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Abstract

This paper studies the problem of specification testing in partially identified models defined by a

finite number of moment equalities and inequalities (i.e. (in)equalities). Under the null hypothesis, there

is at least one parameter value that simultaneously satisfies all of the moment (in)equalities whereas

under the alternative hypothesis there is no such parameter value. This problem has not been directly

addressed in the literature (except in particular cases), although several papers have suggested a test

based on checking whether confidence sets for the parameters of interest are empty or not, referred to as

Test BP.

We propose two new specification tests, denoted Tests RS and RC, that achieve uniform asymptotic

size control and dominate Test BP in terms of power in any finite sample and in the asymptotic limit.

Test RC is particularly convenient to implement because it requires little additional work beyond the

confidence set construction. Test RS requires a separate procedure to compute, but has the best power.

The separate procedure is computationally easier than confidence set construction in typical cases.
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1 Introduction

This paper studies the problem of specification testing in partially identified models defined by a finite

number of moment equalities and inequalities (henceforth, referred to as (in)equalities). The model can be

written as follows. For a parameter vector (θ, F ), where θ ∈ Θ is a finite dimensional parameter of interest

and F denotes the distribution of the observed data, the model states that

EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p ,

EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k , (1.1)

where {Wi}ni=1 is an i.i.d. sequence of random variables with distribution F and m : Rd×Θ→ Rk is a known

measurable function. This model is partially identified because the sampling process and the maintained

assumptions (that is, Eq. (1.1) together with regularity conditions) restrict the value of the parameter of

interest θ to a set, called the identified set, which is smaller than Θ but potentially larger than a single point.

The model is said to be correctly specified (or statistically adequate) when the moment (in)equalities

hold for at least one parameter value, i.e., when the identified set is non-empty.1 A specification test takes

correct specification of the model as the null hypothesis and rejects if the data seem to be inconsistent

with it. Specification tests for partially identified models have been studied by a small number of authors

(reviewed below), but the only existent test applicable to the general specification of Eq. (1.1) is the one

based on checking whether a confidence set for θ is empty or not. We refer to this procedure as “Test BP”,

to emphasize that it is a by-product of confidence sets for θ, and describe it formally in the next section.

In this paper, we propose two new specification tests for the model above and show that they have

the following properties. First, our tests achieve uniform size control, just like Test BP. Second, our tests

dominate Test BP in terms of power in any finite sample and in the asymptotic limit. Specifically, our tests

have more or equal power than Test BP in all finite samples, and there are sequences of local alternative

hypotheses for which our tests have strictly higher asymptotic power.

Both of our tests use the same “infimum” test statistic infθ∈ΘQn(θ), where Qn(θ) is the criterion function

typically used to construct confidence sets for θ, much in the spirit of the popular J-test in (point-identified)

GMM models (see Remark 4.1). The difference between them lies in the critical value used to implement the

test. Computing one of these critical values requires little additional work beyond the computation involved

in the confidence set construction, just like in Test BP. In this sense, this test attains better power at almost

no additional cost. Thus, we always recommend that it is implemented. On the other hand, our second test

has even better power, but it requires a separate resampling procedure to implement. For this reason, we

recommend its use when one has serious interest in the statistical adequacy of the model.

From a methodological point of view, there are two aspects of our paper worth highlighting. First, we

derive the limiting distribution of the “infimum” test statistic under drifting sequences of data distributions

and provide two methods to approximate its quantiles. To the best of our knowledge, we are the first ones

to obtain these kinds of results in partially identified moment (in)equality models. These methodological

contributions are relevant in problems that go well beyond specification testing. For example, Bugni et al.

(2014) show that hypothesis tests based on the “infimum” test statistic can be adapted to address a large class

of interesting new problems, which includes inference on a particular coordinate of a multivariate parameter

θ. Second, the asymptotic framework we use is one where the tuning parameter κn that determines if a

1The concept of statistical adequacy was introduced by Koopmans (1937) and referred to as the Fisher’s axiom of correct
specification. The discussion of the importance of a correct specification for inference purposes dates back to Haavelmo (1944).
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moment inequality is binding, diverges to infinity at an appropriate rate, c.f. Andrews and Soares (2010).

In this framework, the arguably best possible implementation of Test BP is the one we use, see Definition

2.4. Recent contributions to the literature have used an alternative asymptotic framework where this tuning

parameter κn converges to a constant κ <∞ that affects the limiting distribution, see Andrews and Barwick

(2012), Romano et al. (2013), and McCloskey (2014). One could potentially use these methods to define

another version of Test BP, and then study the behavior of our tests using fixed-κ asymptotics. We do not

pursue this strategy as it involves technical tools that are well beyond those developed here.2

The motivation behind the interest in misspecified models stems from the view that most econometric

models are only approximations to the underlying phenomenon of interest. This is also the case for par-

tially identified models, where strong and usually unrealistic assumptions are replaced by weaker and more

credible ones (see, e.g., Manski, 1989, 2003). In other words, the partial identification approach to inference

allows the researcher to conduct inference on the parameter of interest without imposing assumptions on

certain fundamental aspects of the model, typically related to the behavior of economic agents. Still, for

computational or analytical convenience, the researcher has to impose certain other assumptions, that are

typically related to functional forms or distributional assumptions.3 If these assumptions are not supported

by the data, and so the model is misspecified, the resulting statistical inferences are usually invalid (see, e.g.,

Ponomareva and Tamer, 2011; Bugni, Canay, and Guggenberger, 2012).

Specification tests for partially identified models have been studied in Guggenberger, Hahn, and Kim

(2008), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), and

Santos (2012). Guggenberger et al. (2008) propose to transform a linear moment (in)equality model into a

dual form that does not involve parameters and, in this way, eliminate the partial-identification problem.

Innovative as it is, their approach only applies to linear models and is not practical when the dimension of

the parameter is large because the dimension of the dual form grows exponentially with the dimension of the

parameters. Santos (2012) defines specification tests in a partially identified non-parametric instrumental

variable model and, thus, his results are not directly applicable to the model in Eq. (1.1). To the best of

our knowledge, the only valid specification test for the model in Eq. (1.1) that has been described in the

literature is Test BP. This specification test has been proposed by Romano and Shaikh (2008, Remark 3.7),

Andrews and Guggenberger (2009, Section 7), and Andrews and Soares (2010, Section 5).4

It is worth mentioning that the specification tests we propose in this paper are a type of omnibus tests, in

the sense that the specific structure of certain nonparametric alternatives is unknown. However, a partially

identified model is typically the result of removing undesirable restrictions in a certain point identified

model. As a consequence, refuting the partially identified model leaves the researcher with a reduced set

of assumptions that could potentially be wrong. In addition, in some cases testing the specification of a

partially identified model can be analogous to directly testing an interesting economic behavior. For example,

Kitamura and Stoye (2012) recently proposed a specification test for the Axiom of Revealed Stochastic

Preference that shares similarities to our specification tests. In their case, rejecting the specification of

the model through their non-parametric test directly means rejection of the Axiom of Revealed Stochastic

Preferences. We note, however, that there are substantial differences between our approach and that in

Kitamura and Stoye (2012) in terms of the nature of the model, the construction of the test statistic, and

the range of applications in which each of these tests can be applied.

The rest of the paper is organized as follows. Section 2 introduces the basic notation we use in our formal

2For example, all tests would suffer from asymptotic size distortion and size correction would be needed.
3See Manski (2003) and Tamer (2003) for a discussion on the role of different assumptions and partial identification.
4It is important to clarify that Test BP was conceived by papers whose main objective was the construction of confidence

sets and not the design of a specification test. In addition, Test BP has some robustness properties, see Remark 6.7.
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analysis and describes the aforementioned Test BP. The tests proposed in this paper compare a test statistic

with a critical value. Section 3 introduces our test statistic. The description of our tests is then completed

by introducing appropriate critical values that are presented in the succeeding sections. Section 4 describes a

critical value based on the asymptotic approximation or bootstrap approximation of the limiting distribution

of the test statistic. We call this test the re-sampling test or “Test RS”. Section 5 describes a critical value

that is based on recycling critical values that have already been considered in the literature. We call this

test the re-cycling test or “Test RC”. Section 6 compares the asymptotic size and power of the new tests we

propose and the existing test, Test BP. Finally, Section 7 presents evidence from Monte Carlo simulations

and Section 8 concludes. The Appendix includes all of the proofs of the paper and several intermediate

results. Finally, throughout the paper we divide the assumptions in two groups: maintained assumptions

indexed by the letter M (to denote the assumptions that have been already assumed by the literature) and

regular assumptions indexed by the letter A (to denote the assumptions that introduced by this paper).

2 Framework

The objective of our inferential procedure is to test whether the moment conditions in Eq. (1.1) are valid or

not for at least one parameter value, while maintaining a set of regularity conditions that we use to derive

uniform asymptotic statements. We assume throughout the paper that F , the distribution of the observed

data, belongs to a baseline probability space that we define below. Given this baseline space, we define an

appropriate subset where the null hypothesis holds, denoted null probability space. These two spaces are

the main pieces in the description of our testing problem. We then introduce more technical assumptions in

Section 3 before presenting the main results. The next three definitions provide the basic framework of our

problem.

Definition 2.1 (Baseline Probability Space). The baseline space of probability distributions, denoted by

P ≡ P(a,M,Ψ), is the set of distributions F such that for some θ ∈ Θ, (θ, F ) satisfies:

(i) {Wi}ni=1 are i.i.d. under F ,

(ii) σ2
F,j(θ) = V arF (mj(Wi, θ)) ∈ (0,∞), for j = 1, . . . , k,

(iii) CorrF (m(Wi, θ)) ∈ Ψ,

(iv) EF [|mj(Wi, θ)/σF,j(θ)|2+a] ≤M ,

where Ψ is a specified closed set of k × k correlation matrices5, and M and a are fixed positive constants.

Definition 2.2 (Null Probability Space). The null space of probability measures, denoted by P0 ≡ P0(a,M,Ψ),

is the set of distributions F such that for some θ ∈ Θ, (θ, F ) satisfies:

• Conditions (i)-(iv) in Definition 2.1,

(v) EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p,

(vi) EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k,

where Ψ, M , and a are as in Definition 2.1.

5See Andrews and Soares (2010) or Bugni et al. (2012) for a description of the parameter space Ψ.
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Definition 2.3 (Identified Set). For any distribution F ∈ P, the corresponding identified set ΘI(F ) is the

set of parameters θ ∈ Θ such that (θ, F ) satisfies the moment (in)equalities in Eq. (1.1) or, equivalently,

conditions (v)-(vi) in Definition 2.2.

We can now use these definitions to describe the null and alternative hypothesis of our test in a concise

way. Under the maintained hypothesis that F ∈ P, our objective is to conduct the following hypothesis test,

H0 : F ∈ P0 vs. H1 : F 6∈ P0 . (2.1)

By Definitions 2.2 and 2.3, it follows that F ∈ P0 if and only if ΘI(F ) 6= ∅, and thus the hypotheses in Eq.

(2.1) can be alternatively expressed as

H0 : ΘI(F ) 6= ∅ vs. H1 : ΘI(F ) = ∅ , (2.2)

which is a convenient representation to characterize the existing test, Test BP, in the next subsection.

To test the hypothesis in Eq. (2.1), we use φn to denote a non-randomized test that maps data into a

binary decision, where φn = 1 (φn = 0) denotes rejection (non-rejection) of the null hypothesis. The exact

size of the test φn is given by supF∈P0
EF [φn], while the asymptotic size is

AsySz ≡ lim sup
n→∞

sup
F∈P0

EF [φn] . (2.3)

Given a significance level α ∈ (0, 1), the test is said to be asymptotically level α if AsySz ≤ α and is said

to be asymptotically size α or asymptotically size correct if AsySz = α. In order to adequately capture the

finite sample behavior, the recent literature on inference in partially identified models has emphasized the

importance that hypothesis tests satisfy AsySz ≤ α rather than pointwise requirement

lim sup
n→∞

EF [φn] ≤ α, ∀F ∈ P0 .

See, e.g., Imbens and Manski (2004), Romano and Shaikh (2008), Andrews and Guggenberger (2009), An-

drews and Soares (2010), and Mikusheva (2010).

2.1 The existent specification test

This section formally introduces Test BP, which is currently used by the literature as the specification test

in partially identified models. As we have already explained, this test arises as a by-product of confidence

sets for partially identified parameters and has been described in Romano and Shaikh (2008, Remark 3.7),

Andrews and Guggenberger (2009, Section 7), and Andrews and Soares (2010, Section 5). Before describing

this test, we need additional notation.

All the specification tests that this paper considers build upon the criterion function approach developed

by Chernozhukov, Hong, and Tamer (2007). In this approach, we define a non-negative function of the

parameter space, QF : Θ→ R+, referred to as population criterion function, with the property that

QF (θ) = 0 ⇐⇒ θ ∈ ΘI(F ) . (2.4)

As the notation suggests, QF (θ) depends on the unknown probability distribution F ∈ P and, thus, it is

unknown. We therefore use a sample criterion function, denoted by Qn, that approximates the population
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criterion function and can be used for inference. In the context of the moment (in)equality model in Eq.

(1.1), it is convenient to consider criterion functions that are specified as follows (see, e.g., Andrews and

Guggenberger, 2009; Andrews and Soares, 2010; Bugni et al., 2012),

QF (θ) = S(EF [m(W, θ)],ΣF (θ)) , (2.5)

where ΣF (θ) ≡ V arF (m(W, θ)) and S : Rp[+∞] × Rk−p × Ψ → R+ is the test function specified by the

econometrician that needs to satisfy several regularity assumptions.6 The (properly scaled) sample analogue

criterion function is given by

Qn(θ) = S(
√
nm̄n(θ), Σ̂n(θ)) , (2.6)

where m̄n(θ) ≡ (m̄n,1(θ), . . . , m̄n,k(θ)), m̄n,j(θ) ≡ n−1
∑n
i=1mj(Wi, θ) for j = 1, . . . , k, and Σ̂n(θ) is a

consistent estimator of ΣF (θ). A natural choice for this estimator is

Σ̂n(θ) = n−1
n∑
i=1

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))′ . (2.7)

Using this notation, we can now define a generic 1− α confidence set for θ as

CSn(1− α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1− α)} , (2.8)

where ĉn(θ, 1− α) is such that CSn(1− α) has the correct asymptotic coverage, i.e.,

lim inf
n→∞

inf
(θ,F )∈F0

PF (θ ∈ CSn(1− α)) ≥ 1− α , (2.9)

where F0 denotes the set of parameters (θ, F ) that satisfy the conditions in Definition 2.2.

Confidence sets that have the structure in Eq. (2.8) and satisfy Eq. (2.9) have been proposed by Romano

and Shaikh (2008); Andrews and Guggenberger (2009); Andrews and Soares (2010); Canay (2010); and

Bugni (2010), among others. In particular, Andrews and Soares (2010) consider confidence sets using plug-

in asymptotics, subsampling, or generalized moment selection (GMS), and show that all of these methods

satisfy Eq. (2.9). We are now ready to define Test BP.

Definition 2.4 (Test BP). Let CSn(1−α) be a confidence set for θ that satisfies Eq. (2.9). The specification

Test BP rejects the null hypothesis in Eq. (2.1) according to the following rejection rule

φBPn ≡ 1{CSn(1− α) = ∅} . (2.10)

Given Eq. (2.9), it follows that Test BP is asymptotically level α (see Theorem C.2 in the Appendix).

However, as pointed out in Andrews and Guggenberger (2009) and Andrews and Soares (2010), this test is

admittedly conservative, i.e., its asymptotic size may be strictly smaller than α. Although it has not been

formally established in the literature, one might also suspect that this test suffers from low (asymptotic)

power. Our formal analysis shows that Test BP can have strictly less power than the new specification tests

developed in this paper.

Definition 2.4 shows that Test BP depends on the confidence set CSn(1 − α). It follows that Test BP

inherits its size and power properties from the properties of CSn(1−α), and these properties in turn depend

6See Assumptions M.4-M.8 in the Appendix for these regularity conditions. Two popular functions that satisfy these
conditions are the Modified Methods of Moments (MMM) and the Quasi-Likelihood ratio (QLR), see Andrews and Guggenberger
(2009).
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on the particular choice of test statistic and critical value used in its construction. All the tests we consider in

this paper are functions of the sample criterion function defined in Eq. (2.6) and therefore their relative power

properties do not depend on the choice of the particular function S(·). However, the relative performance

of Test BP with respect to the two tests we propose in this paper does depend on the choice of critical

value used in the construction of CSn(1−α). Bugni (2010, 2014) shows that GMS tests have more accurate

asymptotic size than subsampling tests. Andrews and Soares (2010) show that GMS tests are more powerful

than Plug-in asymptotics or subsampling tests. This means that, asymptotically, Test BP implemented

with a GMS confidence set will be less conservative and more powerful than the analogous test implemented

with Plug-in asymptotics or subsampling. Since our objective is to propose new specification tests on the

grounds of better asymptotic size control and asymptotic power improvements, we adopt the GMS version

of the specification test in Definition 2.4 as the “benchmark version” of Test BP. This is summarized in the

following assumption, maintained throughout the paper.

Assumption M.1. Test BP is computed using the GMS approach in Andrews and Soares (2010). In other

words, φBPn in Eq. (2.10) is based on

CSn(1− α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1− α)} , (2.11)

where ĉn(θ, 1 − α) is the GMS critical value constructed using a function ϕ and a positive thresholding

sequence {κn}n≥1 satisfying κn →∞ and κn/
√
n→ 0.

We conclude this section by presenting a simple example that illustrates how the identified set can be

empty under misspecification. The example is also used in Section 7, as it captures the types of situations

where there are power gains of implementing the specification tests we propose.

Example 2.1 (Missing Data). The economic model states that the true parameters (θ, F ) satisfy

EF [Y |X = x] = H(x, θ) ∀x ∈ SX , (2.12)

where H is a known continuous function specified by the researcher and SX = {xl}dxl=1 is the (finite) support

of X. As there is missing data on Y , we let Z denote the binary variable that takes value of one if Y is

observed and zero if Y is missing. Conditional on X = x, Y has logical lower and upper bounds given by

YL(x) and YH(x), respectively. The observed data are {Wi}ni=1, where ∀i = 1, . . . , n, Wi = (YiZi, Zi, Xi).

The model in Eq. (2.12) therefore results in the following moment inequalities for l = 1, . . . , dx:

EF [ml,L(W, θ)] ≡ EF [(H(xl, θ)− Y Z − YL(xl)(1− Z))1{X = xl}] ≥ 0 ,

EF [ml,H(W, θ)] ≡ EF [(Y Z + YH(xl)(1− Z)−H(xl, θ))1{X = xl}] ≥ 0 . (2.13)

We now choose a simple parametrization that we can use in our Monte Carlo simulations. Suppose that

SX = {x1 = (1, 0, 0), x2 = (−1, 0, 1), x3 = (0, 1, 0)}, that Y represents a non-negative outcome variable

without an upper bound, i.e., YL(x) = 0 and YH(x) = ∞, that H is the linear model H(x, θ) = x′θ,

θ = (θ1, θ2, 1), and that there are missing data for all covariate values, i.e., P (Z = 1|X = xl) < 1 ∀l = 1, 2, 3.

In this context, Eq. (2.13) is equivalent to

EF [m1,L(W, θ)] ≡ EF [(θ1 − Y Z)1{X = x1}] ≥ 0 ,

EF [m2,L(W, θ)] ≡ EF [(1− θ1 − Y Z)1{X = x2}] ≥ 0 ,

EF [m3,L(W, θ)] ≡ EF [(θ2 − Y Z)1{X = x3}] ≥ 0 . (2.14)

6



It is straightforward to show that for any distribution F ∈ P, the identified set ΘI(F ) is given by

ΘI(F ) =

{
(θ1, θ2) ∈ Θ :

{
θ1 ∈ [EF [Y Z|X = x1], EF [1− Y Z|X = x2]],

θ2 ≥ EF [Y Z|X = x3]

}}
. (2.15)

It follows that this model is strictly partially identified (i.e. if ΘI(F ) is non-empty, it is not a singleton) and

it is correctly specified (i.e. ΘI(F ) is non-empty) if and only if EF [Y Z|X = x1] ≤ EF [1− Y Z|X = x2]. �

3 The new test statistic

The specification tests we present in this paper use the natural test statistic for specification testing, namely,

the infimum of the sample criterion function Qn(θ) defined in Eq. (2.6). The justification for this test statistic

follows immediately from the following two mild assumptions which we maintain throughout the paper.

Assumption M.2. Θ is a nonempty and compact subset of Rdθ (dθ <∞).

Assumption M.3. For any F ∈ P, QF is a lower semi-continuous function.

Under Assumptions M.2 and M.3, the population criterion function achieves a minimum value in Θ. This

minimum value is zero when the identified set is non-empty. More precisely, infθ∈ΘQF (θ) ≥ 0 and

inf
θ∈Θ

QF (θ) = 0 ⇐⇒ ΘI(F ) 6= ∅ . (3.1)

It then follows that the hypotheses in Eq. (2.1) can be re-written as

H0 : inf
θ∈Θ

QF (θ) = 0 vs. H1 : inf
θ∈Θ

QF (θ) > 0 . (3.2)

Based on this formulation of the problem, it is natural to suggest implementing the test using the infimum

of the sample analogue criterion function as a test statistic, i.e.,

Tn ≡ inf
θ∈Θ

Qn(θ) . (3.3)

In particular, the specification of the model should be rejected whenever the test statistic exceeds a certain

critical value. This leads to the following hypothesis testing procedure.

Definition 3.1 (New Specification Test). The new specification test rejects the null hypothesis in Eq. (2.1)

according to the following rejection rule

φn = 1 {Tn > ĉn(1− α)} , (3.4)

where Tn is as in Eq. (3.3) and ĉn(1 − α) is an approximation to the (1 − α)-quantile of the asymptotic

distribution of Tn.

In order to make the test in Definition 3.1 feasible, we need to specify the critical value ĉn(1− α). The

challenging part of our analysis is to propose a critical value in Eq. (3.4) that results in a test that: (a)

controls asymptotic size, (b) has superior power properties, and (c) is amenable to computation. We propose
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two critical values that result in two hypothesis tests that satisfy these requirements. The first critical value

is based on a approximation of the distribution of the test statistic under the null hypothesis using resampling

methods. This critical value gives rise to “Test RS”. The second critical value is based on “recycling” GMS

critical values described in the previous section. This critical value gives rise to “Test RC”. We describe each

of these tests in the next two sections.

Before introducing the new tests, it is convenient to first derive the asymptotic distribution of infθ∈ΘQn(θ)

along (relevant) sequences of data generating processes {Fn}n≥1.

Assumption A.1. For every F ∈ P and j = 1, . . . , k, {σ−1
F,j(θ)mj(·, θ) : W → R} is a measurable class of

functions indexed by θ ∈ Θ.

Assumption A.2. The empirical process vn(·) with j-component

vn,j(θ) = n−1/2σ−1
F,j(θ)

n∑
i=1

(mj(Wi, θ)− m̄n,j(θ)), j = 1, . . . , k , (3.5)

is asymptotically ρF -equicontinuous uniformly in F ∈ P in the sense of van der Vaart and Wellner (1996,

page 169). This is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
F∈P

P ∗F

(
sup

ρF (θ,θ′)<δ

||vn(θ)− vn(θ′)|| > ε

)
= 0 ,

where P ∗F denotes outer probability and ρF denotes the coordinate-wise version of the intrinsic variance

semimetric (see Eq. (A-2) in Appendix A for details).

Assumption A.3. For some constant a > 0 and all j = 1, . . . , k,

sup
F∈P

EF

[
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣2+a
]
<∞ .

Assumption A.4. For any F ∈ P and θ, θ′ ∈ Θ, let ΩF (θ, θ′) be a k × k correlation matrix with typical

[j1, j2]-component

ΩF (θ, θ′)[j1,j2] ≡ EF
[(

mj1 (W,θ)−EF [mj1 (W,θ)]

σF,j1 (θ)

)(
mj2 (W,θ′)−EF [mj2 (W,θ′)]

σF,j2 (θ′)

)]
.

The matrix ΩF satisfies

lim
δ↓0

sup
‖(θ1,θ′1)−(θ2,θ′2)‖<δ

sup
F∈P
‖ΩF (θ1, θ

′
1)− ΩF (θ2, θ

′
2)‖ = 0 .

Assumption A.1 is a mild measurability condition. In fact, the kind of uniform laws large numbers we need

for our analysis would not hold without this basic requirement (see van der Vaart and Wellner, 1996, page

110). Assumption A.2 is a uniform stochastic equicontinuity assumption which, in combination with the other

three assumptions, is used to show that, for all j = 1, . . . , k, the class of functions {σ−1
F,j(θ)mj(·, θ) :W → R}

is Donsker and pre-Gaussian uniformly in F ∈ P (see Lemma D.2 and van der Vaart and Wellner (1996,
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Theorem 2.8.2)). For interpretable sufficient conditions for uniform stochastic equicontinuity, consider the

uniform version of Examples 19.6-19.11 in van der Vaart (1998) (In particular, Example 19.7 applies to

Example 2.1). Assumption A.3 provides a uniform (in F and θ) envelope function that satisfies a uniform

integrability condition. This is essential to obtain uniform versions of the laws of large numbers and central

limit theorems. Finally, Assumption A.4 requires the correlation matrices to be uniformly equicontinuous,

which is used to show pre-Gaussianity. This condition implies that the Euclidean metric for θ is uniformly

stronger than the variance semimetric (see van der Vaart and Wellner, 1996, problem 3, page 93).

The next theorem derives the limit distribution of our test statistic under the above assumptions. In

the theorem, we let C(Θ2) denote the space of continuous functions that map Θ2 to Ψ, and S(Θ × Rk[±∞])

denote the space of compact subsets of the metric space (Θ × Rk[±∞], d(·)), where d(·) is the metric defined

in Appendix A, Eq. (A-1). We use the symbols
u→ and

H→ to denote uniform convergence and convergence in

Hausdorff distance (see Appendix A). Finally, we let DF (θ) ≡ Diag(ΣF (θ)), and define for any n ∈ N and

F ∈ P the following subset of Θ× Rk,

Λn,F ≡
{

(θ, `) ∈ Θ× Rk : ` =
√
nD
−1/2
F (θ)EF [m(W, θ)]

}
. (3.6)

Theorem 3.1. Let Assumptions A.1-A.4 hold. Let {Fn}n≥1 be a (sub)sequence of distributions such that

for some (Ω,Λ) ∈ C(Θ2) × S(Θ × Rk[±∞]), (i) Fn ∈ P0 for all n ∈ N, (ii) ΩFn(θ, θ′)
u→ Ω(θ, θ′), and (iii)

Λn,Fn
H→ Λ. Then, along the (sub)sequence {Fn}n≥1

Tn
d→ J(Λ,Ω) ≡ inf

(θ,`)∈Λ
S(vΩ(θ) + `,Ω(θ, θ)), as n→∞ , (3.7)

where vΩ : Θ→ Rk is a Rk-valued tight Gaussian process with covariance (correlation) kernel Ω ∈ C(Θ2).

Theorem 3.1 gives the asymptotic distribution of our test statistic under a (sub)sequence of distributions

that satisfies certain properties. It turns out that these types of (sub)sequences are the relevant ones to

determine the asymptotic size of our tests (for additional details, see Appendix C).

Having an expression for J(Λ,Ω), our goal is to construct feasible critical values that asymptotically

approximate the 1 − α quantile of this distribution, denoted by c(1−α)(Λ,Ω). This requires approximating

the limiting set Λ and the limiting correlation function Ω. The limiting correlation function can be estimated

using standard methods. On the other hand, the approximation of Λ is non-standard and presents novel

difficulties. In the next sections we propose two approaches to circumvent these challenges.

4 Test RS: Re-Sampling

The critical value of Test RS is based on directly approximating the quantiles of J(Λ,Ω). The main challenge

in approximating these quantiles lies in the approximation of the set Λ which, by definition, is composed of

the cluster points of the sequences of the form

{ ( θn ,
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] ) }n≥1 . (4.1)

Notice that the second component in Eq. (4.1) represents the slackness parameter for the moment (in)equalities.

Approximating the limiting behavior of these sequences presents two main difficulties. The first one is

a typical problem in this literature: approximating the slackness parameter for the moment inequalities.
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This problem has been described by Andrews and Soares (2010), which argues that the limit of the slack-

ness parameter cannot be uniformly consistently estimated at a suitable rate of convergence. Their paper

overcomes this problem by proposing the GMS method. The idea of this method is to take advantage of

the monotonicity of the test function and replacing the slackness parameter with a function of the following

sample measure of slackness

ξn,j(θn) = κ−1
n

√
nσ̂−1

n,j(θn)m̄n,j(θn), for j = 1, . . . , p , (4.2)

where {κn}n≥1 is a thresholding sequence that satisfies κn →∞ and κn/
√
n→ 0.

In their GMS approximation, Andrews and Soares (2010) consider sequences of {(θn, Fn)}n≥1 that are (a)

deterministic and (b) such that θn ∈ ΘI(Fn) for all n ∈ N. While these are sequences are suitable for their

GMS approximation, they prove to be insufficient for our analysis. To be more precise, the second difficulty

in approximating the limit of the sequences in Eq. (4.1) is that, by the nature of our test statistic, we are

specifically interested in sequences for which θn is the infimum of Qn(θ) over Θ. This requires us to consider

sequences of {(θn, Fn)}n≥1 that are (a) random and (b) such that θn ∈ Θ/ΘI(Fn) for some n ∈ N. This

second difficulty is completely novel to this paper and cannot be addressed by the approximation methods

currently available in the literature.

Despite the aforementioned difficulties, we show that one can approximate the quantiles of J(Ω,Λ) much

in the spirit of the resampling GMS procedure in Andrews and Soares (2010), provided that the relevant

values of θ are restricted to lie in a particular expansion of the identified set ΘI(F ). The role of the restriction

is to guarantee that the resampling procedure does not consider excessive violations of the sample moment

(in)equalities. We achieve this goal by restricting θ to be in the argmin set of Qn(θ) and then show that

those θ also belong to the aforementioned expansion with probability approaching one.

Definition 4.1. For Tn as in Eq. (3.3), the approximation to the identified set is given by

Θ̂I ≡ {θ ∈ Θ : Qn(θ) ≤ Tn} . (4.3)

By definition, Θ̂I is the argmin set of Qn(θ), which is non-empty. As in other M-estimation problems,

it is not necessary to impose that Θ̂I is the set of exact minimizers of Qn(θ). This set could be replaced

with an “approximate” set of minimizers, i.e., Θ̂I ≡ {θ ∈ Θ : Qn(θ) ≤ Tn + op(1)}, without affecting our

results. In addition, it is important to note that Θ̂I does not coincide with the consistent estimator of ΘI(F )

proposed in Chernozhukov et al. (2007, see p. 1247 and Theorem 3.1). In fact, Θ̂I is not generally consistent

for ΘI(F ) in the Hausdorff distance, which is not a problem in our setting. All we need is for Θ̂I to lie in

the expansion of ΘI(F ) defined precisely in Definition 4.3 below.

Now we can define the resampling test statistic that we use to construct an approximation to c(1−α)(Λ,Ω).

In order to do this, let Ω̂n(θ) ≡ D̂−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ), where D̂n(θ) ≡ Diag(Σ̂n(θ)) and Σ̂n(θ) is as in Eq.

(2.7). In addition, let {v̂∗n(θ) : θ ∈ Θ} be a stochastic process indexed by θ, whose conditional distribution

given the original sample is known and can be simulated. For example, this can be done via a bootstrap

approximation, in which case

v̂∗n(θ) =
1√
n

n∑
i=1

D̂−1/2
n (θ)(m(W ∗i , θ)− m̄n(θ)) , (4.4)

where {W ∗i }ni=1 is an i.i.d. sample drawn with replacement from original sample {Wi}ni=1, or via an asymptotic
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approximation, in which case

v̂∗n(θ) =
1√
n

n∑
i=1

D̂−1/2
n (θ)(m(Wi, θ)− m̄n(θ))ζi , (4.5)

and {ζi}ni=1 is an i.i.d. sample satisfying ζi ∼ N(0, 1). Now consider the following test statistic

T ∗n ≡ inf
θ∈Θ̂I

S(v̂∗n(θ) + ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)) , (4.6)

and ξn(θ) = {ξn,j(θ)}pj=1 with ξn,j(θ) is as in Eq. (4.2), and ϕ = (ϕ1, . . . , ϕp,0k−p)
′ ∈ Rk[+∞] is the function

in Assumption M.1 that is assumed to satisfy the assumptions in Andrews and Soares (2010). Examples of ϕ

include ϕj(ξ,Ω) =∞1{ξj > 1} (with the convention ∞0 = 0), ϕj(ξ,Ω) = max{ξj , 0}, and ϕj(ξ,Ω) = ξj for

j = 1, . . . , p (see Andrews and Soares, 2010, for other examples). Conditional on the sample, the distribution

of T ∗n is known and its quantiles can be approximated by Monte Carlo simulation. This leads us to Test RS.

Definition 4.2 (Test RS). The specification Test RS rejects the null hypothesis in Eq. (2.1) according to

the following rejection rule

φRSn ≡ 1
{
Tn > ĉRSn (1− α)

}
, (4.7)

where Tn is as in Eq. (3.3) and ĉRSn (1− α) is a resampling approximation to the (1− α)-quantile of T ∗n .

Remark 4.1. In the special case of point identified moment equality models, Test RS reduces to a standard

J-test. In particular, if S(·) is the QLR test statistic it follows that Tn = infθ∈Θ nm̄n(θ)′Σ̂−1
n (θ)m̄n(θ), so

that Test RS is a J-test implemented with Continuously Updating GMM and a bootstrapped critical value.

The following result shows that the test proposed in Definition 4.2 is asymptotically level correct.

Theorem 4.1. Let Assumptions A.1-A.7 hold. Then, for any α ∈ (0, 1),

lim sup
n→∞

sup
F∈P0

EF [φRSn ] ≤ α . (4.8)

Remark 4.2. Theorem 4.1 requires Assumption A.6 which is a high level Assumption. In Lemma D.10

we show that Assumption A.8 is sufficient for Assumption A.6. Assumption A.8(a) states that QF (θ) can

be bounded below in a neighborhood of the identified set ΘI(F ) and so it corresponds to the polynomial

minorant condition in Chernozhukov et al. (2007, Eqs. (4.1) and (4.5)). The convexity in Assumption A.8(b)

and the equicontinuity in Assumption A.8(c) are both used exclusively when applying the intermediate value

theorem in the proof of Lemma D.10. Assumption A.8 is certainly easier to interpret than Assumption A.6,

but it is mildly stronger.

In order to provide intuition for Theorem 4.1, it is convenient to re-write the test statistic T ∗n in a way

that facilitates comparisons with the set Λn,F defined in Eq. (3.6). This can be done by noting that

T ∗n = inf
(θ,`)∈Λ̂∗n

S(v̂∗n(θ) + `, Ω̂n(θ)) where Λ̂∗n =
{

(θ, `) : θ ∈ Θ̂I , ` = ϕ(ξn(θ), Ω̂n(θ))
}
. (4.9)

Test RS therefore consists in replacing the set Λ with the approximation Λ̂∗n, which is (generally) not

consistent for Λ. The important aspect here is that Λ̂∗n restricts θ ∈ Θ̂I as opposed to θ ∈ Θ in Λn,F .

Since ϕj(·) ≥ 0 for j = 1, . . . , p and ϕj(·) = 0 for j = p + 1, . . . , k, using such random set in the definition

of T ∗n guarantees that the (in)equality restrictions are not violated by much when evaluated at the θ that
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approximates the infimum in Eq. (4.6). This makes the function ϕ(·) a valid replacement for ` and plays an

important role in establishing the consistency in level of our test. In fact, if we were to define the set Λ̂∗n with

Θ instead of Θ̂I , we would not obtain a test that controls asymptotic size as in Theorem 4.1 for functions ϕ

satisfying Assumption A.5. In other words, using a similar statistic to T ∗n but with an infimum over Θ (as

it is the case for the original test statistic) would not result in a valid asymptotic approximation.7

The result in Theorem 4.1 follows from arguments that use the following expansion of ΘI(F ).

Definition 4.3. Let ηn ≡ lnκn and let Θηn
I (F ) be defined as

Θηn
I (F ) ≡ {θ ∈ Θ : S(

√
nEF [m(W, θ)],ΣF (θ)) ≤ ηn} .

Note that Θηn
I (F ) is a non-random expansion of ΘI(F ). Lemma D.13 in the appendix shows that,

asymptotically, our approximation of the identified set is included in this expansion uniformly over P0, i.e.,

lim
n→∞

inf
F∈P0

PF (Θ̂I ⊆ Θηn
I (F )) = 1 . (4.10)

Now consider an auxiliary random variable T̃ ∗n , which is defined as T ∗n but with Λ̂∗n replaced by

{(θ, `) : θ ∈ Θηn
I (Fn), ` = ϕ∗(ξn(θ))} , (4.11)

where ϕ∗(·) is a continuous function that satisfies ϕ(·) < ϕ∗(·,Ω) for all Ω (see Assumption A.5). Notice that

T̃ ∗n is a “hybrid” object in the sense that it depends both on the data sample and on unknown population

parameters. The convenience of working with T̃ ∗n instead of T ∗n is due to the following reasons: (a) T̃ ∗n uses

a non-random set Θηn
I (Fn) instead of the random set Θ̂I and (b) the function ϕ∗ is continuous and does not

depend on Ω̂n(θ), which is not necessarily the case for the original GMS function ϕ. We denote by J∗(Λ∗,Ω)

the conditional limiting distribution of T̃ ∗n , which is characterized in Theorem C.1 in the appendix.

Having defined these objects, Theorem 4.1 is the result of the following argument. We show first that

J(Λ,Ω) ≤ J∗(Λ∗,Ω) , (4.12)

meaning that, asymptotically, the quantiles of Tn could be approximated by the infeasible conditional quan-

tiles of T̃ ∗n . Second, we note that Eq. (4.10) implies that, asymptotically,

T̃ ∗n ≤ T ∗n . (4.13)

This allows us to replace the infeasible conditional quantiles of T̃ ∗n with the feasible conditional quantiles of

T ∗n . In summary, Eqs. (4.12) and (4.13) ensure that, asymptotically, the resampling approximation of the

(1− α)-quantile of T ∗n , ĉRSn (1− α), is a uniformly valid approximation to the (1− α)-quantile of Tn. From

this, the uniform asymptotic validity of Test RS follows.

Remark 4.3. The sequence ηn and the non-random expansion Θηn
I (Fn) are used in intermediate steps of

the proof of Theorem 4.1 but are not needed to implement Test RS.

Remark 4.4. The set in Eq. (4.11) assumes the existence of the function ϕ∗(·). This assumption is not

7We note that a special choice of the function ϕ can be shown to circumvent the problem and result in a test that controls
asymptotic size (see Bugni et al., 2014, Remark 2.2 for details). However, such function does not belong to the class of functions
considered in Andrews and Soares (2010) and thus not suitable for the type of power comparisons we study in this paper.
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restrictive as it is satisfied for the functions ϕ(1)(·) − ϕ(4)(·) described in Andrews and Soares (2010) and

Andrews and Barwick (2012) (see Remark B.1 in Appendix B).

Remark 4.5. To put the computational feasibility of Test RS into perspective, we compare it to the

computation of confidence sets for θ, a problem that the literature has become familiar with. Typically,

Test RS is easier than confidence set construction. To construct the confidence set as described in Section

2, one needs to compute ĉn(θ, 1− α) for “enough” number of grid points on Θ. This is generally considered

very difficult to do accurately unless Θ is low dimensional (3 dimensions or less). On the other hand, to

implement Test RS, the challenging part is to compute T ∗n in Eq. (4.6) a large number of times (say, 1,000

times), each time for a different simulation draw of v̂∗n(·). Although this amounts to solving a minimization

problem accurately a large number of times, the task often is quite feasible because the objective functions

to be minimized often are well-behaved, especially for smooth versions of ϕ(·).

5 Test RC: Re-Cycling existent critical values

In practice, the researcher often needs to compute the confidence set CSn(1 − α) for reasons other than

specification testing. In that case, it is reasonable to take the computation of the confidence set as given

when implementing a model specification test. From this perspective, Test BP becomes more attractive than

Test RS computation-wise because it is an immediate by-product of the confidence set construction. In this

section, we propose a new specification test that involves a simple transformation of exactly the same critical

values used for Test BP, therefore marginally increasing the computational effort. We call it the re-cycling

test or Test RC precisely for the reason that it recycles existing critical values. Even with such a simple

modification, Test RC presents power advantages over Test BP that we formalize in Section 6.

Definition 5.1 (Test RC). The specification Test RC rejects the null hypothesis in Eq. (2.1) according to

the following rejection rule

φRCn ≡ 1
{
Tn > ĉRCn (1− α)

}
, (5.1)

where Tn is as in Eq. (3.3), ĉRCn (1− α) is given by

ĉRCn (1− α) = inf
θ∈Θ̂I

ĉn(θ, 1− α) , (5.2)

where Θ̂I is as in Eq. (4.3) and ĉn(θ, 1−α) is the GMS critical value used by Test BP, see Assumption M.1.

Remark 5.1. Test BP requires computation of the sample criterion function Qn(θ) and the GMS quantile

ĉn(θ, 1−α) for every θ ∈ Θ. With this information in hand, it is relatively easy to compute the approximation

to the identified set Θ̂I . Thus, relative to Test BP, implementing Test RC requires little additional work.

Remark 5.2. Test RC is defined as a test whose critical value is the minimum of the critical values used

by Test BP (c.f. Eq. (5.2)). This implies that Test RC and Test BP are implemented with the same choice

of GMS function ϕ(·) and tuning parameter κn, as Test RC inherits this choice from Test BP. We use this

fact in the power comparisons of Section 6.

Remark 5.3. For a given θ ∈ Θ, the GMS quantile ĉn(θ, 1 − α) coincides with the (1 − α)-quantile of

the random variable Jn(θ) ≡ S(v̂∗n(θ) + ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)), used in to implement Test RS.8 From this

observation, it follows that the critical value of Test RS is the (1− α)-quantile of the infimum of Jn(θ) over

8See the proof of Theorem 6.1 for the details.
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Θ̂I , while the critical value of Test RC is the infimum of the (1 − α)-quantiles of Jn(θ) over Θ̂I . Since the

quantile of an infimum is weakly smaller than the infimum of the quantiles, we deduce that

ĉRSn (1− α) ≤ inf
θ∈Θ̂I

ĉn(θ, 1− α) = ĉRCn (1− α) . (5.3)

The following result shows that the test proposed in Definition 4.2 is asymptotically level correct and it

is an immediate consequence of Theorem 4.1 and Eq. (5.3).

Theorem 5.1. Let Assumptions A.1-A.7 hold. Then, for any α ∈ (0, 1),

lim sup
n→∞

sup
F∈P0

EF [φRCn ] ≤ α . (5.4)

Remark 5.4. Theorems 4.1 and 5.1 show that Test RS and Test RC are asymptotically level correct

but are silent about the type of conditions that could make these test asymptotically non-conservative.

Unfortunately, we could not find such conditions with sufficient level of generality.

6 Power analysis

Previous results reveal that the existing test, Test BP, and the ones proposed in this paper, Tests RS and

RC, are all asymptotically level correct. The goal of this section is to compare these procedures in terms

of power. We show that the tests proposed in this paper have weakly more power than Test BP in all

finite samples, and there are sequences of local alternative hypotheses for which they have strictly higher

asymptotic power. We open the section with the finite sample findings.

Theorem 6.1. For any (n, F ) ∈ N× P,

φRSn ≥ φRCn ≥ φBPn .

Corollary 6.1. For any sequence of local alternatives {Fn ∈ P/P0}n≥1,

lim inf
n→∞

(EFn [φRSn ]− EFn [φRCn ]) ≥ 0, and lim inf
n→∞

(EFn [φRCn ]− EFn [φBPn ]) ≥ 0 .

The proof of Theorem 6.1 is in Appendix C and Corollary 6.1 follows directly from Theorem 6.1. Note

that Theorem 6.1 is a statement that holds for all n ∈ N and F ∈ P. This is not only a finite sample power

result, but it is also a relationship that holds for distributions F ∈ P0. It follows that the two tests we

propose cannot be more conservative than the existing Test BP.

Remark 6.1. The tests considered in this paper are only shown to control size asymptotically. Thus, for

any distribution F ∈ P0 and any sample size n, it is certainly possible that all of these tests over-reject

the null hypothesis, i.e., EF [φsn] > α for s = {BP,RC,RS}. In any case, the fact that these tests provide

asymptotic uniform size control means that, for any ε > 0, there exists a sample size N(ε) (not dependent

on F ) such that for all n ≥ N(ε),

EF [φsn] ≤ α+ ε for s = {BP,RC,RS} . (6.1)

In other words, to the extent that the sample size is reasonably large, the amount of over-rejection of all

these test is uniformly bounded.
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Remark 6.2. It would be ideal to have finite sample results for both size and power. Unfortunately,

constructing test with finite sample size control in this type of problems is extremely hard, which explains

why the literature resorts exclusively to asymptotic approximations. In light of this, we view the result

in Theorem 6.1 as particularly important and novel, especially if we take into account that it requires no

assumptions beyond the maintained ones.

Remark 6.3. The first inequality in Theorem 6.1 uses that Test RS and Test RC are implemented with

the same choice of GMS function ϕ(·) and the same tuning parameter κn. We recommend this practice as

these objects play exactly the same role in all of these tests. The second inequality follows by definition, as

Test RC and Test BP share the same ϕ(·) and κn by construction (see Remark 5.2).

Theorem 6.1 and Corollary 6.1 show that Test BP will never do better (in terms of power or asymptotic

conservativeness) than Tests RS and RC. However, there is nothing that prevents a situation in which all

these tests provide exactly the same power. The last result in this section therefore provides a type of local

alternatives for which both of our tests have strictly higher asymptotic power than Test BP. The result relies

on the following condition.

Assumption A.9. For Tn as in Eq. (3.3) and Θ̂I as in Eq. (4.3), {Fn ∈ P}n≥1 satisfies the following:

(i) There is a (possibly random) sequence {θ∗n ∈ Θ̂I}n≥1 such that ĉn(θ∗n, 1− α)
p→ cH ,

(ii) There is a (possibly random) sequence {θn ∈ Θ̂I}n≥1 such that ĉn(θn, 1− α)
p→ cL,

(iii) Tn
d→ J and P (J ∈ (cL, cH)) > 0.

We illustrate how Assumption A.9 holds in the context of Example 2.1 below, where we have simplified

the example slightly to keep the derivations as short as possible.9

Example 6.1. Let W = (W1,W2,W3) ∈ R3 be a random vector with distribution Fn, VFn [W ] = I3,

EFn [W1] = 0, EFn [W2] = −µ/
√
n, and EFn [W3] = 0 for some µ ∈ R. Consider the following model with

Θ = [−B,B]2 for some B > 0,

EFn [m1(Wi, θ)] = EFn [θ1 −Wi,1] ≥ 0 ,

EFn [m2(Wi, θ)] = EFn [Wi,2 − θ1] ≥ 0 ,

EFn [m3(Wi, θ)] = EFn [θ2 −Wi,3] ≥ 0 . (6.2)

The identified set is ΘI(Fn) = {θ ∈ Θ : θ1 ∈ [0,−µ/
√
n], θ2 ≥ 0}, which is non-empty if and only if µ ≤ 0.

This identified set has the same structure as in Example 2.1 with EFn [Y Z|X = x1] = 0, EFn [Y Z|X = x2] =

1 + µ/
√
n, and EFn [Y Z|X = x3] = 0.

The model in (6.2) is linear in θ, and hence many relevant parameters and estimators do not depend on

θ. These include σ̂j(θ) = σ̂j for j = 1, 2, 3, so D̂
−1/2
n (θ) = D̂

−1/2
n , ṽn,j(θ) = ṽn,j =

√
nσ̂−1

j (EFn [Wj ]− W̄n,j)

for j = 1, 3, ṽn,2 =
√
nσ̂−1

2 (W̄n,2 − EFn [W2]), and

v∗n(θ) =
1√
n

n∑
i=1

D̂−1/2
n (θ)(m(Wi, θ)− m̄n(θ))ζi = v∗n , (6.3)

9It is worth emphasizing that Example 6.1 is the simplest example we can construct to generate strict power differences
between the specification tests. One could use more sophisticated and realistic examples (e.g. including non-linear moment
conditions or moment equalities) to generate similar results but this additional complexity would severely complicate the
derivations.
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where {ζi}ni=1 is i.i.d. N(0, 1). It follows that {v∗n|{Wi}ni=1} ∼ N(0, 1) a.s. For simplicity here, we use the

MMM criterion function given by

S(m,Σ) =

p∑
j=1

[mj/σj ]
2
− +

k∑
j=p+1

(mj/σj)
2 , (6.4)

where [x]− ≡ min{x, 0}, and the first GMS function ϕ(·) proposed by Andrews and Soares (2010),

ϕj(x) =∞1{x > 1} for j = 1, . . . , p and ϕj(x) = 0 for j = p+ 1, . . . , k . (6.5)

The sample criterion function is given by

Qn(θ) =
[√
nσ̂−1

1 (θ1 − W̄1)
]2
− +

[√
nσ̂−1

2 (W̄2 − θ1)
]2
− +

[√
nσ̂−1

3 (θ2 − W̄3)
]2
− .

It is easy to verify Assumptions A.1-A.7 in this context. We now explicitly verify Assumption A.9. To do

this, we exploit that κ−1
n ṽn,j

p→ 0 and σ̂−1
j

p→ σ−1
j = 1 for j = 1, 2, 3. We also use the notation Z ∼ N(04, I4).

Assumption A.9 (i): The set of minimizers of Qn(θ) over Θ is Θ̂I ⊇ {θ∗n = (θ∗n,1, θ
∗
n,2) : θ∗n,1 = (σ̂−1

1 W̄1 +

σ̂−1
2 W̄2)/(σ̂−1

1 + σ̂−1
2 ), θ∗n,2 ≥ W̄3}. Let’s take θ∗n,2 = W̄3 for concreteness. Notice that the sequence

{θ∗n ∈ Θ̂I}n≥1 is random, which is allowed by condition (i). Simple algebra shows that

√
nθ∗n,1 =

ṽn,2 − ṽn,1
2

+

√
nEFn [W2]

2
+ op(1) =

ṽn,2 − ṽn,1
2

− µ

2
+ op(1) . (6.6)

The test statistic Tn in Eq. (3.3) therefore satisfies

Tn = Qn(θ∗n) =
[
ṽn,1 +

√
nσ̂−1

1 θ∗n,1
]2
− +

[
ṽn,2 +

√
nσ̂−1

2 (EFn [W2]− θ∗n,1)
]2
− ,

=

[
ṽn,1 +

ṽn,2 − ṽn,1
2

− µ

2
+ op(1)

]2

−
+

[
ṽn,2 −

ṽn,2 − ṽn,1
2

+
µ

2
− µ+ op(1)

]2

−
,

= 2

[
ṽn,1 + ṽn,2

2
− µ

2
+ op(1)

]2

−

d→ J ≡
[
Z1 −

µ√
2

]2

−
. (6.7)

Next note that the GMS critical value along θ∗n is the (conditional) (1− α)-quantile of

Q∗n(θ∗n) =
[
v∗n,1 +∞1{κ−1

n ṽn,1 + κ−1
n

√
nσ̂−1

1 θ∗n,1 > 1}
]2
−

+
[
v∗n,2 +∞1{κ−1

n ṽn,2 − κ−1
n

√
nσ̂−1

2 θ∗n,1 − κ−1
n σ̂−1

2 µ > 1}
]2
− +

[
v∗n,3

]2
− ,

d→ [Z2]2− + [Z3]2− + [Z4]2− w.p.a.1 ,

since κ−1
n

√
nθ∗n,1

p→ 0 by Eq. (6.6). If we let cH denote the (1− α)-quantile of RHS of the previous display,

it follows that ĉn(θ∗n, 1− α)
p→ cH and condition (i) holds.

Assumption A.9 (ii): Let θn = (θ∗n,1, θn,2) where θn,2 = W̄3 +Cκn/
√
n for C > 1. As before, the sequence

{θn ∈ Θ̂I}n≥1 is random, which is allowed by condition (ii). The GMS critical value evaluated at θn is the

(conditional) (1− α)-quantile of

Q∗n(θn) =
[
v∗n,1 +∞1{κ−1

n ṽn,1 + κ−1
n

√
nσ̂−1

1 θ∗n,1 > 1}
]2
−

+
[
v∗n,2 +∞1{κ−1

n ṽn,2 − κ−1
n

√
nσ̂−1

2 θ∗n,1 − κ−1
n σ̂−1

2 µ > 1}
]2
− +

[
v∗n,3 +∞1{σ̂−1

3 C > 1}
]2
− ,
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d→ [Z2]2− + [Z3]2− w.p.a.1 ,

since κ−1
n

√
nθ∗n,1

p→ 0 by Eq. (6.6) and C > 1. If we let cL denote the (1−α)-quantile of RHS of the previous

display, it follows that ĉn(θn, 1− α)
p→ cL and condition (ii) holds.

Assumption A.9 (iii): Tn
d→ J follows from Eq. (6.7). In addition, cL < cH is immediate from the previous

derivations whenever α < 50%. For example, when α = 10%, we have cL = 2.95 and cH = 4.01. Finally,

P (J ∈ (cL, cH)) > 0 holds as the distribution of J is continuous at x > 0. For example, when α = 10% and

µ = 2, P (J ∈ (cL, cH)) = 11%. We conclude that condition (iii) holds. �

Loosely speaking, Assumption A.9 considers a sequence of local alternatives where the set of minimizers

Θ̂I includes at least two points for which the quantiles of the limit distribution of Q∗n(θ) are different.

In Example 6.1, the critical value along the sequence θ∗n has three moments binding, while the critical

value under the sequence θn has two moments binding. It follows that the GMS critical values satisfy

ĉn(θ∗n, 1 − α) > ĉn(θn, 1 − α) with high probability as n gets large. At the same time, these sequences are

such that Tn = infθ∈ΘQn(θ) = Qn(θ∗n) = Qn(θn). Putting all this together, we can informally anticipate

the result in Theorem 6.2 as follows,

φBPn = 1{∀θ ∈ Θ : Qn(θ) > ĉn(θ, 1− α)} ≤ 1{Qn(θ∗n) > ĉn(θ∗n, 1− α)}

< 1{Qn(θn) > ĉn(θn, 1− α)} ≤ 1{Tn > inf
θ∈Θ̂I

ĉn(θ, 1− α)} = φRCn ,

where the strict inequality holds with positive probability. It is clear that whenever the set of minimizers of

Qn(θ) is not a singleton and the limiting distribution of Q∗n(θ) is not the same along the different sequences

of minimizers, Assumption A.9 is satisfied. On the other hand, the assumption does not hold if the local

alternatives are such that the argmin set of Qn(·) converges to a singleton (e.g. point identification).

Theorem 6.2. For any sequence of local alternatives {Fn ∈ P/P0}n≥1 that satisfies Assumption A.9,

lim inf
n→∞

(EFn [φRCn ]− EFn [φBPn ]) > 0 .

Theorem 6.2 shows that Test RC is asymptotically strictly more powerful than Test BP for sequence of

alternatives satisfying Assumption A.9. Combining this result with Theorem 6.1, it follows that Test RS is

also strictly more powerful than Test BP asymptotically.

Remark 6.4. We can use Example 6.1 to illustrate the asymptotic power gains. For µ = 2 and α = 10%,

the asymptotic local power of Test RC and Test BP are 38.1% and 27.8%, respectively. Clearly, the power

differences could be significant. In addition, the same example illustrates how all these tests could be

asymptotically conservative. For µ = 0 and α = 10%, the asymptotic size of Tests RC and Test BP are 4.4%

and 2.2%, respectively, which are consistent with the simulation results in Section 7.

Remark 6.5. We can also use Example 6.1 to show that a modification of Test RS that replaces Θ̂I by Θ

in Eq. (4.6) would not control asymptotic size. In this case, simple algebra shows that, conditionally

inf
θ∈Θ

Q∗n(θ) ≤ min{Q∗n(θLn ), Q∗n(θHn )} = min{[v∗n,1]2−, [v
∗
n,2]2−}

d→ min{[Z2]2−, [Z3]2−} w.p.a.1 , (6.8)

where θLn = (θLn,1, θn,2) and θHn = (θHn,1, θn,2) are two sequences in Θ such that

θLn,1 = W̄2 −
2κn√
n

, θHn,1 = W̄1 +
2κn√
n

, and θn,2 = W̄3 +
2κn√
n
. (6.9)

17



η
C Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

BP 2.32 5.32 11.42 21.20 34.76 50.94 65.96 79.82 88.62 94.32 97.52
0.8 RC 4.38 9.56 18.36 31.16 47.18 62.40 76.82 87.04 93.38 96.98 98.68

RS 5.10 11.00 20.82 34.62 50.58 66.04 79.60 88.84 94.34 97.78 99.10
BP 2.32 5.32 11.40 21.18 34.72 50.90 65.92 79.70 88.60 94.30 97.52

0.9 RC 4.38 9.56 18.36 31.16 47.18 62.40 76.82 87.04 93.38 96.98 98.68
RS 5.10 11.00 20.82 34.60 50.58 66.04 79.60 88.82 94.34 97.78 99.10
BP 2.32 5.32 11.38 21.16 34.70 50.88 65.90 79.66 88.54 94.30 97.50

1 RC 4.38 9.56 18.36 31.16 47.18 62.38 76.82 87.04 93.38 96.98 98.68
RS 5.10 11.00 20.82 34.60 50.58 66.04 79.60 88.82 94.34 97.78 99.10

Table 1: Rejection rate (in %) of Test BP, Test RC, and Test RS for the model in Eq. (7.2). Parameter
values are n = 100, α = 10%, κn = C

√
log n. Results based on 5, 000 Monte Carlo replications.

Note that the (1−α)-quantile of min{[Z2]2−, [Z3]2−} is smaller than the (1−α)-quantile of J in Eq. (6.7) and,

thus, this modified Test RS suffers from over-rejection. For µ = 0 and α = 10%, the asymptotic size of is

31.70%. The Test RS from Definition 4.2 avoids this problem by restricting θ to Θ̂I and thus guaranteeing

that sequences with values of θ1 that are “too” big or “too” small (like those in Eq. (6.9)) are not feasible.

Remark 6.6. If one considers sequences of alternatives under which the inequality in Eq. (5.3) becomes

strict (asymptotically), it is then possible that Test RS becomes strictly more powerful than Test RC. These

types of alternatives are illustrated in the context of a Monte Carlo simulation in Appendix E.

Remark 6.7. Test BP requires fewer assumptions to obtain asymptotic size control than the tests we

propose here. It is fair to say then that Test BP is more “robust” than Test RC and Test RS, in the sense

that if some of the Assumptions A.1-A.7 fail, Test BP would still control asymptotic size.

7 Monte Carlo simulations

We now present Monte Carlo simulations that illustrate the finite sample properties of the specification tests

considered in this paper. We simulate data according to the simple parametrization presented in Example

2.1, i.e., Eq. (2.14). The data {Wi}ni=1 are i.i.d., where Wi ≡ (YiZi, Zi, Xi) is distributed such that

{YiZi|X = x1} ∼ N(0, 1), {YiZi|X = x2} ∼ N(1 + η, 1), {YiZi|X = x3} ∼ N(0, 1) , (7.1)

for η ∈ R, and P (Xi = xs) = 1/3 for s ∈ {1, 2, 3}. By plugging in this information into Eq. (2.14), we get

ΘI(F ) = {(θ1, θ2) ∈ Θ : θ1 ∈ [0,−η], θ2 ≥ 0} . (7.2)

The parameter η ∈ R measures the amount of model misspecification. On the one hand, η ≤ 0 implies

that the model is correctly specified and strictly partially identified, i.e., the identified set includes multiple

values. On the other hand, η > 0 implies that the the model is misspecified, i.e., the identified set is empty.

The simulation results are collected in Tables 1 and 2. The parameters we use to produce both tables

are as follows: α = 10%, n ∈ {100, 200}, κn = C
√

log n for C ∈ {0.8, 0.9, 1}, ϕ(·) as in Eq. (6.5), and S(·) as

in Eq. (6.4).10 The number of replications is set to MCsize = 5, 000.

The simulation results are consistent with the theoretical findings. Under the null hypothesis (i.e. η = 0)

all tests are asymptotically level correct (i.e. the asymptotic rejection rate does not exceed α). In fact,

10Additional simulations for C ∈ {0.7, 0.95} show similar results and are therefore omitted.
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η
C Method 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

BP 2.38 8.04 20.52 39.98 62.50 80.74 92.34 97.94 99.42 99.88 100
0.8 RC 4.42 13.26 29.44 50.64 72.72 87.60 95.70 99.00 99.76 99.92 100

RS 4.90 14.28 31.58 53.02 74.76 88.68 96.16 99.06 99.80 99.94 100
BP 2.38 8.02 20.52 39.92 62.46 80.72 92.32 97.94 99.42 99.88 100

0.9 RC 4.42 13.26 29.44 50.64 72.72 87.60 95.70 99.00 99.76 99.92 100
RS 4.90 14.26 31.58 53.02 74.76 88.68 96.16 99.06 99.80 99.94 100
BP 2.36 8.00 20.48 39.88 62.42 80.72 92.28 97.94 99.42 99.88 100

1 RC 4.42 13.26 29.44 50.64 72.72 87.60 95.70 99.00 99.76 99.92 100
RS 4.90 14.26 31.58 53.02 74.76 88.68 96.16 99.06 99.80 99.94 100

Table 2: Rejection rate (in %) of Test BP, Test RC, and Test RS for the model in Eq. (7.2). Parameter
values are n = 200, α = 10%, κn = C

√
log n. Results based on 5, 000 Monte Carlo replications.

Remark 6.4 shows that these tests are asymptotically conservative in this example, which is consistent with

the results in Tables 1 and 2. Under the alternative hypothesis (i.e. η > 0) the rejection rates increase

monotonically with the amount of misspecification, measured by η. Comparing the rejection rates across

methods, we see that Test RS shows better power than Test RC, and that Test RC has better power than

Test BP. The difference can be substantial, with the power of Test RS being almost twice the power of Test

BP for some alternatives (e.g. η = 0.2 and n = 100). These results are consistent with Theorem 6.1 and the

analytical derivations in Example 6.1.11

8 Conclusions

This paper studies the problem of specification testing in partially identified models defined by a finite

number of moment (in)equalities. Under the null hypothesis of the test, there is at least one parameter value

that simultaneously satisfies all of the moment (in)equalities whereas under the alternative hypothesis of the

test there is no such parameter value. While this problem has not been directly addressed in the literature

(except in particular cases), several papers in the literature have suggested addressing it by checking whether

confidence sets for the parameters of interest are empty or not. We refer to this procedure as Test BP.

We propose two new specification tests that achieve uniform asymptotic size control, which we refer

to as Test RS and Test RC. Both of these tests dominate Test BP in terms of power. In particular, we

show that Test RS and Test RC have more or equal power than Test BP in all finite samples, and we

characterize sequences of local alternative hypotheses for which they have strictly higher asymptotic power.

Our numerical results reveal that these power differences can be substantial, even in small sample sizes.

This paper also compares these specification tests in terms of their computational costs. By definition,

Test BP requires the computation of a confidence set for the parameter of interest. If one is willing to

compute this confidence set, then Test RC is particularly convenient: it requires almost no additional work

and can potentially lead to significant power gains vis-à-vis Test BP. On the other hand, implementing Test

RS requires a separate resampling procedure that is typically easier than the computation of the confidence

sets (especially in high dimensional problems encountered in practice). In reward for this extra computation,

Test RS can lead to power gains relative to the other two procedures.

We point out that the methodological contributions in this paper can be used to address a wide range

11In Example 2.1 one can show that the power gains of Test RS over Test RC vanish asymptotically. However, there are
models in which Test RS has strictly higher asymptotic power than Test RC. In Appendix E, we consider a Monte Carlo
simulation based on one of those examples.

19



of inferential problems that are different from specification testing. In particular, Bugni et al. (2014) use

inferential procedures along the lines of Test RS to conduct inference on functions of partially identified

parameters in a moment (in)equality model, i.e.,

H0 : f(θ0) = γ0 vs. H1 : f(θ0) 6= γ0 , (8.1)

where θ0 now denotes the true parameter value in the moment inequality model, f is a known function, and

γ0 is an arbitrary number. We also point out that there are other interesting extensions that we did not

pursue. First, our paper does not consider conditional moment restrictions, c.f. Andrews and Shi (2013),

Chernozhukov et al. (2013), Armstrong (2011), and Chetverikov (2013). Second, our asymptotic framework

is one where the limit distributions do not depend on tuning parameters used at the moment selection

stage, as opposed to Andrews and Barwick (2012), Romano et al. (2013), and McCloskey (2014). These two

extensions are well beyond the scope of this paper and are left for future research.

Appendix A Notation

Throughout the appendix we use the following notation. For any u ∈ N, 0u is a column vector of zeros of size u,

1u is a column vector of ones of size u, and Iu is the u× u identity matrix. We use R++ = {x ∈ R : x > 0},
R+ = R++ ∪{0}, R+,∞ = R+ ∪{+∞}, R[+∞] = R∪{+∞}, and R[±∞] = R∪{±∞}. For any u ∈ N, we equip Ru[±∞]

with the following metric d. For any x1, x2 ∈ Ru[±∞],

d(x1, x2) =

(
u∑
i=1

(ϑ(x1,i)− ϑ(x2,i))
2

)1/2

, (A-1)

where ϑ : R[±∞] → [0, 1] is such that ϑ(−∞) = 0, ϑ(∞) = 1, and ϑ(y) = Φ(y) for y ∈ R, where Φ is the standard

normal CDF. Finally, D̂n(θ) ≡ Diag(Σ̂n(θ)), Ω̂n(θ) ≡ D̂
−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ), vn(θ) ≡

√
nD
−1/2
F (θ)(m̄n(θ) −

EF [m(W, θ)]), ṽn(θ) ≡
√
nD̂
−1/2
n (θ)(m̄n(θ)−EF [m(W, θ)]), and v∗n(θ) is defined as v̂∗n(θ) in Eqs. (4.4) and (4.5) with

D
−1/2
F (θ) replacing D̂

−1/2
n (θ).

Remark A.1. The space (Ru[±∞], d) constitutes a compact metric space. Also, if a sequence in (Ru[±∞], d) converges

to an element in Ru, such a sequence will also converge in (Ru, || · ||), where || · || denotes the Euclidean norm.

Let C(Θ2) denote the space of continuous functions that map Θ2 to Ψ and S(Θ × Rk[±∞]) denote the space of

compact subsets of the metric space (Θ×Rk[±∞], d). In addition, let dH denote the Hausdorff metric associated to d,

i.e., for any sets A,B ∈ Θ× Rk[±∞],

dH(A,B) ≡ max

{
sup

(θ1,h1)∈A
inf

(θ2,h2)∈B
d((θ1, h1), (θ2, h2)), sup

(θ2,h2)∈B
inf

(θ1,h1)∈A
d((θ1, h1), (θ2, h2))

}
.

We use “
H→” to denote convergence in the Hausdorff metric, i.e., An

H→ B ⇐⇒ dH(An, B) → 0. Finally,

for non-stochastic functions of θ ∈ Θ, we use “
u→” to denote uniform in θ convergence, e.g., ΩFn

u→ Ω ⇐⇒
supθ,θ′∈Θ d(ΩFn(θ, θ′),Ω(θ, θ′))→ 0. Also, we use Ω(θ) and Ω(θ, θ) equivalently.

We denote by l∞(Θ) the set of all uniformly bounded functions that map Θ→ Ru, equipped with the supremum

norm. The sequence of distributions {Fn ∈ P}n≥1 determine a sequence of probability spaces {(W,A, Fn)}n≥1.

Stochastic processes are then random maps X :W → l∞(Θ). In this context, we use “
d→”, “

p→”, and “
a.s.→ ” to denote

weak convergence, convergence in probability, and convergence almost surely in the l∞(Θ) metric, respectively, in the

sense of van der Vaart and Wellner (1996). In addition, for every F ∈ P, we useM(F ) ≡ {D−1/2
F (θ)m(·, θ) :W → Rk}
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and denote by ρF the coordinate-wise version of the “intrinsic” variance semimetric, i.e.,

ρF (θ, θ′) ≡
∥∥∥∥{VF [σ−1

F,j(θ)mj(W, θ)− σ−1
F,j(θ

′)mj(W, θ
′)]1/2

}k
j=1

∥∥∥∥ . (A-2)

It is easy to show that ρF (θ, θ′) =
√

2||[Ik −Diag(ΩF (θ, θ′))]1/2||.

Finally, the assumptions in the next section and some of the auxiliary results make use of the set

Λ∗n,Fn ≡
{

(θ, `) ∈ Θηn
I (Fn)× Rk : ` = κ−1

n

√
nD
−1/2
Fn

(θ)EFn [m(W, θ)]
}
, (A-3)

where Θηn
I (Fn) and {ηn}n≥1 are as in Definition 4.3 and {κn}n≥1 is as in Assumption M.1.

Appendix B Additional assumptions

This section collects several assumptions that are routinely assumed in the literature of partially identified models

defined by moment (in)equalities, and some additional ones required by this paper.

Assumption A.5. Given the function ϕ : Rp[+∞] × Rk−p[±∞] × Ψ → Rk[+∞] in Assumption M.1, there is a function

ϕ∗ : Rk[±∞] → Rk[+∞] that takes the form ϕ∗(ξ) = (ϕ∗1(ξ1), . . . , ϕ∗p(ξp),0k−p) and, for all j = 1, . . . , p,

(a) ϕ∗j (ξj) ≥ ϕj(ξ,Ω) for all (ξ,Ω) ∈ Rp[+∞] × Rk−p[±∞] ×Ψ.

(b) ϕ∗j is continuous.

(c) ϕ∗j (ξj) = 0 for all ξj ≤ 0 and ϕ∗j (∞) =∞.

Assumption A.6. For any {Fn ∈ P0}n≥1, let Λ and Λ∗ be such that Λn,Fn
H→ Λ and Λ∗n,Fn

H→ Λ∗, where Λn,F and

Λ∗n,Fn are defined in Eqs. (3.6) and (A-3), respectively. Then, for all (θ, `∗) ∈ Λ∗ there exists (θ, `) ∈ Λ where `j = 0

for all j > p, `j ≥ ϕ∗j (`∗j ) for all j ≤ p, and ϕ∗ is defined as in Assumption A.5.

Assumption A.7. For any {Fn ∈ P0}n≥1, let (Ω,Λ) be such that ΩFn
u→ Ω and Λn,Fn

H→ Λ with (Ω,Λ) ∈
C(θ)×S(Θ×Rk[±∞]) and Λn,Fn as in Eq. (3.6). Let c(1−α)(Λ,Ω) be the (1−α)-quantile of J(Λ,Ω) ≡ inf(θ,`)∈Λ S(vΩ(θ)+

`,Ω(θ)). Then,

(a) If c(1−α)(Λ,Ω) > 0, the distribution of J(Λ,Ω) is continuous at c(1−α)(Λ,Ω).

(b) If c(1−α)(Λ,Ω) = 0, lim infn→∞ PFn(Tn = 0) ≥ (1− α), where Tn is as in Eq. (3.3).

Assumption A.8. The following conditions hold.

(a) For all (θ, F ) ∈ Θ×P0, QF (θ) ≥ cmin{δ, inf θ̃∈ΘI (F )||θ− θ̃||}
χ for constants c, δ > 0 and χ as in Assumption M.8.

(b) Θ is convex.

(c) The function gF (θ) ≡ D
−1/2
F (θ)EF [m(W, θ)] is differentiable in θ for any F ∈ P0, and the class of functions

{GF (θ) ≡ ∂gF (θ)/∂θ′ : F ∈ P0} is equicontinuous, i.e.,

lim
δ→0

sup
F∈P0,(θ,θ′):||θ−θ′||≤δ

||GF (θ)−GF (θ′)|| = 0 .

Remark B.1. Assumption A.5 is satisfied if the function ϕ is any of the the functions ϕ(1)−ϕ(4) described in Andrews

and Soares (2010) or Andrews and Barwick (2012). This follows from Lemma D.9, as the functions ϕ(1)−ϕ(4) satisfy

the conditions of this result.
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Remark B.2. Without Assumption A.7 the asymptotic distribution of the test statistic could be discontinuous at

the probability limit of the critical value, resulting in asymptotic over-rejection under the null hypothesis. One way

to address this problem is by adding an infinitesimal constant to the critical value, which introduces an additional

tuning parameter that needs to be chosen by the researcher. Another way is to impose Assumption A.7, so that the

limiting distribution is either continuous or has a discontinuity that does not cause asymptotic over-rejection. Note

that this assumption holds in Example 6.1, where J in Eq. (6.7) is continuous at x > 0.

The literature routinely assumes that the test function S in Eq. (2.5) satisfies the following assumptions (see,

e.g., Andrews and Soares (2010), Andrews and Guggenberger (2009), and Bugni et al. (2012)). We therefore treat

the assumptions below as maintained.

Assumption M.4. The function S satisfies the following conditions.

(a) S((m1,m2),Σ) is non-increasing in m1, for all (m1,m2) ∈ Rp[+∞] × Rk−p and all variance matrices Σ ∈ Rk×k.

(b) S(m,Ω) = S(∆m,∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and positive definite diagonal ∆ ∈ Rk×k.

(c) S(m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ,

(d) S(m,Ω) is continuous at all m ∈ Rk[±∞] and Ω ∈ Ψ.

Assumption M.5. For all h1 ∈ Rp[+∞] × Rk−p, all Ω ∈ Ψ, and Z ∼ N (0k,Ω), the distribution function of

S (Z + h1,Ω) at x ∈ R is:

(a) continuous for x > 0,

(b) strictly increasing for x > 0 unless p = k and h1 =∞p,

(c) less than or equal to 1/2 at x = 0 when k > p or when k = p and h1,j = 0 for some j = 1, . . . , p.

(d) is degenerate at x = 0 when p = k and h1 =∞p.

(e) P (S(Z+(m1,0k−p),Ω) ≤ x) < P (S(Z+(m∗1,0k−p),Ω) ≤ x) for all x > 0 and all m1,m
∗
1 ∈ Rp[+∞] with m1 ≤ m∗1

and m1 6= m∗1.

Assumption M.6. The function S satisfies the following conditions.

(a) The distribution function of S(Z,Ω) is continuous at its (1 − α) quantile, denoted c(Ω, 1 − α), for all Ω ∈ Ψ,

where Z ∼ N(0k,Ω) and α ∈ (0, 0.5),

(b) c(Ω, 1− α) is continuous in Ω uniformly for Ω ∈ Ψ.

Assumption M.7. S(m,Ω) > 0 if and only if mj < 0 for some j = 1, . . . , p or mj 6= 0 for some j = p + 1, . . . , k,

where m = (m1, . . . ,mk)′ and Ω ∈ Ψ. Equivalently, S(m,Ω) = 0 if and only if mj ≥ 0 for all j = 1, . . . , p and mj = 0

for all j = p+ 1, . . . , k, where m = (m1, . . . ,mk)′ and Ω ∈ Ψ.

Assumption M.8. For some χ > 0, S(am,Ω) = aχS(m,Ω) for all scalars a > 0, m ∈ Rk, and Ω ∈ Ψ.

Assumption M.9. For all n ≥ 1, S(
√
nm̄n(θ), Σ̂(θ)) is a lower semi-continuous function of θ ∈ Θ.
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Appendix C Proofs of the Main Theorems

Proof of Theorem 3.1. Step 1. Let Ω̃n(θ) ≡ D−1/2
Fn

(θ)Σ̂n(θ)D
−1/2
Fn

(θ) and consider the following derivation

Tn ≡ inf
θ∈Θ

S(
√
nm̄n(θ), Σ̂n(θ)) = inf

θ∈Θ
S(
√
nD
−1/2
Fn

(θ)m̄n(θ), Ω̃n(θ))

= inf
θ∈Θ

S(vn(θ) +
√
nD
−1/2
Fn

(θ)EFn [m(W, θ)], Ω̃n(θ)) = inf
(θ,`)∈Λn,Fn

S(vn(θ) + `, Ω̃n(θ)) .

Step 2. Let D be the space of functions that map Θ onto Rk×Ψ and let D0 be the space of uniformly continuous

functions that map Θ onto Rk ×Ψ. Let the sequence of functionals {gn}n≥1 with gn : D → R be defined by

gn(v(·),Ω(·)) ≡ inf
(θ,l)∈Λn,Fn

S(v(θ) + `,Ω(θ)) . (C-1)

Let the functional g : D0 → R be defined by

g(v(·),Ω(·)) ≡ inf
(θ,l)∈Λ

S(v(θ) + `,Ω(θ)) .

We now show that if the sequence of (deterministic) functions {(vn(·),Ωn(·))}n≥1 with (vn(·),Ωn(·)) ∈ D for all n ∈ N
satisfies

lim
n→∞

sup
θ∈Θ
||(vn(θ),Ωn(θ))− (v(θ),Ω(θ))|| = 0 , (C-2)

for some (v(·),Ω(·)) ∈ D0, then

lim
n→∞

gn(vn(·),Ωn(·)) = g(v(·),Ω(·)) .

We need to show that lim infn→∞gn(vn(·),Ωn(·)) ≥ g(v(·),Ω(·)). The argument to show that lim supn→∞gn(vn(·),Ωn(·)) ≤
g(v(·),Ω(·)) is similar and therefore omitted. Suppose not, i.e., suppose that ∃δ > 0 and a subsequence {an}n≥1 of

{n}n≥1 s.t. ∀n ∈ N,

gan(van(·),Ωan(·)) < g(v(·),Ω(·))− δ . (C-3)

By definition, there exists a sequence {(θan , `an)}n≥1 that approximately achieves the infimum in Eq. (C-1), i.e.,

∀n ∈ N, (θan , `an) ∈ Λan,Fan and

||gan(van(·),Ωan(·))− S(van(θan) + `an ,Ωan(θan))|| ≤ δ/2 . (C-4)

Since Λan,Fan ⊆ Θ× Rk[±∞] and since (Θ× Rk[±∞], d) is a compact metric space, there exists a subsequence {bn}n≥1

of {an}n≥1 and (θ∗, `∗) ∈ Θ× Rk[±∞] s.t. d((θbn , `bn), (θ∗, `∗))→ 0.

We first show that (θ∗, `∗) ∈ Λ. Suppose not, i.e., (θ∗, `∗) 6∈ Λ, and consider the following argument

d((θbn , `bn), (θ∗, `∗)) + dH(Λbn,Fbn ,Λ) ≥ d((θbn , `bn), (θ∗, `∗)) + inf
(θ,`)∈Λ

d((θ, `), (θbn , `bn))

≥ inf
(θ,`)∈Λ′

d((θ, `), (θ∗, `∗)) > 0 ,

where the first inequality follows from the definition of Hausdorff distance and the fact that (θbn , `bn) ∈ Λbn,Fbn ,

and the second inequality follows by the triangular inequality. The final strict inequality follows from the fact that

Λ ∈ S(Θ×Rk[±∞]), i.e., it is a compact subset of (Θ×Rk[±∞], d), f(θ, `) = d((θ, `), (θ∗, `∗)) is a continuous real-valued

function, and Royden (1988, Theorem 7.18). Taking limits as n → ∞ and using that d((θbn , `bn), (θ∗, `∗)) → 0 and

Λbn,Fbn
H→ Λ, we reach a contradiction.

We now show that `∗ ∈ Rp[+∞] × Rk−p. Suppose not, i.e., suppose that ∃j = 1, . . . , k s.t. `∗j = −∞ or ∃j > p s.t.

`∗j =∞. Let J denote the set of indices j = 1, . . . , k s.t. this occurs. For any ` ∈ Rk[±∞] define Ξ(`) ≡ maxj∈J ||`j ||. By

definition of Λbn,Fbn , `bn ∈ Rk and thus, Ξ(`bn) <∞. By the case under consideration, limn→∞Ξ(`bn) = Ξ(`∗) =∞.

Since (Θ, || · ||) is a compact metric space, d((θbn , `bn), (θ∗, `∗)) → 0 implies that θbn → θ∗. Then, consider the
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following derivation,

||(vbn(θbn),Ωbn(θbn))− (v(θ∗),Ω(θ∗))||

≤ ||(vbn(θbn),Ωbn(θbn))− (v(θbn),Ω(θbn))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))||

≤ sup
θ∈Θ
||(vbn(θ),Ωbn(θ))− (v(θ),Ω(θ))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))|| → 0 ,

where the last convergence holds by Eq. (C-2), θbn → θ∗, and (v(·),Ω(·)) ∈ D0.

Notice that (v(·),Ω(·)) ∈ D0 and the compactness of Θ imply that (v(θ∗),Ω(θ∗)) is bounded. Since limn→∞Ξ(`bn) =

∞ and v(θ∗) ∈ Rk, it then follows that limn→∞Ξ(`bn)−1||vbn(θbn)|| = 0. By construction, {Ξ(`bn)−1`bn}n≥1 is s.t.

limn→∞Ξ(`bn)−1 [`bn,j ]− = 1 for some j ≤ p or limn→∞Ξ(`bn)−1 |`bn,j | = 1 for some j > p. We then conclude that

limn→∞Ξ(`bn)−1[vbn,j(θbn) + `bn,j ]− = 1 for some j ≤ p or limn→∞Ξ(hbn)−1 |vbn,j(θbn) + `bn,j | = 1 for some j > p.

This implies that

S(vbn(θbn) + `bn ,Ωbn(θbn)) = Ξ(`bn)χS(Ξ(`bn)−1(vbn(θbn) + `bn),Ωbn(θbn))→∞ .

Since {(θbn , `bn)}n≥1 is a subsequence of {(θan , `an)}n≥1 which approximately achieves the infimum in Eq. (C-1), it

then follows that

gn(vn(·),Ωn(·))→∞ . (C-5)

We now show that Eq. (C-5) is a contradiction. Since {Fn ∈ P0}n≥1 then there is a sequence {θn}n≥1 s.t.

lim inf
n→∞

√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)] ≡ `∗j ≥ 0, for j ≤ p

lim
n→∞

√
nσ−1

Fn,j
(θn)|EFn [mj(W, θn)]| ≡ `∗j = 0, for j > p .

By compactness of (Θ× Rk[±∞], d), we can find a subsequence {kn}n≥1 of {n}n≥1 s.t. d((θ̃kn , ˜̀
kn), (θ̃∗, ˜̀∗))→ 0 with

(θ̃∗, ˜̀∗) ∈ Θ×Rp[+∞]×Rk−p. By repeating the previous arguments, we can show that limn→∞(vkn(θ̃kn),Ωkn(θ̃kn)) =

(v(θ̃∗),Ω(θ̃∗)) ∈ Rk ×Ψ, which implies that

inf
(θ,l)∈Λ′

kn,Fkn

S(vkn(θ) + `,Ωkn(θ)) ≤ S(vkn(θ̃kn) + ˜̀
kn ,Ωkn(θ̃kn))→ S(v(θ̃∗) + ˜̀∗,Ω(θ̃∗)) .

Since (v(θ̃∗) + ˜̀∗,Ω(θ̃∗)) ∈ Rp[+∞] ×Rk−p ×Ψ, we conclude that S(v(θ̃∗) + ˜̀∗,Ω(θ̃∗)) is bounded. Since {kn}n≥1 is a

subsequence of {n}n≥1, this is a contradiction to Eq. (C-5).

Since d((θbn , `bn), (θ∗, `∗)) → 0, we can conclude that limn→∞(vbn(θbn),Ωbn(θbn)) = (v(θ∗),Ω(θ∗)) ∈ Rk × Ψ

repeating previous arguments. This implies that limn→∞(vbn(θbn)+`bn ,Ωbn(θbn)) = (v(θ∗)+`∗,Ω(θ∗)) ∈ (Rk[±∞]×Ψ)

and, so, gives us that limn→∞S(vbn(θbn) + `bn ,Ωbn(θbn)) = S(v(θ∗) + `∗,Ω(θ∗)), i.e, ∃N ∈ N s.t. ∀n ≥ N ,

||S(vbn(θbn) + `bn ,Ωbn(θbn))− S(v(θ∗) + `∗,Ω(θ∗))|| ≤ δ/2 . (C-6)

By combining Eqs. (C-4) and (C-6), and the fact that (θ∗, `∗) ∈ Λ, it follows that ∃N ∈ N s.t. ∀n ≥ N ,

gbn(vbn(·),Ωbn(·)) ≥ S(v(θ∗) + `∗,Ω(θ∗))− δ ≥ g(v(·),Ω(·))− δ ,

which is a contradiction to Eq. (C-3).

Step 3. The proof is completed by combining the representation in step 1, the convergence result in step 2, Lemma

D.2, and the extended continuous mapping theorem (see, e.g., van der Vaart and Wellner (1996, Theorem 1.11.1)).

In order to apply this result, it is important to notice that parts 1 and 5 in Lemma D.2 and standard convergence

results imply that (vn(·), Ω̃(·)) d→ (vΩ(·),Ω(·)) and (vΩ(·),Ω(·)) ∈ D0 a.s.
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Proof of Theorem 4.1. We start by proving that for η ≥ 0,

lim sup
n→∞

sup
F∈P0

PF (Tn > ĉRSn (1− α) + η) ≤ α .

Steps 1-4 hold for η ≥ 0, step 5 needs that η > 0, and step 6 holds for η = 0 under Assumption A.7.

Step 1. For any F ∈ P0, let T̃ ∗n be defined by as follows

T̃ ∗n ≡ inf
θ∈Θ

ηn
I

(F )
S(v̂∗n(θ) + ϕ∗(κ−1

n

√
nD̂1/2

n (θ)m̄n(θ)), Ω̂n(θ)) ,

and let c̃RSn (1− α) denote its conditional (1− α)-quantile. Consider the following derivation

PF (Tn > ĉRSn (1− α) + η) ≤ PF (Tn > c̃RSn (1− α) + η) + PF (ĉRSn (1− α) < c̃RSn (1− α))

≤ PF (Tn > c̃RSn (1− α) + η) + PF (Θ̂I * Θηn
I (F )) ,

where the first inequality is elementary and the second inequality follows from the fact that Assumption A.5 and

ĉRSn (1− α) < c̃RSn (1− α) implies Θ̂I * Θηn
I (F ). By this and Lemma D.13, it follows that

lim sup
n→∞

sup
F∈P0

PF (Tn > ĉRSn (1− α) + η) ≤ lim sup
n→∞

sup
F∈P0

PF (Tn > c̃RSn (1− α) + η) .

Step 2. By definition, there exists a subsequence {an}n≥1 of {n}n≥1 and a subsequence {Fan}n≥1 s.t.

lim sup
n→∞

sup
F∈P0

PF (Tn > c̃RSn (1− α) + η) = lim
n→∞

PFan (Tan > c̃RSan (1− α) + η) . (C-7)

By Lemma D.7, there is a further sequence {bn}n≥1 of {an}n≥1 s.t. ΩFbn
u→ Ω, Λbn,Fbn

H→ Λ, and Λ∗bn,Fbn
H→ Λ∗,

where Λbn,Fbn and Λ∗bn,Fbn are as in Eqs. (3.6) and (A-3), respectively, for some (Ω,Λ,Λ∗) ∈ C(θ)× S(Θ× Rk[±∞])
2.

Since ΩFbn
u→ Ω and Λbn,Fbn

H→ Λ, Theorem 3.1 implies that Tbn
d→ J(Λ,Ω) ≡ inf(θ,`)∈Λ S(vΩ(θ)+`,Ω(θ)). Similarly,

Theorem C.1 implies that {T̃ ∗an |{Wi}ani=1}
d→ J∗(Λ∗,Ω) ≡ inf(θ,`)∈Λ∗ S(vΩ(θ) + ϕ∗(`),Ω(θ)) a.s.

Step 3. We now show that J∗(Λ∗,Ω) ≥ J(Λ,Ω). Suppose not, i.e., ∃(θ, `∗) ∈ Λ∗ s.t. S(vΩ(θ) + ϕ∗(`∗),Ω(θ)) <

J(Λ,Ω). By Assumption A.6, ∃(θ, `) ∈ Λ where `j = 0 for all j > p and `j ≥ ϕ∗j (`∗j ) for all j ≤ p. Thus

S(vΩ(θ) + `,Ω(θ)) ≤ S(vΩ(θ) + ϕ∗(`∗),Ω(θ)) < J(Λ,Ω) ≡ inf
(θ,`)∈Λ

S(vΩ(θ) + `,Ω(θ)) ,

which is a contradiction to (θ, `) ∈ Λ.

Step 4. We now show that for c(1−α)(Λ,Ω) being the (1− α)-quantile of J(Λ,Ω) and any ε > 0,

limPFbn (c̃RSbn (1− α) ≤ c(1−α)(Λ,Ω)− ε) = 0 . (C-8)

Let ε̃ ∈ (0, ε) be chosen s.t. c(1−α)(Λ,Ω)− ε̃ is a continuity point of the CDF of J∗(Λ∗,Ω). Then, for almost all

sample sequences,

limPFbn (T̃ ∗bn ≤ c(1−α)(Λ,Ω)− ε̃|{Wi}bni=1) = P (J∗(Λ∗,Ω) ≤ c(1−α)(Λ,Ω)− ε̃)

≤ P (J(Λ,Ω) ≤ c(1−α)(Λ,Ω)− ε̃) < 1− α ,

where the equality holds a.s. by step 2 and that c(1−α)(Λ,Ω) − ε̃ is a continuity point of the CDF of J∗(Λ∗,Ω),

the weak inequality is a consequence of J∗(Λ∗,Ω) ≥ J(Λ,Ω), and the strict inequality follows from the fact that

c(1−α)(Λ,Ω) is the (1− α)-quantile of J(Λ,Ω). From here, the definition of quantile and ε̃ < ε imply that

{limPFbn (T̃ ∗bn ≤ c(1−α)(Λ,Ω)− ε̃|{Wi}bni=1) < 1− α} ⊆ {lim inf{c̃RSbn (1− α) > c(1−α)(Λ,Ω)− ε}} .
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Since the RHS occurs for almost all sample sequences, then the LHS must also occur for almost all sample sequences.

Then, Eq. (C-8) is a consequence of this and Fatou’s Lemma.

Step 5. For η > 0, we can define ε > 0 in step 4 so that η − ε > 0 and c(1−α)(Λ,Ω) + η − ε is a continuity point

of the CDF of J(Λ,Ω). It then follows that

PFbn (Tbn > c̃RSbn (1− α) + η) ≤ PFbn (c̃RSbn (1− α) ≤ c(1−α)(Λ,Ω)− ε) + 1− PFbn (Tbn ≤ c(1−α)(Λ,Ω) + η − ε) . (C-9)

Taking limit supremum on both sides, using steps 2 and 4, and that η − ε > 0,

lim sup
n→∞

PFbn (Tbn > c̃RSbn (1− α) + η) ≤ 1− P (J(Λ,Ω) ≤ c(1−α)(Λ,Ω) + η − ε) ≤ α .

This combined with steps 1 and 2 completes the proof under η > 0.

Step 6. For η = 0, there are two cases to consider. First, suppose c(1−α)(Λ,Ω) = 0. Then, by Assumption A.7,

lim sup
n→∞

PFbn (Tbn > c̃RSbn (1− α)) ≤ lim sup
n→∞

PFbn (Tbn 6= 0) ≤ α .

The proof is completed by combining the previous equation with steps 1 and 2. Second, suppose c(1−α)(Λ,Ω) > 0.

Consider a sequence {εm}m≥1 s.t. εm ↓ 0 and c(1−α)(Λ,Ω) − εm is a continuity point of the CDF of J(Λ,Ω) for all

m ∈ N. For any m ∈ N, it follows from Eq. (C-9) and steps 2 and 4 that

lim sup
n→∞

PFbn (Tbn > c̃RSbn (1− α)) ≤ 1− P (J(Λ,Ω) ≤ c(1−α)(Λ,Ω)− εm) .

Taking εm ↓ 0 and using continuity implies the RHS is equal to α. Combining the previous equation with steps 1

and 2 completes the proof.

Proof of Theorem 5.1. The proof follows directly from Theorem 6.1.

Proof of Theorem 6.1. This is a non-stochastic result that holds for every sample {Wi}ni=1.

Part 1. Show that φRSn ≥ φRCn . This result follows immediately from ĉRSn (1 − α) ≤ ĉRCn (1 − α). To show this,

note that by definition ĉRSn (1− α) ≤ c̃n(θ, 1− α) ∀θ ∈ Θ̂I , where c̃n(θ, 1− α) is the conditional (1− α)-quantile of

S(v̂∗n(θ) + ϕ(κ−1
n

√
nD̂1/2

n (θ)m̄n(θ), Ω̂n(θ)), Ω̂n(θ)) . (C-10)

By definition, ĉn(θ, 1 − α) denotes the GMS critical value, which is defined as the conditional (1 − α)-quantile of

Eq. (C-10), except that v̂∗n(θ) is replaced by Ω̂
1/2
n (θ)Z∗, with Z∗ ∼ N(0k, Ik) and Z∗ independent of {Wi}ni=1. Since

v̂∗n(θ) and Ω̂
1/2
n (θ)Z∗ have the same conditional distribution, it follows that c̃n(θ, 1− α) = ĉn(θ, 1− α) ∀θ ∈ Θ̂I . We

conclude that

ĉRSn (1− α) ≤ inf
θ∈Θ̂I

c̃n(θ, 1− α) = inf
θ∈Θ̂I

ĉn(θ, 1− α) = ĉRCn (1− α) .

Part 2. Show that φRCn ≥ φBPn . This result is a consequence of the following argument{
inf
θ∈Θ

Qn(θ) ≤ ĉRCn (1− α)

}
=

{
inf
θ∈Θ̂I

Qn(θ) ≤ inf
θ∈Θ̂I

ĉn(θ′, 1− α)

}
⊆

{
inf
θ∈Θ̂I

Qn(θ) ≤ ĉn(θ′, 1− α), ∀θ′ ∈ Θ̂I

}
⊆

{
∃θ ∈ Θ̂I : Qn(θ) ≤ ĉn(θ, 1− α)

}
⊆ {∃θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1− α)} ,

where the first equality holds by infθ∈Θ Qn(θ) = infθ∈Θ̂I
Qn(θ) and the definition of ĉRCn (1−α), the first inclusion is

elementary, the second inclusion holds by the lower semi-continuity of Qn (implies that Qn achieves a minimum in

Θ and, hence, a minimum in Θ̂I), and the final inclusion holds by Θ̂I ⊆ Θ.
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Proof of Theorem 6.2. Let {Fn ∈ P}n≥1, {θ∗n ∈ Θ}n≥1, and {θn ∈ Θ}n≥1 be as in Assumption A.9. Then,

EFn [φBPn ] = PFn(Qn(θ) > ĉn(θ, 1− α), ∀θ ∈ Θ)

≤ PFn (Qn(θ∗n) > ĉn(θ∗n, 1− α))

=


PFn (Qn(θ∗n) > ĉn(θn, 1− α) ∩ ĉn(θ∗n, 1− α) ≥ ĉn(θn, 1− α))

−PFn (ĉn(θ∗n, 1− α) ≥ Qn(θ∗n) > ĉn(θn, 1− α) ∩ ĉn(θ∗n, 1− α) ≥ ĉn(θn, 1− α))

+PFn (Qn(θ∗n) > ĉn(θ∗n, 1− α) ∩ ĉn(θ∗n, 1− α) < ĉn(θn, 1− α))


≤ PFn(Tn > infθ∈Θ̂I

ĉn(θ, 1− α))− PFn (ĉn(θ∗n, 1− α) ≥ Tn > ĉn(θn, 1− α)) + PFn (ĉn(θ∗n, 1− α) < ĉn(θn, 1− α)) ,

where the first equality holds by definition, the first inequality and second equality are elementary, and the final in-

equality follows from ĉn(θn, 1−α) ≥ infθ∈Θ̂I
ĉn(θ, 1−α) andQn(θ∗n) = Tn. Note that PFn(Tn > infθ∈Θ̂I

ĉn(θ, 1− α) ) =

EFn [φRCn ], and so

lim sup
n→∞

(EFn [φRCn ]− EFn [φBPn ])

≥ lim sup
n→∞

PFn (ĉn(θn, 1− α) < Tn ≤ ĉn(θ∗n, 1− α))− lim sup
n→∞

PFn (ĉn(θ∗n, 1− α) < ĉn(θn, 1− α)) .

It then suffices to show that the first expression on the RHS is positive and the second expression on the RHS is zero.

We begin with the first expression. To do this, fix ε ∈ (0, (cH − cL)/3) and consider the following argument

PFn(ĉn(θn, 1− α) < Tn ≤ ĉn(θ∗n, 1− α))

≥ PFn(ĉn(θn, 1− α) < cL + ε < Tn < cH − ε ≤ ĉn(θ∗n, 1− α))

≥ PFn(cL + ε < Tn < cH − ε) + PFn(ĉn(θn, 1− α) < cL + ε) + PFn(cH − ε ≤ ĉn(θ∗n, 1− α))− 2 ,

where all the inequalities are elementary. Using Assumption A.9 and taking sequential limits lim inf as n → ∞ and

ε ↓ 0 we conclude that

lim inf
n→∞

PFn(ĉn(θn, 1− α) < Tn ≤ ĉn(θ∗n, 1− α)) ≥ lim
ε↓0

P (J ∈ (cL + ε, cH − ε)) = P (J ∈ (cL, cH)) > 0 ,

where the equality follows from Fatou’s Lemma and the strict inequality is due to Assumption A.9.

Now consider the second expression. To do this, fix ε ∈ (0, (cH − cL)/3) and consider the following argument

PFn (ĉn(θ∗n, 1− α) ≥ ĉn(θn, 1− α)) ≥ PFn (ĉn(θ∗n, 1− α) ≥ cH − ε > cL + ε ≥ ĉn(θn, 1− α))

≥ PFn (ĉn(θ∗n, 1− α) ≥ cH − ε) + PFn (cL + ε ≥ ĉn(θn, 1− α))− 1 ,

where all the inequalities are elementary. Using Assumption A.9 and taking sequential limits lim inf as n → ∞ and

ε ↓ 0 we conclude that the two expression on the RHS converge to one, which leads to the desired result.

C.1 Auxiliary Theorems

Theorem C.1. Assume Assumptions A.1-A.5. Let {Fn ∈ P0}n≥1 be a (sub)sequence of distributions s.t. for some

(Ω,Λ∗) ∈ C(Θ2) × S(Θ × Rk[±∞]), (i) ΩFn
u→ Ω, and (ii) Λ∗n,Fn

H→ Λ∗, where Λ∗n,Fn is as in Eq. (A-3) (implies that

Θηn
I (Fn) is as in Definition 4.3). Then, there is a subsequence {an}n≥1 of {n}n≥1 s.t., along the sequence {Fan}n≥1,{

inf
θ∈Θ

ηan
I

(Fan )

S
(
v̂∗an(θ) + ϕ∗(κ−1

an

√
anD̂

1/2
an (θ)m̄an(θ)), Ω̂an(θ)

)∣∣∣∣∣ {Wi}ani=1

}
d→ J∗(Λ∗,Ω) ≡ inf

(θ,`)∈Λ∗
S(vΩ(θ) + ϕ∗(`),Ω(θ)) ,

for almost all sample sequences {Wi}i≥1, where vΩ : Θ → Rk is a tight zero-mean Gaussian process with covariance

(correlation) kernel Ω ∈ C(Θ2).
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Proof. Step 1. Consider the following derivation:

inf
θ∈Θ

ηn
I

(Fn)
S
(
v̂∗n(θ) + ϕ∗(κ−1

n

√
nD̂1/2

n (θ)m̄n(θ)), Ω̂n(θ)
)

= inf
θ∈Θ

ηn
I

(Fn)
S
(
v̂∗n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′κ−1

n

√
nD
−1/2
Fn

(θ)EFn [m(W, θ)]), Ω̂n(θ)
)

= inf
(θ,`)∈Λ∗

n,Fn

S
(
v̂∗n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′`), Ω̂n(θ)

)
,

where µn(θ) = (µn,1(θ), µn,2(θ)), µn,1(θ) ≡ κ−1
n ṽn(θ) and µn,2(θ) ≡ {σ̂−1

n,j(θ)σFn,j(θ)}
k
j=1. In order to obtain this

expression, we have used that D̂
−1/2
n (θ) and D

1/2
Fn

(θ) are both diagonal matrices.

Step 2. We show that there is a subsequence {an}n≥1 of {n}n≥1 s.t. {{(v̂∗an , µan , Ω̂an)|{Wi}ani=1}
d→ (vΩ, (0k,1k),Ω)

in l∞(θ) a.s. By part 8 in Lemma D.2, {v̂∗n|{Wi}ni=1}
d→ vΩ in l∞(θ) a.s. Then the result would follow from

finding a subsequence {an}n≥1 of {n}n≥1 s.t. {{(µan , Ω̂an)|{Wi}ani=1} → ((0k,1k),Ω) in l∞(θ) a.s. Since (µn, Ω̂n)

is conditionally non-stochastic, this is equivalent to finding a subsequence {an}n≥1 of {n}n≥1 s.t. (µan , Ω̂an)
a.s.→

((0k,1k),Ω) in l∞(θ). In turn, this follows from combining step 1, part 5 of Lemma D.2, and Lemma D.8.

Step 3. Let D denote the space of functions that map Θ onto Rk × Ψ and let D0 be the space of uniformly

continuous functions that map Θ onto Rk ×Ψ. Let the sequence of functionals {gn}n≥1 with gn : D → R be defined

by

gn(v(·), µ(·),Ω(·)) ≡ inf
(θ,`)∈Λ∗

n,Fn

S(v(θ) + ϕ∗(µ1(θ) + µ2(θ)′`),Ω(θ)) . (C-11)

Let the functional g : D0 → R be defined by

g(v(·), µ(·),Ω(·)) ≡ inf
(θ,`)∈Λ∗

S(v(θ) + ϕ∗(µ1(θ) + µ2(θ)′`),Ω(θ)) .

We now show that if the sequence of (deterministic) functions {(vn(·), µn(·),Ωn(·))}n≥1 with (vn(·), µn(·),Ωn(·)) ∈ D
for all n ∈ N satisfies

lim
n→∞

sup
θ∈Θ
||(vn(θ), µn(θ),Ωn(θ))− (v(θ), (0k,1k),Ω(θ))|| = 0 , (C-12)

for some (v(·),Ω(·)) ∈ D0, then

lim
n→∞

gn(vn(·), µn(·),Ωn(·)) = g(v(·), (0k,1k),Ω(·)) .

We now show lim infn→∞ gn(vn(·), µn(·),Ωn(·)) ≥ g(v(·), (0k,1k),Ω(·)). Showing lim supn→∞ gn(vn(·), µn(·),Ωn(·)) ≤
g(v(·), (0k,1k),Ω(·)) is very similar and therefore omitted. Suppose not, i.e., suppose that ∃δ > 0 and a subsequence

{an}n≥1 of {n}n≥1 s.t. ∀n ∈ N,

gan(van(·), µan(·),Ωan(·)) < g(v(·), (0k,1k),Ω(·))− δ . (C-13)

By definition, there exists a sequence {(θan , `an)}n≥1 that approximately achieves the infimum in Eq. (C-11), i.e.,

∀n ∈ N, (θan , `an) ∈ Λ∗an,Fan and

|gan(van(·), µan(·),Ωan(·))− S(van(θan) + ϕ∗(µ1(θan) + µ2(θan)′`an),Ωan(θan))| ≤ δ/2 . (C-14)

Since Λ∗an,Fan ⊆ Θ× Rk[±∞] and since (Θ× Rk[±∞], d) is a compact metric space, there exists a subsequence {bn}n≥1

of {an}n≥1 and (θ∗, `∗) ∈ Θ× Rk[±∞] s.t. d((θbn , `bn), (θ∗, `∗))→ 0.

We first show that (θ∗, `∗) ∈ Λ∗. Suppose not, i.e. (θ∗, `∗) 6∈ Λ∗, and consider the following argument

d((θbn , `bn), (θ∗, `∗)) + dH(Λ∗bn,Fbn ,Λ
∗) ≥ d((θbn , `bn), (θ∗, `∗)) + inf

(θ,`)∈Λ∗
d((θ, `), (θbn , `bn))

≥ inf
(θ,`)∈Λ∗

d((θ, `), (θ∗, `∗)) > 0 ,
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where the first inequality follows from the definition of Hausdorff distance and the fact that (θbn , `bn) ∈ Λ∗bn,Fbn ,

and the second inequality follows by the triangular inequality. The final strict inequality follows from the fact that

Λ∗ ∈ S(Θ×Rk[±∞]), i.e., it is a compact subset of (Θ×Rk[±∞], d), f(θ, `) = d((θ, `), (θ∗, `∗)) is a continuous real-valued

function, and Royden (1988, Theorem 7.18). Taking limits as n → ∞ and using that d((θbn , `bn), (θ∗, `∗)) → 0 and

Λ∗bn,Fbn
H→ Λ∗, we reach a contradiction.

Since (Θ, || · ||) is a compact metric space, d((θbn , `bn), (θ∗, `∗)) → 0 implies that θbn → θ∗. Then, consider the

following derivation:

||(vbn(θbn), µbn(θbn),Ωbn(θbn))− (v(θ∗), (0k,1k),Ω(θ∗))||

≤ ||(vbn(θbn), µbn(θbn),Ωbn(θbn))− (v(θbn), (0k,1k),Ω(θbn))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))||

≤ sup
θ∈Θ
||(vbn(θ), µbn(θ),Ωbn(θ))− (v(θ), (0k,1k),Ω(θ))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))|| → 0 ,

where the last convergence holds by Eq. (C-12), θbn → θ∗, and (v(·),Ω(·)) ∈ D0.

By continuity of ϕ∗ and Eq. (C-12), it follows that ϕ∗(µbn,1(θbn) + µbn,2(θbn)′`bn) → ϕ∗(`∗) . To see why, it

suffices to show that ϕ∗j (µbn,1,j(θbn) + µbn,2,j(θbn)′`bn,j) → ϕ∗j (`
∗
j ) for any j = 1, . . . , k. For j > p, the result holds

because ϕ∗j = 0. For j ≤ p, we consider the following argument. On the one hand, d((θbn , `bn), (θ∗, `∗))→ 0 implies

`bn,j → `∗j ∈ R[±∞] and on the other hand, Eq. (C-12) implies (µbn,1,j(θbn), µbn,2,j(θbn)) → (0, 1). Combining

this, we conclude that µbn,1,j(θbn) + µbn,2,j(θbn)`bn,j → `∗j , where `∗j ∈ R[±∞]. Assumption A.5 then implies that

ϕ∗j (µbn,1,j(θbn) + µbn,2,j(θbn)`bn,j)→ ϕ∗j (`
∗
j ).

Notice that (v(·),Ω(·)) ∈ D0 and the compactness of Θ imply that (v(θ∗),Ω(θ∗)) is bounded. Then, regardless of

whether ϕ∗(`∗) is bounded or not, limn→∞(vbn(θbn)+ϕ∗(µ1(θbn)+µ2(θbn)`bn),Ωbn(θbn)) = (v(θ∗)+ϕ∗(`∗),Ω(θ∗)) ∈
(Rk[±∞]×Ψ) and so limn→∞S(vbn(θbn) +ϕ∗(µ1(θbn) +µ2(θbn)`bn),Ωbn(θbn)) = S(v(θ∗) +ϕ∗(`∗),Ω(θ∗)), i.e, ∃N ∈ N
s.t. ∀n ≥ N ,

||S(vbn(θbn) + ϕ∗(µ1(θbn) + µ2(θbn)`bn),Ωbn(θbn))− S(v(θ∗) + ϕ∗(`∗),Ω(θ∗))|| ≤ δ/2 . (C-15)

By combining Eqs. (C-14) and (C-15), and the fact that (θ∗, `∗) ∈ Λ∗, it follows that ∃N ∈ N s.t. ∀n ≥ N ,

gbn(vbn(·), µbn(·),Ωbn(·)) ≥ S(v(θ∗) + ϕ∗(`∗),Ω(θ∗))− δ ≥ g(v(·), (0k,1k),Ω(·))− δ ,

which is a contradiction to Eq. (C-13).

Step 4. The proof is completed by combining the representation in step 1, the convergence result in step 2, the

continuity result in step 3, and the extended continuous mapping theorem (see, e.g., van der Vaart and Wellner

(1996, Theorem 1.11.1)). In order to apply this result, it is important to notice that parts 1 and 5 in Lemma D.2

and standard convergence results imply that (vΩ(·),Ω(·)) ∈ D0 a.s.

Theorem C.2. lim sup
n→∞

sup
F∈P0

EF [φBPn ] ≤ α.

Proof. Fix (n, F ) ∈ N× P0 arbitrarily. By definition, F ∈ P0 if and only if (θ, F ) ∈ F0 for some θ ∈ Θ. Then,

EF [1− φBPn ] = PF (CSn(1− α) 6= ∅) ≥ PF (θ ∈ CSn(1− α)) .

The result follows by noting that this and Eq. (2.9) imply that

lim inf
n→∞

inf
F∈P0

EF [1− φBPn ] ≥ lim inf
n→∞

inf
F∈P0

inf
θ∈ΘI (F )

PF (θ ∈ CSn(1− α)) ≥ 1− α .
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Appendix D Auxiliary Lemmas

D.1 Auxiliary convergence results

Lemma D.1. Assumptions A.1-A.4 imply that:

1. (M(F ), ρF ) being totally bounded uniformly in F ∈ P.

2. M(F ) is Donsker and pre-Gaussian, both uniformly in F ∈ P.

3. (Θ, || · ||) is a totally bounded metric space.

4. ∀ε > 0, limδ↓0 lim supn→∞ supF∈P PF (sup||θ−θ′||<δ ||vn(θ)− vn(θ′)|| > ε) = 0.

Proof. Part 1. Fix δ > 0 arbitrarily and consider the following derivation:

{ρF (θ, θ′) ≤ δ} ≡
{∥∥∥∥{VF [σ−1

F,j(θ)mj(W, θ)− σ−1
F,j(θ

′)mj(W, θ
′)]1/2

}k
j=1

∥∥∥∥ ≤ δ}
=

{
||[Ik −Diag(ΩF (θ, θ′))]1/2|| ≤ δ/

√
2
}

⊇
{
||θ − θ′|| ≤ δ′

}
,

where the identity follows from the definition of the “intrinsic” variance semimetric, the second equality is elementary,

and the inclusion holds for some δ′ > 0 independent of F due to Assumption A.4.

By compactness of (Θ, || · ||), ∃{θs}Ss=1 s.t. ∪Ss=1{θ ∈ Θ : ||θs − θ|| ≤ δ′} = Θ. Based on this, we can define

{fs ∈M(F )}Ss=1 s.t. fs ≡ D−1/2
F (θs)m(·, θs) for all s = 1, . . . , S. Let D

−1/2
F (θ)m(·, θ) ∈M(F ) be arbitrarily chosen.

We now claim that ρF (θs, θ) ≤ δ for some s = 1, . . . , S. By the previous construction, ∃s ∈ {1, . . . , S} s.t.

{||θs − θ|| ≤ δ′} ⊆ {ρF (θs, θ) ≤ δ}. Since the choice of δ > 0 was arbitrary and independent of F , the result holds.

Part 2. This follows from van der Vaart and Wellner (1996, Theorem 2.8.2). Assumption A.1 implies thatM(F )

is a measurable class. We take the envelope function to be {supθ∈Θ |σ
−1
F,j(θ)mj(·, θ)|2}kj=1, which is square integrable

uniformly in F ∈ P due to Assumption A.3.

Under these conditions, the desired result is equivalent to the following: (i) vn being asymptotically ρF -equicontinuous

uniformly in F ∈ P and (ii) (M(F ), ρF ) being totally bounded uniformly in F ∈ P. The first condition is exactly

assumed by Assumption A.2 and the second condition follows from part 1.

Part 3. This result follows trivially from the fact that (Θ, || · ||) is a compact metric space. See, e.g., Royden

(1988, pages 154-155).

Part 4. Fix ε > 0 arbitrarily. By elementary arguments, it suffices to show ∃δ′ > 0 s.t.

lim sup
n→∞

sup
F∈P

PF

(
sup

θ,θ′∈Θ:||θ−θ′||≤δ′
||vn(θ)− vn(θ′)|| > ε

)
≤ ε . (D-1)

By Assumption A.2, ∃δ > 0 s.t.

lim sup
n→∞

sup
F∈P

PF

(
sup

θ,θ′∈Θ:ρ(θ,θ′)≤δ
||vn(θ)− vn(θ′)|| > ε

)
≤ ε . (D-2)

In turn, for this choice of δ, we can use the argument in Part 1 to prove ∃δ′ > 0 (independent of F ) s.t. {||θ − θ′|| ≤
δ′} ⊆ {ρF (θs, θ) ≤ δ}. From this, it follows that,

PF

(
sup

θ,θ′∈Θ:||θ−θ′||≤δ′
||vn(θ)− vn(θ′)|| > ε

)
≤ PF

(
sup

θ,θ′∈Θ:ρ(θ,θ′)≤δ
||vn(θ)− vn(θ′)|| > ε

)
.

By combining the previous equation with Eq. (D-2), Eq. (D-1) follows.
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Lemma D.2. Assume Assumptions A.1-A.4. Let {Fn ∈ P}n≥1 be a (sub)sequence of distributions s.t. ΩFn
u→ Ω for

some Ω ∈ C(Θ2). Then, the following results hold:

1. vn
d→ vΩ in l∞(Θ), where vΩ : Θ → Rk is a tight zero-mean Gaussian process with covariance (correlation)

kernel Ω. In addition, vΩ is a uniformly continuous function, a.s.

2. Ω̃n
p→ Ω in l∞(Θ).

3. D
−1/2
Fn

(·)D̂1/2
n (·)− Ik

p→ 0k in l∞(Θ).

4. D̂
−1/2
n (·)D1/2

Fn
(·)− Ik

p→ 0k in l∞(Θ).

5. Ω̂n
p→ Ω in l∞(Θ).

6. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n vn

p→ 0k in l∞(Θ).

7. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n ṽn

p→ 0k in l∞(Θ).

8. {v∗n|{Wi}ni=1}
d→ vΩ in l∞(Θ) for almost all sample sequences {Wi}i≥1, where vΩ is the tight Gaussian process

described in part 1.

Proof. Part 1. The first part of the result follows from van der Vaart and Wellner (1996, Lemma 2.8.7), which requires

three conditions: (i) M(F ) is Donsker and pre-Gaussian, both uniformly in {Fn ∈ P0}n≥1, (ii) van der Vaart and

Wellner (1996, Eq. (2.8.5)), and (iii) van der Vaart and Wellner (1996, Eq. (2.8.6)). Condition (i) follows from part

1 in Lemma D.1, condition (ii) follows from ΩFn
u→ Ω, and condition (iii) follows from Assumption A.3.

To show the second part, consider the following arguments. On the one hand, Assumption A.4 and ΩFn
u→ Ω

imply that ∀ε1 > 0, ∃δ1 > 0 (independent of θ, θ′ ∈ Θ) s.t. ||θ − θ′|| ≤ δ1 implies that ||Diag(Ω(θ, θ′)) − Ik|| ≤ ε1

and this, in turn, implies that: ρΩ(θ, θ′) =
√

2||[Diag(Ω(θ, θ′))− Ik]1/2|| ≤
√

2ε1 where ρΩ is the “intrinsic” variance

semimetric when the variance-covariance function is Ω. On the other hand, the fact that vΩ is a tight Gaussian

process and the argument in van der Vaart and Wellner (1996, page 41) implies that ∀ε2 > 0, ∃δ2 > 0 (independent

of θ, θ′ ∈ Θ) s.t. ρΩ(θ, θ′) ≤ δ2 implies that P (||vΩ(θ) − vΩ(θ′)|| ≤ ε2) = 1. Fix ε > 0 arbitrarily. By setting ε = ε2

, ε1 = δ2, and δ = δ1, we conclude from both of these arguments that ∀ε > 0, ∃δ > 0 (independent of θ, θ′ ∈ Θ) s.t.

||θ − θ′|| ≤ δ implies that P (||vΩ(θ)− vΩ(θ′)|| ≤ ε) = 1, as required.

Part 2. For any j1, j2 = {1, . . . , k}, define the classes of functionsMj1,j2(F ) ≡ {σ−1
F,j1

(θ)mj1(·, θ)σ−1
F,j2

(θ)mj2(·, θ) :

W → Rk} and Mj1(F ) ≡ {σ−1
F,j1

(θ)mj1(·, θ) : W → Rk}. The desired result can be shown by verifying that,

∀j1, j2 = {1, . . . , k}, Mj1,j2(F ) and Mj1(F ) are both Gliveko-Cantelli uniformly in F ∈ P. In order to show such

a result, we apply van der Vaart and Wellner (1996, Theorem 2.8.1) to each of these classes. We only verify the

conditions of the theorem for Mj1,j2(F ) (the result for Mj1(F ) follows from using very similar arguments).

ConsiderMj1,j2(F ) for any j1, j2 = {1, . . . , k}. Assumption A.1 implies thatMj1,j2(F ) is a measurable class for

all F ∈ P. For this class, the function maxj≤k supθ∈Θ(σ−1
F,j(θ)mj(W, θ))

2 is an envelope function.

We now argue the envelope satisfies the first condition of the theorem. Under Assumption A.3, we follow the

argument in Lehman and Romano (2005, page 463) to deduce that,

lim
λ→∞

sup
F∈P

EF

[(
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣2
)

1

[
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣ > λ

]]
<∞, for j = 1, . . . , k ,

which implies that the envelope function satisfies the first condition of the theorem.

We now verify the second condition for Mj1,j2(F ). By Assumption A.3, the envelope is bounded in the

L1(F )-norm, uniformly in F ∈ P. Consequently, a sufficient requirement to verify the second condition is that

(Mj1,j2(F ), L1(F )) is totally bounded uniformly in F ∈ P, i.e., for all δ > 0 there is a set {θs ∈ Θ}Ss=1 s.t. for all

θ ∈ Θ, ∃s ≤ S s.t.

EF

[∣∣∣∣∣mj1(W, θ)

σ−1
F,j1

(θ)

mj2(W, θ)

σ−1
F,j2

(θ)
− mj1(W, θs)

σ−1
F,j1

(θs)

mj2(W, θs)

σ−1
F,j2

(θs)

∣∣∣∣∣
]
< δ .
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Now notice that, ∀θ, θs ∈ Θ,

EF

[∣∣∣∣mj1(W, θ)

σF,j1(θ)

mj2(W, θ)

σF,j2(θ)
− mj1(W, θs)

σF,j1(θs)

mj2(W, θs)

σF,j2(θs)

∣∣∣∣]
≤ EF

[∣∣∣∣mj1(W, θ)

σF,j1(θ)
− mj1(W, θs)

σF,j1(θs)

∣∣∣∣ ∣∣∣∣mj2(W, θ)

σF,j2(θ)

∣∣∣∣]+ EF

[∣∣∣∣mj2(W, θ)

σF,j2(θ)
− mj2(W, θs)

σF,j2(θs)

∣∣∣∣ ∣∣∣∣mj1(W, θs)

σF,j1(θs)

∣∣∣∣]

≤

 max
j∈{j1,j2}

(
EF

[∣∣∣∣mj(W, θ)

σF,j(θ)
− mj(W, θs)

σF,j(θs)

∣∣∣∣2
])1/2


2 max

j′∈{j1,j2}

(
EF

[∣∣∣∣mj′(W, θ)

σF,j′(θ)

∣∣∣∣2
])1/2

 ,

where the first inequality is elementary and the second inequality follows Hölder’s inequality. The RHS is a product

of two terms. By Assumption A.3, the second term is finite. Hence, the LHS can be arbitrarily small by choosing

the first term of the RHS small enough. As a consequence, (Mj1,j2(F ), L1(F )) is totally bounded uniformly in

F ∈ P follows from (Mj1(F ), L2(F )) and (Mj2(F ), L2(F )) being totally bounded uniformly in F ∈ P. By using the

argument in van der Vaart and Wellner (1996, Exercise 1, Page 93), we can show this follows from (M(F ), ρF ) being

totally bounded uniformly in F ∈ P, which has already been shown in part 1 of Lemma D.1.

Part 3. By part 2 and that Diag(Ω̃n(θ)) = D−1
Fn

(θ)D̂n(θ) and Diag(Ω(θ)) = Ik, it follows that D−1
Fn

(θ)D̂n(θ)−Ik
p→

0k in l∞(Θ), i.e., supθ∈Θ |σ
−2
Fn,j

(θ)σ̂2
n,j(θ)− 1| p→ 0 ∀j = 1, . . . , k.

For any (a, ε̃) ∈ R× (0, 1), |a2 − 1| ≤ ε̃ implies ||a| − 1| ≤ max{
√

1 + ε̃− 1, 1−
√

1− ε̃} = 1−
√

1− ε̃. Based on

this, choose ε ∈ (0,min{1, 2/k}) arbitrarily, set ε̃ = 1− (1− kε)2 > 0, and consider the following argument,{
max
θ∈Θ
||D−1

Fn
(θ)D̂n(θ)− Ik|| ≤ ε̃

}
⊆

⋂
j=1,...,k

{
max
θ∈Θ
|σ−2
Fn,j

(θ)σ̂2
n,j(θ)− 1| ≤ ε̃

}

⊆
⋂

j=1,...,k

{
max
θ∈Θ
|σ−1
Fn,j

(θ)σ̂n,j(θ)− 1| ≤ ε/k
}

⊆
{

max
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε
}
.

The result then follows from part 2 and ε being arbitrarily chosen.

Part 4. For a finite sample size, it is possible that σ̂n,j(θ) = 0 for some (θ, j) ∈ Θ×{1, . . . , k}, in which case D̂
1/2
n (θ)

would not be invertible. Let An = {D̂1/2
n (θ) is invertible ∀θ ∈ Θ} and define D̃

1/2
n (θ) ≡ D̂

1/2
n (θ) if An occurs and

D̃
1/2
n (θ) ≡ Ik otherwise. Note that D̃

1/2
n (θ) and D̃

−1/2
n (θ) are both diagonal matrices, and denote σ̃n(θ) ≡ D̃1/2

n (θ)[j,j]

and σ̃−1
n (θ) ≡ D̃−1/2

n (θ)[j,j] for al j = 1, . . . , k. Since D̂
1/2
n (θ) may not always be invertible, we prove instead that: (i)

infF∈P PF ({D̃−1/2
n (θ) = D̂

−1/2
n (θ) ∀θ ∈ Θ})→ 1 and (ii) D̃

−1/2
n (θ)D

1/2
Fn

(θ)− Ik
p→ 0k in l∞(Θ). Under the previous

two results, we conclude that D̂
−1/2
n (θ)D

1/2
Fn

(θ)− Ik
p→ 0k in l∞(Θ) by a slight abuse of notation.

We first show that infF∈P PF ({D̃−1/2
n (θ) = D̂

−1/2
n (θ) ∀θ ∈ Θ}) → 1. Fix (n, ε) ∈ N × (0, 1) arbitrarily. Notice

that supθ∈Θ ||D
−1/2
Fn

(θ)D̂
1/2
n (θ) − Ik|| ≤ ε implies that σ̂n,j(θ) > 0 for all (θ, j) ∈ Θ × {1, . . . , k} which is equivalent

to D̂
1/2
n (θ) being invertible ∀θ ∈ Θ, i.e., An. From this, we conclude that{

sup
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε
}
⊆ {D̃−1/2

n (θ) = D̂−1/2
n (θ) ∀θ ∈ Θ} .

The result then follows from part 3. The result reveals that the matrix D̂
1/2
n (θ) is invertible ∀θ ∈ Θ, uniformly in

F ∈ P, for n large enough.

We now show D̃
−1/2
n (θ)D

1/2
Fn

(θ)−Ik
p→ 0k in l∞(Θ). For any arbitrarily chosen ε ∈ (0, 1) we set ε′ ≡ kε/(1−ε) > 0

s.t. ε = ε′/(k + ε′) > 0. In this case, elementary arguments imply that{
sup
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε
}
⊆

⋂
j=1,...,k

{
sup
θ∈Θ

∣∣σ̃n,j(θ)σ−1
Fn,j

(θ)− 1
∣∣ ≤ ε}
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=
⋂

j=1,...,k

{
sup
θ∈Θ

∣∣σ̃−1
n,j(θ)σFn,j(θ)− 1

∣∣ ≤ ε′

k

}

⊆
{

sup
θ∈Θ
||D̃−1/2

n (θ)D
1/2
Fn

(θ)− Ik|| ≤ ε′
}
.

Since the arbitrary choice of ε ∈ (0, 1) induced a constant ε′ > 0, the result then follows from part 3.

Part 5. By the triangular inequality and part 2, it suffices to show that Ω̂n(θ)− Ω̃n(θ)
p→ 0k×k in l∞(Θ). To show

this, consider the following argument:

Ω̂n(θ)− Ω̃n(θ) ≡ D̂−1/2
n (θ)Σ̂n(θ)D̂−1/2

n (θ)− Ω̃n(θ)

= D̂−1/2
n (θ)D

1/2
Fn

(θ)Ω̃n(θ)D
1/2
Fn

(θ)D̂−1/2
n (θ)− Ω̃n(θ)

= ((D
1/2
Fn

(θ)D̂−1/2
n (θ)− Ik) + Ik)Ω̃n(θ)((D

1/2
Fn

(θ)D̂−1/2
n (θ)− Ik) + Ik)− Ω̃n(θ)

= 2(D
1/2
Fn

(θ)D̂−1/2
n (θ)− Ik)Ω̃n(θ) + (D

1/2
Fn

(θ)D̂−1/2
n (θ)− Ik)Ω̃n(θ)(D

1/2
Fn

(θ)D̂−1/2
n (θ)− Ik) .

By the previous equation, the submultiplicative property of the matrix norm and the fact that Ω̃n(θ) is a corre-

lation matrix, it follows that

||Ω̂n(θ)− Ω̃n(θ)|| ≤ 2||D1/2
Fn

(θ)D̂−1/2
n (θ)− Ik||+ ||D1/2

Fn
(θ)D̂−1/2

n (θ)− Ik||2 .

Fix ε > 0 arbitrarily and set ε′ > 0 s.t. 2ε′ + (ε′)2 ≤ ε. Then, the previous equation implies that{
sup
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε′
}
⊆
{

sup
θ∈Θ
||Ω̂n(θ)− Ω̃n(θ)|| ≤ ε

}
.

The result then follows from part 3 and ε being arbitrarily chosen.

Part 6. Fix ε, δ > 0 arbitrarily. By part 3 in Lemma D.1, ∃{θs}Ss=1 s.t. ∪Ss=1{θ ∈ Θ : ||θs − θ|| ≤ δ} = Θ. Based

on this, consider the following derivation:

PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
= PFn

(
max
s≤S

sup
{θ∈Θ:‖θs−θ‖≤δ}

||(vn(θ)− vn(θs)) + vn(θs)|| > λnε

)

≤ PFn

(
max
s≤S

sup
{θ∈Θ:‖θs−θ‖≤δ}

||vn(θ)− vn(θs)|| > λnε/2

)
+ PFn

(
max
s≤S
||vn(θs)|| > λnε/2

)

≤ PFn

(
sup

{θ,θ′∈Θ:||θ′−θ||≤δ}
||vn(θ)− vn(θ′)|| > λnε/2

)
+

S∑
s=1

PFn(||vn(θs)|| > λnε/2) .

Since λn →∞, λnε/2 > ε for all n ∈ N and, so

lim sup
n→∞

PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
≤ lim sup

n→∞
PFn

(
sup

{θ,θ′∈Θ:||θ′−θ||≤δ}
||vn(θ)− vn(θ′)|| > ε

)

+

S∑
s=1

lim sup
n→∞

PFn(||vn(θs)|| > λnε/2) .

By taking limits as δ ↓ 0 and part 4 in Lemma D.1, we conclude that

lim sup
n→∞

PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
≤

S∑
s=1

lim sup
n→∞

PFn(||vn(θs)|| > λnε/2) ,

and it then suffices to show PFn(||vn(θ)|| > λnε/2) → 0 ∀θ ∈ Θ. To show this, notice that ΩFn
u→ Ω implies

ΩFn(θ, θ)→ Ω(θ, θ) which, in turn, implies that vn(θ)
d→ N(0k,Ω(θ, θ)). Since λn →∞, the result follows.
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Part 7. Fix ε > 0 arbitrarily. By definition, ṽn(θ) ≡ D̂
−1/2
n (θ)D

1/2
Fn

(θ)vn(θ) ∀θ ∈ Θ and, so the next derivation

follows:

PFn

(
sup
θ∈Θ
||ṽn(θ)|| > λnε

)
= PFn

(
sup
θ∈Θ
||((D̂−1/2

n (θ)D
1/2
Fn

(θ)− Ik) + Ik)vn(θ)|| > λnε

)
≤ PFn

(
sup
θ∈Θ
||D̂−1/2

n (θ)D
1/2
Fn

(θ)− Ik|| sup
θ̃∈Θ

||vn(θ̃)|| > λnε

)
+ PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
≤ PFn

(
sup
θ∈Θ
||D̂−1/2

n (θ)D
1/2
Fn

(θ)− Ik|| >
√
λnε

)
+ PFn

(
sup
θ∈Θ
||vn(θ)|| >

√
λnε

)
+ PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
.

By parts 4 and 6, the three terms on the RHS converge to zero, concluding the proof.

Part 8. This result follows from a modification of van der Vaart and Wellner (1996, Theorem 3.6.2) to allow for

drifting sequences of probability measures {Fn ∈ P}n≥1. The original result proves that three statements are equal:

(i), (ii), and (iii). For the purpose of this part, it suffices to prove that (i) still implies (iii) in the case of drifting

sequences of probability measures. In order to complete the proof, one could follow the steps of the original proof:

(i) implies (ii), and (i) plus (ii) imply (iii).

Provided that the assumptions of the original theorem are valid uniformly in F ∈ P, then it is natural that

the conclusions of such theorem are also hold uniformly. Based on this argument, we limit ourselves to show that

condition (i) is uniformly valid. First, part 2 of Lemma D.1 indicates thatM(F ) is Donsker and pre-Gaussian, both

uniformly in F ∈ P. Second, Assumption A.3 is a finite (2 + a)-moment condition uniformly in F ∈ P.

D.2 Auxiliary results on S

Lemma D.3. Let the set A be defined as follows:

A ≡
{
x ∈ Rp[+∞] × Rk−p : max

{
max

j=1,...,p
{[xj ]−}, max

s=p+1,...,k
{|xs|}

}
= 1

}
. (D-3)

Then, inf(x,Ω)∈A×Ψ S(x,Ω) > 0.

Proof. First, notice that (x,Ω) ∈ A×Ψ implies that either xj < 0 for j ≤ p or xs 6= 0 for s > p, and so S(x,Ω) > 0. So

suppose not, i.e., suppose that inf(x,Ω)∈A×Ψ S(x,Ω) = 0. Then, ∃{(xn,Ωn) ∈ A×Ψ}n≥1 (and so, S(xn,Ωn) > 0) s.t.

limn→∞ S(xn,Ωn) = 0. By taking a further subsequence {an}n≥1 of {n}n≥1, {(xan ,Ωan)}n≥1 converges to (x̄, Ω̄) ∈
cl(A×Ψ) = A×Ψ and so S(x̄, Ω̄) > 0. This implies that (xan ,Ωan)→ (x̄, Ω̄) and limn→∞ S(xan ,Ωan) = 0 < S(x̄, Ω̄),

which is a contradiction to the continuity of S on Rp[+∞] × Rk−p ×Ψ.

Lemma D.4. There exists a constant $1 > 0 s.t. S(x,Ω) ≤ 1 and Ω ∈ Ψ implies xj ≥ −$1 for all j ≤ p and

|xs| ≤ $1 for all s > p.

Proof. Let (x,Ω) ∈ Rp[+∞] × Rk−p × Ψ be arbitrary s.t. S(x,Ω) ≤ 1. Set x̃ ≡ ({[xj ]−}pj=1, {xs}
k
s=p+1) and note

that xj ≥ −ε for all j ≤ p and |xs| ≤ ε for all s > p is equivalent to maxj=1,...,k |x̃j | ≤ ε. Since S((x1, x2),Σ) is

non-increasing in x1 ∈ Rp[+∞] and {xj}pj=1 ≥ {[xj ]−}
p
j=1, it follows that S(x,Ω) ≤ S(x̃,Ω). Thus, it suffices to find

$1 > 0 s.t. S(x̃,Ω) ≤ 1 implies that maxj=1,...,k |x̃j | ≤ $1. If maxj=1,...,k |x̃j | = 0, the result trivially follows so

consider the case where maxj=1,...,k |x̃j | > 0. In this case, the maintained assumptions on S imply that

1 ≥ S(x̃,Ω) = S

(
x̃

maxj=1,...,k |x̃j |
,Ω

)(
max

j=1,...,k
|x̃j |
)χ
≥ inf

(x,Ω)∈A×Ψ
S (x,Ω)

(
max

j=1,...,k
|x̃j |
)χ

,

where the set A is as in Eq. (D-3). Lemma D.3 then implies that

max
j=1,...,k

|x̃j | ≤
(

inf
(x,Ω)∈A×Ψ

S(x,Ω)

)−1/χ

,
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and the result then holds for $1 ≡ (inf(x,Ω)∈A×Ψ S(x,Ω))−1/χ > 0.

Lemma D.5. There exists a constant $2 > 0 s.t. (x,Ω) ∈ Rp[+∞] × Rk−p × Ψ with xj ≥ −$2 for all j ≤ p and

|xs| ≤ $2 for all s > p implies S(x,Ω) ≤ 1.

Proof. Suppose not. If so, for any sequence {εm}m≥1 with εm ↓ 0, we can find a sequence {(xm,Ωm) ∈ Rp[+∞] ×
Rk−p × Ψ}m≥1 with xm,j ≥ −εm for all j ≤ p, |xm,s| ≤ εm for all s > p, and S(xm,Ωm) > 1. By definition, then,

lim infm→∞ S(xm,Ωm) > 1. Since (Rp[+∞]×Rk−p×Ψ, d) is compact, we can always consider a subsequence {am}m≥1

of {m}m≥1 s.t. limm→∞ d((xam ,Ωam), (x,Ω)) = 0 for some (x,Ω) ∈ Rp[+∞]×Rk−p×Ψ. By the behavior of the limits,

(x,Ω) ∈ Rp+,∞ × {0k−p} ×Ψ. By continuity of S, limm→∞ S(xam ,Ωam) = S(x,Ω) = 0, which is a contradiction.

Lemma D.6. Let {(xm,Ωm) ∈ Rk[±∞]×Ψ}m≥1 be a sequence s.t. lim infm→∞ xm,j ≥ 0 for j ≤ p and limm→∞ xm,j =

0 for j > p. Then, limm→∞ S(xm,Ωn) = 0.

Proof. Suppose not, i.e., suppose that lim infm→∞S(xm,Ωm) > 0. Since (Rk[±∞] × Ψ, d) is compact, there is a

subsequence {am}m≥1 of {m}m≥1 s.t. limm→∞ d((xam ,Ωam), (x,Ω)) = 0 for some (x,Ω) ∈ Rk[±∞] × Ψ. By the

behavior of the limits, x ∈ Rp[+∞]×{0k−p} ⊆ Rp[+∞]×Rk−p. By continuity of S, limm→∞ S(xam ,Ωam) = S(x,Ω) = 0,

which is a contradiction.

D.3 Auxiliary results on subsequences

Lemma D.7. Let Assumption A.4 hold. For any arbitrary {Fn ∈ P}n≥1, there exists a subsequence {un}n≥1 of

{n}n≥1 s.t. Λun,Fun
H→ Λ, Λ∗un,Fun

H→ Λ∗, and ΩFun
u→ Ω for some (Ω,Λ,Λ∗) ∈ C(Θ2)×S(Θ×Rk[±∞])

2, where Λn,F

and Λ∗n,Fn are defined in Eqs. (3.6) and (A-3), respectively.

Proof. By Assumption A.4, {ΩF (θ, θ′) ∈ C(Θ2)}F∈P is an equicontinuous family of functions. Since {ΩFn(θ, θ′)}n≥1

is a bounded sequence in Rk×k, and its closure is compact. Then, by the Arzelà-Ascoli theorem (see, e.g., Royden

(1988, page 169)), there is a subsequence {an}n≥1 of {n}n≥1 and Ω ∈ C(Θ2) s.t. ΩFan
u→ Ω.

Since (Θ × Rk[±∞], d) is a compact metric space, Λan,Fan ∈ Θ × Rk[±∞], and the fact that any closed subset of a

compact space is compact (see, e.g., Royden (1988, page 156)), cl(Λan,Fan ) is a compact subset of Θ × Rk[±∞], i.e.,

cl(Λan,Fan ) ∈ S(Θ×Rk[±∞]). By Corbae et al. (2009, Theorem 6.1.16), S(Θ×Rk[±∞]) is compact under the Hausdorff

metric. As a consequence, there is a subsequence {bn}n≥1 of {an}n≥1 and Λ ∈ S(Θ×Rk[±∞]) s.t. dH(cl(Λbn,Fbn ),Λ)→
0. To conclude, it suffices to show that dH(Λbn,Fbn ,Λ)→ 0, which follows from dH(Λbn,Fbn , cl(Λbn,Fbn )) = 0 and the

triangular inequality.

As a next step, we define a subsequence {cn}n≥1 of {bn}n≥1 s.t. Λ∗cn,Fcn
H→ Λ∗ using an identical argument to

the one used before. The proof is then concluded by setting {un}n≥1 ≡ {cn}n≥1.

Lemma D.8. For any arbitrary {Fn ∈ P}n≥1, let Xn(θ) : Ω → l∞(Θ) be any stochastic process s.t. Xn
p→ 0 in

l∞(Θ). Then, there exists a subsequence {un}n≥1 of {n}n≥1 s.t. Xun
a.s.→ 0 in l∞(Θ).

Proof. Throughout this proof, we consider an arbitrary sequence {εn ∈ R++}n≥1 with εn ↓ 0. Then, for arbitrary

δ > 0 and arbitrary subsequence {un}n≥1 of {n}n≥1, it follows that:{
lim sup
n→∞

{
sup
θ∈Θ
||Xun(θ)|| > εun

}}c
=

{
lim inf
n→∞

{
sup
θ∈Θ
||Xun(θ)|| ≤ εun

}}
⊆
{

lim inf
n→∞

{
sup
θ∈Θ
||Xun(θ)|| ≤ δ

}}
.

Then, in order to complete the proof, it suffices to construct a subsequence {un}n≥1 of {n}n≥1 (solely dependent on

{εn ∈ R++}n≥1) s.t.

P

(
lim sup
n→∞

{
sup
θ∈Θ
||Xun(θ)|| > εun

})
= 0 .

35



Consider the following elementary argument:

P

(
lim sup
n→∞

{
sup
θ∈Θ
||Xun(θ)|| > εun

})
≡ P

(
∩n≥1

{
∪m≥n

{
sup
θ∈Θ
||Xkm(θ)|| > εkm

}})
≤ lim sup

n→∞
P

({
∪m≥n

{
sup
θ∈Θ
||Xkm(θ)|| > εkm

}})
≤ lim sup

n→∞

∑
m≥n

PFkm

({
sup
θ∈Θ
||Xkm(θ)|| > εkm

})
. (D-4)

It suffices to show that we can construct a subsequence {un}n≥1 of {n}n≥1 (solely dependent on {εn}n≥1) s.t. the

limit supremum on the RHS of Eq. (D-4) is zero.

Set u0 = 1. By the fact that Xn
p→ 0 in l∞(Θ) and for each n ∈ N, we can find un ≥ max{n, un−1} s.t.

PFun

(
sup
θ∈Θ
||Xun(θ)|| > εn

)
≤ 1

2n
.

As a corollary of this, we would have constructed a subsequence {un}n≥1 of {n}n≥1 s.t.

∑
m≥1

PFum

(
sup
θ∈Θ
||Xum(θ)|| > εm

)
<∞ .

It follows that the RHS of Eq. (D-4) is zero, completing the proof.

D.4 Auxiliary results on sufficient conditions for our assumptions

In this section we present some sufficient conditions for the assumptions in section B to hold.

Lemma D.9. Let ϕ : Rp[+∞] × Rk−p[±∞] × Ψ → Rk[+∞] take the form ϕ(ξ) = (ϕ1(ξ1), . . . , ϕp(ξp), 0k−p) and be s.t., for

all j = 1, . . . , p,

a. ϕj(ξj) ≤ 0 for all ξj < 0.

b. ϕj(ξj) = 0 at ξj = 0.

c. ϕj(ξj)→∞ as ξj →∞.

d. ϕj(ξj) has finitely many discontinuity points and ξj = 0 is not one of them.

Then, ϕ satisfies Assumption A.5.

Proof. Consider the following argument ∀j = 1, . . . , p. If ϕj is continuous, then set ϕ∗j (ξj) = max{ϕj(ξj), 0} for all

ξj ∈ R[±∞]. Otherwise, we split the constructive argument into the following cases.

First, suppose that all its points of discontinuity are negative. In this case, define ϕ∗j (ξj) = 0 for all ξj < 0 and

ϕ∗j (ξj) = ϕ∗j (ξj) for all ξj ≥ 0. It is now easy to verify that this function satisfies all the desired properties.

Second, suppose not all points of discontinuity are negative. By condition (d), zero is not a discontinuity point

and we can find the minimum discontinuity point, which we denote by ξ??j . It follows that ϕj(ξj) is a continuous

function for all ξj ∈ [0, ξ??j ). By continuity at zero, ∃ξ?j ∈ (0, ξ??j ) s.t. for some real number δ > 0, |ϕj(ξj)| ≤ δ for all

ξj ∈ [0, ξ?j ]. We divide the rest of the proof into two cases.

Case 1. ∃δ ∈ (0, 1) s.t. |ϕj(δξ?j )| > 0. In this case, define the following constants: A ≡ (G(δ) − δ)/(1 − δ) and

B ≡ δ/|ϕj(δξ?j )|, where G : R[±∞] → [0, 1] is the function defined in Eq. (A-1). Since δ ∈ (0, 1), it follows that
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A ∈ (0, 1) and B ≥ 1. In this case, define

ϕ∗j (ξj) =



0 if ξj ∈ [−∞, 0)

B|ϕj(ξj)| if ξj ∈ [0, δξ?j )

G−1(Aξj/ξ
?
j + (1−A)) if ξj ∈ [δξ?j , ξ

?
j )

∞ if ξj ∈ [ξ?j ,∞]

.

It is now easy to verify that this function satisfies all the desired properties.

Case 2. 6 ∃δ ∈ (0, 1) s.t. |ϕj(δξ?j )| > 0, i.e., ϕj(ξj) = 0 ∀ξj ∈ [0, ξ?j ). In this case, define:

ϕ∗j (ξj) =


0 if ξj ∈ [−∞, 0)

G−1(ξj/(2ξ
?
j ) + 1/2) if ξj ∈ [0, ξ?j )

∞ if ξj ∈ [ξ?j ,∞]

.

It is now easy to verify that this function satisfies all the desired properties.

Lemma D.10. Let Assumption A.8 hold. Then, for any {Fn ∈ P0}n≥1, γ ∈ (0, 1), and {θn ∈ Θηn
I (Fn)}n≥1

(with Θηn
I (Fn) as in Definition 4.3), there is a subsequence {un}n≥1 of {n}n≥1 and a sequence {θ̂un ∈ Θ}n≥1 s.t.

||θ̂un − θun || → 0 and

lim
n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] ≥ lim
n→∞

κ−γun
√
unσ

−1
Fun ,j

(θun)EFun [mj(W, θun)] for j ≤ p ,

lim
n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̃un)] = lim
n→∞

κ−γun
√
unσ

−1
Fun ,j

(θun)EFun [mj(W, θun)] for j > p . (D-5)

Proof. By definition, {θn ∈ Θηn
I (Fn)}n≥1 implies that S(

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)],ΩFn(θn)) ≤ ηn and, therefore,

QFn(θn) = S(D
−1/2
Fn

(θn)EFn [m(W, θn)],ΩFn(θn)) ≤ (η
1/χ
n /
√
n)χ → 0, where the convergence occurs by the definition

of ηn. By this and Assumption A.8(a), it follows that

O((η1/χ
n /
√
n)χ) = c−1QFn(θn) ≥ min{δ, inf

θ̃∈ΘI (Fn)
||θn − θ̃||}χ ⇒ ||θn − θ̃n|| ≤ O(η1/χ

n /
√
n) , (D-6)

for some sequence {θ̃n ∈ ΘI(Fn)}n≥1. By the convexity of Θ and Assumption A.8(c), the intermediate value theorem

implies that there is a sequence {θ∗n ∈ Θ}n≥1 with θ∗n in the line between θn and θ̃n s.t. for all γ > 0,

κ−γn
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] = GFn(θ∗n)κ−γn
√
n(θn − θ̃n) + κ−γn

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] .

Define θ̂n ≡ (1− κ−γn )θ̃n + κ−γn θn or, equivalently, θ̂n − θ̃n = κ−γn (θn − θ̃n). We can write the above equation as

GFn(θ∗n)
√
n(θ̂n − θ̃n) = κ−γn

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)]− κ−γn
√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] . (D-7)

By convexity of Θ and κ−γn → 0, {θ̂n ∈ Θ}n≥1. By Eq. (D-6),
√
n(θ̂n− θ̃n) =

√
nκ−γn (θn− θ̃n) ≤ O(κ−γn η

1/χ
n ) = O(1),

using that ηn = lnκn. Notice that this implies that ||θ̂n − θ̃n|| → 0. Also, notice that this also implies that

||θn − θ̃n|| → 0 as
√
nκ−γn → ∞ because of γ ≤ 1. Since θ∗n is in the line between θn and θ̃n, this also means that

||θ∗n − θ̃n|| → 0.

By using the intermediate value theorem once again, there is a sequence {θ∗∗n ∈ Θ}n≥1 with θ∗∗n in the line between

θ̂n and θ̃n s.t.

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] = GFn(θ∗∗n )
√
n(θ̂n − θ̃n) +

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]

= GFn(θ∗n)
√
n(θ̂n − θ̃n) +

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] + ε1,n , (D-8)

where the second equality holds by ε1,n ≡ (GFn(θ∗∗n )−GFn(θ∗n))
√
n(θ̂n−θ̃n). Since θ∗∗n is in the line between θ̂n and θ̃n

and ||θ̂n− θ̃n|| → 0, this means that ||θ∗∗n − θ̃n|| → 0. Then, we conclude that ||θ∗∗n −θ∗n|| ≤ ||θ∗∗n − θ̃n||+ ||θ∗n− θ̃n|| → 0.
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Combining Eqs. (D-7) and (D-8) we get

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] = κ−γn
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] + ε1,n + ε2,n , (D-9)

where ε2,n ≡ (1− κ−γn )
√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]. From {θ̃n ∈ ΘI(Fn)}n≥1 and κ−γn → 0, it follows that ε2,n,j ≥ 0

for j ≤ p and ε2,n,j = 0 for j > p. Moreover, Assumption A.8(c) implies that ||GFn(θ∗∗n )−GFn(θ∗n)|| = o(1) for any

sequence {Fn ∈ P0}n≥1 whenever ||θ∗∗n − θ∗n|| → 0. Using
√
n(θ̂n − θ̃n) = O(1), we have

||ε1,n|| ≡ ||GFn(θ∗∗n )−GFn(θ∗n)|| ×
√
n||θ̂n − θ̃n|| = o(1) . (D-10)

Finally, since (Rk[±∞], d) is compact, there is a subsequence {un}n≥1 of {n}n≥1 s.t.
√
unD

−1/2
Fun

(θ̂un)EFun [m(W, θ̂un)]

and κ−γun
√
unD

−1/2
Fun

(θun)EFun [m(W, θun)] converge. Then, from Eqs. (D-9), (D-10), and the properties of ε2,n, we

conclude that

lim
n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] ≥ lim
n→∞

κ−γun
√
unσ

−1
Fun ,j

(θun)EFun [mj(W, θun)] for j ≤ p ,

lim
n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] = lim
n→∞

κ−γun
√
unσ

−1
Fun ,j

(θun)EFun [mj(W, θun)] for j > p .

To conclude the proof, notice that ||θ̂n − θn|| ≤ ||θ̂n − θ̃n||+ ||θ̃n − θn|| → 0.

Remark D.1. According to the statement of Lemma D.10, the constant γ is restricted to the interval (r/χ, 1).

According to the proof, the result would be true even if we set γ = 1. However, Lemma D.10 is only required in the

proof of Lemma D.11 where the restriction to γ < 1 becomes necessary.

Lemma D.11. Let {Fn ∈ P0}n≥1 be s.t. Λn,Fn
u→ Λ and Λ∗n,Fn

u→ Λ∗ for some Λ,Λ∗ ∈ S(Θ × Rk[±∞]). Then,

Assumptions A.5 and A.8 imply Assumption A.6.

Proof. By definition, (θ∗, `∗) ∈ Λ∗ implies that there is a (sub)sequence {(θn, `n) ∈ Λ∗n,Fn}n≥1 s.t. d((θn, `n), (θ∗, `∗))→
0 with `n ≡ κ−1

n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)]. The fact that (θn, `n) ∈ Λ∗n,Fn , implies that θn ∈ Θηn
I (Fn) or, equiva-

lently, S(
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)],Ωn(θn)) ≤ ηn. By Lemma D.4, ∃$1 > 0 s.t.

κ1−γ
n `n,j = κ−γn

√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)] ≥ −κ−γn η1/χ

n $1 → 0, for j ≤ p ,

κ1−γ
n |`n,j | = κ−γn

√
nσ−1

Fn,j
(θn)|EFn [mj(W, θn)]| ≤ κ−γn η1/χ

n $1 → 0, for j > p , (D-11)

where γ ∈ (0, 1) is as in Lemma D.10 and the convergence occurs by ηn = lnκn. By the previous equations, γ < 1,

and the fact that d(`n, `
∗)→ 0, we conclude that `∗ ∈ Rp[+∞] × {0k−p}.

Lemma D.10 implies that Eq. (D-5) holds. By combining this with Eq. (D-11), we conclude that there is a

subsequence {un}n≥1 of {n}n≥1 and a sequence {θ̂un ∈ Θ}n≥1 s.t. ||θ̂un − θun || → 0 and

lim
n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] ≥ lim
n→∞

κ1−γ
un `un,j ≥ 0, for j ≤ p ,

lim
n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] = lim
n→∞

κ1−γ
un `un,j = 0, for j > p .

We define ˆ̀
n ≡
√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] and notice that, by definition, (θ̂n, ˆ̀
n) ∈ Λn,Fn . By the compactness

of (Θ × Rk[±∞], d), there is a subsequence {kn}n≥1 of {un}n≥1 s.t. d((θ̂kn , ˆ̀
kn), (θ, `)) → 0. Finally, since Λn,Fn →

Λ ∈ S(Θ× Rk[±∞]), we conclude that (θ, `) ∈ Λ. We can summarize the previous construction as follows:

`j = lim
n→∞

ˆ̀
kn,j ≥ lim

n→∞
κ1−γ
kn

`kn,j ≥ 0, for j ≤ p ,

`j = lim
n→∞

ˆ̀
kn,j = lim

n→∞
κ1−γ
kn

`kn,j = 0, for j > p . (D-12)

To conclude, we show that (θ, `) satisfies the requirements in Assumption A.6. First, d((θ̂kn , ˆ̀
kn), (θ, `)) → 0

and ||θ̂kn − θkn || → 0 and imply that limn→∞ θ̂kn = limn→∞ θkn = θ. Second, for j > p, Eq. (D-12) implies that
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`j = limn→∞ ˆ̀
kn,j = 0. Next, consider j ≤ p for which we know that `∗j ∈ R[+∞]. If `∗j = 0, then ϕ∗j (`

∗
j ) = 0 by

Assumption A.5. Eq. (D-12) then implies `j ≥ 0 = ϕ∗j (`
∗
j ). If `∗j > 0, then κ1−γ

kn
`kn,j →∞ and so Eq. (D-12) implies

`j =∞. It follows that `j ≥ ϕ∗(`∗j ) in this case as well.

D.5 Auxiliary results on Θ̂I

Lemma D.12. Let {Fn ∈ P0}n≥1 be a (sub)sequence of distributions s.t. ΩFn
u→ Ω for some Ω ∈ C(Θ2). For any

arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n infθ∈Θ Qn(θ)

p→ 0.

Proof. Fix n ∈ N arbitrarily. By definition, Fn ∈ P0 implies that θn ∈ ΘI(Fn), which implies that EFn [mj(W, θn)] ≥ 0

for j ≤ p and EFn [mj(W, θn)] = 0 for j > p. Therefore

0 ≤ λ−1
n inf

θ∈Θ
Qn(θ) ≤ λ−1

n Qn(θn) = S(λ−1/χ
n

√
nmn(θn), Σ̂n(θn)) ≤ S(λ−1/χ

n vn(θn), Ω̃n(θn)) ,

where the first two inequalities are elementary, the first equality is by definition of Qn and by the fact that S is

homogeneous of degree χ, and the second equality follows from monotonicity properties of S and θn ∈ ΘI(Fn), which

implies that EFn [mj(W, θn)] ≥ 0 for j ≤ p and EFn [mj(W, θn)] = 0 for j > p.

The proof is completed by showing that S(λ
−1/χ
n vn(θn), Ω̃n(θn))

p→ 0. Suppose not, i.e., ∃ε̄ > 0 s.t.

lim sup
n→∞

PFn

(∣∣∣S(λ−1/χ
n vn(θn), Ω̃n(θn))

∣∣∣ > ε̄
)
> 0 . (D-13)

Based on this, notice that

lim sup
n→∞

PFn

(∣∣∣S(λ−1/χ
n vn(θn), Ω̃n(θn))

∣∣∣ > ε̄
)

= lim
n→∞

PFan

(∣∣∣S(λ−1/χ
an van(θan), Ω̃an(θan))

∣∣∣ > ε̄
)

= lim
n→∞

PFbn

(∣∣∣S(λ
−1/χ
bn

vbn(θbn), Ω̃bn(θbn))
∣∣∣ > ε̄

)
, (D-14)

where the first equality holds for a subsequence {an}n≥1 of {n}n≥1 that achieves the limit supremum, the second

equality holds for a subsequence {bn}n≥1 of {an}n≥1 s.t. Ω(θbn)→ Ω∗. By Lemma D.2 (parts 5 and 6) and λ
1/χ
n →∞,

we conclude that λ
−1/χ
bn

vbn(θbn)
p→ 0k and Ω̃bn(θbn) − Ωbn(θbn)

p→ 0k. This, combined with Ω(θbn) − Ω∗ → 0k and

assumed properties of S, implies that S(λ
−1/χ
bn

vbn(θbn), Ω̃bn(θbn))
p→ S(0k,Ω

∗) = 0. As a result, the RHS of Eq.

(D-14) is zero, contradicting Eq. (D-13).

Lemma D.13. Assume Assumptions A.1-A.4 and let Θηn
I (Fn) be as in Definition 4.3. Then,

lim
n→∞

inf
F∈P0

PF
(

Θ̂n ⊆ Θηn
I (F )

)
= 1 .

Proof. Throughout this proof, let

Θ̂UB
I ≡ {θ ∈ Θ : Qn(θ) ≤ √ηn} = {θ ∈ Θ : S(η−1/(2χ)

n

√
nD̂−1/2

n (θ)m̄(θ), Ω̂n(θ)) ≤ 1} ,

where the equality relies on the definition of Qn(θ) and the maintained properties of S.

Step 1. Show that infF∈P0 PF (Θ̂I ⊆ Θ̂UB
I )→ 1. Fix (n, F ) ∈ N×P0 arbitrarily. By definition, Tn ≤

√
ηn implies

Θ̂I ⊆ Θ̂UB
I and, thus, it suffices to show that infF∈P0 PF (Tn ≤

√
ηn)→ 1. To show this, notice that:

lim inf
n→∞

inf
F∈P0

PF (Tn ≤
√
ηn) = lim

n→∞
PFan (Tan ≤

√
ηan) = 1 ,

where the first equality holds for a subsequence {an}n≥1 of {n}n≥1 that achieves the limit, the infimum, and is s.t.

ΩFan
u→ Ω for some Ω ∈ C(Θ2) (which can be found by Lemma D.7), and the second equality holds by Lemma D.12.
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Step 2. Show that infF∈P0 PF (Θ̂UB
I ⊆ Θηn

I (F ))→ 1. Fix (n, F ) ∈ N×P0 arbitrarily. By Lemma D.5, there exists

$2 > 0 s.t.

Θηn
I (F ) ≡ {θ ∈ Θ : S(η−1/χ

n

√
nEF [m(W, θ)],ΣF (θ)) ≤ 1} ⊇

{
θ ∈ Θ :

{
{
√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ −$2η
1/χ
n }pj=1∩

{
√
nσ−1

F,j(θ)|EF [mj(W, θ)]| ≤ $2η
1/χ
n }kj=p+1

}}
.

It then follows that

{
Θ̂UB
I ⊆ Θηn

I (F )
}
⊇

 ⋂
θ∈Θ̂UB

I

{
{
√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ −$2η
1/χ
n }pj=1∩

{
√
nσ−1

F,j(θ)|EF [mj(W, θ)]| ≤ $2η
1/χ
n }kj=p+1

}
=

{
{infθ∈Θ̂UB

I

√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ −$2η
1/χ
n }pj=1∩

{supθ∈Θ̂UB
I

√
nσ−1

F,j(θ)|EF [mj(W, θ)]| ≤ $2η
1/χ
n }kj=p+1

}

⊇

{
max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ $2η
1/χ
n

}
.

In turn, this implies that

lim inf
n→∞

inf
F∈P0

PF (Θ̂UB
I ⊆ Θηn

I (F )) ≥ lim inf
n→∞

inf
F∈P0

PF

(
max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ $2η
1/χ
n

)
.

The proof is completed by showing that the RHS is equal to one.

By Lemma D.4, there exists $1 > 0 s.t.

Θ̂UB
I = {θ ∈ Θ : S((

√
ηn)−1/χ√nD̂−1/2

n (θ)m̄(θ), Ω̂n(θ)) ≤ 1}

⊆

{
θ ∈ Θ :

{
{
√
nσ̂−1

n,j(θ)m̄j(θ) ≥ −$1η
1/(2χ)
n }pj=1∩

{
√
nσ̂−1

n,j(θ)|m̄j(θ)| ≤ $1η
1/(2χ)
n }kj=p+1

}}
. (D-15)

Now, fix (n, F, θ, j) ∈ N× P0 × Θ̂UB
I × {1, . . . , k} arbitrarily. By definition,

√
nσ−1

F,j(θ)EF [mj(W, θ)] = −vn,j(θ) +
√
nσ̂−1

n,j(θ)m̄j(θ)σ
−1
F,j(θ)σ̂n,j(θ) .

In the case of j ≤ p, θ ∈ Θ̂UB
I ⊆ Θ, and Eq. (D-15) then implies that

inf
θ∈Θ̂UB

I

√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ − sup
θ̃∈Θ

|vn,j(θ̃)| −$1η
1/(2χ)
n sup

θ̆∈Θ

|σ−1
F,j(θ̆)σ̂n,j(θ̆)| .

In the case of j > p, the same argument implies that

sup
θ∈Θ̂UB

I

√
nσ−1

F,j(θ)EF [mj(W, θ)] ≤ sup
θ̃∈Θ

|vn,j(θ̃)|+$1η
1/(2χ)
n sup

θ̆∈Θ

|σ−1
F,j(θ̆)σ̂n,j(θ̆)| .

One can combine the information ∀j ∈ {1, . . . , k} to deduce that

max
j=1,...,k

sup
θ∈Θ̂UB

I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ sup
θ̃∈Θ

||vn(θ̃)||+$1η
1/(2χ)
n sup

θ̆∈Θ

||D−1/2
F (θ̆)D̂1/2

n (θ̆)|| .

From this, it follows that

lim inf
n→∞

inf
F∈P0

PF

(
max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ $2η
1/χ
n

)

≥ lim inf
n→∞

inf
F∈P0

PF

(
sup
θ̃∈Θ

||vn(θ̃)||+$1η
1/(2χ)
n sup

θ∈Θ
||D−1/2

F (θ)D̂1/2
n (θ)|| ≤ $2η

1/χ
n

)
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≥ lim inf
n→∞

inf
F∈P0

PF

(
sup
θ∈Θ
||vn(θ)|| ≤ $2η

1/χ
n /2

)
+ lim inf

n→∞
inf
F∈P0

PF

(
sup
θ∈Θ
||D−1/2

F (θ)D̂1/2
n (θ)|| ≤ $2η

1/(2χ)
n /(2$1)

)
− 1

= lim
n→∞

PFan

(
sup
θ∈Θ
||van(θ)|| ≤ $2η

1/χ
an /2

)
+ lim
n→∞

PFan

(
sup
θ∈Θ
||D−1/2

Fan
(θ)D̂1/2

an (θ)|| ≤ $2η
1/(2χ)
an /(2$1)

)
− 1 = 1 ,

where the first two inequalities are elementary, the first equality holds for a subsequence {an}n≥1 of {n}n≥1 that

achieves the limit, the infimum, and is s.t. ΩFan
u→ Ω for some Ω ∈ C(Θ2) (which can be found by Lemma D.7), and

the final equality follows from ηn = lnκn →∞, and parts 3 and 6 of Lemma D.2.

D.6 Auxiliary results on consistency

Theorem D.1. Assume Assumptions A.1-A.4 and let F ∈ P/P0 be s.t. hF (θ) ≡ D−1/2
F (θ)EF [m(W, θ)] : Θ→ Rk is

continuous. Then,

limEF [φBPn ] = limEF [φRCn ] = limEF [φRSn ] = 1 .

Proof. By Lemma 6.1, it suffices to show limEF [φBPn ] = 1. For any C > 0, consider the following derivation:

φBPn = 1[∀θ ∈ Θ : Qn(θ) > ĉn(θ, 1− α)] ≥ 1[supθ∈Θ ĉn(θ, 1− α) ≤ C ∩ C < Tn] ,

where Tn ≡ infθ∈Θ Qn(θ) and ĉn(θ, 1−α) is the (conditional) (1−α)-quantile of S(Ω̂
1/2
n (θ)Z∗+ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ))

with Z∗ ∼ N(0k, Ik). From here it follows that

EF [φBPn ] ≥ PF (supθ∈Θ ĉn(θ, 1− α) ≤ C) + PF (Tn > C)− 1 .

To complete the proof, it suffices to find C̄ > 0 s.t. both expressions on the RHS are equal to one.

First, we show that PF (supθ∈Θ ĉn(θ, 1−α) ≤ C̄) = 1 for some constant C̄. By monotonicity of S(·), ĉn(θ, 1−α) ≤
ĉPAn (θ, 1− α), where ĉPAn (θ, 1− α) is the (conditional) (1− α)-quantile of S(Ω̂

1/2
n (θ)Z∗, Ω̂n(θ)) with Z∗ ∼ N(0k, Ik).

Since Ω̂n(θ) ∈ Ψ, ĉPAn (θ, 1 − α) ≤ C̄ where C̄ is the (conditional) (1 − α)-quantile of supΩ∈Ψ S(Ω1/2Z∗,Ω) with

Z∗ ∼ N(0k, Ik). By definition, supθ∈Θ ĉn(θ, 1− α) ≤ C̄ ∈ (0,∞), which implies the desired result.

Second, we show that PF (Tn > C̄)→ 1. To show this, consider the following derivation:

inf
θ∈Θ

S(m̄n(θ), Σ̂n(θ)) = inf
θ∈Θ

S(D
−1/2
F (θ)m̄n(θ), Ω̃n(θ))

p→ inf
θ∈Θ

S(D
−1/2
F (θ)EF [m(W, θ)],ΩF (θ)) = inf

θ∈Θ
QF (θ) > 0 ,

(D-16)

where we use Ω̃n(θ) ≡ D
−1/2
F (θ)Σ̂n(θ)D

−1/2
F (θ) and ΩF (θ) ≡ D

−1/2
F (θ)ΣF (θ)D

−1/2
F (θ). The two equalities are

elementary, the strict inequality follows from F ∈ P/P0, and the convergence in probability is shown in the next

paragraph. From Eq. (D-16), it follows that Tn = nχ/2 infθ∈Θ S(m̄n(θ), Σ̂n(θ))
p→∞, which implies the desired result.

To complete the proof, it suffices to show the convergence in probability in Eq. (D-16). The main steps of this

argument are similar to the ones used to prove Theorem 3.1. We now provide a basic sketch of the main ideas. By

part 6 in Lemma D.2 (with λn =
√
n) we conclude that D

−1/2
F (·)m̄n(·) p→ D

−1/2
F (·)EF [m(W, ·)] in l∞(Θ). By part 2

in Lemma D.2 we conclude that Ω̃n
p→ ΩF in l∞(Θ). Elementary arguments in convergence in probability then imply

that (D
−1/2
F (·)m̄n(·), Ω̃n)

p→ (D
−1/2
F (·)EF [m(W, ·)],ΩF ) in l∞(Θ). Furthermore, under the assumptions of the result,

(D
−1/2
F (·)EF [m(W, ·)],ΩF ) : Θ→ Rk[±∞] ×Ψ is continuous function. By these findings and the extended continuous

mapping theorem (e.g. van der Vaart and Wellner (1996, Theorem 1.11.1)), the result follows.
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Appendix E Additional Monte Carlo results

Example E.1 (An incomplete IV model). The economic model that states that the true parameters (θ, F ) satisfy

Y = G(X, θ) + ε and EF (εU) = 0 , (E-1)

where G is a known parametric function specified the researcher, X is a vector of endogenous covariate, and U is a

vector of instruments with dimension dU . The observed data are {Wi}ni=1 where ∀i = 1, . . . , n, Wi ≡ (Yi, Xi, Ui).

The model in Eq. (E-1) produces the following collection of moment equalities

EF [ml(W, θ)] = EF [(Y −G(X, θ))Ul] = 0 ∀l = 1, . . . , dU . (E-2)

We choose a simple parametrization for our Monte Carlo simulations. Suppose that G(x, θ) = θ1x+ θ2, there are

two instruments, U = [1, V ] (i.e. dU = 2), and that CovF (X,U) = 0. In this context, Eq. (E-2) is equivalent to

EF [m1(W, θ)] = EF [Y − θ1X − θ2] = 0 and EF [m2(W, θ)] = EF [Y V − θ1XV − θ2V ] = 0 . (E-3)

It is straightforward to show that for any distribution F ∈ P, the identified set ΘI(F ) is given by

ΘI(F ) = {(θ1, θ2) ∈ Θ : EF [Y −Xθ1 − θ2] = 0, CovF (Y, V ) = 0} .

This model is correctly specified if and only if CovF (Y, V ) = 0 and is never point-identified. �

η
C n Method -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

BP 19.32 5.34 0.78 0.08 0.02 0.00 0.00 0.10 0.64 4.74 18.52
0.8 100 RC 20.10 5.74 0.88 0.08 0.02 0.00 0.00 0.10 0.72 5.04 19.30

RS 27.44 12.82 4.98 1.04 0.14 0.02 0.12 0.88 3.58 11.74 26.96
BP 19.32 5.34 0.78 0.08 0.02 0.00 0.00 0.10 0.64 4.74 18.52

0.9 100 RC 20.10 5.74 0.88 0.08 0.02 0.00 0.00 0.10 0.72 5.04 19.30
RS 27.44 12.82 4.98 1.04 0.14 0.02 0.12 0.88 3.58 11.74 26.96
BP 19.32 5.34 0.78 0.08 0.02 0.00 0.00 0.10 0.64 4.74 18.52

1 100 RC 20.10 5.74 0.88 0.08 0.02 0.00 0.00 0.10 0.72 5.04 19.30
RS 27.44 12.82 4.98 1.04 0.14 0.02 0.12 0.88 3.58 11.74 26.96
BP 67.80 33.38 6.40 0.28 0.00 0.00 0.00 0.44 6.76 33.20 69.22

0.8 200 RC 68.28 33.96 6.76 0.32 0.00 0.00 0.00 0.52 7.16 33.70 69.76
RS 70.36 38.68 13.80 2.98 0.16 0.00 0.18 3.12 13.84 38.74 71.90
BP 67.80 33.38 6.40 0.28 0.00 0.00 0.00 0.44 6.76 33.20 69.22

0.9 200 RC 68.28 33.96 6.76 0.32 0.00 0.00 0.00 0.52 7.16 33.70 69.76
RS 70.36 38.68 13.80 2.98 0.16 0.00 0.18 3.12 13.84 38.74 71.90
BP 67.80 33.38 6.40 0.28 0.00 0.00 0.00 0.44 6.76 33.20 69.22

1 200 RC 68.28 33.96 6.76 0.32 0.00 0.00 0.00 0.52 7.16 33.70 69.76
RS 70.36 38.68 13.80 2.98 0.16 0.00 0.18 3.12 13.84 38.74 71.90

Table 3: Rejection rate (in %) of Test BP, Test RC, and Test RS for the model in Eq. (E-3). Parameter
values are α = 10% and κn = C

√
log n. Results based on 5, 000 Monte Carlo replications.

We simulate data according to the simple parametrization in Example E.1, i.e., Eq. (E-3). The data {Wi}ni=1

are i.i.d., where Wi ≡ (Yi, Xi, Vi) ∼ N((0, 0, 0), (1, 0, η; 0, 1, 0; η, 0, 1)) for different values of η ∈ R. On the one hand,

η = 0 implies the model is correctly specified and ΘI(F ) = {(θ1, θ2) ∈ Θ : θ2 = 0}. On the other hand, η 6= 0 implies

that the model is misspecified, and |η| measures of the amount of model misspecification.

The simulation results are collected in Table 3 and they are consistent with the theoretical findings. Under the

null hypothesis (i.e. η = 0) all tests considered in this paper are asymptotically level correct (i.e. the asymptotic

rejection rate does not exceed α). In fact, the tests appear to be conservative (especially Tests BP and RC). As

expected, rejection rates rise as the model becomes misspecified and the amount of misspecification increases.
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There are two salient features about these results. First, Test BP and RC appear to have almost identical power.

Second, Test RS appears to be much more powerful than the other two tests. Regarding this second observation, one

can show in this example that the inequality in Eq. (5.3) becomes strict in an asymptotic sense. As a corollary of

this, we can conclude that Test RS is strictly more powerful than Tests RC and BP.
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