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Abstract

This paper uses proprietary data to evaluate the efficacy of single-stock circuit breakers on
the London Stock Exchange during July and August 2011. We exploit exogenous variation
in the length of the uncrossing periods that follow a trading suspension to estimate the effect
of auction length on market quality, measured by volume of trades, frequency of trading and
the change in realized variance of returns. We also estimate the effect of a trading suspension
in one FTSE-100 stock on the volume of trades, trading frequency and the change in realized
variance of returns for other FTSE-100 stocks. We find that auction length has a significant
detrimental effect on market quality for the suspended security when returns are negative but
no discernible effect when returns are positive. We also find that trading suspensions help to
ameliorate the spread of market microstructure noise and price inefficiency across securities
during falling markets but the reverse is true during rising markets. Although trading sus-
pensions may not improve the trading process within a particular security, they do play an
important role preventing the spread of poor market quality across securities in falling markets
and therefore can be effective tools for promoting market-wide stability.
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1 Introduction

Many equity and futures exchanges around the world have mechanisms in place to temporarily
suspend trading under certain market conditions, commonly referred to as circuit breakers. While
the precise form that these mechanisms take can differ from one exchange to another, they are
generally designed to achieve similar goals - to ameliorate unnecessary or transitory volatility in
prices and to protect markets from periods of extreme illiquidity. In the aftermath of the “Flash
Crash” in May, 2010, when major US equity indices lost 5-6% in a matter of minutes only to shortly
recover much of these losses, US regulators were quick to point to the introduction of single-stock
circuit breakers as well as a recalibration of market-wide circuit breakers as potential measures to
mitigate the possibility or such an event reoccurring (U.S. SEC & CFTC, 2010).

However, despite the common aims underpinning the use of circuit breakers, it is not immedi-
ately apparent a priori how circuit breakers of different varieties will affect the trading process in
different market environments. At the most basic level circuit breakers, by construction, prevent two
otherwise willing counterparties from executing a transaction, possibly preventing the realization of
a mutually beneficial trade. Indeed in a fully competitive trading environment with no information
asymmetry, circuit breakers will lead to a departure from the first-best outcome in certain circum-
stances. However, in the presence of market power or information asymmetry, circuit breakers can
help to improve market quality through a number of channels such as by reducing transitory price
deviations driven by noise traders (Westerhoff, 2003) and reducing credit risk for levered investors
(Chowdhry and Nanda, 1998; Brennan, 1986). Algorithmic trading at very low latencies potentially
increases the likelihood of price instability over very short time horizons and circuit breakers may
also play an important role in mitigating this risk (Linton, O’Hara and Zigrand, 2012).

Considering the many different ways that circuit breakers can affect the trading process and
market quality, it is clear that empirical analysis has an important role to play in assessing the
efficacy of these instruments. Making such causal inference is complicated mainly by the inherent
difficulty in defining an appropriate counter-factual that accurately describes the state of the world
if the price process was unchanged but a circuit breaker had not occurred. Despite this, empirical
analysis using a variety of identification techniques have been conducted on a host of exchanges:
USA, Japan, Taiwan, Korea, Malaysia, Turkey, Israel and Greece.

This paper examines the efficacy of circuit breakers on the London Stock Exchange (LSE) during
July and August 2011, a particularly volatile period in global financial markets. We seek to answer
two related empirical questions. Firstly, using variation in the length of the uncrossing period that
follows all trading suspensions on the LSE, we determine the local effect of suspension length on the
magnitude of market microstructure noise or price inefficiency in market prices (measured by the
change in realized variance at high frequencies) as well as the volume and frequency of trading. The
randomly assigned uncrossing period lasts from 0-30 seconds and provides an exogenous source of
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variation in the length of a suspension that allows us to make causal inference that would otherwise
not be possible. Secondly, we estimate the effect of a suspension in one FTSE-100 stock on the
change in realized variance and the levels of volume and frequency of trading for other stocks in the
FTSE-100. That is, whether or not suspensions in a given security helps to limit contagion of poor
market quality to other securities, or whether a suspension merely leads to a spillover of trading and
volatility from the suspended security to other securities. This is achieved by comparing the trading
process of all other FTSE-100 stocks in instances where a given stock triggers a circuit breaker with
those where a circuit breaker is very nearly triggered but ultimately is not. Throughout our analysis
we allow the effects to differ between events that occur at the upper and lower price limits.

We find that in the case of suspension length, longer auctions lead to a greater deterioration in
market quality (greater price inefficiency for a given volume and number of trades) during lower limit
events but find no significant effect for upper limit events. Regarding spillovers across securities,
however, we find that suspensions at the lower limit lead to a statistically significant improvement
in market quality for related securities following a suspension within a given sector (i.e. for those
stocks with the same Bloomberg industry classification) but we do not observe a significant effect
for stocks in other sectors. For events at the upper limits, we observe a significant increase in trade
intensity and in the magnitude of market microstructure noise both for securities in the same sector
as the event stock and outside that sector. Taken together, the evidence indicates that while circuit
breakers may delay price discovery within a security potentially leading to efficiency losses and, for
events at upper price limits, may do the same for other securities, they do help to prevent contagion
of poor market quality across related securities when returns are negative. Due to observed empirical
correlations between asset returns, market liquidity and cross-asset correlations, we believe that the
spillover results for the lower limit events are of the most interest for policy makers concerned with
promoting market-wide stability and therefore argue that single stock circuit breakers can play an
important role in achieving this aim.

Relating our results to the existing theory, the delay of price discovery and increase in subsequent
volatility is consistent with the predictions of Lehmann (1989) and Fama (1989), although we note
that the effect is relatively short lived, and appears to manifest in the upper tail of the distribution
of subsequent volatility following a trading halt. Furthermore, since auction length does not have
a significant effect on the intensity of the trade arrival process, it is plausible that the deterioration
in market quality is due to a lack of liquidity following longer auctions rather than delayed price
discovery per se. We also find that the conditional volatility of high-frequency returns increases
with proximity to the price limit, consistent with the presence of a “magnet effect” as predicted by
Subrahmanyam (1994). Market microstructure theory to date has had less to say about spillovers
across securities. One exception is Spiegel and Subrahmanyam (2000) who analyze the effect of
trading halts around impending news announcements in one security on trading in related securities,
concluding that trading halts should lead to a decrease in liquidity for other securities in the same
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industry. Our results suggest that this only the case when prices are rising although, importantly,
we are considering trading halts that are not due to impending material announcements, and so the
spillover mechanism being elucidated in Spiegel and Subrahmanyam (2000) is not directly applicable
to our case. We also note that in the case of positive returns, we observe an increase in trade
intensity so it is not clear that our results are being driven by a decrease in liquidity. Regarding the
asymmetric spillover effects of suspensions in the cases of rising and falling markets, these results can
potentially be understood using the framework of Brunnermeier and Pedersen (2009) who elucidate
feedback effects between asset returns, market liquidity and funding liquidity. Specifically, one
reason why we might observe an improvement in the market quality of other securities during a
lower-limit suspension is that, via the well documented “leverage effect” in equity markets, such
environments are associated with higher volatility. This can in turn lead to more onerous margin
requirements for leveraged traders, as well as tighter funding conditions for market makers, and can
potentially have the effect of tipping the market into an equilibrium characterized by poor liquidity
and even greater volatility. By removing the most volatile stock from trading, even temporarily, we
may help limit the onset of these feedback mechanisms and potentially prevent tipping from a good
equilibrium to a bad equilibrium. This is by no means the only mechanism that could rationalize
the asymmetric spillover effects we observe and developing models to better understand this could
potentially be a fruitful angle for future theoretical research.

This paper contributes to the existing literature in a number of ways. Firstly, we provide the
first empirical evidence that we know of regarding the effect of single-stock circuit breakers on
market quality for other securities, which has direct relevance for market-wide stability.1 We also
exploit a hitherto unused source of exogenous variation in suspension length to make inference
about the effect of suspension length on market quality. Furthermore, to the best of our knowledge,
this is the first paper to examine circuit breakers on the LSE specifically - an exchange of relative
global importance as well as one with meaningful differences in the nature of circuit breakers in
place compared with those on exchanges that have previously been studied.2 We also demonstrate
that an identification strategy commonly used to estimate the effect of price limits and circuit
breakers in the literature suffers from bias due to censoring of the outcome variables. Lastly, we
present a theoretical analysis of first passage times to static price limits when prices follow geometric
Brownian motion, in both the univariate and bivariate settings.

The paper proceeds as follows. In section 2 we discuss previous theoretical and empirical con-
tributions to the circuit breaker literature. Section 3 describes the details of circuit breakers on the
LSE including how the price limits are set by the exchange, as well as how the suspension progresses

1Jiang et al. (2009) & Tookes (2008) consider the across-stock spillover effect of news-related trading suspensions
on the New York Stock Exchange, however there are material differences in the nature of such effects when the
suspension is due to the price process of the securities rather than news announcements of a material nature.

2The LSE was the largest exchange in Europe by trading value in 2011, and the largest outside of the USA, Japan
and China (World Federation of Exchanges, 2013)
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and continuous trading resumes. We also consider the role of circuit breakers when prices follow
geometric Brownian motion, and provide formulae for the first passage time for both the one-sided
and two-sided barrier crossing problem, as well as the joint density of first passage times for multiple
correlated securities in this section. Section 4 outlines our empirical methodology including defini-
tions of market quality and our identification techniques. Section 5 describes the dataset in detail.
Section 6 contains results for the regressions outlined in section 4 that assess the efficacy of circuit
breakers on the LSE, as well as times-series regressions that describe how the mean and variance
of the high-frequency returns process are affected by distance from price limits and variance ratio
tests for high frequency returns. Section 7 summarizes these results and discusses directions for
future research.

2 Related Literature

Theoretical contributions to the literature have highlighted a number of channels through which
circuit breakers can either lead to an improvement or deterioration of the trading process and
market quality. If markets are efficient, in the Fama (1970) sense that prices reflect all available
information, then trading halts can result in a deviation from the first-best outcome. In such an
environment, inefficiencies can manifest through prevention of mutually beneficial trades (Gross-
man, 1990), delayed price discovery (Fama, 1989), excess volatility and magnet effects whereby
price limits become self-fulfilling (Subrahmanyam, 1994), volatility spillovers to subsequent trading
days (Lehmann, 1989) and higher trading costs for uninformed or small investors (Subrahmanyam,
1997).

However, in a trading environment that deviates from full information and perfect competition,
trading halts and price limits can theoretically lead to an improvement in welfare. Specifically, im-
provements can be wrought from mitigation of information asymmetry (Spiegel and Subrahmanyam,
2000), reduction in “transactional risk”3 (Greenwald and Stein, 1991; Kodres and O’Brien, 1994),
reduction of counter-party risk in derivatives markets and for leveraged investors (Chowdhry and
Nanda, 1998; Brennan, 1986), limitations to the gains from market manipulation (Kim and Park,
2010) and the associated costs of monitoring market manipulation (Deb et al., 2010), and by reduc-
ing volatility and price deviations from fundamentals driven by noise traders (Westerhoff, 2003).

In practice, trading rules differ significantly from exchange to exchange and the variety of dif-
ferent instruments in place to mediate excessive price movements makes it difficult to generalize
conclusions about their efficacy. At a basic level these instruments can be categorized into two
groups: price limits, whereby continuous trading is not stopped but trades are not permitted at
any price above or below a predefined level for a set period of time (typically the remainder of that
day), and trading halts, whereby continuous trading is stopped for a set period of time. Trading

3Transactional risk refers to the risk of a market order being executed at an unfavorable price.
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rules may also differ as to whether the instrument applies to a single security or to a wider set of
securities. Examples of exchanges using price limits include the Istanbul Stock Exchange, Kuala
Lumpur Stock Exchange, Taiwan Stock Exchange, and Tokyo Stock Exchange while variants of
trading suspensions are in place on the New York Stock Exchange (NYSE), the Deutsche Bourse,
Euronext-Paris, the Tel Aviv Stock Exchange, the Korea Exchange (previously known as the Ko-
rean Stock Exchange), and the London Stock Exchange. The Continuous Spanish Stock Market
(aka the SIBE) implements a combination of price limits and discretionary trading suspensions.
Table 1 contains a summary of the different variants of price limits and trading suspension rules
in place on the ten largest exchanges by total value traded in 2013 according to World Federation
of Exchanges (2013). Empirical analysis of circuit breakers has been conducted on exchanges that
use both types of instruments however for the purposes of this discussion, we focus on work that
analyzes trading suspensions specifically rather than price limits as these are most similar to the
mechanisms in place on the LSE.4

Table 1: Circuit breakers and price limits in global equity exchanges

Market stabilization measures employed on the ten largest stock exchanges by total value traded in 2013 according
to World Federation of Exchanges (2013). The second column indicates whether the exchange employs measures to
stop all trading under certain circumstance (circuit breakers). The third column indicates whether the exchange
uses price limits (trading is prevented outside certain bands but trading within the bands may still occur). The
fourth column reports the total value traded on the exchange during 2013 in billions of US dollars. The fifth column
indicates whether these measures are applied to individual securities, or to a market-wide index. Sources: Coleman
et al. (2013), U.S. SEC (2013), Tokyo Stock Exchange (2010), Shanghai Stock Exchange (2010), Korea Exchange
(2009) & Hong Kong Stock Exchange (2010).

Exchange CBs Limits Value ($bn) Notes

NYSE & NASDAQ Yes Yes 21,294.90 Market-wide CBs, stock specific limits

Shanghai & Shenzen SEs No Yes 6,943.04 Stock-specific price limits

Tokyo Stock Exchange Yes Yes 5,804.18 Market-wide CBs, stock specific limits

London Stock Exchange Yes No 2,075.18 Stock-specific circuit breakers

NYSE-Euronext (Europe) Yes No 1,532.47 Stock-specific circuit breakers

Toronto Stock Exchange Yes Yes 1,272.17 Coincides with US markets

Deutsche Bourse Yes No 1,233.90 Stock-specific circuit breakers

Hong Kong SE No No 1,215.01 -

Korea Exchange Yes Yes 1,201.44 Market-wide CBs, stock specific limits

Australian SE No No 821.31 -

Market-wide circuit breakers on US stock and futures exchanges were first introduced following
4For the interested reader, empirical analysis of the effect of price limits has been conducted for the Tokyo Stock

Exchange (Kim and Rhee, 1997), Athens Stock Exchange (Phylaktis et al., 2002), Taiwan Stock Exchange (Huang
et al., 2001; Cho et al., 2003), Kuala Lumpur Stock Exchange(Chan et al., 2005), and the Istanbul Stock Exchange
(Bildik and Gülay, 2006).
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the “Black Monday” stock-market crash in 1987 (Kim and Yang, 2004). Since then the format
and parameters of circuit breakers on these exchanges have undergone a number of modifications,
notably in 1998, when percent moves in the DJIA index replaced absolute points moves as the basis
for a circuit breaker (Goldstein et al., 1998) and following the Flash Crash on May 6, 2010 (U.S.
SEC & CFTC, 2010). Currently, US equity markets including the NYSE and NASDAQ use two
kinds of trading suspensions; a market-wide circuit breaker when the S&P500 falls to a certain level
below the previous day’s closing price, and a “limit-up-limit-down mechanism”, rolling price limits
that apply to single stocks with price bands calculated over the previous five minutes trading (U.S.
SEC, 2013). Prior to the Flash Crash, the NYSE also used “liquidity replenishment points” (LRPs),
whereby trading in a stock is temporarily converted from the electronic market to a manual auction
market after a sufficiently large price movement (NYSE Euronext, 2010). In interviews with market
participants by regulators following the Flash Crash, the SEC and CFTC identified that many
market participants were able to route orders to other exchanges during such an event, potentially
limiting the effectiveness of the mechanism (U.S. SEC & CFTC, 2010). Furthermore, market
participants mentioned that widespread triggering of LRPs across the market was a factor in forming
expectations that market-wide liquidity was poor. The new limit-up limit-down mechanisms are
designed to replace LRPs with the aim of ensuring trading rules are not unnecessarily complex
although the NYSE believes that LRPs have “delivered concrete benefits to investors” through
stabilizing prices and preventing erroneous trades (SEC, 2013).

Several studies have assessed the impact of the suspension mechanisms in place prior to 2010.
Gerety and Mulherin (1992) exploit the observation that the lack of trading overnight can be
considered a type of trading halt and show that a measure of expected overnight volatility is
significant in regressions for the closing volume. The authors argue that this is evidence that some
participants are unwilling to hold overnight risk and thus by extension some would be unwilling to
hold risk during a trading suspension. Lee et al. (1994) compare the volatility and volume around
discretionary suspensions with the average volatility and volume at the same time of day for the
same day and stock, and also after matching stocks using absolute returns from the beginning to
the end of the trading halt. Volatility and volume are found to be significantly higher after the
suspensions compared with the control group. Corwin and Lipson (2000) compare liquidity, order
book depth and volatility around news related and order-imbalance related trading suspensions on
the NYSE during 1995-1996. They show that total order book depth falls and spreads rise ahead
of halts of both kinds, but market and limit order submissions rise substantially towards the end
of the suspension and remain high for around two hours subsequent to the resumption of trading.5

Goldstein and Kavajecz (2004) examine trading in the lead-up to the the October 1997 market-wide
suspension and find that while participants did not significantly change the number or volume of
trades as the DJIA approached the limit price, the proximity of sell-limit orders to the best bid did

5Orders submitted during a halt are not executed until the end of the trading halt.
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reduce and that there was a concentration of cancellations of buy orders ahead of the event. One of
the few papers to consider how trading suspensions impact related securities rather than the security
undergoing the suspension is Jiang et al. (2009) who look at the effect of news-specific trading halts
on the NYSE on stocks with the same four-digit SIC code as the halted stock. They show that
while spreads and the price impact of trades do increase in related securities, so do quoted depth,
trade numbers and trade volumes. Another example that considers cross-security effects during
trading halts is Tookes (2008) who presents a model that analyzes how information in one security
may affect informed trading in other related securities. The implications of the model are tested by
considering how informative are trades in related securities for a security undergoing a suspension
due to an impending earnings announcement. She finds that such trades are informative for the
suspended security. It is important to keep in mind that both Tookes (2008) and Jiang et al. (2009)
are considering information-related trading suspensions rather than trading based circuit breakers,
as are in place on the LSE.

Analysis of trading suspensions outside of the USA include Lauterbach and Ben-Zion (1993) who
examine trading on the Tel Aviv Stock Exchange (TASE) around the October 1987 crash commonly
known as “Black Monday”, and Kim et al. (2008) who compare the impact of discretionary trading
halts and price limits on the SIBE. Lauterbach and Ben-Zion (1993) compare the order imbalance
and price movements between the 20th and 21st of October, 1987 of TASE stocks that were placed
into a suspension after the opening auction and those that continued to trade. Their results suggest
that trading halts moderated order imbalance and excessive price swings but did not have a longer-
term impact on trading in these securities. Kim et al. (2008) compare market statistics for Spanish
stocks that trade on the SIBE following both a discretionary halt, and after prices reach their
predefined limits. Their results indicate that both the volume and speed of trading increase after
both kinds of events but that liquidity only improves after a trading halt, although this analysis
does not attempt to control for non-random selection into the two categories of events.

Given the inherent difficulty in conducting causal inference for the evaluation of the efficacy of
circuit breakers (discussed above), as well as data limitations, experimental evidence can potentially
allow for a more nuanced understanding of how market participants react to such trading rules.
Ackert et al. (2001) takes such an approach and designs experiments that examine the trading
process under different trading rules (no circuit breakers, short-term trading halts and long-term
trading halts) and differing levels of information asymmetry. They find that circuit breakers do
not have a meaningful effect on price deviations from fundamental values, which is driven entirely
by information asymmetry, but the possibility of long-term trading halts leads participants to
accelerate their trading. Further, short-term and long-term trading halts are found to be equally
likely to occur. Ackert et al. (2005) perform a similar experimental but where participants are
unsure if a subset of the investors has private information. In such a setting, it is plausible that
circuit breakers could serve to temper the effects of some participants erroneously concluding that
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private information is present. However, they find that this is not the case and that prices deviate
further from fundamentals following a trading suspension.

3 Circuit breakers on the London Stock Exchange

The LSE continuously monitors the state of the order book for securities throughout the trading
day and compares potential execution prices against two types of reference prices referred to as
dynamic and static reference prices. If the ex-ante price of a potential execution breaches any
of the reference prices, the market will enter a temporary suspension referred to as an automatic
execution suspension period (AESP), initially lasting five minutes followed by an uncrossing auction
to resume continuous trading. During this AESP, participants may submit limit and market orders
and the exchange continuously publishes the theoretical price and volume that the uncrossing
auction would generate if it was run at that point in time, taking into account the orders placed by
participants so far (London Stock Exchange, 2011). In this sense, the AESPs on the London Stock
Exchange can be considered a switch from continuous trading to auction mode trading.

Throughout the day, the dynamic reference prices are set as certain deviations up or down from
the price of the last automated trade in that security. The static reference prices are determined
as a certain deviation up or down from the uncrossing price of the previous auction (typically the
opening auction). The thresholds are determined at the LSE market sector level and take into
account average liquidity of the securities in that sector. All FTSE-100 sectors in our sample had
a dynamic threshold of 5% and a static threshold of 10% during the time period spanned by our
data (1st July - 31st Aug 2011). For FTSE-250 sectors, all but one had a static threshold of 10%,
with dynamic thresholds varying from 5-15%.

The suspension can be extended by a predefined period if the potential uncrossing price deviates
by too wide a margin from the previous automated trade price (referred to as a price monitoring
extension), or if the uncrossing algorithm would result in unfilled market orders at the resumption
of trading (referred to as a market order extension). The end of suspensions are also subject to a
random time period of between 0-30s before the resumption of continuous trading. The stated aim
of this is to remove the incentive to enter erroneous orders that would unduly affect price formation
towards the end of the auction (London Stock Exchange, 2000).

Within the subset of all LSE securities that comprise the FTSE-100 index, there were a total
of 28 events over our sample period (see table 2), with eight due to a breach of a fixed price limit
above the reference price, nineteen due to a breach of a lower limit and one due to a breach of the
dynamic reference price. In all securities on the LSE that trade on average at least 100 times per
day (approximately once every five minutes), there were a total of 708 trading suspensions. We
estimate that around 25 of these were dynamic limit breaches although data limitations make it
impossible to rule out the possibility that a dynamic and static limit breach occurred simultane-
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ously.6 Nevertheless, it is clear that a very significant majority of events are static limit breaches
and our analysis is generally restricted to these kinds of events.

3.1 Static price limits with Brownian price processes

In this section we investigate how a static circuit breaker system such as that which is in place
on the London Stock Exchange might operate under a standard frictionless model for stock prices.
Suppose that the log price of a given stock pt = logPt, where Pt denotes the price at time t, evolves
according to

dpt = σdBt, t ∈ [0, 1], (1)

where σ is the diffusion coefficient/daily volatility parameter and the day length is normalized to
one. Suppose that a static threshold c is set as a percentage price change. This means that the
circuit breaker would trigger whenever

|pt − p0| > c

for some t ∈ [0, 1], where p0 is the opening price. We characterize the probability that this happens
for some time during a trading day as a function of the volatility and the threshold parameter.
Related to this is the distribution of the first passage time τ, where τ = min{t : |pt − p0| > c}. This
is a standard barrier crossing problem for Brownian motion, except that the time horizon is finite.
We have that

Pr
[

sup
0≤t≤1

|pt − p0| > c

]
= 1− 2

π

∞∑
j=0

(−1)j

j + 1
2

exp
(
−
(
j + 1

2

)2
π2a2/2

)
, (2)

f0(t|, a) =
∞∑

j=−∞

2a(1 + 4j)√
2πt3

exp
(
− (4j + 1)2

a2/2t
)
, (3)

where a = c/σ (see Darling and Siegert (1953)). Equation (2) is the probability of a passage across
the threshold during the trading day and equation (3) is the density function for the first passage
time (actually, this density has support [0,∞), to obtain the density on [0,1] we should renormalize
by the probability that \tau<1). From (2) it is clear that the probability of crossing the barrier
decreases with c/σ.

The one-sided probability was considered by Bachelier (1901), and is much simpler to present.
In particular, let τa = min{t : pt > p0 +c} = min{t : Bt > a}. Then the density function for barrier

6For example, a trade-to-trade price move of 5% could trigger both a dynamic and static limit breach simulta-
neously if the absolute return from open was in excess of 5% prior to the sequence of trades that would trigger a
dynamic breach.
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crossing and the probability of a barrier crossing are given by

f0(t|x, a) = − a

t3/2
φ

(
a√
t

)
= a√

2πt3
exp

(
−a

2

2t

)
(4)

Pr [τa ≤ t] = 2
[
1− Φ

(
a√
t

)]
. (5)

Substituting a = c/σ and evaluating (5) at t = 1 gives the probability of observing a circuit breaker
on a given day at the limit price c under the simple model of stock prices given in (1):

Pr
[

sup
0≤t≤1

pt > p0 + c

]
= 2

[
1− Φ

( c
σ

)]
(6)

and similarly for the downside crossing. Note that for c/σ = 5, the probability of a crossing is
very low and the density rises monotonically towards the end of the day.7 Figure 1 shows the first
passage hazard function f0/1−F0 for c/σ = 5 and for c/σ = 1. In the latter case we witness the early
peak in hazard function.

In practice we see higher density of hits early in the day and at the end of the day. This partly
reflects the fact that on days where no trades occur during the opening auction, the static reference
price is set to the previous closing price. If this occurs after a particular volatile overnight period,
the first automated trade of the day can result in a static limit breach. Furthermore, intraday
patterns in volatility whereby volatility is relatively higher early and late in the day would imply
that dynamic limit breaches are more likely during these times, unconditional on the price path to
that point in time.

However, it is also possible that we would observe mass in the density of static limit breaches
from the opening auction price early in the trading day. To see this, suppose that (1) holds but
that σ is stochastic and in fact is drawn from some density σ ∼ H(σ). In that case we may find
days where c/σ is small (with early peak of hitting times) and other days with higher c/σ and
a later peak of density. Unconditionally we could observe a U-shaped density. Figure 2 contains
the annualized standard deviation of five minute log returns over all days in our sample for each
FTSE-100 stocks (each stock and day combination contributing a single data point). These data
indicate that there are many days where the volatility of returns is sufficiently large to result in a
ratio of c/σ of the order that would generate early peaks in the crossing-time hazard function as
observed in figure 1.

The above analysis is relevant for the understanding what happens for each individual stock.
It is also of interest to understand the situation for a cross-section of stocks. The multivariate

7This ratio would correspond to an annualized volatility of around 32% for a 10% static price limit. For a ratio
of 1 as per the second set of figures in figure 1, the ratio corresponds to an annualized volatility of 159%.

11



Figure 1: Hazard function and CDF for first passage time

Hazard functions and CDFs for the one-sided first passage time to a fixed barrier for stock prices that follow
geometric Brownian motion when volatility is low and high. The first passage time to barrier c is defined as
τ = min{t : |pt − p0| > c} where pt is the log stock price at time t. For GBM without drift, the PDF and CDF for

τ are given by f0 = a√
2πt3

exp
(
−a

2

2t

)
and F0 = 2

[
1− Φ

(
a√
t

)]
respectively where a = c/σ. The hazard function

is defined as f0/1− F0.
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Figure 2: Annualized standard deviation of 5 min returns of all FTSE-100 stocks

Annualized standard deviations of 5 min returns for each FTSE-100 stock during each day in our sample. The
annualized standard deviation for stock i on day t is calculated as σAnni,t =

√
252× 102σ5min

i,t and σ5min
i,t is the

sample standard deviation of 5 minute log returns for stock i and day t. A daily volatility of 1% corresponds to an
annualized value of 15.9%.
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boundary crossing problem has also been studied. Metzler (2010) considers the situation where a
vector of prices are observed that evolve according to the multivariate diffusion

dXt = Σ1/2dBt

where Σ is the instantaneous covariance matrix, a function of σ1, σ2, ρ, and X0 = x is the initial
condition, while B is a vector of independent standard Brownian motions. He calculates the density
of the random variable τi = inf{t > 0 : Xit = 0}, the first passage time of Xi to zero from initial
condition xi (in our case, Xit = pit − pi0 + c). Define:

ai = xi/σi

r0 =

√
a2

1 + a2
2 − 2ρa1a2

1− ρ2

θ0 =


π + tan−1

(
a2
√

1−ρ2

a1−ρa2

)
a1 < ρa2

π
2 a1 = ρa2

tan−1
(
a2
√

1−ρ2

a1−ρa2

)
a1 > ρa2
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α =


π + tan−1

(
−
√

1−ρ2

ρ

)
ρ > 0

π
2 ρ = 0

tan−1
(
−
√

1−ρ2

ρ

)
ρ < 0.

Then the joint density of τ1, τ2, denoted f(s, t) is given as follows:
For s < t

f(s, t) = π sinα
2α2

√
s(t− s cos2 α)(t− s)

exp
(
− r

2
0

2s
t− s cos 2α

(t− s) + (t− s cos 2α)

)
×
∞∑
j=1

j sin
(
jπ(α− θ0)

α

)
Ijπ/2α

(
r2
0

2s
t− s

(t− s) + (t− s cos 2α)

)
(7)

For s > t

f(s, t) = π sinα
2α2

√
t(s− t cos2 α)(s− t)

exp
(
−r

2
0

2t
s− t cos 2α

(s− t) + (s− t cos 2α)

)
×
∞∑
j=1

j sin
(
jπθ0

α

)
Ijπ/2α

(
r2
0

2t
s− t

(s− t) + (s− t cos 2α)

)
. (8)

Here, Ix(.) is the Bessel function of the first kind.
Inspecting equations (7) and (8) we note that for positively correlated Brownian motions with

zero drift, the joint density of first passage times for the components has a singularity at the
point s = t. This implies that even under a rational, frictionless model of stock prices, circuit
breakers are relatively likely to be triggered simultaneously when the underlying prices are positively
correlated. Bearing in mind the fact that extreme values are asymptotically independent even for
highly correlated Gaussian random variables (Longin and Solnik, 2001), the singularity in the joint
density of the first passage times is surprising.

To summarize, the distribution of first passage times from stock prices that follow geometric
Brownian motion model without drift provides a number of predictions about the probabilities of
circuit breakers, both in the univariate and multivariate case. Firstly, the shapes of the hazard
function and CDFs of the first passage time have different properties depending on the initial
distance to the barrier and the underlying volatility. For close barriers or high volatility, the hazard
function can attain a maximum value on the interior of the time domain, and the CDF can have a
concave region. For relatively distant barriers or low volatility, these functions are convex increasing
functions throughout the entire time domain. Comparing these predictions with our data, we note
that the CDF of events across all LSE securities in our sample region has a concave region early
in the day’s trading (see figure 3). This is consistent with high volatility relative to distant to the
barrier, although it is important to note that this is partially driven by opening auctions that do
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not generate a trade (as discussed above).
In the multivariate case, the model predicts that circuit breakers are relatively likely to be

triggered simultaneously when the underlying price processes are positively correlated, even when
the underlying process is Gaussian. Anecdotally, regulators noted that many market participants
noticed the simultaneous triggering of NYSE LRPs across many securities and took this as a sign
of market-wide instability following the Flash Crash in May 2010 (U.S. SEC & CFTC, 2010).
The results above may provide additional perspective to these events, although the work on joint
densities of first passage times is so far confined to bivariate geometric Brownian motion without
drift, so it is not straightforward to generalize these results.

4 Empirical methodology for identifying causal effects of cir-
cuit breakers

Our empirical approach to analyzing the efficacy of circuit breakers seeks to answer two related
questions. Firstly, we investigate how the variation in the length of a trading suspension affects
subsequent market quality for a security that breaches a static price limit. Secondly, we investigate
the effect of a trading suspension in a particular FTSE-100 stock following a static limit breach on
subsequent market quality for other FTSE-100 stocks. In both cases we use identification strategies
that are robust to the issue of censoring of the outcome variable (discussed in section 4.2.1 below).
For the case of auction length, we exploit a natural experiment that exists due to the nature of
trading rules on the LSE (outlined in detail section 4.1). For spillovers effects across securities, we
use a quasi-regression discontinuity approach (outlined in detail in section 4.2). Importantly our
regression strategy is not heavily model dependent and allows us to make causal inference regarding
the effect of suspensions within and across securities (Angrist and Pischke, 2008).

We consider three related market statistics: the volume of trades, the number of trades, and
the change in realized variance from before and after an “event”, each measured over 5 and 30
minute for the case of auction length, and over 5 minutes for the spillovers. For events where an
AESP occurs and hence continuous trading is suspended (which we refer to as “halts”), the interval
preceding the event is defined as the 5 or 30 minute period prior to the suspension of automated
trading and the interval following the event is defined as the 5 or 30 minute period immediately after
the end of the suspension, and the resumption of automated trading. For “near halts”, whereby
a stock trades within 1% of the price limit that would lead to a suspension but ultimately does
not cross this barrier, the interval preceding the event is defined as the 5 or 30 minute period prior
to the point in time where the distance from the price of that stock to the price limit attains a
minimum. The interval following the event is defined as the 5 or 30 minute period immediately
after this. We focus on these relatively short term measures of market quality partly due to the
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short length of the circuit breakers themselves and also the desire to understand the impact of these
trading suspensions on market quality shortly after the suspension ends. Furthermore, as many
circuit breakers occur early or late in the trading day, increasing the total interval over which we
measure these statistics over reduces the number of observations in our sample.

Volume and number trades are calculated as the total number of shares traded and total number
of trades executed on the LSE electronic order book during the particular interval respectively.8

The change in realized variance (∆RV ) is calculated as the difference in the sum of squared log
returns in the interval following an event (halt or near-halt) and the sum of squared log returns in
the interval preceding the event:

∆RV = RV t
T ′′→T ′′+T̄ −RV

t
T ′−T̄→T ′ (9)

where T ′ is the time of the event, T ′′ is the time immediately after the event, t is the frequency of
observations (10 seconds for 5 minute intervals and 30 seconds for 30 minute intervals), T̄ is the
length of the event (5 or 30 minutes) divided by t, and, the realized variance from period T1 to T2

measured at frequency t is given by:

RV tT1→T2
=

N∑
i=2

(
logPT1+i×t − logPT1+(i−1)×t

)2 (10)

where Ps is the price of the most recent trade at time s and N is the number of t intervals between
T1 and T2.

In a frictionless model of stock prices, realized variance is a consistent estimator of the quadratic
variation of the underlying price process as the measurement frequency increases asymptotically
(Hansen and Lunde, 2006). However, when market microstructure effects are present, it is well
known that realized variance is not a consistent estimator of the quadratic variation of the under-
lying price process (e.g. see Zhou (1996), Hansen and Lunde (2006) or Bandi and Russell (2008)).
While recent work has highlighted that as an estimator of daily quadratic variance, appropriately
sampled realized variance performs as well as other more sophisticated estimators Liu et al. (2012),
in our case, we are sampling at relatively high frequencies so market microstructure effects are very
likely to be present (Patton, 2011) and probably dominate the underlying volatility component. To
demonstrate, we can decompose the RV of returns in the presence of market microstructure noise

8The LSE gives assigns the flag “automated Trade” or AT to these trades.
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over a particular period as

RV =
M∑
i=2

(pt − pt−1 + ηt − ηt−1)2 (11)

RV =
M∑
i=2

(rt + εt)2 (12)

RV =
M∑
i=2

r2
t + 2

M∑
i=2

rtεt +
M∑
i=2

ε2
t (13)

where pt is the log of the efficient price at time t, ηt denotes the market microstructure noise, rt is
the log return and εt = ηt − ηt−1. The third term of equation (13) ensures that even if the market
microstructure noise is i.i.d, the RV is a biased estimator for the quadratic variation of efficient
returns.9

However, for studying the effects of circuit breakers on market quality, it is precisely these mar-
ket microstructure effects that we are most concerned about. Circuit breakers are only warranted in
cases where market prices diverge from efficient prices, which is precisely when market microstruc-
ture effects (perhaps due to poor liquidity or high adverse selection costs for liquidity providers) are
large in magnitude. As such, the fact that RV contains a term capturing the market microstruc-
ture noise is useful for our analysis, as this can be considered a transitory component of volatility
(as opposed to the fundamental volatility of the efficient returns process), or a measure of price
inefficiency. Under some assumptions about the processes governing the efficient returns and the
market microstructure noise, the difference in RV from before and after an event (halt or near-halt)
can be interpreted as a noisy measure of the change in magnitude of market microstructure noise
or price inefficiency that is present in the market prices. For example, suppose that true prices
follow standard Brownian motion with constant volatility, and the market microstructure frictions
are independent of the true prices. We can write (with slight abuse of notation) the difference in
RV during periods 1→M ′ and M ′′ → N with M ′′ > M ′ as:

∆RV =

 N∑
i=M ′′

r2
t −

M ′∑
i=1

r2
t

+ 2

 N∑
i=M ′′

rtεt −
M ′∑
i=1

rtεt

+

 N∑
i=M ′′

ε2
t −

M ′∑
i=1

ε2
t

 (14)

and E [∆RV ] as

E [∆RV ] = E

[
N∑

i=M ′′

ε2
t

]
− E

M ′∑
i=1

ε2
t

 . (15)

We can think of ∆RV as capturing the change in the magnitude of market microstructure noise as
9In fact this term diverges to infinity almost surely as the measurement frequency increases asymptotically (Bandi

and Russell, 2008).
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well as additional terms related to the volatility of the returns process and the covariance of the
returns with the market microstructure noise. That fundamental prices follow Brownian motion
with constant volatility and the returns are independent of the market microstructure noise are
sufficient (but not necessary) conditions for these terms to have expected value of zero, and hence
the change in RV is a (noisy) measure of the change in the magnitude of market microstructure
noise or transitory volatility between the two periods. In fact, so long as the returns process is
weakly stationary and the covariance between the returns and the market microstructure noise is
constant before and after an event (halt or near halt), ∆RV can be considered a noisy measure of
the change in the magnitude of market microstructure noise in the realized prices.

4.1 Identifying the effect of suspension length on market quality

In the case of the effect of auction length on market quality, we exploit the randomized uncrossing
time (detailed in section 3) that follows the end of a trading halt as a source of exogenous variation
in the length of auctions. This uncrossing period lasts between 0 and 30s and so represents a natural
experiment where the length of the suspension is varied by up to 10% of the base length of five
minutes.

By regressing market quality on the randomized auction length and suitable control variables,
we are able to make inference at the margin regarding whether longer suspensions lead to more
orderly markets. If longer auctions improved market quality, perhaps by allowing more time for
liquidity suppliers to analyze recent price movements and thus decrease their exposure to informed
trading, or perhaps by allowing more time for other market makers to begin supplying liquidity
when spreads become wide, then we would expect to see the realized variance to be smaller following
longer auctions. On the other hand, if the main effect of the suspension was to prevent participants
from making mutual beneficial trades, or a magnet effect, we would expect to see larger ∆RV
following longer auctions. The expected effect on volume and number of trades is less clear, as
more frequent or higher volume trading could be indicative of better or worse market quality in
different situations. However, interpretation of these regressions alongside the results regarding
returns volatility may be illuminating, as doing so provides information about whether increased
or decreased volatility is occurring alongside increased or decreased volume, or trading frequency.

4.2 Identifying spillover effects across securities

For analyzing the spillover effect of a suspension in one security on the market quality of related
securities, our identification strategy relies on finding near-halts in the FTSE-100 stocks, stocks
that traded to within 1% of the static price limit but did not breach this limit, and comparing
these events with actual suspensions. Crucially, the effect we are examining is not in the actual
stock undergoing the event but for all other FTSE-100 stocks eliminating the issue of mechanical
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dependence of outcome variables of interest on the censored price process in the control group (see
section 4.2.1 for a discussion of the salience of this issue). We form an unbalanced panel of all stocks
(excluding the event stock) during all halts and near halts in the FTSE-100, and including both
within-sector and out-of-sector stocks during each event and estimate the effect of a suspension
both using the two-way random effects estimator and OLS with heteroscedasticity robust standard
errors. These regressions estimate the effect of a suspension for other securities both within the
same Bloomberg industry sector as the event stock, and securities outside this sector.

The potential channels through which the suspension of a security undergoing extreme price
movements can affect other related securities are numerous. On the one hand, a volatile stock can
influence the price process of other stocks by revealing sector-wide information, through corporate
exposures between related entities (especially in the financial sector), via margin calls, through in-
teractions between volatility and funding costs for market makers (e.g. Brunnermeier and Pedersen
(2009)) or through short-term or high-frequency correlation traders. Some of these effects reflect
new information about the fundamental value of the related securities, while others, such as margin
calls and noise trading, do not. If the latter effects unduly dominate, or if the price movements
in the initially volatile stock are transitory, removing the volatile security from continuous trading
may help to break the transmission of volatility across related securities. However, it may also be
the case that suspending the volatile security leaves some market participants with exposures they
do not wish to have, and they attempt to hedge this exposure by trading in related securities. This
mechanism could lead to a more severe transmission of volatility across a sector than if continuous
trading never ceased. The results of our regressions help provide evidence about which set of effects
dominate, and thus whether the LSE circuit breakers help to limit contagion across securities or
not.

4.2.1 Issues with identification using near-limit events for within stock effects

Perhaps the key empirical challenge in the circuit breaker literature is defining an appropriate
counterfactual that well describes what the state of the market would have been if a circuit breaker
was not triggered. A common approach that has been followed in the past is to compare market
statistics for a particular security after an event in that security with the market statistics for
similar securities that very nearly triggered an event but ultimately did not (which we refer to as
near-halts above). Examples of previous research that rely on this method or something similar
include Kim and Rhee (1997), Huang et al. (2001), Chan et al. (2005) and Bildik and Gülay (2006).

However a potentially important issue with this approach is that of censoring of the outcome
variable in the control group, namely the distribution of the prices. To illustrate, suppose we are
considering a market with a daily return limit of ±10% whereby a breach of this level would lead to
a suspension of trading. Suppose we assign securities to a control group if the maximum absolute
daily return is above 9% but less than 10%. If we compare trading statistics in the period after a
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true limit event with those of a control stock in the period after the maximum absolute return is
reached, the distribution of the latter statistics are conditional not just on the return reaching 1% of
the barrier, but also that all subsequent returns during the period being analyzed do not breach the
limit. That is to say, for some measure of market quality qi,t for some stock in group i = {c, e} where
c denotes the control group and e denotes the event group, we would be comparing f

(
qe,t
∣∣|re,t| ≥ r̄)

with f (qc,t||re,t| ≥ r̄ − ε, sup (|rc,s| : t ≤ s ≤ T ) < r̄) where r̄ is the price limit expressed as a return
and ε is 1%. Unless the measure of market quality q is independent of the subsequent price process,
qc,t will not represent a satisfactory control group as it will be impossible to decompose the effect
of the suspension from that of the censoring. For measures of market quality that directly depend
on prices, such as volatility, trading costs and spreads, then by construction, this independence
condition cannot hold. For other measures, such as volume or number of trades, it is plausible that
censoring is not independent; the trade arrival process within a security can affect its price and vice
versa.

In order to demonstrate how this censoring issue can lead to erroneous conclusions about the
effects of circuit breakers, we compare the market quality for FTSE-100 stocks that trade through
a hypothetical price limit of ±7% with those stocks with a maximum daily absolute return of 6%,
as would be analogous to comparing trading behavior of halted stocks with near-halt stocks. Since
for this group of securities, there is no actual barrier at this level, we can consider any significant
effect to be due to the censoring issue depicted above. Details of the regression specifications
as well as parameter estimates are contained in the appendix. Most importantly, the dummy
variable indicating whether a stock is in the event or the control is highly significant in many of
the regressions, especially for events at the −7% “barrier”, for measures of volatility and volume
traded (table A.1 in the appendix).

In order to circumvent this issue, we only use the near-halt regression discontinuity technique
to identify the effect of a halt in one security on the trading activity for other securities, not
the event security itself. This eliminates the mechanical dependency of the outcome variables on
the treatment classification although the issue of second-order censoring is potentially important,
whereby our control group contains a greater proportion of stocks that are reverting back towards
the opening price which may bias our inference. This issue becomes more important as the interval
we analyze increases and so we only use this technique to identify the effect over the five minute
windows before and after events.

5 Data description

Our dataset contains all trades executed on the London Stock Exchange (LSE) from the 1st of
July 2011 until the 31st of August 2011, a total of forty-four trading days. There were 3,781
securities listed on the LSE including shares, exchange-traded funds and products, bonds, warrants
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and structured products. The price, volume, and trade time to the nearest second are recorded
for every transaction, as well as the trade type identifying the trade as being one of 26 alternative
classifications, such as ordinary trades, automated trades, late corrections, contra trades and so on.
Our analysis focuses on automated trades, those that are executed on the electronic order book of
the LSE, and uncrossing trades that match limit and market orders placed during a suspension of
continuous trading and precede the resumption of continuous trading.

The sample period was chosen as it covers a time of unusual turbulence in global stock markets
and therefore contains a relatively large number of circuit breaker events. In total there were 2,931
unscheduled auction periods on the LSE during this period. Figure 3 contains a histogram of all
events on the LSE in our sample period and the empirical CDF of these data.

Figure 3: All unscheduled AESP during sample period

Figure 3a contains a histogram of all unscheduled auction periods on the LSE from the 1st of July 2011 until 31st
of August 2011, sorted into 100 bins. Figure 3b is the empirical cumulative distribution function (CDF) of the data
in figure 3a.
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There are a number of limitations with the dataset that are important to note. Firstly, the
counterparties to each trade are not identified and hence it is not possible to track specific trading
institutions over time nor to consider transactions between specific types of traders (e.g. high
frequency traders or investment banks). Secondly, trades are not assigned as either buyer initiated
or seller initiated. Thirdly, the dataset does not include information detailing the state of the
order book during the sample period and hence does not identify the best bid and offer, the order
imbalance or the depth in the order book prior to a trade. Lastly, as mentioned above, trade
times are assigned to the nearest whole second which implies that there is a non-trivial degree of
aggregation of trade times to this level of precision.

Industry sectors for FTSE-100 securities were obtained from Bloomberg. There were ten cate-
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gories with up to 24 securities in each sector. The largest sector by number of firms is financials
and the smallest is information technology. A breakdown of the sectors is contained in table 2.
Unscheduled auctions were most common in the financials and materials sectors.

Table 2: Bloomberg industry sectors

Number of stocks and number of circuit breaker events by Bloomberg sector for the FTSE-100 during the sample
period, 1st July 2011 to 31st August 2011.

Sector name Stocks Events

Consumer Discretionary 13 1

Consumer Staples 11 0

Energy 10 1

Financials 24 16

Health Care 4 0

Industrials 13 2

Information Technology 3 0

Materials 14 7

Telecomm’n Services 4 1

Utilities 6 0

In order to describe the returns processes for the FTSE-100 stocks in our sample, we perform
heteroskedasticity-robust variance ratio tests as derived in Lo and MacKinlay (1989). These test
whether or not the variance of the returns process defined over different intervals are consistent
with the hypothesis that the log of prices follows a random walk. Specifically, for a random walk

Xt = µ+Xt−1 + εt (16)

where σ2 is the variance of the first differences of this process, and for any subsequence of {Xt}Tt=1
that takes the form {X1, X1+q, X1+2q, ...} for some integer q ≥ 2, then σ2

q/qσ2 = 1 where σ2
q is the

variance of the subsequence (see Castura et al. (2010) for an application of this to high frequency
US equity data). Variance ratios less than one indicate negative serial correlation, while variance
ratios greater than one represent positive serial correlation, and possibly a momentum process.
Both cases would indicate a deviation from the random walk assumption and hence a deviation
from price efficiency in the sense that returns would have a predictable component.

The results of our variance ratio tests for one minute returns and q = 5, 10 are contained in table
3. In figure 4 we plot the significant variance ratios against the log of mean daily trading value.
At both the five and ten minute aggregation levels, we find evidence of negative serial correlation
in high frequency returns, with all but one of the significant test statistics taking a value less than
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one. Since we are performing our tests at high frequencies, it is likely that market-microstructure
factors such as bid-ask bounce and discrete prices are contributing to the mean-reverting nature of
the price process (Castura et al., 2010). Regardless, these data indicate that there are deviations
from full price efficiency that may justify (or reflect) the presence of circuit breakers.

Table 3: Variance Ratio Summary Statistics

Results for variance ratio (VR) tests comparing the variance of 5-min with the variance of 1-min returns and the
variance of 10-min returns with the variance 1-min returns for all FTSE-100 stocks in our sample. VRs less than
one indicate negative serial correlation in the returns process, while VRs greater than one represent positive serial
correlation. The table contains the mean VR, median VR, number of significant VRs less thane one and number of
VRs greater than one.

Intervals Mean Median Significant < 1 Significant > 1

5min/1min 0.9047 0.9122 63 1
10min/1min 0.8731 0.8771 60 0

Figure 4: Significant variance ratios vs. mean daily value traded

Variance ratio statistics for returns time-series for each FTSE-100 stock during our sample period plotted against
log of mean daily value traded. The left hand panel contains the variance ratios for 5-min vs. 1-min returns and the
right hand panel contains the variance ratios for 10-min vs. 1-min returns.
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6 Results

6.1 Time-series regressions and variance ratio tests for high-frequency
returns

As a first step towards understanding how circuit breakers affect the trading process, we perform
time-series regressions for the 5 minute returns in all FTSE-100 stocks over our sample period.
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These regressions incorporate the inverse distance from the current price to the upper and lower
price limits in both the mean and the variance equations of the returns process. These are similar in
spirit to those used as evidence of the magnet effect in Cho et al. (2003) although our specification
differs from that of Cho et al. (2003) in a number of ways. Firstly, we correct for the well-documented
intraday periodicity of returns, secondly, we use the E-GARCH model as opposed to the GARCH
framework to explicitly account for the leverage effect, and thirdly we use a continuous distance
metric whereas Cho et al. (2003) use a dummy if the price is within a threshold value of the limit
price.

The specification for these regressions is as follows:

rt = α+ θεt−1 + κLdistLt−1 + κUdistUt−1 + εt

εt ∼ N
(
0, σ2

t

)
log
(
σ2
t

)
= ω + β log (σt−1) + ρ

(∣∣∣∣ εt−1

σt−1

∣∣∣∣−
√(

2
π

))
+ γ

εt−1

σ2
t−1

+ ...

λLdistLt−1 + λUdistUt−1 (17)

where rt is the 5 minute log return, the inverse distance metrics are defined as

distit = 0.11/2 −min
{∣∣∣∣pit − ptpt

∣∣∣∣1/2 , 0.11/2

}
for i = L,U (18)

and pLt , p
U
t are the lower and upper price limits at time t respectively. The distance metrics are

bounded: distLt , distUt ∈
[
0, 0.11/2] and attain their respective maximums when the price is adjacent

to that limit price. Further, only one of the two distance metrics is greater than zero at any given
t.

Essentially, equation (17) is a standard MA(1) - E-GARCH specification augmented with our
inverse distance metrics distit in both the mean and the variance equations. The parameter γ
corresponds to the usual asymmetric component of the volatility process in the E-GARCH model,
while the parameters

(
κL, κU

)
and

(
λL, λU

)
correspond to the effect of proximity to the limit on

expected deseasonalized returns and their volatility respectively. Since the variables distit, i = L,U

are inverse distance metrics, positive coefficients correspond to increases in the mean and variance
as proximity to the limits increase.

In order to account for the commonly observed (U-shaped) periodicity of the intraday returns
process, we apply the deseasonalizing method described in Andersen and Bollerslev (1998) where
intraday dynamics of the volatility of returns are estimated using a Fourier Flexible Form (FFF).
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The general form of the model used is

rt,n − r̄t,n = σt,nst,nZt,n (19)

where rt,n is the log return from period n − 1 to n on day t, r̄t,n is the expected log return,
Zt,n is an i.i.d mean zero error term with unit variance, st,n represents the intraday periodicity of
the volatility of returns (calendar effects) and σt,n denotes the remaining (potentially persistent)
volatility component. It is the st,n term specifically that we wish to control for when running the
regressions in (17). This term is potentially important: if volatility is systematically higher later in
the day (i.e. a U-shaped volatility process), and circuit breakers are more likely to be triggered later
in the day regardless of market quality (due to static price limits), we may erroneously conclude
that the increase in volatility associated with proximity to a price limit is due to a magnet effect.

Andersen and Bollerslev (1998) suggest using ARCH models at the daily frequency to get an
estimate of σt,n and the sample mean of returns to estimate r̄t,n (assuming that these are con-
stant throughout the trading day). Squaring and taking logs of (19) gives the regression form for
estimating (19):

x̂t,n ≡ 2 log
∣∣rt,n − r̄∣∣− log σ̂t = ĉ+ f (θ, n) + ût,n (20)

where ĉ is an estimate of E
[
logZ2

t,n

]
and ut,n = logZ2

t,n − E
[
logZ2

t,n

]
. The term f (θ, n) is a

parametric representation of E [log st,n] which the authors estimate using a Fourier Flexible Form
(FFF). In the case of our data, using

f (θ, n) =
Q∑
q=0

µqn
q +

P∑
p=1

(
δc,p cos p2π

N
n+ δs,p sin p2π

N
n

)
(21)

with tuning parameters Q = 2 and P = 5 provides a good fit for many stocks in our sample.10

We use an MA(1)-E-GARCH model to estimate σ̂t for the daily returns. These are then used with
the absolute log returns to generate a regressand for equation (20) and the intraday periodicity
are estimated using the FFF in (21). Then the raw five minute returns are normalized using ŝt,n
and we estimate equation (17) for these deseasonalized returns via maximum likelihood with initial
errors for each days assumed to equal zero and initial variances set equal to the mean variance for
the deseasonalized processes.

In table (4) we report the mean and median parameter estimates for
(
κL, κU , λL, λU

)
as well as

the number of significant negative and positive coefficients across all FTSE-100 stocks. Figure (5)
plots the t-statistics for these parameters against the log of mean daily value traded for each stock.

10Andersen and Bollerslev (1998) actually use a Fourier Flexible Form (FFF) of the type f (θ, n) = µ0 +∑P

p=1

(
δc,p cos p2π

N
n+ δs,p sin p2π

N
n
)
where n = (1, 2, ..., N) is the intraday period. The form we use here is ac-

tually from Andersen et al. (2000), however it gives a superior fit to that of Andersen and Bollerslev (1998).
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Table 4: Augmented E-GARCH Distance Parameters Summary Statistics

Summary statistics for time series regressions for the mean and conditional variance of the 5-min deseasonalized
returns for all FTSE-100 stocks during the sample period. The regression model is the standard MA(1)-EGARCH
model augmented with metrics for the inverse distance to the upper and lower static price limits included in both
the mean and variance equations (see (17) and (18) for full specification). The table reports the mean, median, the
number of positive significant parameter estimates and the number of negative significant parameter estimates both
for the upper and lower distance metrics for the mean equation

(
κL, κU

)
and the variance equation

(
λL, λU

)
.

Parameter Mean Median Significant < 0 Significant > 0

κL 0.00438 -0.00123 10 8
κU -0.00112 -0.00010 14 3
λL 0.49846 0.49683 0 85
λU 0.41880 0.48454 1 79

Figure 5: Augmented E-GARCH distance t-statistics vs. log of mean daily value traded

Parameter estimates for the distance metrics in the augmented MA(1)-EGARCH model of 5-min returns plotted
against the log mean value traded per day for each FTSE-100. The upper panels contain the plots for the distance
metric parameter estimates in the mean equation for each stock

(
κL, κU

)
and the lower panels contain the parame-

ter estimates for the distance metrics in the variance equations
(
λL, λU

)
. Horizontal bars indicate 5% critical values.

18 19 20 21 22 23 24
-4

-2

0

2

4

6

8

10
kappaL

18 19 20 21 22 23 24
-4

-2

0

2

4

6

8
kappaU

18 19 20 21 22 23 24
-2

0

2

4

6

8

10
lambdaL

18 19 20 21 22 23 24
-4

-2

0

2

4

6

8
lambdaU

26



For the mean equation we see that the distance metric is not consistently significantly different
from zero, indicating that the mean of the returns process does not generally respond one way or
another as proximity to the barriers increases. For the variance equation, we see that the volatility
of the deseasonalized returns process is generally increasing with proximity to both the upper and
lower price limits. While these results may reflect the presence of a magnet effect, it may also be the
case that the E-GARCH framework does not allow for a sufficiently flexible relationship between
returns-on-open and volatility, and our inverse distance metrics are simply picking up some of this
misspecification.

6.2 The effect of suspension length on market quality

We now present the results of our regressions that determine the causal impact of the length of
trading suspensions on subsequent market quality, as described in section 4.1. Both ordinary least
squares and quantile regressions for the 25th, 50th and 75th quantiles are performed for the three
market quality variables. The regression model for both the OLS and quantile regressions is

yi,post = x′i,preβ + γli + εi,pst (22)

where yi,post is the measure of market quality recorded from the resumption of continuous trading
to the end of the fixed interval (5 or 30 minutes), xi,pre is a vector of controlling variables recorded
in the fixed interval prior to the suspension including realized variance (level), volume, number of
trades, time of day and its square and a constant term, li is the randomized auction length (from
0-30s) and εi,pst is an error term assumed to satisfy E [εi,pst|xi,pre, li] = 0. Due to the fact that li is
by design a random variable, the error term is certainly uncorrelated with the uncrossing time. The
parameter of interest is γ, the marginal effect of auction length on expected market quality in the
case of the OLS regressions, or the marginal effect of auction length on the conditional qth quantile
of market quality for q = {0.25, 0.5, 0.75}. Heteroscedascity-robust standard errors in computed in
the case of the OLS regressions.

The sample of events includes all securities on the LSE that have static price limits of 10%, that
trade at least 100 times per day on average during July and August 2011, and incurred exactly
one trading halt that day due to a static breach before uncrossing without a price monitoring or
market order extension. We also filter out events that occurred either within 5 or 30 minutes of
the open or close depending on the length of the interval in question. This sample is then split
into events at the upper limit and the lower limit to allow the parameter estimates to vary across
these two categories of events and all variables are Winsorized at the 1% level. The estimates for γ
in both the OLS and quantile regressions for upper and lower events are contained in table 5. All
parameter estimates and standard errors are contained in tables A.2 - A.4 in the appendix.

The estimates for the length parameter in lower limit events in tables 5a and 5b indicate that
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Table 5: Auction length parameter estimates

Coefficient estimates for the effect of auction length on volume, number of trades and change in realized variance
following a static limit breach in all securities in our sample that trade at least 100 times per day on average. The
regression model is yi,post = x′i,preβ + γli + εi,pst where yi,post is the measure of market quality recorded from the
resumption of continuous trading to the end of the fixed interval (5 or 30 minutes), xi,pre is a vector of controlling
variables recorded in the fixed interval prior to the suspension including realized variance, volume, number of trades,
time of day and its square and a constant term, li is the randomized auction length (from 0-30s) and εi,pst is an
error term. Both OLS with robust standard errors and quantile regressions for the 25th, 50th and 75th quantiles
with bootstrapped standard errors are reported and separate regressions are estimated for events at lower and
upper limits respectively. The sample excludes all overlapping events, securities with multiple events in a given
trading day and events that occur within either five or thirty minutes of the opening or closing auction depending
on the interval being examined. Tables 5a and 5b report the estimates for lower limit events over 5-min and 30-min
intervals respectively, and tables 5c and 5d report the estimates for upper limit events.

(a) Lower limit events Time = 5 mins, Freq = 10s

OLS (Robust) 25% Quant. Reg 50% Quant. Reg 75% Quant. Reg

coef. t-stat coef. t-stat coef. t-stat coef. t-stat

∆RV 0.01005 (*) 1.71 -0.0016 -0.94 -0.0029 -0.46 0.01778 (**) 2.17
Vlm -5.3807 -1.58 -0.2901 -0.47 0.08086 0.13 -0.2196 -0.27
No. Trds 0.11652 0.30 -0.0228 -0.2 0.16454 0.86 0.28821 0.86

No. Obs 164

(b) Lower limit events T ime = 30 mins, Freq = 30s

OLS (Robust) 25% Quant. Reg 50% Quant. Reg 75% Quant. Reg

coef. t-stat coef. t-stat coef. t-stat coef. t-stat

∆RV 0.02482 (**) 2.22 -0.0007 -0.17 0.01209 0.98 0.02435 (*) 1.73
Vlm 2.24428 0.42 -1.0486 -0.65 0.0153 0.02 1.27504 0.51
No. Trds 0.67058 0.44 0.19712 0.44 0.1289 0.27 0.18538 0.22

No. Obs 144

(c) Upper limit events T ime = 5 mins, Freq = 10s

OLS (Robust) 25% Quant. Reg 50% Quant. Reg 75% Quant. Reg

coef. t-stat coef. t-stat coef. t-stat coef. t-stat

∆RV 0.00447 0.38 0.00096 0.4 0.00041 0.05 0.01217 0.84
Vlm -1.30426 -0.59 0.19566 0.62 0.43971 0.50 -1.81517 -0.93
No. Trds 0.27518 0.93 0.10421 1.09 0.04395 0.26 0.04765 0.15

No. Obs 111

(d) Upper limit events T ime = 30 mins, Freq = 30s

OLS (Robust) 25% Quant. Reg 50% Quant. Reg 75% Quant. Reg

coef. t-stat coef. t-stat coef. t-stat coef. t-stat

∆RV 0.00527 0.25 -0.0042 -0.64 -0.0029 -0.23 -0.0018 -0.11
Vlm -1.01952 -0.40 0.22601 0.31 -0.02447 -0.02 -2.61866 -1.21
No. Trds 0.44173 0.62 0.12008 0.38 0.12574 0.31 0.30745 0.53

No. Obs 101
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for these events, the length of the uncrossing period has a significant positive effect on ∆RV in
the OLS regressions over the 30 minute interval and the regression for the 75th quantile over the
5 minute interval. The same parameter is significant at the 10% level for the OLS regression over
the 5 minute interval and the regression for the 75th quantile over the 30 minute interval. Auction
length does not have a significant effect on the mean or any quantile for the volume or number of
trades after lower limit events over either 5 or 30 minutes. That this effect is still present after
thirty minutes also suggests that the impact of longer auctions is felt over relatively long periods,
compared with the length of the auction itself. The fact that the length variable is not significant
in the regressions for the 25th or 50th quantiles but is significant for the 75th quantile indicates
that the effect of longer suspensions manifests at the upper tail of the volatility distribution; price
paths are more likely to be very volatile compared with normal trading, but for many events the
auction length is unlikely to have a material effect.

These results suggest that the magnitude of market microstructure noise or price inefficiency
in the realized price process is larger after longer auctions following breaches of the lower price
limit. That this effect is present despite there being no significant effect on the volume or number
of trades suggests that the increase is being driven by lower levels of liquidity, as higher volatility is
not being caused by an increase in the intensity of the trade arrival process. Our results might also
be interpreted as supportive of the volatility spillover hypothesis, however since neither the volume
or trading frequency is larger following longer halts, it is not clear that the increase in realized
variance is being driven by market participants delaying order submission until continuous trading
resumes.

Considering the estimates for events at the upper limit in tables 5c and 5d, the length variable
is no longer significant in any specification indicating that, in contrast to the results for lower limit
events, longer auctions do not lead to greater price inefficiency or a deterioration in liquidity. That
the auction length only affects market quality for lower limit events may reflect the fact that due
to asymmetric volatility profiles for equity prices (whereby volatility tends to increase in a falling
market), the probability of a type-I error (an unwarranted suspension) is arguably higher in falling
markets. It is plausible that the fraction of market participants with negative exposure to a falling
stock price is much larger than those with a negative exposure to a rising stock price as the former
group will contain long-only asset managers who do not take directional short positions in the equity
market, as well as speculators and other participants who trade to hedge an exposure. It is also
likely supply in the lending market for many of the securities in our sample is relatively limited,
further restricting the fraction of investors with positive exposure to a price depreciation. Then,
a type-I error in a falling market, whereby a market is suspended when it ought not to be, would
affect a larger fraction of the market and may manifest in increased volatility upon resumption of
continuous trading.
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6.3 The effect of a suspension on related securities

The regressions in this section are designed to identify the effect of a stock entering a trading halt
on the market quality of other stocks in that sector (referred to as spillover effects), as described
in section 4.2. Identification is achieved by examining the effect of a particular stock entering a
trading halt on other stocks, and comparing this with the effect of a particular stock trading within
1% of a limit but not entering an auction phase on the other stocks.11

The sample includes all non-overlapping halts and near-halts (stocks that trade within 1% of
the limit but do not enter an auction phase) in the FTSE-100 over the sample period. Each stock
is assigned to one of ten industrial sectors as designated by Bloomberg market services (see table
2). The sample constitutes a panel-like dataset with observations on all stocks (excluding the event
stock) in the FTSE-100 during each of the events, halts and near halts, in the sample period. The
regression model is

yij = x′ijβ + γhDh,in
ij + γnhDnh,in

ij + λhDh,out
ij + λnhDnh,out

ij + υi + ηj + uij (23)

where the subscripts i and j refer to an index of stocks and events respectively. The variable yij is
a market quality measure of interest (the set of which were defined in section 4), xij is a vector of
controlling variables, Dh,in

ij is a dummy variable taking the value 1 if event j is a halt in the sector
of stock i and zero otherwise, Dnh,in

ij is a dummy taking the value 1 if event j is a near-halt in the
sector of stock i and zero otherwise and Dh,out

ij , Dnh,out
ij are the equivalent variables for halts and

near-halts in sectors outside of the sector of ith stock. The error terms comprise of stock-specific and
event-specific effects, υi and ηj , and uij is an error term assumed to satisfy E

[
uij |xij , Dh

ij , D
nh
ij

]
= 0.

The parameters of interest are those that correspond to the halt and near-halt dummies both
within and outside of stock i’s sector. These capture the effect of a halt and a near-halt respectively
on the market quality of the stocks both within the event sector and in non-event sectors following
an event. We are specifically interested in the hypotheses:

H0 : γh = γnh

H1 : γh 6= γnh
(24)

H0 : λh = λnh

H1 : λh 6= λnh
(25)

as well as the joint test of (24) and (25). The test described in (24) corresponds to the hypotheses
that the effect of a halt on the market quality statistic of interest within a given sector is identical
to that of a near-halt, and therefore that halts do not have a significant effect on market quality.

11As noted previously, this method would not be valid for determining the effect of auctions on the halted stock
itself due to censoring on the outcome variable and regressions highlighting this are included in the appendix.
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The test described in (25) corresponds to the same hypothesis but for stocks outside of the event
sector. In both cases, we are also interested in the direction of the inequality under the alternative.

The model is estimated both using OLS with heteroscedasticity-robust standard errors, cor-
responding to the case where vi = ηj = 0 ∀ i, j, and using the two-way random effects model
corresponding to the case where υi and ηj are not forced to be equal to zero, but are assumed to be
uncorrelated to the regressors. In the latter case we estimate the model using feasible GLS (FGLS)
with first-stage residuals computed using OLS.12

The sample is again split into events at the lower-limit and events at the upper-limit. Regressions
are performed for both groups over the five minute interval following an event, corresponding to the
period when a halted security would be suspended from automated trading. While our identification
strategy is not affected by the direct censoring issue referred to in section 4.2.1, there are possible
second-order censoring effects that may become important as the post-event interval is increased.
Specifically, the control group may contain a higher proportion of “orderly” trading days as many
of the event securities in the control group may have mean-reverted (and therefore appreciated in
value for lower limit events or depreciated for upper limit events) following the time of the event.
This effect is likely to become more significant as the interval we analyze increases and so we restrict
our analysis to the actual lockout period of five minutes.

There were a total of 28 non-overlapping events in our sample, with 101 securities (excluding
the event stock) observed during each event. The breakdown of events by sector are contained in
table 6.

12It is not possible to use the two-way fixed estimator to identify the total effect of an event (halt or near-halt) on
stocks within or outside of the event sector since this estimator would remove any stock or event invariant coefficients.
In order to identify the total effect of an event (either halt or near-halt) either within or outside the event sector,
we must either jointly estimate all four dummy variables Dx×yi,j for x = {h, nh} and y = {in, out}, or to estimate
constants and an event invariant halt or near-halt dummy that would load additively into the total effect of event
type x in or out of the event sector. As a robustness check, we also estimate a restricted version of (23) where
Dh,out = Dh,in = Dh and Dnh,out = Dnh,in = Dnh (i.e. the event effect is assumed to be homogeneous for
stocks within and outside of the event sector) that can be estimated in the presence of a stock-specific fixed effects.
Results using this estimation technique are consistent with those of obtained using OLS and two-way random effects
estimation and are available on request.
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Table 6: Non-overlapping events by industry sector

Halts and near-halts in FTSE-100 stocks sorted by Bloomberg industry sector. Halts are defined as unscheduled
auction periods caused by breaches of the static limit reference price. Near-halts are defined as events whereby
a stock price is within 1% of the static price limit but never breaches the limit level and an unscheduled auction
period does not occur.

Upper limit events Lower limit events

Sector name Stocks Halts Near-halts Halts Near-Halts

Consumer Discretionary 13 0 0 0 0

Consumer Staples 11 0 0 0 0

Energy 10 0 0 1 0

Financials 24 3 2 5 1

Health Care 4 0 0 0 0

Industrials 13 1 1 1 1

Information Technology 3 0 0 0 0

Materials 14 3 1 1 5

Telecomm’n Services 4 0 1 1 0

Utilities 6 0 0 0 0

The controlling variables include volume, number of trades and the realized variance in the fixed
interval prior to the event and we now include the return-on-open of the non-event stocks.13 The
sample is again Winsorized at the 1% level.

6.3.1 Lower limit events

Tables 7a and 7b contain estimates for the dummy parameters for lower limit events obtained using
two-way random effects and OLS with robust standard errors, as well as p-values for Wald test
statistics of the hypotheses outlined in (24) and (25) for events at the lower limit. All parameter
estimates for the lower limit events are contained in table A.5a in the appendix.

13For the regressions in section 6.2 these returns are all between 9% and 10% and so are not included.

32



Table 7: Spillover parameter estimates and tests

Parameter estimates for the halt and near-halt coefficients for volume, number of trades and change in realized
variance. The regression model is yij = x′ijβ+γhDh,in

ij +γnhDnh,in
ij +λhDh,out

ij +λnhDnh,out
ij +υi+ηj+uij

where the subscripts i and j refer to an index of stocks and events respectively, the variable yij is a market quality
measure of interest (change in realized variance, volume and number of trades), xij is a vector of controlling
variables, Dh,inij is a dummy variable taking the value 1 if event j is a halt in the sector of stock i and zero otherwise,
Dnh,inij is a dummy taking the value 1 if event j is a near-halt in the sector of stock i and zero otherwise and
Dh,outij , Dnh,outij are the equivalent variables for halts and near-halts in sectors outside of the sector of ith stock, υi
is a stock specific random effect, ηj is an event specific random effect and uij is an exogenous error term. The model
is estimated using both two-way random effects and OLS with heteroscedasticity robust standard errors. Columns
two to five report the coefficient estimates for halts and near-halts within the event sector and outside the event
sector respectively, columns six to eight report the p-value of Wald tests that the parameters within the event sector
are equal, that the parameters outside the event sector are equal and the joint test for these two hypotheses. Tables
7a and 7b report these results for events occurring at the lower limit and tables 7c and 7d report these results for
events at the upper limits.

(a) Lower limit events - two-way random effects estimates

Coefficient estimates Hypothesis test p-values
Dep. Variable γh γnh λh λnh γh = γnh λh = λnh Joint

∆RV 0.5797(∗∗) 1.2133(∗∗) 0.4530(∗∗) 0.5389(∗∗) 0.01(∗∗) 0.44 0.04(∗∗)

Vlm 35.079(∗∗) 7.5623 11.530(∗∗) 9.2250 0.15 0.70 0.28
No. Trds 24.308(∗∗) 10.507 15.587(∗∗) 16.555(∗∗) 0.07(∗) 0.78 0.16

(b) Lower limit events - OLS (robust s.e.) estimates

Coefficient estimates Hypothesis test p-values
Dep. Variable γh γnh λh λnh γh = γnh λh = λnh Joint

∆RV 0.5454(∗∗) 1.1408(∗∗) 0.3970(∗∗) 0.4765(∗∗) 0.07(∗) 0.39 0.14
Vlm 34.549(∗) 9.7623 12.061(∗∗) 10.624 0.17 0.86 0.38
No. Trds 22.356(∗∗) 7.2497 13.829(∗∗) 13.951(∗∗) 0.07(∗) 0.97 0.19

(c) Upper limit events - two-way random effects estimates

Coefficient estimates Hypothesis test p-values
Dep. Variable γh γnh λh λnh γh = γnh λh = λnh Joint

∆RV 2.9714(∗∗) 0.2486 1.7648(∗∗) 0.3331 0.00(∗∗) 0.00(∗∗) 0.00(∗∗)

Vlm 45.979(∗∗) -31.436(∗) 14.139(∗∗) 8.1094 0.00(∗∗) 0.35 0.00(∗∗)

No. Trds 23.487(∗∗) -3.0820 20.137(∗∗) 11.028(∗∗) 0.00(∗∗) 0.03(∗∗) 0.00(∗∗)

(d) Upper limit events - OLS (robust s.e.) estimates

Coefficient estimates Hypothesis test p-values
Dep. Variable γh γnh λh λnh γh = γnh λh = λnh Joint

∆RV 2.1394(∗∗) -0.3279 0.7769(∗∗) -0.2019 0.00(∗∗) 0.00(∗∗) 0.00(∗∗)

Vlm 50.516(∗∗) -30.131 18.573(∗∗) 10.723 0.00(∗∗) 0.38 0.00(∗∗)

No. Trds 57.389(∗∗) 44.482 30.084(∗∗) 119.14(∗∗) 0.00(∗∗) 0.04(∗∗) 0.00(∗∗)

Considering the results using the random-effects estimator for the change in realized variance,
the halts parameter for other stocks in the event sector is significantly smaller than the near-halts
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parameter in the event sector at the 5% level, indicating that for stocks within the event sector, the
halt leads to a reduction in the magnitude of market microstructure noise in the trading process. For
stocks outside of the event sector, the halt and near-halt parameters are not significantly different.
The joint test of both hypotheses is also rejected at the 5% level. For volume and number trades,
the halt parameters are larger than the near-halt parameters both within and outside the event
sector, however the difference is only significant at the 10% level for the number of trades within
the event sector. The OLS estimates are consistent with those obtained using the random effects
estimator, although for the change in realized variance, the joint test can no longer rejected and
the within sector test is only rejected at the 10% level.

Table 8a contain Wilcoxon non-parametric rank sum tests for equal medians in the two groups
and t-tests for equal means. The first row of results compare the medians and means for the simple
difference in realized variance from before and after the two types of events while the second and
third rows refer to the percentage change in the volume and number of trades from before and after
events of either types.. The t-test for equal means are significant at the 5% level for the percentage
change in volume and number of trades, while the Wilcoxon tests are only rejected at the 10% level
for difference in realized variance.

Table 8: Wilcoxon Rank Sum and two sample t-tests

Wilcoxon non-parametric rank sum tests for equal medians and t-test for equal means for the difference in
realized variance, and percent changes in volume and number of trades during halts and near-halts. The second,
third and fourth columns contain the median for halts, the median for near-halts and the associated p-value
for the Wilcoxon test that these values are equal respectively. The fourth, fifth and sixth columns contain the
sample mean for halts, the sample mean for near-halts and the p-value for the t-test for equality of means. Table
8a report these statistics for events at the lower limit and table 8b report these statistics for events at the upper limit.

(a) Lower limit events

Wilcoxon rank sum test t-test for equal means

Dep. Variable halt med. near-halt med. p-value halt mean near-halt mean p-value
∆RV -0.0001 0.00164 0.05 -0.0016 0.0060 0.24
∆% Vlm 0.23367 0.04841 0.26 1.3431 0.2538 0.04
∆% No. Trds 0.22283 0.05634 0.12 0.7672 0.1807 0.04

(b) Upper limit events

Wilcoxon rank sum test t-test for equal means

Dep. Variable halt med. near-halt med. p-value halt mean near-halt mean p-value
RV 0.0011 -0.0005 0.08 0.04318 0.0024 0.08
∆% Vlm 0.4100 -0.0543 0.01 0.9118 0.4705 0.17
∆% No. Trds 0.2929 -0.1429 0.01 0.6204 0.3164 0.14

Taken together, we interpret these results as evidence that suspensions do not lead to a significant
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deterioration in market quality of related securities (those in the event sector) in the FTSE-100.
Indeed the results indicate that during the suspension the price paths for these related securities
become more orderly as the suspension leads to a statistically significant drop in the ∆RV without
a significant changes in volume and the number of trades, and hence the magnitude of market
microstructure noise and price inefficiency in the realized price process decreases in the related
securities. The suspensions do not have a significant effect on the change in realized variance,
number of trades or volume of trades outside the event sector. In relation to the discussion presented
in section 4.2, we find evidence that the transitory transmission of price instability across securities
is meaningful and that the suspension mechanism can potentially help to ameliorate contagion
across stocks in falling markets. The estimates for the volume and number of trades regressions
provide evidence that suspensions do not lead to very large transfers of trading activity from the
halted stock to related securities, which we might have expected to observe if market participants
hedge exposure in the suspended security by trading related securities.

6.3.2 Upper limit events

Parameter estimates and hypothesis test results for upper limit events are contained in tables
7c and 7d, and Wilcoxon rank-sum tests and t-tests for equal means are contained in tables 8b.
All parameter estimates for the upper limit events are contained in table A.5b in the appendix.
Unlike our analysis for the effect of auction length within a given security, we continue to observe a
consistently statistically significant effect for suspensions in stocks that have hit upper price limits.
Interestingly, for the change in realized variances following an upper limit event, we see a significant
increase both within the event sector and other stocks outside the event sector, indicating that the
magnitude of market microstructure noise increases for all stocks following a trading suspension.
We also observe a significant increase in both the volume and number of trades at the 5% level
within the event sector, and a significant effect at the 5% level for number of trades outside the
event sector. These test results are consistent across both the OLS and two-way random effects
specifications. For the tests of equal means and medians, the only rejections at the 5% level are for
the median of the changes in volume and number of trades.

These results again indicate the highly asymmetric effect of circuit breakers on trading behav-
ior. In falling markets, we see a significant decrease in the magnitude of market microstructure
noise and price inefficiencies in related securities when the most volatile security is removed from
continuous trading. Conversely, when stock prices are rising and hence asset values are appreciat-
ing, we observe significant trading spillovers (volume and number of trades rising) and an increase
in market microstructure noise for all securities after a suspension. One potential explanation for
this observation is that events at the lower limit are associated with higher market wide volatility
which can in turn lead to a rapid deterioration of market wide liquidity due to interactions between
volatility, margins and funding conditions for market makers (as per Brunnermeier and Pedersen
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(2009)). Removing the volatile stock helps to reduce the likelihood of a flip from normal trading to
the “bad” equilibrium of tight funding and poor liquidity. Events at the upper limit are less likely be
contemporaneous with high volatility and so the benefit of the preventative role of circuit breakers
is dominated by other, negative effects. Other explanations may lie in the differing compositions of
market participants with negative exposures to price appreciation and price depreciation and other
asymmetries in the effectiveness of circuit breakers when market-wide volatility is high (perhaps
due to changes in the relative probability of type-I and type-II errors). In any case, we believe that
considering the results from upper and lower limit events together, circuit breakers are playing an
important role in preventing the short-term transmission of deteriorating prices and market quality
across securities in falling markets.

7 Conclusion

This paper uses proprietary data to investigate the efficacy of circuit breakers on the London Stock
Exchange during July and August 2011. We answer two related questions. Firstly, using exogenous
variation in the length of the uncrossing time that follows all suspensions of continuous trading on
the LSE, we estimate the marginal effect of auction length on subsequent market quality for all LSE
securities that trade 100 times per day or more on average during our sample period. We allow for
these effects to differ between circuit breakers triggered by breaches of upper and lower static price
limits respectively. Our results show that, for lower limit events, market quality is significantly
poorer after longer suspensions (a greater degree of price inefficiency and market microstructure
noise for a given volume and frequency of trading) but we find no significant effects for upper limit
events. Furthermore, quantile regressions indicate that the length of the suspension after lower
limit events affects the upper tail of the subsequent distribution of market microstructure noise.

The second empirical question addressed is the effect of a suspension in one security on subse-
quent market quality in other securities, both in the same industrial sector and in other sectors.
To do so we compare the effect of trading suspensions in FTSE-100 stocks on subsequent market
quality for other stocks with the effect of near-limit events, whereby a stock trades to within 1%
of a limit price but ultimately does not breach this level. Again we allow parameter estimates to
vary across breaches of upper and lower static limit prices, and our regression design allows for
both stock and event unobserved random effects. We find that trading halts in FTSE-100 stocks
due to breaches of lower static limit prices leads to a significant improvement in market quality
(i.e. less market microstructure noise and price inefficiency) in other stocks in the same industrial
sector without broadly significant increases in trading intensity. We interpret this as evidence that
trading suspensions help to ameliorate the spread of market microstructure effects across stocks
in falling markets and argue that circuit breakers play an important role in preventing contagion
of poor market quality on the LSE in such conditions. Conversely, breaches of the upper limit
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lead to large trading spillovers (increased trading intensity) and an increase in microstructure noise
for other securities. The results for upper limit events are arguably of lesser concern for policy
makers concerned with preventing contagion due to the observed empirical asymmetric correlations
in equity markets whereby cross-asset return correlations tend to be higher in bear markets (e.g.
Longin and Solnik (2001) and Cappiello et al. (2006)).

We also provide evidence that a common identification technique used in some papers in the
literature may suffer from an important source of bias. Specifically we argue that censoring on the
outcome variable (the price path) implies that inference based on comparing halts with near-halts
within a particular security can be biased. To demonstrate the salience of this issue, we perform
regressions of market quality on whether or not a FTSE-100 stock breaches an arbitrary limit of
±7% compared with those with a maximum absolute daily return in excess of 6% but not greater
than 7%. These show that the arbitrary barrier is significant at the 5% level for majority of the
regressions at the lower limit as well as some of the regressions at the upper limit.

With better data it would be possible to extend the analysis presented in this paper in a number
of directions. Firstly, without access to information detailing the state of the order book over the
trading day, we are unable to perform inference regarding the effect of trading suspensions on
variables such as effective and realized spreads and average trading costs. Further as we are unable
to identify the counterparties to each trade, we cannot make any conclusions regarding the trading
patterns of different classes of investors (such as high frequency traders or investment banks) around
trading suspensions. We also would like to understand how trading may or may not migrate to
alternative venues such as multilateral trading facilities (MTFs) during a suspension in the primary
market as many important MTFs do not have pre-specified systems in place in order to coordinate
with the primary exchange during a suspension (Gomber et al., 2013).
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Appendix

Parameter estimates using an artificial barrier

To demonstrate the saliency of the censoring issue discussed in section 4.2.1, we create an artificial
static price limit for all FTSE-100 stocks in our sample at 7%. The true static price limit for these
stocks is ±10%. We then identify all stocks with absolute returns on open greater than 7%, and
all stocks that have a maximum absolute return on open of greater than 6% but less than 7%. For
each stock in either classification we calculate the change in realized variance, total volume traded
and the total number of transactions over both 5 and 30 minutes and regress these measures on a
set of controlling variables. The regression model is

yi,post = x′i,preβ + γhi + εi,pst (.1)

where yi,post is either the volume or number of trades after the artificial event or the change in
realized variance from before and after the artificial event, xi,pre is the set of controlling variables
(volume, number of trades and realized variance over the fixed interval prior to the event, time of
day and a constant term), hi is a binary variable taking the value 1 if the event was a breach of
the artificial limit and 0 if the event was in the control group and εi,pst is an error term assumed to
satisfy E [εi,pst|xi,pre, hi] = 0. Consistent with other regression analysis in this paper, the sample is
split into upper and lower events (i.e. those that occur at +7% and those at −7%) and all variables
are Winsorized at the 1% level.

We are interested in the significance of the parameter γ on the dummy variable. Since in this
case there is no interruption to the trading process at the assigning price level, the significance of
this parameter indicates the importance of the censoring of the dependent variable when comparing
the treated and the control groups. Inference that ignores this censoring issue and instead assigns
all significance to the effect of the circuit breaker can be biased. In this case, the bias can be seen
to be significant as for the regressions at the lower limit, the “halt” dummy is significant at the
5% level for all three dependent variables at both the 5 and 30 minute intervals, excluding volume
at the 30 minute interval, for which the parameter is significant at the 10% level (see table A.1a).
Volatility, volume and number of trades are all significantly higher in the “halt” group compared
with the “near-halt” group. For the events at the upper limit, the dummy is significant at the 5%
level for realized volatility and number of trades during the 5 minute interval (see table A.1b).
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