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Abstract

We extend the Berry, Levinsohn and Pakes (BLP, 1995) random coefficients discrete-

choice demand model, which underlies much recent empirical work in IO. We add

interactive fixed effects in the form of a factor structure on the unobserved product

characteristics. The interactive fixed effects can be arbitrarily correlated with the

observed product characteristics (including price), which accommodates endogeneity

and, at the same time, captures strong persistence in market shares across products

and markets. We propose a two step least squares-minimum distance (LS-MD)

procedure to calculate the estimator. Our estimator is easy to compute, and Monte

Carlo simulations show that it performs well. We consider an empirical application

to US automobile demand.
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1 Introduction

The Berry, Levinsohn and Pakes (1995) (hereafter BLP) demand model, based on the

random coefficients logit multinomial choice model, has become the workhorse of demand

modelling in empirical industrial organization and antitrust analysis. An important virtue

of this model is that it parsimoniously and flexibly captures substitution possibilities be-

tween the products in a market. At the same time, the nested simulated GMM procedure

proposed by BLP accommodates possible endogeneity of the observed product-specific re-

gressors, notably price. This model and estimation approach has proven very popular (e.g.

Nevo (2001), Petrin (2002); surveyed in Ackerberg et. al. (2007)).

Taking a cue from recent developments in panel data econometrics (e.g. Bai and Ng

(2006), Bai (2009), and Moon and Weidner (2013a; 2013b)), we extend the standard BLP

demand model by adding interactive fixed effects to the unobserved product characteristic,

which is the main “structural error” in the BLP model. This interactive fixed effect

specification combines market (or time) specific fixed effects with product specific fixed

effects in a multiplicative form, which is often referred to as a factor structure.

Our factor-based approach extends the baseline BLP model in two ways. First, we

offer an alternative to the usual moment-based GMM approach. The interactive fixed

effects “soak up” some important channels of endogeneity, which may obviate the need for

instrumental variables of endogenous regressors such as price. This is important as such

instruments may not be easy to identify in practice. Moreover, our analysis of the BLP

model with interactive fixed effects illustrates that the problem of finding instruments

for price (which arises in any typical demand model) is distinct from the problem of

underidentification of some model parameters (such as the variance parameters for the

random components), which arises from the specific nonlinearities in the BLP random

coefficients demand model. In our setting, the fixed effects may obviate the need for

instruments to control for price endogeneity but, as we will point out, we still need to

impose additional moment conditions in order to identify these nonlinear parameters.

Second, even if endogeneity persists in the presence of the interactive fixed effects, the

instruments only need to be exogenous with respect to the residual part of the unobserved

product characteristics, which is not explained by the interactive fixed effect. This may

expand the set of variables which may be used as instruments.

To our knowledge, the current paper presents the first application of some recent devel-

opments in the econometrics of long panels (with product and market fixed effects) to the

workhorse demand model in empirical IO. Relative to the existing panel factor literature

(for instance, Bai (2009), and Moon and Weidner (2013a; 2013b)) that assume a linear

regression with exogenous regressors, our nonlinear model which requires instrumental
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variables in the presence of the interactive fixed effects poses identification and estimation

challenges. Namely, the usual principal components approach for linear factor models with

exogenous regressors is inadequate due to the nonlinearity of the model and the potentially

endogenous regressors. At the same time, the conventional GMM approach of BLP cannot

be used for identification and estimation due to the presence of the interactive fixed effects.

We propose an alternative identification and estimation scheme which we call the Least

Squares-Minimum Distance (LS-MD) method.1 It consists of two steps. The first step

is a least squares regression of the mean utility on the included product-market specific

regressors, factors, and the instrumental variables. The second step minimizes the norm

of the least squares coefficient of the instrumental variables in the first step. We show

that under regularity conditions that are comparable to the standard GMM problem, the

parameter of interest is point identified and its estimator is consistent. We also derive

the limit distribution under an asymptotic where both the number of products and the

number of markets goes to infinity. In practice, the estimator is simple and straightforward

to compute. Monte Carlo simulations demonstrate its good small-sample properties.

Our work complements some recent papers in which alternative estimation approaches

and extensions of the standard random coefficients logit model have been proposed, in-

cluding Villas-Boas and Winer (1999), Knittel and Metaxoglou (2014), Dube, Fox and Su

(2012), Harding and Hausman (2007), Bajari, Fox, Kim and Ryan (2011), and Gandhi,

Kim and Petrin (2010).

We implement our estimator on a dataset of market shares for automobiles, inspired

by the exercise in BLP. This application illustrates that our estimator is easy to compute

in practice. Significantly, we find that, once factors are included in the specification,

the estimation results under the assumption of exogenous and endogenous price are quite

similar, suggesting that the factors are indeed capturing much of the unobservable product

and time effects leading to price endogeneity.

The paper is organized as follows. Section 2 introduces the model. In Section 3 we

discuss how to identify the model when valid instruments are available. In Section 4

we introduce the LS-MD estimation method. Consistency and asymptotic normality are

discussed in Section 5. Section 6 contains Monte Carlo simulation results and Section 7

discusses the empirical example. Section 8 considers how to apply our estimation method

to an unbalanced panel. Section 9 concludes. In the appendix we list the assumptions for

the asymptotics and provide technical derivations and proofs of results in the main text.

1Recently, Chernozhukov and Hansen (2006) used a similar two stage estimation method for a class of

instrumental quantile regressions.
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Notation

We write A′ for the transpose of a matrix or vector A. For column vectors v the Euclidean

norm is defined by ‖v‖ =
√
v′v . For the n-th largest eigenvalues (counting multiple

eigenvalues multiple times) of a symmetric matrix B we write µn(B). For an m × n

matrix A the Frobenius norm is ‖A‖F =
√

Tr(AA′), and the spectral norm is ‖A‖ =

max0 6=v∈Rn
‖Av‖
‖v‖ , or equivalently ‖A‖ =

√
µ1(A′A). Furthermore, we use PA = A(A′A)†A′

and MA = 1m−A(A′A)†A′, where 1m is the m×m identity matrix, and (A′A)† denotes a

generalized inverse, since A may not have full column rank. The vectorization of a m× n
matrix A is denoted vec(A), which is the mn× 1 vector obtained by stacking the columns

of A. For square matrices B, C, we use B > C (or B ≥ C) to indicate that B − C is

positive (semi) definite. We use ∇ for the gradient of a function, i.e. ∇f(x) is the vector

of partial derivatives of f with respect to each component of x. We use “wpa1” for “with

probability approaching one”.

2 Model

The random coefficients logit demand model is an aggregate market-level model, formu-

lated at the individual consumer-level. Consumer i’s utility of product j in market2 t is

given by

uijt = δ0
jt + εijt +X ′jt vi , (2.1)

where εijt is an idiosyncratic product-specific preference shock, and vi = (vi1, . . . , viK)′ is

an idiosyncratic characteristic preference. The mean utility is defined as

δ0
jt = X ′jtβ

0 + ξ0
jt , (2.2)

where Xjt = (X1,jt, . . . , XK,jt)
′ is a vector of K observed product characteristics (including

price), and β0 =
(
β0

1 , . . . , β
0
K

)′
is the corresponding vector of coefficients. Following BLP,

ξ0
jt denotes unobserved product characteristics of product j, which can vary across markets

t. This is a “structural error”, in that it is observed by all consumers when they make

their decisions, but is unobserved by the econometrician. In this paper, we focus on the

case where these unobserved product characteristics vary across products and markets

according to a factor structure:

ξ0
jt = λ0′

j f
0
t + ejt , (2.3)

2The t subscript can also denote different time periods.
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where λ0
j =

(
λ0

1j , . . . , λ
0
Rj

)′
is a vector of factor loadings corresponding to the R factors3

f0
t =

(
f0

1t, . . . , f
0
Rt

)′
, and ejt is a product and market specific error term. Here λ0′

j f
0
t

represent interactive fixed effects, in that both the factors f0
t and factor loadings λ0

j are

unobserved to the econometrician, and can be correlated arbitrarily with the observed

product characteristics Xjt. We assume that the number of factors R is known.4 The su-

perscript zero indicates the true parameters, and objects evaluated at the true parameters.

Let λ0 = (λ0
jr) and f0 = (λ0

tr) be J ×R and T ×R matrices, respectively.

The factor structure in equation (2.3) approximates reasonably some unobserved prod-

uct and market characteristics of interest in an interactive form. For example, television

advertising is well-known to be composed of a product-specific component as well as an

annual cyclical component (peaking during the winter and summer months).5 The factors

and factor loadings can also explain strong correlation of the observed market shares over

both products and markets, which is a stylized fact in many industries that has motivated

some recent dynamic oligopoly models of industry evolution (e.g. Besanko and Doraszelski

(2004)). The standard BLP estimation approach, based on moment conditions, allows for

weak correlation across markets and products, but does not admit strong correlation due

to shocks that affect all products and markets simultaneously, which we model via the

factor structure.

To begin with, we assume that the regressors Xjt are exogenous with respect to the

errors ejt, i.e. Xjt and ejt are uncorrelated for given (j, t). This assumption, however,

is only made for ease of exposition, and in both Section 4.1 below and the empirical

application, we consider the more general case where regressors (such as price) may be

endogenous. Notwithstanding, regressors which are strictly exogenous with respect to ejt

can still be endogenous with respect to the ξ0
jt, due to correlation of the regressors with the

factors and factor loadings. Thus, including the interactive fixed effects may “eliminate”

endogeneity problems, so that instruments for endogeneity may no longer be needed. This

3Depending on the specific application one has in mind one may have different interpretations for λj and ft.

For example, in the case of national brands sold in different markets it seems more natural to interpret λj as

the underlying factor (a vector product qualities) and ft as the corresponding loadings (market specific tastes

for these qualities). For convenience, we refer to ft as factors and λj as factor loadings throughout the whole

paper, which is the typical naming convention in applications where t refers to time.
4Known R is also assumed in Bai (2009) and Moon and Weidner (2013a) for the linear regression model

with interactive fixed effects. Allowing for R to be unknown presents a substantial technical challenge even for

the linear model, and therefore goes beyond the scope of the present paper. In pure factor models consistent

inference procedures on the number of factors are known, e.g. Bai and Ng (2002), Onatski (2010), and Harding

(2007).
5cf. TV Dimensions (1997).
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possibility of estimating a demand model without searching for instruments may be of

great practical use in antitrust analysis.

Moreover, when endogeneity persists even given the interactive fixed effects, then our

approach may allow for a larger set of IV’s. For instance, one criticism of the so-called

“Hausman” instruments (cf. Hausman (1997)) – that is, using the price of product j in

market t′ as an instrument for the price of product j in market t – is that they may not be

independent of “nationwide” demand shocks – that is, product-specific shocks which are

correlated across markets. Our interactive fixed effect λ′jft can be interpreted as one type

of nationwide demand shock, where the λj factor loadings capture common (nationwide)

components in the shocks across different markets t and t′. Since the instruments in our

model can be arbitrarily correlated with λj and ft, the use of Hausman instruments in our

model may be (at least partially) immune to the aforementioned criticism.

We assume that the distributions of ε = (εijt) and v = (vi) are mutually independent,

and are also independent of X = (Xjt) and ξ0 = (ξ0
jt). We also assume that εijt follows a

marginal type I extreme value distribution iid across i and j (but not necessarily indepen-

dent across t).6 For given preferences vi and δt = (δ1t, . . . , δJt), the probability of agent i

to choose product j in market t then takes the multinomial logit form:

πjt(δt, Xt, vi) =
exp

(
δjt +X ′jtvi

)
1 +

∑J
l=1 exp

(
δlt +X ′ltvi

) . (2.4)

We do not observe individual specific choices, but market shares of the J products in the

T markets. The market share of product j in market t is given by

sjt(α
0, δt, Xt) =

∫
πjt(δt, Xt, v) dGα0(v) , (2.5)

where Gα0(v) is the known distribution of consumer tastes vi over the product character-

istic, and α0 is a L × 1 vector of parameters of this distribution.7 The most often used

specification in this literature is to assume that the random coefficients are jointly multi-

variate normal distributed, coresponding to the assumptions that v ∼ N (0,Σ0), where Σ0

is a K ×K matrix of parameters, which can be subject to constraints (e.g. only one or a

few regressors may have random coefficients, in which case the components of Σ0 are only

non-zero for these regressors), and α0 consists of the independent parameters in Σ0.8

6When the index t refers to time (or otherwise possesses some natural ordering), then sequential exogeneity

is allowed throughout the whole paper, i.e. Xjt can be correlated with past values of the errors ejt. The errors

ejt are assumed to be independent across j and t, but heteroscedasticity is allowed.
7The dependence of πjt(δt, Xt, vi) and sjt(α

0, δt, Xt) on t stems from the arguments δt and Xt.
8We focus in this paper on the case where the functional form of the distribution function Gα is known by

the researcher. Recent papers have addressed estimation when this is not known; e.g. Bajari, Fox, Kim and

Ryan (2011), (2012).
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The observables in this model are the market shares sjt and the regressors Xjt.
9 In ad-

dition, we need M instruments Zjt = (Z1,jt, . . . , ZM,jt)
′ to construct extra (unconditional)

moment conditions, in addition to the unconditional moment conditions constructed by

Xjt, in order to estimate the parameters α, with M ≥ L. These additional instruments

are also needed in the usual BLP estimation procedure, even in the absence of the factor

structure. Suppose that Xjt is exogenous with respect to ξ0
j,t. From this, we construct

unconditional moment conditions E(Xjtξ
0
j,t) = 0. Then, extra moment conditions still

be required to identify the covariance parameters in the random coefficients distribution.

Notice that those Z’s may be non-linear functions of the exogeneous X’s, so we do not

necessarily need to observe additional exogenous variables.10

Let s = (sjt), Xk = (Xk,jt), Zm = (Zm,jt) and e = (ejt) be J × T matrices, and also

define the tensors X = (Xk,jt) and Z = (Zm,jt), which contain all observed product charac-

teristics and instruments. In the presence of the unobserved factor structure, it is difficult

to identify regression parameters of regressors Xk that have a factor structure themselves,

which includes product invariant and time invariant regressors. Our assumptions below

rule out all those Xk and Zm that have a low rank when considered as a J × T matrix.11

The unknown parameters are α0, β0, λ0, and f0.

The existing literature on demand estimation usually considers asymptotics with either

J large and T fixed, or T large and J fixed. Under these standard asymptotics, the

estimation of the nuisance parameters λ0 and f0 creates a Neyman and Scott (1948)

incidental parameter problem: because the number of nuisance parameters grows with the

sample size, the estimators for the parameters of interest become inconsistent. Following

some recent panel data literature, e.g. Hahn and Kuersteiner (2002; 2004) and Hahn and

Newey (2004), we handle this problem by considering asymptotics where both J and T

become large. Under this alternative asymptotic, the incidental parameter problem is

transformed into the issue of asymptotic bias in the limiting distribution of the estimators

9In the present paper we assume that the true market shares sjt = sjt(δ
0
t ) are observed. Berry, Linton and

Pakes (2004) explicitly consider sampling error in the observed market shares in their asymptotic theory. Here,

we abstract away from this additional complication and focus on the econometric issues introduced by the factor

structure in ξ0.
10If one is willing to impose the conditional moment conditionE(ejt|Xjt) = 0, then valid Zjt can be constructed

as non-linear transformations of Xjt.
11This is exactly analogous to the usual short panel case, in which the presence of fixed effects for each cross-

sectional unit precludes identification of the coefficients on time-invariant regressors. If the number of factors R is

known accurately, then the coefficients of these low-rank regressors can be identified, but the necessary regularity

conditions are relatively cumbersome. For ease of exposition we will therefore rule out both low-rank regressors

and low-rank instruments by our assumptions below, and we refer to Bai (2009) and Moon and Weidner (2013a)

for a further discussion of this topic.
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of the parameters of interest. This asymptotic bias can be characterized and corrected for.

Our Monte Carlo simulations suggest that the alternative asymptotics provides a good

approximation of the properties of our estimator at finite sample sizes, as long as J and

T are moderately large.

3 Identification

Given the non-linearity of the model, questions regarding the identification of the model

parameters of interest are naturally raised. In the following we provide conditions under

which the parameters α and β as well as the product λf ′ are identified. We do not consider

how to identify λ and f separately, because they only enter into the model jointly as λf ′.12

3.1 Statement of Identification Result

Following standard identification arguments (e.g. Matzkin (2013)), our proof demonstrates

identification by showing the existence of an injective mapping from the model parameters

(α, β, λf ′) and the distribution of the random elements of the model (e,X,Z) to the

distribution of the observed data (s,X,Z), where the random elements of the model are

comprised of unobserved error terms, product characteristics, and instruments and the

observed data are the market shares, product characteristics, and instruments.13

As in BLP, we assume that there exists a one-to-one relationship between market shares

and mean utilities, as summarized by the following assumption. Let Bα ⊂ RL be a given

parameter set for α.

Assumption INV (Invertibility Assumptions). We assume that equation (2.5) is

invertible, i.e. for each market t the mean utilities δt = (δ1t, . . . , δJt) are unique functions

of α ∈ Bα, the market shares st = (s1t, . . . , sJt), and the regressors Xt = (X1t, . . . , XJt).

We denote these functions by δjt(α, st, Xt).
14

12The transformation λ → λS and f → fS−1 gives observationally equivalent parameters for any non-

degenerate R×R matrix S. Once the product λf ′ is identified, one can impose further normalization restrictions

to identify λ and f separately, if desired.
13Injectivity implies that the mapping is one-to-one – and hence invertible – along the relevant range. The range

of this mapping excludes some distributions of (s,X,Z); for instance, distributions in which some of the market

shares take zero values with non-zero probability cannot be generated by our model, due to the multinomial

logit structure. See Gandhi, Lu, and Shi (2013) for additional discussion of estimating discrete-choice demand

models when some of the products are observed to have zero market shares.
14Note that the dependence of δjt(α, st, Xt) on t stems from the arguments st and Xt.
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Berry, Gandhi, and Haile (2013) provides general conditions under which this invert-

ibility assumption is satisfied, and Berry and Haile (2009) and Chiappori and Komunjer

(2009) utilize this inverse mapping in their nonparametric identification results.

Using Assumption INV and the specifications (2.2) and (2.3) we have

δ0
jt = δjt(α

0, st, Xt) =
K∑
k=1

β0
k Xk,jt +

R∑
r=1

λ0
jrf

0
tr + ejt . (3.1)

In JT -vector notation this equation can be written as δvec(α0) = xβ0+
∑R

r=1 f
0
·r⊗λ0

·r+e
vec,

where δvec(α) = vec[δ(α, s, X)] and evec = vec(e) are JT -vectors, and x is a JT×K matrix

with columns x.,k = vec (Xk). For simplicity we suppress the dependence of δvec(α) on

s and X. It is furthermore convenient to define the JT × M matrix z with columns

z.,m = vec (Zm), the mean utility difference d(α) = δvec(α)− δvec(α0), and the unobserved

utility difference ∆ξα,β = d(α)−x(β−β0). Both d(α) and ∆ξα,β are JT vectors. Note that

∆ξα,β is simply the vectorized difference of the residual unobserved product characteristic

at (α, β) and (α0, β0). In the following the indices j and t run from 1 to J and 1 to T ,

respectively.

Assumption ID (Assumptions for Identification).

(i) The second moments of δjt(α), Xjt and Zjt exist for all α, and all j, t.

(ii) E(ejt) = 0.

(iii) E(Xjtejt) = 0, E(Zjtejt) = 0, for all j, t.

(iv) E[(x, z)′(1T ⊗M(λ,λ0))(x, z)] ≥ b1K+M , for some b > 0 and all λ ∈ RJ×R.15

(v) For all (α, β) 6= (α0, β0), and all λ ∈ RJ×R we assume that15

E
[
∆ξ′α,β (x, z)

]
E
[
(x, z)′(x, z)

]−1
E
[
(x, z)′∆ξα,β

]
> E

[
∆ξ′α,β

(
1T ⊗ P(λ,λ0)

)
∆ξα,β

]
.

The assumptions are discussed in Section 3.2 below. To formulate our identification

result we need to introduce some additional notation. We denote the set of joint distribu-

tions of e, X, Z by Fe,X,Z , and the set of joint distributions of s, X, Z (the observables) by

Fs,X,Z . The model described in Section 2 gives unique market shares s for any given e, X,

Z and parameters α, β, λf ′. The model therefore also uniquely describes the distribution

of observables for a given distribution Fe,X,Z ∈ Fe,X,Z and parameters α, β, λf ′, and we

denote this distribution of observables given by the model as Γ(α, β, λf ′, Fe,X,Z) ∈ Fs,X,Z .

We say that two distributions F1, F2 ∈ Fs,X,Z are equal if the corresponding joint cdf’s are

the same, and we write F1 = F2 in that case. Analogously, we define equality on Fe,X,Z .

15Here, P(λ,λ0)) = (λ, λ0)[(λ, λ0)′(λ, λ0)]†(λ, λ0)′, where † refers to a generalized inverse, and M(λ,λ0)) =

1J − P(λ,λ0)) are the J × J matrices that project onto and orthogonal to the span of (λ, λ0).
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Theorem 3.1 (Identification). Let Assumption INV be satisfied. Let F 0
e,X,Z ∈ Fe,X,Z

be such that it satisfies Assumption ID. Let Fe,X,Z ∈ Fe,X,Z and consider two sets of param-

eters (α, β, λf ′) and (α0, β0, λ0f0′). Then, Γ(α, β, λf ′, Fe,X,Z) = Γ(α0, β0, λ0f0′, F 0
e,X,Z)

implies that α = α0, β = β0, λf ′ = λ0f0′ and Fe,X,Z = F 0
e,X,Z .

The theorem states that if the distribution of observables F 0
s,X,Z = Γ(α0, β0, λ0f0′, F 0

e,X,Z)

is generated from the parameters (α0, β0, λ0f0′) and F 0
e,X,Z , satisfying Assumption ID,

then any other (α, β, λf ′) and Fe,X,Z that generate the same distribution of observables

F 0
s,X,Z = Γ(α, β, λf ′, Fe,X,Z) must be equal to the original (α0, β0, λ0f0′) and F 0

e,X,Z .

In other words, we can uniquely recover the model parameters from the distribution of

observables. Two observationally equivalent model structures (α0, β0, λ0f0′, F 0
e,X,Z) and

(α, β, λf ′, Fe,X,Z) need to be identical.

The key tool for the proof of Theorem 3.1 is the the expected least squares objective

function

Q
(
α, β, λf ′, γ;F 0

s,X,Z

)
= E0


J∑
j=1

T∑
t=1

[
δjt(α)−X ′jtβ − Z ′jtγ − λ′jft

]2 ,

where γ ∈ RL is an auxiliary parameter, and E0 refers to the expectation under the

distribution of observables F 0
s,X,Z ,16 which is assumed to be generated from the model, i.e.

F 0
s,X,Z = Γ(α0, β0, λ0f0′, F 0

e,X,Z), with F 0
e,X,Z satisfying Assumption ID.

The true value of the auxiliary parameter γ is zero, because of the exclusion restriction

on Zjt. In the proof of Theorem 3.1 we show that under our assumptions the minimizer

of Q
(
α, β, λf ′, γ;F 0

s,X,Z

)
over (β, λ, f, γ), for fixed α, only satisfies γ = 0 if and only if

α = α0. Thus, by using the expected least squares objective function as a tool we can

uniquely identify α0 from the distribution of obervables F 0
s,X,Z . Having identified α0 we can

identify β0 and λ0f0′ simply as the unique minimizers of Q
(
α0, β, λf ′, γ;F 0

s,X,Z

)
. These

findings immediately preclude observational equivalence, viz two sets of distinct parameters

(α0, β0, λ0, f0) 6= (α1, β1, λ1, f1) which are both consistent with the observed distribution

F 0
s,X,Z . For complete details we refer to the proof in the appendix. Furthermore, our

identification argument is constructive, as it leads naturally to the LS-MD estimator which

we introduce in subsequent sections.17

Finally, our identification result utilizes a population distribution in Fs,X,Z , which is a

distribution of a full J ×T panel of observables (s, X, Z), conditional on parameters α, β

16Normally, we refer to E0 simply as E. We use different notation here to stress at which point the argument

F 0
s,X,Z enters into Q

(
α, β, λf ′, γ;F 0

s,X,Z

)
.

17Alternative identification schemes are possible, e.g. in Appendix F we provide an alternative identification

result that requires different restrictions.
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and λ0f0′. The fact that we have nuisance parameters λi and ft in both panel dimensions

makes the distribution of the full J × T panel of observables a natural starting point for

the identification discussion. However, when going from identification to estimation there

will not be a simple analog principle that allows to treat the sample as multiple draws from

the population, but instead we will allow the sample dimensions J and T (which are finite

constants in this section) to grow to infinity asymptotically. The inference results below

therefore do not follow immediately from the identification result presented in this section;

in particular, the incidental parameter problem (Neyman and Scott (1948)) related to

inference of λi and ft needs to be properly addressed.

3.2 Discussion of the Identification Conditions

In this section we discuss the conditions of the identification theorem. First, we note that

when no factors are present (R = 0), then our identification Assumptions ID below essen-

tially require that the unconditional moment conditions E(Xjtejt) = 0 and E(Zjtejt) = 0

uniquely identify the model parameters α and β, thus following the original identification

strategy in BLP (1995).18

Assumption (i) demands existence of second moments, assumption (ii) requires the

error process to have zero mean, and assumption (iii) imposes exogeneity of the product

characteristics Xjt and the instruments Zjt with respect to the error ejt (endogenous

regressors are discussed in Section 4.1). Apart from the term M(λ,λ0), Assumption ID(iv)

is a standard non-collinearity condition on the product characteristics and the instruments

– which jointly appear as regressors in the first step of (4.1). The generalized condition

E[(x, z)′(1T ⊗M(λ,λ0))(x, z)] ≥ b > 0 requires non-collinearity of the regressors even after

projecting out all directions proportional to the true factor loading λ0 and to any other

possible factor loadings λ. A sufficient condition for this assumption is the rank condition

rank[E(Ξ Ξ′)] > 2R for any non-zero linear combination Ξ = β · X + γ · Z. This rank

condition, for example, rules out product-invariant regressors and instruments, as already

mentioned above.

Notice that the conditions (i) to (iv) of Assumption ID are necessary to identify β0

and λ0f0′ when α0 is already identified. These conditions are quite typical regularity con-

ditions for identification of a linear regression model with a modification only required in

condition (iv) to accommodate the interactive fixed effects. (See also Moon and Weid-

18As such, our identification results do not add to the literature on non-parametric identification of the BLP

model (as in Berry and Haile (2009), Chiappori and Komunjer (2009), Bajari, Fox, Kim and Ryan (2011)); our

concern is, rather, to show that the logit demand model with parametrically-distributed random coefficients can

still be identified after the introduction of the interactive fixed effects.
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ner (2013b).)

The key additional assumption that we need for identification of α0 is Assumption ID(v).

Note that ∆ξα0,β0 = 0, i.e. both the left and right side of the inequality in assumption (v)

are zero for (α, β) = (α0, β0), which is why this case is explicitly ruled out in the assump-

tion. The left hand side of the inequality in assumption (v) is the sum of squares of that

part of ∆ξα,β that is explained by the regressors x and the instruments z. The right hand

side is the sum of squares of that part of ∆ξα,β that is explained by the true factor loading

λ0 and an arbitrary other factor loading λ. Thus, the condition is a relevance condition

on the instruments, which requires that the explanatory power of the regressors and the

instruments needs to be larger than the explanatory power of λ and λ0 for ∆ξα,β.

A more concrete intuition for Assumption ID(v) can be obtained in the case without

factors. Without factors, the identification condition simplifies to ∀(α, β) 6= (α0, β0) :

E
[
∆ξ′α,β (x, z)

]
E
[
(x, z)′(x, z)

]−1
E
[
(x, z)′∆ξα,β

]
> 0. (3.2)

This can be shown to be equivalent to the statement ∀α 6= α0 :

E
[
d(α)′(x, z)

]
E
[
(x, z)′(x, z)

]−1
E
[
(x, z)′d(α)

]
> E

[
d (α)′ x

]
E
(
x′x
)−1

E
[
x′d (α)

]
.

(3.3)

We see that this condition is nothing more than the usual instrument relevance condition

(for z in this case) underlying the typical GMM approach in estimating BLP models.

It can also be shown to be equivalent to the condition that for all α 6= α0 the matrix

E[(d(α), x)′(x, z)] has full rank (equal to K + 1).

The matrix valued function δ(α) = δ(α, s,X) was introduced as the inverse of equation

(2.5) for the market shares sjt(δt). Thus, once a functional form for sjt(δt) is chosen and

some distributional assumptions on the data generating process are made, it is in principle

possible to analyze Assumption ID(v) further and to discuss validity and optimality of the

instruments. Unfortunately, too little is known about the properties of δ(α) to enable a

general analysis.19 For this reason, in our Monte Carlo simulations in section 6 below,

we provide both analytical and and numerical verifications for Assumption ID(v) for the

specific setup there.

The final remark is that Assumption ID(v) also restricts the family of the distribution

of the random coefficient. As a very simple example, suppose that we would specify the

distribution Gα for the random vector v as v ∼ N (α1, α2), where α = (α1, α2), and

we would also include a constant in the vector of regressors Xjt. Then, the regression

19This is a problem not only with our approach, but also with the estimators in BLP, and for Berry, Linton

and Pakes (2004).
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coefficient on the constant and α1 cannot be jointly identified (because they both shift

mean utility by a constant, but have no other effect), and Assumption ID(v) will indeed

be violated in this case.

4 LS-MD Estimator

If δ0
jt is known, then the above model reduces to the linear panel regression model with

interactive fixed effects. Estimation of this model was discussed under fixed T asymptotics

in e.g. Holtz-Eakin, Newey and Rosen (1988), and Ahn, Lee, Schmidt (2001), and for

J, T →∞ asymptotics in Bai (2009), and Moon and Weidner (2013a; 2013b).

The computational challenge in estimating the model (3.1) lies in accommodating both

the model parameters (α, β), which in the existing literature has mainly been done in a

GMM framework, as well as the nuisance elements λj , ft, which in the existing literature

have been treated using a principal components decomposition in a least-squares context

(e.g., Bai (2009), and Moon and Weidner (2013a; 2013b)). Our estimation procedure

– which mimics the identification proof discussed previously – combines both the GMM

approach to demand estimation and the least squares approach to the interactive fixed

effect model.

Definition: the least squares-minimum distance (LS-MD) estimators for α and β are

defined by

Step 1 (least squares): for given α let

δ(α) = δ(α, s, X) ,(
β̃α , γ̃α , λ̃α , f̃α

)
= argmin
{β, γ, λ, f}

J∑
j=1

T∑
t=1

[
δjt(α)−X ′jtβ − Z ′jtγ − λ′jft

]2
,

Step 2 (minimum distance):

α̂ = argmin
α∈Bα

γ̃′αWJT γ̃α ,

Step 3 (least squares):

δ(α̂) = δ(α̂, s, X) ,(
β̂ , λ̂ , f̂

)
= argmin
{β, λ, f}

J∑
j=1

T∑
t=1

[
δjt(α̂)−X ′jtβ − λ′jft

]2
. (4.1)

Here, β ∈ RK , δ(α, s, X), Xk and Zm are J × T matrices, λ is J ×R, f is T ×R, WJT is

a positive definite M ×M weight matrix, Bα ⊂ RL is an appropriate parameter set for α.

In step 1, we include the IV’s Zm as auxiliary regressors, with coefficients γ ∈ RM .

Step 2 is based on imposing the exclusion restriction on the IV’s, which requires that γ = 0,
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at the true value of α. Thus, we first estimate β, λ, f , and the instrument coefficients γ

by least squares for fixed α, and subsequently we estimate α by minimizing the norm of

γ̃α with respect to α.

Step 3 in (4.1), which defines β̂, is just a repetition of step 1, but with α = α̂ and

γ = 0. One could also use the step 1 estimator β̃α̂ to estimate β. Under the assumptions

for consistency of (α̂, β̂) presented below, this alternative estimator is also consistent for

β0. However, in general β̃α̂ has a larger variance than β̂, since irrelevant regressors are

included in the estimation of β̃α̂.

For given α, β and γ the optimal factors and factor loadings in the least squares

problems in step 1 (and step 3) of (4.1) turn out to be the principal components estimators

for λ and f . These incidental parameters can therefore be concentrated out easily, and the

remaining objective function for β and γ turns out to be given by an eigenvalue problem

(see e.g. Moon and Weidner (2013a; 2013b) for details), namely(
β̃α , γ̃α

)
= argmin

{β, γ}

T∑
r=R+1

µr
[
(δ(α)− β ·X − γ · Z)′ (δ(α)− β ·X − γ · Z)

]
, (4.2)

where β · X =
∑K

k=1 βkXk, γ · Z =
∑M

m=1 γm Zm, and µr(.) refers to the r’th largest

eigenvalue of the argument matrix. This formulation greatly simplifies the numerical

calculation of the estimator, since eigenvalues are easy and fast to compute, and we only

need to perform numerical optimization over β and γ, not over λ and f .

The step 1 optimization problem in (4.1) has the same structure as the interactive fixed

effect regression model. Thus, for α = α0 it is known from Bai (2009), and Moon and

Weidner (2013a; 2013b) that (under their assumptions) β̂α0 is
√
JT -consistent for β0 and

asymptotically normal as J, T →∞ with J/T → κ2, 0 < κ <∞.

The LS-MD estimator we propose above is distinctive, because of the inclusion of

the instruments Z as regressors in the first-step. This can be understood as a gener-

alization of an estimation approach for a linear regression model with endogenous re-

gressors. Consider a simple structural equation y1 = Y2α + e, where the endogenous

regressors Y2 have the reduced form specification Y2 = Zδ + V , and e and V are cor-

related. The two stage least squares estimator of α is α̂2SLS = (Y ′2PZY2)−1 Y ′2PZy1,

where PZ = Z (Z ′Z)−1 Z ′. In this set up, it is possible to show that α̂2SLS is also

an LS-MD estimator with a suitable choice of the weight matrix. Namely, in the first

step the OLS regression of (y1 − Y2α) on regressors X and Z yields the OLS estimator

γ̃α = (Z ′Z)−1 Z ′ (y1 − Y2α). Then, in the second step minimizing the distance γ̃′αWγ̃α with

respect to α gives α̂(W ) = [Y ′2Z(Z ′Z)−1W (Z ′Z)−1Z ′Y2]−1[Y ′2Z(Z ′Z)−1W (Z ′Z)−1Z ′y1].

Choosing W = Z ′Z thus results in α̂ = α̂ (Z ′Z) = α̂2SLS . Obviously, for our nonlinear

model, strict 2SLS is not applicable; however, our estimation approach can be considered
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a generalization of this alternative iterative estimator, in which the exogenous instruments

Z are included as “extra” regressors in the initial least-squares step.20

4.1 Extension: regressor endogeneity with respect to ejt

So far, we have assumed that the regressors X could be endogenous only through the

factors λ′jft, and they are exogenous wrt e. However, this could be restrictive in some

applications, e.g., when price pjt is determined by ξjt contemporaneously. Hence, we

consider here the possibility that the regressors X could also be correlated with e. This

is readily accommodated within our framework. Let Xend ⊂ X denote the endogenous

regressors, with dim(Xend) = K2. (Hence, the number of exogenous regressors equals

K −K2.) Similarly, let βend denote the coefficients on these regressors, while β continues

to denote the coefficients on the exogenous regressors. Correspondingly, we assume that

M , the number of instruments, exceeds L+K2.

Definition: the least-squares minimum distance (LS-MD) estimators for α and β with

endogenous regressors Xend is defined by:

step 1: for given αend = (α, βend) let

δ(α) = δ(α, s, X) ,(
β̃αend , γ̃αend , λ̃αend , f̃αend

)
= argmin
{β, γ, λ, f}

J∑
j=1

T∑
t=1

[
δjt(α)−Xend′

jt βend −X ′jtβ − Z ′jtγ − λ′jft
]2
,

step 2:

α̂end = (α̂, β̂end) = argmin
αend∈Bα×Bendβ

γ̃′αend WJT γ̃αend ,

step 3:

δ(α̂) = δ(α̂, s, X) ,(
β̂ , λ̂ , f̂

)
= argmin
{β∈RK , λ, f}

J∑
j=1

T∑
t=1

[
δjt(α̂)−Xend′

jt βend −X ′jtβ − λ′jft
]2
, (4.3)

where Bα and Bend
β are parameter sets for α and βend.

The difference between this estimator, and the previous one for which all the regressors

were assumed exogenous, is that the estimation of βend, the coefficients on the endogenous

regressors X̃, has been moved to the second step. The structure of the estimation procedure

in (4.3) is exactly equivalent to that of our original LS-MD estimator (4.1), only that α is

20Moreover, the presence of the factors makes it inappropriate to use the moment condition-based GMM

approach proposed by BLP. We know of no way to handle the factors and factor loadings in a GMM moment

condition setting such that the resulting estimator for α and β is consistent.
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replaced by αend, and δ(α) is replaced by δ(α) − βend · Xend. Thus, all results below on

the consistency, asymptotic distribution and bias correction of the LS-MD estimator (4.1)

with only (sequentially) exogenous regressors directly generalize to the estimator (4.3) with

more general endogenous regressors. Given this discussion, we see that the original BLP

(1995) model can be considered a special case of our model in which factors are absent

(i.e. R = 0).

5 Consistency and Asymptotic Distribution

In this section we present our results on the properties of the LS-MD estimator α̂ and β̂

defined in (4.1) under the asymptotics J, T → ∞. In the following ‖ · ‖F refers to the

Frobenius (least squares) norm that was defined in the introduction.

Assumption 1 (Assumptions for Consistency).

(i) sup
α∈Bα\α0

‖δ(α)− δ(α0)‖F
‖α− α0‖

= Op(
√
JT ),

‖Xk‖F = Op(
√
JT ), ‖Zm‖F = Op(

√
JT ), for k = 1, . . . ,K and m = 1, . . . ,M .

(ii) ‖e‖ = Op(
√

max(J, T )).

(iii) 1
JT Tr (Xke

′) = op(1), 1
JT Tr (Zme

′) = op(1), for k = 1, . . . ,K and m = 1, . . . ,M .

(iv) min
λ∈RJ×R

{
µK+M

[
1
JT (x, z)′(1T ⊗M(λ,λ0))(x, z)

]}
≥ b, wpa121, for some b > 0.

(v) There exists b > 0 such that wpa1 for all α ∈ Bα and β ∈ RK

[
1
JT ∆ξ′α,β (x, z)

] [
1
JT (x, z)′(x, z)

]−1 [ 1
JT (x, z)′∆ξα,β

]
− max
λ∈RJ×R

[
1
JT ∆ξ′α,β

(
1T ⊗ P(λ,λ0)

)
∆ξα,β

]
≥ b‖α− α0‖2 + b‖β − β0‖2.

(vi) WJT →p W > 0.

Theorem 5.1 (Consistency). Let Assumption 1 hold, and let α0 ∈ Bα. In the limit

J, T →∞ we then have α̂ = α0 + op(1), and β̂ = β0 + op(1).

The proof of Theorem 5.1 is given in the appendix. The similarity between Assump-

tion 1 and Assumption ID is obvious, so that for the most part we can refer to Section 3.2

for the interpretation of these assumptions, and in the following we focus on discussing the

differences between the consistency and identification assumptions. The one additional

assumption is the last one, which requires existence of a positive definite probability limit

of the weight matrix WJT .

21Here, “wpa1” refers to with probability approaching one, as J, T →∞.

16



Apart from a rescaling with appropriate powers of JT , the Assumptions 1(i), (iii), (iv),

and (v) are almost exact sample analogs of their identification counterparts in Assump-

tion ID. The two main differences are that assumption (i) also imposes a Lipschitz-like

continuity condition on δ(α) around α0, and that the right hand-side of the inequality in

assumption (v) is not just zero, but a quadratic form in (α−α0) and (β−β0) — the latter

is needed, because expressions which are exactly zero in the identification proof are now

only converging to zero asymptotically.

Assumption 1(ii) imposes a bound on the the spectral norm of e, which is satisfied

as long as ejt has mean zero, has a uniformly bounded fourth moment (across j, t, J, T )

and is weakly correlated across j and t.22 The assumption is therefore the analog of

Assumption ID(ii).

At finite J , T , a sufficient condition for existence of b > 0 such that the inequality in

Assumption 1(iv) is satisfied, is rank(Ξ) > 2R for any non-zero linear combination Ξ of

Xk and Zm. This rank condition rules out product-invariant and market-invariant product

characteristics Xk and instruments Zm, since those have rank 1 and can be absorbed into

the factor structure.23 There are many reformulations of this rank condition, but in one

formulation or another this rank condition can be found in any of the above cited papers

on linear factor regressions, and we refer to Bai (2009), and Moon and Weidner (2013a)

for a further discussion.

Next, we present results on the limiting distribution of α̂ and β̂. This requires some

additional notation. We define the JT ×K matrix xλf , the JT ×M matrix zλf , and the

JT × L matrix g by

xλf.,k = vec
(
Mλ0XkMf0

)
, zλf.,m = vec

(
Mλ0ZmMf0

)
, g.,l = −vec

(
∇l δ(α0)

)
, (5.1)

where k = 1, . . . ,K, m = 1, . . . ,M , and l = 1, . . . , L. Note that xλf = (1T ⊗Mλ0)xf ,

zλf = (1T ⊗Mλ0)zf , and g is the vectorization of the gradient of δ(α), evaluated at the

true parameter. We introduce the (L+K)×(L+K) matrix G and the (K+M)×(K+M)

22Such a statement on the spectral norm of a random matrix is a typical result in random matrix theory.

The difficulty – and the reason why we prefer such a high-level assumption on the spectral norm of e – is to

specify the meaning of “weakly correlated across j and t”. The extreme case is obviously independence across j

and t, but weaker assumptions are possible. We refer to the discussion in Moon and Weidner (2013a) for other

examples.
23Inclusion of product-invariant and market-invariant characteristics (“low-rank regressors”) does not hamper

the identification and estimation of the regression coefficients on the other (“high-rank”) regressors. This is

because including low-rank regressors is equivalent to increasing the number of factors R, and then imposing

restrictions on the factors and factors loadings of these new factors. Conditions under which the coefficients of

low-rank regressors can be estimated consistently are discussed in Moon and Weidner (2013a).
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matrix Ω as follows

G = plim
J,T→∞

1

JT

(
g′xλf g′zλf

xλf ′xλf xλf ′zλf

)
, Ω = plim

J,T→∞

1

JT

(
xλf , zλf

)′
diag(Σvec

e )
(
xλf , zλf

)
,

(5.2)

where Σvec
e = vec

{[
E

(
e2
jt

)]
j=1,. . . ,J

t=1,. . . ,T

}
is the JT -vector of vectorized variances of ejt.

Finally, we define the (K +M)× (K +M) weight matrix W by

W = plim
J,T→∞

[( (
1
JT x

λf ′xλf
)−1

0K×M

0M×K 0M×M

)
+

(
−(xλf ′xλf )−1xλf ′ zλf

1M

)

×
(

1

JT
zλf ′Mxλf z

λf

)−1

WJT

(
1

JT
zλf ′Mxλf z

λf

)−1
(
−(xλf ′xλf )−1xλf ′ zλf

1M

)′ ]
.

(5.3)

Existence of these probability limits is imposed by Assumption 3 in the appendix. Some

further regularity condition are necessary to derive the limiting distribution of our LS-

MD estimator, and those are summarized in Assumption 2 to 4 in the appendix. These

assumptions are straightforward generalization of the assumptions imposed by Moon and

Weidner (2013a; 2013b) for the linear model, except for part (i) of Assumption 4, which

demands that δ(α) can be linearly approximated around α0 such that the Frobenius norm

of the remainder term of the expansion is of order op(
√
JT‖α− α0‖) in any

√
J shrinking

neighborhood of α0.

Theorem 5.2. Let Assumption 1, 2, 3 and 4 be satisfied, and let α0 be an interior point

of Bα. In the limit J, T →∞ with J/T → κ2, 0 < κ <∞, we then have

√
JT

 α̂− α0

β̂ − β0

 →
d
N
(
κB0 + κ−1B1 + κB2,

(
GWG′

)−1
GWΩWG′

(
GWG′

)−1
)
,

with the formulas for B0, B1 and B2 given in the appendix C.1.

The proof of Theorem 5.2 is provided in the appendix. Analogous to the least squares

estimator in the linear model with interactive fixed effects, there are three bias terms in

the limiting distribution of the LS-MD estimator. The bias term κB0 is only present if

regressors or instruments are pre-determined, i.e. if Xjt or Zjt are correlated with ejτ

for t > τ (but not for t = τ , since this would violate weak exogeneity). A reasonable

interpretation of this bias terms thus requires that the index t refers to time, or has

some other well-defined ordering. The other two bias terms κ−1B1 and κB2 are due to

heteroscedasticity of the idiosyncratic error ejt across firms j and markets t, respectively.
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The first and last bias terms are proportional to κ, and thus are large when T is small

compared to J , while the second bias terms is proportional to κ−1, and thus is large

when T is large compared to J . Note that no asymptotic bias is present if regressors

and instruments are strictly exogenous and errors ejt are homoscedastic. There is also no

asymptotic bias when R = 0, since then there are no incidental parameters. For a more

detailed discussion of the asymptotic bias, we again refer to Bai (2009) and Moon and

Weidner (2013a).

While the structure of the asymptotic bias terms is analogous to the bias encountered

in linear models with interactive fixed effects, we find that the structure of the asymptotic

variance matrix for α̂ and β̂ is analogous to the GMM variance matrix. The LS-MD

estimator can be shown to be equivalent to the GMM estimator if no factors are present.

In that case the weight matrix W that appears in Theorem 5.2 can be shown to be the

probability limit of the GMM weight matrix that is implicit in our LS-MD approach and,

thus, our asymptotic variance matrix exactly coincides with the one for GMM (see also

Appendix B). If factors are present, there is no GMM analog of our estimator, but the

only change in the structure of the asymptotic variance matrix is the appearance of the

projectors Mf0 and Mλ0 in the formulas for G, Ω andW. The presence of these projectors

implies that those components of Xk and Zm which are proportional to f0 and λ0 do

not contribute to the asymptotic variance, i.e. do not help in the estimation of α̂ and β̂.

This is again analogous the standard fixed effect setup in panel data, where time-invariant

components do not contribute to the identification of the regression coefficients.

Using the explicit expressions for the asymptotic bias and variance of the LS-MD

estimator, one can provide estimators for this asymptotic bias and variance. By replacing

the true parameter values (α0, β0, λ0, f0) by the estimated parameters (α̂, β̂, λ̂, f̂), the

error term (e) by the residuals (ê), and population values by sample values it is easy to

define estimators B̂0, B̂1, B̂2, Ĝ, Ω̂ and Ŵ for B0, B1, B2, G, Ω and W. This is done

explicitly in appendix C.3.

Theorem 5.3. Let the assumption of Theorem 5.2 and Assumption 5 be satisfied. In the

limit J, T →∞ with J/T → κ2, 0 < κ <∞ we then have B̂1 = B1+op(1), B̂2 = B2+op(1),

Ĝ = G+op(1), Ω̂ = Ω+op(1) and Ŵ =W+op(1). If in addition the bandwidth parameter

h, which enters in the definition of B̂0, satisfies h→∞ and h5/T → 0, then we also have

B̂0 = B0 + op(1).

The proof is again given in the appendix. Theorem 5.3 motivates the introduction of
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the bias corrected estimator α̂∗

β̂∗

 =

 α̂

β̂

− 1

T
B̂0 −

1

J
B̂1 −

1

T
B̂2 . (5.4)

Under the assumptions of Theorem 5.3 the bias corrected estimator is asymptotically unbi-

ased, normally distributed, and has asymptotic variance (GWG′)−1GWΩWG′ (GWG′)−1,

which is consistently estimated by
(
ĜŴĜ′

)−1
ĜŴΩ̂ŴĜ′

(
ĜŴĜ′

)−1
. These results allow

inference on α0 and β0.

From the standard GMM analysis it is know that the (K + M) × (K + M) weight

matrix W which minimizes the asymptotic variance is given by W = cΩ−1, where c is

an arbitrary scalar. If the errors ejt are homoscedastic with variance σ2
e we have Ω =

σ2
e plimJ,T→∞

1
JT

(
xλf , zλf

)′ (
xλf , zλf

)
, and in this case it is straightforward to show that

the optimal W = σ2
e Ω−1 is attained by choosing

WJT =
1

JT
z′Mxλf z . (5.5)

Under homoscedasticity this choice of weight matrix is optimal in the sense that it mini-

mizes the asymptotic variance of our LS-MD estimator, but nothing is known about the

efficiency bound in the presence of interactive fixed effects, i.e. a different alternative esti-

mator could theoretically have even lower asymptotic variance.

Note that the unobserved factor loading λ0 and factor f0 enter into the definition of

xλf and thus also into the optimal WJT in (5.5). A consistent estimator for the optimal

WJT can be obtained by estimating λ0 and f0 in a first stage LS-MD estimation, using an

arbitrary positive definite weight matrix.

Under heteroscedasticity of ejt there are in general not enough degrees of freedom

in WJT to attain the optimal W. The reason for this is that we have chosen the first

stage of our estimation procedure to be an ordinary least squares step, which is optimal

under homoscedasticity but not under heteroscedasticity. By generalizing the first stage

optimization to weighted least squares one would obtain the additional degrees of freedom

to attain the optimal W also under heteroscedasticity, but in the present paper we will

not consider this possibility further.
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6 Monte Carlo Simulations

We consider a model with only one regressors Xjt = pjt, which we refer to as price. The

data generating process for mean utility and price is given by

δjt = β0 pjt + λ0
j f

0
t + ejt,

pjt = max
(
0.2, 1 + p̃jt + λ0

j f
0
t

)
, (6.1)

where λ0
j , f

0
t , ejt and p̃jt are mutually independent and are all independent and identically

distributed across j and t as N (0, 1). In the data generating process the number of factors

is R = 1. For the number of factors used in the estimation procedure, REST, we consider

the correctly specified case REST = R = 1, the misspecified case REST = 0, and the case

where the number of factors is overestimated REST = 2. We have truncated the data

generating process for price so that pjt takes no values smaller than 0.2.

The market shares are computed from the mean utilities according to equation (2.4)

and (2.5), where we assume a normally distributed random coefficient on price pjt, i.e.

v ∼ N (0, α2). We chose the parameters of the model to be β0 = −3 and α0 = 1. These

parameters corresponds to a distribution of consumer tastes where more than 99% of

consumers prefer low prices.

Although the regressors are strictly exogenous with respect to ejt, we still need an

instrument to identify α. We choose Zjt = p2
jt, the squared price, i.e. the number

of instruments is M = 1. We justify the choice of squared price as an instrument in

subsection 6.1 by verifying the instrument relevance Assumption 1(v) is satisfied for our

simulation design.

Simulation results for three different samples sizes J = T = 20, 50 and 80, and three

different choices for the number of factors in estimation REST = 0, 1, and 2 are presented in

Table 1. We find that the estimators for α̂ and β̂ to be significantly biased when REST = 0

factors are chosen in the estimation. This is because the factor and factor loading enter into

the distribution of the regressor pjt and the instrument Zjt, which makes them endogenous

with respect to the total unobserved error ξ0
jt = λ0

j f
0
t + ejt, and results in the estimated

model with REST = 0 to be misspecified. The standard errors of the estimators are also

much larger for REST = 0 than for REST > 0, since the variation of the total unobserved

error ξ0
jt is larger than the variation of ejt, which is the residual error after accounting for

the factor structure.

For the correctly specified case REST = R = 1 we find the biases of the estimators α̂

and β̂ to be negligible relative to the standard errors. For J = T = 20 the absolute value

of the biases is about one tenth the standard errors, and the ratio is even smaller for the

larger sample sizes. As the sample size increases from J = T = 20 to J = T = 50 and

21



REST = 0 REST = 1 REST = 2

J,T statistics α̂ β̂ α̂ β̂ α̂ β̂

20,20 bias 0.4255 -0.3314 0.0067 -0.0099 0.0024 -0.0050

std 0.1644 0.1977 0.0756 0.0979 0.0815 0.1086

rmse 0.4562 0.3858 0.0759 0.0983 0.0815 0.1086

50,50 bias 0.4305 -0.3178 0.0005 -0.0012 0.0022 -0.0024

std 0.0899 0.0984 0.0282 0.0361 0.0293 0.0369

rmse 0.4398 0.3326 0.0282 0.0361 0.0293 0.0369

80,80 bias 0.4334 -0.3170 -0.0009 0.0010 0.0003 -0.0003

std 0.0686 0.0731 0.0175 0.0222 0.0176 0.0223

rmse 0.4388 0.3253 0.0175 0.0222 0.0176 0.0223

Table 1: Simulation results for the data generating process (6.1), using 1000 repetitions. We report the bias,

standard errors (std), and square roots of the mean square errors (rmse) of the LS-MD estimator (α̂, β̂). The

true number of factors in the process is R = 1, but we use REST = 0, 1, and 2 in the estimation.

J = T = 80 one finds the standard error of the estimators to decrease at the rate 1/
√
JT ,

consistent with our asymptotic theory.

The result for the case REST = 2 are very similar to those for REST = 1, i.e. overesti-

mating the number of factors does not affect the estimation quality much in our simulation,

at least as long as REST is small relative to the sample size J , T . The biases for the estima-

tors found for REST = 2 are still negligible and the standard errors are about 10% larger for

REST = 2 than for REST = 1 at J = T = 20, and even less than 10% larger for the larger

sample sizes. The result that choosing REST > R has only a small effect on the estimator

is not covered by the asymptotic theory in this paper, where we assume REST = R, but is

consistent with the analytical results found in Moon and Weidner (2013b) for the linear

model with interactive fixed effects.

We have chosen a data generating process for our simulation where regressors and

instruments are strictly exogenous (as opposed to pre-determined) with respect to ejt, and

where the error distribution ejt is homoscedastic. According to our asymptotic theory

there is therefore no asymptotic bias in the estimators α̂ and β̂, which is consistent with

the results in Table 1. The simulation results for the bias corrected estimators α̂∗ and β̂∗

are reported in Table 3 in the appendix, but there is virtually no effect from bias correction

here, i.e. the results in Table 1 and Table 3 are almost identical.
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6.1 Remarks: Instrument Choice

For the special case where there is only one normally distributed random coefficient at-

tached to the regressor pjt, one can write equation (2.5) as

sjt(α, δt, Xt) =
1√
2πα

∫
exp (δjt + pjtv)

1 +
∑J

l=1 exp (δlt + pltv)
exp

(
− v2

2α2

)
dv. (6.2)

For x ≥ 0 we have the general inequalities 1 ≥ (1 + x)−1 ≥ 1 − x. Applying this to (6.2)

with x =
∑J

l=1 exp (δlt + pltv) one obtains sup
jt (α, δt, Xt) ≥ sjt(α, δt, Xt) ≥ slow

jt (α, δt, Xt),

where

sup
jt (α, δt, Xt) =

1√
2πα

∫
exp (δjt + pjtv) exp

(
− v2

2α2

)
dv

= exp
(
δjt + α2p2

jt/2
)
,

slow
jt (α, δt, Xt) =

1√
2πα

∫
exp (δjt + pjtv)

[
1−

J∑
l=1

exp (δlt + pltv)

]
exp

(
− v2

2α2

)
dv

= sup
jt (α, δt, Xt)

[
1−

J∑
l=1

exp
(
δlt + α2p2

lt/2 + α2pjtplt
)

︸ ︷︷ ︸
=νjt(α,δt)

]
. (6.3)

Here, the integrals over v that appear in the upper and lower bound are solvable analyti-

cally, so that we obtain convenient expressions for sup
jt (α, δt, Xt) and slow

jt (α, δt, Xt).

Consider the specification (6.1) for β negative and large (in absolute value) relative

to α2. Then δjt is also negative and large in absolute value, which implies that the

νjt = νjt(α, δt) defined in (6.3) is small. For νjt � 1, as here, the above lower and upper

bounds are almost identical, which implies sjt(α, δt, Xt) ≈ exp
(
δjt + α2p2

jt/2
)

, where

≈ means almost equal under that approximation. Solving for the mean utility yields

δjt(α, st, Xt) ≈ log sjt(α, δt, Xt)− α2p2
jt/2. The difference between δjt(α, st, Xt) and δ0

jt =

δjt(α
0, st, Xt) can then be approximated by

δjt(α, st, Xt)− δ0
jt ≈ −

p2
jt

2

[
α2 − (α0)2

]
. (6.4)

This shows that whenever the approximation νjt � 1 is justified, then the squared price p2
jt

is a valid instrument to identify α. More precisely, equation (6.4) implies that the LS-MD

estimator with instrument p2
jt is approximately equivalent to the least squares estimator

for the linear model with outcome variable Yjt = βpjt + α2p2
jt + λ′jft + ejt. Consistency of

this least squared estimator for β and α2 in the presence of the parameters λj and ft is

discussed in Bai (2009) and Moon and Weidner (2013a).

We have thus shown that νjt � 1 is a sufficient condition for validity of the instrument

p2
jt. However, for the data-generating process with parameters α0 = 1 and β0 = −3 used
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in the Monte Carlo simulation this is not a good approximation — when calculating νjt

in that setup one typically finds values much larger than one. Therefore, we next confirm

by numerical methods that p2
jt is also a valid instrument when νjt � 1 does not hold.

The Instrument Relevance Condition: Some Numerical Evidence

We want to verify the instrument relevance Assumption 1(v) for the data generating pro-

cess (6.1) in the Monte Carlo Simulations with parameters β0 = −3, and α0 = 1. For this

purpose we define

ρIV(α, β) =

[
1
JT ∆ξ′α,β (x, z)

] [
1
JT (x, z)′(x, z)

]−1 [ 1
JT (x, z)′∆ξα,β

]
1
JT ∆ξ′α,β∆ξα,β

,

ρF(α, β) =
maxλ∈RJ×R

[
1
JT ∆ξ′α,β

(
1T ⊗ P(λ,λ0)

)
∆ξα,β

]
1
JT ∆ξ′α,β∆ξα,β

,

∆ρ(α, β) = ρIV(α, β)− ρF(α, β). (6.5)

ρIV(α, β) is the amount of ∆ξα,β explained by the instruments and regressors relative to the

total variation of ∆ξα,β, i.e. the relative explanatory power of the instruments. ρF(α, β) is

the maximum amount of ∆ξα,β explained by R factor loadings relative the total variation of

∆ξα,β, i.e. the relative explanatory power of the factors. Note that ρIV(α, β) and ρF(α, β)

take values betweens 0 and 1.

The difference between the explanatory power of the instruments and regressors and

the explanatory power of the factors is given by ∆ρ(α, β). Assumption 1(v) requires that

∆ρ(α, β) > 0 for all α ∈ Bα and β ∈ RK .

Figure 1 contains plots of ρIV(α, β), ρF(α, β) and ∆ρ(α, β) as a function of α and β for

one particular draw of the data generating process with J = T = 80. The sample size is

sufficiently large that for different draws the plots in Figure 1 look essentially identical.24

Although the data generating process only contains one factors, we used R = 2 factors in

the calculation of ρF(α, β) and ∆ρ(α, β) in Figure 1, in order to verify Assumption 1(v)

also for the case where the number of factors is overestimated (denoted REST=2 above) —

since ρF(α, β) is an increasing function of R, we thus also verify the conditions of R = 1.

For the given draw and within the examined parameter range one finds that ρIV(α, β)

varies between 0.69 and 1.00, ρF(α, β) varies between 0.34 and 0.87, and ∆ρ(α, β) varies

between 0.03 and 0.49, in particular ∆ρ(α, β) > 0, which is what we wanted to verify.

Note that the variation in ∆ρ(α, β) in this example is mostly driven by the variation in

ρF(α, β), since ρIV(α, β) for the most part is quite close to one, i.e. the explanatory power

24The appendix contains additional details on the numerical calculation of ρF (α, β).
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of the instruments and regressors is very large. Note that the analytical approximation

above showed that for νjt � 1 the regressor pjt and the instrument p2
jt perfectly predict

∆ξα,β, i.e. ρIV(α, β) ≈ 1 under that approximation. Our numerical result now shows

that p2
jt can be a sufficiently powerful instrument also outside the validity range of this

approximation.

7 Empirical application: demand for new auto-

mobiles, 1973-1988

As an illustration of our procedure, we estimate an aggregate random coefficients logit

model of demand for new automobiles, modelled after the analysis in BLP (1995). We

compare specificiations with and without factors, and with and without price endogeneity.

Throughout, we allow for one normally-distributed random coefficient, attached to price.25

For this empirical application, we use the same data as was used in BLP (1995), which

are new automobile sales from 1971-1990.26 However, our estimation procedure requires

a balanced panel for the principal components step. Since there is substantial entry and

exit of individual car models, we aggregate up to manufacturer-size level, and assume that

consumers choose between aggregate composites of cars.27 Furthermore, we also reduce

our sample window to the sixteen years 1973-1988. In Table 5, we list the 23 car aggregates

employed in our analysis, along with the across-year averages of the variables.

Except from the aggregation our variables are the same as in BLP. Market share is

given by total sales divided by the number of households in that year. Price is measured

in $1000 of 1983/84 dollars. Our unit for “horse power over weight” (hp/weight) is 100

times horse power over pound. “Miles per dollar” (mpd) is obtained from miles per gallons

divided by real price per gallon, and measured in miles over 1983/84 dollars. Size is given

by length times width, and measured in 10−4 inch2.

We construct instruments using the idea of Berry (1994). The instruments for a par-

ticular aggregated model and year are given by the averages of hp/weight, mpd and size,

25In such a setting, where we have a single national market evolving over time, we can interpret λj as (un-

observed) national advertising for brand j, which may be roughly constant across time, and ft represents the

effectiveness or “success” of the advertising, which varies over time. Indeed, for the automobile sector (which is

the topic of our empirical example), the dollar amount of national brand-level advertising does not vary much

across years, but the success of the ad campaign does vary.
26The data are available on the webpage of James Levinsohn.
27This resembles the treatment in Esteban and Shum’s (2007) empirical study of the new and used car markets,

which likewise required a balanced panel.
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over all cars produced by different manufactures in the same year. As the weight matrix

in the second step of the LS-MD procedure we use WJT = 1
JT z

′Mxz, which is the optimal

weight matrix under homoscedasticity of ejt and for R = 0.28

Results. Table 2 contains estimation results from four specifications of the model. In

specification A, prices are considered exogenous (wrt ejt), but one factor is present, which

captures some degree of price endogeneity (wrt. ξjt). Specification B also contains one

factor, but treats prices as endogenous, even conditional on the factor. Specification C cor-

responds to the BLP (1995) model, where prices are endogenous, but no factor is present.

Finally, in specification D, we treat prices as exogenous, and do not allow for a factor.

This final specification is clearly unrealistic, but is included for comparison with the other

specifications. In table 2 we report the bias corrected LS-MD estimator (this only makes a

difference for specification A and B), which accounts for bias due to heteroscedasticity in

the error terms, and due to pre-determined regressors (we choose bandwidth h = 2 in the

construction of B̂0). The estimation results without bias correction are reported in table 4.

It turns out, that it makes not much difference, whether the LS-MD estimator, or its bias

corrected version are used. The t-values of the bias corrected estimators are somewhat

larger, but apart from the constant, which is insignificant anyways, the bias correction

changes neither the sign of the coefficients nor the conclusion whether the coefficients are

significant at 5% level.

In Specification A, most of the coefficients are precisely estimated. The price coefficient

is -4.109, and the characteristics coefficients take the expected signs. The α parameter,

corresponding to the standard deviation of the random coefficient on price, is estimated

to be 2.092. These point estimates imply that, roughly 97% of the time, the random price

coefficient is negative, which is as we should expect.

Compared to this baseline, Specification B allows price to be endogenous (even condi-

tional on the factor). The point estimates for this specifications are virtually unchanged

from those in Specification A, except for the constant term. Overall, the estimation re-

sults for the specifications A and B are very similar, and show that once factors are taken

into account it does not make much difference whether price is treated as exogenous or

28We do not change the weight matrix when estimating specifications with R = 1, because we do not want

differences in the results for different values of R to be attributed to the change in WJT .

We include a constant regressor in the model, although this is a “low-rank” regressor, which is ruled out by

our identification and consistency assumptions. However, as discussed in a footnote above the inclusion of a

low-rank regressor does not hamper the identification and estimation of the regression coefficients of the other

(“high-rank”) regressors. One certainly wants to include a constant regressor when estimating the model with

no factors (R = 0), so to make results easily comparable we include it in all our model specifications.
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Specifications:

A: R = 1 B: R = 1 C: R = 0 D: R = 0

exogenous p endogenous p endogenous p exogenous p

price -4.109 (-3.568) -3.842 (-4.023) -1.518 (-0.935) -0.308 (-1.299)

hp/weight 0.368 (1.812) 0.283 (1.360) -0.481 (-0.314) 0.510 (1.981)

mpd 0.088 (2.847) 0.117 (3.577) 0.157 (0.870) 0.030 (1.323)

size 5.448 (3.644) 5.404 (3.786) 0.446 (0.324) 1.154 (2.471)

α 2.092 (3.472) 2.089 (3.837) 0.894 (0.923) 0.171 (1.613)

const 3.758 (1.267) 0.217 (0.117) -3.244 (-0.575) -7.827 (-8.984)

Table 2: Parameter estimates (and t-values) for four different model specifications (no factor R = 0 vs. one

factor R = 1; exogenous price vs. endogenous price). α is the standard deviation of the random coefficient

distribution (only price has a random coefficient), and the regressors are p (price), hp/weight (horse power per

weight), mpd (miles per dollar), size (car length times car width), and a constant.

endogenous. This suggests that the factors indeed capture most of the price endogeneity

in this application.

In contrast, the estimation results for specifications C and D, which are the two speci-

fications without any factors, are very different qualitatively. The t-values for specification

C are rather small (i.e. standard errors are large), so that the difference in the coefficient

estimates in these two specifications are not actually statistically significant. However, the

differences in the t-values themselves shows that it makes a substantial difference for the

no-factor estimation results whether price is treated as exogenous or endogenous.

Specifically, in Specification C, the key price coefficient and α are substantially smaller

in magnitude; furthermore, the standard errors are large, so that none of the estimates are

significant at usual significance levels. Moreover, the coefficient on hp/weight is negative,

which is puzzling. In Specification D, which corresponds to a BLP model, but without

price endogeneity, we see that the price coefficient is reduced dramatically relative to the

other specifications, down to -0.308.

Elasticities. The sizeable differences in the magnitudes of the price coefficients across

the specification with and without factors suggest that these models may imply economi-

cally meaningful differences in price elasticities. For this reason, we computed the matrices

of own- and cross-price elasticities for Specifications B (in Table (6)) and C (in Table (7)).

In both these matrices, the elasticities were computed using the data in 1988, the final

year of our sample. Comparing these two sets of elasticities, the most obvious difference

is that the elasticities – both own- and cross-price – for Specification C, corresponding
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to the standard BLP model without factors, are substantially smaller (about one-half in

magnitude) than the Specification B elasticities. For instance, reading down the first col-

umn of Table (6), we see that a one-percent increase in the price of a small Chevrolet car

would result in a 28% reduction in its market share, but increase the market share for

large Chevrolet cars by 1.5%. For the results in Table (7), however, this same one-percent

price increase would reduce the market share for small Chevrolet cars by only 13%, and

increase the market share for large Chevrolet cars by less than half a percent.

On the whole, then, this empirical application shows that our estimation procedure is

feasible even for moderate-sized datasets like the one used here. Including interactive fixed

effects delivers results which are strikingly different than those obtained from specifications

without these fixed effects.

8 Remarks on Unbalanced Panel Case

So far we have considered the case of balanced panel data, where the market shared sjt and

characteristics Xjt of all products j = 1, . . . , J are observed in all markets t = 1, . . . , T . We

now want to briefly discuss the case of unbalanced panel data. Let djt be an indicator of

whether product j is observed in market t (djt = 1) or not (djt = 0). The LS-MD estimator

defined in (4.3) can be easily generalized to that case by replacing
∑J

j=1

∑T
t=1 with the sum

over only those observations j, t that satisfy djt = 1. This seemingly simple modification,

however, has consequences for the numerical implementation of the estimator and, more

importantly, on the question of under what conditions we can expect the estimator to

be consistent and otherwise well-behaved. The aim of this section is to provide some

discussion of those issues, but a full generalization of our results to the unbalanced case is

beyond the scope of the current paper.

Here we focus on unbalancedness arising from exit and entry of brands into markets.

In this case certain market shares sjt are not observed because product j is not available

in market t.29 In that case the inversion between market shares and mean utilities can be

performed correctly. For convenience, we restrict attention to exogenous exit and entry,

by which we mean that our assumptions above hold conditional on dt = (d1t, . . . , dJt), in

29Unbalancedness can also be due to missing observations, in which case a product is present in a market,

but for some reason we do not observe the corresponding market share. This type of unbalancedness creates a

problem in the BLP estimation framework, because the inversion from market shares to mean utilities cannot be

correctly performed in that case. A single missing market share for product j will result in uncertainty about the

mean utilities for all products j′ in that market. However, missing observations for only product characteristics

Xjt is much less problematic, and the discussion in this section may also apply to the case of missing Xjt as

well.
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particular E(ejt|dt) = 0, E(ejtXjt|dt) = 0 and E(ejtZjt|dt) = 0.30

A simple condition under which unbalancedness does not affect consistency of the LS-

MD estimators of the common parameters α and β is given by 1
JT

∑J
j=1

∑T
t=1(1−djt)→ 0

as J, T →∞, i.e. the fraction of missing observation is assumed to converge to zero. This

condition, together with our assumptions above, is sufficient to show consistency of α̂ and

β̂, but is not necessary.31

Moreover, unbalancedness of the panel also complicates the computation of the LS-MD

estimator. For the balanced panel case, the optimal ft and λi in the least squares problems

in step 1 (and step 3) of the LS-MD estimator (4.1) can be calculated as eigenvectors of

sample covariance matrices, which is very convenient in the numerical implementation of

the estimator. Unfortunately, this is no longer true in the unbalanced panel case, and

the implementation of the estimator therefore becomes more complicated. One possibility

is to simply perform the minimization over all ft and λi numerically. Alternatively, one

can perform an iterated procedure, where the missing data points are filled in by certain

estimates, thus allowing a balanced panel principal component step, followed by a step

where the estimates for the missing data are updated, until convergence.32

In either case, the LS-MD estimator can still be calculated in the unbalanced case, but

the computation is numerically more demanding. As long as the unbalancedness is not too

severe and is due to exogenous exit and entry we expect the resulting LS-MD estimator

to remain consistent (and asymptotically normal), but a general proof of this result goes

beyond the scope of this paper.

9 Conclusion

In this paper, we considered an extension of the popular BLP random coefficients discrete-

choice demand model, which underlies much recent empirical work in IO. We add interac-

tive fixed effects in the form of a factor structure on the unobserved product characteris-

tics. The interactive fixed effects can be arbitrarily correlated with the observed product

30The analysis of endogenous exit and entry would typically require some model for the exit and entry process,

or for the resulting endogeneity due to selection, which goes beyond the scope of the BLP demand model.
31A more complete discussion of how unbalancedness affects the consistency of the LS-MD estimator is com-

plicated: the indicator djt defines a bipartite graph between the set of markets {1, . . . , T} and the set of products

{1, . . . , J}, and the properties of this graph (e.g. whether the graph has a single connected component or not)

affect the behavior of the LS-MD estimator. The same problem occurs in any unbalanced panel model with

(interactive) fixed effects in both panel dimensions, and some discussion of the structure of unbalancedness can

be found in Bai, Yang and Liao (2012).
32See e.g. Bai, Yang and Liao (2012) and also the supplementary material in Bai (2009).
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characteristics (including price), which accommodate endogeneity and, at the same time,

captures strong persistence in market shares across products and markets. We propose a

two step least squares-minimum distance (LS-MD) procedure to calculate the estimator.

Our estimator is easy to compute, and Monte Carlo simulations show that it performs

well.

We apply our estimator to US automobile demand. Significantly, we find that, once

factors are included in the specification, the results assuming that price is exogenous or

endogenous are quite similar, suggesting that the factors are indeed capturing much of the

unobservable product and time effects leading to price endogeneity.

The model in this paper is, to our knowledge, the first application of factor-modelling

to a nonlinear setting with endogenous regressors. Since many other models used in

applied settings (such as duration models in labor economics, and parametric auction

models in IO) have these features, we believe that factor-modelling may prove an effective

way of controlling for unobserved heterogeneity in these models. We are exploring these

applications in ongoing work.
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A Additional Tables and Figures
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Figure 1: For one draw of the data generating process used in the Monte Carlo design with J = T = 80 we

plot ρIV(α, β), ρF(α, β) and ∆ρ(α, β) defined in (6.5) as a function of α and β. The number of factors used in

the calculation of ρF(α, β) is R = 2, although only one factor is present in the data generating process.
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REST = 0 REST = 1 REST = 2

J,T statistics α̂∗ β̂∗ α̂∗ β̂∗ α̂∗ β̂∗

20,20 bias 0.4255 -0.3314 0.0042 -0.0068 0.0001 -0.0023

std 0.1644 0.1977 0.0759 0.0981 0.0818 0.1085

rmse 0.4562 0.3858 0.0760 0.0983 0.0817 0.1084

50,50 bias 0.4305 -0.3178 0.0000 -0.0006 0.0017 -0.0018

std 0.0899 0.0984 0.0283 0.0362 0.0293 0.0368

rmse 0.4398 0.3326 0.0282 0.0361 0.0293 0.0369

80,80 bias 0.4334 -0.3170 -0.0012 0.0012 0.0001 0.0000

std 0.0686 0.0731 0.0175 0.0222 0.0176 0.0223

rmse 0.4388 0.3253 0.0175 0.0222 0.0176 0.0223

Table 3: Simulation results for the data generating process (6.1), using 1000 repetitions. We report the bias,

standard errors (std), and square roots of the mean square errors (rmse) of the bias corrected LS-MD estimator

(α̂∗, β̂∗). The true number of factors in the process is R = 1, but we use REST = 0, 1, and 2 in the estimation.

Specifications:

A: R = 1 B: R = 1

exogenous p endogenous p

price -3.112 (-2.703) -2.943 (-3.082)

hp/weight 0.340 (1.671) 0.248 (1.190)

mpd 0.102 (3.308) 0.119 (3.658)

size 4.568 (3.055) 4.505 (3.156)

α 1.613 (2.678) 1.633 (3.000)

const -0.690 (-0.232) -2.984 (-1.615)

Table 4: Parameter estimates (and t-values) for model specification A and B. Here we report the LS-MD

estimators without bias correction, while in table 2 we report the bias corrected LS-MD estimators.
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B Alternative GMM approach

In this section we show that in the presence of factors a moment based estimation approach

along the lines originally proposed by BLP is inadequate. The moment conditions imposed

by the model are

E
[
ejt
(
α0, β0, λ0f0′)Xk,jt

]
= 0 , k = 1, . . . ,K ,

E
[
ejt
(
α0, β0, λ0f0′)Zm,jt] = 0 , m = 1, . . . ,M , (B.1)

where ejt(α, β, λf
′) = δjt(α, st, Xt) −

∑K
k=1 βkXk,jt −

∑R
r=1 λirftr. Note that we write

the residuals ejt as a function of the J × T matrix λf ′ in order to avoid the ambiguity of

the decomposition into λ and f . The corresponding sample moments read

mX
k (α, β, λf ′) =

1

JT
Tr
(
e(α, β, λf ′)X ′k

)
,

mZ
m(α, β, λf ′) =

1

JT
Tr
(
e(α, β, λf ′)Z ′m

)
. (B.2)

We also define the sample moment vectorsmX(α, β, λf ′) =
(
mX

1 , . . . ,m
X
K

)′
andmZ(α, β, λf ′) =(

mZ
1 , . . . ,m

Z
M

)′
. An alternative estimator for α, β, λ and f is then given by33

(
λ̂α,β , f̂α,β

)
= argmin

{λ, f}

J∑
j=1

T∑
t=1

e2
jt(α, β, λf

′) .

(
α̂GMM, β̂GMM

)
= argmin
{α∈Bα, β}

(
mX(α, β, λ̂α,β f̂

′
α,β)

mZ(α, β, λ̂α,β f̂
′
α,β)

)′
WJT

(
mX(α, β, λ̂α,β f̂

′
α,β)

mZ(α, β, λ̂α,β f̂
′
α,β)

)
,

(B.3)

where WJT is a positive definite (K +M)× (K +M) weight matrix. The main difference

between this alternative estimator and our estimator (4.1) is that the least-squares step is

used solely to recover estimates of the factors and factor loadings (principal components

estimator), while the structural parameters (α, β) are estimated in the GMM second step.

The relation between α̂ and β̂ defined in (4.1) and α̂GMM and β̂GMM defined in (B.3) is as

follows

33The minimizing λ̂α,β and f̂α,β are the least squares estimators, or equivalently, the principal components

estimators, e.g. λ̂α,β consists of the eigenvectors corresponding to the R largest eigenvalues of the J × J matrix(
δ(α, s, X)−

K∑
k=1

βkXk

)(
δ(α, s, X)−

K∑
k=1

βkXk

)′
.
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(i) Let R = 0 (no factors) and set

WJT =

( (
1
JT x

′x
)−1

0K×M

0M×K 0M×M

)
+

(
−(x′x)−1x′ z

1M

)(
1

JT
z′Mxz

)−1

WJT

(
1

JT
z′Mxz

)−1
(
−(x′x)−1x′ z

1M

)′
,

(B.4)

where x is a JT × K matrix and z is a JT ×M matrix, given by x.,k = vec (Xk),

k = 1, . . . ,K, and z.,m = vec (Zm), m = 1, . . . ,M . Then α̂ and β̂ solve (4.1) with

weight matrix WJT if and only if they solve (B.3) with this weight matrix WJT ,34

i.e. in this case we have (α̂, β̂) = (α̂GMM, β̂GMM).

(ii) Let R > 0 and M = L (exactly identified case). Then a solution of (4.1) also is a

solution of (B.3), but not every solution of (B.3) needs to be a solution of (4.1).

(iii) For M > L and R > 0 there is no straightforward characterization of the relationship

between the estimators in (4.1) and (B.3).

We want to discuss the exactly identified case M = L a bit further. The reason

why in this case every solution of (4.1) also solves (B.3) is that the first order conditions

(FOC’s) wrt to β and γ of the first stage optimization in (4.1) read mX(α̂, β̂, λ̂α̂,β̂ f̂
′
α̂,β̂

) = 0

and mZ(α̂, β̂, λ̂α̂,β̂ f̂
′
α̂,β̂

) = 0, which implies that the GMM objective function of (B.3) is

zero, i.e. minimized. The reverse statement is not true, because for R > 0 the first

stage objective function in (4.1) is not a quadratic function of β and γ anymore once one

concentrates out λ and f , and it can have multiple local minima that satisfy the FOC.

Therefore, α̂GMM and β̂GMM can be inconsistent, while α̂ and β̂ are consistent, which is

the main reason to consider the latter in this paper.

To illustrate this important difference between α̂GMM, β̂GMM and α̂, β̂, we want to

give a simple example for a linear model in which the least squares objective function has

multiple local minima. Consider a DGP where Yjt = β0Xjt + λ0
jf

0
t + ejt, with Xjt =

1 + 0.5X̃jt + λ0
jf

0
t , and X̃jt, ejt, λ

0
j and f0

t are all identically distributed as N (0, 1),

34With this weight matrix WJT the second stage objective function in (B.3) becomes

(d(α)− xβ)
′
x (x′x)−1 x′ (d(α)− xβ) /JT + d′(α)Mx z (z′Mxz)

−1WJT (z′Mxz)
−1 z′Mx d(α)

= (d(α)− xβ)
′
Px (d(α)− xβ) /JT + γ̃′αWJT γ̃α ,

where d(α) = vec(δ(α, s, X) − δ(α0, s, X)). Here, β only appears in the first term, and by choosing β =

β̂ = (x′x)−1x′d(α) this term becomes zero. Thus, we are left with the second term, which is exactly the

second stage objective function in (4.1) in this case, since for R = 0 by the Frisch-Waugh theorem we have

γ̃α = (z′Mxz)
−1 z′Mx d(α).
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mutually independent, and independent across j and t. Here, the number of factors R =

1, and we assume that Yjt and Xjt are observed and that β0 = 0. The profiled least

squares objective function in this model, which corresponds to our inner loop, is given

by L(β) =
∑T

r=2 µr [(Y − βX)′(Y − βX)]. For J = T = 100 and a concrete draw of Y

and X, this objective function is plotted in figure 2. The shape of this objective function

is qualitatively unchanged for other draws of Y and X, or larger values of J and T . As

predicted by our consistency result, the global minimum of L(β) is close to β0 = 0, but

another local minimum is present, which does neither vanish nor converge to β0 = 0 when

J and T grow to infinity. Thus, the global minimum of L(β) gives a consistent estimator,

but the solution to the FOC ∂L(β)/∂β = 0 gives not. In this example, the principal

components estimator of λ(β) and f(β), which are derived from Y − βX, become very

bad approximations for λ0 and f0 for β & 0.5. Thus, for β & 0.5, the fixed effects are

essentially not controlled for anymore in the objective function, and the local minimum

around β ≈ 0.8 reflects the resulting endogeneity problem.
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Figure 2: Example for multiple local minima in the least squares objective function L(β). The global minimum

can be found close to the true value β0 = 0, but another local minimum exists around β ≈ 0.8, which renders

the FOC inappropriate for defining the estimator β̂.

C Details for Theorems 5.2 and 5.3

C.1 Formulas for Asymptotic Bias Terms

Here we provide the formulas for the asymptotic bias terms B0, B1 and B2 that enter into

Theorem 5.2. Let the J × 1 vector Σ
(1)
e , the T × 1 vector Σ

(2)
e , and the T × T matrices
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ΣX,e
k , k = 1, . . . ,K, and ΣZ,e

m , m = 1, . . . ,M , be defined by

Σ
(1)
e,j =

1

T

T∑
t=1

E
(
e2
jt

)
, Σ

(2)
e,t =

1

J

J∑
j=1

E
(
e2
jt

)
,

ΣX,e
k,tτ =

1

J

J∑
j=1

E (Xk,jt ejτ ) , ΣZ,e
m,tτ =

1

J

J∑
j=1

E (Zm,jt ejτ ) , (C.1)

where j = 1, . . . , J and t, τ = 1, . . . , T . Furthermore, let

b
(x,0)
k = plim

J,T→∞
Tr
(
Pf0 ΣX,e

k

)
,

b
(x,1)
k = plim

J,T→∞
Tr
[
diag

(
Σ(1)
e

)
Mλ0 Xk f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′
]
,

b
(x,2)
k = plim

J,T→∞
Tr
[
diag

(
Σ(2)
e

)
Mf0 X

′
k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′
]
,

b(z,0)
m = plim

J,T→∞
Tr
(
Pf0 ΣZ,e

m

)
,

b(z,1)
m = plim

J,T→∞
Tr
[
diag

(
Σ(1)
e

)
Mλ0 Zm f

0 (f0′f0)−1 (λ0′λ0)−1 λ0′
]
,

b(z,2)
m = plim

J,T→∞
Tr
[
diag

(
Σ(2)
e

)
Mf0 Z

′
m λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′
]
, (C.2)

and we set b(x,i) =
(
b
(x,i)
1 , . . . , b

(x,i)
K

)′
and b(z,i) =

(
b
(z,i)
1 , . . . , b

(z,i)
M

)′
, for i = 0, 1, 2. With

these definitions we can now give the expression for the asymptotic bias terms which appear

in Theorem 5.2, namely

Bi = −
(
GWG′

)−1
GW

(
b(x,i)

b(z,i)

)
, (C.3)

where i = 0, 1, 2.

C.2 Additional Assumptions for Asymptotic Distribution

and Bias Correction

In addition to Assumption 1, which guarantees consistency of the LS-MD estimator, we

also require the Assumptions 2, 3 and 4 to derive the limiting distribution of the estimator

in Theorem 5.2, and Assumption 5 to provide consistent estimators for the asymptotic

bias and asymptotic covariance matrix in Theorem 5.3. These additional assumptions are

presented below.

Assumption 2. We assume that the probability limits of λ0′λ0/J and f0′f0/T are finite

and have full rank, i.e. (a) plimJ,T→∞
(
λ0′λ0/J

)
> 0, (b) plimJ,T→∞

(
f0′f0/T

)
> 0 .
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Assumption 2 guarantees that ‖λ0‖ and ‖f0‖ grow at a rate of
√
J and

√
T , respectively.

This is a so called “strong factor” assumption that makes sure that the influence of the

factors is sufficiently large, so that the principal components estimators λ̂ and f̂ can pick

up the correct factor loadings and factors.

Assumption 3. We assume existence of the probability limits G, Ω, W, b(x,i) and b(z,i),

i = 0, 1, 2. In addition, we assume GWG′ > 0 and GWΩWG′ > 0.

Assumption 4.

(i) There exist J × T matrices r∆(α) and ∇lδ(α0), l = 1, . . . , L, such that

δ(α)− δ(α0) =

L∑
l=1

(αl − α0
l )∇lδ(α0) + r∆(α) ,

and

1√
JT
‖∇lδ(α0)‖F = Op(1) , for l = 1, . . . , L ,

sup
{α:
√
J‖α−α0‖<c, α 6=α0}

1√
JT
‖r∆(α)‖F
‖α− α0‖

= op(1) , for all c > 0 .

(ii) ‖λ0
j‖ and ‖f0

t ‖ are uniformly bounded across j, t, J and T .

(iii) The errors ejt are independent across j and t, they satisfy Eejt = 0, and E(ejt)
8+ε is

bounded uniformly across j, t and J, T , for some ε > 0.

(iv) The regressors Xk, k = 1, . . . ,K, (both high- and low rank regressors) and the

instruments Zm, m = 1, . . . ,M , can be decomposed as Xk = Xstr
k + Xweak

k and

Zm = Zstr
m + Zweak

m . The components Xstr
k and Zstr

m are strictly exogenous, i.e. Xstr
k,jt

and Zstr
m,jt are independent of eiτ for all j, i, t, τ . The components Xweak

k and Zweak
m

are weakly exogenous, and we assume

Xweak
k,jt =

t−1∑
τ=1

ck,jτ ej,t−τ , Zweak
m,jt =

t−1∑
τ=1

dm,jτ ej,t−τ ,

for some coefficients ck,jτ and dm,jτ that satisfy

|ck,jτ | < ατ , |dk,jτ | < ατ ,

where α ∈ (0, 1) is a constant that is independent of τ = 1, . . . , T − 1, j = 1 . . . J ,

k = 1, . . . ,K and m = 1, . . . ,M . We also assume that E[(Xstr
k,jt)

8+ε] and E[(Zstr
m,jt)

8+ε]

are bounded uniformly over j, t and J, T , for some ε > 0.
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Assumption 1(ii) and (iii) are implied by Assumption 4, so it would not be necessary

to impose those explicitly in Theorem 5.2. Part (ii), (iii) and (iv) of Assumption 4 are

identical to Assumption 5 in Moon and Weidner (2013a; 2013b), except for the appearance

of the instruments Zm here, which need to be included since they appear as additional

regressors in the first step of our estimation procedure. Part (i) of Assumption 4 can

for example be justified by assuming that within any
√
J-shrinking neighborhood of α0

we have wpa1 that δjt(α) is differentiable, that |∇lδjt(α)| is uniformly bounded across j,

t, J and T , and that ∇lδjt(α) is Lipschitz continuous with a Lipschitz constant that is

uniformly bounded across j, t, J and T , for all l = 1, . . . L. But since the assumption is

only on the Frobenius norm of the gradient and remainder term, one can also conceive

weaker sufficient conditions for Assumption 4(i).

Assumption 5. For all c > 0 and l = 1, . . . , L we have

sup
{α:
√
JT‖α−α0‖<c}

‖∇lδ(α)−∇lδ(α0)‖F = op(
√
JT ).

This last assumption is needed to guarantee consistency of the bias and variance esti-

mators that are presented in the following.

C.3 Bias and Variance Estimators

Here we present consistent estimators for the matrices G, Ω, and W, which enter into the

asymptotic variance of the LS-MD estimator, and for the vectors B0, B1 and B2, which

enter into the asymptotic bias of the estimator. Consistency of these estimators is stated

in Theorem 5.3.

Given the LS-MD estimators α̂ and β̂, we can define the residuals

ê = δ(α̂, s, X)−
K∑
k=1

β̂kXk − λ̂f̂ ′ . (C.4)

We also define the JT ×K matrix x̂λf , the JT ×M matrix ẑλf , and the JT × L matrix

ĝ by

x̂λf.,k = vec
(
M
λ̂
XkMf̂

)
, ẑλf.,m = vec

(
M
λ̂
ZmMf̂

)
, ĝ.,l = −vec (∇l δ(α̂)) , (C.5)

where k = 1, . . . ,K, m = 1, . . . ,M , and l = 1, . . . , L. The definition of Σ̂vec
e , Σ̂

(1)
e and Σ̂

(2)
e

is analogous to that of Σvec
e , Σ

(1)
e and Σ

(2)
e , but with E(e2

jt) replaced by ê2
jt. The T × T

41



matrices Σ̂X,e
k , k = 1, . . . ,K, and Σ̂Z,e

m , m = 1, . . . ,M , are defined by

Σ̂X,e
k,tτ =

{
1
J

∑J
j=1 Xk,jt êjτ for 0 < t− τ ≤ h

0 otherwise

Σ̂Z,e
m,tτ =

{
1
J

∑J
j=1 Zm,jt êjτ for 0 < t− τ ≤ h

0 otherwise
(C.6)

where t, τ = 1, . . . , T , and h ∈ N is a bandwidth parameter. Using these objects we define

Ĝ =
1

JT

(
ĝ′ x̂λf ĝ′ ẑλf

x̂λf ′ x̂λf x̂λf ′ ẑλf

)
,

Ω̂ =
1

JT

(
x̂λf , ẑλf

)′
diag(Σ̂vec

e )
(
x̂λf , ẑλf

)
,

b̂
(x,0)
k = Tr

(
P
f̂

Σ̂X,e
k

)
,

b̂
(x,1)
k = Tr

[
diag

(
Σ̂(1)
e

)
M
λ̂
Xk f̂ (f̂ ′f̂)−1 (λ̂′λ̂)−1 λ̂′

]
,

b̂
(x,2)
k = Tr

[
diag

(
Σ̂(2)
e

)
M
f̂
X ′k λ̂ (λ̂′λ̂)−1 (f̂ ′f̂)−1 f̂ ′

]
,

b̂(z,0)
m = Tr

(
P
f̂

Σ̂Z,e
m

)
,

b̂(z,1)
m = Tr

[
diag

(
Σ̂(1)
e

)
M
λ̂
Zm f̂ (f̂ ′f̂)−1 (λ̂′λ̂)−1 λ̂′

]
,

b̂(z,2)
m = Tr

[
diag

(
Σ̂(2)
e

)
M
f̂
Z ′m λ̂ (λ̂′λ̂)−1 (f̂ ′f̂)−1 f̂ ′

]
, (C.7)

for k = 1, . . . ,K and m = 1, . . . ,M . We set b̂(x,i) =
(
b̂
(x,i)
1 , . . . , b̂

(x,i)
K

)′
and b̂(z,i) =(

b̂
(z,i)
1 , . . . , b̂

(z,i)
M

)′
, for i = 0, 1, 2. The estimator of W is given by

Ŵ =

( (
1
JT x̂

λf ′x̂λf
)−1

0K×M

0M×K 0M×M

)
+

(
−(x̂λf ′x̂λf )−1x̂λf ′ ẑλf

1M

)(
1

JT
ẑλf ′Mx̂λf ẑ

λf

)−1

WJT

(
1

JT
ẑλf ′Mx̂λf ẑ

λf

)−1
(
−(x̂λf ′x̂λf )−1x̂λf ′ ẑλf

1M

)′
. (C.8)

Finally, for i = 0, 1, 2, we have

B̂i = −
(
ĜŴĜ′

)−1
ĜŴ

(
b̂(x,i)

b̂(z,i)

)
. (C.9)

The only subtlety here lies in the definition of Σ̂X,e
k and Σ̂Z,e

m , where we explicitly impose

the constraint that Σ̂X,e
k,tτ = Σ̂Z,e

m,tτ = 0 for t − τ ≤ 0 and for t − τ > h, where h ∈ N
is a bandwidth parameter. On the one side (t − τ ≤ 0) this constraint stems from the

assumption that Xk and Zm are only correlated with past values of the errors e, not with

present and future values, on the other side (t − τ > h) we need the bandwidth cutoff to

42



guarantee that the variance of our estimator for B0 converges to zero. Without imposing

this constraint and introducing the bandwidth parameter, our estimator for B0 would be

inconsistent.

D Proofs

In addition to the vectorizations x, xλf , z, zλf , g, and d(α), which were already defined above, we

also introduce the JT ×K matrix xf , the JT ×M matrix zf , and the JT × 1 vector ε by

xf.,k = vec
(
XkMf0

)
, zf.,m = vec

(
ZmMf0

)
, ε = vec (e) ,

where k = 1, . . . ,K and m = 1, . . . ,M .

D.1 Proof of Identification

Proof of Theorem 3.1. To show that any two different parameters cannot be observational

equivalent, we introduce the following functional

Q
(
α, β, λf ′, γ;F 0

s,X,Z

)
= E0

∥∥∥δ(α)− β ·X − γ · Z − λf
′
∥∥∥2
F
,

where E0 refers to the expectation under the distribution of observables F 0
s,X,Z , which is implied

by the model, i.e. F 0
s,X,Z = Γ(α0, β0, λ0f0′, F 0

e,X,Z).

First, we show that under Assumption ID(i)-(iv), the minima of the functionQ
(
α0, β, γ, λ, f ;F 0

s,X,Z

)
over (β, γ, λ, f) satisfies β = β0, γ = 0, and λf ′ = λ0f0′. Using model (3.1) and Assumption

ID(ii) and (iii) we find

Q
(
α0, β, γ, λ, f ;F 0

s,X,Z

)
= E0 Tr

{
[δ(α0)− β ·X − γ · Z − λf ′]′[δ(α0)− β ·X − γ · Z − λf ′]

}
= E0 Tr

{
[(β0 − β) ·X − γ · Z + λ0f0′ − λf ′ + e]′[(β0 − β) ·X − γ · Z + λ0f0′ − λf ′ + e]

}
= E0Tr(e′e) +E0 Tr

{
[(β0 − β) ·X − γ · Z + λ0f0′ − λf ′]′[(β0 − β) ·X − γ · Z + λ0f0′ − λf ′]

}︸ ︷︷ ︸
=Q∗(β,γ,λ,f ;F 0

s,X,Z)

.

(D.1)

Note that Q∗(β, γ, λ, f ;F 0
s,X,Z) ≥ 0 and that Q∗(β0, 0, λ0, f0;F 0

s,X,Z) = 0. Thus, the minimum

value ofQ
(
α0, β, γ, λ, f ;F 0

s,X,Z

)
equalsE0Tr(e′e) and all parameters that minimizeQ

(
α0, β, γ, λ, f ;F 0

s,X,Z

)
must satisfy Q∗(β, γ, λ, f ;F 0

s,X,Z) = 0. We have for any λ and f

Q∗(β, γ, λ, f ;F 0
s,X,Z) ≥ E0 Tr{[(β0 − β) ·X − γ · Z]′M(λ,λ0)[(β

0 − β) ·X − γ · Z]}

= [(β0 − β)′, γ′]E0[(x, z)′(1T ⊗M(λ,λ0))(x, z)][(β
0 − β)′, γ′]′

≥ b
(
‖β − β0‖2 + ‖γ‖2

)2
, (D.2)

where the last line holds by Assumption ID(iv). This shows that β = β0 and γ = 0 is necessary to

minimize Q
(
α0, β, γ, λ, f ;F 0

s,X,Z

)
. Since Tr(AA′) = 0 for a matrix A implies A = 0, we find that
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Q∗(β0, 0, λ, f ;F 0
s,X,Z) = 0 implies β = β0, γ = 0 and λ0f0′ − λf ′ = 0. We have thus shown that

Q
(
α0, β, γ, λ, f ;F 0

s,X,Z

)
is minimized if and only if β = β0, γ = 0 and λf ′ = λ0f0′.

For the second part, we introduce a second functional; for a given α we define:

γ(α;F 0
s,X,Z) ∈ argminγ min

β,λ,f
Q
(
α, β, λf ′, γ;F 0

s,X,Z

)
. (D.3)

We show that under Assumption ID(i)-(v), γ(α;F 0
s,X,Z) = 0 implies α = α0. From part (i)

we already know that γ(α0;F 0
s,X,Z) = 0. The proof proceeds by contradiction. Assume that

γ(α;F 0
s,X,Z) = 0 for α 6= α0. By definition of γ(·) in Eq. (D.3), this implies that there exists β̃, λ̃

and f̃ such that

Q
(
α, β̃, 0, λ̃, f̃ ;F 0

s,X,Z

)
≤ min
β,γ,λ,f

Q
(
α, β, γ, λ, f ;F 0

s,X,Z

)
. (D.4)

Using model (3.1) and our assumptions we obtain the following lower bound for the lhs of inequal-

ity (D.4)

Q
(
α, β̃, 0, λ̃, f̃ ;F 0

s,X,Z

)
= E0Tr

[(
δ(α)− β̃ ·X − λ̃f̃ ′

)′ (
δ(α)− β̃ ·X − λ̃f̃ ′

)]
= E0Tr

[ (
δ(α)− δ(α0)− (β̃ − β0) ·X + λ0f0 − λ̃f̃ ′ + e

)′
(
δ(α)− δ(α0)− (β̃ − β0) ·X + λ0f0 − λ̃f̃ ′ + e

) ]
= 2E0Tr

[ (
δ(α)− δ(α0) + 1

2e
)′
e
]

+E0Tr
[ (
δ(α)− δ(α0)− (β̃ − β0) ·X + λ0f0 − λ̃f̃ ′

)′
(
δ(α)− δ(α0)− (β̃ − β0) ·X + λ0f0 − λ̃f̃ ′

) ]
≥ 2E0Tr

[ (
δ(α)− δ(α0) + 1

2e
)′
e
]

+E0Tr
[ (
δ(α)− δ(α0)− (β̃ − β0) ·X

)′
M(λ̃,λ0)(

δ(α)− δ(α0)− (β̃ − β0) ·X
) ]

= 2E0Tr
[ (
δ(α)− δ(α0) + 1

2e
)′
e
]

+E0

[
∆ξ′

α,β̃

(
1T ⊗M(λ̃,λ0)

)
∆ξα,β̃

]
= 2E0Tr

[ (
δ(α)− δ(α0) + 1

2e
)′
e
]

+E0

[
∆ξ′

α,β̃
∆ξα,β̃

]
−E0

[
∆ξ′

α,β̃

(
1T ⊗ P(λ̃,λ0)

)
∆ξα,β̃

]
.

(D.5)
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Similarly, we obtain the following upper bound for the rhs of the above inequality (D.4)

min
β,γ,λ,f

Q
(
α, β, γ, λ, f ;F 0

s,X,Z

)
≤ min

β,γ
Q
(
α, β, γ, λ0, f0;F 0

s,X,Z

)
= min

β,γ
E0Tr

[(
δ(α)− β ·X − γ · Z − λ0f0′

)′ (
δ(α)− β ·X − γ · Z − λ0f0′

)]
= min

β,γ
E0Tr

[ (
δ(α)− δ(α0)− (β − β0) ·X − γ · Z + e

)′
(
δ(α)− δ(α0)− (β − β0) ·X − γ · Z + e

) ]
= 2E0Tr

[ (
δ(α)− δ(α0) + 1

2e
)′
e
]

+ min
β,γ

E0Tr
[ (
δ(α)− δ(α0)− (β − β0) ·X − γ · Z

)′
(
δ(α)− δ(α0)− (β − β0) ·X − γ · Z

) ]
= 2E0Tr

[ (
δ(α)− δ(α0) + 1

2e
)′
e
]

+ min
β,γ

E0

[(
∆ξα,β̃ − x(β − β̃)− zγ

)′ (
∆ξα,β̃ − x(β − β̃)− zγ

)]
= 2E0Tr

[ (
δ(α)− δ(α0) + 1

2e
)′
e
]

+E0

[
∆ξ′

α,β̃
∆ξα,β̃

]
−E0

[
∆ξ′

α,β̃
(x, z)

]
E0

[
(x, z)′(x, z)

]−1
E0

[
(x, z)′∆ξα,β̃

]
. (D.6)

Plugging these bounds in the original inequality we obtain

E0

[
∆ξ′

α,β̃
(x, z)

]
E0

[
(x, z)′(x, z)

]−1
E0

[
(x, z)′∆ξα,β̃

]
≤ E0

[
∆ξ′

α,β̃

(
1T ⊗ P(λ̃,λ0)

)
∆ξα,β̃

]
, (D.7)

which is a contradiction to Assumption ID(v).

We have thus shown that γ(α;F 0
s,X,Z) = 0 implies α = α0, which shows that α0 is uniquely

identified from F 0
s,X,Z . Using that α0 is identified, we can now use the first part of the proof, and

uniquely identify β0 and λ0f0′ from F 0
s,X,Z as the unique minimizers of Q(α0, β, λf ′, γ;F 0

s,X,Z).

Note that these findings immediately preclude observational equivalence, viz two sets of distinct

parameters (α0, β0, λ0, f0) 6= (α1, β1, λ1, f1) which are both consistent with the observed distribu-

tion F 0
s,X,Z .

Assumption INV guarantees that for given α0, β0 and λ0f0′ the map F 0
s,X,Z = Γ(α0, β0, λ0f0′, F 0

e,X,Z)

from F 0
e,X,Z to F 0

s,X,Z is invertible, i.e. we can uniquely identify F 0
e,X,Z from F 0

s,X,Z . �

D.2 Proof of Consistency

Proof of Theorem 5.1. # Part 1: We show that for any consistent estimator α̂ (not necessarily

the LS-MD estimator) we have β̃α̂ = β0 + op(1) and γ̃α̂ = op(1). Thus, for this part of the proof

assume that α̂ = α0 + op(1). This part of the proof is a direct extension of the consistency proof in

Moon and Weidner (2013b). We denote the least square objective function by QJT (α, β, γ, λ, f) =
1
JT ‖δ(α)− β ·X − γ · Z − λf ′‖2F . We first establish a lower bound on QJT (α̂, β, γ, λ, f). We have
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for all λ, f :

QJT (α̂, β, γ, λ, f) =
1

JT
Tr
[
(δ(α̂)− β ·X − γ · Z − λf ′)′ (δ(α̂)− β ·X − γ · Z − λf ′)

]
≥ 1

JT
Tr
[
(δ(α̂)− β ·X − γ · Z − λf ′)′M(λ,λ0) (δ(α̂)− β ·X − γ · Z − λf ′)

]
=

1

JT
Tr

[ (
(δ(α̂)− δ(α0)) + e− (β − β0) ·X − γ · Z

)′
M(λ,λ0)(

(δ(α̂)− δ(α0)) + e− (β − β0) ·X − γ · Z
) ]

≥ b ‖β − β0‖2 + b ‖γ‖2 + op
(
‖β − β0‖+ ‖γ − γ0‖

)
+

1

JT
Tr (ee′) + op(1).

(D.8)

where in the last line we used Assumption 1(i), (ii), (iii), and (iv). Here are some representative

examples of how the bounds in this last step are obtained from these assumptions:

1

JT
Tr
[(

(β − β0) ·X − γ · Z
)′
M(λ,λ0)

(
(β − β0) ·X − γ · Z

)]
= (β′, γ′)[ 1

JT (x, z)′(1T ⊗M(λ,λ0))(x, z)](β
′, γ′)′

≥ b(β′, γ′)(β′, γ′)′ = b ‖β − β0‖2 + b ‖γ‖2,∣∣∣∣ 1

JT
Tr
[
(δ(α̂)− δ(α0))′M(λ,λ0)

(
(β − β0) ·X

)]∣∣∣∣
≤ 1

JT

∥∥δ(α̂)− δ(α0)
∥∥
F

∥∥M(λ,λ0)

(
(β − β0) ·X

)∥∥
F

≤ 1

JT

∥∥δ(α̂)− δ(α0)
∥∥
F

∥∥(β − β0) ·X
∥∥
F

= Op(1)
∥∥α̂− α0

∥∥∥∥β − β0
∥∥ = op(

∥∥β − β0
∥∥),∣∣∣∣ 1

JT
Tr

[
e′M(λ,λ0)

(
(β − β0) ·X

) ]∣∣∣∣
=

∣∣∣∣ 1

JT
Tr

[
e′
(
(β − β0) ·X

) ]∣∣∣∣+

∣∣∣∣ 1

JT
Tr

[
e′P(λ,λ0)

(
(β − β0) ·X

) ]∣∣∣∣
≤ op(1)‖β − β0‖+

R

JT
‖e‖

∥∥(β − β0) ·X
∥∥

≤ op(1)‖β − β0‖+
R

JT
‖e‖

∥∥(β − β0) ·X
∥∥
F

= op(
∥∥β − β0

∥∥). (D.9)

See the supplementary material in Moon and Weidner (2013a) for further details regarding the

algebra here. Applying the same methods, we also obtain

QJT (α̂, β0, 0, λ0, f0) =
1

JT
Tr (ee′) + op(1). (D.10)

Since we could choose β = β0, γ = 0, λ = λ0 and f = f0 in the first step minimization of the LS-MD

estimator, the optimal LS-MD first stage parameters at α̂ need to satisfy QJT (α̂, β̃α̂, γ̃α̂, λ̃α̂, f̃α̂) ≤
QJT (α̂, β0, 0, λ0, f0). Using the above results thus gives

b ‖β̃α̂ − β0‖2 + b ‖γ̃α̂‖2 + op

(
‖β̃α̂ − β0‖+ ‖γ̃α̂ − γ0‖

)
+ op(1) ≤ 0 . (D.11)

It follows that ‖β̃α̂ − β0‖ = op(1) and γ̃α̂ = op(1).
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# Part 2: Now, let α̂ be the LS-MD estimator. We want to show that α̂ − α0 = op(1). From

part 1 of the proof we already know that γ̃α0 = op(1). In the second step of the LS-MD estimator

the optimal choice α̂ minimizes γ̃′α̂WJT γ̃α̂, which implies that

γ̃′α̂WJT γ̃α̂ ≤ γ̃′α0 WJT γ̃α0 = op(1) , (D.12)

and therefore γ̃α̂ = op(1). Here we used that WJT converges to a positive definite matrix in

probability. Analogous to the identification proof we are now going to find an upper and a lower

bound for QJT

(
α̂, β̃α̂, γ̃α̂, λ̃α̂, f̃α̂

)
. In the rest of this proof we drop the subscript α̂ on β̃, γ̃, λ̃ and

f̃ . Using model (3.1) and our assumptions we obtain the following lower bound

QJT

(
α̂, β̃, γ̃, λ̃, f̃

)
= 1

JT Tr

[(
δ(α̂)− β̃ ·X − γ̃ · Z − λ̃f̃ ′

)′ (
δ(α̂)− β̃ ·X − γ̃ · Z − λ̃f̃ ′

)]
= 1

JT Tr
[ (
δ(α̂)− δ(α0)− (β̃ − β0) ·X − γ̃ · Z + λ0f0 − λ̃f̃ ′ + e

)′
(
δ(α̂)− δ(α0)− (β̃ − β0) ·X − γ̃ · Z + λ0f0 − λ̃f̃ ′ + e

) ]
≥ 1

JT Tr
[ (
δ(α̂)− δ(α0)− (β̃ − β0) ·X − γ̃ · Z + e

)′
M(λ̃,λ0)(

δ(α̂)− δ(α0)− (β̃ − β0) ·X − γ̃ · Z + e
) ]

= 1
JT Tr

[ (
δ(α̂)− δ(α0)− (β̃ − β0) ·X

)′
M(λ̃,λ0)

(
δ(α̂)− δ(α0)− (β̃ − β0) ·X

) ]
+ 2

JT Tr
[ (
δ(α̂)− δ(α0) + 1

2e
)′
e
]

+ op(‖α̂− α0‖+ ‖β̃ − β0‖) + op(1)

= 1
JT

[
∆ξ′

α̂,β̃

(
1T ⊗M(λ̃,λ0)

)
∆ξα̂,β̃

]
+ 2

JT Tr
[ (
δ(α̂)− δ(α0) + 1

2e
)′
e
]

+ op(‖α̂− α0‖+ ‖β̃ − β0‖) + op(1)

= 1
JT

[
∆ξ′

α̂,β̃
∆ξα̂,β̃

]
− 1

JT

[
∆ξ′

α̂,β̃

(
1T ⊗ P(λ̃,λ0)

)
∆ξα̂,β̃

]
+ 2

JT Tr
[ (
δ(α̂)− δ(α0) + 1

2e
)′
e
]

+ op(‖α̂− α0‖+ ‖β̃ − β0‖) + op(1). (D.13)

The bounds used here are analogous to those in (D.9), and we again refer to the supplementary

material in Moon and Weidner (2013a).
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Similarly, we obtain the following upper bound

QJT

(
α̂, β̃α̂, γ̃α̂, λ̃α̂, f̃α̂

)
= min
β,γ,λ,f

QJT (α̂, β, γ, λ, f) ≤ min
β,γ

QJT
(
α̂, β, γ, λ0, f0

)
= min

β,γ

1
JT Tr

[(
δ(α̂)− β ·X − γ · Z − λ0f0′

)′ (
δ(α̂)− β ·X − γ · Z − λ0f0′

)]
= min

β,γ

1
JT Tr

[ (
δ(α̂)− δ(α0)− (β − β0) ·X − γ · Z + e

)′
(
δ(α̂)− δ(α0)− (β − β0) ·X − γ · Z + e

) ]
= 2

JT Tr
[ (
δ(α̂)− δ(α0) + 1

2e
)′
e
]

+ min
β,γ

1
JT Tr

[ (
δ(α̂)− δ(α0)− (β − β0) ·X − γ · Z

)′
(
δ(α̂)− δ(α0)− (β − β0) ·X − γ · Z

) ]
= 2

JT Tr
[ (
δ(α̂)− δ(α0) + 1

2e
)′
e
]

+ min
β,γ

1
JT

[(
∆ξα̂,β̃ − x(β − β̃)− zγ

)′ (
∆ξα̂,β̃ − x(β − β̃)− zγ

)]
= 2

JT Tr
[ (
δ(α̂)− δ(α0) + 1

2e
)′
e
]

+ 1
JT

[
∆ξ′

α,β̃
∆ξα̂,β̃

]
− 1

JT

[
∆ξ′

α̂,β̃
(x, z)

][
(x, z)′(x, z)

]−1[
(x, z)′∆ξα̂,β̃

]
. (D.14)

Combining this upper and lower bound we obtain

1
JT

[
∆ξ′

α̂,β̃
(x, z)

][
(x, z)′(x, z)

]−1[
(x, z)′∆ξα̂,β̃

]
− 1

JT

[
∆ξ′

α̂,β̃

(
1T ⊗ P(λ̃,λ0)

)
∆ξα̂,β̃

]
≤ op(‖α̂− α0‖+ ‖β̃ − β0‖) + op(1).

(D.15)

Using Assumption 1(v) we thus obtain

b‖α̂− α0‖2 + b‖β̃ − β0‖2 ≤ op(‖α̂− α0‖+ ‖β̃ − β0‖) + op(1), (D.16)

from which we can conclude that ‖α̂− α0‖ = op(1) and ‖β̃ − β0‖ = op(1).

# Part 3: Showing consistency of β̂ obtained from step 3 of the LS-MD estimation procedure

is analogous to part 1 of the proof — one only needs to eliminate all γ variables from part 1 of the

proof, which actually simplifies the proof. �

D.3 Proof of Limiting Distribution

Lemma D.1. Let Assumption 1 be satisfied and in addition let (JT )−1/2Tr(eX ′k) = Op(1), and

(JT )−1/2Tr(eZ ′m) = Op(1). In the limit J, T → ∞ with J/T → κ2, 0 < κ < ∞, we then have
√
J(α̂− α) = Op(1).

Proof. The proof is exactly analogous to the consistency proof. We know from Moon and Weidner

(2013a; 2013b) that
√
Jγ̃α0 = Op(1). Applying the inequality (D.12) one thus finds

√
Jγ̃α̂ = Op(1).

With the additional assumptions in the lemma one can strengthen the result in (D.13) as follows

QJT

(
α̂, β̃, γ̃, λ̃, f̃

)
≥ 1

JT

[
∆ξ′

α̂,β̃
∆ξα̂,β̃

]
− 1

JT

[
∆ξ′

α̂,β̃

(
1T ⊗ P(λ̃,λ0)

)
∆ξα̂,β̃

]
+ 2

JT Tr
[ (
δ(α̂)− δ(α0) + 1

2e
)′
e
]

+Op
(√

J‖α̂− α0‖+
√
J‖β̃ − β0‖

)
+Op(1/J). (D.17)
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Using this stronger result and following the steps in the consistency proof then yields
√
J(α̂−α) =

Op(1). �

Proof of Theorem 5.2. Assumption 4 guarantees (JT )−1/2Tr(eX ′k) = Op(1), and (JT )−1/2Tr(eZ ′m) =

Op(1), so that we can apply Lemma D.1 to conclude
√
J(α̂− α) = Op(1).

The first step in the definition of the LS-MD estimator is equivalent to the linear regression

model with interactive fixed effects, but with an error matrix that has an additional term ∆δ(α) ≡
δ(α) − δ(α0), we write Ψ(α) ≡ e + ∆δ(α) for this effective error term. Using α̂ − α0 = op(1) and

Assumption 1(i) we have ‖Ψ(α̂)‖ = op(
√
JT ), so that the results in Moon and Weidner (2013a;

2013b) guarantee β̃α̂ − β0 = op(1) and ‖γ̃α̂‖ = op(1), which we already used in the consistency

proof. Using
√
J(α̂−α) = Op(1) and Assumption 4(i) we find ‖Ψ(α̂)‖ = Op(

√
J), which allows us

to truncate the asymptotic likelihood expansion derived in Moon and Weidner (2013a; 2013b) at

an appropriate order. Namely, applying their results we have

√
JT

 β̃α − β0

γ̃α

 = V −1JT

 [
C(1) (Xk,Ψ(α)) + C(2) (Xk,Ψ(α))

]
k=1,...,K[

C(1) (Zm,Ψ(α)) + C(2) (Zm,Ψ(α))
]
m=1,...,M

+ rLS(α),

(D.18)

where

VJT =
1

JT

( [
Tr(Mf0X ′k1Mλ0Xk2)

]
k1,k2=1,...,K

[
Tr(Mf0X ′kMλ0Zm)

]
k=1,...,K;m=1,...,M[

Tr(Mf0Z ′mMλ0Xk)
]
m=1,...,M ;k=1,...,K

[
Tr(Mf0Z ′m1

Mλ0Zm2
)
]
m1,m2=1,...,M

)

=
1

JT

(
xλf , zλf

)′ (
xλf , zλf

)
, (D.19)

and for X either Xk or Zm and Ψ = Ψ(α) we have

C(1) (X , Ψ) =
1√
JT

Tr
[
Mf0 Ψ′Mλ0 X

]
,

C(2) (X , Ψ) = − 1√
JT

[
Tr
(
ΨMf0 Ψ′Mλ0 X f0 (f0′f0)−1 (λ0′λ0)−1 λ0′

)
+ Tr

(
Ψ′Mλ0 ΨMf0 X ′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

)
+ Tr

(
Ψ′Mλ0 X Mf0 Ψ′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′

) ]
, (D.20)

and finally for the remainder we have

rLS(α) = Op
(

(JT )−3/2‖Ψ(α)‖3‖Xk‖
)

+Op
(

(JT )−3/2‖Ψ(α)‖3‖Zm‖
)

+Op
(

(JT )−1‖Ψ(α)‖‖Xk‖2‖‖β̃α − β0‖
)

+Op
(
(JT )−1‖Ψ(α)‖‖Zm‖2‖γ̃α‖

)
, (D.21)

which holds uniformly over α. The first two terms in rLS(α) stem from the bound on higher

order terms in the score function (C(3), C(4), etc.), where Ψ(α) appears three times or more in the

expansion, while the last two terms in rLS(α) reflect the bound on higher order terms in the Hessian

expansion, and beyond. Note that Assumption 1(iv) already guarantees that VJT > b > 0, wpa1.

Applying ‖Xk‖ = Op(
√
JT ), ‖Zm‖ = Op(

√
JT ), and ‖Ψ(α)‖ = Op(

√
J) within

√
J‖α − α0‖ < c,

we find for all c > 0

sup
{α:
√
J‖α−α0‖<c}

∥∥rLS(α)
∥∥

1 +
√
JT‖β̃α − β0‖+

√
JT‖γ̃α‖

= op(1) . (D.22)
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The inverse of the partitioned matrix VJT is given by

V −1JT = JT

 (
xλf ′Mzλfx

λf
)−1 −

(
xλf ′Mzλfx

λf
)−1 (

xλf ′zλf
) (
zλf ′zλf

)−1
−
(
zλf ′Mxλf z

λf
)−1 (

zλf ′xλf
) (
xλf ′xλf

)−1 (
zλf ′Mxλf z

λf
)−1

 .

(D.23)

Using
√
J(α̂− α) = Op(1) and Assumption 4(i) we find [

C(1) (Xk,Ψ(α̂))
]
k=1,...,K[

C(1) (Zm,Ψ(α̂))
]
m=1,...,M

 =
1√
JT

(
xλf , zλf

)′
ε

−
[

1

JT

(
xλf , zλf

)′
g

]√
JT (α̂− α0) + op(

√
JT‖α̂− α0‖), [

C(2) (Xk,Ψ(α̂))
]
k=1,...,K[

C(2) (Zm,Ψ(α̂))
]
m=1,...,M

 =

 c
(2)
x

c
(2)
z

+Op
(√

J‖α̂− α0‖
)
, (D.24)

where

c(2)x =
[
C(2) (Xk, e)

]
k=1,...,K

, c(2)z =
[
C(2) (Zm, e)

]
m=1,...,M

. (D.25)

From this one can conclude that
√
JT‖β̃α̂ − β0‖ = Op(1) + Op(

√
JT‖α̂ − α0‖) and

√
JT‖γ̃α̂‖ =

Op(1) + Op(
√
JT‖α̂ − α0‖), so that we find rLS(α̂) = op(1) + op(

√
JT‖α̂ − α0‖). Combining the

above results we obtain

√
JT γ̃α̂ =

(
1

JT
zλf ′Mxλf z

λf

)−1 [
1√
JT

zλf ′Mxλf ε+ c(2)z −
(
zλf ′xλf

) (
xλf ′xλf

)−1
c(2)x

−
(

1

JT
zλf ′Mxλf g

) √
JT (α̂− α0)

]
+ op(1) + op(

√
JT‖α̂− α0‖). (D.26)

The above results holds not only for α̂, but uniformly for all α in any
√
J shrinking neighborhood

of α0 (we made this explicit in the bound on rLS(α) above; one could define similar remainder

terms with corresponding bounds in all intermediate steps), i.e. we have

√
JT γ̃α =

(
1

JT
zλf ′Mxλf z

λf

)−1 [
1√
JT

zλf ′Mxλf ε+ c(2)z −
(
zλf ′xλf

) (
xλf ′xλf

)−1
c(2)x

−
(

1

JT
zλf ′Mxλf g

) √
JT (α− α0)

]
+ rγ(α), (D.27)

where for all c > 0

sup
{α:
√
J‖α−α0‖<c}

‖rγ(α)‖
1 +
√
JT‖α− α0‖

= op(1) . (D.28)

Therefore, the objective function for α̂ reads

JT γ̃′αWJT γ̃α = A0 − 2A′1

[√
JT

(
α− α0

)]
+
[√

JT
(
α− α0

)]′
A2

[√
JT

(
α− α0

)]
+ robj(α) ,

(D.29)

50



where A0 is a scalar, A1 is a L× 1 vector, and A2 is a L× L matrix defined by

A0 =

[
1√
JT

zλf ′Mxλf ε+ c(2)z −
(
zλf ′xλf

) (
xλf ′xλf

)−1
c(2)x

]′(
1

JT
zλf ′Mxλf z

λf

)−1
WJT(

1

JT
zλf ′Mxλf z

λf

)−1 [
1√
JT

zλf ′Mxλf ε+ c(2)z −
(
zλf ′xλf

) (
xλf ′xλf

)−1
c(2)x

]
,

A1 =

(
1

JT
g′Mxλf z

λf

)(
1

JT
zλf ′Mxλf z

λf

)−1
WJT

(
1

JT
zλf ′Mxλf z

λf

)−1
[

1√
JT

zλf ′Mxλf ε+ c(2)z −
(
zλf ′xλf

) (
xλf ′xλf

)−1
c(2)x

]
,

A2 =

(
1

JT
g′Mxλf z

λf

)(
1

JT
zλf ′Mxλf z

λf

)−1
WJT

(
1

JT
zλf ′Mxλf z

λf

)−1(
1

JT
zλf ′Mxλf g

)
,

(D.30)

and the remainder term in the objective function satisfies

sup
{α:
√
J‖α−α0‖<c}

‖robj(α)‖(
1 +
√
JT‖α− α0‖

)2 = op(1) . (D.31)

Under our assumptions one can show that ‖A1‖ = Op(1) and plimJ,T→∞A2 > 0. Combining the

expansion of the objective function with the results of
√
J-consistency of α̂ we can thus conclude

that

√
JT

(
α̂− α0

)
= A−12 A1 + op(1) . (D.32)

Analogous to equation (D.18) for the first step, we can apply the results in Moon and Weidner

(2013a; 2013b) to the third step of the LS-MD estimator to obtain

√
JT (β̂ − β0) =

(
1

JT
xλf ′xλf

)−1 [
C(1) (Xk,Ψ(α̂)) + C(2) (Xk,Ψ(α̂))

]
k=1,...,K

+ op(1)

=

(
1

JT
xλf ′xλf

)−1 [
1√
JT

xλf ′ ε−
(

1

JT
xλf ′ g

)√
JT (α̂− α0) + c(2)x

]
+ op(1) .

(D.33)

Here, the remainder term op(
√
JT‖α̂− α0‖) is already absorbed into the op(1) term, since (D.32)

already shows
√
JT -consistency of α̂. Let GJT and WJT be the expressions in equation (5.2) and

(5.3) before taking the probability limits, i.e. G = plimJ,T→∞GJT and W = plimJ,T→∞WJT .

One can show that

GJTWJTG
′
JT =

1

JT
(g, x)

′
Pxλf (g, x) +

(
A2 0L×K

0K×L 0K×K

)
. (D.34)

Using this, one can rewrite equation (D.32) and (D.33) as follows

GJTWJTG
′
JT

√
JT

 α̂− α0

β̂ − β0


=

1√
JT

(g, x)
′
Pxλf ε+

 A1 +
(

1
JT g

′xλf
) (

1
JT x

λf ′xλf
)−1

c
(2)
x

c
(2)
x

+ op(1) , (D.35)
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and therefore

√
JT

 α̂− α0

β̂ − β0


= (GJTWJTG

′
JT )
−1
GJTWJT

[
1√
JT

(
xλf , zλf

)′
ε

]

+ (GJTWJTG
′
JT )
−1

 A3c
(2)
z +

[(
g′xλf

)
−A3

(
zλf ′xλf

)] (
xλf ′xλf

)−1
c
(2)
x

c
(2)
x

+ op(1)

= (GWG′)
−1
GW

[
1√
JT

(
xλf , zλf

)′
ε+

(
c
(2)
x

c
(2)
z

)]
+ op(1), (D.36)

whereA3 =
(

1
JT g

′Mxλf z
λf
) (

1
JT z

λf ′Mxλf z
λf
)−1

WJT

(
1
JT z

λf ′Mxλf z
λf
)−1

. Having equation (D.36),

all that is left to do is to derive the asymptotic distribution of c
(2)
x , c

(2)
z and 1√

JT

(
xλf , zλf

)′
ε. This

was done in Moon and Weidner (2013a; 2013b) under the same assumptions that we impose here.

They show that

c(2)x = −κ−1 b(x,1) − κ b(x,2) + op(1) , c(2)z = −κ−1 b(z,1) − κ b(z,2) + op(1) , (D.37)

and

1√
JT

(
xλf , zλf

)′
ε −→

d
N
[
−κ
(
b(x,0)

b(z,0)

)
, Ω

]
. (D.38)

Plugging this into (D.36) gives the result on the limiting distribution of α̂ and β̂ which is stated in

the theorem. �

D.4 Consistency of Bias and Variance Estimators

Proof of Theorem 5.3. From Moon and Weidner (2013a; 2013b) we already know that under

our assumptions we have Ω̂ = Ω+op(1), b̂(x,i) = b(x,i)+op(1) and b̂(z,i) = b(z,i)+op(1), for i = 0, 1, 2.

They also show that ‖Mλ̂−Mλ0‖ = Op(J−1/2) and ‖Mf̂ −Mf0‖ = Op(J−1/2), from which we can

conclude that Ŵ =W + op(1). These results on Mλ̂ and Mf̂ together with
√
JT -consistency of α̂

and Assumption 5 are also sufficient to conclude Ĝ = G + op(1). It follows that B̂i = Bi + op(1),

for i = 0, 1, 2. �

E Additional details on numerical verification of

instrument relevance condition

Here we present some additional details related to the numerical verification of the instrument

relevance condition, which was discussed in Section 6.1 of the main text.
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For the numerator of ρF (α, β) one finds

max
λ∈RJ×R

[
∆ξ′α,β

(
1T ⊗ P(λ,λ0)

)
∆ξα,β

]
= ∆ξ′α,β (1T ⊗ Pλ0) ∆ξα,β + max

λ∈RJ×R

[
∆ξ′α,β (1T ⊗Mλ0PλMλ0) ∆ξα,β

]
= ∆ξ′α,β (1T ⊗ Pλ0) ∆ξα,β + max

λ∈RJ×R
Tr
[
(δ(α)− δ(α0)− β ·X)′Mλ0PλMλ0(δ(α)− δ(α0)− β ·X)

]
= ∆ξ′α,β (1T ⊗ Pλ0) ∆ξα,β +

R∑
r=1

µr
[
(δ(α)− δ(α0)− β ·X)′Mλ0(δ(α)− δ(α0)− β ·X)

]
.

In the first step we used P(λ,λ0) = Pλ0 + Mλ0PMλ0λ
Mλ0 . The optimal value of λ in the second

line always satisfies λ = Mλ0λ, so we could write Pλ instead of PMλ0λ
. In the second step we

plugged in the definition of ∆ξα,β . In the final step we used the characterization of the eigenvalues

in terms of a maximization problem, and the fact that the non-zero eigenvalues of the matrices

(δ(α)−δ(α0)−β ·X)′Mλ0(δ(α)−δ(α0)−β ·X) and Mλ0(δ(α)−δ(α0)−β ·X)(δ(α)−δ(α0)−β ·X)′Mλ0

are identical.

Because of this, ρF (α, β) is equal to

ρF(α, β) =
∆ξ′α,β (1T ⊗ Pλ0) ∆ξα,β

∆ξ′α,β∆ξα,β

+

∑R
r=1 µr

[
(δ(α)− δ(α0)− β ·X)′Mλ0(δ(α)− δ(α0)− β ·X)

]
∆ξ′α,β∆ξα,β

.

Thus, computation of ρF only involves the numerical calculation of the first R eigenvalues µr of a

T × T matrix, which can be done very quickly even for relatively large values of T .

F Alternative Identification Argument

Here we present an alternative identification statement for the BLP model with interactive fixed

effects. In contrast to Theorem ID in the main text the following theorem does not employ the

LS-MD approach to obtain identification of the model paramters.

Theorem F.1. Assume that E(ejt) = 0, E(Xitejt) = 0, and E(Zitejt) = 0 for all i, j = 1, . . . , J

and all t = 1, . . . , T . Furthermore assume that for all α 6= α0 and all λ ∈ RJ×R the matrix

E[(d(α), x)′M(λ,λ0)(x, z)] has full rank (equal to K + 1). Then, the parameters α, β and λf ′ are

identified.

The proof of the theorem is available upon request. The exogeneity condition here is stronger

than the one imposed in Theorem ID. Namely, in each market the characteristics and instruments

for all products are assumed uncorrelated of all the product specific shocks, i.e. in each market

the theorem assumes strict exogeneity. By plugging in model into the conditions E(ejt) = 0,

E(Xitejt) = 0, E(Zitejt) = 0, one obtains moment conditions, and the theorem states that these

moment conditions are sufficient to identify the parameters of the model, as long as the additional

rank condition is satisfied. One could therefore use these moment conditions to do inference on the

model parameters. However, in particular when J and T are relatively large, one has to overcome
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both a computational problem and an incidental parameter problem here, because we need to

estimate JR parameters for λ and TR parameters for f . We do not follow this approach further

in the this paper.
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