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Abstract

This paper introduces a new hypothesis test for the null hypothesis H0 : f(θ) = γ0, where f(·) is a

known function, γ0 is a known constant, and θ is a parameter that is partially identified by a moment

(in)equality model. The main application of our test is sub-vector inference in moment inequality models,

that is, for a multidimensional θ, the function f(θ) = θk selects the kth coordinate of θ. Our test controls

asymptotic size uniformly over a large class of distributions of the data and has better asymptotic power

properties than currently available methods. In particular, we show that the new test has asymptotic

power that dominates the one corresponding to two existing competitors in the literature: subsampling

and projection-based tests.
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1 Introduction

Consider the following model defined by a finite number of moment (in)equalities of the form

EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p ,

EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k , (1.1)

where {Wi}ni=1 is an i.i.d. sequence of random variables with distribution F and m : Rd×Θ→ Rk is a known

measurable function of the finite dimensional parameter θ ∈ Θ ⊆ Rdθ . The literature on inference in partially

identified models offers by now several methods to conduct inference on the identifiable parameter θ. These

inferential methods propose combinations of tests statistics and critical values for testing the hypotheses

H0 : θ = θ0 versus H1 : θ 6= θ0 and inverting such tests to construct confidence sets for θ. See, e.g., Imbens

and Manski (2004), Chernozhukov et al. (2007), Romano and Shaikh (2008), Andrews and Guggenberger

(2009), and Andrews and Soares (2010).1 However, the research question is frequently about a feature of θ

that can be represented via a function f : Θ→ Γ. The hypotheses testing problem then becomes

H0 : f(θ) = γ0 vs. H1 : f(θ) 6= γ0 , (1.2)

where θ is the partially identified parameter defined by the model in (1.1).

The problem of testing the null f(θ) = γ0 arises frequently in applied research, yet there is no com-

prehensive treatment in the literature to this problem. The only formal attempts we are aware of are the

subsampling test proposed by Romano and Shaikh (2008) and the common practice of checking whether the

image under f(·) of a confidence set for θ intersects with the null hypothesis - see Examples 2.1 and 2.2.

This paper introduces a new test for the hypotheses in (1.2) that controls asymptotic size uniformly over a

large class of distributions of the data and has better asymptotic power properties than existing tests in the

literature.

The most empirically relevant application of our test is the one where f(·) selects a subvector of θ, i.e.,

f(θ) = θs for s = 1, . . . , dθ. The methods available in the literature are designed for inference on the entire

parameter θ, yet empirical results are typically reported in a table with one row for each coordinate of θ. The

end result is a standard practice based on the following crude construction: compute a confidence set for θ,

denoted by CSn(1−α), and then present a table with the projection of CSn(1−α) onto each coordinate θs,

s = 1, . . . , dθ, of θ. In other words, tables present the smallest dθ-dimensional cube that contains CSn(1−α) -

see Examples 2.1 and 2.2 for concrete references. This is a convenient way of presenting results as it resembles

the standard practice in point identified models, but it suffers from three problems. First, when interest lies

on individual components of θ, projection methods are typically conservative (even asymptotically). This

problem gets exacerbated when the dimension of θ is reasonably high. Second, the projections derived from

CSn(1−α) do not necessarily inherit the good asymptotic power properties of CSn(1−α). This removes part

of the motivation for using methods based on projecting good confidence set for the entire vector θ. Finally,

on the computational side it is typically the case that constructing CSn(1−α) is unnecessarily burdensome

if the researcher is only interested on specific components of θ. Our paper addresses this empirical problem

by proposing a test specifically designed to do inference on coordinates of θ that does not suffer from these

problems and has attractive asymptotic properties.

1Additional references include Beresteanu and Molinari (2008), Rosen (2008), Stoye (2009), Bugni (2010), Canay (2010),
Romano and Shaikh (2010), Galichon and Henry (2011), Pakes et al. (2011), Bontemps et al. (2012), Bugni et al. (2012), and
Romano et al. (2013) among others.
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In the general case of the hypotheses in (1.2), Romano and Shaikh (2008) proposed confidence sets for

θ based on a subsampling test and noticed that a crude construction of a confidence region for a function

of identifiable parameters is available as the image of CSn(1− α) under the function of interest. Motivated

by the fact that such a construction will typically be very conservative, they propose a test based on a

profiled criterion function, see (2.3), and a subsampling critical value. However, no formal comparison

between the test they propose and the so-called crude construction is provided. In this paper we provide

a full characterization of the properties of the test we propose by comparing the power properties of our

test with those of a subsampling test (which we denote by Test SS) and the test based on the the image

of CSn(1 − α) under f(·) (which we denote by Test BP). In Section 3 we present three formal results: (a)

we show that our test weakly dominates the finite sample power of Test BP for all alternative hypotheses

(see Theorem 3.1), (b) we show that our test weakly dominates Test SS in terms of asymptotic power under

certain conditions (see Theorem 3.2), and (c) we formalize the conditions under which our test provides

strictly higher asymptotic power than both of these tests (see Remarks 3.3 and 3.9). To provide further

insight on these conditions, Section 3.3 illustrates cases in which our test strictly dominates the asymptotic

power of the other two tests via examples.

All the asymptotic results in this paper hold uniformly over a large class of nuisance parameters. In

particular, the test we propose controls asymptotic size over a large class of distributions F and can be

inverted to construct uniformly valid confidence sets (see Remark 2.3). This represents an important dif-

ference with respect to other methods that could also be used for inference on components of θ, such as

Pakes et al. (2011), Chen et al. (2011), Kline and Tamer (2013), and Wan (2013). The test proposed by

Pakes et al. (2011) is, by construction, a test for each coordinate of the parameter θ. However, such test

controls size over a much smaller class of distributions than the one we consider in this paper (c.f. Andrews

and Han, 2009). The approach recently introduced by Chen et al. (2011) is especially useful for parametric

models with unknown functions, which do not correspond exactly with the model in (1.1). In addition, the

asymptotic results in that paper hold pointwise and so it is unclear whether it controls asymptotic size over

the same class of distributions we consider. The method in Kline and Tamer (2013) is Bayesian in nature,

requires either the function m(Wi, θ) to be separable (in Wi and θ) or discretely-supported data, and focuses

on inference about the identified set as opposed to identifiable parameters. Finally, Wan (2013) introduces

a computationally attractive inference method based on MCMC, but derives pointwise asymptotic results.

Due to these reasons we do not devote special attention to these papers.

We view our test as an attractive alternative to applied researchers and so we have included a step by step

algorithm to implement our test in Appendix A.1. In the same section we provide some recommendations

on the choice of test statistics and tuning parameters. We use this algorithm and these recommendations in

the Monte Carlo simulations of Section 4. Our numerical results support all the theoretical findings about

asymptotic size control (Section 2) and asymptotic power advantages (Section 3).

2 New Test: the minimum resampling test

2.1 Framework and test statistic

In this paper we are interested in a situation in which, given the model in (1.1), the research question

concerns a known feature of the partially identified parameter θ that can be represented by a function

f : Θ→ Γ. Examples include an individual component, f(θ) = θ1 = γ0, or two components being the same,

f(θ) = θ1−θ2 = 0, to mention a few. The leading case we focus on is the one where interest lies in individual

2



components of θ. This is a very common situation in empirical applications as illustrated in the next two

examples.

Example 2.1. Ciliberto and Tamer (2010) investigate the empirical importance of firm heterogeneity as

a determinant of market structure in the U.S. airline industry. They show that the competitive effects of

large airlines (American, Delta, United) are different from those of low cost carriers and Southwest. The

parameter θ entering the profit functions in Ciliberto and Tamer (2010) has close to 30 components in some

of the specifications they use. However, interest is centered in the competitive effect of American Airlines, in

whether two airlines have the same coefficients, or in some other restriction that involves a small number of

components of θ. The authors report a table with the smallest cube that contains a 95% confidence region

for ΘI(F ). These projections are what we call “the standard practice” in this paper. �

Example 2.2. Grieco (2013) introduces an entry model that includes both publicly observed and privately

known structural errors for each firm and studies the impact of supercenters - large stores such as Wal-Mart

- on the profitability of rural grocery stores. The parameter θ in his application is multi-dimensional with

11 components. However, interest centers on the coefficient that measures the presence of a supercenter on

the value of a grocery store. In his application, Grieco (2013) also reports projections of the confidence set

for θ onto parameter axes and clarifies that such table “exaggerates the size of the confidence sets of the full

model” (see Grieco, 2013, footnote 54). �

In order to describe the new test we propose for the hypotheses in (1.2) we need to introduce some

basic notation. We assume throughout the paper that F , the distribution of the observed data, belongs

to a baseline probability space that we define below. We then introduce an appropriate baseline and null

parameter space for (γ, F ), which is the tuple composed of the parameter of interest γ (the image of the

function f) and the distribution of the data. In order to keep the exposition as reader friendly as possible,

we summarize the most important notation in Table 2, Appendix A.

Definition 2.1 (Baseline Probability Space). The baseline space of probability distributions, denoted by

P ≡ P(a,M,Ψ), is the set of distributions F such that, when paired with some θ ∈ Θ, the following

conditions hold:

(i) {Wi}ni=1 are i.i.d. under F ,

(ii) σ2
F,j(θ) = V arF (mj(Wi, θ)) ∈ (0,∞), for j = 1, . . . , k,

(iii) CorrF (m(Wi, θ)) ∈ Ψ,

(iv) EF |mj(Wi, θ)/σF,j(θ)|2+a ≤M ,

where Ψ is a specified closed set of k × k correlation matrices, and M and a are fixed positive constants.

Definition 2.2 (Identified Set). For any F ∈ P, the identified set ΘI(F ) is the set of parameters θ ∈ Θ

that satisfy the moments restrictions in (1.1).

Definition 2.3 (Null Set and Null Identified Set). For any F ∈ P and γ ∈ Γ, the null set Θ(γ) ≡
{θ ∈ Θ : f(θ) = γ} is the set of parameters satisfying the null hypothesis, and the null identified set

ΘI(F, γ) ≡ {θ ∈ ΘI(F ) : f(θ) = γ} is the set of parameters in the identified set satisfying the null hypothesis.

Definition 2.4 (Parameter Space for (γ, F )). The parameter space for (γ, F ) is given by L ≡ {(γ, F ) : F ∈
P, γ ∈ Γ}. The null parameter space is L0 ≡ {(γ, F ) : F ∈ P, γ ∈ Γ,ΘI(F, γ) 6= ∅}.
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Our test is based on a non-negative function QF : Θ→ R+, referred to as population criterion function,

with the property that QF (θ) = 0 if and only if θ ∈ ΘI(F ). In the context of the moment (in)equality model

in (1.1), it is convenient to consider criterion functions that are specified as follows (see, e.g., Andrews and

Guggenberger, 2009; Andrews and Soares, 2010; Bugni et al., 2012),

QF (θ) = S(EF [m(W, θ)],ΣF (θ)) , (2.1)

where ΣF (θ) ≡ V arF (m(W, θ)) and S : Rp[+∞] × Rk−p × Ψ → R+ is the test function specified by the

econometrician that needs to satisfy several regularity assumptions.2 The (properly scaled) sample analogue

criterion function is

Qn(θ) = S(
√
nm̄n(θ), Σ̂n(θ)) , (2.2)

where m̄n(θ) ≡ (m̄n,1(θ), . . . , m̄n,k(θ)), m̄n,j(θ) ≡ n−1
∑n
i=1mj(Wi, θ) for j = 1, . . . , k, and Σ̂n(θ) is a

consistent estimator of ΣF (θ). Sometimes it is more convenient to work with correlation matrices, in which

case we use ΩF (θ) ≡ D
−1/2
F (θ)ΣF (θ)D

−1/2
F (θ), Ω̂n(θ) ≡ D̂

−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ), DF (θ) = Diag(ΣF (θ)),

and D̂n(θ) = Diag(Σ̂n(θ)). Finally, for a given γ0 ∈ Γ, the test statistic we use for testing (1.2) is the profiled

version of Qn(θ),

Tn(γ0) ≡ inf
θ∈Θ(γ0)

Qn(θ) . (2.3)

Theorem C.4 in the Appendix adapts results from Bugni et al. (2013) to show that, along relevant sub-

sequences of parameters (γn, Fn) ∈ L0,

inf
θ∈Θ(γn)

Qn(θ)
d→ J(Λ,Ω) ≡ inf

(θ,`)∈Λ
S(vΩ(θ) + `,Ω(θ, θ)) , (2.4)

where vΩ : Θ → Rk is a Rk-valued tight Gaussian process with covariance (correlation) kernel Ω ∈ C(Θ2),

and Λ is the limit (in the Hausdorff metric) of the set

Λn,Fn(γn) ≡
{

(θ, `) ∈ Θ(γn)× Rk : ` =
√
nD
−1/2
Fn

(θ)EFn [m(W, θ)]
}
. (2.5)

The limit distribution J(Λ,Ω) in (2.4) depends on the set Λ and the function Ω, and so does its 1−α quantile,

which we denote by c(1−α)(Λ,Ω). The introduction of the set Λn,Fn(γn) and its limit Λ are for technical

convenience, and do not have an particularly intuitive interpretation. However, the form of J(Λ,Ω) is quite

natural in this context as it resembles a “profiled” version of the usual limit distribution S(vΩ(θ) + `,Ω(θ)).

Remark 2.1. Theorem C.4 gives the asymptotic distribution of our test statistic under a (sub)sequence of

parameters (γn, Fn) that satisfies certain properties. It turns out that these types of (sub)sequences are the

relevant ones to determine the asymptotic coverage of confidence sets that are derived by test inversion. In

other words, controlling the asymptotic coverage of a confidence set for γ involves a supremum over (γ, F )

- see (2.15) - and thus we present the asymptotic derivations along sequences of parameters (γn, Fn) rather

than (γ0, Fn) to accommodate this case. If the goal were to simply control the asymptotic size of the test

for H0 : f(θ) = γ0, then deriving results for sequences (γ0, Fn) would have been sufficient.

Having an expression for J(Λ,Ω), our goal is to construct feasible critical values that approximate

c(1−α)(Λ,Ω) asymptotically. This requires approximating the limiting set Λ and the limiting correlation

function Ω. The limiting correlation function can be estimated using standard methods. On the other hand,

the approximation of Λ is non-standard and presents certain difficulties that we describe in the next section.

2See Assumptions M.1-M.9 in the Appendix for these regularity conditions and (3.14) for an example.
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2.2 Test MR: minimum resampling

The main challenge in approximating the quantiles of J(Λ,Ω) lies in the approximation of the set Λ. Part

of the difficulty relates to the approximation of `, although this can be addressed using the GMS approach

in Andrews and Soares (2010) that consists in replacing ` with ϕ = (ϕ1, . . . , ϕk), where

ϕj = ϕj(κ
−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ)) for j = 1, . . . , p and ϕj = 0 for j = p+ 1, . . . , k , (2.6)

is the GMS function satisfying the assumptions in Andrews and Soares (2010). The thresholding sequence

{κn}n≥1 satisfies κn → ∞ and κn/
√
n → 0.3 However, the real challenge in our context is due to the fact

that the relevant points within the set Λ are the cluster points of the sequence

{(θn,
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)])}n≥1 , (2.7)

where θn is the infimum of Qn(θ) over Θ(γn) and, hence, random. This has two immediate technical

consequences. First, we cannot borrow results from Andrews and Soares (2010) as those hold for non-

random sequences of parameters {(θn, Fn)}n≥1 with θn ∈ ΘI(Fn) for all n ∈ N and cannot be extended

to random sequences. Second, the random sequence {θn}n≥1 in (2.7) could be such that θn /∈ ΘI(Fn) for

all n ∈ N (especially in models where ΘI(Fn) has empty interior). To see why, note that in our setup the

null hypothesis implies that there is (γn, Fn) ∈ L0 for all n ∈ N, meaning that there exists θ?n ∈ ΘI(Fn)

such that γn = f(θ?n) for all n ∈ N (see Definition 2.4). There is, however, no guarantee that the random

minimizing sequence {θn}n≥1 in (2.7) satisfies θn ∈ ΘI(Fn). This is problematic because it implies that the

set Λ contains tuples (θ, `) such that `j < 0 for j = 1, . . . , p, or `j 6= 0 for j = p + 1, . . . , k and so, if an

infimum is attained, it could be attained at a value of θ that is not associated with `j ≥ 0 for j = 1, . . . , p

and `j = 0 for j = p+ 1, . . . , k. Thus, along sequences that converge to such tuples, the GMS function ϕ(·)
is not a conservative estimator of

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)].

In this paper we circumvent the aforementioned difficulties by combining two approximations to J(Λ,Ω)

that share common elements. They both use the same estimate of Ω,

Ω̂n(θ) ≡ D̂−1/2
n (θ)Σ̂n(θ)D̂−1/2

n (θ) where Σ̂n(θ) ≡ n−1
n∑
i=1

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))′ .

They also use the same asymptotic approximation to the stochastic process vΩ(θ),

v∗n(θ) =
1√
n

n∑
i=1

D̂−1/2
n (θ)(m(Wi, θ)− m̄n(θ))ζi and {ζi ∼ N(0, 1)}ni=1 is i.i.d.4 (2.8)

The first resampling test statistic we use to approximate J(Λ,Ω) is

TR1
n (γ0) ≡ inf

θ∈Θ̂I(γ0)
S(v∗n(θ) + ϕ(κ−1

n

√
nD̂−1

n (θ)m̄n(θ)), Ω̂n(θ)) , (2.9)

where

Θ̂I(γ0) ≡ {θ ∈ Θ(γ0) : S(
√
nm̄n(θ), Σ̂n (θ)) ≤ Tn(γ0) + τn} (2.10)

3The GMS function ϕ(·) in Andrews and Soares (2010) might also depend on Σ̂n(θ). For simplicity we consider those that
only depend on κ−1

n
√
nσ̂−1

n,j(θ)m̄n,j(θ), which represents all but one of the ϕ-functions in Andrews and Soares (2010).
4We note that one could alternatively use a bootstrap approximation, n−1/2

∑n
i=1 D̂

−1/2
n (θ)(m(W ∗i , θ) − m̄n(θ)), where

{W ∗i }ni=1 is an i.i.d. sample drawn with replacement from original sample {Wi}ni=1. In our simulations, the asymptotic approx-
imation is computationally faster.
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is an estimator of the null identified set ΘI(F, γ0), ϕ = (ϕ1, . . . , ϕk) is as in (2.6), Tn(γ0) is as in (2.3), and

{τn}n≥1 is a non-stochastic sequence satisfying Assumption M.2. Using TR1
n (γ0) to simulate the quantiles

of J(Λ,Ω) is based on an approximation to the set Λ that replaces ` with ϕ(·) and enforces θ to be close to

ΘI(F ) by using the estimator Θ̂I(γ0) of ΘI(F, γ0). It follows from Bugni et al. (2013, Lemma D.13) that

this estimator satisfies

lim
n→∞

inf
F∈P0

PF (ΘI(F, γ0) ⊆ Θ̂I(γ0) ⊆ Θδn
I (γ0)) = 1 , (2.11)

where Θδn
I (γ0) is a δ-expansion of ΘI(F, γ0) defined in Table 2. Since ϕj(·) ≥ 0 for j = 1, . . . , p and ϕj(·) = 0

for j = p + 1, . . . , k, using such estimator in the definition of TR1
n (γ0) guarantees that the (in)equality

restrictions are not violated by much when evaluated at the θ that approximates the infimum in (2.9). This

makes the GMS function ϕ(·) a valid replacement for ` and plays an important role in establishing the

consistency in level of our test.

The second resampling test statistic we use to approximate J(Λ,Ω) is

TR2
n (γ0) ≡ inf

θ∈Θ(γ0)
S(v∗n(θ) + κ−1

n

√
nD̂−1

n (θ)m̄n(θ), Ω̂n(θ)) . (2.12)

Using TR2
n (γ0) to simulate the quantiles of J(Λ,Ω) is based on an approximation to the set Λ that replaces

` with κ−1
n

√
nD̂−1

n (θ)m̄n(θ). This is not equivalent to the GMS approach: (a) it could be the case that

κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) < 0 for some j = 1, . . . , p, and (b) it also includes the term κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) for

j = p + 1, . . . , k (i.e. equality restrictions).5 As explained before, the set Λ contains tuples (θ, `) such that

`j < 0 for j = 1, . . . , p, or `j 6= 0 for j = p+ 1, . . . , k. This second approximation directly contemplates this

possibility and therefore avoids the need of an estimator of ΘI(F, γ0) satisfying (2.11). This also plays an

important role in establishing the consistency in level of our test.

Remark 2.2. Replacing Θ̂I(γ0) with Θ(γ0) while keeping the function ϕ(·) in (2.9) would not result in a

valid approximation to J(Λ,Ω) and, subsequently, would not result in a valid test for the null hypothesis of

interest. Therefore, it is important for TR1
n (γ0) to use Θ̂I(γ0) and for TR2

n (γ0) to use κ−1
n

√
nD̂−1

n (θ)m̄n(θ)

rather than ϕ(·).

We now have all the elements to define the new critical value and the minimum resampling test we

propose in this paper.

Definition 2.5 (Minimum Resampling Critical Value). Let TR1
n (γ0) and TR2

n (γ0) be defined as in (2.9) and

(2.12) respectively, where v∗n(θ) is defined as in (2.8) and is common to both test statistics. The Minimum

Resampling critical value ĉMR
n (γ0, 1− α) is defined as the 1− α quantile of

TMR
n (γ0) ≡ min

{
TR1
n (γ0), TR2

n (γ0)
}
. (2.13)

Definition 2.6 (Minimum Resampling Test). Let Θ(γ0) be defined as in Definition 2.3 and ĉMR
n (γ0, 1− α)

be defined as in Definition (2.5). The Minimum Resampling test (or Test MR) is

φMR
n (γ0) ≡ 1

{
inf

θ∈Θ(γ0)
Qn(θ) > ĉMR

n (γ0, 1− α)

}
. (2.14)

The profiled test statistic infθ∈Θ(γ0)Qn(θ) is standard in point identified models and has been proposed

in the context of partially identified models for a subsampling test by Romano and Shaikh (2008). The

5The GMS approach requires both that ϕj(·) ≥ 0 for j = 1, . . . , p and ϕj(·) = 0 for j = p+1, . . . , k in order for the approach
to have good power properties, see Andrews and Soares (2010, Assumption GMS6 and Theorem 3).
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novelty in our Test MR lies in the critical value ĉMR
n (γ0, 1 − α). This is because each of the two basic

resampling approximations we combine - embedded in TR1
n (γ0) and TR2

n (γ0) - has good power properties in

particular directions and neither of them dominate each other in terms of asymptotic power - see Example

3.1. By combining these two approximations into the test statistic TMR
n (γ0), the Minimum Resampling Test

φMR
n (γ0) dominates each of these basic approximations and has two important additional properties. The

first property is summarized in the next theorem.

Theorem 2.1. Let Assumptions A.1-A.7 hold. Then, for α ∈ (0, 1/2),

lim sup
n→∞

sup
(γ,F )∈L0

EF [φMR
n (γ)] ≤ α .

Remark 2.3. Let CS?n(1 − α) ≡ {γ ∈ Γ : TMR
n (γ) ≤ ĉMR

n (γ, 1 − α)} be a 1 − α confidence set for γ. It

follows from Theorem 2.1 that

lim inf
n→∞

inf
(γ,F )∈L0

PF (γ ∈ CS?n(1− α)) ≥ 1− α , (2.15)

meaning that the Minimum Resampling test can be inverted to construct valid confidence sets for γ. In

particular, this allows us to construct confidence intervals for individual components of θ when f(θ) = θs for

some s = 1, . . . , dθ.

Remark 2.4. All the assumptions we use throughout the paper can be found in Appendix B. The first four

assumptions in Theorem 2.1 are regularity conditions that allow us to use uniform Donsker theorems, see

Remark B.1. Assumptions A.5 and A.6 are rather technical conditions that are discussed in Remarks B.2

and B.3. Finally, Assumption A.7 is a key sufficient condition for the asymptotic validity of our test that

requires the criterion function to satisfy a minorant-type condition as in Chernozhukov et al. (2007) and the

normalized population moments to be sufficiently smooth. See Remark B.4 for a detailed discussion.

The second property concerns the asymptotic power properties of our test relative to a subsampling test

applied to infθ∈Θ(γ0)Qn(θ) (as in Romano and Shaikh, 2008) or a test based on checking whether the image

under f(·) of a Generalized Moment Selection (GMS) confidence set for θ (as in Andrews and Soares, 2010)

intersects Θ(γ0). The power analysis is involved, so we devote the entire Section 3 to this task.

3 Minimum resampling versus existing alternatives

The critical value of the Minimum Resampling test from Definition 2.6 is the 1− α quantile of TMR
n (γ0) ≡

min
{
TR1
n (γ0), TR2

n (γ0)
}

, where TR1
n (γ0) and TR2

n (γ0) are defined in (2.9) and (2.12), respectively. If we let

ĉR1
n (γ0, 1 − α) and ĉR2

n (γ0, 1 − α) be the 1 − α quantiles of TR1
n (γ0) and TR2

n (γ0), respectively, then two

“basic” resampling tests, denoted by Test R1 and Test R2, could be defined as follows,

φR1
n (γ0) ≡ 1

{
inf

θ∈Θ(γ0)
Qn(θ) > ĉR1

n (γ0, 1− α)

}
, (3.1)

φR2
n (γ0) ≡ 1

{
inf

θ∈Θ(γ0)
Qn(θ) > ĉR2

n (γ0, 1− α)

}
. (3.2)
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By construction ĉMR
n (γ, 1− α) ≤ min{ĉR1

n (γ, 1− α), ĉR2
n (γ, 1− α)}, and thus it follows immediately that for

any (γ, F ) ∈ L and all n ∈ N,

φMR
n (γ) ≥ φR1

n (γ) and φMR
n (γ) ≥ φR2

n (γ) . (3.3)

In this section we study the properties of each of these basic resampling tests. This is interesting for the

following reasons. First, we show that Test R1 dominates (in terms of finite sample power) the standard

practice of computing the image under f(·) of a confidence set for θ and checking whether it includes γ0.

Second, we show that Test R2 dominates (in terms of asymptotic power) a subsampling test applied to

infθ∈Θ(γ0)Qn(θ) under certain conditions. By the inequalities in (3.3) these results imply that Test MR

weakly dominates both of these tests. We formalize these statements in the next subsections, and also

present two examples (Examples 3.1 and 3.2) that illustrate cases in which Test MR has strictly better

asymptotic power and size control than the two existing tests.

3.1 Power advantages over Test BP

Examples 2.1 and 2.2 illustrate that the standard practice in applied work to test the hypotheses in (1.2)

involves computing a confidence set for the parameter θ first, and then rejecting the null hypothesis whenever

the image of this confidence set under f(·) does not equal γ0. We refer to this test as Test BP, to emphasize

the fact that this test comes as a By-Product of constructing a confidence set for the entire parameter θ, and

was not specifically designed to test the hypotheses in (1.2). Using the notation introduced in the previous

section, we define a generic 1− α confidence set for θ as

CSn(1− α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1− α)} , (3.4)

where ĉn(θ, 1− α) is such that CSn(1− α) has the correct asymptotic coverage. Confidence sets that have

the structure in (3.4) and control asymptotic coverage have been proposed by Romano and Shaikh (2008);

Andrews and Guggenberger (2009); Andrews and Soares (2010); Canay (2010); and Bugni (2009), among

others.

Definition 3.1 (Test BP). Let CSn(1−α) be a confidence set for θ that controls asymptotic size. Test BP

rejects the null hypothesis in (1.2) according to the following rejection rule

φBPn (γ0) ≡ 1 {∃θ ∈ CSn(1− α) : f(θ) = γ0} . (3.5)

Definition 3.1 shows that Test BP depends on the confidence set CSn(1 − α). It follows that Test BP

inherits its size and power properties from the properties of CSn(1−α), and these properties in turn depend

on the particular choice of test statistic and critical value used in the construction of CSn(1−α). All the tests

we consider in this paper are functions of the sample criterion function defined in (2.2) and therefore their

relative power properties do not depend on the choice of the particular function S(·). However, the relative

performance of Test BP with respect to our test does depend on the choice of critical value used in CSn(1−α).

Bugni (2010) shows that GMS tests have more accurate asymptotic size than subsampling tests. Andrews

and Soares (2010) show that GMS tests are more powerful than Plug-in asymptotics or subsampling tests.

This means that, asymptotically, Test BP implemented with a GMS confidence set will be less conservative

and more powerful than the analogous test implemented with plug-in asymptotics or subsampling. We

therefore adopt the GMS version of the specification test in Definition 3.1 as the “benchmark version” of
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Test BP. This is summarized in the maintained Assumption M.4, see Appendix B.

By appropriately modifying the arguments in Bugni et al. (2013), we show that

φR1
n (γ) = 1{ inf

θ∈Θ(γ)
Qn(θ) > ĉR1

n (γ, 1− α)} ≥ 1 {∃θ ∈ CSn(1− α) : f(θ) = γ0} = φBPn (γ) , (3.6)

whenever Tests BP and Test R1 are implemented with the same sequences {κn}n≥1 and the same function

ϕ(·). By (3.3), this means that Test MR weakly dominates Test BP in terms of finite sample power. We

summarize this in the next theorem.

Theorem 3.1. For any (γ, F ) ∈ L it follows that φR1
n (γ) ≥ φBPn (γ) for all n ∈ N.

Corollary 3.1. For any sequence {(γn, Fn) ∈ L}n≥1, lim infn→∞(EFn [φR1
n (γn)]− EFn [φBPn (γn)]) ≥ 0.

Remark 3.1. Theorem 3.1 is a statement that holds for all n ∈ N and (γ, F ) ∈ L. In particular, since

it holds for parameters (γ, F ) ∈ L0, this is a result about finite sample power and size. This theorem and

(3.3) imply that Test MR cannot be more conservative nor have lower power than Test BP for all n ∈ N and

(γ, F ) ∈ L.

Remark 3.2. When the dimension of Θ is big relative to that of Γ - e.g., the function f(·) selects one of

several elements of Θ - the implementation of Test MR is computationally attractive as it involves inverting

the test over a smaller dimension. In other words, in cases where dim(Γ) is much smaller than dim(Θ), Test

MR has power and computational advantages over Test BP.

Remark 3.3. Under a condition similar to Bugni et al. (2013, Assumption A.9), we can show that Test R1

has asymptotic power that is strictly higher than that of Test BP for certain local alternative hypotheses.

The proof is similar to that in Bugni et al. (2013, Theorem 6.2) and so we do not include it here. We do

illustrate a situation in which our test has strictly better asymptotic power in Example 3.1.

Test R1 corresponds to the Resampling Test introduced by Bugni et al. (2013) to test the correct specifi-

cation of the model in (1.1). Using this test for the hypotheses we consider in this paper would result in a test

with correct asymptotic size by the inequality in (3.3). Unfortunately, Test R1 presents two disadvantages

relative to Test MR. First, there is no guarantee that Test R1 has better asymptotic power than the subsam-

pling test proposed by Romano and Shaikh (2008). Second, there are cases in which Test MR has strictly

higher asymptotic power than Test R1 for the hypotheses in (1.2) - see Example 3.1 for an illustration.

3.2 Power advantages over Test SS

We have compared Test MR with Test BP using the connection between Test MR and the first basic

resampling test, Test R1. In this section we show that Test MR dominates a subsampling test by using its

connection to the second basic resampling test, Test R2, which is not discussed in Bugni et al. (2013) but

has recently been used for a different testing problem in Gandhi et al. (2013).

Romano and Shaikh (2008, Section 3.4) propose to test the hypothesis in (1.2) using the test statistic in

(2.3) with a subsampling critical value. Concretely, the test they propose, which we denote by Test SS, is

φSSn (γ0) ≡ 1

{
inf

θ∈Θ(γ0)
Qn(θ) > ĉSSn (γ0, 1− α)

}
, (3.7)

where ĉSSn (γ0, 1 − α) is the (1 − α) quantile of the distribution of QSSbn (θ), which is identical to Qn(θ) but

computed using a random sample of size bn without replacement from {Wi}ni=1. We assume the subsampling
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block size satisfies bn → ∞ and bn/n → 0, and show in Theorem C.3 in the Appendix that, conditional on

the data,

TSSbn (γn) ≡ inf
θ∈Θ(γn)

QSSbn (θ)
d→ J(ΛSS ,Ω) ≡ inf

(θ,`)∈ΛSS
S(vΩ(θ) + `,Ω(θ, θ)), a.s. , (3.8)

where vΩ : Θ → Rk is a Rk-valued tight Gaussian process with covariance (correlation) kernel Ω ∈ C(Θ2),

and ΛSS is the limit (in the Hausdorff metric) of the set

ΛSSbn,Fn(γn) ≡
{

(θ, `) ∈ Θ(γn)× Rk : ` =
√
bnD

−1/2
Fn

(θ)EFn [m(W, θ)]
}
. (3.9)

Romano and Shaikh (2008, Remark 3.11) note that constructing a test for the hypotheses in (1.2) using

Test BP would typically result in a conservative test, and use this as a motivation for introducing Test SS.

However, they do not provide a formal comparison between their test and Test BP.

To compare Test SS with Test R2 (and Test MR), we define a class of distributions in the alternative

hypotheses that are local to the null hypothesis. Notice that the null hypothesis in (1.2) can be written as

Θ(γ0)∩ΘI(F ) 6= ∅, so we do this by defining sequences of distributions Fn for which Θ(γ0)∩ΘI(Fn) = ∅ for

all n ∈ N, but where Θ(γn)∩ΘI(Fn) 6= ∅ for a sequence {γn}n≥1 that approaches γ0. These alternatives are

conceptually similar to those in Andrews and Soares (2010), but the proof of our result involves additional

challenges that are specific to the infimum present in the definition of our test statistic. The following

definition formalizes the class of local alternative distributions we consider.

Definition 3.2 (Local Alternatives). Let γ0 ∈ Γ. The sequence {Fn}n≥1 is a sequence of local alternatives

if there is {γn ∈ Γ}n≥1 such that {(γn, Fn) ∈ L0}n≥1 and

(a) For all n ∈ N, ΘI(Fn) ∩Θ(γ0) = ∅.

(b) dH(Θ(γn),Θ(γ0)) = O(n−1/2).

(c) For any θ ∈ Θ, κ−1
n GFn(θ) = o(1), where GF (θ) ≡ ∂D−1/2

F (θ)EF [m(W, θ)]/∂θ′.

Under the assumption that Fn is a local alternative (see Assumption A.9) and some smoothness conditions

(see Assumptions A.7 and A.10) we show that Test R2 has weakly higher asymptotic power than Test SS.

This is the content of the next theorem.

Theorem 3.2. Let Assumptions A.1-A.10 hold. Then,

lim inf
n→∞

(EFn [φR2
n (γ0)]− EFn [φSSn (γ0)]) ≥ 0 . (3.10)

Remark 3.4. Theorem 3.2 shows that Test R2 has weakly better power than Test SS under certain condi-

tions. By using arguments analogous to those in Andrews and Soares (2010), Lemma C.10 shows that the

inequality in (3.10) becomes strict for alternative hypotheses described in Assumption A.11, in which one or

more moment (in)equality is satisfied and has magnitude that is o(b
−1/2
n ) and larger than O(κnn

−1/2). We

provide an illustration of Assumption A.11 in Example 3.2. See also Remark 3.9.

3.3 Understanding the new test and its power advantages

The previous sections derived two important results. On the one hand, Test R1 weakly dominates Test BP

in terms of finite sample power and, under certain conditions and for some alternatives, strictly dominates

Test BP in terms of asymptotic power. On the other hand, Test R2 weakly dominates Test SS in terms of
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asymptotic power for all the alternatives in Definition 3.2, and strictly dominates Test SS for certain local

alternatives. These power properties are inherited by Test MR by virtue of the inequalities in (3.3). We

summarize these lessons in the following corollary.

Corollary 3.2. Let Assumptions A.1-A.10 hold. Then

lim inf
n→∞

(EFn [φMR
n (γn)]− EFn [φSSn (γn)]) ≥ 0 and lim inf

n→∞
(EFn [φMR

n (γn)]− EFn [φBPn (γn)]) ≥ 0 . (3.11)

The result in Corollary 3.2 is useful as it shows that Test MR cannot be asymptotically dominated by

any of the other tests. The next natural step is to understand the type of alternatives for which both of the

inequalities in (3.11) become strict. There are two ways of obtaining such result. First, it could be the case

that either Test R1 strictly dominates Test BP (as in Remark 3.3), or that Test R2 strictly dominates Test

SS (as in Remark 3.4). We illustrate a situation in which Test R2 has strictly better asymptotic power than

Test SS in Example 3.2. It could also be possible that Test MR has strictly better asymptotic power than

both Test R1 and Test R2, which results in Test MR strictly dominating (asymptotically) Test BP and Test

SS. We illustrate this situation in Example 3.1.

Example 3.1 (Test MR vs. Tests R1 and R2). Let W = (W1,W2,W3) ∈ R3 be a random vector with

distribution Fn, VFn [W ] = I3, EFn [W1] = µ1κn/
√
n, EFn [W2] = µ2κn/

√
n, and EFn [W3] = µ3/

√
n for some

µ1 > 1, µ2 ∈ (0, 1), and µ3 ∈ R. Consider the following model with Θ = [−C,C]3 for some C > 0,

EFn [m1(Wi, θ)] = EFn [Wi,1 − θ1] ≥ 0 ,

EFn [m2(Wi, θ)] = EFn [Wi,2 − θ2] ≥ 0 ,

EFn [m3(Wi, θ)] = EFn [Wi,3 − θ3] = 0 . (3.12)

We are interested in testing the hypotheses

H0 : θ = (0, 0, 0) vs. H1 : θ 6= (0, 0, 0) ,

which implies that f(θ) = θ, Θ(γ0) = {(0, 0, 0)}, and Θ̂I(γ0) = {(0, 0, 0)}.6 Note that H0 is true if and only if

µ3 = 0. The model in (3.12) is linear in θ, and so many relevant parameters and estimators do not depend on

θ. These include σ̂j(θ) = σ̂j for j = 1, 2, 3, so D̂
−1/2
n (θ) = D̂

−1/2
n , ṽn,j(θ) = ṽn,j =

√
nσ̂−1

j (W̄n,j −EFn [Wj ]),

and

v∗n(θ) =
1√
n

n∑
i=1

D̂−1/2
n (θ)(m(Wi, θ)− m̄n(θ))ζi =

1√
n

n∑
i=1

D̂−1/2
n (Wi − W̄n)ζi = v∗n , (3.13)

where {ζi}ni=1 is i.i.d. N(0, 1). It follows that {v∗n|{Wi}ni=1} ∼ N(0, 1) a.s. For simplicity here, we use the

Modified Method of Moments criterion function given by

S(m,Σ) =

p∑
j=1

[mj/σj ]
2
− +

k∑
j=p+1

(mj/σj)
2 , (3.14)

where [x]− ≡ min{x, 0}, and the simplest function ϕ(·) proposed by Andrews and Soares (2010),

ϕj(x) =∞∗ 1{x > 1} for j = 1, . . . , p , and ϕj(x) = 0 for j = p+ 1, . . . , k . (3.15)

6In this example we use f(θ) = θ for simplicity, as it makes the infimum over Qn(θ) trivial. We could generate the same
conclusions using a different function by adding some complexity to the structure of the example.
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The sample criterion function is given by

Qn(θ) =
[√
nσ̂−1

1 (W̄1 − θ1)
]2
− +

[√
nσ̂−1

2 (W̄2 − θ2)
]2
− +

[√
nσ̂−1

3 (W̄3 − θ3)
]2

,

and so the test statistic satisfies

inf
θ∈Θ(γ0)

Qn(θ) =
[√
nσ̂−1

1 W̄1

]2
− +

[√
nσ̂−1

2 W̄2

]2
− +

[√
nσ̂−1

3 W̄3

]2
,

=
[
ṽn,1 + µ1σ̂

−1
1 κn

]2
− +

[
ṽn,2 + µ2σ̂

−1
2 κn

]2
− +

[
ṽn,3 + σ̂−1

3 µ3

]2
,

d→ [Z3 + µ3]2, Z3 ∼ N(0, 1).

To study the behavior of the Test R1, Test R2, and Test MR, we derive convergence statements that occur

conditionally on {Wi}ni=1, and exploit that κ−1
n ṽn,j

p→ 0 and σ̂−1
j

p→ σ−1
j = 1 for j = 1, 2, 3. Below we also

use the notation Z = (Z1, Z2, Z3) ∼ N(03, I3).

Test R1: This test uses the (conditional) (1− α) quantile of the following random variable,

TR1
n (γ0) = inf

θ∈Θ̂I(γ0)

{[
v∗n,1 + ϕ1(κ−1

n

√
nσ̂−1

1 (W̄1 − θ1))
]2
− +

[
v∗n,2 + ϕ2(κ−1

n

√
nσ̂−1

2 (W̄2 − θ2))]
]2
− +

[
v∗n,3

]2}
,

=
[
v∗n,1 +∞∗ 1{κ−1

n ṽn,1 + µ1σ̂
−1
1 > 1}

]2
− +

[
v∗n,2 +∞∗ 1{κ−1

n ṽn,2 + µ2σ̂
−1
2 > 1}

]2
− +

[
v∗n,3

]2
,

d→ [Z2]2− + [Z3]2 w.p.a.1 ,

since µ1 > 1 and µ2 < 1.

Test R2: This test uses the (conditional) (1− α) quantile of the following random variable,

TR2
n (γ0) = inf

θ∈Θ(γ0)

{[
v∗n,1 + κ−1

n

√
nσ̂−1

1 (W̄1 − θ1)
]2
− +

[
v∗n,2 + κ−1

n

√
nσ̂−1

2 (W̄2 − θ2)
]2
−

+ [v∗n,3 + κ−1
n

√
nσ̂−1

3 (W̄3 − θ3)]2
}
,

=
[
v∗n,1 + κ−1

n ṽn,1 + µ1σ̂
−1
1

]2
− +

[
v∗n,2 + κ−1

n ṽn,2 + µ2σ̂
−1
2 ]2− + [v∗n,3 + κ−1

n ṽn,3 + σ̂−1
3 κ−1

n µ3

]2
,

d→ [Z1 + µ1]
2
− + [Z2 + µ2]

2
− + [Z3]

2
w.p.a.1 .

Test MR: This test uses the (conditional) (1− α) quantile of the following random variable,

TMR
n (γ0) = min{TR1

n (γ0), TR2
n (γ0)} d→ min{[Z1 + µ1]

2
− + [Z2 + µ2]

2
− , [Z2]

2
−}+ [Z3]

2
w.p.a.1 .

�

The example provides important lessons about the relative power of all these tests, as well as illustrating

a case in which Test MR has strict better power than both Test BP and Test SS. We summarize these lessons

in the following remarks.

Remark 3.5. Since min{[Z1 + µ1]2− + [Z2 + µ2]2−, [Z2]2−} ≥ 0, it follows that the null rejection probability

of Test MR along this sequence will not exceed α under H0. More importantly, note that

P ([Z1 + µ1]
2
− + [Z2 + µ2]

2
− < [Z2]

2
−) ≥ P (Z1 + µ1 ≥ 0)P (Z2 < 0) > 0 ,
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P ([Z1 + µ1]
2
− + [Z2 + µ2]

2
− > [Z2]

2
−) ≥ P (Z1 + µ1 < 0)P (Z2 ≥ 0) > 0 , (3.16)

which implies that whether TMR
n (γ0) equals TR1

n (γ0) or TR2
n (γ0) is random, conditionally on {Wi}ni=1. This

means that using Test MR is not equivalent to using either Test R1 or Test R2.

Remark 3.6. Example 3.1 and (3.16) show that the conditional distribution of TMR
n (γ0) is (asymptotically)

strictly dominated by the conditional distributions of TR1
n (γ0) or TR2

n (γ0). Given that all these tests use the

same test statistic, what determines their relative asymptotic power is the limit of their respective critical

values. In the example above, we can numerically compute the 1− α quantiles of the limit distributions of

TR1
n (γ0), TR2

n (γ0), and TMR
n (γ0) after fixing some values for µ1 and µ2. For example, setting both of these

parameters close to 1 results in asymptotic 95% quantiles of TR1
n (γ0), TR2

n (γ0), and TMR
n (γ0) equal to 5.15,

4.18, and 4.04, respectively.

Remark 3.7. Example 3.1 illustrates that the basic resampling tests, Test R1 and R2, do not dominate

each other in terms of asymptotic power. For example, if we consider the model in (3.12) with the second

inequality removed, it follows that

TR1
n (γ0)

d→ [Z3]2 and TR2
n (γ0)

d→ [Z1 + µ1]2− + [Z3]2 . (3.17)

In this case Test R1 has strictly better asymptotic power than Test R2. For this example, taking µ1 close

to 1 gives asymptotic 95% quantiles of Tests R1 and R2 equal to 3.84 and 4.00, respectively. On the other

hand, if we consider the model in (3.12) with the first inequality removed, it follows that

TR1
n (γ0)

d→ [Z2]2− + [Z3]2 and TR2
n (γ0)

d→ [Z2 + µ2]2− + [Z3]2 . (3.18)

Since [Z2 + µ2]2− ≤ [Z2]2− (with strict inequality when Z2 < 0), this case represents a situation where Test

R1 has strictly worse asymptotic power than Test R2. For this example, taking µ2 close to 1 results in

asymptotic 95% quantiles of Tests R1 and R2 equal to 5.13 and 4.00, respectively.

Example 3.2 (Test R2 versus Test SS). Let W = (W1,W2,W3) ∈ R3 be a random vector with distribution

Fn, VFn [W ] = I3, EFn [W1] = µ1κn/
√
n, EFn [W2] = µ2/

√
n, and EFn [W3] = 0 for some µ1 ≥ 0 and µ2 ≤ 0.

Consider the model in (3.12) with Θ = [−C,C]3 for some C > 0, and the hypotheses

H0 : f(θ) = (θ1, θ2) = (0, 0) vs. H1 : f(θ) = (θ1, θ2) 6= (0, 0) .

In this case Θ(γ0) = {(0, 0, θ3) : θ3 ∈ [−C,C]} and H0 is true if and only if µ2 = 0. The model in (3.12) is

linear in θ, and so many relevant parameters and estimators do not depend on θ. These include σ̂j(θ) = σ̂j

for j = 1, 2, 3, so D̂
−1/2
n (θ) = D̂

−1/2
n , ṽn,j =

√
nσ̂−1

j (W̄j − EFn [Wj ]), and v∗n(θ) = v∗n as defined in (3.13).

To study the behavior of the tests we derive convergence statements that occur conditionally on {Wi}ni=1,

and exploit that κ−1
n ṽn,j

p→ 0 and σ̂−1
j

p→ σ−1
j = 1 for j = 1, 2, 3. We also use Z = (Z1, Z2, Z3) ∼ N(03, I3)

and assume Andrews and Soares (2010, Assumption GMS5). As in Example 3.1, S(·) is as in (3.14) and ϕ(·)
as in (3.15), which results in a sample criterion function given by

Qn(θ) =
[√
nσ̂−1

1 (W̄1 − θ1)
]2
− +

[√
nσ̂−1

2 (W̄2 − θ2)
]2
− +

[√
nσ̂−1

3 (W̄3 − θ3)
]2

.

The test statistic satisfies

inf
θ∈Θ(γ0)

Qn(θ) = inf
θ3∈[−C,C]

[√
nσ̂−1

1 W̄1

]2
− +

[√
nσ̂−1

2 W̄2

]2
− +

[√
nσ̂−1

3 (W̄3 − θ3)
]2

,
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=
[
ṽn,1 + µ1σ̂

−1
1 κn

]2
− +

[
ṽn,2 + µ2σ̂

−1
2

]2
−

d→ [Z1]21{µ1 = 0}+ [Z2 + µ2]2 .

Test R2: This test uses the (conditional) (1− α) quantile of the following random variable,

TR2
n (γ0) = inf

θ∈Θ(γ0)

{[
v∗n,1 + κ−1

n

√
nσ̂−1

1 (W̄1 − θ1)
]2
− +

[
v∗n,2 + κ−1

n

√
nσ̂−1

2 (W̄2 − θ2)
]2
− +

[√
nσ̂−1

3 (W̄3 − θ3)
]2}

,

=
[
v∗n,1 + κ−1

n ṽn,1 + µ1σ̂
−1
1

]2
− +

[
v∗n,2 + κ−1

n ṽn,2 + κ−1
n µ2σ̂

−1
2

]2
−

d→ [Z1 + µ1]
2
− + [Z2]

2
− w.p.a.1 .

Test SS: This test draws {W ?
i }

bn
i=1 i.i.d. with replacement from {Wi}ni=1 and computes v?bn(θ) =

1√
bn

∑bn
i=1 D̂

?,−1/2
bn

(θ)m(W ?
i , θ). Now define

ṽ?bn(θ) =
1√
bn

bn∑
i=1

D̂
?,−1/2
bn

(θ){m(W ?
i , θ)− EFn [m(Wi, θ)]} , (3.19)

and since ṽ?bn(θ) = ṽ?bn , Politis et al. (Theorem 2.2.1, 1999) implies that {ṽ?bn |{Wi}ni=1}
d→ N(0, 1) a.s.

Test SS uses the conditional (1− α) quantile of the following random variable

TSSbn (γ0) = inf
θ∈Θ(γ0)

{
[
√
bnσ̂

?,−1
bn,1

(W̄ ?
bn,1 − θ1)]2− + [

√
bnσ̂

?,−1
bn,2

(W̄ ?
bn,2 − θ2)]2− + [

√
bnσ̂

?,−1
bn,3

(W̄ ?
bn,3 − θ3)]2

}
,

= [ṽ?bn,1 + σ̂?,−1
bn,1

√
bnµ1κn/

√
n]2− + [ṽ?n,bn,2 + σ̂?,−1

bn,2

√
bnµ2/

√
n]2− ,

d→ [Z1]2− + [Z2]2− w.p.a.1 ,

where we used κn
√
bn/
√
n→ 0 from Assumption A.8. �

Remark 3.8. Example 3.2 is such that TR2
n (γ0) and TSSbn (γ0) have the same asymptotic distribution, con-

ditionally on {Wi}ni=1, when µ1 = 0. However, if µ1 > 0 it follows that TSSbn (γ0) asymptotically strictly

dominates TR2
n (γ0) in the first order stochastic sense, conditionally on {Wi}ni=1. Specifically,

P
(
[Z2 + µ2]2− > q1−α([Z1 + µ1]2− + [Z2]2−)

)
> P

(
[Z2 + µ2]2− > q1−α([Z1]2− + [Z2]2−)

)
, (3.20)

where q1−α(X) denotes the 1 − α quantile of X. Thus Test R2 is strictly less conservative under H0 (i.e.

when µ2 = 0) and strictly more powerful under H1.

Remark 3.9. Example 3.2 shows that the reason why Test R2 can be strictly more powerful than Test SS

is analogous to those that make GMS tests more powerful than subsampling tests, even though Test R2 does

not belong to the class of GMS tests, see Remark 2.2. This is, when some moment inequality is satisfied

under the alternative and is sufficiently far from being an equality (specifically, is larger than O(κnn
−1/2)),

then the critical value of Test MR takes this into account and delivers a critical value that is suitable for

the case where this moment inequality is omitted (in the example, [Z1 + µ1]2− ≤ [Z1]2−). The subsampling

critical value does not take this into consideration because the inequality is o(b
−1/2
n ) of being binding (in the

example,
√
bnµ1κn/

√
n→ 0).

4 Monte Carlo simulations

In this section we consider the entry game in Canay (2010). Suppose that firm j ∈ {1, 2} decides whether

to enter (zj,i = 1) a market i ∈ {1, . . . , n} or not (zj,i = 0) based on the profit function πj,i = (εj,i −
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θjz−j,i)1{zj,i = 1}, where εj,i is firm j’s benefit of entry in market i and z−j,i denotes the decision of

the other firm. Let εj,i ∼ U(0, 1) and θ0 = (θ1, θ2) ∈ (0, 1)2. There are four outcomes in this game: (i)

Wi ≡ (z1,i, z2,i) = (1, 1) is the unique Nash equilibrium (NE) if εj,i > θj for all j; (ii) Wi = (1, 0); is the

unique NE if ε1,i > θ1 and ε2,i < θ2; (iii) Wi = (0, 1) is the unique NE if ε1,i < θ1 and ε2,i > θ2 and; (iv)

there are multiple equilibria if εj,i < θj for all j as both Wi = (1, 0) and Wi = (0, 1) are NE. Without further

assumptions this model implies

EF [m1(Wi, θ)] = EF [z1,iz2,i − (1− θ1)(1− θ2)] = 0

EF [m2(Wi, θ)] = EF [z1,i(1− z2,i)− θ2(1− θ1)] ≥ 0 (4.1)

EF [m3(Wi, θ)] = EF [θ2 − z1,i(1− z2,i)] ≥ 0 .

The identified set ΘI(F ) in this model is a curve in R2. We generate data using θ0 = (0.3, 0.5) as the true

parameter and p = 0.7 as the true probability of selecting Wi = (1, 0) in the region of multiple equilibria.

This gives an identified set having a first coordinate ranging from 0.19 to 0.36, and a second coordinate

ranging from 0.45 to 0.56 (see Canay, 2010, Figure 1). We set n = 1, 000 and α = 0.90,7 and simulate the

data by taking independent draws of εj,i ∼ U(0, 1) for j = {1, 2} and computing the equilibrium according

to the region in which εi ≡ (ε1,i, ε2,i) falls. We consider subvector inference for this model, with

H0 : f(θ) = θk = γ0 vs H1 : f(θ) = θk 6= γ0 for k = 1, 2 , (4.2)

and perform MC = 2, 000 Monte Carlo replications. We report results for Test MR (with κn =
√

log n and

τn = κrn with r = 1/3), Test BP, Test SS1 (with bn = nc and c = 2/3), and Test SS2 (with bn = nc and

c = 0.9). Additional simulations for Test MR with r ∈ {2/3, 1, 4/3, 5/3} provide rejection probabilities that

are numerically identical to those with r = 1/3. On the other hand, additional simulations for Test SS with

c taking values between 2/3 and 0.9 show that Test SS can result in rejection probabilities that lie anywhere

between those reported here.8

Figure 1 shows the rejection probabilities under the null and alternative hypotheses for the first coor-

dinate, i.e., f(θ) = θ1. The results show that Test MR has null rejection probabilities (at the boundary

of the identified set) closer to the nominal size than those of Test BP which is highly conservative in this

case. Test SS can be close to Test MR or Test BP depending on the subsample block size bn. The left panel

illustrates the power differences more clearly, and it shows that the differences in the power of Test MR with

respect to that of Test BP, Test SS1, and Test SS2 could be as high as 0.59, 0.02 and 0.49, respectively.

For example, when θ1 = 0.17, the power of Test MR, Test BP, Test SS1, and Test SS2 are 0.59, 0.08, 0.58,

and 0.11, respectively. Given that the simulation standard error with 2, 000 replications is between 0.007

and 0.01, depending on the alternative, the differences between Test MR and Test SS1 are not significant as

expected.9 This is also the case if we “size-correct” the critical values to make the null rejection probabilities

at the boundary (i.e. at θ1 = 0.19) equal to the nominal level α = 0.10 (see Table 1).

Figure 2 shows the rejection probabilities under the null and alternative hypotheses for the second coor-

dinate, i.e., f(θ) = θ2. We consider the same tests as those in Figure 1. The results show again that Test

7Additional simulations for n = 500 and n = 100 show similar results and are therefore omitted.
8Out all of the block sizes we tried, we found that c = 2/3 works best and that c = 0.9 works worst. Note that for

subsampling tests, the optimal value of c in terms of error in rejection probability is precisely 2/3; see Bugni (2010). Also, when
n = 1, 000 the value c = 2/3 corresponds to bn = 100, which is the 10% rule used by Ciliberto and Tamer (2010).

9As opposed to Example 3.2, the structure of the model in (4.1) is such that Test MR and Test SS have the same asymptotic
power. This is because there are only two inequalities that are negatively correlated, and the situation described in Remark 3.9
does not occur.
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Figure 1: Rejection probabilities under the null and alternative hypotheses when f(θ) = θ1. Tests considered are: Test MR
(solid red line), Test BP (dotted orange line), Test SS1 (dashed blue line), and Test SS2 (dashed-dotted green line). Black
asterisks indicate values of θ1 in the identified set at the nominal level. Left panel shows rejection rates to the left and right of
the identified set. Right panel zooms-in the power differences to the left. In all cases n = 1, 000, α = 0.10, and MC = 2, 000.

H0 H1

θ1 = 0.19 θ1 = 0.18 θ1 = 0.17 θ1 = 0.16 θ1 = 0.15 θ1 = 0.14

Rejection Rate
Test MR 0.10 0.31 0.64 0.88 0.99 1.00
Test SS1 0.10 0.30 0.63 0.88 0.98 1.00
Test SS2 0.10 0.04 0.12 0.38 0.70 0.93

H0 H1

θ2 = 0.45 θ2 = 0.44 θ2 = 0.43 θ2 = 0.42 θ2 = 0.41 θ1 = 0.40

Rejection Rate
Test MR 0.10 0.26 0.52 0.75 0.91 0.98
Test SS1 0.10 0.27 0.52 0.74 0.90 0.98
Test SS2 0.10 0.04 0.07 0.19 0.41 0.68

Table 1: Size Adjusted Rejection probabilities for Test MR and Test SS. In all cases n = 1, 000, α = 0.10 and MC = 2, 000.

MR has null rejection probabilities (at the boundary of the identified set) closer to the nominal size than

those of Test BP, although Test BP performs better than in the previous case. Similarly, the performance

of Test SS highly depends on the choice of block size, but it performs well for the best possible choice (i.e.

bn = n2/3). The differences in the power of Test MR with respect to that of Test BP, Test SS1, and Test

SS2 could be as high as 0.13, 0.07, and 0.54, respectively. Finally, the “size-correct” powers of Test MR and

the best subsampling test (Test SS1) are basically the same (see Table 1).

All these results are consistent with the theoretical results in Theorems 2.1 and 3.2, Corollary 3.2, and

Remark 3.4. They also highlight additional features: (i) Test BP could be highly conservative and suffer

from low power, (ii) Test SS can perform well in cases where the situation described in Remark 3.9 does not

occur, (iii) the finite sample power of Test SS is highly sensitive to the choice of block size, and (iv) Test

MR performs well all across the board and seems to be robust to the choice of τn.
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Figure 2: Rejection probabilities under the null and alternative hypotheses when f(θ) = θ2. Tests considered are: Test MR
(solid red line), Test BP (dotted orange line), Test SS1 (dashed blue line), and Test SS2 (dashed-dotted green line). Black
asterisks indicate values of θ2 in the identified set at the nominal level. Left panel shows rejection rates to the left and right of
the identified set. Right panel zooms-in the power differences to the left. In all cases n = 1, 000, α = 0.10, and MC = 2, 000.

5 Concluding remarks

This paper introduces a test, denoted Test MR, for the null hypothesis H0 : f(θ) = γ0, where f(·) is a known

function, γ0 is a known constant, and θ is a parameter that is partially identified by a moment (in)equality

model. The main application of our test is subvector inference, i.e., the case where the function f(θ) = θk

selects the kth coordinate of θ. We show our test controls asymptotic size uniformly over a large class of

distributions, and compare its power properties to those of a subsampling test (Test SS) and the test based

on the image of CSn(1− α) under f(·) (Test BP). In particular, we show the following results: (i) our test

weakly dominates the finite sample power of Test BP for all alternative hypotheses, (ii) our test weakly

dominates Test SS in terms of asymptotic power under certain conditions, and (iii) our test has strictly

higher asymptotic power under some conditions. These results imply that Test MR has an asymptotic power

that strictly dominates that of Tests BP and SS.

There are two interesting extensions of the test we propose that are worth mentioning. First, our

paper does not consider conditional moment restrictions, c.f. Andrews and Shi (2013), Chernozhukov et al.

(2013), Armstrong (2011), and Chetverikov (2013). Second, our asymptotic framework is one where the

limit distributions do not depend on tuning parameters used at the moment selection stage, as opposed to

Andrews and Barwick (2012) and Romano et al. (2013). These two extensions are well beyond the scope of

this paper and so we leave them for future research.
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Appendix A Notation and computational algorithm

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

P0 {F ∈ P : ΘI(F ) 6= ∅}
L {(γ, F ) : F ∈ P, γ ∈ Γ}

Θ(γ) {θ ∈ Θ : f(θ) = γ}
ΘI(F, γ) {θ ∈ ΘI(F ) : f(θ) = γ}
L0 {(γ, F ) : F ∈ P, γ ∈ Γ,ΘI(F, γ) 6= ∅}

Θ̂I(γ) {θ ∈ Θ(γ) : S(
√
nm̄n(θ), Σ̂n (θ)) ≤ τnTn(γ)}

Θδn
I (γ) {θ ∈ Θ(γ) : S(

√
nEFn [m(W, θ)] ,ΣFn(θ)) ≤ δn} for δn = τ

1/2
n log κn

Λn,F (γ) {(θ, `) ∈ Θ(γ)× Rk : ` =
√
nD
−1/2
F (θ)EF [m(Wi, θ)]}

ΛSSbn,F (γ) {(θ, `) ∈ Θ(γ)× Rk : ` =
√
bnD

−1/2
F (θ)EF [m(W, θ)]}

ΛR2
n,F (γ) {(θ, `) ∈ Θ(γ)× Rk : ` = κ−1

n

√
nD
−1/2
F (θ)EF [m(Wi, θ)]}

ΛR1
n,F (γ) {(θ, `) ∈ Θδn

I (γ)× Rk : ` = κ−1
n

√
nD
−1/2
F (θ)EF [m(W, θ)]}

Table 2: Important Notation

For any u ∈ N, 0u is a column vector of zeros of size u, 1u is a column vector of ones of size u, and Iu is the

u× u identity matrix. We use R++ = {x ∈ R : x > 0}, R+ = R++ ∪ {0}, R+,∞ = R+ ∪ {+∞}, R[+∞] = R ∪ {+∞},
and R[±∞] = R ∪ {±∞}. We equip Ru[±∞] with the following metric d. For any x1, x2 ∈ Ru[±∞], d(x1, x2) =(∑u

i=1(G(x1,i)−G(x2,i))
2
)1/2

, where G : R[±∞] → [0, 1] is such that G(−∞) = 0, G(∞) = 1, and G(y) = Φ(y) for

y ∈ R, where Φ is the standard normal CDF. Also, 1{·} denotes the indicator function.

Let C(Θ2) denote the space of continuous functions that map Θ2 to Ψ and S(Θ × Rk[±∞]) denote the space of

compact subsets of the metric space (Θ × Rk[±∞], d). In addition, let dH denote the Hausdorff metric associated

with d. We use “
H→” to denote convergence in the Hausdorff metric, i.e., An

H→ B ⇐⇒ dH(An, B) → 0. Finally,

for non-stochastic functions of θ ∈ Θ, we use “
u→” to denote uniform in θ convergence, e.g., ΩFn

u→ Ω ⇐⇒
supθ,θ′∈Θ d(ΩFn(θ, θ′),Ω(θ, θ′))→ 0. Also, we use Ω(θ) and Ω(θ, θ) equivalently.

We denote by l∞(Θ) the set of all uniformly bounded functions that map Θ→ Ru, equipped with the supremum

norm. The sequence of distributions {Fn ∈ P}n≥1 determine a sequence of probability spaces {(W,A, Fn)}n≥1.

Stochastic processes are then random maps X :W → l∞(Θ). In this context, we use “
d→”, “

p→”, and “
a.s.→ ” to denote

weak convergence, convergence in probability, and convergence almost surely in the l∞(Θ) metric, respectively, in the

sense of van der Vaart and Wellner (1996). In addition, for every F ∈ P, we useM(F ) ≡ {D−1/2
F (θ)m(·, θ) :W → Rk}

and denote by ρF the coordinate-wise version of the “intrinsic” variance semimetric, i.e.,

ρF (θ, θ′) ≡
∥∥∥∥{VF [σ−1

F,j(θ)mj(W, θ)− σ−1
F,j(θ

′)mj(W, θ
′)
]1/2}k

j=1

∥∥∥∥ . (A-1)

A.1 Algorithm for Test MR

Algorithm A.1 below summarizes the steps required to implement Test MR as defined in Section 2. A few aspects are

worth enphasizing. Note that in line 3 a matrix of n×B of independent N(0, 1) is simulated and the same matrix is

used to compute TR1
n (γ) and TR2

n (γ) (lines 25 and 26). The algorithm involves 2B + 1 optimization problems (lines

22, 25, and 26), however solving this problem is typically significantly faster than computing Test BP, which requires

a way to compute a test statistic and a quantile for each θ ∈ Θ. Relative to subsampling, Test MR does not need

to resample from the original data at each b = 1, . . . , B (line 24), which speeds up computation in our simulations.

These computational advantages are even more noticeable when computing a confidence set (as in Remark 2.3).
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Algorithm A.1 Algorithm to Implement the Minimum Resampling Test

1: Inputs: γ, Θ, κn, τn = κrn, B, f(·), ϕ(·), m(·), S(·), α . We set: κn =
√

log n and r = 1/3.
2: Θ(γ)← {θ ∈ Θ : f(θ) = γ} . Restriction set
3: ζ ← n×B matrix of independent N(0, 1) . Normal Draws needed for Test MR

4: function Qstat(type, θ, {Wi}ni=1, {ζi}ni=1) . Computes Criterion Function for a given θ
5: m̄n(θ)← n−1

∑n
i=1m(Wi, θ). . Moments for a given θ

6: D̂n(θ)← Diag(var(m(Wi, θ))). . Variance matrix for a given θ
7: Ω̂n(θ)← cor(m(Wi, θ)) . Correlation matrix for a given θ
8: σ̂2

n,j(θ)← D̂n(θ)[j, j] . Variance of the j-th moment for a given θ
9: if type=0 then . Type 0 is for Test Statistic

10: v(θ)←
√
nm̄n(θ) . Scaled average

11: `(θ)← 0k×1 . Test Statistic does not involve `
12: else if type=1 then . Type 1 is for Test R1
13: v(θ)← n−1/2

∑n
i=1(m(Wi, θ)− m̄n(θ))ζi . Define Stoch. process

14: `(θ)← ϕ(κ−1
n

√
nD̂
−1/2
n (θ)m̄n(θ))

15: else if type=2 then . Type 2 is for Test R2
16: v(θ)← n−1/2

∑n
i=1(m(Wi, θ)− m̄n(θ))ζi . Define Stoch. process

17: `(θ)← κ−1
n

√
nD̂
−1/2
n (θ)m̄n(θ)

18: end if
19: return Q(θ)← S(v(θ) + `(θ), Ω̂n(θ))
20: end function

21: function TestMR(B, {Wi}ni=1, ζ, Θ(γ), α) . Test MR
22: Tn ← minθ∈Θ(γ) Qstat(0, θ, {Wi}ni=1) . Compute Test Statistic

23: Θ̂I(γ)← {θ ∈ Θ(γ) : Qstat(0, θ, {Wi}ni=1) ≤ Tn + τn} . Estimated null identified set
24: for b=1,. . . ,B do
25: TR1[b]← minθ∈Θ̂I(γ) Qstat(1, θ, {Wi}ni=1, ζ[, b]) . type=1. Uses bth column of ζ

26: TR2[b]← minθ∈Θ(γ) Qstat(2, θ, {Wi}ni=1, ζ[, b]) . type=2. Uses bth column of ζ
27: TMR[b]← min{TR1[b], TR2[b]}
28: end for
29: ĉMR

n ← quantile(TMR, 1− α) . TMR is B × 1. Gets 1− α quantile
30: return φMR ← 1{Tn > ĉMR

n } . Reject if Test statistic above MR critical value
31: end function

Appendix B Assumptions

Assumption A.1. For every F ∈ P and j = 1, . . . , k, {σ−1
F,j(θ)mj(·, θ) : W → R} is a measurable class of functions

indexed by θ ∈ Θ.

Assumption A.2. The empirical process vn(·) with j-component

vn,j(θ) =
√
nσ−1

Fn,j
(θ)

n∑
i=1

(mj(Wi, θ)− m̄n,j(θ)), j = 1, . . . , k , (B-1)

is asymptotically ρF -equicontinuous uniformly in F ∈ P in the sense of van der Vaart and Wellner (1996, page 169).

This is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
F∈P

P ∗F

(
sup

ρF (θ,θ′)<δ
||vn(θ)− vn(θ′)|| > ε

)
= 0 ,

where P ∗F denotes outer probability and ρF is the coordinate-wise intrinsic variance semimetric in (A-1).
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Assumption A.3. For some constant a > 0 and all j = 1, . . . , k,

sup
F∈P

EF

[
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣]2+a

<∞ .

Assumption A.4. For any F ∈ P and θ, θ′ ∈ Θ, let ΩF (θ, θ′) be a k × k correlation matrix with typical [j1, j2]-

component

ΩF (θ, θ′)[j1,j2] ≡ EF
[(

mj1 (W,θ)−EF [mj1 (W,θ)]

σF,j1 (θ)

)(
mj2 (W,θ′)−EF [mj2 (W,θ′)]

σF,j2 (θ′)

)]
.

The matrix ΩF satisfies

lim
δ↓0

sup
‖(θ1,θ′1)−(θ2,θ

′
2)‖<δ

sup
F∈P

∥∥ΩF (θ1, θ
′
1)− ΩF (θ2, θ

′
2)
∥∥ = 0 .

Remark B.1. Assumption A.1 is a mild measurability condition. In fact, the kind of uniform laws large numbers

we need for our analysis would not hold without this basic requirement (see van der Vaart and Wellner, 1996, page

110). Assumption A.2 is a uniform stochastic equicontinuity assumption which, in combination with the other three

assumptions, is used to show that, for all j = 1, . . . , k, the class of functions {σ−1
F,j(θ)mj(·, θ) : W → R} is Donsker

and pre-Gaussian uniformly in F ∈ P (see Lemma C.1). Assumption A.3 provides a uniform (in F and θ) envelope

function that satisfies a uniform integrability condition. This is essential to obtain uniform versions of the laws of

large numbers and central limit theorems. Finally, Assumption A.4 requires the correlation matrices to be uniformly

equicontinuous, which is used to show pre-Gaussianity.

Assumption A.5. Given the function ϕ(·) in (2.6), there is a function ϕ∗ : Rk[±∞] → Rk[+∞] that takes the form

ϕ∗(ξ) = (ϕ∗1(ξ1), . . . , ϕ∗p(ξp),0k−p) and, for all j = 1, . . . , p,

(a) ϕ∗j (ξj) ≥ ϕj(ξj) for all ξj ∈ R[+∞].

(b) ϕ∗j (·) is continuous.

(c) ϕ∗j (ξj) = 0 for all ξj ≤ 0 and ϕ∗j (∞) =∞.

Remark B.2. Assumption A.5 is satisfied when ϕ is any of the the functions ϕ(1) − ϕ(4) described in Andrews and

Soares (2010) or Andrews and Barwick (2012). This follows from Bugni et al. (2013, Lemma D.8).

Assumption A.6. For any {(γn, Fn) ∈ L0}n≥1, let (Λ,Ω) be such that ΩFn
u→ Ω and Λn,Fn(γn)

H→ Λ with

(Ω,Λ) ∈ C(θ) × S(Θ × Rk[±∞]) and Λn,Fn(γn) as in Table 2. Let c(1−α)(Λ,Ω) be the (1 − α)-quantile of J(Λ,Ω) ≡
inf(θ,`)∈Λ S(vΩ(θ) + `,Ω(θ)). Then,

(a) If c(1−α)(Λ,Ω) > 0, the distribution of J(Λ,Ω) is continuous at c(1−α)(Λ,Ω).

(b) If c(1−α)(Λ,Ω) = 0, lim infn→∞ PFn(Tn(γn) = 0) ≥ 1− α, where Tn(γn) is as in (2.3).

Remark B.3. Without Assumption A.6 the asymptotic distribution of the test statistic could be discontinuous at

the probability limit of the critical value, resulting in asymptotic over-rejection under the null hypothesis. One could

add an infinitesimal constant to the critical value and avoid introducing such assumption, but this introduces an

additional tuning parameter that needs to be chosen by the researcher.

Assumption A.7. The following conditions hold.

(a) For all (γ, F ) ∈ L0 and θ ∈ Θ(γ), QF (θ) ≥ cmin{δ, inf θ̃∈ΘI (F,γ) ||θ − θ̃||}
χ for constants c, δ > 0 and for χ as in

Assumption M.1.
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(b) Θ(γ) is convex.

(c) The function gF (θ) ≡ D
−1/2
F (θ)EF [m(W, θ)] is differentiable in θ for any F ∈ P0, and the class of functions

{GF (θ) ≡ ∂gF (θ)/∂θ′ : F ∈ P0} is equicontinuous, i.e.,

lim
δ→0

sup
F∈P0,(θ,θ′):||θ−θ′||≤δ

||GF (θ)−GF (θ′)|| = 0 .

Remark B.4. Assumption A.7(a) states that QF (θ) can be bounded below in a neighborhood of the null identified

set ΘI(F, γ) and so it is close to being a population version of the polynomial minorant condition in Chernozhukov

et al. (2007). The convexity in Assumption A.7(b) would be implied by the parameter space Θ being convex and the

function f(·) being linear. Finally, A.7(c) is a smoothness condition that would be implied by the class of functions

{GF (θ) ≡ ∂gF (θ)/∂θ′ : F ∈ P0} being Lipschitz. These three parts are a sufficient conditions for our test to be

asymptotically valid (see Lemmas C.7 and C.8). One could create examples in which Assumption A.7 is violated

and our test still controls asymptotic size. We however present the results this way as the sufficient conditions in

Assumption A.7 are easier to interpret than the conditions that appear in the conclusions of Lemmas C.7 and C.8.

Assumption A.8. The sequences {κn}n≥1 and {bn}n≥1 in Assumption M.2 satisfy κn
√
bn/n→ 0.10

Assumption A.9. For γ0 ∈ Γ, there is {γn ∈ Γ}n≥1 such that {(γn, Fn) ∈ L0}n≥1 satisfies

(a) For all n ∈ N, ΘI(Fn) ∩Θ(γ0) = ∅ (i.e. (γ0, Fn) 6∈ L0),

(b) dH(Θ(γn),Θ(γ0)) = O(n−1/2),

(c) For any θ ∈ Θ, κ−1
n GFn(θ) = o(1).

Assumption A.10. For γ0 ∈ Γ and {γn ∈ Γ}n≥1 as in Assumption A.9, let (Ω,Λ,ΛSS ,ΛR2) ∈ C(Θ2)×S(Θ×Rk[±∞])
3

be such that ΩFn
u→ Ω, Λn,Fn(γ0)

H→ Λ, ΛR2
n,Fn(γ0)

H→ ΛR2, ΛSSbn,Fn(γ0)
H→ ΛSS for Λn,Fn(γ0), ΛR2

n,Fn(γ0), and

ΛSSbn,Fn(γ0) as in Table 2. Then,

(a) The distribution of J(Λ,Ω) is continuous at c1−α(ΛSS ,Ω).

(b) The distributions of J(Λ,Ω), J(ΛSS ,Ω), and J(ΛR2,Ω) are strictly increasing at x > 0.

Assumption A.11. For γ0 ∈ Γ, there is {γn ∈ Γ}n≥1 such that {(γn, Fn) ∈ L0}n≥1 satisfies

(a) The conditions in Assumption A.9.

(b) There are (possibly random) sequences {θ̃n ∈ ΘI(Fn)}n≥1 and {θ̂n ∈ Θ(γ0)}n≥1 such that,

i. S(
√
nm̄n(θ̂n), Σ̂n(θ̂n))− Tn(γ0) = op(1).

ii. λn ≡
√
n
(
D
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)]−D−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]
)
→ λ ∈ Rk.

iii.
√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]
p→ (h,0k−p) with h ∈ Rp[+∞], and κ−1

n

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]
p→ (π,0k−p)

with π ∈ Rp[+∞]. Also, θ̃n − θ∗ = op(1) for some θ∗ ∈ Θ.

(c) There are (possibly random) sequences {θ̃SSn ∈ ΘI(Fn)}n≥1 and {θ̂SSn ∈ Θ(γ0)}n≥1 such that,

i. Conditionally on {Wi}ni=1, S(
√
bnm̄

SS
bn (θ̂SSn ), Σ̂SSbn (θ̂SSn ))− TSSn (γ0) = op(1) a.s.

ii. λSSn ≡
√
bn
(
D
−1/2
Fn

(θ̂SSn )EFn [m(W, θ̂SSn )]−D−1/2
Fn

(θ̃SSn )EFn [m(W, θ̃SSn )]
)
→ 0k.

iii.
√
bnD

−1/2
Fn

(θ̃SSn )EFn [m(W, θ̃SSn )]
p→ (g,0k−p) with g ∈ Rp[+∞]. Also, conditionally on {Wi}ni=1, θ̂SSn − θ∗ =

op(1) a.s., where θ∗ is as in part (i).

10This corresponds to Andrews and Soares (2010, Assumption GMS5).
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(d) gj < πj for some j = 1, . . . , p.

(e) λj < −hj for some j ≤ p or |λj | 6= 0 for some j > p.

The literature routinely assumes that the function S(·) in (2.1) satisfies the following assumptions (see, e.g.,

Andrews and Soares (2010), Andrews and Guggenberger (2009), and Bugni et al. (2012)). We therefore treat the

assumptions below as maintained. We note in particular that the constant χ in Assumption M.1 equals 2 when the

function S(·) is either the modified methods of moments in (3.14) or the quasi-likelihood ratio.

Assumption M.1. For some χ > 0, S(am,Ω) = aχS(m,Ω) for all scalars a > 0, m ∈ Rk, and Ω ∈ Ψ.

Assumption M.2. The sequence {κn}n≥1 satisfies κn → ∞ and κn/
√
n → 0. The sequence {bn}n≥1 satisfies

bn →∞ and bn/n→ 0. The sequence {τn}n≥1 satisfies τn = κrn for r ∈ (0, χ) where χ is as in Assumption M.1.

Assumption M.3. For each γ ∈ Γ, Θ(γ) is a nonempty and compact subset of Rdθ (dθ <∞).

Assumption M.4. Test BP is computed using the GMS approach in Andrews and Soares (2010). This is, φBPn (·)
in (3.5) is based on CSn(1 − α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1 − α)} where ĉn(θ, 1 − α) is the GMS critical value

constructed using the GMS function ϕ(·) in (2.6) and thresholding sequence {κn}n≥1 satisfying Assumption M.2.

Assumption M.5. The function S(·) satisfies the following conditions.

(a) S((m1,m2),Σ) is non-increasing in m1, for all (m1,m2) ∈ Rp[+∞] × Rk−p and all variance matrices Σ ∈ Rk×k.

(b) S(m,Σ) = S(∆m,∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and positive definite diagonal ∆ ∈ Rk×k.

(c) S(m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ,

(d) S(m,Ω) is continuous at all m ∈ Rk[±∞] and Ω ∈ Ψ.

Assumption M.6. For all h1 ∈ Rp[+∞] × Rk−p, all Ω ∈ Ψ, and Z ∼ N (0k,Ω), the distribution function of

S (Z + h1,Ω) at x ∈ R

(a) is continuous for x > 0,

(b) is strictly increasing for x > 0 unless p = k and h1 =∞p,

(c) is less than or equal to 1/2 at x = 0 when k > p or when k = p and h1,j = 0 for some j = 1, . . . , p.

(d) is degenerate at x = 0 when p = k and h1 =∞p.

(e) satisfies P (S (Z + (m1,0k−p) ,Ω) ≤ x) < P (S (Z + (m∗1,0k−p) ,Ω) ≤ x) for all x > 0 and all m1,m
∗
1 ∈ Rp[+∞]

with m1,j ≤ m∗1,j for all j = 1, . . . , p and m1,j < m∗1,j for some j = 1, . . . , p.

Assumption M.7. The function S(·) satisfies the following conditions.

(a) The distribution function of S(Z,Ω) is continuous at its (1−α)-quantile, denoted c(1−α)(Ω), for all Ω ∈ Ψ, where

Z ∼ N (0k,Ω) and α ∈ (0, 0.5),

(b) c(1−α)(Ω) is continuous in Ω uniformly for Ω ∈ Ψ.

Assumption M.8. S(m,Ω) > 0 if and only if mj < 0 for some j = 1, . . . , p or mj 6= 0 for some j = p + 1, . . . , k,

where m = (m1, . . . ,mk)′ and Ω ∈ Ψ. Equivalently, S(m,Ω) = 0 if and only if mj ≥ 0 for all j = 1, . . . , p and mj = 0

for all j = p+ 1, . . . , k, where m = (m1, . . . ,mk)′ and Ω ∈ Ψ.

Assumption M.9. For all n ≥ 1, S(
√
nm̄n(θ), Σ̂(θ)) is a lower semi-continuous function of θ ∈ Θ.

22



Appendix C Auxiliary results

C.1 Auxiliary theorems

Theorem C.1. Suppose Assumptions A.1-A.4 hold. Let ΛR2
n,F (γ) be as in Table 2 and TR2

n (γ) be as in (2.12). Let

{(γn, Fn) ∈ L0}n≥1 be a (sub)sequence of parameters such that for some (Ω,ΛR2) ∈ C(Θ2) × S(Θ × Rk[±∞]): (i)

ΩFn
u→ Ω and (ii) ΛR2

n,Fn(γn)
H→ ΛR2. Then, there exists a further subsequence {un}n≥1 of {n}n≥1 such that, along

{Fun}n≥1,

{TR2
un (γun)|{Wi}ni=1}

d→ J(ΛR2,Ω) ≡ inf
(θ,`)∈ΛR2

S(vΩ(θ) + `,Ω(θ)), a.s. ,

where vΩ : Θ→ Rk is a tight Gaussian process with covariance (correlation) kernel Ω.

Theorem C.2. Suppose Assumptions A.1-A.5 hold. Let ΛR2
n,F (γ) and ΛR1

n,F (γ) be as in Table 2, and let TR2
n (γ) and

T̃R1
n (γ) be as in (2.12) and

T̃R1
n (γ) ≡ inf

θ∈Θ
δn
I

(γ)

S(v∗n(θ) + ϕ∗(κ−1
n

√
nD̂−1/2

n (θ)m̄n(θ)), Ω̂n(θ)) , (C-1)

where v∗n(θ) is as in (2.8), ϕ∗(·) is as in Assumption A.5, and Θδn
I (γ) is as in Table 2. Let {(γn, Fn) ∈ L0}n≥1

be a (sub)sequence of parameters such that for some (Ω,ΛR1,ΛR2) ∈ C(Θ2) × S(Θ × Rk[±∞])
2: (i) ΩFn

u→ Ω, (ii)

ΛR1
n,Fn(γn)

H→ ΛR1, and (iii) ΛR2
n,Fn(γn)

H→ ΛR2. Then, there exists a further subsequence {un}n≥1 of {n}n≥1 such

that, along {Fun}n≥1,

{min{T̃R1
un (γun), TR2

un (γun)}|{Wi}ni=1}
d→ J(ΛMR,Ω) ≡ inf

(θ,`)∈ΛMR
S(vΩ(θ) + `,Ω(θ)), a.s. ,

where vΩ : Θ→ Rk is a tight Gaussian process with covariance (correlation) kernel Ω,

ΛMR ≡ ΛR1
∗ ∪ ΛR2 and ΛR1

∗ ≡ {(θ, `) ∈ Θ× Rk[±∞] : ` = ϕ∗(`′) for some (θ, `′) ∈ ΛR1} . (C-2)

Theorem C.3. Suppose Assumptions A.1-A.4 hold. Let ΛSSbn,F (γ) be as in Table 2 and TSSbn (γ) be as in (3.8). Let

{(γn, Fn) ∈ L0}n≥1 be a (sub)sequence of parameters such that for some (Ω,ΛSS) ∈ C(Θ2) × S(Θ × Rk[±∞]): (i)

ΩFn
u→ Ω and (ii) ΛSSbn,Fn(γn)

H→ ΛSS. Then, there exists a further subsequence {un}n≥1 of {n}n≥1 such that, along

{Fun}n≥1,

{TSSun (γun)|{Wi}ni=1}
d→ J(ΛSS ,Ω) ≡ inf

(θ,`)∈ΛSS
S(vΩ(θ) + `,Ω(θ, θ)), a.s. ,

where vΩ : Θ→ Rk is a tight Gaussian process with covariance (correlation) kernel Ω.

Theorem C.4. Suppose Assumptions A.1-A.4 hold. Let Λn,F (γ) be as in Table 2 and Tn(γ) be as in (2.3). Let

{(γn, Fn) ∈ L0}n≥1 be a (sub)sequence of parameters such that for some (Ω,Λ) ∈ C(Θ2)×S(Θ×Rk[±∞]): (i) ΩFn
u→ Ω

and (ii) Λn,Fn(γn)
H→ Λ. Then, there exists a further subsequence {un}n≥1 of {n}n≥1 such that, along {Fun}n≥1,

Tun(γun)
d→ J(Λ,Ω) ≡ inf

(θ,`)∈Λ
S(vΩ(θ) + `,Ω(θ)), as n→∞ ,

where vΩ : Θ→ Rk is a tight Gaussian process with zero-mean and covariance (correlation) kernel Ω.

C.2 Auxiliary lemmas

Lemma C.1. Suppose Assumptions A.1-A.4 hold. Let {Fn ∈ P}n≥1 be a (sub)sequence of distributions s.t. ΩFn
u→ Ω

for some Ω ∈ C(Θ2). Then, the following results hold:

1. vn
d→ vΩ in l∞(Θ), where vΩ : Θ → Rk is a tight zero-mean Gaussian process with covariance (correlation)

kernel Ω. In addition, vΩ is a uniformly continuous function, a.s.
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2. Ω̃n
p→ Ω in l∞(Θ).

3. D
−1/2
Fn

(·)D̂1/2
n (·)− Ik

p→ 0k in l∞(Θ).

4. D̂
−1/2
n (·)D1/2

Fn
(·)− Ik

p→ 0k in l∞(Θ).

5. Ω̂n
p→ Ω in l∞(Θ).

6. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n vn

p→ 0k in l∞(Θ).

7. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n ṽn

p→ 0k in l∞(Θ).

8. {v∗n|{Wi}ni=1}
d→ vΩ in l∞(Θ) a.s., where vΩ is the tight Gaussian process described in part 1.

9. {ṽSSbn |{Wi}ni=1}
d→ vΩ in l∞(Θ) a.s., where

ṽSSbn (θ) ≡ 1√
bn

bn∑
i=1

D
−1/2
Fn

(θ)(m(WSS
i , θ)− m̄n(θ)) , (C-3)

{WSS
i }bni=1 is a subsample of size bn from {Wi}ni=1, and vΩ is the tight Gaussian process described in part 1.

10. For Ω̃SSbn (θ) ≡ D−1/2
Fn

(θ)Σ̂SSbn (θ)D
−1/2
Fn

(θ), {Ω̃SSbn |{Wi}ni=1}
p→ Ω in l∞(Θ) a.s.

Lemma C.2. Let Assumptions A.1-A.4 hold. Then, for any sequence {(γn, Fn) ∈ L}n≥1 there exists a subsequence

{un}n≥1 of {n}n≥1 s.t. ΩFun
u→ Ω, Λun,Fun (γun)

H→ Λ, ΛR2
un,Fun

(γun)
H→ ΛR2, and ΛR1

un,Fun
(γun)

H→ ΛR1, for some

(Ω,Λ,ΛR1,ΛR2) ∈ C(θ)× S(Θ× Rk[±∞])
3, where Λn,Fn(γ), ΛR1

n,Fn(γ), and ΛR2
n,Fn(γ) are defined in Table 2.

Lemma C.3. Let {Fn ∈ P}n≥1 be an arbitrary (sub)sequence of distributions and let Xn(θ) : Ω → l∞(Θ) be any

stochastic process such that Xn
p→ 0 in l∞(Θ). Then, there exists a subsequence {un}n≥1 of {n}n≥1 such that

Xun
a.s.→ 0 in l∞(Θ).

Lemma C.4. Let the set A be defined as follows:

A ≡
{
x ∈ Rp[+∞] × Rk−p : max

{
max

j=1,...,p
{[xj ]−}, max

s=p+1,...,k
{|xs|}

}
= 1

}
. (C-4)

Then, inf(x,Ω)∈A×Ψ S(x,Ω) > 0.

Lemma C.5. If S(x,Ω) ≤ 1 then there exist a constant $ > 0 such that xj ≥ −$ for all j ≤ p and |xj | ≤ $ for all

j > p.

Lemma C.6. The function S satisfies the following properties: (i) x ∈ (−∞,∞]p × Rk−p implies supΩ∈Ψ S(x,Ω) <

∞, (ii) x 6∈ (−∞,∞]p × Rk−p implies infΩ∈Ψ S(x,Ω) =∞.

Lemma C.7. Let (Ω,Λ,ΛR1) ∈ C(Θ2)×S(Θ×Rk[±∞])
2 be such that ΩFn

u→ Ω, Λn,Fn(γn)
H→ Λ, and ΛR1

n,Fn(γn)
H→ ΛR1,

for some {(γn, Fn) ∈ L0}n≥1. Then, Assumptions A.5 and A.7 imply that for all (θ, `) ∈ ΛR1 there exists (θ, ˜̀) ∈ Λ

with ˜̀
j ≥ ϕ∗j (`j) for j ≤ p and ˜̀

j = `j ≡ 0 for j > p, where ϕ∗(·) is defined in Assumption A.5.

Lemma C.8. Let (Ω,Λ,ΛR2) ∈ C(Θ2)×S(Θ×Rk[±∞])
2 be such that ΩFn

u→ Ω, Λn,Fn(γn)
H→ Λ, and ΛR2

n,Fn(γn)
H→ ΛR2,

for some {(γn, Fn) ∈ L0}n≥1. Then, Assumption A.7 implies that for all (θ, `) ∈ ΛR2 with ` ∈ Rp[+∞] × Rk−p, there

exists (θ, ˜̀) ∈ Λ with ˜̀
j ≥ `j for j ≤ p and ˜̀

j = `j for j > p.

Lemma C.9. Let Assumptions A.1-A.4 and A.7-A.9 hold. For γ0 ∈ Γ and {γn ∈ Γ}n≥1 as in Assumption A.9,

assume that ΩFn
u→ Ω, Λn,Fn(γ0)

H→ Λ, ΛR2
n,Fn(γ0)

H→ ΛR2, ΛSSbn,Fn(γ0)
H→ ΛSS, ΛR2

n,Fn(γn)
H→ ΛR2

A , and ΛSSbn,Fn(γn)
H→

ΛSSA for some (Ω,Λ,ΛSS ,ΛR2,ΛSSA ,ΛR2
A ) ∈ C(Θ2)× S(Θ× Rk[±∞])

5. Then,

c(1−α)(Λ
R2,Ω) ≤ c(1−α)(Λ

SS ,Ω) .

Lemma C.10. Let Assumptions A.1-A.4 and A.7-A.11 hold. Then,

lim inf
n→∞

(EFn [φR2
n (γ0)]− EFn [φSSn (γ0)]) > 0 .
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Appendix D Proofs

D.1 Proofs of the main theorems

Proof of Theorem 2.1. We divide the proof in six steps and show that for η ≥ 0,

lim sup
n→∞

sup
(γ,F )∈L0

PF (Tn(γ) > ĉMR
n (γ, 1− α) + η) ≤ α .

Steps 1-4 hold for η ≥ 0, step 5 needs η > 0, and step 6 holds for η = 0 under Assumption A.6.

Step 1. For any (γ, F ) ∈ L0, let T̃R1
n (γ) be as in (C-1) and c̃MR

n (γ, 1 − α) be the conditional (1 − α)-quantile of

min{T̃R1
n (γ), TR2

n (γ)}. Consider the following derivation

PF (Tn(γ) > ĉMR
n (γ, 1− α) + η) ≤ PF (Tn(γ) > c̃MR

n (γ, 1− α) + η) + PF (ĉMR
n (γ, 1− α) < c̃MR

n (γ, 1− α))

≤ PF (Tn(γ) > c̃MR
n (γ, 1− α) + η) + PF (Θ̂I(γ) 6⊆ Θδn

I (γ)) ,

where the second inequality follows from the fact that Assumption A.5 and ĉMR
n (γ, 1 − α) < c̃MR

n (γ, 1 − α) imply

that Θ̂I(γ) 6⊆ Θδn
I (γ). By this and Lemma D.13 in Bugni et al. (2013) (with a redifined parameter space equal to

Θ(γ)), it follows that

lim sup
n→∞

sup
(γ,F )∈L0

PF (Tn(γ) > ĉMR
n (γ, 1− α) + η) ≤ lim sup

n→∞
sup

(γ,F )∈L0

PF (Tn(γ) > c̃MR
n (γ, 1− α) + η) .

Step 2. By definition, there exists a subsequence {an}n≥1 of {n}n≥1 and a subsequence {(γan , Fan)}n≥1 s.t.

lim sup
n→∞

sup
(γ,F )∈L0

PF (Tn(γ) > ĉMR
n (γ, 1− α) + η) = lim

n→∞
PFan (Tan(γan) > c̃MR

an (γan , 1− α) + η) . (D-1)

By Lemma C.2, there is a further sequence {un}n≥1 of {an}n≥1 s.t. ΩFun
u→ Ω, Λun,Fun (γun)

H→ Λ, ΛR1
un,Fun

(γun)
H→

ΛR1, and ΛR2
un,Fun

(γun)
H→ ΛR2, for some (Ω,Λ,ΛR1,ΛR2) ∈ C(θ) × S(Θ × Rk[±∞])

3. Since ΩFun
u→ Ω and

Λun,Fun (γun)
H→ Λ, Theorem C.4 implies that Tun(γun)

d→ J(Λ,Ω) ≡ inf(θ,`)∈Λ S(vΩ(θ)+`,Ω(θ)). Similarly, Theorem

C.2 implies that {min{T̃R1
un (γun), TR2

un (γun)}|{Wi}uni=1}
d→ J(ΛMR,Ω) a.s.

Step 3. We show that J(ΛMR,Ω) ≥ J(Λ,Ω). Suppose not, i.e., ∃(θ, `) ∈ ΛR1
∗ ∪ΛR2 s.t. S(vΩ(θ)+`,Ω(θ)) < J(Λ,Ω).

If (θ, `) ∈ ΛR1
∗ then by definition ∃(θ, `′) ∈ ΛR1 s.t. ϕ∗(`′) = ` and S(vΩ(θ) + ϕ∗(`′),Ω(θ)) < J(Λ,Ω). By Lemma

C.7, ∃(θ, ˜̀) ∈ Λ where ˜̀
j ≥ ϕ∗j (`′j) for j ≤ p and ˜̀

j = 0 for j > p. Thus

S(vΩ(θ) + ˜̀,Ω(θ)) ≤ S(vΩ(θ) + ϕ∗(`′),Ω(θ)) < J(Λ,Ω) ≡ inf
(θ,`)∈Λ

S(vΩ(θ) + `,Ω(θ)) ,

which is a contradiction to (θ, ˜̀) ∈ Λ. If (θ, `) ∈ ΛR2, we first need to show that ` ∈ Rp[+∞] ×Rk−p. Suppose not, i.e.,

suppose that `j = −∞ for some j ≤ p or |`j | = ∞ for some j > p. Since vΩ : Θ → Rk is a tight Gaussian process,

it follows that vΩ,j(θ) + `j = −∞ for some j ≤ p or |vΩ,j(θ) + `j | = ∞ for some j > p. By Lemma C.6, we have

S(vΩ(θ) + `,Ω(θ)) =∞ which contradicts S(vΩ(θ) + `,Ω(θ)) < J(Λ,Ω). Since ` ∈ Rp[+∞]×Rk−p, Lemma C.8 implies

that ∃(θ, ˜̀) ∈ Λ where ˜̀
j ≥ `j for j ≤ p and ˜̀

j = `j for j > p. We conclude that

S(vΩ(θ) + ˜̀,Ω(θ)) ≤ S(vΩ(θ) + `,Ω(θ)) < J(Λ,Ω) ≡ inf
(θ,`)∈Λ

S(vΩ(θ) + `,Ω(θ)) ,

which is a contradiction to (θ, ˜̀) ∈ Λ.

Step 4. We now show that for c(1−α)(Λ,Ω) being the (1− α)-quantile of J(Λ,Ω) and any ε > 0,

limPFun (c̃MR
un (γun , 1− α) ≤ c(1−α)(Λ,Ω)− ε) = 0 . (D-2)
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Let ε > 0 be s.t. c(1−α)(Λ,Ω)− ε is a continuity point of the CDF of J(Λ,Ω). Then,

lim PFun

(
min{T̃R1

un (γun), TR2
un (γun)} ≤ c(1−α)(Λ,Ω)− ε

∣∣∣ {Wi}uni=1

)
= P

(
J(ΛMR,Ω) ≤ c(1−α)(Λ,Ω)− ε

)
≤ P

(
J(Λ,Ω) ≤ c(1−α)(Λ,Ω)− ε

)
< 1− α ,

where the first equality holds because {min{T̃R1
un (γun), TR2

un (γun)}|{Wi}uni=1}
d→ J(ΛMR,Ω) a.s., the second weak

inequality is a consequence of J(ΛMR,Ω) ≥ J(Λ,Ω), and the final strict inequality follows from c(1−α)(Λ,Ω) being

the (1− α)-quantile of J(Λ,Ω). Next, notice that{
limPFun

(
min{T̃R1

un (γun), TR2
un (γun)} ≤ c(1−α)(Λ,Ω)− ε

∣∣∣ {Wi}uni=1

)
< 1− α

}
⊆
{

lim inf{c̃MR
un (1− α) > c(1−α)(Λ,Ω)− ε}

}
.

Since the RHS occurs a.s., then the LHS must also occur a.s. Then, (D-2) is a consequence of this and Fatou’s

Lemma.

Step 5. For η > 0, we can define ε > 0 in step 4 so that η − ε > 0 and c(1−α)(Λ,Ω) + η − ε is a continuity point

of the CDF of J(Λ,Ω). It then follows that

PFun

(
Tun(γun) > c̃MR

un (γun , 1− α) + η
)
≤ PFun

(
c̃MR
un (γun , 1− α) ≤ c(1−α)(Λ,Ω)− ε

)
+ 1− PFun

(
Tun(γun) ≤ c(1−α)(Λ,Ω) + η − ε

)
. (D-3)

Taking limit supremum on both sides, using steps 2 and 4, and that η − ε > 0,

lim sup
n→∞

PFun

(
Tun(γun) > ĉMR

un (γun , 1− α) + η
)
≤ 1− P

(
J(Λ,Ω) ≤ c(1−α)(Λ,Ω) + η − ε

)
≤ α .

This combined with steps 1 and 2 completes the proof under η > 0.

Step 6. For η = 0, there are two cases to consider. First, suppose c(1−α)(Λ,Ω) = 0. Then, by Assumption A.6,

lim sup
n→∞

PFun (Tun(γun) > c̃MR
un (γun , 1− α)) ≤ lim sup

n→∞
PFun (Tun(γun) 6= 0) ≤ α .

The proof is completed by combining the previous equation with steps 1 and 2. Second, suppose c(1−α)(Λ,Ω) > 0.

Consider a sequence {εm}m≥1 s.t. εm ↓ 0 and c(1−α)(Λ,Ω) − εm is a continuity point of the CDF of J(Λ,Ω) for all

m ∈ N. For any m ∈ N, it follows from (D-3) and steps 2 and 3 that

lim sup
n→∞

PFun (Tun(γun) > c̃MR
un (γun , 1− α)) ≤ 1− P (J(Λ,Ω) ≤ c(1−α)(Λ,Ω)− εm) .

Taking εm ↓ 0 and using continuity gives the RHS equal to α. Combining the previous equation with steps 1 and 2

completes the proof.

Proof of Theorem 3.1. This proof follows identical steps to those in the proof of Bugni et al. (2013, Theorem 6.1)

and is therefore omitted.

Proof of Theorem 3.2. Suppose not, i.e., suppose that lim inf(EFn [φR2
n (γ0)] − EFn [φSSn (γ0)]) ≡ −δ < 0. Consider a

subsequence {kn}n≥1 of {n}n≥1 such that,

PFkn (Tkn(γ0) > cR2
kn (γ0, 1− α)) = EFkn [φR2

kn (γ0)] < EFkn [φSSkn (γ0)]− δ/2 = PFkn (Tkn(γ0) > cSSkn (γ0, 1− α))− δ/2 ,

or, equivalently,

PFkn (Tkn(γ0) ≤ cSSkn (γ0, 1− α)) + δ/2 < PFkn (Tkn(γ0) ≤ cR2
kn (γ0, 1− α)) . (D-4)

Lemma C.2 implies that for some (Ω,Λ,ΛR2,ΛSS ,ΛR2
A ,ΛSSA ) ∈ C(Θ2)× S(Θ× Rk[±∞])

5, ΩFkn
u→ Ω , ΛR2

kn ,Fkn
(γ0)

H→

ΛR2, ΛSSbkn ,Fkn (γ0)
H→ ΛSS , ΛR2

kn,Fkn
(γkn)

H→ ΛR2
A , and ΛSSbkn ,Fkn (γkn)

H→ ΛSSA . Then, Theorems C.4, C.1, and C.3

imply that Tkn(γ0)
d→ J(Λ,Ω), {TR2

kn (γ0)|{Wi}kni=1}
d→ J(ΛR2,Ω) a.s., and {TSSkn (γ0)|{Wi}kni=1}

d→ J(ΛSS ,Ω) a.s.
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We next show that cR2
kn (γ0, 1−α)

a.s.→ c1−α(ΛR2,Ω). Let ε > 0 be arbitrary and pick ε̃ ∈ (0, ε) s.t. c(1−α)(Λ
R2,Ω)+ε̃

and c(1−α)(Λ
R2,Ω)− ε̃ are both a continuity points of the CDF of J(ΛR2,Ω). Then,

lim
n→∞

PFkn (TR2
kn (γ0) ≤ c(1−α)(Λ

R2,Ω) + ε̃|{Wi}ni=1) = P (J(ΛR2,Ω) ≤ c(1−α)(Λ
R2,Ω) + ε̃) > 1− α a.s. , (D-5)

where the first equality holds because of {TR2
kn (γ0)|{Wi}kni=1}

d→ J(ΛR2,Ω) a.s., and the strict inequality is due to

ε̃ > 0 and c(1−α)(Λ
R2,Ω) + ε̃ being a continuity point of the CDF of J(ΛR2,Ω). Similarly,

lim
n→∞

PFkn (TR2
kn (γ0) ≤ c(1−α)(Λ

R2,Ω)− ε̃|{Wi}ni=1) = P (J(ΛR2,Ω) ≤ c(1−α)(Λ
R2,Ω)− ε̃) < 1− α . (D-6)

Next, notice that,

{ lim
n→∞

PFkn (TR2
kn (γ0) ≤ c(1−α)(Λ

R2,Ω)+ε̃|{Wi}ni=1) > 1−α} ⊆ {lim inf
n→∞

{cR2
kn (γ0, 1−α) < c(1−α)(Λ

R2,Ω)+ε̃}} , (D-7)

with the same result holding with −ε̃ replacing ε̃. From (D-5), (D-6), (D-7), we conclude that

PFn(lim inf
n→∞

{|cR2
kn (γ0, 1− α)− c(1−α)(Λ

R2,Ω)| ≤ ε}) = 1 ,

which is equivalent to cR2
kn (γ0, 1− α)

a.s.→ c(1−α)(Λ
R2,Ω). By similar arguments, cSSkn (γ0, 1− α)

a.s.→ c(1−α)(Λ
SS ,Ω).

Let ε > 0 be s.t. c(1−α)(Λ
SS ,Ω)− ε is a continuity point of the CDF of J(Λ,Ω) and note that

PFkn (Tkn(γ0) ≤ cSSkn (γ0, 1− α)) ≥ PFkn ({Tkn(γ0) ≤ c(1−α)(Λ
SS ,Ω)− ε} ∩ {cSSkn (γ0, 1− α) ≥ c(1−α)(Λ

SS ,Ω)− ε})

+ PFkn ({Tkn(γ0) ≤ cSSkn (γ0, 1− α)} ∩ {cSSkn (γ0, 1− α) < c(1−α)(Λ
SS ,Ω)− ε}) .

Taking lim inf and using that Tkn(γ0)
d→ J(Λ,Ω) and cSSkn (γ0, 1− α)

a.s.→ c(1−α)(Λ
SS ,Ω), we deduce that

lim inf
n→∞

PFkn (Tkn(γ0) ≤ cSSkn (γ0, 1− α)) ≥ P (J(Λ,Ω) ≤ c(1−α)(Λ
SS ,Ω)− ε) . (D-8)

Fix ε > 0 arbitrarily and pick ε̃ ∈ (0, ε) s.t. c(1−α)(Λ
R2,Ω) + ε̃ is a continuity point of the CDF of J(Λ,Ω). Then,

PFkn (Tkn(γ0) ≤ cR2
kn (γ0, 1− α)) ≤ PFkn (Tkn(γ0) ≤ c(1−α)(Λ

R2,Ω) + ε̃) + PFkn (cR2
kn (γ0, 1− α) > c(1−α)(Λ

R2,Ω) + ε̃) .

Taking lim sup on both sides, and using that Tkn(γ0)
d→ J(Λ,Ω), cR2

kn (γ0, 1− α)
a.s.→ c(1−α)(Λ

R2,Ω), and ε̃ ∈ (0, ε),

lim sup
n→∞

PFkn (Tkn(γ0) ≤ cR2
kn (γ0, 1− α)) ≤ P (J(Λ,Ω) ≤ c(1−α)(Λ

R2,Ω) + ε̃) . (D-9)

Next consider the following derivation

P (J(Λ,Ω) ≤ c(1−α)(Λ
SS ,Ω)− ε) + δ/2 ≤ lim inf PFkn (Tkn(γ0) ≤ cSSkn (γ0, 1− α)) + δ/2

≤ lim supPFkn (Tkn(γ0) ≤ cR2
kn (γ0, 1− α))

≤ P (J(Λ,Ω) ≤ c(1−α)(Λ
R2,Ω) + ε)

≤ P (J(Λ,Ω) ≤ c(1−α)(Λ
SS ,Ω) + ε) ,

where the first inequality follows from (D-8), the second inequality follows from (D-4), the third inequality follows

from (D-9), and the fourth inequality follows from c(1−α)(Λ
R2,Ω) ≤ c(1−α)(Λ

SS ,Ω). We conclude that

P (J(Λ,Ω) ≤ c(1−α)(Λ
SS ,Ω) + ε)− P (J(Λ,Ω) ≤ c(1−α)(Λ

SS ,Ω)− ε) ≥ δ/2 > 0 .

Taking ε ↓ 0 and using Assumption A.10, the LHS converges to zero, which is a contradiction.
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D.2 Proofs of theorems in Appendix C

Proof of Theorem C.1. Step 1. To simplify expressions, let ΛR2
n ≡ ΛR2

n,Fn(γn). Consider the following derivation,

TR2
n (γn) = inf

θ∈Θ(γn)
S
(
v∗n(θ) + µn,1(θ) + µn,2(θ)′κ−1

n

√
nD
−1/2
Fn

(θ)EFn [m(W, θ)], Ω̂n(θ)
)

= inf
(θ,`)∈ΛR2

n

S
(
v∗n(θ) + µn,1(θ) + µn,2(θ)′`, Ω̂n(θ)

)
,

where µn(θ) = (µn,1(θ), µn,2(θ)), µn,1(θ) ≡ κ−1
n ṽn(θ), µn,2(θ) ≡ {σ̂−1

n,j(θ)σFn,j(θ)}
k
j=1, and ṽn(θ) ≡

√
nD̂−1

n (θ)(m̄n(θ)− EF [m(W, θ)]). Note that D̂
−1/2
n (θ) and D

1/2
Fn

(θ) are both diagonal matrices.

Step 2. We now show that there is a subsequence {an}n≥1 of {n}n≥1 s.t. {(v∗an , µan , Ω̂an)|{Wi}ani=1}
d→

(vΩ, (0k,1k),Ω) in l∞(θ) a.s. By part 8 in Lemma C.1, {v∗n|{Wi}ni=1}
d→ vΩ in l∞(θ). Then the result would

follow from finding a subsequence {an}n≥1 of {n}n≥1 s.t. {(µan , Ω̂an)|{Wi}ani=1} → ((0k,1k),Ω) in l∞(θ) a.s.

Since (µn, Ω̂n) is conditionally non-random, this is equivalent to finding a subsequence {an}n≥1 of {n}n≥1 s.t.

(µan , Ω̂an)
a.s.→ ((0k,1k),Ω) in l∞(θ). In turn, this follows from step 1, part 5 of Lemma C.1, and Lemma C.3.

Step 3. Since ΘI(Fn, γn) 6= ∅, there is a sequence {θn ∈ Θ(γn)}n≥1 s.t. for `n,j ≡ κ−1
n

√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)],

lim sup
n→∞

`n,j ≡ ¯̀
j ≥ 0, for j ≤ p, and lim

n→∞
|`n,j | ≡ ¯̀

j = 0, for j > p . (D-10)

By compactness of (Θ× Rk[±∞], d), there is a subsequence {kn}n≥1 of {an}n≥1 s.t. d((θkn , `kn), (θ̄, ¯̀))→ 0 for some

(θ̄, ¯̀) ∈ Θ× Rp+,∞ × 0k−p. By step 2, lim(vkn(θkn), µkn(θkn),Ωkn(θkn)) = (vΩ(θ̄), (0k,1k),Ω(θ̄)), and so

TR2
kn (γkn) ≤ S(vkn(θkn) + µkn,1(θkn) + µkn,2(θkn)′`kn ,Ωkn(θkn))→ S(vΩ(θ̄) + ¯̀,Ω(θ̄)) , (D-11)

where the convergence occurs because by the continuity of S(·) and the convergence of its argument. Since (vΩ(θ̄) +
¯̀,Ω(θ̄)) ∈ Rp[+∞] × Rk−p ×Ψ, we conclude that S(vΩ(θ̄) + ¯̀,Ω(θ̄)) is bounded.

Step 4. Let D denote the space of functions that map Θ onto Rk × Ψ and let D0 be the space of uniformly

continuous functions that map Θ onto Rk ×Ψ. Let the sequence of functionals {gn}n≥1 with gn : D → R given by

gn(v(·), µ(·),Ω(·)) ≡ inf
(θ,`)∈ΛR2

n

S(v(θ) + µ1(θ) + µ2(θ)′`,Ω(θ)) . (D-12)

Let the functional g : D0 → R be defined by

g(v(·), µ(·),Ω(·)) ≡ inf
(θ,`)∈ΛR2

S(v(θ) + µ1(θ) + µ2(θ)′`,Ω(θ)) .

We now show that if the sequence of (deterministic) functions {(vn(·), µn(·),Ωn(·)) ∈ D}n≥1 satisfies

lim
n→∞

sup
θ∈Θ
||(vn(θ), µn(θ),Ωn(θ))− (v(θ), (0k,1k),Ω(θ))|| = 0 , (D-13)

for some (v(·),Ω(·)) ∈ D0, then limn→∞ gn(vn(·), µn(·),Ωn(·)) = g(v(·), (0k,1k),Ω(·)). To prove this we show that

lim infn→∞ gn(vn(·), µn(·),Ωn(·)) ≥ g(v(·), (0k,1k),Ω(·)). Showing the reverse inequality for the lim sup is similar

and therefore omitted. Suppose not, i.e., suppose that ∃δ > 0 and a subsequence {an}n≥1 of {n}n≥1 s.t. ∀n ∈ N,

gan(van(·), µan(·),Ωan(·)) < g(v(·), (0k,1k),Ω(·))− δ . (D-14)

By definition, ∃ {(θan , `an)}n≥1 that approximates the infimum in (D-12), i.e., ∀n ∈ N, (θan , `an) ∈ ΛR2
an and

|gan(van(·), µan(·),Ωan(·))− S(van(θan) + µ1(θan) + µ2(θan)′`an ,Ωan(θan))| ≤ δ/2 . (D-15)

Since ΛR2
an ⊆ Θ×Rk[±∞] and (Θ×Rk[±∞], d) is a compact metric space, there exists a subsequence {un}n≥1 of {an}n≥1

and (θ∗, `∗) ∈ Θ × Rk[±∞] s.t. d((θun , `un), (θ∗, `∗)) → 0. We first show that (θ∗, `∗) ∈ ΛR2. Suppose not, i.e.
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(θ∗, `∗) 6∈ ΛR2, and consider the following argument

d((θun , `un), (θ∗, `∗)) + dH(ΛR2
un ,Λ

R2) ≥ d((θun , `un), (θ∗, `∗)) + inf
(θ,`)∈ΛR2

d((θ, `), (θun , `un))

≥ inf
(θ,`)∈ΛR2

d((θ, `), (θ∗, `∗)) > 0 ,

where the first inequality follows from the definition of Hausdorff distance and the fact that (θun , `un) ∈ ΛR2
un ,

and the second inequality follows by the triangular inequality. The final strict inequality follows from the fact that

ΛR2 ∈ S(Θ × Rk[±∞]), i.e., it is a compact subset of (Θ × Rk[±∞], d), d((θ, `), (θ∗, `∗)) is a continuous real-valued

function, and Royden (1988, Theorem 7.18). Taking limits as n→∞ and using that d((θun , `un), (θ∗, `∗))→ 0 and

ΛR2
un

H→ ΛR2, we reach a contradiction.

We now show that `∗ ∈ Rp[+∞] × Rk−p. Suppose not, i.e., suppose that ∃j = 1, . . . , k s.t. l∗j = −∞ or ∃j > p s.t.

`∗j =∞. Let J denote the set of indices j = 1, . . . , k s.t. this occurs. For any ` ∈ Rk[±∞] define Ξ(`) ≡ maxj∈J ||`j ||.
By definition of ΛR2

un,Fun
, `un ∈ Rk and thus, Ξ(`un) <∞. By the case under consideration, lim Ξ(`un) = Ξ(`∗) =∞.

Since (Θ, || · ||) is a compact metric space, d((θun , `un), (θ∗, `∗))→ 0 implies that θun → θ∗. Then,

||(vun(θun), µun(θun),Ωun(θun))− (v(θ∗), (0k,1k),Ω(θ∗))||

≤ ||(vun(θun), µun(θun),Ωun(θun))− (v(θun), (0k,1k),Ω(θun))||+ ||(v(θun),Ω(θun))− (v(θ∗),Ω(θ∗))||

≤ sup
θ∈Θ
||(vun(θ), µun(θ),Ωun(θ))− (v(θ), (0k,1k),Ω(θ))||+ ||(v(θun),Ω(θun))− (v(θ∗),Ω(θ∗))|| → 0 ,

where the last convergence holds by (D-13), θun → θ∗, and (v(·),Ω(·)) ∈ D0.

Since (v(·),Ω(·)) ∈ D0, the compactness of Θ implies that (v(θ∗),Ω(θ∗) is bounded. Since lim Ξ(`un) = Ξ(`∗) =∞
and lim vun(θun) = v(θ∗) ∈ Rk, it then follows that lim Ξ(`un)−1||vun(θun)|| = 0. By construction, {Ξ(`un)−1`un}n≥1

is s.t. lim Ξ(`un)−1 [`un,j ]− = 1 for some j ≤ p or lim Ξ(`un)−1 |`un,j | = 1 for some j > p. By this, it follows that

{Ξ(`un)−1(vun(θun) + `un),Ωun(θun)}n≥1 with lim Ωun(θun) = Ω(θ∗) ∈ Ψ and lim Ξ(`un)−1[vun,j(θun) + `un,j ]− = 1

for some j ≤ p or lim Ξ(hun)−1 |vun,j(θun) + `un,j | = 1 for some j > p. This implies that,

S(vun(θun) + `un ,Ωun(θun)) = Ξ(`un)χS(Ξ(`un)−1(vun(θun) + `un),Ωun(θun))→∞ .

Since {(θun , `un)}n≥1 is a subsequence of {(θan , `an)}n≥1 that approximately achieves the infimum in (D-12),

gn(vn(·), µn(·),Σn(·))→∞ . (D-16)

However, (D-16) violates step 3 and is therefore a contradiction.

We then know that d((θan , `an), (θ∗, `∗)) → 0 with `∗ ∈ Rp[+∞] × Rk−p. By repeating previous arguments, we

conclude that lim(vun(θun), µun(θun),Ωun(θun)) = (v(θ∗), (0k,1k),Ω(θ∗)) ∈ Rk×Ψ. This implies that lim(vun(θun)+

µun,1(θun) + µun,2(θun)′`un ,Ωun(θun)) = (v(θ∗) + `∗,Ω(θ∗)) ∈ (Rk[±∞] ×Ψ), i.e., ∃N ∈ N s.t. ∀n ≥ N ,

||S(vun(θun) + µun,1(θun) + µun,2(θun)′`un ,Ωun(θun))− S(v(θ∗) + `∗,Ω(θ∗))|| ≤ δ/2 . (D-17)

By combining (D-15), (D-17), and the fact that (θ∗, `∗) ∈ ΛR2, it follows that ∃N ∈ N s.t. ∀n ≥ N ,

gun(vun(·), µun(·),Ωun(·)) ≥ S(vΩ(θ∗) + `∗,Ω(θ∗))− δ ≥ g(v(·), (0k,1k),Ω(·))− δ ,

which is a contradiction to (D-14).

Step 5. The proof is completed by combining the representation in step 1, the convergence result in step 2, the

continuity result in step 4, and the extended continuous mapping theorem (see, e.g., van der Vaart and Wellner,

1996, Theorem 1.11.1). In order to apply this result, it is important to notice that parts 1 and 5 in Lemma C.1 and

standard convergence results imply that (v(·),Ω(·)) ∈ D0 a.s.
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Proof of Theorem C.2. Step 1. To simplify expressions let ΛR2
n ≡ ΛR2

n,Fn(γn), ΛR1
n ≡ ΛR1

n,Fn(γn), and consider the

following derivation,

min{T̃R1
n (γn), TR2

n (γn)}

= min

{
inf

θ∈Θ
δn
I

(γn)

S(v∗n(θ) + ϕ∗(κ−1
n

√
nD̂−1/2

n (θ)m̄n(θ)), Ω̂n(θ)), inf
θ∈Θ(γn)

S(v∗n(θ) + κ−1
n

√
nD̂−1/2

n (θ)m̄n(θ), Ω̂n(θ))

}

= min

{
inf

θ∈Θ
δn
I

(γn)
S(v∗n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′κ−1

n D
−1/2
Fn

(θ)
√
n(EFnm(W, θ))), Ω̂n(θ)),

infθ∈Θ(γn) S(v∗n(θ) + µn,1(θ) + µn,2(θ)′κ−1
n D

−1/2
Fn

(θ)
√
n(EFnm(W, θ)), Ω̂n(θ))

}

= min

{
inf

(θ,`)∈ΛR1
n

S(v∗n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′`), Ω̂n(θ)), inf
(θ,`)∈ΛR2

n

S(v∗n(θ) + µn,1(θ) + µn,2(θ)′`, Ω̂n(θ))

}

where µn(θ) ≡ (µn,1(θ), µn,2(θ)), µn,1(θ) ≡ κ−1
n D̂

−1/2
n (θ)

√
n(m̄n(θ) − EFnm(W, θ)) ≡ κ−1

n ṽn(θ), and µn,2(θ) ≡
{σ−1

n,j(θ)σFn,j(θ)}
k
j=1. Note that we used that D

−1/2
Fn

(θ) and D̂
−1/2
n (θ) are both diagonal matrices.

Step 2. There is a subsequence {an}n≥1 of {n}n≥1 s.t. {(v̂∗an , µan , Ω̂an)|{Wi}ani=1} →
d (vΩ, (0k,1k),Ω) in l∞(Θ)

a.s. This step is identical to Step 2 in the proof of Theorem C.1.

Step 3. Let D denote the space of bounded functions that map Θ onto R2k×Ψ and let D0 be the space of bounded

uniformly continuous functions that map Θ onto R2k×Ψ. Let the sequence of functionals {gn}n≥1, {g1
n}n≥1, {g2

n}n≥1

with gn : D → R, g1
n : D → R, and g2

n : D → R be defined by

gn(v(·), µ(·),Ω(·)) ≡ min
{
g1
n(v(·), µ(·),Ω(·)), g2

n(v(·), µ(·),Ω(·))
}

g1
n(v(·), µ(·),Ω(·)) ≡ inf

(θ,`)∈ΛR1
n

S(v∗n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′`),Ω(θ))

g2
n(v(·), µ(·),Ω(·)) ≡ inf

(θ,`)∈ΛR2
n

S(v∗n(θ) + µn,1(θ) + µn,2(θ)′`,Ω(θ)) .

Let the functional g : D0 → R, g1 : D0 → R, and g2 : D0 → R be defined by:

g(v(·), µ(·),Ω(·)) ≡ min
{
g1(v(·), µ(·),Ω(·)), g2(v(·), µ(·),Ω(·))

}
g1(v(·), µ(·),Ω(·)) ≡ inf

(θ,`)∈ΛR1
S(vΩ(θ) + ϕ∗(µ1(θ) + µ2(θ)′`),Ω(θ))

g2(v(·), µ(·),Ω(·)) ≡ inf
(θ,l)∈ΛR2

S(vΩ(θ) + µ1(θ) + µ2(θ)′`,Ω(θ)) .

If the sequence of deterministic functions {(vn(·), µn(·),Ωn(·))}n≥1 with (vn(·), µn(·),Ωn(·)) ∈ D for all n ∈ N satisfies

lim
n→∞

sup
θ∈Θ
||(vn(θ), µn(θ),Ωn(θ))− (vΩ(θ), (0k,1k),Ω(θ))|| = 0 ,

for some (v(·), (0k,1k),Ω(·)) ∈ D0 then limn→∞ ||gsn(vn(·), µn(·),Ωn(·)) − gs(v(·), (0k,1k),Ω(·))|| = 0 for s = 1, 2,

respectively. This follows from similar steps to those in the proof of Theorem C.1, step 4. By continuity of the

minimum function,

lim
n→∞

||gn(vn(·), µn(·),Ωn(·))− g(v(·), (0k,1k),Ω(·))|| = 0 .

Step 4. By combining the representation of min{T̃R1
n (γn), TR2

n (γn)} in step 1, the convergence results in steps 2

and 3, Theorem C.1, and the extended continuous mapping theorem (see, e.g., Theorem 1.11.1 of van der Vaart and

Wellner (1996)) we conclude that

{min{T̃R1
n (γn), TR2

n (γn)}|{Wi}ni=1}
d→ min

{
J(ΛR1

∗ ,Ω), J(ΛR2,Ω)
}
a.s.,

where

J(ΛR1
∗ ,Ω) ≡ inf

(θ,`)∈ΛR1
∗

S(vΩ(θ) + `,Ω(θ)) = inf
(θ,`′)∈ΛR1

S(vΩ(θ) + ϕ∗(`′),Ω(θ)) . (D-18)
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The result then follows by noticing that,

min
{
J(ΛR1

∗ ,Ω), J(ΛR2,Ω)
}

= min

{
inf

(θ,`)∈ΛR1
∗

S(vΩ(θ) + `,Ω(θ)), inf
(θ,`)∈ΛR2

S(vΩ(θ) + `,Ω(θ))

}
= inf

(θ,`)∈ΛR1
∗ ∪ΛR2

S(vΩ(θ) + `,Ω(θ)) = J(ΛMR,Ω) .

This completes the proof.

Proof of Theorem C.3. This proof is similar to that of Theorem C.1. For the sake of brevity, we only provide a sketch

that focuses on the main differences. From the definition of TSSbn (γn), we can consider the following derivation,

TSSbn (γn) ≡ inf
θ∈Θ(γn)

QSSbn (θ) = inf
θ∈Θ(γn)

S(
√
bnm̄

SS
bn (θ), Σ̂SSbn (θ))

= inf
θ∈Θ(γn)

S(ṽSSbn (θ) +
√
bnD

−1/2
Fn

(θ)(m̄n(θ)− EFn [m(W, θ)]) +
√
bnD

−1/2
Fn

(θ)EFn [m(W, θ)], Ω̃SSbn (θ))

= inf
(θ,`)∈ΛSS

bn

S(ṽSSbn (θ) + µn(θ) + `, Ω̃SSbn (θ)) ,

where µn(θ) ≡
√
bnD

−1/2
Fn

(θ)(m̄n(θ)−EFn [m(W, θ)]), ṽSSbn (θ) is as in (C-3), and Ω̃SSn (θ) ≡ D−1/2
Fn

(θ)Σ̂SSbn (θ)D
−1/2
Fn

(θ).

From here, we can repeat the arguments used in the proof of Theorem C.1. The main difference in the argument is

that the reference to parts 2 and 8 in Lemma C.1 need to be replaced by parts 10 and 9, respectively.

Proof of Theorem C.4. The proof of this theorem follows by combining arguments from the proof of Theorem C.1

with those from Bugni et al. (2013, Theorem 3.1). It is therefore omitted.

D.3 Proofs of lemmas in Appendix C

We note that Lemmas C.2-C.5 correspond to Lemmas D3-D7 in Bugni et al. (2013) and so we do not include the

proofs of those lemmas in this paper.

Proof of Lemma C.1. The proof of parts 1-8 follow from similar arguments to those used in the proof of Bugni et al.

(2013, Theorem D.2). Therefore, we now focus on the proof of parts 9-10.

Part 9. By the argument used to prove Bugni et al. (2013, Theorem D.2 (part 1)), M(F ) ≡ {D−1/2
F (θ)m(·, θ) :

W → Rk} is Donsker and pre-Gaussian, both uniformly in F ∈ P. Thus, we can extend the arguments in the

proof of van der Vaart and Wellner (1996, Theorem 3.6.13 and Example 3.6.14) to hold under a drifting sequence of

distributions {Fn}n≥1 along the lines of van der Vaart and Wellner (1996, Section 2.8.3). From this, it follows that:{√
n

(n− bn)
ṽSSbn (θ)

∣∣∣∣ {Wi}ni=1

}
d→ vΩ(θ) in l∞(Θ) a.s. (D-19)

To conclude the proof, note that,

sup
θ∈Θ

∥∥∥∥√ n

(n− bn)
ṽSSbn (θ)− ṽSSbn (θ)

∥∥∥∥ = sup
θ∈Θ
‖ṽSSbn (θ)‖

√
bn/n

(1− bn/n)
.

In order to complete the proof, it suffices to show that the RHS of the previous equation is op(1) a.s. In turn, this

follows from bn/n = o(1) and (D-19) as they imply that {supθ∈Θ ||ṽSSbn (θ)|||{Wi}ni=1} = Op(1) a.s.

Part 10. This result follows from considering the subsampling analogue of the arguments used to prove Bugni

et al. (2013, Theorem D.2 (part 2)).

Proof of Lemma C.6. Part 1. Suppose not, that is, suppose that supΩ∈Ψ S(x,Ω) = ∞ for x ∈ (−∞,∞]p × Rk−p.
By definition, there exists a sequence {Ωn ∈ Ψ}n≥1 s.t. S(x,Ωn) → ∞. By the compactness of Ψ, there exists a
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subsequence {kn}n≥1 of {n}n≥1 s.t. Ωkn → Ω∗ ∈ Ψ. By continuity of S on (−∞,∞]p×Rk−p×Ψ it then follows that

limS(x,Ωkn) = S(x,Ω∗) =∞ for (x,Ω∗) ∈ (−∞,∞]p×Rk−p×Ψ, which is a contradiction to S : (−∞,∞]p×Rk−p →
R+.

Part 2. Suppose not, that is, suppose that supΩ∈Ψ S(x,Ω) = B <∞ for x 6∈ (−∞,∞]p×Rk−p. By definition, there

exists a sequence {Ωn ∈ Ψ}n≥1 s.t. S(x,Ωn)→∞. By the compactness of Ψ, there exists a subsequence {kn}n≥1 of

{n}n≥1 s.t. Ωkn → Ω∗ ∈ Ψ. By continuity of S on Rk[±∞]×Ψ it then follows that limS(x,Ωkn) = S(x,Ω∗) = B <∞
for (x,Ω∗) ∈ Rk[±∞]×Ψ. Let J ∈ {1, . . . k} be set of coordinates s.t. xj = −∞ for j ≤ p or |xj | =∞ for j > p . By the

case under consideration, there is at least one such coordinate. Define M ≡ max{maxj 6∈J,j≤p[xj ]−,maxj 6∈J,j>p |xj |} <
∞. For any C > M , let x′(C) be defined as follows. For j 6∈ J , set x′j(C) = xj and for j ∈ J , set x′j(C) as follows

x′j(C) = −C for j ≤ p and |x′j(C)| = C for j > p . By definition, limC→∞ x
′(C) = x and by continuity properties

of the function S, limC→∞ S(x′(C),Ω∗) = S(x,Ω∗) = B < ∞. By homogeneity properties of the function S and by

Lemma C.4, we have that

S(x′(C),Ω∗) = CχS(C−1x′(C),Ω∗) ≥ Cχ inf
(x,Ω)∈A×Ψ

S(x,Ω) > 0,

where A is the set in Lemma C.4. Taking C →∞ the RHS diverges to infinity, producing a contradiction.

Proof of Lemma C.7. The result follows from similar steps to those in Bugni et al. (2013, Lemma D.10) and is

therefore omitted.

Proof of Lemma C.8. Let (θ, `) ∈ ΛR2 with ` ∈ Rp[+∞] × Rk−p. Then, there is a subsequence {an}n≥1 of {n}n≥1

and a sequence {(θn, `n)}n≥1 such that θn ∈ Θ(γn), `n ≡ κ−1
n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)], limn→∞ `an = `, and

limn→∞ θan = θ. Also, by ΩFn
u→ Ω we get ΩFn(θn)→ Ω(θ). By continuity of S(·) at (`,Ω(θ)) with ` ∈ Rp[+∞]×R

k−p,

κ−χan an
χ/2QFan (θan) = S(κ−1

an

√
anσ

−1
Fan ,j

(θan)EFan [mj(W, θan)],ΩFan (θan))→ S(`,Ω(θ)) <∞ . (D-20)

Hence QFan (θan) = O(κχanan
−χ/2). By this and Assumption A.7(a), it follows that

O(κχanan
−χ/2) = c−1QFan (θan) ≥ min{δ, inf

θ̃∈ΘI (Fan ,γan )
||θan − θ̃||}

χ ⇒ ||θan − θ̃an || ≤ O(κan/
√
an) , (D-21)

for some sequence {θ̃an ∈ ΘI(Fan , γan)}n≥1. By the convexity of Θ(γn) and Assumption A.7(c), the intermediate

value theorem implies that there is a sequence {θ∗n ∈ Θ(γn)}n≥1 with θ∗n in the line between θn and θ̃n such that

κ−1
n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] = GFn(θ∗n)κ−1
n

√
n(θn − θ̃n) + κ−1

n

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] .

Define θ̂n ≡ (1− κ−1
n )θ̃n + κ−1

n θn or, equivalently, θ̂n − θ̃n ≡ κ−1
n (θn − θ̃n). We can write the above equation as

GFn(θ∗n)
√
n(θ̂n − θ̃n) = κ−1

n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)]− κ−1
n

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] . (D-22)

By convexity of Θ(γn) and κ−1
n → 0, {θ̂n ∈ Θ(γn)}n≥1 and by (D-21),

√
an||θ̂an − θ̃an || = O(1). By the intermediate

value theorem again, there is a sequence {θ∗∗n ∈ Θ(γn)}n≥1 with θ∗∗n in the line between θ̂n and θ̃n such that

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] = GFn(θ∗∗n )
√
n(θ̂n − θ̃n) +

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]

= GFn(θ∗n)
√
n(θ̂n − θ̃n) +

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] + ε1,n , (D-23)

where the second equality holds by ε1,n ≡ (GFn(θ∗∗n )−GFn(θ∗n))
√
n(θ̂n− θ̃n). Combining (D-22) with (D-23) we get

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] = κ−1
n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] + ε1,n + ε2,n , (D-24)

where ε2,n ≡ (1 − κ−1
n )
√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]. From {θ̃an ∈ ΘI(Fan , γan)}n≥1 and κ−1
n → 0, it follows that

ε2,an,j ≥ 0 for j ≤ p and ε2,an,j = 0 for j > p. Moreover, Assumption A.7(c) implies that ||GFan (θ∗∗an)−GFan (θ∗an)|| =
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o(1) for any sequence {Fan ∈ P0}n≥1 whenever ||θ∗an − θ
∗∗
an || = o(1). Using

√
an||θ̂an − θ̃an || = O(1), we have

||ε1,an || ≤ ||GFan (θ∗∗an)−GFan (θ∗an)||
√
an||θ̂an − θ̃an || = o(1) . (D-25)

Finally, since (Rk[±∞], d) is compact, there is a further subsequence {un}n≥1 of {an}n≥1 s.t.
√
unD

−1/2
Fun

(θ̂un)EFun [m(W, θ̂un)] and κ−1
un

√
unD

−1/2
Fun

(θun)EFun [m(W, θun)] converge. Then, from (D-24), (D-25),

and the properties of ε2,an we conclude that

lim
n→∞

˜̀
un,j ≡ lim

n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] ≥ lim
n→∞

κ−1
un

√
unσ

−1
Fun ,j

(θun)EFun [mj(W, θun)], for j ≤ p ,

lim
n→∞

˜̀
un,j ≡ lim

n→∞

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] = lim
n→∞

κ−1
un

√
unσ

−1
Fun ,j

(θun)EFun [mj(W, θun)], for j > p ,

which completes the proof, as {(θ̂un , ˜̀
un) ∈ Λun,Fun (γun)}n≥1 and θ̂un → θ.

Proof of Lemma C.9. We divide the proof into four steps.

Step 1. We show that inf(θ,`)∈ΛSS S(vΩ(θ) + `,Ω(θ)) < ∞ a.s. By Assumption A.9, there exists a sequence

{θ̃n ∈ ΘI(Fn, γn)}n≥1, where dH(Θ(γn),Θ(γ0)) = O(n−1/2). Then, there exists another sequence {θn ∈ Θ(γ0)}n≥1

s.t.
√
n||θn − θ̃n|| = O(1) for all n ∈ N. Since Θ is compact, there is a subsequence {kn}n≥1 s.t.

√
kn(θkn − θ̃kn)→

λ ∈ Rdθ , and θkn → θ∗ and θ̃kn → θ∗ for some θ∗ ∈ Θ. For any n ∈ N, let `kn,j ≡
√
bknσ

−1
Fkn ,j

(θkn)EFkn [mj(W, θkn)]

for j = 1, . . . , k, and note that

`kn,j =
√
bknσ

−1
Fkn ,j

(θ̃kn)EFkn [mj(W, θ̃kn)] + ∆kn,j (D-26)

by the intermediate value theorem, where θ̂kn lies between θkn and θ̃kn for all n ∈ N, and

∆kn,j ≡
√
bkn√
kn

(GFkn,j (θ̂kn)−GFkn ,j(θ
∗))
√
kn(θkn − θ̃kn) +

√
bkn√
kn

GFkn ,j(θ
∗)
√
kn(θkn − θ̃kn) .

Letting ∆kn = {∆kn,j}kj=1, it follows that

||∆kn || ≤
√
bkn√
kn
||GFkn (θ̂kn)−GFkn (θ∗)||×||

√
kn(θkn−θ̃kn)||+||

√
bkn√
kn

GFkn (θ∗)||×||
√
kn(θkn−θ̃kn)|| = o(1) , (D-27)

where bn/n→ 0,
√
kn(θkn − θ̃kn)→ λ,

√
bknGFkn (θ∗)/

√
kn = o(1), θ̂kn → θ∗, and ||GFkn (θ̂kn)−GFkn (θ∗)|| = o(1)

for any sequence {Fkn ∈ P0}n≥1 by Assumption A.7(c). Thus, for all j ≤ k,

lim
n→∞

`kn,j ≡ lim
n→∞

√
bknσ

−1
Fkn ,j

(θkn)EFkn [mj(W, θkn)] = `∗j ≡ lim
n→∞

√
bknσ

−1
Fkn ,j

(θ̃kn)EFkn [mj(W, θ̃kn)] .

Since {θ̃n ∈ ΘI(Fn, γn)}n≥1, `∗j ≥ 0 for j ≤ p and `∗j = 0 for j > p. Let `∗ ≡ {`∗j}kj=1. By definition, {(θkn , `kn) ∈
ΛSSbkn ,Fkn (γ0)}n≥1 and d((θkn , `kn), (θ∗, `∗))→ 0, which implies that (θ∗, `∗) ∈ ΛSS . From here, we conclude that

inf
(θ,`)∈ΛSS

S(vΩ(θ) + `,Ω(θ)) ≤ S(vΩ(θ∗) + `∗,Ω(θ∗)) ≤ S(vΩ(θ∗),Ω(θ∗)) ,

where the first inequality follows from (θ∗, `∗) ∈ ΛSS , the second inequality follows from the fact that `∗j ≥ 0 for j ≤ p
and `∗j = 0 for j > p and the properties of S(·). Finally, the RHS is bounded as vΩ(θ∗) is bounded a.s.

Step 2. We show that if (θ̄, ¯̀) ∈ ΛSS with ¯̀∈ Rp[+∞] × Rk−p , ∃(θ̄, `∗) ∈ ΛR2 where `∗j ≥ ¯̀
j for j ≤ p and `∗j = ¯̀

j

for j > p. As an intermediate step, we use the limit sets under the sequence {(γn, Fn)}n≥1, denoted by ΛSSA and ΛR2
A

in the statement of the lemma.

We first show that (θ̄, ¯̀) ∈ ΛSSA . Since ΛSSbn,Fn(γ0)
H→ ΛSS , there exist a subsequence {(θkn , `kn) ∈

ΛSSbkn ,Fkn (γ0)}n≥1, θkn → θ̄, and `kn ≡
√
bknD

−1/2
Fkn

(θkn)EFkn [m(W, θkn)] → ¯̀. To show that (θ̄, ¯̀) ∈ ΛSSA , we

now find a subsequence {(θ′kn , `
′
kn) ∈ ΛSSbkn ,Fkn (γn)}n≥1, θ′kn → θ̄, and `′kn ≡

√
bknD

−1/2
Fkn

(θ′kn)EFkn [m(W, θ′kn)]→ ¯̀.
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Notice that {(θkn , `kn) ∈ ΛSSbkn ,Fkn (γ0)}n≥1 implies that {θkn ∈ Θ(γ0)}n≥1. This and dH(Θ(γn),Θ(γ0)) = O(n−1/2)

implies that there is {θ′kn ∈ Θ(γkn)}n≥1 s.t.
√
kn||θ′kn−θkn || = O(1) which implies that θ′kn → θ̄. By the intermediate

value theorem there exists a sequence {θ∗n ∈ Θ}n≥1 with θ∗n in the line between θn and θ′n such that

`′kn ≡
√
bknD

−1/2
Fkn

(θ′kn)EFkn [m(W, θ′kn)] =
√
bknD

−1/2
Fkn

(θkn)EFkn [m(W, θkn)] +
√
bknGFkn (θ∗kn)(θ′kn − θkn)

= `kn + ∆kn → ¯̀ ,

where we have defined ∆kn ≡
√
bknGFkn (θ∗kn)(θ′kn − θkn) and ∆kn = o(1) holds by similar arguments to those in

(D-27). This proves (θ̄, ¯̀) ∈ ΛSSA .

We now show that ∃(θ̄, `∗) ∈ ΛR2
A where `∗j ≥ ¯̀

j for j ≤ p and `∗j = ¯̀
j for j > p. Using similar arguments to those

in (D-20) and (D-21) in the proof of Lemma C.8, we have that QFkn (θ′kn) = O(b
−χ/2
kn

) and that there is a sequence

{θ̃n ∈ ΘI(Fn, γn)}n≥1 s.t.
√
bkn ||θ′kn − θ̃kn || = O(1).

Following similar steps to those leading to (D-22) in the proof of Lemma C.8, it follows that

κ−1
n

√
nGFn(θ∗n)(θ̂n − θ̃n) =

√
bnD

−1/2
Fn

(θ′n)EFn [m(W, θ′n)]−
√
bnD

−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] , (D-28)

where {θ∗n ∈ Θ(γn)}n≥1 lies in the line between θ′n and θ̃n, and θ̂n ≡ (1 − κn
√
bn/n)θ̃n + κn

√
bn/nθ

′
n satisfies√

bkn ||θ̂kn − θ̃kn || = o(1). By doing yet another intermediate value theorem expansion, there is a sequence {θ∗∗n ∈
Θ(γn)}n≥1 with θ∗∗n in the line between θ̂n and θ̃n such that

κ−1
n

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] = κ−1
n

√
nGFn(θ∗∗n )(θ̂n − θ̃n) + κ−1

n

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] . (D-29)

Since
√
bkn ||θ∗kn − θ̃kn || = O(1) and

√
bkn ||θ̃kn − θ∗∗kn || = o(1), it follows that

√
bkn ||θ∗kn − θ

∗∗
kn || = O(1). Next,

κ−1
n

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] = κ−1
n

√
nGFn(θ∗n)(θ̂n − θ̃n) + κ−1

n

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] + ∆n,1

=
√
bnD

−1/2
Fn

(θ′n)EFn [m(W, θ′n)] + ∆n,1 + ∆n,2 , (D-30)

where the first equality follows from (D-29) and ∆n,1 ≡ κ−1
n

√
n(GFn(θ∗n)−GFn(θ∗∗n ))(θ̂n− θ̃n) , and the second holds

by (D-28) and ∆n,2 ≡ κ−1
n

√
n(1 − κn

√
bn/n)D

−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)]. By similar arguments to those in the proof

of Lemma C.8, ||∆kn,1|| = o(1) and ∆n,2,j ≥ 0 for j ≤ p and ∆n,2,j = 0 for j > p.

Now define `′′kn ≡ κ−1
kn

√
knD

−1/2
Fkn

(θ̂kn)EFn [m(W, θ̂kn)] so that by compactness of (Rk[±∞], d) there is a further

subsequence {un}n≥1 of {kn}n≥1 s.t. `′′un = κ−1
un

√
unD

−1/2
Fun

(θ̂un)EFun [m(W, θ̂un)] and ∆un,1 converges. We define

`∗ ≡ limn→∞ `
′′
un . By (D-30) and properties of ∆n,1 and ∆n,2, we conclude that

lim
n→∞

`′′un,j = lim
n→∞

κ−1
un

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] ≥ lim
n→∞

√
bunσ

−1
Fun ,j

(θ′un)EFun [mj(W, θ
′
un)] = ¯̀

j , for j ≤ p ,

lim
n→∞

`′′un,j = lim
n→∞

κ−1
un

√
unσ

−1
Fun ,j

(θ̂un)EFun [mj(W, θ̂un)] = lim
n→∞

√
bunσ

−1
Fun ,j

(θ′un)EFun [mj(W, θ
′
un)] = ¯̀

j , for j > p ,

Thus, {(θ̂un , `′′un) ∈ ΛR2
un,Fun

(γn)}n≥1, θ̂un → θ̄, and `′′un → `∗ where `∗j ≥ ¯̀
j for j ≤ p and `∗j = ¯̀

j for j > p, and

(θ̄, `∗) ∈ ΛR2
A .

We conclude the step by showing that (θ̄, `∗) ∈ ΛR2. To this end, find a subsequence {(θ†un , `
†
un) ∈

ΛR2
bun ,Fun

(γ0)}n≥1, θ†un → θ̄, and `†un ≡ κ−1
un

√
unD

−1/2
Fun

(θ†un)EFun [m(W, θ†un)] → `∗. Notice that {(θ̂un , `′′un) ∈
ΛR2
un,Fun

(γn)}n≥1 implies that {θ̂un ∈ Θ(γun)}n≥1. This and dH(Θ(γn),Θ(γ0)) = O(n−1/2) implies that there is

{θ†un ∈ Θ(γ0)}n≥1 s.t.
√
un||θ̂un − θ†un || = O(1) which implies that θ†un → θ̄. By the intermediate value theorem

there exists a sequence {θ∗∗∗n ∈ Θ}n≥1 with θ∗∗∗n in the line between θ̂n and θ†n such that

`†un ≡ κ−1
un

√
unD

−1/2
Fun

(θ†un)EFun [m(W, θ†un)] = κ−1
un

√
unD

−1/2
Fun

(θ†un)EFun [m(W, θ†un)] + κ−1
un

√
unGFun (θ∗∗∗un )(θ†un − θ̂un)

= `′′un + ∆un → `∗ ,

where we have define ∆un ≡ κ−1
un

√
unGFun (θ∗∗∗un )(θ†un − θ̂un) and ∆un = o(1) holds by similar arguments to those

34



used before. By definition, this proves that (θ̄, `∗) ∈ ΛR2.

Step 3. We show that inf(θ,`)∈ΛSS S(vΩ(θ)+`,Ω(θ)) ≥ inf(θ,`)∈ΛR2 S(vΩ(θ)+`,Ω(θ)) a.s. Since vΩ is a tight stochas-

tic process, there is a subset of the sample spaceW, denotedA1, s.t. P (A1) = 1 and ∀ω ∈ A1, supθ∈Θ ||vΩ(ω, θ)|| <∞.

By step 1, there is a subset of W, denoted A2, s.t. P (A2) = 1 and ∀ω ∈ A2,

inf
(θ,`)∈ΛSS

S(vΩ(ω, θ) + `,Ω(θ)) <∞ .

Define A ≡ A1 ∩ A2 and note that P (A) = 1. In order to complete the proof, it then suffices to show that ∀ω ∈ A,

inf
(θ,`)∈ΛSS

S(vΩ(ω, θ) + `,Ω(θ)) ≥ inf
(θ,`)∈ΛR2

S(vΩ(ω, θ) + `,Ω(θ)) . (D-31)

Fix ω ∈ A arbitrarily and suppose that (D-31) does not occur, i.e.,

∆ ≡ inf
(θ,`)∈ΛR2

S(vΩ(ω, θ) + `,Ω(θ))− inf
(θ,`)∈ΛSS

S(vΩ(ω, θ) + `,Ω(θ)) > 0 . (D-32)

By definition of infimum, ∃(θ̄, ¯̀) ∈ ΛSS s.t. inf(θ,`)∈ΛSS S(vΩ(ω, θ) + `,Ω(θ)) + ∆/2 ≥ S(vΩ(ω, θ̄) + ¯̀,Ω(θ̄)), and so,

from this and (D-32) it follows that

S(vΩ(ω, θ̄) + ¯̀,Ω(θ̄)) ≤ inf
(θ,`)∈ΛR2

S(vΩ(ω, θ) + `,Ω(θ))−∆/2 . (D-33)

We now show that ¯̀∈ Rp[+∞]×R
k−p. Suppose not, i.e., suppose that ¯̀

j = −∞ for some j < p and |¯̀j | =∞ for some

j > p. Since ω ∈ A ⊆ A1, ||vΩ(ω, θ̄)|| <∞. By part 2 of Lemma C.6 it then follows that S(vΩ(ω, θ̄) + ¯̀,Ω(θ̄)) =∞.

By (D-33), inf(θ,`)∈ΛSS S(vΩ(ω, θ) + `,Ω(θ)) =∞, which is a contradiction to ω ∈ A2.

Since ¯̀∈ Rp[+∞] × Rk−p, step 2 implies that ∃(θ̄, `∗) ∈ ΛR2 where `∗j ≥ ¯̀
j for j ≤ p and `∗j = ¯̀

j for j > p. By

properties of S(·),
S(vΩ(ω, θ̄) + `∗,Ω(θ̄)) ≤ S(vΩ(ω, θ̄) + ¯̀,Ω(θ̄)) . (D-34)

Combining (D-32), (D-33), (D-34), and (θ̄, `∗) ∈ ΛR2, we reach the following contradiction,

0 < ∆/2 ≤ inf
(θ,`)∈ΛR2

S(vΩ(ω, θ) + `,Ω(θ))− S(vΩ(ω, θ̄) + ¯̀,Ω(θ̄))

≤ inf
(θ,`)∈ΛR2

S(vΩ(ω, θ) + `,Ω(θ))− S(vΩ(ω, θ̄) + `∗,Ω(θ̄)) ≤ 0 .

Step 4. Suppose the conclusion of the lemma is not true. This is, suppose that c(1−α)(Λ
R2,Ω) > c(1−α)(Λ

SS ,Ω).

Consider the following derivation

α < P (J(ΛR2,Ω) > c(1−α)(Λ
SS ,Ω))

≤ P (J(ΛSS ,Ω) > c(1−α)(Λ
SS ,Ω)) + P (J(ΛR2,Ω) > J(ΛSS ,Ω)) = 1− P (J(ΛSS ,Ω) ≤ c(1−α)(Λ

SS ,Ω)) ≤ α ,

where the first strict inequality holds by definition of quantile and c(1−α)(Λ
R2,Ω) > c(1−α)(Λ

SS ,Ω), the last equality

holds by step 3, and all other relationships are elementary. Since the result is contradictory, the proof is complete.

Proof of Lemma C.10. By Theorem 3.2, lim inf(EFn [φR2
n (γ0)]− EFn [φSSn (γ0)]) ≥ 0. Suppose that the desired result

is not true. Then, there is a further subsequence {un}n≥1 of {n}n≥1 s.t.

limEFun [φR2
un(γ0)] = limEFun [φSSun (γ0)] . (D-35)

This sequence {un}n≥1 will be referenced from here on. We divide the remainder of the proof into steps.
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Step 1. Asymptotic distribution of TSSn (γ0). We show that there is subsequence {an}n≥1 of {un}n≥1 s.t.

{TSSan (γ0)|{Wi}ani=1}
d→ S(vΩ(θ∗) + (g,0k−p),Ω(θ∗)), a.s. (D-36)

Conditionally on {Wi}ni=1, Assumption A.11(c) implies that

TSSn (γ0) = S(
√
bnD

−1
Fn

(θ̂SSn )m̄SS
bn (θ̂SSn ), Ω̃SSbn (θ̂SSn )) + op(1), a.s. (D-37)

Then, (D-36) would follow from (D-37) provided that there is a subsequence {an}n≥1 of {un}n≥1 s.t.

{S(
√
banD

−1/2
Fan

(θ̂SSan )m̄SS
ban

(θ̂SSan ), Ω̃SSban (θ̂SSan ))|{Wi}ani=1}
d→ S(vΩ(θ∗) + (g,0k−p),Ω(θ∗)), a.s.

This follows, by the maintained assumptions, from finding a subsequence {an}n≥1 of {un}n≥1 s.t.

{Ω̃SSan (θ̂SSan )|{Wi}ani=1}
p→ Ω(θ∗), a.s. (D-38)

{
√
banD

−1/2
Fan

(θ̂SSan )m̄SS
an (θ̂SSan )|{Wi}ani=1}

d→ vΩ(θ∗) + (g,0k−p), a.s. (D-39)

To show (D-38), note that

||Ω̃SSn (θ̂SSn )− Ω(θ∗)|| ≤ sup
θ∈Θ
||Ω̃SSn (θ, θ)− Ω(θ, θ)||+ ||Ω(θ̂SSn )− Ω(θ∗)|| .

The RHS is a sum of two terms. Lemma C.1 (part 5) implies that the first term is conditionally op(1) a.s. By

Ω ∈ C(Θ2), and that, conditionally, θ̂SSn
p→ θ∗ a.s., the second term is conditionally op(1) a.s. This implies that

(D-38) holds for the original sequence {n}n≥1 and thus it also holds for its subsequence {an}n≥1.

To show (D-39), note that

√
bnD

−1/2
Fn

(θ̂SSn )m̄SS
n (θ̂SSn ) = ṽSSn (θ∗) + (g,0k−p) + µn,1 + µn,2 ,

where

µn,1 ≡ (ṽSSbn (θ̂SSn )− ṽSSbn (θ∗)) + (
√
bnD

−1/2
Fn

(θ̂SSn )EFn [m(W, θ̂SSn )]−
√
bnD

−1/2
Fn

(θ̃SSn )EFn [m(W, θ̃SSn )])

+(
√
bnD

−1/2
Fn

(θ̃SSn )EFn [m(W, θ̃SSn )]− (g,0k−p))

µn,2 ≡ ṽn(θ̂SSn )
√
bn/n .

Lemma C.1 (part 9) implies that {ṽSSbn (θ∗)|{Wi}ni=1}
d→ vΩ(θ∗) a.s. The proof is then completed by showing that

{µan,1|{Wi}ani=1} = op(1), a.s. (D-40)

{µan,2|{Wi}ani=1} = op(1), a.s. (D-41)

By Assumption A.11(c), (D-40) follows from showing that {ṽSSn (θ∗)− ṽSSn (θ̂SSn )|{Wi}ni=1} = op(1) a.s., which we

now show. Fix µ > 0 arbitrarily, we need to show that

lim supPFn(||ṽSSn (θ∗)− ṽSSn (θ̂SSn )|| > ε|{Wi}ni=1) < µ a.s. (D-42)

Fix δ > 0 arbitrarily. As a preliminary step, we first show that

limPFn(ρFn(θ∗, θ̂SSn ) ≥ δ|{Wi}ni=1) = 0 a.s. , (D-43)

where ρFn is the intrinsic variance semimetric in (A-1). Then, for any j = 1, . . . , k,

VFn(σ−1
Fn,j

(θ̂SSn )mj(W, θ̂
SS
n )− σ−1

Fn,j
(θ∗)mj(W, θ

∗)) = 2(1− ΩFn(θ∗, θ̂SSn )[j,j]) .
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By (A-1), this implies that

PFn(ρFn(θ∗, θ̂SSn ) ≥ δ|{Wi}ni=1) ≤
∑k

j=1
PFn(1− ΩFn(θ∗, θ̂SSn )[j,j] ≥ δ22−1k−1|{Wi}ni=1) . (D-44)

Fix j = 1, . . . , k arbitrarily and note that

PFn(1− ΩFn(θ∗, θ̂SSn )[j,j] ≥ δ22−1k−1|{Wi}ni=1) ≤ PFn(1− Ω(θ∗, θ̂SSn )[j,j] ≥ δ22−2k−1|{Wi}ni=1) + o(1)

≤ PFn(||θ∗ − θ̂SSn || > δ̃|{Wi}ni=1) + o(1) = oa.s.(1) ,

where we have used that ΩFn
u→ Ω and so supθ,θ′∈Θ ||Ω(θ, θ′)[j,j] − ΩFn(θ, θ′)[j,j]|| < δ22−2k−1 for all sufficiently

large n, that Ω ∈ C(Θ2) and so ∃δ̃ > 0 s.t. ||θ∗ − θ̂SSn || ≤ δ̃ implies that 1 − Ω(θ∗, θ̂SSn )[j,j] ≤ δ22−2k−1, and that

{θ̂SSn |{Wi}ni=1}
p→ θ∗ a.s. Combining this with (D-44), (D-43) follows.

Lemma C.1 (part 1) implies that {ṽSSn (·)|{Wi}ni=1} is asymptotically ρF -equicontinuous uniformly in F ∈ P (a.s.)

in the sense of van der Vaart and Wellner (1996, page 169). Then, ∃δ > 0 s.t.

lim sup
n→∞

P ∗Fn( sup
ρFn (θ,θ′)<δ

||ṽSSn (θ)− ṽSSn (θ′)|| > ε|{Wi}ni=1) < µ a.s. (D-45)

Based on this choice, consider the following argument:

P ∗Fn(||ṽSSn (θ∗)− ṽSSn (θ̂SSn )|| > ε|{Wi}ni=1) ≤ P ∗Fn( sup
ρFn (θ,θ′)<δ

||ṽSSn (θ∗)− ṽSSn (θ̂n)|| > ε|{Wi}ni=1)

+ P ∗Fn(ρFn(θ∗, θ̂n) ≥ δ|{Wi}ni=1) .

From this, (D-43), and (D-45), (D-42) follows. To conclude this step, it suffices to show (D-41). By Lemma C.1 (part

7), supθ∈Θ ||ṽn(θ)||
√
bn/n

p→ 0, and by taking a further subsequence {an}n≥1 of {n}n≥1, supθ∈Θ ||ṽan(θ)||
√
ban/an

a.s.→
0. Since ṽn(·) is conditionally non-stochastic, {supθ∈Θ ||ṽan(θ)||

√
ban/an|{Wi}ani=1}

p→ 0 a.s. From this, (D-41) follows.

Step 2. Analyze the asymptotic distribution of cSSn (γ0, 1 − α). For arbitrary ε > 0 and for the subsequence

{an}n≥1 of {un}n≥1 in step 1 we want show that

limPFan (|cSSan (γ0, 1− α)− c(1−α)(g,Ω(θ∗))| ≤ ε) = 1 , (D-46)

where c(1−α)(g,Ω(θ∗)) denotes the (1 − α)-quantile of S(vΩ(θ∗) + (g,0k−p),Ω(θ∗)). We now show that

c(1−α)(g,Ω(θ∗)) > 0. If k > p, it follows from our maintained assumptions. If k = p, Assumption A.11(b.ii,e)

implies∞ > −λj > hj for some j ≤ p, which implies gj ≤ 0. By our maintained assumptions, the result then follows.

Fix ε̄ ∈ (0,min{ε, c(1−α)(g,Ω(θ∗))}). By our maintained assumptions, c(1−α)(g,Ω(θ∗))− ε̄ and c(1−α)(g,Ω(θ∗))+ ε̄

are continuity points of the CDF of S(vΩ(θ∗) + (g,0k−p),Ω(θ∗)). Then,

limPFan (TSSan (γ0) ≤ c(1−α)(g,Ω(θ∗))+ ε̄|{Wi}ani=1) = P (S(vΩ(θ∗)+(g,0k−p),Ω(θ∗)) ≤ c(1−α)(g,Ω(θ∗))+ ε̄) > 1−α , (D-47)

where the equality holds a.s. by part 1, and the strict inequality holds by ε̄ > 0. By a similar argument,

limPFan (TSSan (γ0) ≤ c(1−α)(g,Ω(θ∗))− ε̄|{Wi}ni=1) = P (S(vΩ(θ∗) + (g,0k−p),Ω(θ∗)) ≤ c(1−α)(g,Ω(θ∗))− ε̄) < 1− α a.s.
(D-48)

Next, notice that

{limPFan (TSSan (γ0) ≤ c(1−α)(g,Ω(θ∗)),Ω(θ∗))+ε̄|{Wi}ani=1) > 1−α} ⊆ {lim inf{cSSan (γ0, 1−α) < c(1−α)(g,Ω(θ∗))+ε̄}} ,

with the same result holding with −ε̄ replacing +ε̄. By combining this result with (D-47) and (D-48), we get

{lim inf{|cSSan (γ0, 1− α)− c(1−α)(g,Ω(θ∗))| ≤ ε̄}} a.s.

From this result, ε̄ < ε, and Fatou’s Lemma, (D-46) follows.

Step 3. Analyze the asymptotic distribution of cR2
n (γ0, 1 − α). For any θ ∈ Θ(γ0), define T̃R2

n (θ) ≡ S(v∗n(θ) +
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κ−1
n

√
nD̂−1

n (θ)m̄n(θ), Ω̂n(θ)) and let c̃R2
n (θ, 1 − α) denote the conditional (1 − α)-quantile of T̃R2

n (θ). By definition,

TR2
n (γ0) ≡ infθ∈Θ(γ0) T̃

R2
n (θ) and so cR2

n (γ0, 1− α) ≤ c̃R2
n (θ̂SSn , 1− α).

Fix ε > 0 arbitrarily. By arguments similar to steps 1 and 2, we deduce that there is subsequence {kn}n≥1 of

{an}n≥1 s.t. limPFkn (|c̃R2
kn (θ̂SSkn , 1− α)− c(1−α)(π,Ω(θ∗))| ≤ ε) = 1. This implies that

limPFkn (c(1−α)(π,Ω(θ∗)) + ε ≥ cR2
kn (γ0, 1− α)) = 1 . (D-49)

Furthermore, by Assumption A.11(d) and the first part of step 2, we can conclude that

0 < c(1−α)(π,Ω(θ∗)) < c(1−α)(g,Ω(θ∗)) . (D-50)

Step 4. By using an argument analogous to that used in step 1 we deduce that

Tkn(γ0)
d→ S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) . (D-51)

Fix ε ∈ (0,min{c(1−α)(g,Ω(θ∗)), (c(1−α)(g,Ω(θ∗))− c(1−α)(π,Ω(θ∗)))/2} (possible by (D-50)). By using elemen-

tary arguments, we conclude that

PFkn (Tkn(γ0) ≤ cSSkn (γ0, 1− α)) ≤ PFkn (Tkn(γ0) ≤ c(1−α)(g,Ω(θ∗)) + ε) + PFkn (|cSSkn (γ0, 1− α)− c(1−α)(g,Ω(θ∗))| > ε) ,

Taking limits and using (D-46), (D-51), and that the CDF of S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) is continuous on positive

values, it follows that

lim supPFkn (Tkn(γ0) ≤ cSSkn (γ0, 1− α)) ≤ P (S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) ≤ c(1−α)(g,Ω(θ∗)) + ε) . (D-52)

By a completely analogous argument, we conclude that

lim inf PFkn (Tkn(γ0) ≤ cSSkn (γ0, 1− α)) ≥ P (S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) ≤ c(1−α)(g,Ω(θ∗))− ε) . (D-53)

Since (D-52) and (D-53) are valid for all sufficiently small ε > 0 and the CDF of S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) is

continuous on positive values,

limEFkn [φSSkn (γ0)] = P (S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) > c(1−α)(g,Ω(θ∗))) . (D-54)

We can now repeat the same arguments used to deduce (D-54) for Test SS in order to deduce an analogous result for

Test R2. The main difference is that for Test R2 we do not have a characterization of the minimizer, which is not

problematic as we can simply bound the asymptotic rejection rate. This is,

limEFkn [φR2
kn (γ0)] ≥ P (S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) > c(1−α)(π,Ω(θ∗))) . (D-55)

By our maintained assumptions and (D-50), (D-54), and (D-55), we conclude that

limEFkn [φR2
kn (γ0)] ≥ P (S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) > c(1−α)(π,Ω(θ∗)))

> P (S(vΩ(θ∗) + (h,0k−p),Ω(θ∗)) > c(1−α)(g,Ω(θ∗))) = limEFkn [φSSkn (γ0)] .

Since {kn}n≥1 is a subsequence of {un}n≥1, this is a contradiction to (D-35) and concludes the proof.
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