Technical Results

Proof of Lemma 2. We shall use Lemma 10 ahead. Let Zi = (xi, ζi) and define F = {fj(xi, ζi) = x2ijζ
2
i :

j = 1, . . . , p}. Since pr(|X | > t) 6 E[|X |k]/tk, for k = 2 we have that median(|X |) 6
√
2E[|X |2] and for

k = q/4 we have (1− τ)-quantile of |X | is bounded by (E[|X |q/4]/τ)4/q. Then we have

max
f∈F

median (|Gn(f(xi, ζi))|) 6
√
2E[x4jζ

4
i ] 6 K

2
x

√
2E[ζ4]

and

(1− τ)-quantile of max
j6p

√
En[x4jζ

4
i ] 6 (1 − τ)-quantile of K2

x

√
En[ζ4] 6 K

2
x(E[|ζ|q]/τ)4/q.

The conclusion follows from Lemma 10. �

Proof of Lemma 3. By the triangle inequality we have

‖x′(β̂(2m) − β0)‖2,n 6 ‖x′(β̂ − β0)‖2,n + ‖x′(β̂(2m) − β̂)‖2,n.

Now let T 1 denote the m largest components of β̂ and T k corresponds to the m largest components of β̂

outside ∪k−1
d=1T

d. It follows that β̂(2m) = β̂T 1∪T 2 .

Next note that for k > 3 we have ‖β̂Tk+1‖ 6 ‖β̂Tk‖1/
√
m. Indeed, consider the problemmax{‖v‖/‖u‖1 :

v, u ∈ Rm,maxi |vi| 6 mini |ui|}. Given a v and u we can always increase the objective function by

using ṽ = maxi |vi|(1, . . . , 1)′ and ũ′ = mini |ui|(1, . . . , 1)′ instead. Thus, the maximum is achieved at

v∗ = u∗ = (1, . . . , 1)′, yielding 1/
√
m.
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Thus, by ‖β̂T c‖1 6 c‖δT ‖1 and |T | = s we have

‖x′(β̂(2m) − β̂)‖2,n = ‖x′i
∑K

k=3 β̂Tk‖2,n
6
∑K

k=3 ‖x′β̂Tk‖2,n 6
√
φmax(m)

∑K
k=3 ‖β̂Tk‖

6
√
φmax(m)

∑K−1
k=2

‖β̂
Tk‖1√
m
6
√
φmax(m)

‖β̂(T1)c‖1√
m

6
√
φmax(m) ‖β̂Tc‖1√

m
6
√
φmax(m)c‖δT ‖1√

m
.

�

Proof of Lemma 4. We will specify ℓn below. Let K̃ = maxi6n ‖x̃i‖∞. We have

sup
‖δ‖06ℓ̃ns

∣∣∣∣
‖x̃′δ‖2,n
‖x̃′δ‖P,2

− 1

∣∣∣∣ 6 {φ̄min(ℓ̃ns)}−1 sup
‖δ‖06ℓ̃ns,‖δ‖=1

∣∣(En − E)[(x̃′δ)2]
∣∣ δn.

By symmetrization for probabilities we have

P (sup‖δ‖06ℓ̃ns,‖δ‖=1

∣∣(En − E)[(x̃′δ)2]
∣∣ > t)

6 P (sup‖δ‖06ℓ̃ns,‖δ‖=1

∣∣(En − E)[(x̃′δ)2]
∣∣ > t | K̃ 6 K̄) + P (K̃ > K̄)

6 4P (sup‖δ‖06ℓ̃ns,‖δ‖=1

∣∣En[εi(x̃
′δ)2]

∣∣ > t/4 | K̃ 6 K̄) + P (K̃ > K̄)

for any t > 2K̄
√
ℓ̃ns
√
φ̄max(ℓ̃ns)/n. From Theorem 3.6 of [26], for

δn = 2

(
C̄K̄

√
ℓ̃ns log(1 + ℓ̃ns)

√
log(p ∨ n)

√
logn

)
/
√
n,

where C̄ is the universal constant, we have

E

[
sup

‖δ‖06ℓ̃ns,‖δ‖=1

∣∣En[εi(x̃
′δ)2]

∣∣ > t/4 | K̃ 6 K̄
]
6 δ2n + δn{φ̄max(ℓ̃ns)}1/2.

By Condition 1, we have max16i6n |di| 6 ℓ̃nn1/4 with probability 1−C/ℓ̃n. Setting K̄ := Kx ∨ ℓ̃nn1/4

we have K̃ 6 K̄ with probability 1 −∆n − C/ℓ̃n. Next we show that δn → 0. Indeed, for ℓ̃n → ∞ slow

enough, we have

δn .
{Kx ∨ ℓ̃nn1/4}

√
ℓ̃ns log(1 + ℓ̃ns)

√
log(p ∨ n)√logn√

n
=
Kx ∨ ℓ̃nn1/4

n1/3
log3/2 n

√
ℓ̃ns log(p ∨ n)

n1/3
→ 0

since K4
x = o(n) and s log(p ∨ n) = o(n1/3). �

Appendix J. Auxiliary Probabilistic Inequalities

Let Z1, . . . , Zn be independent random variables taking values in a measurable space (S,S), and

consider an empirical process Gn(f) = n−1/2
∑n

i=1{f(Zi)−E[f(Zi)]} indexed by a pointwise measurable

class of functions F on S (see [30], Chapter 2.3). Denote by Pn the (random) empirical probability

measure that assigns probability n−1 to each Zi. Let N(ǫ,F , ‖ · ‖Pn,2) denote the ǫ-covering number of

F with respect to the L2(Pn) seminorm ‖ · ‖Pn,2.

The following maximal inequality is derived in [6].
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Lemma 10 (Maximal inequality for finite classes). Suppose that the class F is finite. Then for every

τ ∈ (0, 1/2) and δ ∈ (0, 1), with probability at least 1− 4τ − 4δ,

max
f∈F

|Gn(f)| 6
{
4
√
2 log(2|F|/δ) Q(1− τ)

}
∨ 2max

f∈F
median (|Gn(f)|) ,

where Q(u) := u-quantile of maxf∈F
√
En[f(Z)2].

The following maximal inequality is derived in [3].

Lemma 11 (Maximal inequality for infinite classes). Let F = supf∈F |f |, and suppose that there exist

some constants ωn > 1, υ > 1, m > 0, and hn > h0 such that

N(ǫ‖F‖Pn,2,F , ‖ · ‖Pn,2) 6 (n ∨ hn)m(ωn/ǫ)
υm, 0 < ǫ < 1.

Set C := (1 +
√
2υ)/4. Then for every δ ∈ (0, 1/6) and every constant K >

√
2/δ, we have

sup
f∈F

|Gn(f)| 6 4
√
2cKC

√
m log(n ∨ hn ∨ ωn)max

{
sup
f∈F

√
E[f(Z)2], sup

f∈F

√
En[f(Z)2]

}
,

with probability at least 1− δ, provided that n ∨ h0 > 3; the constant c < 30 is universal.
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