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S.1 Proofs for Main Text Results

Proof of Theorem 2.1 (Identifictaion). LetQ(β,Λ, F ) = E
(
‖Y − β ·X − ΛF ′‖2

HS

)
. Ex-

istence of Q(β,Λ, F ) is guaranteed by Assumption ID(i). The statement of the theorem follows
if we can show that Q(β,Λ, F ) is uniquely minimized at β = β0 and ΛF ′ = λ0f 0′. We have

Q(β,Λ, F ) = E Tr
[
(Y − β ·X − ΛF ′) (Y − β ·X − ΛF ′)

′]
= E Tr

[(
λ0f 0′ − ΛF ′ − (β − β0) ·X + e

) (
λ0f 0′ − ΛF ′ − (β − β0) ·X + e

)′]
= E Tr

[(
λ0f 0′ − ΛF ′ − (β − β0) ·X

) (
λ0f 0′ − ΛF ′ − (β − β0) ·X

)′]︸ ︷︷ ︸
≡ Q∗(β,Λ, F )

+E Tr (ee′) .

(S.1)

Here, we used the model, and in the last step we employed Assumption ID(ii). Next, we derive
a lower bound on Q∗(β,Λ, F ). We have

Q∗(β,Λ, F ) ≥ E Tr
[(
λ0f 0′ − ΛF ′ − (β − β0) ·X

)
MF

(
λ0f 0′ − ΛF ′ − (β − β0) ·X

)′]
= E Tr

[
MF

(
λ0f 0′ − ΛF ′ − (β − β0) ·X

)′ (
λ0f 0′ − ΛF ′ − (β − β0) ·X

)
MF

]
≥ E Tr

[
MF

(
λ0f 0′ − ΛF ′ − (β − β0) ·X

)′
Mλ0

(
λ0f 0′ − ΛF ′ − (β − β0) ·X

)
MF

]
= E Tr

[
MF

(
(β − β0) ·X

)′
Mλ0

(
(β − β0) ·X

)]
= (β − β0)′ {E[x′(MF ⊗Mλ0)x]} (β − β0). (S.2)

From this and Assumption ID(iii) we conclude that Q∗(β,Λ, F ) > 0 for all β 6= β0. On the
other hand, we have Q∗(β0, λ0, f 0) = 0. Thus, every minimum of Q∗(β,Λ, F ) satisfies β = β0.
Furthermore, at β = β0 we have Q∗(β0,Λ, F ) = ‖λ0f 0′ − ΛF ′‖2

HS, which is zero if and only
if ΛF ′ = λ0f 0′. The minima of Q∗(β,Λ, F ) therefore satisfy β = β0 and ΛF ′ = λ0f 0′. Since
Q∗(β,Λ, F ) and Q(β,Λ, F ) only differ by a constant the same result holds for Q(β,Λ, F ). Notice
that the result that the optimal Λ and F satisfy ΛF ′ = λ0f 0′ implies that rank(ΛF ′) = R0, i.e.
the true number of factors R0 is also identified, as required. �

Proof of Theorem 3.1 (Main Result). Follows from Theorem 4.6 and Lemma 4.7. �

Proof of Theorem 4.1 (Consistency). We first establish a lower bound on LRNT (β). Let

∆β = β − β0. Consider the definition of LRNT (β) in equation (3.3) and plug in the model
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Y = β ·X + λ0f 0′ + e. We have

LRNT (β) = min
{Λ∈RN×R, F∈RT×R}

1

NT
Tr
[(

∆β ·X + e+ λ0f 0′ − ΛF ′
) (

∆β ·X + e+ λ0f 0′ − ΛF ′
)′]

≥ min
{Λ̃∈RN×(R+R0), F̃∈RT×(R+R0)}

1

NT
Tr

[(
∆β ·X + e− Λ̃F̃ ′

)(
∆β ·X + e− Λ̃F̃ ′

)′]
=

1

NT
min

F̃∈RT×(R+R0)

Tr
[
(∆β ·X + e)MF̃ (∆β ·X + e)′

]
=

1

NT
min

F̃∈RT×(R+R0)

{
Tr
[
(∆β ·X)MF̃ (∆β ·X)′

]
+ Tr (ee′)− Tr

(
ePF̃ e

′)
+ 2Tr [(∆β ·X) e′]− 2Tr [(∆β ·X)PF̃ e

′]

}

≥ 1

NT

{
T∑

r=R+R0+1

µr [(∆β ·X)′(∆β ·X)] + Tr (ee′)− 2(R +R0)‖e‖2

+ 2Tr [(∆β ·X) e′]− 2(R +R0)‖e‖‖∆β ·X‖

}

≥ b ‖∆β‖2 +
1

NT
Tr (ee′) +OP

(
1

min(N, T )

)
+OP

(
‖∆β‖√

min(N, T )

)
. (S.3)

Here, we applied the inequality |Tr(A)| ≤ rank(A)‖A‖ with A = (∆β ·X)PF̃ e
′ and also with

A = ePF̃ e
′. We also used that minF̃ Tr

[
(∆β ·X)MF̃ (∆β ·X)′

]
=
∑T

r=R+R0+1 µr [(∆β ·X)′(∆β ·X)],
which follows by the same logic as equation (3.3) in the main text. In the last step of (S.3) we
applied Assumptions SN, EX and NC.

Next, we establish an upper bound on LRNT (β0). Since R ≥ R0 we can choose ΛF ′ = λ0f 0′

in the minimization problem in the first line of equation (3.3), and therefore

LRNT (β0) = min
{Λ∈RN×R, F∈RT×R}

1

NT

∥∥e+ λ0f 0′ − ΛF ′
∥∥2

HS

≤ 1

NT
‖e‖2

HS =
1

NT
Tr (ee′) . (S.4)

Since we could choose β = β0 in the minimization of β, the optimal β̂R needs to satisfy
LRNT (β̂R) ≤ LRNT (β0). Together with (S.3) and (S.4) this gives

b ‖β̂R − β0‖2 +OP

(
‖β̂R − β0‖√
min(N, T )

)
+OP

(
1

min(N, T )

)
≤ 0 . (S.5)

From this it follows that ‖β̂R−β0‖ = OP
(
min(N, T )−1/2

)
, which is what we wanted to show. �

Proof of Theorem 4.2 (Quadratic Approximation of L0
NT (β)). See Section S.2 below. �

3



Proof of Corollary 4.3 (Asymptotic Characterization of β̂R0).

Define γ ≡ W−1
(
C(1) + C(2)

)
/
√
NT . Applying Theorem 4.2 we obtain

L0
NT

(
β̂R0

)
= L0

NT (β0) +
(
β̂R0 − β0 − γ

)′
W
(
β̂R0 − β0 − γ

)
− γ′Wγ + L0,rem

NT (β̂R0),

L0
NT

(
β0 + γ

)
= L0

NT (β0)− γ′Wγ + L0,rem
NT (β0 + γ). (S.6)

The first equation above is obtained by completing the square and using the definition of γ,
while the second equation is just a special case of the first. Applying the above to the inequality
L0
NT (β̂R0) ≤ L0

NT (β0 + γ) gives(
β̂R0 − β0 − γ

)′
W
(
β̂R0 − β0 − γ

)
≤ L0,rem

NT (β0 + γ)− L0,rem
NT (β̂R0). (S.7)

We have W ≥ µK(W )1K , and using Assumption NC we find for R = R0 that

µK(W ) = min
{α∈RK ,‖α‖=1}

α′Wα

= min
{α∈RK ,‖α‖=1}

1

NT
Tr (Mλ0(α ·X)Mf0(α ·X)′)

= min
{α∈RK ,‖α‖=1}

1

NT
Tr (Mf0(α ·X)′Mλ0(α ·X)Mf0)

≥ 1

NT

T∑
r=2R0+1

µr [(α ·X)′(α ·X)] ≥ b , wpa1, (S.8)

and therefore W−1 ≤ 1K/b wpa1. Using Assumption SN we find

|C(1)
k | ≤

∣∣∣∣ 1√
NT

Tr (Xke
′)

∣∣∣∣+
2R0

√
NT
‖Xk‖‖e‖ = OP

(√
max(N, T )

)
,

|C(2)
k | ≤

9R0

2
√
NT
‖e‖2‖Xk‖

∥∥λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′∥∥ = OP (1) , (S.9)

and therefore we have γ = OP [(1 + ‖C(1)‖)/
√
NT ] = oP (1). We also know ‖β̂R0 − β0‖ = oP (1)

from Theorem 4.1. Thus, the bound on the remainder in Theorem 4.2 becomes applicable and
we have

L0,rem
NT (β0 + γ)− L0,rem

NT (β̂R0) ≤ oP

(
1

NT

)[(
1 +
√
NTγ

)2

+
(

1 +
√
NT‖β̂R0 − β0‖

)2
]

= oP

(
1

NT

){
OP
[
(1 + ‖C(1)‖)2

]
+
(

1 +
√
NT‖β̂R0 − β0‖

)2
}
. (S.10)

Applying this, and (S.7), and W−1 ≤ 1/b, and the inequality
√

(x+ y) ≤
√
x+
√
y, which holds

for all non-negative real number x, y, we find that

√
NT

∥∥∥β̂R0 − β0 − γ
∥∥∥ ≤ oP

(
1 + ‖C(1)‖

)
+ oP

(
1 +
√
NT‖β̂R0 − β0‖

)
. (S.11)
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Since γ = OP [(1 + ‖C(1)‖)/
√
NT ] it follows from this that

√
NT‖β̂R0 − β0‖ = OP

(
1 + ‖C(1)‖

)
,

and therefore

√
NT

∥∥∥β̂R0 − β0 − γ
∥∥∥ ≤ oP

(
1 + ‖C(1)‖

)
, (S.12)

which is what we wanted to show. �

Proof of Proposition 4.4 (Counter Example for
√
NT Convergence Rate). We decom-

pose Y − β ·X = e− (β − β0)X = e1(β) + e2(β), where

e1(β) =
c

N
λx(Mfxu

′λx)
′ +

c

T
(Mλxufx)f

′
x − (β − β0)λxf

′
x,

e2(β) = ũ+
c2(λ′xufx)

NT
λxf

′
x +

c

N
λxλ

′
xuPfx +

c

T
Pλxufxf

′
x, (S.13)

with ũ = u − a(β − β0)X̃. Since ‖λx‖ = O(
√
N), ‖fx‖ = O(

√
T ), and λ′xufx = OP (

√
NT ) we

have ‖e2(β) − ũ‖ = oP (N). The matrix ũ has iid normal entries with mean zero and variance
1 + a2(β − β0)2. According to Geman (1980) we thus have ‖ũ‖2 = (1 + a2(β − β0)2)(

√
N +√

T )2 + oP (N). Thus, as N, T →∞ at the same rate we have

‖e2(β)‖2 ≤ (1 + a2(β − β0)2)(
√
N +

√
T )2 + oP (N). (S.14)

Note that rank(e1(β)) = 2, which implies that e1 can be written as e1 = Aẽ1B
′, where A is an

N × 2 matrix satisfying A′A = 12, B is an T × 2 matrix satisfying B′B = 12, and ẽ1 is an 2× 2
matrix, namely

ẽ1 =

(
(β − β0) ‖λxf ′x‖

∥∥ c
N
λx(Mfxu

′λx)
′
∥∥∥∥ c

T
(Mλxufx)f

′
x

∥∥ 0

)
. (S.15)

Using this characterization of e1 as well as ‖λx‖2 = N + o(N), ‖fx‖2 = T + o(T ), ‖Mfxu
′λx‖2 =

NT + oP (NT ), and ‖Mλxufx‖2 = NT + oP (NT ), we find

‖e1(β)‖2

= µ1 [e1(β)′e1(β)] = µ1 [ẽ1(β)′ẽ1(β)]

= µ1

[(
‖fx‖2

(
c2‖Mλxufx‖2

T 2 + ‖λx‖2(β − β0)2
)

c‖λx‖2‖fx‖‖Mfxu
′λx‖(β−β0)

N

c‖λx‖2‖fx‖‖Mfxu
′λx‖(β−β0)

N

c2‖λx‖2‖Mfxu
′λx‖2

N2

)]

= µ1

[(
c2N +NT (β − β0)2 cT

√
N(β − β0)

cT
√
N(β − β0) c2T

)]
+ oP

[(√
N +

√
NT‖β − β0)‖

)2
]

=
1

2

(
c2N + c2T +NT (β − β0)2 +

√
[c2N + c2T +NT (β − β0)2]2 − 4c4NT

)
+ oP

[(√
N +

√
NT‖β − β0)‖

)2
]
. (S.16)
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The objective function for R = 1 reads

L1
NT (β) = L0

NT (β)− µ1

[
(Y − β ·X)′ (Y − β ·X)

]
= Tr

[
(Y − β ·X)′ (Y − β ·X)

]
− µ1

[
(Y − β ·X)′ (Y − β ·X)

]
= Tr(e′e) + 2(β − β0)Tr(X ′e) + (β − β0)2Tr(X ′X)

− µ1

[
(e1(β) + e2(β))′ (e1(β) + e2(β))

]
= Tr(e′e) + (β − β0)2(NT + a2NT ) +OP (

√
NT‖β − β0‖) + oP (NT‖β − β0‖2)

− µ1

[
(e1(β) + e2(β))′ (e1(β) + e2(β))

]
. (S.17)

We have ∣∣µ1

[
(e1(β) + e2(β))′ (e1(β) + e2(β))

]
− µ1 [e1(β)′e1(β)]

∣∣
≤
∥∥(e1(β) + e2(β))′ (e1(β) + e2(β))− e1(β)′e1(β)

∥∥
≤ 2‖e1(β)‖ ‖e2(β)‖+ ‖e2(β)‖2, (S.18)

and therefore∣∣L1
NT (β)− Tr(e′e)− (β − β0)2(NT + a2NT ) + ‖e1(β)‖2

∣∣
≤ 2‖e1(β)‖ ‖e2(β)‖+ ‖e2(β)‖2 +OP (

√
NT‖β − β0‖) + oP (NT‖β − β0‖2). (S.19)

Using this inequality together with the results on ‖e1(β)‖ and ‖e2(β)‖ above one can show that
(for details see below)

min
β∈[β0−∆NT ,β0+∆NT ]

L1
NT (β) ≥ Tr(e′e)− T [cmax(1, κ) + 1 + κ]2︸ ︷︷ ︸

≡f1(κ,a,c)

+oP (N), (S.20)

and for β̃NT = β0 + c(aNT )−1/4 we have (again, for details see below)

L1
NT (β̃NT )

≤ Tr(e′e)−
[
c2g(a, κ)− c2a−1/2(1 + a2)κ− 2c(1 + κ)

√
g(a, κ)− (1 + κ)2

]
︸ ︷︷ ︸

≡f2(κ,a,c)

T + oP (N), (S.21)

where

g(a, κ) =
1

2

1 + κ2 +
κ√
a

+

√(
1 + κ2 +

κ√
a

)2

− 4κ2

 . (S.22)

For 0 < a < (1/2)2/3 min(κ2, κ−2) and c ≥ (2+
√

2)(1+κ)(1+
√

3a−1/4)

min(1,κ)[1/2−a3/2 max(κ,κ−1)]
one can show that f1(κ, a, c) <

f2(κ, a, c) (for details on this below). Thus, for these values of a and c we can conclude that
wpa1

min
β∈[β0−∆NT ,β0+∆NT ]

L1
NT (β) > L1

NT (β̃NT ) ≥ min
β∈R
L1
NT (β). (S.23)
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This is what we wanted to show. In the following we provide more details regarding how to
obtain (S.20) and (S.21) and f1(κ, a, c) < f2(κ, a, c).

# Derivation of (S.20): Remember ∆NT = o(N−1/2). Thus, for any β ∈ [β0−∆NT , β
0+∆NT ]

we find from (S.14), (S.16), and (S.19) that

‖e1(β)‖2 = c2 max(N, T ) + oP (N) = c2 max(1, κ2)T + oP (N),

‖e2(β)‖2 = (
√
N +

√
T )2 + oP (N) = (1 + κ)2T + oP (N),

L1
NT (β) ≥ Tr(e′e)− ‖e1(β)‖2 − 2‖e1(β)‖ ‖e2(β)‖ − ‖e2(β)‖2 + oP (N)

= Tr(e′e)− (‖e1(β)‖+ ‖e2(β)‖)2 + oP (N)

= Tr(e′e)− T [cmax(1, κ) + 1 + κ]2 + oP (N). (S.24)

# Derivation of (S.21): We defined β̃NT = β0 +c(aNT )−1/4. From (S.14) we find ‖e2(β)‖2 =

(1+κ)2T +oP (N) as before. Furthermore, we find from (S.16) that
∥∥∥e1(β̃NT )

∥∥∥2

= c2 T g(a, κ)+

oP (N). Equation (S.19) thus gives

L1
NT (β̃NT )

≤ Tr(e′e) + c2a−1/2(1 + a2)κT −
∥∥∥e1(β̃NT )

∥∥∥2

+ 2
∥∥∥e1(β̃NT )

∥∥∥∥∥∥e2(β̃NT )
∥∥∥+

∥∥∥e2(β̃NT )
∥∥∥2

+ oP (N)

= Tr(e′e) +
[
c2a−1/2(1 + a2)κ− c2g(a, κ) + 2c(1 + κ)

√
g(a, κ) + (1 + κ)2

]
T + oP (N). (S.25)

# Show that f1(κ, a, c) < f2(κ, a, c): Recall

f1 (κ, a, c) = (max {1, κ} c+ 1 + κ)2 = max
{

1, κ2
}
c2 + 2 max {1, κ} (1 + κ) c+ (1 + κ)2 ,

f2 (κ, a, c) =

(
g (a, κ)− 1 + a2

√
a
κ

)
c2 − 2 (1 + κ)

√
g (a, κ)c− (1 + κ)2 .

Note that f2 (κ, a, c)− f1 (κ, a, c) is a quadratic polynomial in c, namely

f2 (κ, a, c)− f1 (κ, a, c) = h1 (a, κ) c2 − 2h2 (a, κ) c− h3 (κ) , (S.26)

where

h1 (a, κ) = g (a, κ)− 1 + a2

√
a
κ−max

{
1, κ2

}
,

h2 (a, κ) = (1 + κ)
√
g (a, κ) + max {1, κ} (1 + κ) > 0,

h3 (κ) = 2 (1 + κ)2 > 0.

We first want to show that h1 (a, κ) > 0. By assumption we have a = ε2 min {κ2, κ−2} with
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0 < ε ≤ (1/2)1/3. Suppose that κ ≥ 1, i.e. a = ε2

κ2 . Then, we have

h1 (a, κ)

= g (a, κ)− 1 + a2

√
a
κ− κ2

=
1

2

1 +

(
1 +

1

ε

)
κ2 +

√(
1 +

(
1 +

1

ε

)
κ2

)2

− 4κ2

− 1

ε
κ2 − ε3

κ2
− κ2

=
1

2
− ε3

κ2
+

1

2

(
1 +

1

ε

)
+

1

2

√(
1

κ2
+

(
1 +

1

ε

))2

− 4

κ2
−
(

1 +
1

ε

)κ2

=
1

2
− ε3

κ2
+

1

2

(
1 +

1

ε

)
+

1

2

√(
1 +

1

ε

)2

+

(
2

ε
− 2

)
1

κ2
+

1

κ4
−
(

1 +
1

ε

)κ2

>
1

2
− ε3

κ2
≥ 1

2
− ε3 ≥ 0,

where the first strict inequality holds since√(
1 +

1

ε

)2

+

(
2

ε
− 2

)
1

κ2
+

1

κ4
>

√(
1 +

1

ε

)2

= 1 +
1

ε
.

Analogously one can show that h1 (a, κ) > κ2(1/2− ε3κ2) > 0 for κ < 1. Since h1 (a, κ) > 0 and
h3 (κ) > 0, the quadratic equation h1 (a, κ) c2 − 2h2 (a, κ) c − h3 (κ) = 0 has two real root, the
larger of which reads

cbnd (a, κ) =
h2 (a, κ) +

√
h2 (a, κ)2 + h1 (a, κ)h3 (κ)

h1 (a, κ)
,

and we have f2(κ, a, c) − f1(κ, a, c) > 0 if c > cbnd (a, κ). Since
√
x+ y ≤

√
x +
√
y for all

positive numbers x, y, and h1 (a, κ)h3 (κ) ≤ 2h2 (a, κ)2 we have

cbnd (a, κ) ≤
2h2 (a, κ) +

√
h1 (a, κ)h3 (κ)

h1 (a, κ)
≤ (2 +

√
2)
h2 (a, κ)

h1 (a, κ)
.

Above we have already shown the lower bound h1 (a, κ) > min(1, κ2)[1/2 − ε3 min(κ2, κ−2)] =
min(1, κ2)[1/2−a3/2 max(κ, κ−1)]. In addition, we have g(a, κ) < 3 max(1, κ2)/

√
a and therefore

h2 (a, κ) < max(1, κ) (1 + κ) (1 +
√

3a−1/4). Thus,

cbnd (a, κ) <
(2 +

√
2) (1 + κ) (1 +

√
3a−1/4)

min(1, κ)[1/2− a3/2 max(κ, κ−1)]
. (S.27)

Our assumptions guarantee that c is larger or equal to the rhs of the last inequality, i.e. also
c > cbnd (a, κ) and f2(κ, a, c)− f1(κ, a, c) > 0. �
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Proof of Theorem 4.5 (N3/4 Convergence Rate of β̂R0). The result follows from Theo-
rem S.5 and Lemma S.8 below. �

Proof of Theorem 4.6 (Asymptotic Equivalence of β̂R0 and β̂R, R > R0). The result fol-
lows from Corollary S.10 and Lemmas S.8 and S.12 below. �

Proof of Lemma 4.7 (Justification of Main Text High-Level Assumptions). See Sec-
tion S.4.2 below. �

Proof of Lemma A.1 (Spectral Norm Bound for Random Matrices). Let Σ, η, Ψ, χ
be the N × N matrices with entries Σij, ηij, Ψij and χij, respectively. Assumption (ii) of the
Lemma guarantees that

E‖η‖2
HS =

n∑
i,j=1

E(η2
ij) = O(N2), (S.28)

from which we conclude that ‖η‖HS = OP (N). Analogously, we find that assumption (iv) of
the Lemma implies ‖χ‖HS = OP (N). Furthermore, assumption (iii) of the Lemma guarantees

that ‖Ψ‖HS =
√∑n

i,j=1 Ψ2
ij = OP (N1/2). Since η2 = NΨ +N1/2χ we thus have

‖η2‖HS = ‖NΨ +N1/2χ‖HS ≤ N‖Ψ‖HS +N1/2‖χ‖HS = OP (N3/2). (S.29)

Since Σ is a symmetric positive definite matrix we have ‖Σ‖ = µ1(Σ), i.e. by assumption (i) of
the Lemma we have ‖Σ‖ = O(1).

Using the above results on ‖η‖HS, ‖η2‖HS and ‖Σ‖, and the fact that ee′ = TΣ + T 1/2η, we
obtain

‖e‖4 = ‖(ee′)2‖ ≤ ‖(ee′)2‖HS = ‖(TΣ + T 1/2η)2‖HS
≤ T 2‖Σ2‖HS + 2T 3/2‖Ση‖HS + T‖η2‖HS
≤ T 2N1/2‖Σ‖2 + 2T 3/2‖Σ‖‖η‖HS + T‖η2‖HS
= OP

(
T 2N1/2 + T 3/2N + TN3/2

)
= OP (N5/2), (S.30)

where in the second to last line we applied the general matrix norm inequalities ‖A‖HS ≤
rank(A)‖A‖ and ‖CD‖HS ≤ ‖C‖‖D‖HS with A = Σ2, C = Σ and D = η. We thus conclude
that ‖e‖ = OP (N5/8). �

S.2 Details for Quadratic Approximation of L0
NT (β)

The following extends the discussion in Section 4.2 and Appendix A.2 of the main paper. Using
the perturbation theory of linear operators we provide an asymptotic expansion of the least
squares objective function L0

NT (β) when R = R0. Lemma S.1 is the key result of this section,
which is afterwards used to show Theorem 4.2. The proofs for the intermediate results of this
section are provided in Section S.5 below.
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S.2.1 General Expansion Result and Proof of Theorem 4.2

Definition 1. For the N ×R0 matrix λ0 and the T ×R0 matrix f 0 we define

dmax(λ0, f 0) =
1√
NT

∥∥λ0f 0′∥∥ =

√
1

NT
µ1(λ0′f 0f 0′λ0) ,

dmin(λ0, f 0) =

√
1

NT
µR0(λ0′f 0f 0′λ0) , (S.31)

i.e. dmax(λ0, f 0) and dmin(λ0, f 0) are the square roots of the maximal and the minimal eigenvalue
of λ0′f 0f 0′λ0/NT . Furthermore, the convergence radius r0(λ0, f 0) is defined by

r0(λ0, f 0) =

(
4dmax(λ0, f 0)

d2
min(λ0, f 0)

+
1

2dmax(λ0, f 0)

)−1

. (S.32)

Lemma S.1. If the following condition is satisfies

K∑
k=1

∣∣βk − β0
k

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

< r0(λ0, f 0) , (S.33)

then

(i) the profile least squares objective function can be written as a power series in the K + 1
parameters ε0 = ‖e‖/

√
NT and εk = β0

k − βk, namely

L0
NT (β) =

1

NT

∞∑
g=2

K∑
k1=0

K∑
k2=0

. . .
K∑

kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
,

where the expansion coefficients are given by1

L(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
= L̃(g)

(
λ0, f 0, X(k1 , Xk2 , . . . , Xkg)

)
=

1

g!

[
L̃(g)

(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
+ all permutations of k1, . . . , kg

]
,

1Here we use the round bracket notation (k1, k2, . . . , kg) for total symmetrization of these indices, e.g.

L̃(2)
(
λ0, f0, X(k1 , Xk2)

)
= 1

2

[
L̃(2)

(
λ0, f0, Xk1 , Xk2

)
+ L̃(2)

(
λ0, f0, Xk2 , Xk1

)]
.
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i.e. L(g) is obtained by total symmetrization of the last g arguments of 2

L̃(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
=

g∑
p=1

(−1)p+1
∑

ν1 + . . .+ νP = g
m1+. . .+mp+1 = p−1
2 ≥ νj ≥ 1 , mj ≥ 0

Tr
(
S(m1) T (ν1)

k1...
S(m2) . . . S(mP ) T (νP )

...kg
S(mp+1)

)
,

with

S(0) = −Mλ0 , S(m) =
[
λ0(λ0′λ0)−1(f 0′f 0)−1(λ0′λ0)−1λ0′]m , for m ≥ 1,

T (1)
k = λ0 f 0′X ′k +Xk f

0 λ0′ , T (2)
k1k2

= Xk1 X
′
k2
, for k, k1, k2 = 0 . . . K ,

X0 =

√
NT

‖e‖
e , Xk = Xk , for k = 1 . . . K .

(ii) the projector Mλ̂(β) can be written as a power series in the same parameters εk (k =
0, . . . , K), namely

Mλ̂ (β) =
∞∑
g=0

K∑
k1=0

K∑
k2=0

. . .
K∑

kg=0

εk1 εk2 . . . εkg M
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
,

where the expansion coefficients are given by M (0)(λ0, f 0) = Mλ0, and for g ≥ 1

M (g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
= M̃ (g)

(
λ0, f 0, X(k1 , Xk2 , . . . , Xkg)

)
=

1

g!

[
M̃ (g)

(
Xk1 , Xk2 , . . . , Xkg

)
+ all permutations of k1, . . . , kg

]
,

i.e. M (g) is obtained by total symmetrization of the last g arguments of

M̃ (g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
=

g∑
p=1

(−1)p+1
∑

ν1 + . . .+ νP = g
m1 + . . .+mp+1 = p
2 ≥ νj ≥ 1 , mj ≥ 0

S(m1) T (ν1)
k1...

S(m2) . . . S(mP ) T (νP )
...kg

S(mp+1) ,

where S(m), T (1)
k , T (2)

k1k2
, and Xk are given above.

2One finds L̃(1)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
= 0, which is why the sum in the power series of L0

NT starts from
g = 2 instead of g = 1. For g = 2 and g = 3 we have

L(2)
(
λ0, f0, Xk1 , Xk2

)
= Tr

(
Mλ0 Xk1 Mf0 Xk2

)
,

L(3)
(
λ0, f0, Xk1 , Xk2 , Xk3

)
= − 1

3

[
Tr
(
Mλ0 Xk1 Mf X

′
k2 λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′X ′k3
)

+ 5 permutations of k1 . . . k3

]
.
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(iii) For g ≥ 3 the coefficients L(g) in the series expansion of L0
NT (β) are bounded as follows

1

NT

∣∣L(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)∣∣
≤ Rg d2

min(λ0, f 0)

2

(
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

.

Under the stronger condition

K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

<
d2

min(λ0, f 0)

16 dmax(λ0, f 0)
, (S.34)

we therefore have the following bound on the remainder when the series expansion for
L0
NT (β) is truncated at order G ≥ 2:∣∣∣∣L0

NT (β)− 1

NT

G∑
g=2

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg L
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

) ∣∣∣∣
≤ R (G+ 1)αG+1 d2

min(λ0, f 0)

2(1− α)2
,

where

α =
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

(
K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)
< 1 .

(iv) The operator norm of the coefficient M (g) in the series expansion of Mλ̂ (β) is bounded as
follows, for g ≥ 1∥∥M (g)

(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)∥∥ ≤ g

2

(
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

.

Under the condition (S.34) we therefore have the following bound on operator norm of the
remainder of the series expansion of Mλ̂ (β), for G ≥ 0∥∥∥∥Mλ̂ (β) −

G∑
g=0

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg M
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

) ∥∥∥∥
≤ (G+ 1)αG+1

2(1− α)2
.

Proof of Theorem 4.2 (Quadratic Approximation of L0
NT (β)). The R0 non-zero eigen-

values of the matrix λ0′f 0f 0′λ0/NT are identical to the eigenvalues of the R0 × R0 matrix
(f 0f 0′/T )−1/2(λ0λ0′/N)(f 0f 0′/T )−1/2, and Assumption SF guarantees that these eigenvalues,
including dmax(λ0, f 0) and dmin(λ0, f 0) converge to positive constants in probability. Therefore,
also r0(λ0, f 0) converges to a positive constant in probability.
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Assumptions SF and SN furthermore imply that in the limit N, T → ∞ with N/T → κ2,
0 < κ <∞, we have

‖λ0‖√
N

= OP (1) ,
‖f 0‖√
T

= OP (1) ,

∥∥∥∥∥
(
λ0′λ0

N

)−1
∥∥∥∥∥ = OP (1) ,

∥∥∥∥∥
(
f 0′f 0

T

)−1
∥∥∥∥∥ = OP (1) ,

‖Xk‖√
NT

= OP (1) ,
‖e‖√
NT

= OP
(
N−1/2

)
. (S.35)

Thus, for ‖β − β0‖ ≤ cNT , cNT = o(1), we have α → 0 as N, T → ∞, i.e. the condition (S.34)
in part (iii) of Lemma S.1 is asymptotically satisfied, and by applying the Lemma we find

1

NT
(ε0)g−rL(g)

(
λ0, f 0, Xk1 , . . . , Xkr , X0, . . . , X0

)
= OP

((
‖e‖√
NT

)g−r)
= OP

(
N−

g−r
2

)
,

(S.36)

where we used ε0X0 = e and the linearity of L(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
in the arguments

Xk. Truncating the expansion of L0
NT (β) at order G = 3 and applying the corresponding result

in Lemma S.1(iii) we obtain

L0
NT (β) =

1

NT

K∑
k1,k2=0

εk1εk2L
(2)
(
λ0, f 0, Xk1 , Xk2

)
+

1

NT

K∑
k1,k2,k3=0

εk1εk2εk3L
(3)
(
λ0, f 0, Xk1 , Xk2 , Xk3

)
+OP

(
α4
)

=L0
NT (β0) − 2√

NT

(
β − β0

)′ (
C(1) + C(2)

)
+
(
β − β0

)′
W
(
β − β0

)
+ L0,rem

NT (β) , (S.37)

where, using (S.36) we find

L0,rem
NT (β) =

3

NT

K∑
k1,k2=1

εk1εk2ε0L
(3)
(
λ0, f 0, Xk1 , Xk2 , X0

)
+

1

NT

K∑
k1,k2,k3=1

εk1εk2εk3L
(3)
(
λ0, f 0, Xk1 , Xk2 , Xk3

)
+OP

( K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)4
−OP [( ‖e‖√

NT

)4
]

=OP
(
‖β − β0‖2N−1/2

)
+OP

(
‖β − β0‖3

)
+OP

(
‖β − β0‖N−3/2

)
+OP

(
‖β − β0‖2N−1

)
+OP

(
‖β − β0‖3N−1/2

)
+OP

(
‖β − β0‖4

)
. (S.38)

Here OP
[(

‖e‖√
NT

)4
]

is not just some term of that order, but exactly the term of that order con-

tained in OP (α4) = OP
[(∑K

k=1 |β0
k − βk|

‖Xk‖√
NT

+ ‖e‖√
NT

)4
]
. This term is not present in L0,rem

NT (β)
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since it is already contained in L0
NT (β0).3 Equation (S.38) shows that the remainder satisfies

the bound stated in the theorem, which concludes the proof. �

S.2.2 Expansion of Other Quantities

Lemma S.2. Define the pseudo-inverses (λ0f 0′)† ≡ f 0 (f 0′f 0)−1 (λ0′λ0)−1λ0′ and (f 0λ0′)† ≡
λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′. Under the assumptions of Theorem 4.2 we have

Mλ̂(β) = Mλ0 +M
(1)

λ̂,e
+M

(2)

λ̂,e
−

K∑
k=1

(
βk − β0

k

)
M

(1)

λ̂,X,k
+M

(rem)

λ̂
(β) ,

Mf̂ (β) = Mf0 +M
(1)

f̂ ,e
+M

(2)

f̂ ,e
−

K∑
k=1

(
βk − β0

k

)
M

(1)

f̂ ,X,k
+M

(rem)

f̂
(β) ,

where the expansion coefficients in the expansion of Mλ̂(β) are N ×N matrices given by

M
(1)

λ̂,e
= −Mλ0 e (λ0f 0′)† − (f 0λ0′)† e′Mλ0 ,

M
(1)

λ̂,X,k
= −Mλ0 Xk (λ0f 0′)† − (f 0λ0′)†X ′kMλ0 ,

M
(2)

λ̂,e
= Mλ0 e (λ0f 0′)† e (λ0f 0′)† + (f 0λ0′)† e′ (f 0λ0′)† e′Mλ0

−Mλ0 eMf0 e′ (f 0λ0′)† (λ0f 0′)† − (f 0λ0′)† (λ0f 0′)† eMf0 e′Mλ0

−Mλ0 e (λ0f 0′)† (f 0λ0′)† e′Mλ0 + (f 0λ0′)† e′Mλ0 e (λ0f 0′)† ,

and analogously we have T × T matrices

M
(1)

f̂ ,e
= −Mf0 e′ (f 0λ0′)† − (λ0f 0′)† eMf0 ,

M
(1)

f̂ ,X,k
= −Mf0 X ′k (f 0λ0′)† − (λ0f 0′)†XkMf0 ,

M
(2)

f̂ ,e
= Mf0 e′ (f 0λ0′)† e′ (f 0λ0′)† + (λ0f 0′)† e (λ0f 0′)† eMf0

−Mf0 e′Mλ0 e (λ0f 0′)† (f 0λ0′)† − (λ0f 0′)† (f 0λ0′)† e′Mλ0 eMf0

−Mf0 e′ (f 0λ0′)† (λ0f 0′)† eMf0 + (λ0f 0′)† eMf0 e′ (f 0λ0′)† .

Finally, the remainder terms of the expansions satisfy for any sequence cNT → 0

sup
{β:‖β−β0‖≤cNT }

∥∥∥M (rem)

λ̂
(β)
∥∥∥

‖β − β0‖2 +N−1/2‖β − β0‖ +N−3/2
= OP (1) ,

sup
{β:‖β−β0‖≤cNT }

∥∥∥M (rem)

f̂
(β)
∥∥∥

‖β − β0‖2 +N−1/2 ‖β − β0‖ +N−3/2
= OP (1) .

3Alternatively, we could have truncated the expansion at order G = 4. Then, the term OP
[(

‖e‖√
NT

)4
]

would be more explicit, namely it would equal 1
NT ε

4
0L

(4)
(
λ0, f0, X0, X0, X0, X0

)
, which is clearly contained in

L0
NT (β0).
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Lemma S.3. Let (λ0f 0′)† and (f 0λ0′)† as defined in Lemma S.2 above. Under the assumptions
of Theorem 4.2 we have

ê(β) = Mλ0 eMf0 + ê(1)
e + ê(2)

e −
K∑
k=1

(
βk − β0

k

) (
ê

(1)
X,k + ê

(2)
X,k

)
+ ê(rem)(β) ,

where the N × T matrix valued expansion coefficients read

ê
(1)
X,k = Mλ0 XkMf0 ,

ê
(2)
X,k = −Mλ0XkMf0e′(f 0λ0′)† −Mλ0eMf0X ′k(f

0λ0′)† − (f 0λ0′)†X ′kMλ0eMf0

− (f 0λ0′)†e′Mλ0XkMf0 −Mλ0Xk(λ
0f 0′)†eMf0 −Mλ0e(λ0f 0′)†XkMf0 ,

ê(1)
e = −Mλ0 eMf0 e′ (f 0λ0′)† − (f 0λ0′)† e′Mλ0 eMf0 −Mλ0 e (λ0f 0′)† eMf0 ,

ê(2)
e = Mλ0eMf0 e′ (f 0λ0′)† e′ (f 0λ0′)† −Mλ0eMf0 e′Mλ0 e (λ0f 0′)† (f 0λ0′)†

−Mλ0eMf0 e′ (f 0λ0′)† (λ0f 0′)† eMf0 + Mλ0 e (λ0f 0′)†eMf0 e′ (f 0λ0′)†

+ (f 0λ0′)† e′Mλ0eMf0 e′ (f 0λ0′)† + Mλ0 e (λ0f 0′)†e(λ0f 0′)† eMf0

+ (f 0λ0′)† e′Mλ0e(λ0f 0′)† eMf0 + (f 0λ0′)† e′ (f 0λ0′)† e′Mλ0eMf0

− (f 0λ0′)† (λ0f 0′)† eMf0 e′Mλ0eMf0 −Mλ0 e (λ0f 0′)† (f 0λ0′)† e′Mλ0eMf0 ,

and the remainder term satisfies for any sequence cNT → 0

sup
{β:‖β−β0‖≤cNT }

∥∥ê(rem)(β)
∥∥

N‖β − β0‖2 + ‖β − β0‖ +N−1
= OP (1) .

S.3 Details for N 3/4-Convergence Rate of β̂R

This section extends the discussion in Section 4.4 of the main paper. We provide the high-

level Assumption HL1 under which N3/4
(
β̂R − β0

)
= OP (1) can be shown, see Theorem S.5

below. Lemma S.8 then provides the connection between our main text assumptions and As-
sumption HL1. The proofs are provided in Section S.5 below. Combining Theorem S.5 and
Lemma S.8 yields Theorem 4.5 in the main text.

We first note that equation (3.3) implies that

LRNT (β) = L0
NT (β)− 1

NT

R∑
r=R0+1

µr
[
(Y − β ·X)′ (Y − β ·X)

]
= L0

NT (β)− 1

NT

R−R0∑
r=1

µr [ê′(β)ê(β)] (S.39)

The extra term 1
NT

∑R
r=R0+1 µr

[
(Y − β ·X)′ (Y − β ·X)

]
is due to overfitting on the extra fac-

tors. In the second line of (S.39) we used that ê′(β)ê(β) is the residual of (Y − β ·X)′ (Y − β ·X)
after subtracting the first R0 principal components, which implies that the eigenvalues of these
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two matrices are the same, except from the R0 largest ones which are missing in ê′(β)ê(β). The
decomposition in equation (S.39) together with the expansion result for ê(β) in Lemma S.3 give
rise to the following Lemma.

Lemma S.4. Under Assumption SF and SN and for R > R0 we have

LRNT (β) = L0
NT (β)− 1

NT

R−R0∑
r=1

µr [A(β)] + LR,rem,1
NT (β),

where A(β) = Mf0 [e−∆β ·X]′Mλ0 [e−∆β ·X]Mf0, with ∆β = β − β0, and for any constant
c > 0 we have

sup
{β:
√
N‖β−β0‖≤c}

∣∣∣LR,rem,1
NT (β)

∣∣∣
√
N +

√
NT ‖β − β0‖

= Op
(

1

NT

)
.

The following high-level assumption guarantees that the β-dependence of 1
NT

∑R−R0

r=1 µr [A(β)]
is small, so that apart from a constant the approximate quadratic expansions of LRNT (β) and
L0
NT (β) around β0 are identical.

Assumption HL1 (First High-Level Assumption on Matrix Spectra). Let ∆β = β−β0

and

d(β) =
R−R0∑
r=1

{
µr
[
Mf0 (e−∆β ·X)′Mλ0 (e−∆β ·X)Mf0

]
− µr [Mf0e′Mλ0eMf0 ]− µr

[
Mf0 (∆β ·X)′Mλ0 (∆β ·X)Mf0

]}
.

For all constants c > 0 we assume that

sup
{β:
√
N‖β−β0‖≤c}

max[d(β), 0]√
N +N5/4‖β − β0‖+N2‖β − β0‖2/ log(N)

= OP (1) .

Combining Lemma S.4 with this high-level assumption yields the following theorem.

Theorem S.5. Let R > R0, let Assumptions SF, SN, NC, EX and HL1 be satisfied and
furthermore assume that C(1) = OP (N1/4). In the limit N, T →∞ with N/T → κ2, 0 < κ <∞,

we then have N3/4
(
β̂R − β0

)
= OP (1).

The theorem follows from the inequality LRNT (β̂R) ≤ LRNT (β0) by applying Lemma S.4,
Assumption HL1, and our expansion of L0

NT (β). The detailed proof is given below.

S.3.1 Justification of Assumption HL1

We first present two technical Lemmas, which are used to show Lemma S.8 below.
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Lemma S.6. Let g be an N × Q matrix and h be a T × Q matrix such that g′g = h′h = 1Q.
Let U be an N × T matrix and C a Q×Q matrix. Assume that rank[(U ′g, h)] = 2Q. Let4

∆max = max
r∈{1,2,...,min(R,Q)}

[
µr(g

′UU ′g)− µr+Q−min(Q,R)(g
′UU ′g)

]
.

We then have

R∑
r=1

µr
[
(U + gCh′)

′
(U + gCh′)

]
≤

R∑
r=1

µr

(
U ′U + ‖g′UU ′g‖P(MU′gh)

+ ∆maxP(U ′g)

)
+

min(Q,R)∑
r=1

µr (CC ′ + g′UhC ′ + Ch′U ′g) .

Lemma S.7. Let e be an N × T matrix, whose columns et, t = 1, . . . T , are distributed as
et ∼ iidN (0,Σ), where Σ is a symmetric positive definite non-random N × N matrix with
eigenvalues µ1(Σ), . . . , µN(Σ). Let A be a symmetric positive definite non-random T × T
matrix with rank(A) = Q. Let n be the number of eigenvalues of Σ that is larger or equal than
‖A‖/T , i.e. n ≤ N is the largest integer such that µn(Σ) ≥ ‖A‖/T . Consider an asymptotic
where N, T, n→∞ jointly, while Q and R are constant positive integers. We then have

R∑
r=1

µr (e′e+ A)−
R∑
r=1

µr (e′e) = OP
(√

(N + T )T/n
)
.

The following Lemma connects Lemma S.5 to the main text.

Lemma S.8. Let R > R0 and let Assumptions SF hold. Let either Assumption DX-1 or DX-2
be satisfied. Consider N, T →∞ with N/T → κ2, 0 < κ <∞. Then Assumptions SN and HL1
are satisfied. If, in addition, Assumption EX holds, then we have C(1) = OP (N1/4).

Combining Theorem S.5 and Lemma S.8 we obtain Theorem 4.5 in the main text.

S.4 Details for Asymptotic Equivalence of β̂R0 and β̂R

This section extends the discussion of Section 4.5 in the main paper. By applying the expansion
of ê(β) in equation (S.39) to the expression for LRNT (β) one obtains the following.

Lemma S.9. Under Assumption SF and SN and for R > R0 we have

LRNT (β) = L0
NT (β)− 1

NT

R−R0∑
r=1

µr [B(β) +B′(β)] + LR,rem
NT (β),

4Note that ∆max = 0 if R ≥ Q, and that ∆max ≤ µ1(g′UU ′g)− µQ(g′UU ′g) for R < Q.
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where

B(β) = 1
2
Mf0

[
e− (β − β0) ·X

]′
Mλ0

[
e− (β − β0) ·X

]
Mf0

−Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′

+Mf0

[
(β − β0) ·X − e

]′
Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0

[
(β − β0) ·X

]
f 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′ [(β − β0) ·X
]
Mf0

+B(eeee) +Mf0B(rem,1)(β)Pf0 + Pf0B(rem,2)Pf0 ,

and

B(eeee) = −Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0

− 1
2
Mf0e′Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1(f 0′f 0)−1f 0′e′Mλ0eMf0

+ 1
2
Mf0e′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′e′Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0 .

Here, B(rem,1)(β) and B(rem,2) are T × T matrices, B(rem,2) is independent of β and satisfies
‖B(rem,2)‖ = OP (1), and for any constant c > 0

sup
{β:
√
N‖β−β0‖≤c}

‖B(rem,1)(β)‖
1 +
√
NT ‖β − β0‖

= Op (1) ,

sup
{β:
√
N‖β−β0‖≤c}

∣∣∣LR,rem
NT (β)

∣∣∣
(1 +

√
NT ‖β − β0‖)2

= op

(
1

NT

)
.

Here, the remainder term LR,rem
NT (β) stems from terms in ê′(β)ê(β) whose spectral norm is

smaller than oP (1) within a
√
N shrinking neighborhood of β after dividing by

(
1 +
√
NT ‖β − β0‖

)2

.

Using Weyl’s inequality those terms can be separated from the eigenvalues µr [ê′(β)ê(β)]. The
expression for B(β) looks complicated, in particular the terms in B(eeee). Note however, that
B(eeee) is β-independent and satisfies ‖B(eeee)‖ = OP (1) under our assumptions, so that it is
relatively easy to deal with these terms. Note furthermore that the structure of B(β) is closely
related to the expansion of L0

NT (β), since by definition we have L0
NT (β) = (NT )−1Tr(ê′(β)ê(β)),

which can be approximated by (NT )−1Tr(B(β) + B′(β)). Plugging the definition of B(β) into
(NT )−1Tr(B(β) +B′(β)) one indeed recovers the terms of the approximated Hessian and score
provided by Theorem 4.2, which is a convenient consistency check. We do not give explicit
formulas for B(rem,1)(β) and B(rem,2), because those terms enter B(β) projected by Pf0 , which
makes them orthogonal to the leading term in B(β) +B′(β), so that they can only have limited
influence on the eigenvalues of B(β)+B′(β). The bounds on the norms of B(rem,1)(β) and B(rem,2)

provided in the lemma are sufficient for all conclusions on the properties of µr [B(β) +B′(β)]
below. The proof of the lemma can be found in the section S.5 below. The lemma motivates
the following high-level assumption.
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Assumption HL2 (Second High-Level Assumption on Matrix Spectra). For all con-
stants c > 0

sup
{β:N3/4‖β−β0‖≤c}

∣∣∣∑R−R0

r=1 {µr [B(β) +B′(β)]− µr [B(β0) +B′(β0)]}
∣∣∣

(1 +
√
NT‖β − β0‖)2

= oP (1),

where B(β) was defined in Lemma S.9.

Combining Lemma S.4, Assumption HL2, and Theorem 4.2, we find that the profile objective
function for R > R0 can be written as

LRNT (β) = LRNT (β0)− 2√
NT

(
β − β0

)′ (
C(1) + C(2)

)
+
(
β − β0

)′
W
(
β − β0

)
+ LR,rem,2

NT (β),

with a remainder term that satisfies for all constants c > 0

sup
{β:N3/4‖β−β0‖≤c}

∣∣∣LR,rem,2
NT (β)

∣∣∣(
1 +
√
NT ‖β − β0‖

)2 = op

(
1

NT

)
.

This result, together with our N3/4-consistency result for β̂R, gives rise to the following corollary.

Corollary S.10. Let R > R0, let Assumptions SF, SN, NC, EX, HL1 and HL2 be satisfied and
furthermore assume that C(1) = OP (1). In the limit N, T → ∞ with N/T → κ2, 0 < κ < ∞,
we then have

√
NT

(
β̂R − β0

)
= W−1

(
C(1) + C(2)

)
+ oP (1) = OP (1).

The proof of Corollary S.10 is analogous to that of Corollary 4.3. The combination of both
corollaries shows that our main result holds under high-level assumptions, i.e. the limiting
distributions of β̂R and β̂R0 are indeed identical.

S.4.1 Justification of Assumption HL2

The following is a technical lemma, which is crucially used in the proof of Lemma S.12 below.

Lemma S.11. Let A and B be symmetric n × n matrices, and let A be positive semi-definite.
Let µ1(A) ≥ µ2(A) ≥ . . . ≥ µn(A) ≥ 0 be the sorted eigenvalues of A, and let ν1, ν2, . . . , νn
be the corresponding eigenvectors that are orthogonal and normalized such that ‖νi‖ = 1 for
i = 1, . . . , n. Let b = maxi,j=1,...,n |ν ′iBνj|. Let r and q be positive integers with r < q ≤ n, and
let
∑n

i=q b (µr(A)− µi(A))−1 ≤ 1 be satisfied. Then we have

|µr(A+B)− µr(A)| ≤ (q − 1) b

1−
∑n

i=q
b

µr(A)−µi(A)

(S.40)

The following Lemma provides conditions under which Assumption HL2 is satisfied. It
crucially connects the current section with the main text.
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Lemma S.12. Let Assumptions SF, SN and EV hold, let R > R0 and consider a limit N, T →
∞ with N/T → κ2, 0 < κ <∞. Then, for all constants c > 0 and r = 1, . . . , R−R0 we have

sup
{β:N3/4‖β−β0‖≤c}

|µr (B(β) +B′(β))− ρr| = oP (1),

which implies that Assumption HL2 is satisified.

S.4.2 Sufficiency of Low-Level Assumptions in Main Text

The following Lemma summarizes some properties of the singular value vectors vr and wr of
Mf0eMλ0 for the case where eit is iid normally distributed. Those properties are used in the
proof of the main text Lemma 4.7 below.

Lemma S.13. Let Assumption LL hold and let vr and wr be defined as in Assumption EV.
Then the following holds.

(i) Let ṽ be an N-vector with iidN (0, 1) entries; let w̃ be an T -vector, independent of ṽ, also

with iidN (0, 1) entries; and let ṽ and w̃ be independent of λ0, f 0, Xk, and X̃str
k and ePf0.

Then, for all r, s = 1, . . . ,min(N, T )−R0 we have(
vr
ws

)
=
d

(
‖Mλ0 ṽ‖−1Mλ0 ṽ
‖Mf0w̃‖−1Mf0w̃

)
,

where =d refers to equally distributed. Furthermore, the squares of ‖Mλ0 ṽ‖−1 and ‖Mf0w̃‖−1

have inverse chi-square distributions with N −R0 and T −R0 degrees of freedom, respec-
tively, which implies that for every ξ > 0 there exists a constant c > 0 such that we
have

E

(√
N‖Mλ0 ṽ‖−1

)ξ
< c, E

(√
T‖Mf0w̃‖−1

)ξ
< c,

for all N > 4ξ +R0 and T > 4ξ +R0.

(ii) There exists ε ∈ [0, 1/12) such that as N, T become large we have

max
r,s,τ

∣∣∣∣∣
T∑

t=τ+1

wr,tws,t−τ

∣∣∣∣∣ = OP (T−1/2+ε),

where r, s = 1, . . . ,min(N, T )−R0 and τ = 1, 2, . . . , T − 1.

(iii) The matrices Pλ0ePf0, Pλ0eMf0, Mλ0ePf0 and Mλ0eMf0 are all mutually independent, and
its entries have uniformly bounded moments of arbitrary order.

The proof of Lemma S.13 is given in section S.5.3 below.
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Proof of Lemma 4.7 (Justification of Main Text High-Level Assumptions). # First,

we show that Assumptions SN, EX and DX-1 are satisfied, and that C(1) = OP (1):
Since eit is iid N (0, σ2) we have ‖e‖ = OP (

√
N) as N, T grow at the same rate, see e.g.

Geman (1980). This also implies that ‖X̃weak
k ‖ ≤

∑∞
τ=1 |γτ |‖e‖ = OP (

√
N). Assumption LL

therefore implies that Assumption DX-1 holds with X̃k = X̃str
k + X̃weak

k and Σ = σ2
1. Note that

for this Σ we have g′Σg = σ2
1Q = ‖g′Σg‖1Q and µn(Σ) = σ2 = ‖g′Σg‖ for all n. Assump-

tion DX-1 also implies that Assumption SN holds, as also noted in Lemma S.8.
Since we assume thatE |Xk,it|2 is uniformly bounded we haveE 1

NT
Tr(X ′kXk) = 1

NT

∑
i,tEX

2
k,it =

O(1) and therefore Tr(X ′kXk) = OP (NT ). We also have E [Tr(Xke
′)2|Xk] = σ2Tr(X ′kXk) =

OP (NT ), and therefore 1√
NT

Tr(Xk e
′) = OP (1), i.e. Assumption EX holds. By replacing Xk

with Mλ0XkMf0 in the previous argument we also find that C(1) = OP (1).

# Assumption EV(i) holds for any c < cmax = limN,T→∞

(√
N +

√
T
)2

/N , because from

Theorem 1 in Soshnikov (2002) we know that ρR−R0/N− cmax = OP (N−2/3). Some more details
are given below.

# We now show that Assumption EV(ii) holds with qNT = log(N)N1/6. Without loss of
generality, we set σ = 1 in this part of the proof. We want to show that qNT = log(N)N1/6 also
satisfies

1

qNT (T −R0)

Q∑
r=qNT

1

µR−R0 − µr
= OP (1),

where µr ≡ ρr/(T − R0). Note that it is not important whether the sum runs to Q = N −
R0 or Q = T − R0, since the contributions of small eigenvalues between r = N − R0 and
r = T − R0 are of order OP (1) anyways. Without loss of generality let limN,T→∞N/T =
κ2 ≤ 1 in the rest of this proof (the proof for κ ≥ 1 is analogous, since all arguments are

symmetric under interchange of N and T ). Let µNT =
[
(N −R0)1/2 + (T −R0)1/2

]2
, σNT =[

(N −R0)1/2 + (T −R0)1/2
] [

(N −R0)−1/2 + (T −R0)−1/2
]1/3

, x = limN,T→∞ µNT/(T − R0) =
(1 + κ)2, and x = (1 − κ)2. From Theorem 1 in Soshnikov (2002) we know that the joint
distribution of σ−1

NT (ρ1 − µNT , ρ2 − µNT , . . . , ρR0+1 − µNT ) converges to the Tracy-Widom law,
i.e. to the limiting distribution of the first R0 + 1 eigenvalues of the Gaussian Orthogonal
Ensemble. Note that σNT is of order N1/3, and that the Tracy-Widom law is a continuous
distribution, so that the result of Soshnikov implies that

x− µR−R0 = OP (N−2/3) , (µR−R0 − µR−R0+1)−1 = OP
(
N2/3

)
. (S.41)

The empirical distribution of the µr is defined as FNT (x) = Q−1
∑Q

r=1 1(µr ≤ x), where 1(.) is the
indicator function. This empirical distribution converges to the Marchenko-Pastur limiting spec-
tral distribution FLSD(x), which has domain [x, x], and whose density fLSD(x) = dFLSD(x)/dx
is given by

fLSD(x) =
1

2πκ2x

√
(x− x)(x− x) . (S.42)
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An upper bound for fLSD(x) is given by 1
2πκ2x

√
(x− x)(x− x), and by integrating that upper

bound we obtain

1− FLSD(x) ≤ a (x− x)3/2 , a =
2

3πκ3/2x
. (S.43)

From Theorem 1.2 in Götze and Tikhomirov (2007) we know that

sup
x
|FNT (x)− FLSD(x)| = OP (N−1/2) . (S.44)

Let c1,NT =
⌈
2N1/2+ε

⌉
and c2,NT =

⌈
2N3/4

⌉
, where dae is the smallest integer larger or equal

to a. Plugging in x = µc1,NT into the result of Götze and Tikhomirov, and using FNT (µr) =
1− (r − 1)/N , we find

a
(
x− µc1,NT

)3/2 ≥ 1− FLSD(µc1,NT ) =
c1,NT − 1

N
+OP (N−1/2)

≥ N−1/2+ε, wpa1. (S.45)

Using this and (S.41) we obtain (µR−R0 − µc1)−1 = OP
(
N1/3−2/3ε

)
. Analogously one can show

that (µR−R0 − µc2)−1 = OP
(
N1/6

)
. In the following we just write q, c1 and c2 for qNT , c1,NT

and c2,NT . Combining the above results we find

1

q n

Q∑
r=q

1

µR−R0 − µr
=

1

q n

c1−1∑
r=q

1

µR−R0 − µr
+

1

q n

c2−1∑
r=c1

1

µR−R0 − µr
+

1

q n

Q∑
r=c2

1

µR−R0 − µr

≤ c1

qn(µR−R0 − µR−R0+1)
+

c2

qn(µR−R0 − µc1)
+

Q

qn(µR−R0 − µc2)

= OP (1) +OP (N−1/12−5/3ε) +OP (N−ε) = OP (1) .

This is what we wanted to show.
# We now show that Assumption EV(iii) holds with qNT = log(N)N1/6. Define

d
(1)
NT = max

r,s,k
|v′rXkws|, d

(2)
NT = max

r
‖v′rePf0‖, d

(3)
NT = max

r
‖w′re′Pλ0‖,

d
(4)
NT = N−3/4 max

r
‖v′rXkPf0‖, d

(5)
NT = N−3/4 max

r
‖w′rX ′kPλ0‖. (S.46)

Furthermore, define dNT = max
(

1, d
(1)
NT , d

(2)
NT , d

(3)
NT , d

(4)
NT , d

(5)
NT

)
. Then, Assumption EV(iii)

can be summarized as dNT qNT = oP (N1/4), i.e. given our choice of qNT we need to show that
dNT = oP (N1/12/ log(N)).

We decompose Xk = X
(A)
k + X

(B)
k , where X

(A)
k = Xk + X̃

(str)
k +

∑t−1
τ=1 γτ [ePf0 ]i,t−τ and

X
(B)
k =

∑t−1
τ=1 γτ [eMf0 ]i,t−τ . Note that X

(A)
k is essentially the strictly exogenous part of the

regressor Xk, but also contains a part of X̃weak
k,it , which is independent of Mλ0eMf0 , i.e. X

(A)
k is

independent of ρr, vr and wr. Similarly, X
(B)
k is basically that part of the weakly exogenous part

X̃weak
k,it that is not independent of ρr, vr and wr. Following the decomposition Xk = X

(A)
k +X

(B)
k
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we also introduce the corresponding decomposition of d
(1)
NT = d

(A,1)
NT + d

(B,1)
NT , where d

(A,1)
NT =

maxr,s,k |v′rX
(A)
k ws| and d

(B,1)
NT = maxr,s,k |v′rX̃

(B)
k ws|, and analogously we define d

(A,4)
NT , d

(B,4)
NT ,

d
(A,5)
NT , and d

(B,5)
NT . Note that d

(1)
NT ≤ d

(A,1)
NT + d

(B,1)
NT and analogously for d

(4)
NT and d

(5)
NT .

Using Lemma S.13 and Holder’s inequality we have for sufficiently large N, T

E

[∣∣∣v′rX(A)
k ws

∣∣∣25

∣∣∣∣∣X(A)
k

]

= E

∣∣∣∣∣ ṽ′Mλ0X
(A)
k Mf0w̃

‖Mλ0 ṽ‖‖Mf0w̃‖

∣∣∣∣∣
25 ∣∣∣∣∣X(A)

k


= E

(√N‖Mλ0 ṽ‖−1
√
T‖Mf0w̃‖−1

∣∣∣∣∣ 1√
NT

∑
i,t

ṽiw̃t[Mλ0X
(A)
k Mf0 ]it

∣∣∣∣∣
)25 ∣∣∣∣∣X(A)

k


≤
{
E

(√
N‖Mλ0 ṽ‖−1

)ξ}25/ξ {
E

(√
T‖Mf0w̃‖−1

)ξ}25/ξ

E
( 1√

NT

∑
i,t

ṽiw̃t[Mλ0X
(A)
k Mf0 ]it

)26 ∣∣∣∣∣X(A)
k


25/26

≤ C

[
1

NT

∑
it

(
[Mλ0X

(A)
k Mf0 ]it

)2
]13

where ξ satisfied 2/ξ+ 1/26 = 1/25, and C is a global constant. Here, as everywhere else in the
paper, we implicitly also condition on λ0 and f 0. Since we assume that E |(Mλ0XkMf0)it|26 and

therefore also E
∣∣∣(Mλ0X

(A)
k Mf0)it

∣∣∣26

is uniformly bounded we thus obtain that E

[∣∣∣v′rX(A)
k ws

∣∣∣25
]

is also uniformly bounded. We thus conclude that

E

(
max
r,s
|v′rX

(A)
k ws|

)25

= E

(
max
r,s
|v′rX

(A)
k ws|25

)
≤ E

(∑
r,s

|v′rX
(A)
k ws|25

)
= O

(
N2
)
, (S.47)

which implies that d
(A,1)
NT = OP

(
N2/25

)
= oP (N1/12/ log(N)).

We have

d
(A,4)
NT = N−3/4 max

r,k
‖v′rX

(A)
k Pf0‖ ≤ N−3/4 max

r,k
‖v′rX

(A)
k ‖

≤ N−3/4
√
T max

r,t,k
|v′rX

(A)
k,·t |

≤ N−3/4
√
T max

r,t,k

N∑
i=1

vr,iX
(A)
k,it , (S.48)

where t = 1, . . . , T , and we applied the inequality ‖z‖ ≤
√
T maxt zt, which holds for all T -

vectors z. The remaining treatment of d
(4)
NT is analogous to that of d

(1)
NT . Using Lemma S.13
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and the assumption that (Mλ0Xk)it and thus also (Mλ0X
(A)
k )it has uniformly bounded 8’th

moment one can show that E

[∣∣∣∑N
i=1 vr,iXk,it

∣∣∣7] is also uniformly bounded, which then implies

d
(A,4)
NT = OP

(
N−3/4

√
TN2/7

)
= OP

(
N1/28

)
= oP (N1/12/ log(N)). Analogously one obtains

d
(A,5)
NT = oP (N1/12/ log(N)).

Since [Mλ0X̃
(B)
k ]it =

∑t−1
τ=1 γτ [Mλ0eMf0 ]i,t−τ =

∑Q
r=1

√
ρr vr,i

∑t−1
τ=1 γτw

′
r,t−τ we find

d
(B,1)
NT = max

r,s,k
|v′rX̃

(B)
k ws|

= max
r,s,k
|v′rMλ0X̃

(B)
k ws|

= max
r,s,k

∣∣∣∣∣√ρr
T∑
t=1

t−1∑
τ=1

γτw
′
r,t−τws,t

∣∣∣∣∣
≤ √ρ1 max

r,s,k

∣∣∣∣∣
T∑
t=1

t−1∑
τ=1

γτw
′
r,t−τws,t

∣∣∣∣∣
≤ ‖e‖max

r,s,k

(
T−1∑
τ=1

|γτ |

)(
max
r,s,τ

∣∣∣∣∣
T∑

t=τ+1

wr,tws,t−τ

∣∣∣∣∣
)

= OP (N ε) = oP (N1/12/ log(N)), (S.49)

where we used that v′rvr = 1 and v′rvs = 0 for r 6= s, and we also employed Lemma S.13 in the

last step, which guarantees that ε < 1/12. We thus have shown that d
(1)
NT = oP (N1/12/ log(N)).

We have ‖X(B)
k ‖ ≤

∑t−1
τ=1 |γτ |‖e‖ = OP (

√
N) and therefore

d
(B,4)
NT = N−3/4 max

r
‖v′rX

(B)
k Pf0‖ ≤ N−3/4‖X(B)

k ‖ = OP
(
N−1/4

)
, (S.50)

and therefore d
(4)
NT = oP (N1/12/ log(N)). Analogously we obtain d

(B,5)
NT = OP

(
N−1/4

)
and thus

d
(5)
NT = oP (N1/12/ log(N)).

Let f̃ be a N×R0 matrix such that Pf0 = Pf̃ , i.e. the column spaces of f 0 and f̃ are identical,

and f̃ ′f̃ = 1R0 . Then we have ‖v′rePf0‖ = ‖v′ref̃ ′‖. Note that ef̃ ′ is a N × R0 matrix with iid
normal entries, independently distributed of vr for all r = 1, . . . , Q. Together with the distribu-
tional characterization of vr in Lemma S.13 it is then easy to show that maxr ‖v′rePf0‖ = OP (N δ)

for any δ > 0, and the same is true for maxr ‖w′re′Pλ0‖, i.e. we have d
(2)
NT = oP (N1/12/ log(N))

and d
(3)
NT = oP (N1/12/ log(N)). We have thus shown that Assumption EV(iii) holds. �

S.5 Proofs for Intermediate Results

S.5.1 Proofs for Expansions of L0
NT (β), Mλ̂(β), Mf̂(β) and ê(β)

Proof of Lemma S.1.

(i,ii) We apply perturbation theory in Kato (1980). The unperturbed operator is T (0) =
λ0f 0′f 0λ0′, the perturbed operator is T = T (0) + T (1) + T (2) (i.e. the parameter κ
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that appears in Kato is set to 1), where T (1) =
∑K

k=0 εkXkf
0λ0′ + λ0f 0′∑K

k=0 εkX
′
k, and

T (2) =
∑K

k1=0

∑K
k2=0 εk1εk2Xk1X

′
k2

. The matrices T and T 0 are real and symmetric (which

implies that they are normal operators), and positive semi-definite. We know that T (0) has
an eigenvalue 0 with multiplicity N − R0, and the separating distance of this eigenvalue
is d = NTd2

min(λ0, f 0). The bound (S.33) guarantees that

‖T (1) + T (2)‖ ≤ NT

2
d2

min(λ0, f 0) . (S.51)

By Weyl’s inequality we therefore find that the N − R0 smallest eigenvalues of T (also
counting multiplicity) are all smaller than NT

2
d2

min(λ0, f 0), and they “originate” from
the zero-eigenvalue of T (0), with the power series expansion for L0

NT (β) given in (2.22)
and (2.18) at p.77/78 of Kato, and the expansion of Mλ̂ given in (2.3) and (2.12) at
p.75,76 of Kato. We still need to justify the convergence radius of this series. Since
we set the complex parameter κ in Kato to 1, we need to show that the convergence
radius (r0 in Kato’s notation) is at least 1. The condition (3.7) in Kato p.89 reads
‖T (n)‖ ≤ acn−1, n = 1, 2, . . ., and it is satisfied for a = 2

√
NTdmax(λ0, f 0)

∑K
k=0 |εk|‖Xk‖

and c =
∑K

k=0 |εk|‖Xk‖/
√
NT/2/dmax(λ0, f 0). According to equation (3.51) in Kato p.95,

we therefore find that the power series for L0
NT (β) and Mλ̂ are convergent (r0 ≥ 1 in his

notation) if 1 ≤
(

2a
d

+ c
)−1

, and this becomes exactly our condition (S.33).

When L0
NT (β) is approximated up to order G ∈ N, Kato’s equation (3.6) at p.89 gives

the following bound on the remainder∣∣∣∣L0
NT (β)− 1

NT

G∑
g=2

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg L
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

) ∣∣∣∣
≤ (N −R0)γG+1 d2

min(λ0, f 0)

4(1− γ)
, (S.52)

where

γ =

∑K
k=1 |β0

k − βk|
‖Xk‖√
NT

+ ‖e‖√
NT

r0(λ0, f 0)
< 1 . (S.53)

This bound again shows convergence of the series expansion, since γG+1 → 0 as G→∞.
Unfortunately, for our purposes this is not a good bound since it still involves the factor
N −R0 (in Kato this factor is hidden since his λ̂(κ) is the average of the eigenvalues, not
the sum), but as we show below this can be avoided.

(iii,iv) We have ‖S(m)‖ = (NTd2
min(λ0, f 0))

−m
, ‖T (1)

k ‖ ≤ 2
√
NTdmax(λ0, f 0)‖Xk‖, and ‖T (2)

k1k2
‖ ≤

‖Xk1‖‖Xk2‖. Therefore∥∥∥S(m1) T (ν1)
k1...

S(m2) . . . S(mP ) T (νP )
...kg

S(mp+1)
∥∥∥

≤
(
NTd2

min(λ0, f 0)
)−∑mj

(
2
√
NTdmax(λ0, f 0)

)2p−
∑
νj
‖Xk1‖‖Xk2‖ . . . ‖Xkg‖ .

(S.54)
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We have ∑
ν1 + . . .+ νP = g

2 ≥ νj ≥ 1

1 ≤ 2p ,

∑
m1+. . .+mp+1 = p−1

mj ≥ 0

1 ≤
∑

m1 + . . .+mp+1 = p
mj ≥ 0

1 =
(2p)!

(p!)2
≤ 4p . (S.55)

Using this we find5∥∥M (g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)∥∥
≤
(

2
√
NTdmax(λ0, f 0)

)−g
‖Xk1‖‖Xk2‖ . . . ‖Xkg‖

g∑
p=dg/2e

(
32 d2

max(λ0, f 0)

d2
min(λ0, f 0)

)p
≤ g

2

(
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

. (S.56)

For g ≥ 3 there always appears at least one factor S(m), m ≥ 1, inside the trace of
the terms that contribute to L(g), and we have rank(S(m)) = R0 for m ≥ 1. Using
Tr(A) ≤ rank(A)‖A‖, and the equations (S.54) and (S.55), we therefore find6 for g ≥ 3

1

NT

∣∣L(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)∣∣
≤ R0 d2

min(λ0, f 0)
(

2
√
NTdmax(λ0, f 0)

)−g
‖Xk1‖‖Xk2‖ . . . ‖Xkg‖

g∑
p=dg/2e

(
32 d2

max(λ0, f 0)

d2
min(λ0, f 0)

)p
≤ R0 g d2

min(λ0, f 0)

2

(
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

)g ‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

. (S.57)

This implies for g ≥ 3

1

NT

∣∣∣∣∣∣
K∑

k1=0

K∑
k2=0

. . .

K∑
kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)∣∣∣∣∣∣
≤ R0 g d2

min(λ0, f 0)

2

(
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

)g( K∑
k=0

‖εkXk‖√
NT

)g

. (S.58)

5The sum over p only starts from dg/2e, the smallest integer larger or equal g/2, because ν1 + . . . + νP = g
can not be satisfied for smaller p, since νj ≤ 2.

6The calculation for the bound of L(g) is almost identical to the one for M (g). But now there appears an
additional factor R0 from the rank, and since

∑
mj = p− 1 (not p as before), there is also an additional factor

NTd2
min(λ0, f0).

26



Therefore for G ≥ 2 we have∣∣∣∣L0
NT (β)− 1

NT

G∑
g=2

K∑
k1=0

. . .
K∑

kg=0

εk1 . . . εkg L
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

) ∣∣∣∣
=

1

NT

∞∑
g=G+1

K∑
k1=0

K∑
k2=0

. . .

K∑
kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f 0, Xk1 , Xk2 , . . . , Xkg

)
≤

∞∑
g=G+1

R0 g αg d2
min(λ0, f 0)

2

≤ R0 (G+ 1)αG+1 d2
min(λ0, f 0)

2(1− α)2
, (S.59)

where

α =
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

K∑
k=0

‖εkXk‖√
NT

=
16 dmax(λ0, f 0)

d2
min(λ0, f 0)

(
K∑
k=1

∣∣β0
k − βk

∣∣ ‖Xk‖√
NT

+
‖e‖√
NT

)
< 1 . (S.60)

Using the same argument we can start from equation (S.56) to obtain the boundfor the
remainder of the series expansion for Mλ̂ (β).

Note that compared to the bound (S.52) on the remainder, the new bound (S.59) only

shows convergence of the power series within the the smaller convergence radius
d2

min(λ0,f0)

16 dmax(λ0,f0)
<

r0(λ0, f 0). However, the factor N−R0 does not appear in this new bound, which is crucial
for our approximations.

�

Proof of Lemma S.2. The general expansion of Mλ̂(β) is given in Lemma S.1. The present
Lemma just makes this expansion explicit for the first few orders. The bound on the remainder
M

(rem)

λ̂
(β) is obtained from the bound (S.56) by the same logic as in the proof of Theorem 4.2.

The analogous result for Mf̂ (β) is obtained by applying the symmetry N ↔ T , λ↔ f , e↔ e′,
Xk ↔ X ′k. �

Proof of Lemma S.3. The general expansion of Mλ̂(β) is given in Lemma S.1, and the anal-
ogous expansion for Mf̂ (β) is obtained by applying the symmetry N ↔ T , λ ↔ f , e ↔ e′,
Xk ↔ X ′k. Lemma S.2 above provides a more explicit version of these projector expansions. For
the residuals ê(β) we have

ê(β) = Mλ̂(β) (Y − β ·X) Mf̂ (β) = Mλ̂(β)
[
e−

(
β − β0

)
·X + λ0f 0′] Mf̂ (β) , (S.61)

and plugging in the expansions of Mλ̂(β) and Mf̂ (β) it is straightforward to derive the expansion
of ê(β) from this, including the bound on the remainder. �
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S.5.2 Proofs for N 3/4 Convergence Rate Result

Proof of Lemma S.4. The result follows from Lemma S.9 by applying Weyl’s inequality, be-
cause the terms in B(β) +B′(β) in addition to A(β) all have a spectral norm of order OP (

√
N)

for
√
N‖β − β0‖ ≤ c. �

Proof of Theorem S.5. From Theorem 4.1 we know that
√
N(β̂R− β0) = OP (1), so that the

bounds in Lemma S.4 and Assumption HL1 are applicable. Since β̂R minimizes LRNT (β) it must

in particular satisfy LRNT (β̂R) ≤ LRNT (β0). Applying this, Lemma S.4, and Assumption HL1 we
obtain

0 ≥ LRNT (β̂R)− LRNT (β0)

= L0
NT (β̂R)− L0

NT (β0)− 1

NT

R−R0∑
r=1

[
µr

(
A(β̂R)

)
− µr

(
A(β0)

)]
+

1

NT
OP
[√

N +
√
NT‖β̂R − β0‖

]
≥ L0

NT (β̂R)− L0
NT (β0)− 1

NT

R−R0∑
r=1

µr
[
Mf0 (∆β ·X)′Mλ0 (∆β ·X)Mf0

]
+

1

NT
OP
[√

N +N5/4‖β̂R − β0‖+N2‖β̂R − β0‖/ log(N)
]
. (S.62)

Applying Theorem 4.2 then gives(
β̂R − β0

)′
W
(
β̂R − β0

)
− 2√

NT

(
β̂R − β0

)′ (
C(1) + C(2)

)
≤ 1

NT

{ R−R0∑
r=1

µr
[
Mf0 (∆β ·X)′Mλ0 (∆β ·X)Mf0

]
+OP

[√
N +N5/4‖β̂R − β0‖+N2‖β̂R − β0‖/ log(N)

]}
. (S.63)

Our assumptions guarantee C(2) = OP (1), and we explicitly assume C(1) = OP (N1/4). Further-
more, Assumption NC guarantees that

(∆β)′W (∆β)− 1

NT

R−R0∑
r=1

µr
[
Mf0 (∆β ·X)′Mλ0 (∆β ·X)Mf0

]
≥ b‖∆β‖2, (S.64)

which we apply for ∆β = β̂R − β0. Thus, we obtain

b
(
N3/4‖β̂R − β0‖

)2

≤ OP (1) +OP
(
N3/4‖β̂R − β0‖

)
+ oP

[(
N3/4‖β̂R − β0‖

)2
]
, (S.65)

from which we can conclude that N3/4‖β̂R − β0‖ = OP (1), which proves the Lemma. �
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Proof of Lemma S.6. Note that Pg = gg′ and Ph = hh′. We decompose

(U + gCh′)
′
(U + gCh′) = A1 + A2(C) , (S.66)

where

A1 ≡ U ′U + ‖g′UU ′g‖P(MU′gh)
+ ∆maxP(U ′g) ,

A2(C) ≡ (U + gCh′)
′
Pg (U + gCh′)− U ′PgU − ‖g′UU ′g‖P(MU′gh)

−∆maxP(U ′g). (S.67)

By Weyl’s inequality we then have

R∑
r=1

µr
[
(U + gCh′)

′
(U + gCh′)

]
≤

R∑
r=1

µr(A1) +
R∑
r=1

µr [A2(C))] . (S.68)

We have A2(C) = P(h, U ′g)A2(C)P(h, U ′g), i.e. A2(C) has T − 2Q zero-eigenvalues and only 2Q

non-zero eigenvalues. Let h̃ = (h, U ′g)[(h, U ′g)′(h, U ′g)]−1/2, which is an T × 2Q matrix that

satisfies h̃′h̃ = 12Q and h̃h̃′ = P(h, U ′g). We then have

R∑
r=1

µr [A2(C))] =

min(R,2Q)∑
r=1

µr

[
h̃′A2(C))h̃

]
, (S.69)

and

min(R,2Q)∑
r=1

µr

[
h̃′A2(C))h̃

]
≤

min(R,2Q)∑
r=1

µr

[
h̃′ (U + gCh′)

′
Pg (U + gCh′) h̃

]
+

min(R,2Q)∑
r=1

µr

[
h̃′
(
−U ′PgU − ‖g′UU ′g‖P(MU′gh)

−∆maxP(U ′g)

)
h̃
]

=

min(R,Q)∑
r=1

µr
[
g′ (U + gCh′) (U + gCh′)

′
g
]

−
2Q∑

r=2Q−min(R,2Q)+1

µr

[
h̃′
(
U ′PgU + ‖g′UU ′g‖P(MU′gh)

+ ∆maxP(U ′g)

)
h̃
]

(S.70)

Here, in the first step we again used Weyl’s inequality, and in the second step we used that
the Q non-zero eigenvalues of h̃′ (U + gCh′)′ gg′ (U + gCh′) h̃ are identical to the eigenvalues
of g′ (U + gCh′) (U + gCh′)′ g, and that the eigenvalues of a matrix are equal to minus the
eigenvalues of the negative of the matrix (but interchanging the ordering of the eigenvalues).

The eigenvalues of h̃′
(
U ′PgU + ‖g′UU ′g‖P(MU′gh)

+ ∆maxP(U ′g)

)
h̃ are given by Q eigenval-

ues equal to ‖g′UU ′g‖ (stemming from ‖g′UU ′g‖P(MU′gh)
), while the remaining Q eigenvalues
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are given by µr(U
′PgU) + ∆max, r = 1, . . . , Q, and satisfy µr+R−min(Q,R)(U

′PgU) + ∆max ≥
µr(U

′PgU), for r ∈ {1, 2, . . . ,min(R,Q)} (by the definition of ∆max). Therefore we have

2Q∑
r=2Q−min(R,2Q)+1

µr

[
h̃′
(
U ′PgU + ‖g′UU ′g‖P(MU′gh)

+ ∆maxP(U ′g)

)
h̃
]
≥

min(R,Q)∑
r=1

µr(U
′PgU).

(S.71)

We can thus conclude that

min(R,2Q)∑
r=1

µr

[
h̃′A2(C))h̃

]
≤

min(R,Q)∑
r=1

µr
[
g′ (U + gCh′) (U + gCh′)

′
g
]
−

min(R,Q)∑
r=1

µr(g
′UU ′g)

≤
min(Q,R)∑
r=1

µr (CC ′ + g′UhC ′ + Ch′U ′g) . (S.72)

Combining (S.68), (S.69) and (S.72) gives the statement of the lemma. �

Proof of Lemma S.7. Let h be a T×Q matrix whose span equals the span of A, i.e. PhA = A,
and that satisfies h′h = 1Q, and let ρ = ‖A‖/T . ThenA ≤ TρPh, which implies

∑R
r=1 µr (e′e+ A) ≤∑R

r=1 µr (e′e+ TρPh).
The distribution of e is invariant under orthogonal transformations e 7→ eO, where O is

an arbitrary orthogonal T × T matrix, i.e. OO′ = 1T . The distribution of the eigenvalues of
e′e+TρPh therefore does not depend on h at all, but only on ρ and Σ. We can therefore choose
h arbitrarily, even as a random matrix (but independent from e). Let u be a Q×T matrix that
is independent of e, and whose columns ut, t = 1, . . . T , are distributed as ut ∼ iidN (0, ρ1Q).
We choose h such that the span of h equals the span of u′, i.e. uPh = Ph. Since we consider an
asymptotic where Q is finite, while T → ∞ it is easy to verify that ‖TρPh − u′u‖ = OP (

√
T ),

which implies
∑R

r=1 µr (e′e+ TρPh) =
∑R

r=1 µr (e′e+ u′u) +OP (
√
T ).

Let U = (e′, u′)′ and E = (e′, 0T×Q)′, which are (N + Q) × T matrices. The non-zero
eigenvalues of the T × T matrices U ′U = e′e + u′u and E ′E = e′e are equal to the non-zero
eigenvalues of the (N + Q) × (N + Q) matrices UU ′ and EE ′, respectively. Let v be the
(N + Q) × R matrix whose columns equal to the normalized eigenvectors that correspond to
the R largest eigenvalues of UU ′. We then have

R∑
r=1

µr (e′e+ u′u) =
R∑
r=1

µr (UU ′) = Tr (v′UU ′v) ,

R∑
r=1

µr (e′e) =
R∑
r=1

µr (EE ′) ≥ Tr (v′EE ′v) , (S.73)
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where the last inequality follows from the maximization property of the eigenvalues of EE ′.
Decompose v = (v′1, v

′
2)′ into the N ×R matrix v1 and the Q×R matrix v2. We then have

R∑
r=1

µr (e′e+ u′u)−
R∑
r=1

µr (e′e) ≤ Tr (v′UU ′v)− Tr (v′EE ′v)

= Tr

[
v′
(

0N×N eu′

ue′ uu′

)
v

]
= 2Tr (v′1eu

′v2) + Tr (v′2uu
′v2)

≤ 2R‖v′1eu′v2‖+R‖v′2uu′v2‖
≤ 2R‖e‖‖u‖‖v2‖+R‖u‖2‖v2‖2, (S.74)

where we used that for any square matrix B we have Tr(B) ≤ rank(B)‖B‖, and also that
‖v1‖ ≤ 1. We have ‖e‖ = OP (

√
max(N, T )) = OP (

√
N + T ), ‖u‖ = OP (

√
T ) and, as will be

shown below, ‖v2‖ = OP (1/
√
n). Therefore

R∑
r=1

µr (e′e+ u′u)−
R∑
r=1

µr (e′e) = OP (
√

(N + T )T/n). (S.75)

Combining the above results we find

R∑
r=1

µr (e′e+ A) ≤
R∑
r=1

µr (e′e+ TρPh)

≤
R∑
r=1

µr (e′e+ u′u) +OP (
√
T )

≤
R∑
r=1

µr (e′e) +OP
(√

(N + T )T/n
)

+OP (
√
T )

≤
R∑
r=1

µr (e′e) +OP
(√

(N + T )T/n
)
, (S.76)

where in the last step we used that N/n ≥ 1. The last statement is what we wanted to show.
However, we still have to justify that ‖v2‖ = OP (1/

√
n). For this we first note that increasing

the eigenvalues of Σ can only decrease ‖v2‖. Without loss of generality we can therefore consider
the case where all the n eigenvalues of Σ that are smaller than ρ are increased to be exactly
equal to ρ. In that case the distribution of U is symmetric under left-multiplication with
orthogonal O(n+Q) matrices, which only act on the the (n+Q)-dimensional eigenspace of the
(N+Q)×(N+Q) covariance matrix of U corresponding to eigenvector ρ. Since the distribution
of U has this symmetry, the same needs to be true for the distribution of the eigenvectors v of
UU ′. Since Q is finite, while n→∞ this implies that ‖v2‖ = OP (1/

√
n). �

Proof of Lemma S.8, Part 1. Here, we consider the case where Assumption DX-1 holds, and
show that Lemma S.8 holds in that case.
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# We want to show that C(1) = OP (N1/4). By definition of C(1) and Assumption EX we
have

C
(1)
k =

1√
NT

Tr(Mλ0 XkMf0 e′)

=
1√
NT

Tr(Xke
′)− 1√

NT
Tr(Pλ0 Xk e

′) +
1√
NT

Tr(Pλ0 Xk Pf0 e′)

= OP (1)− 1√
NT

Tr(Pλ0 Xk e
′) +

1√
NT

Tr(Pλ0 Xk Pf0 e′). (S.77)

Since ‖X̃k‖ = OP (N3/4) we have∣∣∣∣ 1√
NT

Tr(Pλ0 X̃k e
′)

∣∣∣∣ ≤ R√
NT
‖X̃k‖‖e‖ = OP (N1/4), (S.78)

i.e. 1√
NT

Tr(Pλ0 X̃k e
′) = OP (N1/4). Analogously we obtain 1√

NT
Tr(Pλ0 X̃k Pf0 e′) = OP (N1/4).

Regarding the Xk contribution to C
(1)
k , consider e = Σ1/2u, i.e. case (a) of Assumption DX-1

(the proof for case (b) is analogous). Using our assumptions on the distribution of e and Xk

we have E
[
Tr(Pλ0 Xke

′)2|Xk, λ
0,Σ
]

= Tr(X
′
kPλ0ΣPλ0Xk) ≤ rank(Xk)‖Xk‖2‖Σ‖ = OP (NT ),

and therefore 1√
NT

Tr(Pλ0 Xk e
′) = OP (1). Analogously we find 1√

NT
Tr(Pλ0 Xk Pf0 e′) = OP (1).

Combining the above results gives C(1) = OP (N1/4).

# We want to show that Assumption SN holds. We have ‖Xk‖ ≤ ‖Xk‖ + ‖X̃k‖ =
OP (
√
NT ) + OP (N3/4) = OP (

√
NT ), i.e. Assumption SN(i) is satisfied. In the follow-

ing we assume that e = Σ1/2u, i.e. case (a) of Assumption DX-1. The proof for case (b)
follows by symmetry of the problem (N ↔ T ). We have ‖e‖ = ‖Σ‖1/2‖u‖ = OP (1)‖u‖,
since we assume that ‖Σ‖ = OP (1). Thus, we are left to show ‖u‖ = OP (

√
max(N, T )).

Lemma S.8 assumes N/T → κ2, but it turns out that this assumption is not necessary to show
‖u‖ = OP (

√
max(N, T )), i.e. for the moment consider an arbitrary limit N, T → ∞. By as-

sumption, the errors uit are iid N (0, 1). Since an arbitrary limit N, T → ∞ is not considered
very often in Random Matrix Theory, we define the max(N, T )×max(N, T ) matrix ubig, which
contains u as a submatrix, and whose remaining elements are also iidN (0, 1) and independent of
u. We then have ‖u‖ ≤ ‖ubig‖ = OP (

√
max(N, T )), where the last step is due to Geman (1980).

# Finally, we show that Assumption HL1 holds. Consider case (a) of Assumption DX-1(ii)

in the following. Using the decomposition Xk = Xk + X̃k we have

R−R0∑
r=1

{
µr
[
Mf0 (e−∆β ·X)′Mλ0 (e−∆β ·X)Mf0

]
− µr

[
Mf0 (∆β ·X)′Mλ0 (∆β ·X)Mf0

]}
=

R−R0∑
r=1

{
µr

[
Mf0

(
e−∆β ·X

)′
Mλ0

(
e−∆β ·X

)
Mf0

]
− µr

[
Mf0

(
∆β ·X

)′
Mλ0

(
∆β ·X

)
Mf0

]}
+OP (‖e‖‖X̃k‖‖∆β‖) +OP (‖X̃k‖‖Xk‖‖∆β‖2)

=
R−R0∑
r=1

{
µr

[
Mf0

(
e−∆β ·X

)′
Mλ0

(
e−∆β ·X

)
Mf0

]
− µr

[
Mf0

(
∆β ·X

)′
Mλ0

(
∆β ·X

)
Mf0

]}
+OP (N5/4‖∆β‖) +OP (N7/4‖∆β‖2). (S.79)
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We now apply Lemma S.6 with U = Mλ0eMf0 and gCh′ = −Mλ0(∆β ·X)Mf0 , where g and h
are define in Assumption DX-1, and C = g′(∆β ·X)h. We obtain

R−R0∑
r=1

{
µr

[
Mf0

(
e−∆β ·X

)′
Mλ0

(
e−∆β ·X

)
Mf0

]
≤

R−R0∑
r=1

µr

(
Mf0e′Mλ0eMf0 + ‖g′eMf0e′g‖P(

M[M
f0e
′g]h

) + ∆maxP(Mf0e′g)

)

+

min(Q,R−R0)∑
r=1

µr

[
Mf0

(
∆β ·X

)′
Mλ0

(
∆β ·X

)
Mf0

]
+OP

(
‖g′eh‖‖X‖‖∆β‖

)
≤

R−R0∑
r=1

µr (Mf0e′Mλ0eMf0 + ‖g′eMf0e′g‖Ph)

+
R−R0∑
r=1

µr

[
Mf0

(
∆β ·X

)′
Mλ0

(
∆β ·X

)
Mf0

]
+OP

(√
NT‖∆β‖

)
+OP (

√
N)

≤
R−R0∑
r=1

µr (Mf0e′Mλ0eMf0 + T‖g′Σg‖Ph)

+
R−R0∑
r=1

µr

[
Mf0

(
∆β ·X

)′
Mλ0

(
∆β ·X

)
Mf0

]
+OP

(√
NT‖∆β‖

)
+OP (

√
N),

(S.80)

where we used that under our assumptions we have

(i) ‖g′eh‖ = OP (1),

(ii) g′eMf0e′g = Tg′Σg +OP (
√
N).

(iii) ∆max ≡ max
r∈{1,2,...,min(R,Q)}

[
µr(g

′eMf0e′g)− µr+Q−min(Q,R)(g
′eMf0e′g)

]
= OP (

√
N),

(iv)

∥∥∥∥∥P(M[M
f0e
′g]h

) − Ph
∥∥∥∥∥ = OP (N−1/2).

Statement (i) above holds, because g′eh = g′Σ1/2uh is a projection of u to a Q×Q submatrix,
with g′Σ1/2 and h independent of u, and ‖g′Σ1/2‖ = OP (1) and ‖h‖ = 1.

Statement (ii) holds, because we can calculate the expectation and variance of g′eMf0e′g =

g′Σ1/2uu′Σ1/2g conditional on Σ1/2g to show that g′Σ1/2uu′Σ1/2g = g′Σ1/2
E(uu′)Σ1/2g+OP (

√
N),

with E(uu′) = T1N .
Statement (iii) holds, because assume that either R ≥ Q, in which case ∆max = 0, or we

assume g′Σg = ‖g′Σg‖1Q + OP (N−1/2), so that g′eMf0e′g = T‖g′Σg‖1Q + OP (
√
N), where

T‖g′Σg‖1Q gives no contribution to ∆max.
We now apply Lemma S.7 with “e” in the Lemma equal to Mλ0eMf0 , “Σ” in the Lemma

equal to Mλ0ΣMλ0 , and A = T‖g′Σg‖Ph. We have µn−R0(Mλ0ΣMλ0) ≥ µn(Σ) and g′Σg =
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g′Mλ0ΣMλ0g. We therefore choose “n” in the Lemma equal to n−R0 when applying Lemma S.7,
and our assumption µn(Σ) ≥ ‖g′Σg‖ with 1/n = OP (1/N) is now used. When employing
Lemma S.7 here we also use that rotational invariance of e′Mλ0e = u′Σ1/2Mλ0Σ1/2u allows us to
treat Mf0e′Mλ0eMf0 as an (N − R0)× (N − R0) matrix, which requires that u is iid normally
distributed. By Lemma S.7 we then have

R−R0∑
r=1

µr (Mf0e′Mλ0eMf0 + T‖g′Σg‖Ph)

=
R−R0∑
r=1

µr (Mf0e′Mλ0eMf0) +OP
(√

(N + T − 2R0)(T −R0)/(n−R0)
)

=
R−R0∑
r=1

µr (Mf0e′Mλ0eMf0) +OP (
√
N). (S.81)

Combining this with (S.79) and (S.80) gives Assumption HL1. �

Proof of Lemma S.8, Part 2. Here, we consider the case where Assumption DX-2 holds, and
show that Lemma S.8 holds in that case.

Using the assumption Mλ0XkMf0 = 0 simplifies the calculation in (S.79), namely

R−R0∑
r=1

µr
[
Mf0 (e−∆β ·X)′Mλ0 (e−∆β ·X)Mf0

]
=

R−R0∑
r=1

µr

[
Mf0

(
e−∆β ·X

)′
Mλ0

(
e−∆β ·X

)
Mf0

]
+OP (‖e‖‖X̃k‖‖∆β‖) +OP (‖X̃k‖2‖∆β‖2)

=
R−R0∑
r=1

µr [Mf0e′Mλ0eMf0 ] +OP (N5/4‖∆β‖) +OP (N3/2‖∆β‖2), (S.82)

and analogously we obtain
∑R−R0

r=1 µr
[
Mf0 (∆β ·X)′Mλ0 (∆β ·X)Mf0

]
= OP (N3/2‖∆β‖2). We

therefore have

d(β) = OP (N5/4‖∆β‖) +OP (N3/2‖∆β‖2), (S.83)

which implies that Assumption HL1 holds. The result for C(1) follows because withMλ0XkMf0 =
0 we find

C
(1)
k =

1√
NT

Tr(Mλ0 XkMf0 e′)

=
1√
NT

Tr(Xke
′) +OP (‖e‖‖X̃k‖/

√
NT )

= OP (1) +OP (N1/4). (S.84)

Finally, Assumption SN holds obviously under Assumption DX-2. �
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S.5.3 Proofs for Details of Asymptotic Equivalence

Proof of Lemma S.9. Applying the expansion of ê(β) in Lemma S.3 together with ‖Mλ0eMf0‖ =

OP (
√
N), ‖ê(1)

e ‖ = OP (1), ‖ê(2)
e ‖ = OP (N−1/2), ‖ê(1)

k ‖ = OP (N) ‖ê(2)
k ‖ = OP (

√
N) and the

bound on ‖ê(rem)‖ given in the Lemma we obtain

ê′(β)ê(β) = B(β) +B′(β) + T (rem)(β) , (S.85)

where the terms B(rem,1)(β) and B(rem,2) in B(β) are given by

B(rem,1)(β) = Mf0 [(β − β0 ·X)]′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′

+Mf0e′Mλ0 [(β − β0 ·X)]Mf0e′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′

+Mf0e′Mλ0eMf0 [(β − β0 ·X)]′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′

+Mf0

(
Mf0e′Mλ0 ê(2)

e + ê(1)′
e ê(2)

e + ê(2)′
e Mλ0e′Mf0

)
Pf0 ,

B(rem,2) = 1
2
Pf0

(
Mf0e′Mλ0 ê(2)

e + ê(1)′
e ê(2)

e + ê(2)′
e Mλ0e′Mf0

)
Pf0

= f 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′, (S.86)

and for
√
N‖β − β0‖ ≤ c (which implies ‖ê(β)‖ = OP (

√
N)) we have

‖T (rem)(β)‖ = OP (N−1/2) + ‖β − β0‖OP (N1/2) + ‖β − β0‖2OP (N3/2) . (S.87)

which holds uniformly over β. Note also that

B(eeee) +B(eeee)′ = Mf0

(
Mf0e′Mλ0 ê(2)

e + ê(1)′
e ê(2)

e + ê(2)′
e Mλ0e′Mf0

)
Mf0 . (S.88)

Thus, we have ‖B(rem,2)‖ = OP (1), and for
√
N‖β − β0‖ ≤ c we have ‖B(rem,1)(β)‖ = OP (1) +

‖β − β0‖OP (N), and by Weyl’s inequality

µr [ê′(β)ê(β)] = µr [B(β) +B′(β)] + oP

[(
1 + ‖β − β0‖

)2
]
, (S.89)

again uniformly over β. This proves the lemma. �

Proof of Corollary S.10. From Theorem S.5 we know that N3/4‖β̂R − β0‖ = OP (1), so that
the bound in Assumption HL2 becomes applicable. Let γ ≡ W−1

(
C(1) + C(2)

)
/
√
NT =

OP (1/
√
NT ), as in the proof proof of Corollary 4.3. Since β̂R minimizes LRNT (β) it must in

particular satisfy LRNT (β̂R) ≤ LRNT (β0 + γ). Using Lemma S.9 and Assumption HL2 it follows
that

L0
NT (β̂R) ≤ L0

NT

(
β0 + γ

)
+

1

NT
oP

[(
1 +
√
NT‖β̂R − β0‖2

)2
]
. (S.90)

The rest of the proof is analogous to the proof of Corrollary 4.3. �

Proof of Lemma S.11. For the eigenvalues of A+B we have

µr(A+B) = min
Γ

max
{γ: ‖γ‖=1, PΓγ=0}

γ′(A+B)γ , (S.91)
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where Γ is a n × (r − 1) matrix with full rank r − 1, and γ is a n × 1 vector. In the following
we only consider those γ that lie in the span of the first r eigenvectors A, i.e. γ =

∑r
i=1 ciνi.

The condition ‖γ‖ = 1 implies
∑r

i=1 c
2
i = 1. The column space of Γ is (r − 1)-dimensional.

Therefore, for a given γ =
∑r

i=1 ciνi there always exists a Γ such that the conditions ‖γ‖ = 1
and PΓγ = 0 uniquely determine γ up to the sign. We thus have

µr(A+B) ≥ min
Γ

max
{γ: γ=

∑r
i=1 ciνi, ‖γ‖=1, PΓγ=0}

γ′(A+B)γ

= min
{γ: γ=

∑r
i=1 ciνi, ‖γ‖=1}

γ′(A+B)γ

≥ min
{(c1,...,cr):

∑r
i=1 c

2
i=1}

 r∑
i=1

c2
i µi(A)− b

(
r∑
i=1

|ci|

)2


≥ µr(A)− r b

≥ µr(A)− (q − 1) b

1−
∑n

i=q
b

µr(A)−µi(A)

, (S.92)

where we used that q − 1 ≥ r and that the additional fraction we multiplied with is larger
than one. This is the lower bound for µr(A + B) that we wanted to show. We now want to

derive the upper bound. Let Ã, B̃ and B̄ be (n − r + 1) × (n − r + 1) matrices defined by

Ãij = ν ′i+r−1Aνj+r−1, B̃ij = ν ′i+r−1Bνj+r−1, and B̄ij = b, where i, j = 1, . . . , n − r + 1. We can
choose Γ = (ν1, ν2, . . . , νr−1) in the above minimization problem, in which case γ is restricted
to the span of νr, νr+1, . . . , νn. Therefore

µr(A+B) ≤ max
{γ̃: ‖γ̃‖=1}

γ̃′(Ã+ B̃)γ̃

= µ1(Ã+ B̃) , (S.93)

where γ̃ is a (n−r+1)-dimensional vector, whose components are denoted γ̃i, i = 1, . . . , n−r+1,

in the following. Note that Ã is a diagonal matrix with entries µi+r−1(A), i = 1, . . . , n− r + 1.
Therefore

µr(A+B) ≤ max
{γ̃: ‖γ̃‖=1}

[
n+r−1∑
i=1

(γ̃i)
2µi+r−1(A) +

n+r−1∑
i,j=1

γ̃i γ̃j B̃ij

]

≤ max
{γ̃: ‖γ̃‖=1}

[
n+r−1∑
i=1

(γ̃i)
2µi+r−1(A) + b

n+r−1∑
i,j=1

|γ̃i| |γ̃j|

]

= max
{γ̃: ‖γ̃‖=1}

[
n+r−1∑
i=1

(γ̃i)
2µi+r−1(A) +

n+r−1∑
i,j=1

γ̃i γ̃j B̄ij

]
= µ1(Ã+ B̄) . (S.94)

In the last maximization problem the maximum is always attained at a point with γ̃i ≥ 0, which
is why we could omit the absolute values around γ̃i.
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The eigenvalue µ̃ ≡ µ1(Ã+ B̄) is a solution of the characteristic polynomial of Ã+ B̄ which
can be written as

1 =
n∑
i=r

b

µ̃− µi(A)
, (S.95)

where µi(A) = µi−r+1(Ã) are the eigenvalues of Ã. In addition we have µ̃ = µ1(Ã + B̄) >

µ1(Ã) = µr(A), because B̄ is positive semi-definite (which gives ≥) and the eigenvectors of Ã
do not agree with those of B̄ (which gives 6=). From the characteristic polynomial we therefore
find

1 =

q−1∑
i=r

b

µ̃− µi(A)
+

n∑
i=q

b

µ̃− µi(A)

≤ b(q − 1)

µ̃− µr(A)
+

n∑
i=q

b

µr(A)− µi(A)
(S.96)

Since we assume 1 ≥
∑n

i=q
b

µr(A)−µi(A)
, this gives an upper bound on µ̃, and since µr(A+B) ≤ µ̃

the same bound holds for µr(A+B), namely

µr(A+B) ≤ µr(A) +
(q − 1) b

1−
∑n

i=q
b

µr(A)−µi(A)

. (S.97)

This is what we wanted to show. �

Proof of Lemma S.12. Consider the case T ≤ N , so that for Q = min(N, T )−R0 defined in
Assumption EV we have Q = T − R0. If N < T , then we interchange the role of N and T in
the following proof.7

Define

C±(β) = B(β) +B′(β)±

(√
4

aN
Mf0B(rem,1)(β)Pf0 ∓

√
aN

4
Pf0

)

×

(√
4

aN
Mf0B(rem,1)(β)Pf0 ∓

√
aN

4
Pf0

)′

±

(√
4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′ ±

√
aN

4
Pf0

)

×

(√
4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1f 0′ ±

√
aN

4
Pf0

)′
. (S.98)

7We consider limits N,T →∞ with N/T → κ2. For κ2 > 1 we have T < N holding asymptotically, while for
κ2 < 1 we have T > N holding asymptotically and the role of N and T in the proof needs to be interchanged.
For κ2 = 1 there is a subtlety, because neither T ≤ N nor N ≤ T needs to hold asymptotically (the ordering of
N and T can change arbitrarily often while N and T grow). We could rule out this subtlety by only consider
asymptotic sequences that satisfy either always T ≤ N or always N ≤ T , which would not diminish the practical
implications of our results in any way. The proof can also be adjusted to jointly consider the cases T ≤ N and
N ≤ T in the asymptotic, which is not complicated, but cumbersome.
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Since C+(β) [respectively C−(β)] is obtained by adding [respectively subtracting] a positive
definite matrix from B(β) +B′(β), we have

µr
(
C−(β)

)
≤ µr (B(β) +B′(β)) ≤ µr

(
C+(β)

)
. (S.99)

The advantage of considering C±(β) instead of B(β) + B′(β) directly is that there are no
“mixed terms” in C±(β), which start with Mf0 and end with Pf0 , or vice versa, i.e. we can
write C±(β) = C±1 (β) + C±2 , where C±1 (β) = Mf0C±1 (β)Mf0 and C±2 = Pf0C±2 Pf0 . Concretely,
we have

C±1 (β) = A(β)± 4

aN
Mf0B(rem,1)(β)Pf0B(rem,1)′(β)Mf0

± 4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0e′Mλ0eMf0

+Mf0

[
(β − β0) ·X − e

]′
Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0

[
(β − β0) ·X

]
f 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0

+Mf0e′Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′ [(β − β0) ·X
]
Mf0

+ the last three lines transposed +B(eeee) +B(eeee)′,

C±2 = Pf0B(rem,2)Pf0 + Pf0B(rem,2)′Pf0 ± aN

2
Pf0 . (S.100)

In the rest of the proof we always assume that N3/4 ‖β − β0‖ ≤ c. We apply Lemma S.11
to C±1 (β), with the A in the lemma equal to the leading term Mf0e′Mλ0eMf0 , the B in the
lemma equal to the remainder of C±1 (β), and q = qNT . Assumption EV introduces ρr and wr
as the eigenvalues and corresponding eigenvectors of Mf0e′Mλ0eMf0 , where r = 1, . . . , Q with
Q = min(N, T )−R0 = T −R0. If we can show that

T−R0∑
r=qNT

bNT
ρR−R0 − ρr

= oP (1), (S.101)

then Lemma S.11 becomes applicable asymptotically, and for r = 1, . . . , R−R0 we have wpa1∣∣µr (C±1 (β)
)
− ρr

∣∣ ≤ (qNT − 1) bNT

1−
∑T−R0

s=qNT
bNT
ρr−ρs

≤ qNT bNT

1−
∑T−R0

s=qNT
bNT

ρR−R0−ρs

, (S.102)

where

bNT = max
r,s

∣∣w′r (C±1 (β)−Mf0e′Mλ0eMf0

)
ws
∣∣ . (S.103)

We now check how the different terms in C±1 (β)−Mf0e′Mλ0eMf0 contribute to bNT . Using the
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definition of dNT in equation (S.46) we have

max
r,s

∣∣w′rMf0e′Mλ0 [(β − β0) ·X]Mf0ws
∣∣ ≤ K‖e‖‖β − β0‖max

k,r,s
‖v′rXkws‖

≤ dNTOP (N−1/4),

max
r,s

∣∣w′rMf0 [(β − β0) ·X]′Mλ0 [(β − β0) ·X]Mf0ws
∣∣ ≤ K2

∥∥β − β0
∥∥2

max
k,r
‖Mλ0Xkwr‖2

≤ K2N
∥∥β − β0

∥∥2
max
k,r,s
‖v′rXkws‖2

≤ d2
NTOP (N−1/2),

max
r,s

∣∣∣∣w′r 4

aN
Mf0B(rem,1)(β)Pf0B(rem,1)′(β)Mf0ws

∣∣∣∣ ≤ 4

aN
‖B(rem,1)(β)‖2 = OP (N−1/2),

max
r,s

∣∣∣∣w′r 4

aN
Mf0e′Mλ0eMf0e′λ0(λ0′λ0)−1(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0e′Mλ0eMf0ws

∣∣∣∣
≤ 4

aN
‖e‖4

∥∥λ0(λ0′λ0)−1(f 0′f 0)−1(λ0′λ0)−1λ0′∥∥max
r
‖w′re′Pλ0‖2 ≤ dNTOP (N−1),

max
r,s

∣∣w′rMf0e′Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0ws
∣∣

≤ ‖e‖
∥∥f 0(f 0′f 0)−1(λ0′λ0)−1λ0′∥∥max

s
‖v′sePf0‖max

r
‖w′re′Pλ0‖ ≤ d2

NTOP (N−1/2),

max
r,s

∣∣∣w′rMf0

[
(β − β0) ·X

]′
Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0ws

∣∣∣
= max

r,s

∣∣∣∣∣w′r [(β − β0) ·X
]′(∑

q

v′qvq

)
ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′ews

∣∣∣∣∣
≤ K‖β − β0‖N max

r,s,k
|v′sXkwr|max

r
‖v′rePf0‖max

r
‖w′re′Pλ0‖

∥∥f 0(f 0′f 0)−1(λ0′λ0)−1λ0′∥∥
≤ d3

NTOP (N−3/4),

max
r,s

∣∣w′rMf0e′Mλ0

[
(β − β0) ·X

]
f 0(f 0′f 0)−1(λ0′λ0)−1λ0′eMf0ws

∣∣
≤ K‖e‖‖β − β0‖

∥∥f 0(f 0′f 0)−1(λ0′λ0)−1λ0′∥∥max
r,k
‖v′rXkPf0‖max

r
‖w′re′Pλ0‖

≤ d2
NTOP (N−1/2),

max
r,s

∣∣w′rMf0e′Mλ0ef 0(f 0′f 0)−1(λ0′λ0)−1λ0′ [(β − β0) ·X
]
Mf0ws

∣∣
≤ K‖e‖‖β − β0‖

∥∥f 0(f 0′f 0)−1(λ0′λ0)−1λ0′∥∥max
r,k
‖v′rePf0‖max

r
‖w′rX ′kPλ0‖

≤ d2
NTOP (N−1/2).

and analogously one can check that

max
r,s

∣∣w′rB(eeee)ws
∣∣ ≤ d2

NTOP (N−1) + d3
NTOP (N−3/2). (S.104)

All in all, we thus have

bNT ≤ OP (N−1/2) + dNTOP (N−1/4) + d2
NTOP (N−1/2) + d3

NTOP (N−3/4)

≤ dNTOP (N−1/4) , (S.105)
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where in the last we used that by assumption dNT ≥ 1 and dNT = oP (N1/4). Therefore

T−R0∑
r=qNT

bNT
ρR−R0 − ρr

= qNTdNTOP (N−1/4)
1

qNT
≤

T−R0∑
r=qNT

1

ρR−R0 − ρr
= oP (1), (S.106)

so that Lemma S.11 is indeed applicable asymptotically, and we find∣∣µr (C±1 (β)
)
− ρr

∣∣ ≤ qNT bNT
1− oP (1)

≤ qNT dNT OP (N−1/4) = oP (1) . (S.107)

For t = 1, . . . , R−R0 we thus have

µr
(
C±1 (β)

)
= ρr + oP (1) ≥ ρR−R0 + oP (1) ≥ ‖C±2 ‖, wpa1, (S.108)

where the last step follows because ‖C±2 ‖ = aN/2 +OP (1) and we assumed ρR−R0 > aN , wpa1.
Since C±(β) is block-diagonal with blocks C±1 (β) and C±2 (in the basis defined by f 0), and
µr
(
C±1 (β)

)
≥ ‖C±2 ‖, it must be the case that wpa1 the largest R−R0 eigenvalues of C±(β) are

those of C±1 (β). Thus, ∣∣µr (C±(β)
)
− ρr

∣∣ = oP (1) , (S.109)

and also

|µr (B(β) +B′(β))− ρr| = oP (1) , (S.110)

which holds uniformly over all β with N3/4 ‖β − β0‖ ≤ c. This concludes the proof. �

Proof of Lemma S.13. # Part (i). Since e has iidN (0, σ2) entries, independent of λ0 and f 0,
rotational invariance dictates that the distribution of vr and wr is given by the Haar measure on
the unit sphere of dimension N −R0 and T −R0, respectively, and the the lemma just provides

a concrete representation of this. The bounds on E
(√

N‖Mλ0 ṽ‖−1
)ξ

and E
(√

T‖Mf0w̃‖−1
)ξ

follow, because the inverse chi-square distribution with dof ν possesses all moments smaller than
ν/2.

# Part (ii). Using part (i) of the lemma we have

wr =
d
‖Mf0w̃‖−1Mf0w̃ =

∥∥∥∥Mf0w̃√
T

∥∥∥∥−1(
w̃√
T
−
Pf0w̃√
T

)
, (S.111)

where w̃ be an T -vector with iidN (0, 1) entries. It is also useful to define the time shift operator
L : RT → R

T , which satisfies (Lwr)t = wr,t−1, and therefore (Lτwr)t = wr,t−τ . We then have

T∑
t=τ+1

wr,twr,t−τ = w′rL
τwr

=
d

∥∥∥∥Mf0w̃√
T

∥∥∥∥−2
1

T
(w̃′Lτ w̃ − w̃′LτPf0w̃ − w̃′Pf0Lτ w̃ + w̃′Pf0LτPf0w̃) (S.112)
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Given the distribution of w̃ it is easy to show that
∣∣∣ w̃′Lτ w̃√

T

∣∣∣ has arbitrary high bounded moments

as T becomes large, i.e. we have E
∣∣∣ w̃′Lτ w̃√

T

∣∣∣ξ = O(1) for any τ ≥ 1 and any ξ > 0. Furthermore,

using that ‖L‖ = 1 we can bound

|w̃′LτPf0w̃| ≤ ‖w̃‖‖Pf0w̃‖
|w̃′Pf0Lτ w̃| ≤ ‖w̃‖‖Pf0w̃‖

|w̃′Pf0LτPf0w̃| ≤ ‖Pf0w̃‖2, (S.113)

where ‖w̃‖2 =
d
χ2(T ) and ‖Pf0w̃‖2 =

d
χ2(R0). Note that τ the rhs of these inequalities do not de-

pend on τ , i.e. the bounds are uniform over τ . The χ-square distribution with R0 degrees of free-
dom does not depend on T and posses all moments. Since ‖w̃‖2 is χ2(T ) distributed we find that

1√
T
‖w̃‖ has arbitrarily high uniformly bounded moments as T becomes large. Combining these

results we obtain that all moments of
∣∣∣ 1√

T
(w̃′Lτ w̃ − w̃′LτPf0w̃ − w̃′Pf0Lτ w̃ + w̃′Pf0LτPf0w̃)

∣∣∣
are uniformly bounded as T becomes large. Part (i) of the lemma shows that the same is true

for
∥∥∥Mf0 w̃√

T

∥∥∥−2

. Using Holder’s inequality we thus find that for all ξ > 0 we have

E

∣∣∣∣∣
T∑

t=τ+1

wr,twr,t−τ

∣∣∣∣∣
ξ

= E
∣∣‖Mf0w̃‖−2w̃′Mf0LτMf0w̃

∣∣ξ = O(1/
√
T ), (S.114)

uniformly over r and τ . From this we obtain maxr,τ

∣∣∣∑T
t=τ+1wr,twr,t−τ

∣∣∣ = OP (T−1/2+ε) for any

ε > 0 (namely ε = 2/ξ). This is the statement of the lemma for the special case where r = s.

What is left to show is that maxr 6=s maxτ

∣∣∣∑T
t=τ+1wr,tws,t−τ

∣∣∣ = OP (T−1/2+ε), for ε ∈ [0, 1/12).

Let w̃a and w̃b be two T -vector with iidN (0, 1) entries, independent of each other, and inde-
pendent of f 0. Then we have for any r, s = 1, . . . , Q with r 6= s that(

wr
ws

)
=
d

(
‖Mf0w̃a‖−1Mf0w̃a

‖Mf0Mwaw̃
b‖−1Mf0Mwaw̃

b

)
. (S.115)

Note that this representation of the joint distribution accounts for the constraint w′rws = 0, in
addition to ‖wr‖ = ‖ws‖ = 1 and the invariance under the orthogonal group O(T −R0). Using
this representation of the joint distribution of wr and ws the proof is now analogous to the case
r = s. The result can be shown for any ε > 0.

# Part (iii). This again follows since e has iidN (0, σ2) entries and the resulting rotational
invariance of e wrt to orthogonal O(N) and O(T ) rotations from the left and right, respectively.

�

S.6 Additional Monte Carlo Simulations

Here, we consider a AR(1) panel model with two factors (R0 = 2) and the following data
generating process (DGP):

Yit = β0Yi,t−1 +
2∑
r=1

λirftr + eit, ftr = 0.5 ft,t−1 +
εtr√

1− 0.52
. (S.116)
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The random variables λir, εtr and eit are mutually independent; with λir ∼ iidN (1, 1); and εtr
and eit ∼ iidN (0, 1). The AR(1) processes for Yit and ftr are initiated with 100 time periods
before the actual estimation sample starts, so that the initial conditions roughly correspond to
the long-run static distribution. We choose β0 ∈ {0.2, 0.5, 0.8}, and use 10, 000 repetitions in
our simulation. The true number of factors is chosen to be R0 = 2. For each draw of Y and X
we compute the LS estimator β̂R according to equation (3.1) for different values of R.

Table 1 reports bias and standard deviation of the estimator β̂R for N = 300 and different
combinations of R, T and β0. Table 2 reports various quantiles of the distribution of

√
NT (β̂R−

β0) for N = 300 and different combinations of R, T and β0. The tables can be found at the end
of the supplementary material.

S.7 Comments Regarding Numerical Calculation of β̂R

Different iteration schemes can be used to implement the LS estimator defined in (3.1) numeri-
cally:

(1) Ahn, Lee and Schmidt (2001) use an iteration scheme were the following steps are repeated

until convergence: (a) for fixed β̃ find F̃ and Λ̃ that minimize the LS objective function

in (3.1) via principal component analysis (but Λ̃ need not actually be computed); (b) for

fixed F̃ find β̃ and Λ̃ that minimize the LS objective function in (3.1) (but Λ̃ need not

actually be computed, because β̃ can be obtained by regressing Y on XkMF̃ ).

(2) Alternatively, Bai (2009) proposes the following iteration steps: (a) for fixed β̃ find F̃ and

Λ̃ that minimize the LS objective function in (3.1) via principal component analysis; (b)

for fixed F̃ and Λ̃ find β̃ that minimizes the LS objective function in (3.1) by running a

regression of (Y − Λ̃F̃ ′) on Xk.

(3) Another iteration scheme, which we have used in our implementation, and we have not

found discussed previously in the literature, is the following: (a) for fixed β̃ find F̃ and Λ̃
that minimize the LS objective function in (3.1) via principal component analysis; (b) for

fixed F̃ and Λ̃ find β̃ that minimizes the alternative objective function ‖MΛ̃(Y − β · X)
MF̃‖2

HS by running a regression of Y on MΛ̃XkMF̃ .

All three iteration schemes have the same step (a), i.e. differ from each other only in step (b).
Each step of the iteration schemes (1) and (2) minimizes the LS objective function, i.e. those
schemes guarantee that the sum of squared residuals is getting smaller (or at least remains
unchanged) in each step. In contrast, step (b) in scheme (3) minimizes an alternative objective
function, i.e. it is possible that the LS objective function in (3.1) is actually increasing during
that step. However, this step can nevertheless be justified, namely one can show that close to any
(local) minimum the profile objective function LRNT (β) is well approximated by the alternative
objective function 1

NT
‖MΛ̃(Y − β · X)MF̃‖2

HS, i.e. step (b) in scheme (3) is minimizing an
approximation of LRNT (β).8

8Step (b) in scheme (1) and (2) can be equivalently described as minimizing the objective functions 1
NT ‖(Y −

β ·X)MF̃ ‖
2
HS and 1

NT ‖(Y − β ·X − Λ̃F̃ ′)‖2HS , respectively, which are also approximations of LRNT (β). However,
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Bai (2009) points out that the iteration scheme (2) is somewhat more robust towards the
choice of starting value for β, which was confirmed in our simulations exercises, both compared
to scheme (1) and to scheme (3). However, once close to a (local) minimum of the LS objec-
tive function we found the convergence rate of scheme (3) to be significantly faster than the
conference rates of scheme (1) and (2). Scheme (1) performed between scheme (2) and (3) in
terms of both robustness and speed. Each iteration scheme therefore has its relative advantages
and disadvantages. We use scheme (3) for our final implementation, because the LS objective
(and the profile objective function LRNT (β)) can have multiple local minima, so that multiple
optimization runs with different starting values are usually necessary anyways to achieve con-
fidence that the global minimum was actually found. By using scheme (3) we minimize the
time required for each optimization run, which enables us to try out more starting values within
the same amount of total CPU time. Combining different iteration schemes (e.g. starting with
scheme (2) and switching to scheme (3) once close to a minimum) might also be a good idea,
which we have not explored, however.

S.8 Verifying the Assumptions in Bai (2009) for Example

in Proposition 4.4

Throughout this section we only consider the particular DGP in Proposition 4.4 of the main text.
For this DGP it is easy to see that the OLS estimator β̂0 (the LS-estimator with R = R0 = 0)

is
√
NT -consistent, while the proposition shows that β̂1 (the LS-estimator with R = 1) is only√

N -consistent. In the following we show that the regularity conditions imposed in Bai (2009)
are also satisfied for this DGP. This is interesting to verify, since then Proposition 4.4 shows
that we need stronger Assumptions than those imposed in Bai (2009) in order to derive our

results for β̂R for R > R0.

Verifying Assumptions A, B, D, E

• Since R0 = 0 we find that Assumption A in Bai (2009) becomes 1
NT

∑
i,tX

2
it > 0, which

is satisfied. The assumption would also be satisfied for R0 > 0, since the component X̃
makes the regressors X a “high-rank regressor”.

• His Assumption B is also trivially satisfied for R0 = 0.

• Assumption D in Bai (2009) requires strict exogeneity of the regressors in the sense that
X and e are independent, which is also satisfied.9

those approximations are less precise than the approximation in step (b) of scheme (3). Namely, close to the

minimizer β̂R of LRNT (β) we have LRNT (β) = 1
NT ‖MΛ̃(Y − β ·X)MF̃ ‖

2
HS +OP (‖β − β̂R‖3), while the other two

approximations have remainders of order ‖β − β̂R‖2.
9One could also consider λx and fx as random, but independent of e and X̃. In that case X and e are

still strictly exogenous in the sense of mean-independence, i.e. we have E(e|X) = 0, but e and X are not fully
independent. However, our Corollary 4.3 in the main text (see also Moon and Weidner (2010)) shows that the

asymptotic distribution of β̂R0 can be derived under the weaker exogeneity assumption E(eitXit) = 0. Full

independence of e and X is therefore only assumed for convenience in Bai (2009), and his results on β̂R0 remain
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• Finally, assumption E in Bai (2009) becomes 1√
NT

∑
itXiteit →d N (0, DZ), where DZ =

limN,T→∞Var
[

1√
NT

∑
itXiteit

]
. This is also satisfied, since Xiteit is independent across i

and over t, and has bounded variance.

Verifying Assumption C

A more difficult task is to verify Assumption C in Bai (2009), which contains regularity condi-
tions for eit.

10 In our notation the assumption reads

(i) E (eit) = 0 and E (e8
it) ≤M,

(ii) Let E (eitejs) = σij,ts. Then, 1
N

∑N
i,j=1 supt,s |σij,ts| ≤ M, 1

T

∑T
t,s=1 supi,j |σij,ts| ≤ M, and

1
NT

∑N
i,j=1

∑T
t,s=1 |σij,ts| ≤M. Also, the largest eigenvalue of E (eie

′
i) is bounded uniformly

in i and T.

(iii) For every (t, s) , E
∣∣∣ 1
N1/2

∑N
i=1 [eiseit −E (eiseit)]

∣∣∣4 ≤M.

(iv) Moreover,

1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (eiteis, ejuejv)| ≤ M

1

N2T

∑
t,s

∑
i,j,k,l

|Cov (eitejt, eksels)| ≤ M.

In the following M always denotes some global constant, whose precise value may change
from equation to equation. Furthermore, we simply write λ and f instead of λx and fx.

We also define v1 = c λ√
N
λ′u√
N

, v2 = c uf√
T

f ′√
T

, v3 =
(

c2√
NT
λ′uf

)
λ√
N

f ′√
T

, and v = v1 + v2 + v3.

We then have

e =

(
I + c

λλ′

N

)
u

(
I + c

ff ′

T

)
= u+ v. (S.117)

Notice that

vit =
λi√
N

(
c√
N

N∑
h=1

λhuht

)
+

(
c√
T

T∑
τ=1

uiτfτ

)
ft√
T

+

(
c2

√
NT

λ′uf

)
λi√
N

ft√
T

=
λi√
N
λ̃ (λ, u·t) + f̃ (f, ui·)

ft√
T

+ ṽ (λ, f, u)
λi√
N

ft√
T

= v1,it + v2,it + v3,it,

unchanged when only imposing E(e|X) = 0 instead.
10Essentially, Assumption C requires that eit is mean zero and weakly correlated across i and t.

Thus, it plays the same role as our high-level Assumption SN(ii), which is easy to check since ‖e‖ ≤∥∥∥1N + c
λxλ

′
x

N

∥∥∥ ‖u‖ ∥∥∥1T + c
fxf

′
x

T

∥∥∥ and we have
∥∥∥1N + c

λxλ
′
x

N

∥∥∥ ≤ ‖1N‖+ c
∥∥∥λxλ

′
x

N

∥∥∥ = O(1), and
∥∥∥1T + c

fxf
′
x

T

∥∥∥ ≤
‖1T ‖+ c

∥∥∥ fxf ′
x

T

∥∥∥ = O(1), and ‖u‖ = OP (
√

min(N,T )) — see Appendix A.1 in the main text regarding the last

statement.
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where we defined λ̃ (λ, u·t), f̃ (f, ui·) and ṽ (λ, f, u) implicitly. We also define g1,ij,ts = uitujs,
g2,ij,ts = uitvjs, g3,ij,ts = vitujs, and g4,ij,ts = vitvjs, so that

eitejs = g1,ij,ts + g2,ij,ts + g3,ij,ts + g4,ij,ts.

In the following we discuss part (i), (ii), (iii) and (iv) of Assumption C separately:

Part (i)

This is straightforward to check.

Part (ii)

Let σk,ij,ts = E (gk,ij,ts) .

1. σ1,ij,ts : The resired result follows since

σ1,ij,ts = 1 {i = j, t = s} .

2. σ2,ij,ts : By definition,

σ2,ij,ts = E (uitvjs) = E (uitv1,js) +E (uitv2,js) +E (uitv3,js) .

Direct calculations show that

E (uitv1,js) = E

[
uit

λj√
N

(
c√
N

N∑
h=1

λhuhs

)]
=

c

N

N∑
h=1

λjλhE (uhsuit)

=
c

N

N∑
h=1

λjλh1 {i = h, s = t}

=
c

N
λiλj1 {t = s}

E (uitv2,js) = E

[
uit

(
c√
T

T∑
τ=1

ujτfτ

)
fs√
T

]
=

c

T

T∑
τ=1

fτfsE (uitujτ )

=
c

T

T∑
τ=1

fτfs1 {i = j, t = τ}

=
c

T
ftfs1 {i = j}

E (uitv3,js) = E

[
uit

(
c2

√
NT

N∑
h=1

T∑
τ=1

λhfτuhτ

)
λj√
N

fs√
T

]
=

c2

NT

N∑
h=1

T∑
τ=1

λhλjfτfsE (uituhτ )

=
c2

NT

N∑
h=1

T∑
τ=1

λhλjfτfs1 {i = h, t = τ}

=
c2

NT
λiλjftfs.

Combining these, we have

σ2,ij,ts =
c

N
λiλj1 {t = s}+

c

T
ftfs1 {i = j}+

c2

NT
λiλjftfs.
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Since λi and ft are bounded, we have the resired result,

1

N

N∑
i,j=1

sup
t,s

∣∣∣∣ cN λiλj1 {t = s}+
c

T
ftfs1 {i = j}+

c2

NT
λiλjftfs

∣∣∣∣ ≤ M,

1

T

T∑
t,s=1

sup
i,j

∣∣∣∣ cN λiλj1 {t = s}+
c

T
ftfs1 {i = j}+

c2

NT
λiλjftfs

∣∣∣∣ ≤ M,

1

NT

N∑
i,j=1

T∑
t,s=1

∣∣∣∣ cN λiλj1 {t = s}+
c

T
ftfs1 {i = j}+

c2

NT
λiλjftfs

∣∣∣∣ ≤ M.

3. σ3,ij,ts : The desired result for the term σ3,ij,ts follows by similar fashion to the case of σ2,ij,ts.

4. g4,ij,ts : By definition, we have

E (g4,ij,ts)

=
3∑

k=1

3∑
l=1

E (vk,itvl,js)

= E



 λi√
N

(
c√
N

∑N
k=1 λkukt

)
+
(

c√
T

∑T
p=1 fpuip

)
ft√
T

+ λi√
N

(
c2√
NT

∑N
k=1

∑T
p=1 λkfpukp

)
ft√
T


×

 λj√
N

(
c√
N

∑N
l=1 λluls

)
+
(

c√
T

∑T
q=1 fqujq

)
fs√
T

+
λj√
N

(
c2√
NT

∑N
l=1

∑T
q=1 λqflulq

)
fs√
T



 .

Notice that

E (v1,itv1,js) =
c2

N2

N∑
k=1

N∑
l=1

λiλkλjλlE (uktuls)

=
c2

N
λiλj

(
1

N

N∑
k=1

λ2
k

)
1 {t = s} .

E (v1,itv2,js) = E

 λi√
N

(
c√
N

N∑
k=1

λkukt

) c√
T

T∑
q=1

fqujq

 fs√
T


=

c2

NT

 N∑
k=1

T∑
q=1

λiλkfqfsE (uktujq)


=

c2

NT
λiλjftfs,
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E (v1,itv3,js)

= E

 λi√
N

(
c√
N

N∑
k=1

λkukt

)
λj√
N

 c2

√
NT

N∑
l=1

T∑
q=1

λlfqulq

 fs√
T


=

c3

N2T
E

 N∑
k=1

N∑
l=1

T∑
q=1

λiλkλjλlfqfsE (uktulq)


=

c3

NT
λiλjftfs

(
1

N

N∑
k=1

λ2
k

)
,

E (v2,itv2,js) = E

 c√
T

T∑
p=1

fpuip

 ft√
T

 c2

√
T

T∑
q=1

fqujq

 fs√
T


=

c3

T 2

T∑
p=1

T∑
q=1

fpftfqfsE (uipujq)

=
c3

T

 1

T

T∑
p=1

f2
p

 ftfs1 {i = j} ,

E (v2,itv3,js)

= E

 c√
T

T∑
p=1

fpuip

 ft√
T

λj√
N

 c2

√
NT

N∑
l=1

T∑
q=1

λlfqulq

 fs√
T


=

c3

NT 2

T∑
p=1

N∑
l=1

T∑
q=1

fpftλjλlfqfsE (uipulq)

=
c3

NT
λiλjftfs

 1

T

T∑
p=1

f2
p

 ,

and

E (v3,itv3,js)

= E

 λi√
N

 c2

√
NT

N∑
k=1

T∑
p=1

λkfpukp

 ft√
T

λj√
N

 c2

√
NT

N∑
l=1

T∑
q=1

λqflulq

 fs√
T


=

c4

N2T 2

N∑
k=1

N∑
l=1

T∑
p=1

T∑
q=1

λiλkλjλqfpftflfsE (ukpulq)

=
c4

NT
λiλjftfs

(
1

N

N∑
k=1

λkfk

) 1

T

T∑
p=1

λpfp

 .

From these and using the boundedness of λi and ft, we can derive the desired result

1

N

N∑
i,j=1

sup
t,s
|σ4,ij,ts| ≤M,

1

T

T∑
t,s=1

sup
i,j
|σ4,ij,ts| ≤M,

1

NT

N∑
i,j=1

T∑
t,s=1

|σ4,ij,ts| ≤M.
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Combining these, we have the desired result.

What is left to show is the bound on the largest eigenvalue of Ωi = E (eie
′
i), which is equivalent to

the spectral norm of Ωi. The spectral norm of a symmetric matrix is bounded by the infinity norm,
i.e. we have µ1(Ωi) = ‖Ωi‖ ≤ ‖Ωi‖∞ = maxt

∑
s |Ωi,ts|. For the elements Ωi,ts of the matrix Ωi we

have Ωi,ts = E (eiteis) = σii,ts. We thus have

µ1(Ωi) ≤ max
t

∑
s

|σii,ts| = O(1),

where the last step follows by the above results on σij,ts =
∑4

k=1 σk,ij,ts.

Part (iii)

Write

E

[
1

N1/2

N∑
i=1

[eiseit −E (eiseit)]

]4

= E

{
4∑

k=1

[
1

N1/2

N∑
i=1

(gk,ii,ts − σk,ii,ts)

]}4

≤ M

E
[

1

N1/2

N∑
i=1

(gk,ii,ts − σk,ii,ts)

]4
 .

1. g1,ii,ts : Since uit ∼ iidN (0, 1) across i and over t, it is straightforward to see that for all t, s,

E

[
1√
N

N∑
i=1

(g1,ii,ts − σ1,ii,ts)

]4

≤M.

2. g2,ii,ts : Next, notice that

1√
N

N∑
i=1

(g2,ii,ts − σ2,ii,ts) =
3∑

k=1

1√
N

N∑
i=1

(uitvk,is −E (uitvk,is)) .

Due to the boundedness of λi and ft and iid normality of uit, we have the following.

First,

E

(
1√
N

N∑
i=1

(uitv1,is −E (uitv1,is))

)4

= E

[
1√
N

N∑
i=1

{
uit

λj√
N

(
c√
N

N∑
h=1

λhuhs

)
− c

N
λiλj1 {t = s}

}]4

= λ4
jc

4
E

[
1

N

N∑
i=1

{
uit

(
1√
N

N∑
h=1

λhuhs

)
− 1√

N
λi1 {t = s}

}]4

≤ M,

where the last equality follows since(
1

N

N∑
i=1

ai

)4

≤ 1

N

N∑
i=1

a4
i

48



and supi,t,sE

({
uit

(
1√
N

∑N
h=1 λhuhs

)
− 1√

N
λi1 {t = s}

}4
)
≤M.

Second, similarly to the first case, we have

E

(
1√
N

N∑
i=1

(uitv2,is −E (uitv2,is))

)4

= E

[
1√
N

N∑
i=1

{
uit

(
c√
T

T∑
τ=1

uiτfτ

)
fs√
T
− cfsft

T

}]4

= f4
s c

4
E

[
1√
NT

N∑
i=1

{
uit

(
1√
T

T∑
τ=1

uiτfτ

)
fs −

ft√
T

}]4

≤ M.

Third,

E

(
1√
N

N∑
i=1

(uitv3,is −E (uitv3,is))

)4

= E

(
1√
N

N∑
i=1

{
uit

(
c2

√
NT

N∑
h=1

T∑
τ=1

λhfτuhτ

)
λi√
N

fs√
T
− c2

NT
λ2
i ftfs

})4

= f4
s c

8
E

(
1√
NT

N∑
i=1

{
uit

(
c2

√
NT

N∑
h=1

T∑
τ=1

λhfτuhτ

)
λi√
N
− c2

N
√
T
λ2
i ft

})4

≤ M.

Combining these, we have the desired result

E

(
1√
N

N∑
i=1

(g2,ii,ts − σ2,ii,ts)

)4

< M.

3. g3,ii,ts : Similarly, we have the desired result

E

(
1√
N

N∑
i=1

(g3,ii,ts − σ3,ii,ts)

)4

< M

because g3,ii,ts = g2,ii,st.

4. g4,ii,ts : Finally,

1√
N

N∑
i=1

(g4,ii,ts − σ4,ii,ts) =
3∑

k=1

3∑
l=1

1√
N

N∑
i=1

(vk,itvl,is −E (vk,itvl,is))
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Notice that

1√
N

N∑
i=1

(v1,itv1,is −E (v1,itv1,is))

=
1√
N

N∑
i=1

(
λi√
N

(
c√
N

N∑
k=1

λkukt

)
λi√
N

(
c√
N

N∑
l=1

λluls

)
− c2

N
λ2
i

(
1

N

N∑
k=1

λ2
k

)
1 {t = s}

)

=
c2

√
N

1

N

N∑
i=1

{
λ2
i

{(
1√
N

N∑
k=1

λkukt

)(
1√
N

N∑
l=1

λluls

)
−

(
1

N

N∑
k=1

λ2
k

)
1 {t = s}

}}
.

Notice that supi,t,sE
[
λ2
i

{(
1√
N

∑N
k=1 λkukt

)(
1√
N

∑N
l=1 λluls

)
−
(

1
N

∑N
k=1 λ

2
k

)
1 {t = s}

}]4
≤

M. Therefore, we have

E

[
1√
N

N∑
i=1

(v1,itv1,is −E (v1,itv1,is))

]4

≤
(
c8

N2

)
1

N

N∑
i=1

E

{λ2
i

{(
1√
N

N∑
k=1

λkukt

)(
1√
N

N∑
l=1

λluls

)
−

(
1

N

N∑
k=1

λ2
k

)
1 {t = s}

}}4


≤ M.

Similarly, we can show the rest of the cases.

Part (iv)

Without loss of generality, we set N = T here. We show that 1
NT 2

∑
t,s,u,v

∑
i,j |Cov (eiteis, ejuejv)| ≤

M. The other case follows by the same fashion because the DGP of Proposition 4.4 is symmetric
between i and t. Notice that

Cov (eiteis, ejuejv) = Cov

(
4∑

k=1

gk,ii,ts,

4∑
k=1

gk,jj,uv

)
=

4∑
k=1

4∑
l=1

Cov (gk,ii,ts, gl,jj,uv) .

Among {Cov (g1,ii,ts, g1,jj,uv)} there are six kinds, (a) the term of (u, u) and (u, u) (b) the terms of
(u, u) and (u, v) (c) the terms of (u, u) and (v, v) , (d) the terms of (u, v) and (u, v) , (e) the terms of
(u, v) and (v, v), and (f) the term of (v, v) and (v, v) .

In what follows we use ”two pairs among {t1, t2, t3, t4}” to denote the sum of the three terms like
1 {t1 = t2} 1 {t3 = t4} .

The main step of establishing the required result, 1
NT 2

∑
t,s,u,v

∑
i,j |Cov (gk,ii,ts, gl,jj,uv)| ≤ M,

we find an upper bound of |Cov (gk,ii,ts, gl,jj,uv)| in a form of 1
NaT b

1 { some pairs of indices} , so that

the power of NT 2NaT b = Na+b+3, a + b + 3, is larger than or equal to the number of outstanding
summations.

In the following proofs, we use the following fact a lot:

E (uituisujuujv)−E (uituis)E (ujuujv)

= 1 {i 6= j} 1 {t = s} 1 {u = v}+ 1 {i = j} 1 {two pairs among {t, s, u, v}}
−1 {t = s} 1 {u = v}

= 1 {i = j} 1 {two pairs among {t, s, u, v}} . (S.118)
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1. Cov (uituis, ujuujv) : Notice that

Cov (g1,ii,ts, g2,jj,uv)

= Cov (uituis, ujuujv) = E (uituisujuujv)−E (uituis)E (ujuujv)

= 1 {i = j} 1 {two pairs among {t, s, u, v}}

This implies that out of the six summations over indices (t, s, u, v, i, j) , only three summations
matter. Therefore, we have

1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (g1,ii,ts, g1,jj,uv)| ≤M.

2. Cov (uituis, ujuvjv) : Notice that

Cov (uituis, ujuvjv) =
3∑

k=1

Cov (uituis, ujuvk,jv) .

(a) Notice that

Cov (uituis, ujuvk,jv)

= E (uituisujuv1,jv)−E (uituis)E (ujuv1,jv)

=
c

N

(
N∑
h=1

λjλh {E (uituisujuuhv)−E (uituis)E (ujuuhv)}

)
=

c

N
λ2
j {E (uituisujuujv)−E (uituis)E (ujuujv)}

≤ c

N
λ2
j1 {i = j} 1 {two pairs among {t, s, u, v}} .

Therefore,

1

NT 2

∑
t,s,u,v

∑
i,j

|E (uituisujuv1,jv)|

≤ M

N2T 2

∑
t,s,u,v

∑
i,j

1 {i = j} 1 {two pairs among {t, s, u, v}} ≤M.

(b) Similarly, we have

Cov (uituis, ujuv2,jv)

= E (uituisujuv2,jv)−E (uituis)E (ujuv2,jv)

=
c

T

(
T∑
τ=1

{E (uituisujuujτ )−E (uituis)E (ujuujτ )} fτfv

)

=
c

T

T∑
τ=1

fτfv1 {i = j} 1 {two pairs among {t, s, u, τ}} ,

which leads the desired result

1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uituis, ujuv2,jv)| ≤M
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(c) Notice that

Cov (uituisujuv3,jv)

= E (uituisujuv3,jv)−E (uituis)E (ujuv3,jv)

=
c2

NT

(
N∑
h=1

T∑
τ=1

λjλhfτfv [E (uituisujuuhτ )−E (uituis)E (ujuuhτ )]

)

=
c2

NT

(
T∑
τ=1

λ2
jfτfv [E (uituisujuujτ )−E (uituis)E (ujuujτ )]

)

=
c2

NT

(
T∑
τ=1

λ2
jfτfv1 {i = j} 1 {two pairs among {t, s, u, τ}}

)
.

Therefore,
1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uituisujuv1,jv)| ≤M.

Combining these, we have the desired result.

3. Cov (uituis, vjuvjv) : Notice that

Cov (uituis, vjuvjv)

= E (uituisvjuvjv)−E (uituis)E (vjuvjv)

= E

 uituis

(
λj√
N

(
1√
N

∑N
k=1 λkuku

)
+
(

1√
T

∑T
p=1 fpujp

)
fu√
T

+ ṽ (λ, f, u)
λj√
N

fu√
T

)
×
(
λj√
N

(
1√
N

∑N
l=1 λlulv

)
+
(

1√
T

∑T
q=1 fqujq

)
fv√
T

+ ṽ (λ, f, u)
λj√
N

fv√
T

) 
−1 {t = s}E

 (
λj√
N

(
1√
N

∑N
k=1 λkuku

)
+
(

1√
T

∑T
p=1 fpujp

)
fu√
T

+ ṽ (λ, f, u)
λj√
N

fu√
T

)
×
(
λj√
N

(
1√
N

∑N
l=1 λlulv

)
+
(

1√
T

∑T
q=1 fqujq

)
fv√
T

+ ṽ (λ, f, u)
λj√
N

fv√
T

)  .

Here there are 9 terms in the product. In this

(a) Notice that

Cov (uituis, v1,juv1,jv)

= E

(
uituis

λj√
N

(
1√
N

N∑
k=1

λkuku

)
λj√
N

(
1√
N

N∑
l=1

λlulv

))

−E (uituis)E

(
λj√
N

(
1√
N

N∑
k=1

λkuku

)
λj√
N

(
1√
N

N∑
l=1

λlulv

))

=
1

N2

N∑
k=1

N∑
l=1

λ2
jλkλl (E (uituisukuulv)−E (uituis)E (ukuulv))

=
1

N2

N∑
k=1

λ2
jλ

2
k (E (uituisukuukv)−E (uituis)E (ukuukv))

=
1

N2

N∑
k=1

λ2
jλ

2
k {1 {i = k} 1 {two pairs among {t, s, u, v}}} .
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Therefore,
1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uituis, v1,juv1,jv)| ≤M.

(b) Notice that

Cov (uituis, v2,juv2,jv)

= E

uituis
 1√

T

T∑
p=1

fpujp

 fu√
T

 1√
T

T∑
q=1

fqujq

 fv√
T


−E (uituis)E

 1√
T

T∑
p=1

fpujp

 fu√
T

 1√
T

T∑
q=1

fqujq

 fv√
T


=

1

T 2

T∑
p=1

T∑
q=1

fpfqfufv [E (uituisujpujq)−E (uituis)E (ujpujq)]

=
1

T 2

T∑
p=1

T∑
q=1

fpfqfufv [1 {i = j} 1 {two pairs among {t, s, p, q}}]

Therefore,
1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uituis, v2,juv2,jv)| ≤M.

(c) Notice that

Cov (uituis, v3,juv3,jv)

= E

uituis
 1√

NT

N∑
k=1

T∑
p=1

λkfpukp

 λjfu√
NT

 1√
NT

N∑
l=1

T∑
q=1

λlfqulq

 fvλj√
NT


−E (uituis)E

 1√
NT

N∑
k=1

T∑
p=1

λkfpukp

 λjfu√
NT

 1√
NT

N∑
l=1

T∑
q=1

λlfqulq

 fvλj√
NT


=

1

N2T 2

N∑
k=1

T∑
p=1

N∑
l=1

T∑
q=1

λkλ
2
jλlfpfufqfv [E (uituisukpulq)−E (uituis)E (ukpulq)]

=
1

N2T 2

N∑
k=1

T∑
p=1

T∑
q=1

λ2
kλ

2
jEfpfufqfv [E (uituisukpukq)−E (uituis)E (ukpukq)]

=
1

N2T 2

N∑
k=1

T∑
p=1

T∑
q=1

λ2
kλ

2
jEfpfufqfv [1 {i = k} 1 {two pairs among {t, s, p, q}}]

Then,
1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uituis, v2,juv2,jv)| ≤M.
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(d) The desired result follows similarly since

Cov (uituis, v1,juv2,jv)

= E

uituis λj√
N

(
1√
N

N∑
k=1

λkuku

) 1√
T

T∑
q=1

fqujq

 fv√
T


−E (uituis)E

 λj√
N

(
1√
N

N∑
k=1

λkuku

) 1√
T

T∑
q=1

fqujq

 fv√
T


=

1

NT

N∑
k=1

T∑
q=1

λjλkfqfv {E (uituisukuujq)−E (uituis)E (ukuujq)}

=
1

NT

T∑
q=1

λ2
jfqfv {E (uituisujuujq)−E (uituis)E (ujuujq)}

=
1

NT

T∑
q=1

λ2
jfqfv [1 {i = j} 1 {two pairs among {t, s, u, q}}] .

(e) The desired result follows since

Cov (uituis, v1,juv3,jv)

= E

uituis λj√
N

(
1√
N

N∑
k=1

λkuku

) 1√
NT

N∑
l=1

T∑
q=1

λlfqulq

 λjfv√
NT


−E (uituis)E

 λj√
N

(
1√
N

N∑
k=1

λkuku

) 1√
NT

N∑
l=1

T∑
q=1

λlfqulq

 λjfv√
NT


=

1

N2T

N∑
k=1

N∑
l=1

T∑
q=1

E
(
λ2
jλkλl

)
E (fqfv) {E (uituisukuulq)−E (uituis)E (ukuulq)}

= it should be [q=v and k=l]

=
1

N2T

N∑
k=1

E
(
λ2
jλ

2
k

)
E
(
f2
v

)
{E (uituisukuukv)−E (uituis)E (ukuukv)}

= it should be that i = k

=
1

N2T
E
(
λ2
jλ

2
i

)
E
(
f2
v

)
{E (uituisuiuuiv)−E (uituis)E (uiuuiv)}

≤ 1

N2T
E
(
λ2
jλ

2
i

)
1 {two pairs among {t, s, u, v}} .
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(f) Similarly, the desired result follows since

Cov (uituis, v2,juv3,jv)

= E

uituis
 1√

T

T∑
p=1

fpujp

 fu√
T

 1√
NT

N∑
l=1

T∑
q=1

λlfqulq

 λjfv√
NT


−E (uituis)E

 1√
T

T∑
p=1

fpujp

 fu√
T

 1√
NT

N∑
l=1

T∑
q=1

λlfqulq

 λjfv√
NT


=

1

NT 2

N∑
l=1

T∑
p=1

T∑
q=1

λjλlfpfqfufv {E (uituisujpulq)−E (uituis)E (ujpulq)}

=
1

NT 2

T∑
p=1

T∑
q=1

λ2
jfpfqfufv {E (uituisujpujq)−E (uituis)E (ujpujq)}

=
1

NT 2

T∑
p=1

T∑
q=1

λ2
jfpfqfufv [1 {i = j} 1 {two pairs among {t, s, u, q}}]

4. Cov (uitvis, ujuvjv) : Notice that

Cov (uitvis, ujuvjv)

= E (uitvisujuvjv)−E (uitvis)E (ujuvjv)

= E

 uit

(
λi√
N

(
1√
N

∑N
k=1 λkuks

)
+
(

1√
T

∑T
p=1 fpuip

)
fs√
T

+ ṽ (λ, f, u) λi√
N

fs√
T

)
×uju

(
λj√
N

(
1√
N

∑N
l=1 λlulv

)
+
(

1√
T

∑T
q=1 fqujq

)
fv√
T

+ ṽ (λ, f, u)
λj√
N

fv√
T

) 
−E (uitvis)E (ujuvjv) .

(a) The desired result follows since

Cov (uitv1,is, ujuv1,jv)

= E (uitv1,isujuv1,jv)−E (uitv1,is)E (ujuv1,jv)

= E

(
uituju

λi√
N

(
1√
N

N∑
k=1

λkuks

)
λj√
N

(
1√
N

N∑
l=1

λlulv

))

−E

(
uit

λi√
N

(
1√
N

N∑
k=1

λkuks

))
E

(
uju

λj√
N

(
1√
N

N∑
l=1

λlulv

))

=
1

N2

N∑
k=1

N∑
l=1

λiλkλjλl {E (uitujuuksulv)−E (uituks)E (ujuulv)}
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So,

1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uitv1,is, ujuv1,jv)|

=
1

NT 2

∑
t,s,u,v

∑
i,j

1

N2

N∑
k=1

N∑
l=1

[
λiλkλjλl

{
E (uitujuuksulv)

−E (uituks)E (ujuulv)

}]
≤ M

N3T 2

∑
t,s,u,v

∑
i,j,k,l

1 {two pairs among {i, j, k, l}} 1 {two pairs among {t, s, u, v}}

≤ M.

(b) Also, we have

Cov (uitv2,is, ujuv2,jv)

= E (uitv2,isujuv2,jv)−E (uitv2,is)E (ujuv2,jv)

= E

uituju
 1√

T

T∑
p=1

fpuip

 fs√
T

 1√
T

T∑
q=1

fqujq

 fv√
T


−E

uit
 1√

T

T∑
p=1

fpuip

 fs√
T

E
uju

 1√
T

T∑
q=1

fqujq

 fv√
T


=

1

T 2

T∑
p=1

T∑
q=1

fpfsfqfv {E (uituipujquju)−E (uituip)E (ujuujq)}

=
1

T 2

T∑
p=1

T∑
q=1

fpfsfqfv {1 {i = j} 1 {two pairs among {t, p, q, u}}}

So,
1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uitv2,is, ujuv2,jv)| ≤M.

(c) We can show the rest of the cases.

5. Cov (uitvis, vjuvjv) : There are 4 kinds, (i) # of v3,·· = 0, (ii) # of v3,·· = 1, (iii) # of v3,·· = 2,
and (iv) # of v3,·· = 4.

(a) When # of v3,·· = 0: For example, Cov (uitv1,is, v1,juv1,jv) . The desired result follows since

1

NT 2

∑
t,s,u,v

∑
i,j

|E (uitv1,isv1,juv2,jv)−E (uitv1,is)E (v1,juv2,jv)|

≤ M

NT 2

∑
t,s,u,v

∑
i,j

1

N2T

∑
i∗,j∗

∑
v∗

(E (uitui∗suj∗uujv∗)−E (uitui∗s)E (uj∗uujv∗))

≤ M

N3T 3

∑
t,s,u,v,v∗

∑
i,j,i∗,j∗

1 {two pairs among {i, i∗, j, j∗}} 1 {two pairs among {t, s, u, v∗}}

≤ M.
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(b) When # of v3,·· = 1: For example, Cov (uitv3,is, v1,juv2,jv) . The desired result follows since

1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uitv3,is, v1,juv2,jv)|

=
1

NT 2

∑
t,s,u,v

∑
i,j

|E (uitv3,isv1,juv2,jv)−E (uitv3,is)E (v1,juv2,jv)|

≤ M

NT 2

1

N2T 2

∑
t,s,u,v

∑
i,j

∑
i∗,j∗

∑
s∗,v∗

{E (uitui∗s∗uj∗uujv∗)−E (uitui∗s∗)E (uj∗uujv∗)}

=
M

N3T 4

∑
t,s,u,v

∑
i,j

∑
i∗,j∗

∑
s∗,v∗

1 {two pairs among {i, i∗, j, j∗}} 1 {two pairs among {t, s∗, u, v∗}}

≤ M.

(c) When # of v3,·· = 2: For example, Cov (uitv3,is, v3,juv2,jv) . The desired result follows since

1

NT 2

∑
t,s,u,v

∑
i,j

|Cov (uitv3,is, v3,juv2,jv)|

=
1

NT 2

∑
t,s,u,v

∑
i,j

|E (uitv3,isv1,juv2,jv)−E (uitv3,is)E (v3,juv2,jv)|

≤ M

NT 2

∑
t,s,u,v

∑
i,j

1

N2T 3

∑
i∗,j∗

∑
u∗,s∗,v∗

(E (uitui∗s∗uj∗u∗ujv∗)−E (uitui∗s∗)E (uj∗u∗ujv∗))

=
M

N3T 5

∑
t,s,u,v

∑
i,j

∑
i∗,j∗

∑
u∗,s∗,v∗

1 {two pairs among {i, i∗, j, j∗}} 1 {two pairs among {t, s∗, u∗, v∗}}

≤ M.

(d) For the other cases, notice that an additional v3,·· term addes an extra summation. However,
it also increases the order of the denominator by one. Therefore, the required result follows
by the same fashion.

6. Cov (vitvis, vjuvjv) : We go though the same type of analysis as in the previous cases.
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Tables

Table 1: For N = 300 and different combinations of T and true parameter β0 we report the bias and standard
deviation of the estimator β̂R, for R = 0, 1, . . . , 5, based on simulations with 10, 000 repetition of design (S.116),
where the true number of factors is R0 = 2.
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Table 2: For N = 300 and different combinations of T and true parameter β0 we report certain quantiles of the
distribution of

√
NT (β̂R − β0), for R = 2, 3, 4, 5, based on simulations with 10, 000 repetition of design (S.116),

where the true number of factors is R0 = 2.
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