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Abstract

We study identification and estimation of the average treatment e↵ect in a corre-
lated random coe�cients model that allows for first stage heterogeneity and binary
instruments. The model also allows for multiple endogenous variables and interactions
between endogenous variables and covariates. Our identification approach is based on
averaging the coe�cients obtained from a collection of ordinary linear regressions that
condition on di↵erent realizations of a control function. This identification strategy
suggests a transparent and computationally straightforward estimator of a trimmed
average treatment e↵ect constructed as the average of kernel-weighted linear regres-
sions. We develop this estimator and establish its

p
n–consistency and asymptotic

normality. Monte Carlo simulations show excellent finite-sample performance that is
comparable in precision to the standard two-stage least squares estimator. We apply
our results to analyze the e↵ect of air pollution on house prices, and find substantial
heterogeneity in first stage instrument e↵ects as well as heterogeneity in treatment
e↵ects that is consistent with household sorting.
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1 Introduction

This paper is about the linear correlated random coe�cients (CRC) model. In its simplest

form, the model can be written as

Y = B0 +B1X, (1)

where Y is an outcome variable, X is an explanatory variable and B ⌘ (B0, B1) are un-

observable variables. The explanatory variable X is endogenous in the sense that it may

be statistically dependent with B0 and B1. Concerns about endogeneity are widespread in

economic applications and are often addressed by using the variation of an instrumental vari-

able, Z, that is plausibly independent (or uncorrelated) with (B0, B1), but correlated with

X. The most common tool for doing this is the two-stage least squares (TSLS) estimator.

However, unless the partial e↵ect of X on Y , i.e. B1, is a degenerate random variable (a con-

stant), the estimand of the TSLS estimator is not necessarily an easily interpretable feature

of the distribution of B1. Assuming that B1 is constant is tantamount to assuming that the

treatment e↵ect of X on Y is homogenous. As many authors have discussed, the theoretical

and empirical evidence does not support the assumption of homogenous treatment e↵ects.

See Heckman (2001) and Imbens (2007) for thorough expositions of this point.

To address this problem, several authors have explored auxiliary assumptions under which

the TSLS estimand becomes a parameter of interest. The most influential finding is that

of Imbens and Angrist (1994), who show that if both X and Z are binary and if Z a↵ects

X monotonically, then the TSLS estimator is consistent for the local average treatment

e↵ect (LATE). The LATE parameter has generated significant debate over whether it is

actually a quantity that economists should be interested in; see, for example, the Journal

of Economic Perspectives (2010) and the Journal of Economic Literature (2010) symposia.

However, as the support of X grows from binary to multi-valued discrete to continuous, the

TSLS estimand becomes an increasingly complicated weighted average of LATEs between

di↵erent X realizations (Angrist and Imbens 1995). Even if one finds a solitary LATE to be

an interesting parameter, the interpretation, economic significance, and policy relevance of

such weighted averages of LATEs is more tenuous. A less controversial parameter of interest

is the average treatment e↵ect (ATE), which due to the linearity in (1) is determined by

the average partial e↵ect (APE), E(B1). In a series of papers, Heckman and Vytlacil (1998)

and Wooldridge (1997, 2003, 2008) showed that if the e↵ect of Z on X is homogenous,

then TSLS will be consistent for E(B1). This type of homogeneity assumption is somewhat

2



unsatisfying, since accounting for heterogeneity is the main motivation for considering this

problem to begin with. (See also Li and Tobias (2011), who consider Bayesian inference in

those models.)

An alternative is to consider di↵erent instrumental variables estimators besides TSLS.

Florens, Heckman, Meghir, and Vytlacil (2008) take this approach in considering a poly-

nomial version of (1) plus an additive nonparametric function of X common to all units.

They show that the ATE is identified if X is continuously distributed and there exists a

function h that is strictly increasing in a scalar unobservable V such that X = h(Z, V ).

This type of first stage restriction allows for heterogeneity in the e↵ect of Z on X, albeit

in a limited form, and so directly addresses the concerns about previous work by Heckman,

Vytlacil and Wooldridge. The utility of the first stage restriction is in creating a random

variable R which is a control function in the sense that X ??B|R. A central contribution

of our paper is to exploit this control function property to provide an alternate identifica-

tion approach to the one considered by Florens et al. (2008). Our approach has three main

benefits relative to that of Florens et al. (2008). First, while Florens et al. (2008) require

a continuous instrument (see the discussion on page 8), we can achieve identification with

binary and discrete instruments in many cases. Second, our approach enables us to include

multiple endogenous variables, non-polynomial terms and interactions between endogenous

variables and covariates in more general linear-in-coe�cients specifications of (1). Third,

it suggests a computationally straightforward estimator that appears to have good finite

sample properties. The main drawbacks of our approach relative to that of Florens et al.

(2008) is that their model allows for a common additive nonparametric function of X, and,

when Z is continuous, their “measurable separability” assumption may hold in some cases

that our corresponding relevance condition does not.

Our results build on recent research on nonparametric identification in nonseparable

models. A recurring finding in this work is a trade-o↵ between the dimension of heterogeneity

and the required variation in the instrument Z. At one extreme lie the papers by Imbens and

Newey (2009) and Kasy (2013), who show that unrestricted forms of heterogeneity can be

allowed in the outcome and/or first stage equations while still attaining point identification

of the ATE, as long as Z satisfies a large support assumption (they also provide sharp

partial identification results when the large support assumption does not hold). Despite

their ubiquity across the econometric theory literature, such large support assumptions are

unlikely to ever be even approximately satisfied in practice. In particular, they rule out

the binary and discrete instruments that are commonly found in applied work, such as
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policy shifts, institutional changes, and natural experiments. On the other hand, work

by Chernozhukov and Hansen (2005), Torgovitsky (2012) and D’Haultfœuille and Février

(2012) has shown that binary and discrete instruments of this sort can secure identification,

as long as the dimension of heterogeneity is su�ciently restricted. These restrictions on

heterogeneity rule out simple, parsimonious specifications like (1) which contain more than

one unobservable. Between these two extremes lies the paper by Florens et al. (2008) and also

those of Chesher (2003) and Masten (2012), both of which require a continuous instrument

with small support but also allow for additional heterogeneity. Our paper contributes to this

middle ground and, among other things, provides an example where a broadly interesting

parameter can be identified in a model with high-dimensional heterogeneity and discrete

instruments.

The recent work of Graham and Powell (2012) (who build on work by Chamberlain 1992)

on CRC models with panel data is related in motivation to this paper. Both papers seek to

identify the APE—at least among some subpopulation—but the analysis is fundamentally

di↵erent due to di↵erences between using panels and instruments as sources of identification.

Partially related to their paper as well as ours is the literature on random uncorrelated

coe�cient models; for example, Beran and Hall (1992) and Hoderlein, Klemelä, and Mammen

(2010). That literature assumes X and (B0, B1) are independent and centers on estimating

the distribution of (B0, B1). In contrast, we limit our focus to identifying averages, but have

to contend with the di�culty of dependence between X and (B0, B1).

An advantage of our identification approach and the linear structure in (1) is that it

facilitates estimators that are precise, easy to implement, and which do not su↵er from the

curse of dimensionality. A main contribution of our paper is to develop such an estimator

of E(B) and establish its
p
n–consistency and asymptotic normality. (Due to uniformity

issues, we actually develop asymptotic theory for an estimator of a trimmed version of

E(B); see section 4.) Our estimator is essentially an average of ordinary linear regressions

run conditional on a realization of a control function and so shares similarities with the control

function approaches of, for example, Blundell and Powell (2004), Imbens and Newey (2009),

Rothe (2009), Hoderlein and Sherman (2013) and Torgovitsky (2013). The control function

is estimated with a first stage quantile or distribution regression and the conditioning is

approximated with kernel weights. Hence, our estimator reduces to a straightforward average

of weighted linear regressions, where the weights are determined by a first stage quantile or

distribution regression of X on Z. Incorporating covariates is a simple matter of including

them in these linear mean and quantile regressions. Monte Carlo experiments show that
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our estimator can perform as well or better than the TSLS estimator under conditions when

both would be consistent, while remaining consistent in situations where TSLS would be

inconsistent.

We apply our results to study the e↵ect of air pollution on house prices. We follow

the empirical approach of Chay and Greenstone (2005), who argue that instrumenting is

necessary to deal with unobserved economic shocks and sorting of households based on

unobserved preferences for clean air. They also argue that this sorting leads to correlated

random coe�cients. They define a binary instrument based on regulation implemented by

the 1970 Clean Air Act Amendments. We demonstrate substantial first stage heterogeneity

in the e↵ect of this instrument, which strongly suggests that the simpler estimators discussed

by Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) would be inconsistent

for the APE. Likewise, the binary instrument precludes approaches which rely on continuous

variation, such as Florens et al. (2008). For two subsets of counties where the instrument has

a statistically significant e↵ect on pollution levels, we estimate unweighted APEs of changes

in pollution on changes in house prices. These estimates demonstrate patterns that are

consistent with household sorting. Taken together, these estimates along with TSLS suggest

there is substantial heterogeneity in households’ valuation of clean air.

The structure of the paper is as follows. In the next section we formally discuss the

model, assumptions and our identification results. In Section 3, we describe our estimator

and discuss its implementation. In Section 4, we analyze the asymptotic properties of our

estimator. In Section 5, we report the results of Monte Carlo studies that demonstrate

the performance of our estimator. Finally, in Section 6, we present our application to air

pollution and house prices. Section 7 concludes.

2 Model and Identification

A general version of model (1) is

Y = B0 +
d

x

X

j=1

B
j

X
j

+
d1
X

j=1

B
d

x

+j

Z1j ⌘ W 0B, (2)

where X 2 Rd

x is a vector of potentially endogenous variables, Z1 2 Rd1 is a vector of

included exogenous variables with jth component Z1j, W ⌘ [1, X 0, Z 0
1]

0 2 Rd

w with d
w

⌘
1 + d

x

+ d1, and B 2 Rd

w is a vector of unobservable variables. In addition to Z1, there is a

vector of excluded exogenous variables (instruments) Z2 2 Rd2 that do not directly a↵ect Y
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in (2). We write the exogenous variables together as Z ⌘ [Z 0
1, Z

0
2]

0 2 Rd

z with d
z

⌘ d1 + d2.

We divide the vector of endogenous variables into subvectors of lengths d
b

� 1 and

d
x

� d
b

� 0. We refer to the first d
b

components of X as the basic endogenous variables

and the last d
x

� d
b

components of X as the derived endogenous variables. We assume that

the basic endogenous variables satisfy a particular first stage structure that is specified in

the assumptions ahead. In contrast, the derived endogenous variables are assumed to be

functions of the basic endogenous variables and the included exogenous variables Z1. For

example, we could have d
b

= 1 and derived endogenous variables X
k

= Xk for k > d
b

, as

in the model of Florens et al. (2008). Or, we could have X
k

= X1Z1 for some k > d
b

be an

interaction variable, which would allow the distribution of partial e↵ects to di↵er arbitrarily

across values of Z1. This allows, for example, men and women to have di↵erent distributions

of treatment e↵ects, allowing for heterogeneity on observables to be dealt with in the usual

way.

Throughout our analysis we frequently use the random vector

R ⌘ [F
X1|Z(X1|Z), . . . , FX

d

b

|Z(Xd

b

|Z)]0,

which we refer to as the conditional rank of X. We are only concerned with the conditional

ranks of the basic endogenous variables, since under our assumptions the conditional ranks

of the derived endogenous variables F
X

k

|Z(Xk

|Z) for k = d
b

+ 1, . . . , d
x

will contain less

information. Below, we will restrict X
k

to be continuously distributed for k = 1, . . . , d
b

so

that R
k

is distributed uniformly on [0, 1] for these k. Note, however, that if d
b

> 1 then the

support of R may be a proper subset of [0, 1]db . Consider the following assumptions.

Assumption I.

I1. (Existence of moments) E(B) < 1 and E(kWk2) < 1.

I2. (First stage equation) For each basic endogenous variable k = 1, . . . , d
b

, there exists a

scalar random variable V
k

and a possibly unknown function h
k

that is strictly increasing

in its second argument, for which X
k

= h
k

(Z, V
k

). The vector V ⌘ (V1, . . . , Vd

b

) is

continuously distributed.

I3. (Derived endogenous variables) For each k = d
b

+ 1, . . . , d
x

, there exists a known

function g
k

such that X
k

= g
k

(X1 . . . , X
d

b

, Z1).

I4. (Instrument exogeneity) (B, V )??Z.
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I5. (Instrument relevance) E[WW 0|R = r] is invertible for almost every r in a known

Lebesgue measurable set R ✓ supp(R).

Theorem 1. Define �(r) ⌘ E[B|R = r]. Under Assumptions I,

�(r) = E[WW 0|R = r]�1 E[WY |R = r]

for any r ⌘ (r1, . . . , rd
b

) 2 R. Hence both �(r) and �R ⌘ E[B|R 2 R] are point identified.

The proof of Theorem 1 uses the following implication of I2 and I4, which has been used

and analyzed in various forms by Imbens (2007), Florens et al. (2008), Imbens and Newey

(2009), Kasy (2011) and Torgovitsky (2012). Since our version is a slight extension, we

provide a short proof in the appendix.

Proposition 1. I2 and I4 imply that (R,B)??Z. If I3 also holds, then W ??B|R.

Proof of Theorem 1. I1 ensures that all conditional moments of interest exist. Premulti-

plying both sides of (2) by W and taking expectations conditional on R = r for any r 2 R,

we have

E[WY |R = r] = E[WW 0B|R = r] = E[WW 0|R = r]�(r),

by Proposition 1. Given I5, we can premultiply both sides by the inverse of E[WW 0|R = r]

to obtain the claimed expression for �(r). Since E[WW 0|R = r]�1 and E[WY |R = r]

are features of the observable data, this shows that �(r) and �R ⌘ E[B|R 2 R] are both

identified for any known R ✓ supp(R) satisfying I5. Q.E.D.

The intuition behind Theorem 1 is as follows. After conditioning on R = r, all of the

variation in the basic endogenous variables is due to variation in Z, by the definition of R.

Since the derived endogenous variables are functions of the basic endogenous variables and

Z1, all of the variation in W conditional on R = r is also due to variation in Z. Variation

in Z, however, is independent of B conditional on R = r by instrument exogeneity (I4) via

Proposition 1. As a result, a linear regression of Y on X conditional on R = r identifies

�(r) ⌘ E[B|R = r]. Averaging E[B|R = r] over r 2 R then yields �R ⌘ E[B|R 2 R]. If

instrument relevance (I5) holds for some measure one subset of supp(R), then �R = E[B] is

identified. This intuition is illustrated in Figure 1.
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x0

x1

Q
X|Z(·|0)

Q
X|Z(·|1)

Figure 1: Consider the simple CRC model (1), Y = B0 + B1X, and suppose Z is binary.
Conditional on R = 0.8, X assumes two values (x0 and x1) depending on the realization of Z.
Since Z ??B | {R = 0.8}, a mean regression of Y on X conditional on R = 0.8 identifies the
means of the intercept and slope coe�cients, E(B0 | R = 0.8) and E(B1 | R = 0.8). For the
plotted quantile functions, the relevance condition I5 holds for almost every r 2 (0, 1), since
the curves intersect at only one point. Hence the previous argument yields E(B | R = r)
for all r 2 (0, 1) and averaging then gives E(B). Note also that the instrument’s e↵ect is
nonmonotonic—it is positive for units with large R (above R = 0.3) and negative for units
with small R.

Theorem 1 is complementary to a result by Florens et al. (2008). Those authors consider

a model with a single basic endogenous variable X and the outcome equation

Y = '(X) + B0 +B1X +B2X
2 + · · ·+B

K

XK ,

for some pre-specified K, where ' is an unknown function, and (B0, . . . , BK

) are random

coe�cients that are potentially correlated with X. Except for ', this outcome equation can

be obtained from (2) with basic endogenous variable X, and derived endogenous variables

(X2, . . . , XK). The price of including the ' function is that Florens et al. (2008) require a

continuous small support instrument (see their identification proof on page 1203, the step

from equation 10 to the next line). We do not include the ' function, but are generally able

to achieve identification of the average coe�cients in the polynomial outcome equation model

so long as the distribution of Z has at least K + 1 support points. Florens et al. (2008) also
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maintain I2 and I4, but in place of I5 they impose a “measurable separability” condition that

is somewhat high-level. As those authors discuss, their measurable separability condition

may fail if the first stage equation is not continuous in V . In contrast, our relevance condition

I5 does not require such continuity. This allows for the support of X conditional on Z to be

disjoint.

I5 is directly analogous to the standard no-multicollinearity condition in ordinary least

squares and consequently requires the analyst to avoid standard causes of failure, such as

the dummy variable trap. When d
x

= d
b

= 1, so that there is a single basic endogenous

variable and no derived endogenous variables, I5 requires that Var[Q
X|Z(r | Z)] > 0 for

all r 2 R. If Z 2 {0, 1} is binary, then Var[Q
X|Z(r | Z)] > 0 happens if and only if

Q
X|Z(r | 0) 6= Q

X|Z(r | 1); that is, the two curves in Figure 1 are separated at r. Since

Q
X|Z(r | Z) = h[Z,Q

V

(r)] by strict monotonicity (I2) and independence (I4), we must

have that for each r 2 R there are distinct z, z0 2 supp(Z) with h[z,Q
V

(r)] 6= h[z0, Q
V

(r)].

Hence, for all units with first stage unobservables v = Q
V

(r) for which we want to learn

E(B), the instrument must a↵ect those units’ endogenous variable. Generally, whether I5

holds is an empirical matter in the sense that the condition only depends on the distribution

of observables and so, at least in principle, can be checked in the data.

When I5 only holds for some proper subset R of supp(R) then Theorem 1 identifies �R ⌘
E[B|R 2 R], which generally will not equal E[B]. Nevertheless, �R has an interpretation

similar to the unweighted LATE of Imbens and Angrist (1994). That is, �R is the unweighted

average of B for those agents for whom the instrument has an e↵ect. Note that we do not

require this e↵ect to be monotonic. If Z is assumed to have a monotonic e↵ect on X (as in

Imbens and Angrist 1994), then �R is the unweighted average of B for those agents who are

induced to increase their treatment intensity X due to a change in Z. This type of parameter

may be of comparable (or even greater) interest than E[B] for a policy maker considering a

policy change that a↵ects the determination of X through an incentive Z.

While I5 may fail for some subset of supp(R), it is an intuitively appealing requirement

for an instrument. Agents characterized by an r at which E[WW 0|R = r] is singular do

not experience independent variation in W due to variation in Z, and so it is natural that

E[B|R = r] should not be identifiable for those agents. Assuming that the e↵ect of Z on X is

homogenous, as in Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008), ignores

this distinction and explicitly includes agents in the average for whom the instrument might

be completely ine↵ectual—in e↵ect, extrapolating from Z-sensitive agents to Z-insensitive

agents. Similarly, the measurable separability condition of Florens et al. (2008) could ap-
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parently hold even if there is a non-negligible subset of agents for whom the instrument is

irrelevant.

As in standard linear regression analysis, identification of E(B) (or some conditional

version of it) via Theorem 1 provides identification of the ATE and APE when the outcome

equation includes nonlinear functions of X or interactions with covariates Z1. This is an

elementary point, but we mention it for clarity. Suppose that Y = B0 + B1X + B2XZ1.

Then the APE is given by E[B1]+E[B2]E[Z1] while the ATE for an exogenous change from

x to x is given by (E[B1] + E[B2]E[Z1])(x � x). Both of these quantities can be obtained

from estimates of E[B1], E[B2] and E[Z1]. Alternatively, an analyst may be interested in the

APE for some predetermined value of z1, which would be given by E[B1] + E[B2]z1. When

(2) contains nonlinear terms, e.g. Y = B0 + B1X + B2X
2, then an analyst may be more

interested in reporting E[B1] + 2E[B2]x as the APE when X is exogenously set to x. All of

these quantities can be obtained after applying our identification results.

Among the maintained assumptions for Theorem 1, I2 is generally the most controver-

sial. While it is more flexible than the homogenous e↵ect specifications of Heckman and

Vytlacil (1998) and Wooldridge (1997, 2003, 2008), it does restrict the basic endogenous

variables to be continuous and also limits the heterogeneity in their first stage equations to

have dimension one. One-dimensional heterogeneity of the sort in I2 can be interpreted as

“rank invariance” in the e↵ect of Z on each basic component of X. (The concept of rank

invariance was first introduced by Doksum 1974.) Rank invariance means that the ordinal

ranking of any two agents in terms of any component of X
k

(k  d
b

) would be the same

if both agents received the same realization of Z, for any realization of Z. See Heckman,

Smith, and Clements (1997), Chernozhukov and Hansen (2005) and Torgovitsky (2012) for

further discussions of rank invariance. While one-dimensional heterogeneity is restrictive,

there are few alternatives in the literature that allow for high-dimensional heterogeneity in

both the outcome and first stage equations while attaining point identification of a broadly

interpretable parameter. An important exception to this is the work of Kasy (2013), who

obtains such a result but under the assumption that Z a↵ects a scalar X monotonically and

also has large support.

Assumptions I2 and I4 together generally imply that correlation between X and the

random coe�cients B must occur through V . For example, specifying B as a direct function

of X, such as setting B0 = X, implies that, conditional on R, some variation remaining

in B is due to Z, and hence I4 will typically not hold. Thus, I2 and I4 should be viewed

as also placing restrictions on the manner in which X and B may be dependent. This
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point is not unique to our model—even in a simple textbook model (1) with a constant B1,

data generating processes like B0 = X will violate the usual uncorrelatedness assumption

E(ZB0) = 0. Consequently, if we wish to express model (1) in terms of potential outcomes,

it is helpful to view (B0, B1, V ) as unobserved heterogeneity parameters which are intrinsic

to each unit. After the instrument is assigned, the value of X is determined via the first

stage equation of I2 and then the value of Y is determined through (1). Thus the average

partial e↵ect E(B1) tells us the average e↵ect of exogenously increasing X by one for all

units.

In addition to the overall average of E(B) identified in Theorem 1, the following result

shows that averages for groups determined by their treatment intensity are also identified.

This parameter is analogous to the “e↵ect of the treatment on the treated” parameter defined

in Florens et al. (2008).

Theorem 2. Under Assumptions I, the “average e↵ect of treatment on the treated” param-

eter E(B | X
k

= x
k

, k  d
b

) is point identified for any x = (x1, . . . , xd

b

) 2 supp(X1, . . . , Xd

b

)

such that

n⇣

F
X1|Z(x1|z), . . . , FX

d

b

|Z(xd

b

|z)
⌘

: z 2 supp(Z|(X1, . . . , Xd

b

) = x)
o

✓ R.

Proof of Theorem 2. From the proof of Theorem 1, �(r) ⌘ E(B | R = r) is identified for

all r 2 R. For notational convenience, let eX ⌘ (X1, . . . , Xd

b

). By iterated expectations, the

definition of R, and Proposition 1, we have

E(B | eX = x) = E
R| eX [E(B | eX = x,R) | eX = x]

= E
Z| eX [E(B | eX = x,R = (F

X1|Z(x1|Z), . . . , FX

d

b

|Z(xd

b

|Z))) | eX = x]

= E
Z| eX [E(B | R = (F

X1|Z(x1|Z), . . . , FX

d

b

|Z(xd

b

|Z))) | eX = x]

= E
Z| eX [�((FX1|Z(x1|Z), . . . , FX

d

b

|Z(xd

b

|Z))) | eX = x],

which is identified since (F
X1|Z(x1|z), . . . , FX

d

b

|Z(xd

b

|z)) 2 R for all z 2 supp(Z| eX = x).

Q.E.D.

The support condition in Theorem 2 holds trivially ifR = (0, 1). To interpret the support

condition when R is a strict subset of (0, 1), suppose for simplicity there is a single basic

endogenous variable. Then the condition states that for every z 2 supp(Z) such that there

is an r with x = h[z,Q
V

(r)], or equivalently x = Q
X|Z(r|z), that r must be such that we can

identify �(r). That is, the value x must be obtainable via some r for which we can identify

11



�(r). For example, in the simple model Y = B0 + B1X, Var[F
X|Z(x | Z)] > 0 is su�cient

for the support condition. This variance condition says there are at least two di↵erent

instrument values z and z0 which could have yielded x, and which correspond to di↵erent

conditional ranks r and r0. That is, x = h[z,Q
V

(r)] = h[z0, Q
V

(r0)]. By strict monotonicity

in the first stage equation, h[z,Q
V

(r)] 6= h[z,Q
V

(r0)] and h[z0, Q
V

(r)] 6= h[z0, Q
V

(r0)]. Thus

h[z,Q
V

(r)] 6= h[z0, Q
V

(r)] and h[z,Q
V

(r0)] 6= h[z0, Q
V

(r0)], and hence the relevance condition

I5 holds so that r, r0 2 R. For example, see Figure 1 in which x0 can be obtained via either

(z, r) = (1, 0.6) or (z0, r0) = (0, 0.8). Both r = 0.6 and r0 = 0.8 are points at which �(r) is

identified. The figure also shows why this condition is not necessary: consider an x value

much larger than x1. Such a value may be obtained only through z = 1, and yet the

corresponding conditional rank may be a point at which we can identify �(r).

The treatment on the treated parameter E(B | (X1, . . . , Xd

b

) = x) provides one way

of exploring heterogeneity in treatment e↵ects. A truly constant treatment e↵ect would

yield a function E(B | (X1, . . . , Xd

b

) = x) which is constant over x. An increasing function

would show positive correlation between received treatment and the coe�cients, while a

decreasing function would show negative correlation between received treatment and the

coe�cients. Indeed, if R = (0, 1)db then E(B | (X1, . . . , Xd

b

) = x) is identified for all

x 2 supp(X1, . . . , Xd

b

) and hence the correlations E[B
j

X
l

] = E(E[B
j

| X
k

= x
k

, k  d
b

]X
l

)

are identified for any j and any l  d
b

.

3 Estimation

We construct estimators of �(r) and �R from an i.i.d. sample {(Y
i

, X
i

, Z
i

)}n
i=1 using the

sample analog of the expressions in Theorem 1. We limit our focus to the case where there is

one basic endogenous variable (d
b

= 1), although there may be any number of known derived

endogenous variables and exogenous variables Z. We discuss generalizations to d
b

> 1 at

the end of the section. To simplify notation, we let X denote the one basic endogenous

variable in both this section and the next. As a first step towards approximating the event

that R = r, we construct estimates bR
i

of R
i

⌘ F
X|Z(Xi

|Z
i

) for i = 1, . . . , n as

bR
i

⌘ bF
X|Z(Xi

|Z
i

), (3)

where bF
X|Z(x|z) is an estimator of F

X|Z(x|z). This step of our estimation procedure is similar

to those of Imbens and Newey (2009) and Jun (2009), among others.

The asymptotic theory we develop in the next section is general enough to allow for

12



many di↵erent
p
n–consistent estimators bF

X|Z . One could use a direct estimator such as

the empirical conditional distribution function in the case that all Z variables are discrete.

Alternatively, as pointed out by Chernozhukov, Fernández-Val, and Galichon (2010), one can

estimate Q
X|Z(s|z) at several quantiles s and then use the “pre-rearrangement” operator to

construct an indirect estimator

bF
X|Z(x|z) =

Z 1

0

1[ bQ
X|Z(s|z)  x] ds. (4)

Chernozhukov, Fernández-Val, and Melly (2009, 2012) discuss several di↵erent parametric

direct and indirect estimators.

For our purposes, we prefer nonparametric direct estimators (such as the empirical condi-

tional distribution function) when the dimension of Z is small and discrete, and parametric

indirect estimators when there are more than a few covariates. The latter are easier than

direct estimators to link to primitives under I2, since, by strict monotonicity and inde-

pendence, Q
X|Z(r|z) = h(z,Q

V

(r)). For example, the linear quantile regression model of

Koenker and Bassett (1978) implies that h(z,Q
V

(r)) = Q
X|Z(r|z) = z0⇡(r) for a function ⇡

that is strictly increasing in r. Substituting F
V

(v) for r, we have h(z, v) = z0⇡(F
V

(v)), so

that the linear quantile regression model imposes that h is linear with respect to z, while

I2 links together the components of ⇡ to depend on a single underlying random variable

V . For practical implementation when Z has more than just a few components, we advo-

cate using linear quantile regression together with (4) to construct bF
X|Z and bR

i

. Besides

being easy to interpret under I2, the linear quantile regression estimator has the additional

benefits of being straightforward to compute, amenable to high-dimensional Z, and widely

available in statistical packages. The integral in (4) can be evaluated using a uniform grid

{s
j

}J
j=1 ⇢ (0, 1).

Having constructed bR
i

, we estimate �(r) for a given r as

b�(r) ⌘
 

1

n

n

X

i=1

bkh

i

(r)W
i

W 0
i

!+ 

1

n

n

X

i=1

bkh

i

(r)W
i

Y
i

!

, (5)

where (·)+ is the Moore-Penrose inverse and bkh

i

(r) ⌘ h�1K(( bR
i

� r)/h) are weights con-

structed through a kernel function K with bandwidth parameter h that tends to 0 asymp-

totically. The Moore-Penrose inverse is useful here because the matrix in question may not

be invertible for all values of r and h in small samples, although our assumptions in the next

section will ensure invertibility asymptotically. Since R is always distributed uniformly with

13



support [0, 1] when d
b

= 1, we can use our estimates of �(r) to estimate �R by

b�R ⌘ �(R)�1

Z

R

b�(r) dr, (6)

where R is a measurable subset of [0, 1] that is specified by the analyst and � is the Lebesgue

measure.1 As we show in Section 4, this estimator is
p
n–consistent and asymptotically

normal for �R under relatively weak regularity conditions. In studying a related problem for

a di↵erent model, Hoderlein and Sherman (2013) described the strategy of an estimator like
b�R as “localize-then-average.” We find this terminology appealing as it captures the idea

that for any given r, b�(r) only depends on the portion of the data local to the event R = r,

while b�R forms an average of these various local estimators.

Overall, the computational complexity of (6) is very light for modern computing systems.

A typical implementation would first estimate bR
i

, e.g. by using (4) with a moderate sized

grid. Next, one would numerically integrate to compute (6). A simple and e↵ective way

to do this is to use variance-reducing pseudo-random draws, such as Halton sequences (see

e.g. Section 9.3.3 of Train 2009) or a uniform grid. Typically, a few hundred draws should

be more than su�cient. Moreover, unlike Monte Carlo integration, deterministic sequences

can yield the same numerical results for all researchers. At each draw, one would estimate
b�(r) using (5), which is essentially just a weighted linear regression. Finally, the draws are

averaged together to obtain b�R.

As we discuss in the next section, b�R is
p
n–consistent and asymptotically normal,

but the asymptotic variance turns out to be complicated due to the e↵ect of estimating

R
i

. Consequently, we use the nonparametric bootstrap to obtain standard errors. The

typical procedure draws S sets of n observations with replacement from {(Y
i

, X
i

, Z
i

)}n
i=1,

say {(Y
si

, X
si

, Z
si

)}n
i=1 for s = 1, . . . , S. These observations are used to compute b�s

R for

s = 1, . . . , S. Then

b⌃ ⌘ 1

S � 1

S

X

s=1

(b�s

R � �R)(b�
s

R � �R)
0

with �R ⌘ S�1
P

S

s=1
b�s

R forms a bootstrapped estimate of the variance of b�R. This estimator

can be used to construct confidence intervals or conduct hypothesis tests in the usual fashion.

For example, a two-sided confidence interval of level ↵ for the first component of �R would

1 Here and throughout the paper, the integration of vectors as in (6) should be understood as component-
wise.
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be given by
h

b�R,1 � b⌃1/2
11 ��1(1� ↵/2), b�R,1 + b⌃

1/2
11 ��1(1� ↵/2)

i

,

where b�R,1 is the first component of b�R, b⌃11 is the (1, 1) component of b⌃, and � is the

cumulative distribution function for the standard normal distribution.

Extending our estimator to the case where there are multiple basic endogenous variables

(d
b

> 1) requires a few modifications. First, we need to estimate R
ki

⌘ F
X

k

|Z(Xki

|Z
i

) for

each k = 1, . . . , d
b

. This can be done the same way as in the d
b

= 1 case. Second, b�(r) in (5)

needs to be modified so that the kernel weights are multivariate. The curse of dimensionality

would accompany this sort of multivariate smoothing, and while b�R could still be expected

to be formally
p
n–convergent under certain conditions on the kernel function, K, its small

sample behavior will likely be quite poor with realistic sample sizes if d
b

is greater than 3 or

4. Third, when d
b

> 1, the density of R is no longer known a priori, so that b�R could no

longer be constructed by integrating as in (6). A natural solution to the latter problem is to

use the empirical measure to approximate the integral by taking

b�R =

P

n

i=1 1[ bR
i

2 R]b�( bR
i

)
P

n

i=1 1[ bR
i

2 R]
.

The asymptotic analysis of this estimator involves third-order U-statistics and is much more

complicated than that for (6). Given this complication and since the case d
b

= 1 is by far

the most commonly encountered in applications, we focus our formal analysis in the next

section on b�R defined by (6).

4 Asymptotic Theory

In this section we discuss an asymptotic normality result for b�R. The proof is in Appendix

A. In the following, we let P (r) ⌘ E[WW 0|R = r] and use  to denote convergence in

distribution.

Theorem 3. Under Assumptions I and E,

p
n(b�R � �R) N

�

0,�(R)�2 E[(⇣1i + ⇣2i)(⇣1i + ⇣2i)
0]
�

,

where
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⇣1i ⌘ 1[R
i

2 R]P (R
i

)�1W
i

W 0
i

(B
i

� �(R
i

))

⇣2i ⌘ �E[1[R
j

2 R]⇠
i

(X
j

|Z
j

)P (R
j

)�1W
j

W 0
j

�̇(R
j

)|i] (j 6= i),

with all additional notation being defined below in Assumptions E.

Assumptions E.

E1. (Random sample) (Y
i

, X
i

, Z
i

) is an i.i.d. sample.

E2. (Integration set) R is a closed, measurable subset of [�, 1� �] for some � > 0.

E3. (Kernel) K has support [�1, 1] and is twice continuously di↵erentiable and symmetric

around 0 with
R 1

�1 K(⌘)d⌘ = 1 and
R 1

�1 ⌘
2K(⌘)d⌘ < 1.

E4. (Bandwidth) As n ! 1,
p
nh2 ! 0 and

p
nh/ log(n) ! 1.

E5. (Smoothness) Every component of P (r) and �(r) is twice continuously di↵erentiable

over r 2 R with first and second component-wise derivatives Ṗ (r), P̈ (r), �̇(r), �̈(r).

E6. (Existence of moments) E(kWW 0k4|R 2 R) and E(kBk4|R 2 R) are both finite.

E7. (Rank estimation)

bR
i

is constructed from (3) and for all (x, z) 2 XZ(R) ⌘ {(x, z) :
F
X|Z(x|z) 2 R},

p
n( bF

X|Z(x|z)� F
X|Z(x|z)) =

1p
n

n

X

i=1

⇠
i

(x|z) + ⇢
n

(x|z) (7)

with E[⇠
i

(x|z)] = 0, E[1[R
i

2 R]⇠
j

(X
i

|Z
i

)4] < 1 for both j = i and j 6= i, and

sup(x,z)2XZ(R) |⇢n(x|z)| = oP(1). Also, with probability approaching 1, bF
X|Z belongs to

a class of functions F such that logN(✏,F , k · k1) < C✏�1/2 for some C > 0.2

The i.i.d. assumption E1 is standard for microeconometric applications and could in prin-

ciple be extended to cover non-identical and/or dependent data frameworks. The assumption

that R is closed and measurable in E2 is mild and of no practical significance. The additional

restriction that R is a subset of [�, 1 � �] for some small � > 0 is made to avoid boundary

issues. While these issues could potentially be addressed by using local linear weights, we

2 The notation N(✏,F , k · k1) stands for the ✏–covering number of F under the sup–norm; that is, the
minimal number of k ·k1–balls of radius ✏ that are required to cover F . Intuitively, the covering number
is a measure of the complexity of the class of functions F . See van der Vaart and Wellner (1996) for
more details.
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have found that these work poorly in practice. This is perhaps not surprising in our frame-

work since the density of R is uniform, which is a particularly unfavorable case for local

linear regression (see Remark 4 of Ruppert and Wand 1994). Additionally, as we discuss

further below, E7 will in practice also require that R does not contain extremal ranks. We

therefore see E2 as a natural restriction given our identification strategy, although it does

imply that we can only estimate a trimmed version of E(B). It is likely possible to adjust

our estimator to allow for � ! 0 asymptotically, or to use a di↵erent smoothing approach

that is less sensitive to boundary e↵ects, such as sieves. We leave these modifications for

future research.

The restrictions on the kernel in E3 are relatively mild and allow for a broad range of

commonly used kernels, such as the uniform or biweight kernel. We rule out kernels with

unbounded support such as the Gaussian kernel in order to apply results in the literature

on kernel regression with generated regressors (specifically, those in Mammen, Rothe, and

Schienle 2012). Our bandwidth conditions in E4 prescribe a choice of h that undersmooths

(goes to zero faster) relative to the usual optimal bandwidth choice for nonparametric kernel

regression. This is standard given the semiparametric nature of our estimator b�R and appears

in similar contexts like the average derivative estimator of Powell, Stock, and Stoker (1989).

Intuitively, while b�(r) only uses a portion of the data, b�R uses all the data and thus has

a much smaller variance. Consequently, the bandwidth h can be sent to 0 more quickly in

order to remove the bias of b�R at a
p
n–rate and achieve the overall

p
n–rate of convergence

asserted in Theorem 3.

Assumption E5 places some standard smoothness conditions on the population objects

P (r) and �(r). In combination with I5 and E2, these imply that P (r) is invertible uniformly

over R, and so serves to strengthen I5 in a way that is theoretically important for the

asymptotics. The practical implication is thatR should not include neighborhoods of isolated

points where I5 fails, such as where the curves cross in Figure 1 (r = .3). Assumption E6

is a standard type of assumption regarding the number of existing moments for W and B.

Since WW 0 contains squared terms, E6 essentially requires each component of W to have a

finite eighth moment.

The conditions in E7 require the estimator of F
X|Z used in constructing bR

i

to be asymp-

totically linear and
p
n–convergent. This assumption is not very restrictive for parametric

models. Chernozhukov et al. (2009, 2012) provide several examples of direct conditional

distribution function estimators that satisfy this condition. In addition, Chernozhukov et al.

(2010) show that (4), viewed as a functional mapping from conditional quantile to condi-
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tional distribution functions, is Hadamard di↵erentiable. As a result, asymptotically linear

representations for conditional quantile estimators give rise to asymptotically linear repre-

sentations for conditional distribution estimators defined by (4) after applying the functional

delta method. The results from the vast literature on quantile regression can therefore be

transferred fairly easily to conditional distribution estimators defined by (4).

The more restrictive part of E7 is the requirement that the estimation error ⇢
n

be con-

vergent uniformly over x and z such that F
X|Z(x|z) 2 R. For some estimators of F

X|Z , such

as the conditional empirical distribution function, this condition does not present a problem.

For our preferred estimator that uses (4) and a linear quantile regression estimator of Q
X|Z , it

is well-known that this condition will generally not hold for subsets R that include extremal

points in [0, 1] unless strong restrictions are placed on the tail behavior of X. However, since

we rule out extremal ranks in E2, this does not represent a substantive additional restriction

in our setting. The following result, which is Theorem 3 in Chernozhukov, Fernández-Val,

and Kowalski (2011), provides su�cient conditions for E7 for our preferred estimator of bR
i

.

Proposition 2. Suppose that bF
X|Z is estimated using (4) with bQ

X|Z taken as the linear quan-

tile regression estimator of Koenker and Bassett (1978). Then E7 holds under Assumptions

QR with

⇠
i

(x|z) = f
X|Z(x|z)z0 E

⇥

f
X|Z(Z

0⇡0(FX|Z(x|z))|Z)ZZ 0⇤�1

⇥
�

F
X|Z(x|z)� 1

⇥

X
i

 ⇡0(FX|Z(x|z))
⇤�

Z
i

.

Assumptions QR.

QR1. (Well-specified) Q
X|Z(r|z) = z0⇡0(r) for all r 2 R and z 2 supp(Z).

QR2. (Smooth quantile function) Q
X|Z(r|z) is three times continuously di↵erentiable

in r over R with a uniformly bounded third derivative.

QR3. (Well-behaved density) f
X|Z(x|z) is uniformly continuous, uniformly bounded and

uniformly bounded away from 0 over (x, z) 2 XZ(R).

QR4. (Existence of moments) E(kZk8) < 1.

QR5. (No multicollinearity) E(ZZ 0) is invertible.

The asymptotic variance of b�R given in Theorem 3 depends on two components. If R
i

were known and did not need to be estimated by bR
i

, the asymptotic variance would only

18



depend on ⇣1i and would be given by �(R)�2 E[⇣1i⇣ 01i]. To interpret this quantity, rewrite

Y
i

= W 0
i

B
i

as Y
i

= W 0
i

�(r)+U
i

(r), where U
i

(r) ⌘ W 0
i

(B
i

��(r)) satisfies E[U
i

(r)|R
i

= r] = 0

by Proposition 1. Suppose that we were to regress Y on X in a large sample drawn from the

subpopulation R = r. (Of course, even if we knew R
i

a priori, this wouldn’t be feasible since

the event R = r has measure zero.) Then the asymptotic variance of the coe�cient vector

would be given by the usual sandwich form, P (r)�1 E[U
i

(r)2W
i

W 0
i

|R
i

= r]P (r)�1, where all

of the typical components have been conditioned on R = r. This sandwich form is exactly

what appears in

�(R)�2 E[⇣1i⇣
0
1i] = E

⇥

P (R
i

)�1 E[U
i

(R
i

)2W
i

W 0
i

|R
i

]P (R
i

)�1|R
i

2 R
⇤

�(R)�1,

except that it is now being integrated over all r 2 R under consideration and scaled to

account for the size of R.

The second component of the asymptotic variance expression, ⇣2i, accounts for the e↵ect

of estimating bR
i

. This term involves the influence function from the first stage, ⇠
i

, and so

will depend on the estimator of F
X|Z that is used. It appears to generally have a complicated

form, and at least for our preferred rank estimator discussed in Proposition 2, we have not

found that the form of ⇠
i

provides any useful simplification in the expression for ⇣2i. Note

also that ⇣2i depends multiplicatively on the first derivative of �(r). Hence, in the case of

no treatment e↵ect heterogeneity, ⇣2i is identically zero and the asymptotic variance of b�R

is determined exclusively by ⇣1i.

Constructing a direct estimator of the asymptotic variance of b�R would be tedious and

di�cult, likely requiring an additional estimator of �̇(r) as a function of r. Instead, we

propose bootstrapping to approximate the limiting distribution of b�R. The procedure for

constructing bootstrapped standard errors and confidence intervals was outlined in Section

3. This type of bootstrap procedure is generally consistent, and our framework does not

possess any of the usual causes of inconsistency that have been studied in the literature.

We therefore anticipate that the bootstrap is consistent, although we have not attempted a

formal proof.
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5 Monte Carlo Simulations

This section contains the results of Monte Carlo simulations on the finite-sample behavior

of b�R. We consider a data generating process with an outcome equation specified as

Y = B0 +B1X,

and with a first stage equation given by

X = ⇡Z + �ZV + V.

We draw V independently from a normal distribution with mean 0.1 and standard deviation

0.4. The random coe�cients in the outcome equation are then generated as B
j

= ⇢
j

V +✏
j

for

j = 0, 1 with ✏
j

distributed N(µ
j

, �2
j

) independently of all other variables. In particular, we

take ⇢0 = .3, µ0 = .2, �0 = .2 and ⇢1 = .7, µ1 = .45, �1 = 1, which implies that E(B0) = .23

and E(B1) = .52. Since both ⇢
j

6= 0, there is a strong endogeneity problem in this data

generating process in the sense that B and X are highly correlated through their mutual

dependence on V . As a consequence, the ordinary least squares (OLS) estimator will be

inconsistent for E(B).

In the first stage equation we set ⇡ = .2 and consider the cases where � = 0 and � = .4.

In the first case, the e↵ect of Z on X is homogenous, so the results of Heckman and Vytlacil

(1998) and Wooldridge (1997, 2003, 2008) imply that the TSLS estimator will be consistent

for E(B1), although it is still generally inconsistent for E(B0). In the second case, the e↵ect

of Z on X varies with V , so that TSLS will generally be inconsistent for both E(B0) and

E(B1). In contrast, b�R will be consistent for both components of E(B) for either value of �.

The instrument Z is a binary random variable that takes values {0, 1} with equal probability

and is drawn independently from (V, ✏0, ✏1). We used a conditional empirical distribution

function to estimate bR
i

, a biweight kernel forK and specifiedR = [0, 1]. Although this choice

of R does not satisfy E2, we have found the results of these simulations to be insensitive to

di↵erent values of �. The number of replications in all simulations presented is 1000 and the

integrals in the definition of b�R were evaluated using 300 Halton draws.

Table 1 reports the performance of the first and second components of b�R as estimators

of E(B0) and E(B1) relative to both the OLS and TSLS estimators in the case without first

stage heterogeneity, � = 0. As expected, the OLS estimator is inconsistent for both param-

eters. The results support the prediction of Heckman and Vytlacil (1998) and Wooldridge
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(1997, 2003, 2008) that TSLS is consistent for E(B1) but inconsistent for E(B0). The per-

formance of b�R is reported for a variety of bandwidth choices h. Our prediction of the

consistency of both components of b�R at the
p
n rate is supported by the decrease in mean

squared error (mse) that occurs when increasing N from 500 to 1000. Most remarkable is

the performance of the second component of b�R as an estimator of E(B1) relative to TSLS.

Our results suggest a mean-squared error that is actually slightly lower than TSLS across a

broad range of bandwidth values. For smaller bandwidth values, both the bias and standard

deviation (std) are comparable to TSLS, perhaps even being a bit smaller.

Table 2 reports the same type of results as Table 1 for the case with first stage het-

erogeneity, � = .4. Here, we see that the heterogeneity in the e↵ect of Z on X leads to

severe inconsistency for the TSLS estimator. On the other hand, b�R remains consistent and

performs similarly to the case where � = 0. We interpret these results as promising evidence

in support of the practical applicability of our estimator to situations where heterogeneity

in the first stage cannot be ruled out.

6 Air Pollution and House Prices

In this section, we apply our results to analyze the relationship between air pollution and

house prices. A large literature on hedonic methods uses relationships like this to infer the

value of non-market amenities, such as clean air (e.g. Rosen 1974, Smith and Huang 1995,

Ekeland, Heckman, and Nesheim 2004, Palmquist 2005, Heckman, Matzkin, and Nesheim

2010). Reliable measurements of these valuations are important for quantifying the economic

benefit of air quality regulation. We follow the empirical approach of Chay and Greenstone

(2005). They argue that previous analysis based on cross-sectional OLS or first-di↵erences

yields small, zero, or perverse-signed e↵ects due to omitted variables, such as unobserved

economic shocks, or sorting of households based on unobserved preferences for clean air.

To remedy this, they use regulation introduced by the 1970 Clean Air Act Amendments to

define a binary instrument for change in total suspended particulates (TSP) from 1970 to

1980 and then use TSLS to estimate the e↵ect of TSP changes on county-level house price

changes.

Our analysis builds on Chay and Greenstone in several directions. As they note (page

393), a correlated random coe�cients model is appropriate due to sorting of households

based on unobserved preferences for clean air (we also discuss this below). We demonstrate

substantial first stage heterogeneity in the e↵ect of the instrument, which strongly suggests
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that the simpler estimators discussed by Heckman and Vytlacil (1998) and Wooldridge (1997,

2003, 2008) would be inconsistent for the APE. Likewise, the binary instrument precludes

approaches which rely on continuous variation, such as Florens et al. (2008). For two subsets

of counties where the instrument has a statistically significant e↵ect on pollution levels, we

estimate unweighted average partial e↵ects of changes in pollution on changes in house

prices. These estimates demonstrate patterns that are consistent with household sorting.

Taken together, these estimates along with TSLS suggest there is substantial heterogeneity

in households’ value of clean air.

6.1 The dataset and institutional background

The 1970 Clean Air Act Amendments set national ambient air quality standards (NAAQS)

for TSPs with the goal that all counties would eventually meet these standards. The law

requires the U.S. Environmental Protection Agency (EPA) to annually designate each county

as either attainment, if the county meets the standard, or as nonattaintment if it does not.

Firms in nonattainment counties are subject to much stricter pollution regulations than firms

in attainment counties. Consequently, nonattainment status should a↵ect counties’ pollution

levels. Chay and Greenstone argue (pages 395–406) that a county’s nonattainment status

in 1975 and 1976 is plausibly independent of unobserved variables which change between

1970 and 1980 and a↵ect housing prices, such as unobserved economic shocks, as well as

unobserved changes in clean air preferences from 1970 to 1980 due to sorting. In addition,

there is no reason to expect that households care about nonattainment status above and

beyond its e↵ect on pollution; i.e., the exclusion restriction holds. For these reasons, Chay

and Greenstone conclude that mid-decade nonattaintment status is a valid instrument for

identifying causal e↵ects of changes in TSP from 1970 to 1980 on changes in house prices

from 1970 to 1980. We take the instrument definition and validity arguments as given and

investigate the implications of allowing for first stage heterogeneity via our CRC estimator.

Our dataset is essentially identical to that of Chay and Greenstone (2005), as described

in their data appendix (pages 419–421). We obtain house price data as well as covariates

from the 1972 and 1983 County and City Data Books (obtained via ICPSR). This price

and covariate data is only available at the county level and hence the units of analysis

are counties. TSP pollution data may be downloaded from the EPA. One minor di↵erence

between our dataset and Chay and Greenstone’s is that we do not have TSP data from 1969;

this data is not available for download and the EPA has not responded to our requests.

Chay and Greenstone define TSP levels for 1970 as the average of TSP levels for 1969–
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1972. Since we are missing 1969, we average over just 1970–1972. To define the 1980

TSP level, we average over 1977–1980 levels, as in Chay and Greenstone. The annual TSP

levels are derived by aggregating observations throughout the year at di↵erent pollution

monitors located across the country, as in Chay and Greenstone (page 384). Also as in

their paper (page 391), we use the TSP data from 1974 and 1975 to define the instrument

as the binary indicator variable for mid-decade nonattaintment status, since data on the

actual EPA designated nonattaintment status does not exist. A second di↵erence between

their paper and our analysis arises here. Of our 989 observations, our definition of the

instrument yielded 300 nonattaintment counties, whereas Chay and Greenstone have only

280 nonattaintment counties out of 988 observations.3 This di↵erence may explain why our

TSLS results in table 4 di↵er somewhat from theirs.

Table 3 shows summary statistics along with a list of all covariates included in the analysis

(see pages 420–421 of Chay and Greenstone for further explanation of the covariates). This

table is comparable to Chay and Greenstone’s table 1. All prices are adjusted to 1982–1984

dollars. Mean house prices increased from around $40,000 to around $53,000 while TSP

levels fell by about 9 µg/m3. The goal of the instrumental variable analysis is to determine

to what extent this correlation between the rise in house prices and fall in pollution levels

reflects causal e↵ects.

6.2 Empirical results

Let X denote the change in TSP between 1970 and 1980, Z2 denote mid-decade nonattain-

ment status, and Z1 denote the vector of 22 covariates. As discussed in Section 3, we begin

by estimating a linear quantile regression of the treatment variable X on the instrument

and the covariates for several di↵erent quantiles (similar results obtain when the covariates

are omitted). Figure 2 plots the coe�cient on the instrument Z2 against the quantile used.

Recall that the first stage assumption I2 implies that countries with small conditional ranks

generally have smaller values of X—that is, larger drops in pollution—than counties with

3 This di↵erence may arise due to an ambiguity in determining whether a county violates the “bad day
rule”, which says that the second largest daily TSP value within a year must not exceed 260 µg/m3

and would place a county in nonattainment. For counties with multiple monitors, there are at least two
approaches: (1) compute the second highest daily TSP value for each monitor, and say a county violates
the rule if any monitor within the county violates that rule, and (2) compute a county-level daily reading
by averaging all monitors for a given day, and then compute the second highest daily TSP from that
averaging. Our reading of the EPA regulations suggest that (1) is the approach EPA used and hence is
what we use as well. Approach (2) leads to far fewer counties being designated as nonattaintment—222
out of 989. Hence this approach cannot be what Chay and Greenstone used either. We are unsure what
they used, and neither author has responded to our requests for clarification.
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larger conditional ranks. A rth-quantile regression tells us the e↵ect of the instrument for

counties with conditional rank R = r. For example, the median quantile regression tells

us the e↵ect of the instrument for counties generally at the middle of the distribution of

changes in TSP. For these counties, the coe�cient is around �0.1, which suggests that being

in a nonattaintment county caused pollution to drop by �10 µg/m3 relative to attainment

counties, all else equal. Recall from table 3 that the average TSP level in 1970 was 65.5

µg/m3, and it fell by around 9 µg/m3. So a �10 µg/m3 e↵ect is quite large. The e↵ect of

�20 µg/m3 for counties with the smallest conditional ranks is even larger. Note that the

coe�cient we find at the median, about �10 µg/m3, is essentially equal to the coe�cient

obtained from a linear mean regression, as in Chay and Greenstone’s table 4 panel A column

2.
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Figure 2: Plot of estimation results from several linear quantile regressions of treatment
X (change in TSP, where TSP here is in units of 1 ⇥ 10�4 grams/m3 rather than 1 ⇥
10�6 grams/m3 = µg/m3) on the instrument Z2 (nonattainment status) and controls. The
solid line plots the estimated coe�cient on the instrument on the vertical axis against the
corresponding quantile on the horizontal axis, from .05 to .95 in .05 increments. The dotted
lines plot simultaneous confidence intervals for each of these quantiles.

The plot shows a heterogeneous e↵ect of the instrument on treatment—the instrument
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has a strong negative e↵ect at low quantiles, but this e↵ect decreases towards zero for higher

quantiles. For quantiles from about 0.75 to 1 the instrument does not have a statistically

significant e↵ect on treatment. Even though the standard F -statistic for the instrument sug-

gests that there is no weak instrument problem (F = 25), figure 2 shows that the instrument

is not uniformly strong for all counties, and indeed there are many counties (about 25% of

them) where the instrument appears to have no e↵ect at all.

Counties with smaller conditional ranks have the smallest values of X—that is, the

largest drops in pollution over the decade. Large drops in pollution are strongly negatively

correlated with having a high baseline level of pollution in 1970 (⇢ = �0.78). Consequently,

the heterogeneous e↵ect of the instrument is to be expected. Counties in nonattainment are

more heavily regulated than counties in attainment. But being regulated only matters if a

county has a pollution problem to begin with. Hence the counties with the highest baseline

pollution are also the ones where the instrument has a strongest e↵ect. Conversely, the

counties with the lowest baseline pollution (and hence lowest potential drops in pollution)

are the ones where the instrument has essentially a zero e↵ect.

Next we implement our generalized CRC estimator. We choose two di↵erent sets of

conditional ranks to consider: R = [0.1, 0.4] and R = [0.4, 0.7]. First, we omit estimating

average partial e↵ects near the tails as discussed in Section 4. Second, we omit estimating

average partial e↵ects near the region where the instrument is weak or irrelevant, as discussed

in Sections 2 and 4. We split up the region [0.1, 0.7] for which we can estimate average partial

e↵ects into two pieces in order to examine potential heterogeneity in the e↵ect of pollution

on house prices. For each choice of R we use the following tuning parameters: 1999 points

for the first stage grid (equation 4), which corresponds to 1999 linear quantile regressions

(an equally spaced grid with step size 0.0005). 2000 Halton draws for integration of b�(r)

over r 2 R (equation 6). We use 500 bootstrap draws to compute 95% confidence intervals.

Finally, we present a range of bandwidths from h = 0.04 to h = 0.085. In our Monte Carlo

simulations, the bandwidth h = 0.07 minimized MSE for the sample size N = 1000 and

when there was first stage heterogeneity (Table 2).

Table 4 shows the main results. There are four columns. Columns (1) and (2) show

estimation results without any control variables while columns (3) and (4) show estimation

results with the control variables. Chay and Greenstone present additional specifications

which use a “flexible functional form”, but they do not specify what precisely they mean,

and they have not responded to our requests for clarification. Hence we present only their

first two specifications. Columns (1) and (3) show the generalized CRC estimates for the
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choice R = [0.1, 0.4] while columns (2) and (4) show estimates for R = [0.4, 0.7].

First, notice that OLS—which is a first-di↵erences regression here—has the perverse sign

(implying prices go up when pollution goes up), and is even statistically significant without

covariates, as also found by Chay and Greenstone (their Table 3 panel C columns 1 and

2). The TSLS results also mirror the main findings of Chay and Greenstone (their Table 5

panel A columns 1 and 2): Without covariates, we find a large negative e↵ect of pollution

on log house prices: a 1 µg/m3 reduction in mean TSP causes a 0.42 percent increase in

property values. With covariates, this e↵ect size is cut in half and becomes marginally

statistically insignificant. Chay and Greenstone’s corresponding TSLS point estimate is

�0.213 with a 95 percent confidence interval of [�0.4,�0.025], which is not too di↵erent

from the confidence interval we obtain (the di↵erence is likely due to the data discrepancies

previously mentioned).

Second, consider the bootstrap confidence intervals for the generalized CRC estimates.

None of them are statistically significant. We have already seen that the instrument is

strongest for smaller conditional ranks. Consequently, the confidence intervals are nearly

twice as wide for the ‘weaker’ instrument region R = [0.4, 0.7] than for the ‘stronger’ instru-

ment region R = [0.1, 0.4]. For the region R = [0.1, 0.4], the confidence intervals are roughly

the same length as for TSLS for column (3), and they’re actually smaller for column (1).

But the point estimates for both of these columns are close to zero, as expected under the

sorting story discussed below. Consequently, since the TSLS confidence interval was already

quite close to zero, the generalized CRC estimate confidence intervals here have just been

shifted over to be centered near zero.

Next consider the generalized CRC estimates. Begin by considering the point estimates.

The point estimates are fairly insensitive to changes in bandwidths, especially after con-

trolling for covariates. When controlling for covariates, the estimates for R = [0.4, 0.7] are

roughly twice as large as those for R = [0.1, 0.4]. A similar finding is true when comparing

column (2) to column (1), although the di↵erence in magnitudes is much larger without

the controls. Moreover, all the CRC estimates are smaller than the TSLS estimates. These

findings are consistent with the possibility that households sort according to their unob-

served preference for clean air during the baseline year of 1970. In that case, households

with the strongest taste for clean air will move to counties with low baseline pollution, while

households who do not care about clean air will move to counties with high baseline pollu-

tion. As we saw earlier, the baseline pollution and conditional rank are strongly correlated.

Hence counties where the instrument has the strongest e↵ect are also counties where most
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households do not care about clean air, and so we find close to zero e↵ects for R = [0.1, 0.4].

For counties with households that moderately care about clean air, R = [0.4, 0.7], we find

moderate sized e↵ects. For counties with households that care strongly about clean air,

R = [0.7, 0.1], we are unable to identify their preferences, since those are precisely the coun-

ties where the instrument has little or no e↵ect—because those are the counties with little

pollution to begin with. The finding that TSLS is larger than all the CRC estimates suggests

that the e↵ects for counties with R = [0.7, 1] are larger than �0.15, the e↵ect we found for

R = [0.4, 0.7]. This is because TSLS is a weighted average e↵ect, where the weights depend

on the strength of the instrument. Although counties in R = [0.7, 1] will receive close to

zero weight in forming the TSLS estimand, if their actual e↵ect size is large enough it can

still pull up the overall estimate.

In this application, we showed that the instrument has a naturally interpreted hetero-

geneous e↵ect due to di↵erences in baseline pollution levels. We showed that the data is

consistent with sorting, and that comparing our CRC estimates with TSLS allows us to

draw conclusions about e↵ects for counties where the instrument is weak. Overall, our find-

ings suggest that there is substantial heterogeneity in the size of the e↵ect of pollution on

housing prices.

7 Conclusion

In this paper we have studied a linear correlated random coe�cients model. We provided

conditions under which we can point identify the average partial and treatment e↵ects of

an endogenous treatment variable by using variation in an instrumental variable. In con-

trast to previous research, these conditions allow for heterogeneous e↵ects of the instrument

in the first stage equation, as well as binary or discrete instruments in many cases. Our

identification argument led directly to a simple estimator of a trimmed average of the out-

come coe�cients. This estimator is just an average of weighted least squares regressions,

where the weights depend on a first stage estimator. We established
p
n-consistency and

asymptotic normality of this estimator, and showed that it performs well in finite sample

simulations. We have illustrated how allowing for and analyzing heterogeneity in the first

stage and in the outcome equation can be easily and fruitfully incorporated into a typical

applied instrumental variables analysis.

Several issues remain for future research. First, it may be theoretically interesting to

modify our estimator to better account for boundary e↵ects both due to kernel smoothing
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and first stage rank estimation. Second, we have not provided a method for choosing the

bandwidth h, which is an important question in practice. Third, we assumed the set R for

which the relevance condition I5 holds is known a priori. In some applications, this is a

reasonable assumption, such as in our empirical application. In other applications, it may

not be reasonable. In principle, this set can be estimated in a preliminary step, and then the

previous analysis can be repeated by using this estimated set bR in place of R. This extension

is both nontrivial and of independent interest, and we leave it to future work. Fourth, it

may be helpful to explore modifications of our proposed estimator to achieve e�ciency gains.

Finally, we are coding a Stata module that will enable practitioners to apply the estimator

in this paper with minimal investment.
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4 That b1 is indeed a random variable (in the sense of being a measurable function on the underlying
sample space) follows from Theorem 18.19 of Aliprantis and Border (2006) combined with standard
results.

5 The alternative would be to define Ti(r) and related functions (its derivatives, etc.) case by case, which
seems unnecessarily tedious.

6 Since almost-sure equality is su�cient for determining limiting distributions, we will drop the “a.s.”
qualifier in the following.

7 The di↵erentiability of Ti(r) for r 2 R� can be determined using the calculus rules for matrices of
functions derived in Section 6.5 of Horn and Johnson (1991).
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Taylor’s Theorem yields
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)Ṫ
i

(R
i

)
⌘

+
1

n

n

X

i=1

1[R
i

2 R�]⇢
n

(X
i

|Z
i

)Ṫ
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Some tedious algebra shows that I5, E5 and E6 imply that E[1[R
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)k4] is finite.
Consequently, the second term in (11) is asymptotically negligible under E7 since
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The first term in (11) can be written as a second-order V-statistic with a symmetric kernel

by defining M
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As noted, it can be shown that E[1[R
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)k4] is finite under our moment and

smoothness assumptions. It can similarly be shown that I5, E5 and E6 imply that E[1[R
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2
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)k2] is also finite. These observations and E7 imply that
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for both j 6= i and j = i. Since E(k⇣
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k2), this implies that E(k⇣
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for all i and j, by which we can conclude that
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That is, the second-order V-statistic is asymptotically equivalent to a second-order U-
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statistic, see e.g. pg. 206 of Serfling (1980).8 Recapping, we have now shown that
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We determine the projection of the U-statistic in (12) by computing E(⇣
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where the third equality uses the law of iterated expectations (noting thatX
j

is deterministic

conditional on R
j

, Z
j

) and the fourth equality uses Ṫ
j
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] = 0.9 Applying the law of iterated expectations shows

that E(⇣2i) = 0, since E(⇠
i

(x|z)) = 0 for (x, z) 2 XZ(R) by E7. We have now shown that
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) = E[E(⇣
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k2) < 1, so that by the central

limit theorem for U-statistics (e.g. Theorem A on page 192 of Serfling 1980)10
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 N (0,E[(⇣1i + ⇣2i)(⇣1i + ⇣2i)
0]) . (13)

8 Serfling’s discussion is limited to scalar-valued variables, but the modification for vector-valued variables
is immediate.

9 This expression for the component-wise derivative of Tj(r) follows immediately from the rules in Section
6.5 of Horn and Johnson (1991).

10 Serfling’s discussion is limited to scalar-valued variables. The original work by Hoe↵ding (1948) contains
an explicit statement of the vector case; see also Chapter 5 of Kowalski and Tu (2008) for a modern
treatment.
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Combining equations (12) and (13) and applying Slutsky’s theorem with b1 !P 1 from Lemma

A.1, we have
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The result now follows after scaling both sides by �(R)�1. Q.E.D.

Lemma A.1. Under the assumptions of Theorem 3, b1 !P 1 and
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�1/2).

Proof of Lemma A.1. Let J(r) ⌘ bP (r)+ � P (r)�1, let k·k1 denote the l1 norm and let

k·k1,op denote the matrix operator norm induced by the l1 norm. Then
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where the first inequality follows because for vector-valued function x : R ! RK and

component-wise integration we have
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and the second inequality uses the sub-multiplicative property of the matrix operator norm.

First, we consider the behavior of
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�r)/h). Notice that both bP (r) and
eP (r) are Nadaraya-Watson kernel regression estimators of the matrix P (r) ⌘ E[WW 0|R =

r]f
R

(r) with f
R

(r) = 1, but that the weights in bP (r) use the generated regressor bR
i

,

while the weights in eP (r) use R
i

. Recent work on nonparametric regression with gener-

ated regressors has established that sup
r2R k bP (r) � eP (r)k = OP(log(n)n�1/2) under our

assumptions.11 Using standard results in the literature, our assumptions also ensure that

11 In particular, we appeal to Lemma 1 of Mammen et al. (2012), but see also Sperlich (2009), Mammen,
Rothe, and Schienle (2013), Hahn and Ridder (2013), Lee (2013) and Escanciano, Jacho-Chavez, and
Lewbel (2014) for related results. We verify the conditions for Lemma 1 of Mammen et al. (2012). In
their Assumption 1, (i) is E1, (ii) is satisfied with R ⇠ Unif[0, 1], (iii) is E5, (iv) is not used in the
proof of their Lemma 1, (v) is E3 and (vi) is met under E4 and E7. Their Assumptions 2 and 3 are
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sup
r2R k eP (r)�P (r)k = OP((log(n)/nh)1/2+h2), with the dominant rate being (log(n)/nh)1/2

given E4.12 Since this rate also dominates log(n)n�1/2, it follows that sup
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b1 sup
r2R

kJ(r)k = b1 sup
r2R

k bP (r)�1(P (r)� bP (r))P (r)�1k

 b1 sup
r2R

k bP (r)�1k sup
r2R

k bP (r)� P (r)k sup
r2R

kP (r)�1k = OP((log(n)/nh)
1/2).

The same rate applies to b1 sup
r2R kJ(r)k

op,1, because finite-dimensional norms are equivalent.

A rate of convergence for sup
r2R k bA(r)k follows similarly after using the definition of

U
i

(r) ⌘ W 0
i

(B
i

� �(r)) to write

bA(r) =
1

n

n

X

i=1

bkh

i

(r)W
i

W 0
i

B
i

� bP (r)�(r)

and eA(r) =
1

n

n

X

i=1

kh

i

(r)W
i

W 0
i

B
i

� eP (r)�(r).

The di↵erence of the first two terms in these expressions is uniformly OP(log(n)n�1/2) again

by Lemma 1 of Mammen et al. (2012).13 Since �(r) is bounded uniformly over R by E2 and

E5, the di↵erence of the second two terms is also OP(log(n)n�1/2) using the already estab-

lished rate for sup
r2R k bP (r) � eP (r)k, and hence sup

r2R k bA(r) � eA(r)k = OP(log(n)n�1/2).

Also, since E[WW 0B|R = r] � E[WW 0|R = r]�(r) = 0 by Proposition 1, standard results

again imply that sup
r2R k eA(r)k = OP((log(n)/nh)1/2) under our assumptions. We conclude

that sup
r2R k bA(r)k = OP((log(n)/nh)1/2). This establishes the claim via (14), since under

E4,
p
n log(n)(nh)�1 = log(n)/(

p
nh) ! 0. Q.E.D.

satisfied by our E7, while their Assumption 4 is not used in the proof of their Lemma 1. The rate of
OP(log(n)n�1/2) is determined by computing 1 on pg. 1141 and observing their notational convention
of leaving out log(n) terms.

12 For example, see Lemma B3 of Newey (1994).
13 The verification for most of their conditions is as in footnote 11. Their Assumption 1 (iii) is satisfied

since each component of E[WW 0B|R = r] = P (r)�(r) is twice continuously di↵erentiable by E5.
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estimators of N = 500 N = 1000
E(B0) = .23 bias (std) mse bias (std) mse

OLS 0.0291 (0.0228) 0.0014 0.0294 (0.0172) 0.0012
TSLS 0.1124 (0.0581) 0.0160 0.1105 (0.0393) 0.0137

h = 0.01 -0.0136 (0.1784) 0.0320 -0.0164 (0.1085) 0.0120
h = 0.03 -0.0394 (0.1322) 0.0190 -0.0391 (0.0830) 0.0084
h = 0.05 -0.0590 (0.1118) 0.0160 -0.0571 (0.0703) 0.0082
h = 0.07 -0.0750 (0.0988) 0.0154 -0.0724 (0.0620) 0.0091
h = 0.09 -0.0878 (0.0896) 0.0157 -0.0852 (0.0558) 0.0104
h = 0.11 -0.0980 (0.0822) 0.0164 -0.0957 (0.0510) 0.0118
h = 0.13 -0.1066 (0.0762) 0.0172 -0.1045 (0.0472) 0.0132
h = 0.15 -0.1137 (0.0716) 0.0181 -0.1120 (0.0444) 0.0145

estimators of N = 500 N = 1000
E(B1) = .52 bias (std) mse bias (std) mse

OLS 0.4136 (0.0889) 0.1790 0.4142 (0.0648) 0.1757
TSLS -0.0024 (0.2757) 0.0760 0.0104 (0.1877) 0.0353

h = 0.01 -0.0125 (0.2668) 0.0713 0.0094 (0.1700) 0.0290
h = 0.03 0.0207 (0.2256) 0.0513 0.0338 (0.1491) 0.0234
h = 0.05 0.0532 (0.2012) 0.0433 0.0621 (0.1333) 0.0216
h = 0.07 0.0853 (0.1826) 0.0406 0.0908 (0.1211) 0.0229
h = 0.09 0.1158 (0.1674) 0.0414 0.1192 (0.1111) 0.0265
h = 0.11 0.1442 (0.1549) 0.0448 0.1463 (0.1028) 0.0320
h = 0.13 0.1706 (0.1447) 0.0501 0.1719 (0.0963) 0.0388
h = 0.15 0.1948 (0.1368) 0.0566 0.1955 (0.0914) 0.0466

Table 1: Performance of b�R as an estimator of E(B) relative to ordinary least squares (OLS)
and two stage least squares (TSLS) in the dgp without first stage heterogeneity (� = 0).
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estimators of N = 500 N = 1000
E(B0) = .23 bias (std) mse bias (std) mse

OLS 0.0532 (0.0254) 0.0035 0.0537 (0.0190) 0.0032
TSLS 0.0927 (0.0542) 0.0115 0.0912 (0.0360) 0.0096

h = 0.01 -0.0067 (0.1562) 0.0244 -0.0157 (0.1146) 0.0134
h = 0.03 -0.0226 (0.0993) 0.0104 -0.0228 (0.0684) 0.0052
h = 0.05 -0.0349 (0.0887) 0.0091 -0.0331 (0.0595) 0.0046
h = 0.07 -0.0451 (0.0836) 0.0090 -0.0432 (0.0549) 0.0049
h = 0.09 -0.0543 (0.0797) 0.0093 -0.0528 (0.0516) 0.0055
h = 0.11 -0.0626 (0.0761) 0.0097 -0.0615 (0.0486) 0.0061
h = 0.13 -0.0704 (0.0729) 0.0103 -0.0696 (0.0461) 0.0070
h = 0.15 -0.0776 (0.0702) 0.0109 -0.0771 (0.0439) 0.0079

estimators of N = 500 N = 1000
E(B1) = .52 bias (std) mse bias (std) mse

OLS 0.3678 (0.0926) 0.1439 0.3690 (0.0665) 0.1406
TSLS 0.1888 (0.2578) 0.1021 0.2002 (0.1742) 0.0704

h = 0.01 -0.0194 (0.3205) 0.1031 -0.0105 (0.2315) 0.0537
h = 0.03 -0.0077 (0.1970) 0.0389 0.0053 (0.1310) 0.0172
h = 0.05 0.0101 (0.1655) 0.0275 0.0213 (0.1100) 0.0126
h = 0.07 0.0304 (0.1512) 0.0238 0.0389 (0.1009) 0.0117
h = 0.09 0.0515 (0.1423) 0.0229 0.0579 (0.0949) 0.0124
h = 0.11 0.0724 (0.1354) 0.0236 0.0769 (0.0901) 0.0140
h = 0.13 0.0923 (0.1298) 0.0254 0.0956 (0.0864) 0.0166
h = 0.15 0.1113 (0.1253) 0.0281 0.1138 (0.0836) 0.0199

Table 2: Performance of b�R as an estimator of E(B) relative to ordinary least squares (OLS)
and two stage least squares (TSLS) in the dgp with first stage heterogeneity (� = 0.4).
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Table 3: Summary Statistics, 1970 and 1980
1970 1980

Mean housing value 40,268 53,046
Mean TSPs 65.5 56.3
Income per capita 7,530 9,279
Total population 163,880,811 175,516,811
Unemployment rate .0455 .068
% employment in manufacturing .249 .226
Population density 613 476
% � high school graduate .504 .646
% � college graduate .0971 .146
% urban .576 .593
% poverty .124 .0976
% white .902 .877
% female .51 .511
% senior citizens .0997 .113
% overall vacancy rate .0336 .0782
% owner-occupied .676 .638
% of houses without plumbing .0822 .0253
Per capita government revenue 748 1,138
Per capita property taxes 314 366
Per capita general expenditures 769 1,111
% spending on education .549 .509
% spending on highways .0909 .0698
% spending on welfare .0462 .0371
% spending on health .0486 .0669
Observations 989 989

Statistics are based on the 989 counties with data on TSP in 1970, 1980, and
1974 or 1975, as well as nonmissing price data in both 1970 and 1980. Mean
TSP for 1970 is the average of 1970 to 1972 annual TSP. Mean TSP for 1980
is the average of 1977 to 1980 annual TSP. Annual TSP for a county is the
weighted average of the geometric mean of each monitor’s TSP readings in
the county, using the number of observations per monitor as weights. All
dollar quantities are adjusted to 1982-1984 dollars (housing values use the
housing only part of the CPI, series CUUR0000SAH; all other values use
overall CPI, series CUUR0000SA0).
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Table 4: Estimates of the e↵ect of 1970–1980 changes in TSP pollution on changes in log housing values
Estimator

OLS 0.0861 0.0288
[ 0.0079, 0.1643] [ -0.0200, 0.0776]

TSLS -0.4149 -0.2073
[ -0.7616, -0.0682] [ -0.4258, 0.0113]

(1) (2) (3) (4)

Generalized CRC estimator R = [0.1, 0.4] R = [0.4, 0.7] R = [0.1, 0.4] R = [0.4, 0.7]

h = 0.040 -0.0241 -0.2067 -0.0664 -0.1517
[ -0.3011, 0.2314] [ -0.7879, 0.4544] [ -0.4395, 0.1585] [ -0.7414, 0.4363]

h = 0.0475 -0.0252 -0.1766 -0.0640 -0.1535
[ -0.2994, 0.2239] [ -0.7635, 0.4540] [ -0.3981, 0.1407] [ -0.6894, 0.3974]

h = 0.055 -0.0261 -0.1545 -0.0670 -0.1580
[ -0.2974, 0.2210] [ -0.7419, 0.4498] [ -0.3864, 0.1215] [ -0.6441, 0.3634]

h = 0.0625 -0.0266 -0.1364 -0.0703 -0.1592
[ -0.2940, 0.2187] [ -0.6967, 0.4410] [ -0.3719, 0.1179] [ -0.6258, 0.3310]

h = 0.0775 -0.0258 -0.1073 -0.0755 -0.1544
[ -0.2856, 0.2047] [ -0.6551, 0.4255] [ -0.3422, 0.1057] [ -0.5988, 0.2751]

h = 0.085 -0.0248 -0.0954 -0.0784 -0.1524
[ -0.2807, 0.2009] [ -0.6329, 0.4430] [ -0.3321, 0.1031] [ -0.5927, 0.2636]

Observations 983 983
County data book controls? No Yes

Entries show estimates of coe�cients on change in TSP over 1970-1980, and corresponding 95-percent confidence intervals
for several di↵erent estimators: ordinary least squares, two-stage least squares, and a variety of bandwidths for our generalized
correlated random coe�cient model estimator. TSP here is in units of 1⇥10�4 grams/m3 rather than 1⇥10�6 grams/m3 = µg/m3.
Columns (1) and (3) show the generalized CRC estimates for conditional ranks over R = [0.1, 0.4] while columns (2) and (4) use
R = [0.4, 0.7]. All regressions are first di↵erenced from 1970 to 1980. The outcome variable is 1980 log-housing value minus 1970
log-housing value. The treatment variable of interest is the 1980 TSP value minus the 1970 TSP value. All controls are also first
di↵erenced. The instrument is mid-decade nonattainment status (see body text for further details). OLS and TSLS confidence
intervals are computed via asymptotic plug-in estimators of the heteroskedasticity robust standard errors. The generalized CRC
model confidence intervals are computed using 500 bootstrap draws.
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