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Abstract

In this paper we study the least squares (LS) estimator in a linear panel regression
model with interactive fixed effects for asymptotics where both the number of time
periods and the number of cross-sectional units go to infinity. Under appropriate
assumptions we show that the limiting distribution of the LS estimator for the re-
gression coefficients is independent of the number of interactive fixed effects used
in the estimation, as long as this number does not fall below the true number of
interactive fixed effects present in the data. The important practical implication of
this result is that for inference on the regression coefficients one does not necessarily
need to estimate the number of interactive effects consistently, but can rely on an
upper bound of this number to calculate the LS estimator.

Keywords: Panel data, interactive fixed effects, factor models, perturbation theory of
linear operators, random matrix theory.

JEL-Classification: C23, C33

1 Introduction

Panel data models typically incorporate individual and time effects to control for hetero-
geneity in cross-section and over time. While often these individual and time effects enter
the model additively, they can also be interacted multiplicatively, thus giving rise to so
called interactive effects, which we also refer to as a factor structure. The multiplicative
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form captures the heterogeneity in the data more flexibly, since it allows for common
time-varying shocks (factors) to affect the cross-sectional units with individual specific
sensitivities (factor loadings).1 It is this flexibility that motivated the discussion of inter-
active effects in the econometrics literature, e.g. Holtz-Eakin, Newey and Rosen (1988),
Ahn, Lee and Schmidt (2001; 2007), Pesaran (2006), Bai (2009b; 2009a), Zaffaroni (2009),
Moon and Weidner (2010), and Lu and Su (2013).

Let N be the number of cross-sectional units, T be the number of time periods, K be the
number of regressors, and R0 be the true number of interactive fixed effects. We consider
a linear regression model with observed outcomes Y , regressors Xk, and unobserved error
structure ε, namely

Y =

K∑
k=1

β0
k Xk + ε , ε = λ0 f0 ′ + e , (1.1)

where Y , Xk, ε and e are N × T matrices, λ0 is an N × R0 matrix, f0 is a T × R0

matrix, and the regression parameters β0
k are scalars — the superscript zero indicates the

true value of the parameters. We write β for the K-vector of regression parameters, and
we denote the components of the different matrices by Yit, Xk,it, eit, λ

0
ir and f0

tr, where
i = 1, . . . , N , t = 1, . . . , T , and r = 1, . . . , R0. It is convenient to introduce the notation
β ·X ≡

∑K
k=1 βkXk. All matrices, vectors and scalars in this paper are real valued.

We consider the interactive fixed effect specification, i.e. we treat λ0 and f0 as nuisance
parameters, which are estimated jointly with the parameters of interest β.2 The advantages
of the fixed effects approach are for instance that it is semi-parametric, since no assumption
on the distribution of the interactive effects needs to be made, and that the regressors can
be arbitrarily correlated with the interactive effect parameters.

The main goal of the paper is to estimate the regression coefficient β when the number
of the factors R0 is unknown. The estimator we study is the least squares (LS) estimator.3

The LS estimator of model (1.1) minimizes the sum of squared residuals eit to esti-
mate the unknown parameters β, λ and f . To our knowledge, this estimator was first
discussed in Kiefer (1980). Under an asymptotic where N and T grow to infinity, the
asymptotic properties of the LS estimator were derived in Bai (2009b) for strictly exoge-
neous regressors, and extended in Moon and Weidner (2010) to the case of pre-determined
regressors.

An important restriction of these papers is that the number of factors R0 is assumed
to be known. However, in many empirical applications there is no consensus about the
exact number of factors in the data or in the relevant economic model. If R0 is not known
beforehand, then it may be estimated consistently. However, most of the estimators for
R0 were developed for pure factor models that have no regressor. In order to use these

1The conventional additive model can be interpreted as a two factor interactive fixed effects model.
2When we refer to interactive fixed effects we mean that both factors and factor loadings are treated as non-

random parameters. Ahn, Lee and Schmidt (2001; 2007) take a hybrid approach in that they treat the factors
as non-random, but the factor loadings as random. The common correlated effects estimator of Pesaran (2006)
was introduced in a context, where both the factor loadings and the factors follow certain probability laws, but
it exhibits many properties of a fixed effects estimator.

3The LS estimator is sometimes called “concentrated” least squares estimator in the literature, and in an
earlier version of the paper we referred to it as the “Gaussian Quasi Maximum Likelihood Estimator”, since LS
estimation is equivalent to maximizing a conditional Gaussian likelihood function. Note also that for fixed β the
LS estimator for λ and f is simply the principal components estimator.
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existing results, one needs to find out the asymptotic properties of the estimator of β when
R (> R0) factors are used, which is the purpose of the current paper.

We investigate the asymptotic properties of the LS estimator when the true number
of factors R0 is unknown and R (> R0) number factors are used in the estimation.4 We
denote this estimator as β̂R.

The main result of the paper, presented in Section 3, is that under appropriate assump-
tions the LS estimator β̂R has the same limiting distribution as β̂R0 for any R ≥ R0 under
an asymptotic where both N and T become large, while R0 and R are constant. This
implies that the LS estimator β̂R is asymptotically robust towards inclusion of extra inter-
active effects in the model, and within the LS estimation framework there is no asymptotic
efficiency loss from choosing R larger than R0. The important empirical implication of
our result is that the number of factors R0 need not be known or estimated accurately to
apply the LS estimator.

To derive this robustness result, we impose more restrictive conditions than those
typically assumed with known R0. These include that the errors eit are independent and
identically (iid) normally distributed and that the regressors are composed of a “low-
rank” strictly stationary component, a “high-rank” strictly stationary component, and
a “high-rank” pre-determined component.5 Notice that while some of these restrictions
are necessary for our robustness result (see Section 4.3), some of them (e.g. iid normality
of eit) are technical regularity conditions required to use certain results from the theory
of random matrices (see the discussion in Section 4.5). In the Monte Carlo simulations
in Section 5, we consider DGPs that violate some technical conditions to demonstrate
robustness of the result.

In Section 4, under less restrictive assumptions, we provide intermediate results that
lead to the main result. In Section 4.1 we show

√
min(N,T )-consistency of the LS esti-

mator β̂R as N,T →∞ under very mild regularity condition on Xit and eit, and without
imposing any assumptions on λ0 and f0 apart from R ≥ R0. We thus obtain consistency of
the LS estimator not only for unknown number factors, but also for weak factors6, which
is a remarkable robustness result.

In Section 4.2 we derive an asymptotic expansion of the LS profile objective function
that concentrates out f and λ, for the case R = R0. Given that the profile objective
function is a sum of eigenvalues of a covariance matrix, its quadratic approximation is
challenging because the derivatives of the eigenvalues with respect to β are not gener-
ally known. We thus cannot use a conventional Taylor expansion, but instead apply the
perturbation theory of linear operators to derive the approximation. The resulting expan-
sion of the profile objective function can be used to reproduce the asymptotic results in
Bai (2009b). In Moon and Weidner (2010) we employ the results derived here to extend
Bai’s result to the case of pre-determined regressors.

In Section 4.3 we provide an example that satisfies the typical assumptions imposed
with known R0, so that β̂R0 is

√
NT consistent, but we show that β̂R with R > R0 is only

4For R < R0 the LS estimator can be inconsistent, since then there are interactive fixed effects in the model
which can be correlated with the regressors but are not controlled for in the estimation. We therefore restrict
attention to the case R ≥ R0.

5The pre-determined component of the regressors allows for linear feedback of eit into future realizations of
Xk,it.

6Onatski (2012) discusses the “weak factor” assumption for the purpose of estimating the number of factors
in a pure factor model, and a more general discussion of strong and weak factors is given in Chudik, Pesaran
and Tosetti (2011).
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√
min(N,T ) consistent in that example. This shows that stronger conditions are required

to derive our main result.
In Section 4.4 we show faster than

√
min(N,T )-convergence of β̂R under assumptions

that are less restrictive than those employed for the main result, in particular allowing for
either cross-sectional or time-serial correlation of the errors eit.

In Section 4.5 we provide an alternative version of our main result of asymptotic equiv-
alence of β̂R0 and β̂R, R > R0, which is derived under high-level assumptions. Verifying
those high-level assumptions requires good knowledge of the properties of the eigenvalues
and eigenvectors of the random covariance matrix of the errors e. Further progress in the
Random Matrix Theory of real random covariance matrices (see e.g. Bai (1999)) might
allow to verify those high-level assumptions for more general error distributions e.

Section 5 contains Monte Carlo simulation results for a static panel model. We consider
a DGP that violates the iid normality restriction of the error term. The simulation results
confirm our main result of the paper even with a relatively small sample size (e.g. N =
100, T = 10) and non-iid-normal errors. In the supplementary appendix, we report the
Monte Carlo simulation results of an AR(1) panel model. It also confirms the robust result
in large samples, but in finite samples it shows more inefficiency than the static case. In
general, one should expect some finite sample inefficiency from overestimating the number
of factors when the sample size is small or the number of overfitted factors is large.

A few words on notation. The transpose of a matrix A is denoted by A′. For a
column vectors v its Euclidean norm is defined by ‖v‖ =

√
v′v . For an m × n matrix

A the Frobenius or Hilbert Schmidt norm is ‖A‖HS =
√

Tr(AA′), and the operator or

spectral norm is ‖A‖ = max06=v∈Rn
‖Av‖
‖v‖ . Furthermore, we use PA = A(A′A)†A′ and

MA = 1 − A(A′A)†A′, where 1 is the m ×m identity matrix, and (A′A)† denotes some
generalized inverse, in case A is not of full column rank. For square matrices B, C, we use
B > C (or B ≥ C) to indicate that B − C is positive (semi) definite. We use “wpa1” for
“with probability approaching one”.

2 Identification of β0, λ0f 0′, and R0

In this section we provide a set of conditions under which the regression coefficient β0,
the interactive fixed effects λ0f0′, and the number of factors R0 are determined uniquely
by the data. Here, and throughout the whole paper, we treat λ and f as non-random
parameters, i.e. all stochastics in the following are implicitly conditional on λ and f . Let
xk = vec(Xk), the NT -vectorization of Xk, and let x = (x1, . . . , xK), which is a NT ×K
matrix.

Assumption ID (Assumptions for Identification).

(i) The second moments of Xit and eit exist for all i, t.

(ii) E(eit) = 0, E(Xiteit) = 0, for all i, t.

(iii) E[x′(MF ⊗Mλ0)x] > 0, for all F ∈ RT×R,

(iv) R0 ≡ rank(λ0f0′) ≤ R.
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Theorem 2.1 (Identification). Suppose that the Assumptions ID are satisfied. Then,

β0, λ0f0′, and R0 are identified.7

Assumption ID(i) imposes existence of second moments. Assumption ID(ii) is an
exogeneity condition, which demands that xit and eit are not correlated contemporane-
ously, but allows for pre-determined regressors like lagged dependent variables. Assump-
tion ID(iv) imposes that the true number of factors R0 = rank(λ0f0′) is bounded by a
positive integer R, which cannot be too large (e.g. the trivial bound R = N is not possible),
since otherwise Assumption ID(iii) cannot be satisfied.

Assumption ID(iii) is a non-collinearity condition, which demands that the regressors
have significant variation across i and over t after projecting out all variation that can be
explained by the factor loadings λ0 and by arbitrary factors F ∈ RT×R. This generalizes
the within variation assumption in the conventional fixed effect panel regression, which in
our notation reads E[x′(M1T ⊗1N )x] > 0. This conventional fixed effect assumption rules
out time-invariant regressors. Similarly, Assumption ID(iii) rules out more general “low-
rank regressors”, including both time-invariant and cross-sectional invariant regressors.8

3 Main Result

The estimator we investigate in this paper is the least squares (LS) estimator, which for a
given choice of R reads9

(
β̂R, Λ̂R, F̂R

)
∈ argmin
{β∈RK , Λ∈RN×R, F∈RT×R}

∥∥Y − β ·X − ΛF ′
∥∥2

HS
, (3.1)

where ‖.‖HS refers to the Hilbert Schmidt norm, also called Frobenius norm. The objective
function ‖Y − β ·X − ΛF ′‖2HS is simply the sum of squared residuals. The estimator
for β0 can equivalently be defined by minimizing the profile objective function that con-
centrates out the R factors and the R factor loadings, namely

β̂R = argmin
β∈RK

LRNT (β) , (3.2)

7Here, identification means that β0 and λ0f0′ can be uniquely recovered from the distribution of (Y,X)
conditional on those parameters. Identification of the number of factors follows since R0 = rank(λ0f0′). The
factor loadings and factors λ0 and f0 are not separately identified without further normalization restrictions,
but the product λ0f0′ is identified.

8We do not consider such “low-rank regressors” in this paper. Further discussion can be found in Bai (2009b),
whose Assumption A is the sample version of Assumption ID(iii). See also our discussion of Assumption NC
below.

9The optimal Λ̂R and F̂R in (3.1) are not unique, since the objective function is invariant under right-
multiplication of Λ with a non-degenerate R × R matrix S, and simultaneous right-multiplication of F with
(S−1)′. However, the column spaces of Λ̂R and F̂R are uniquely determined.
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with10

LRNT (β) = min
{Λ∈RN×R, F∈RT×R}

1

NT

∥∥Y − β ·X − ΛF ′
∥∥2

HS

= min
F∈RT×R

1

NT
Tr
[
(Y − β ·X)MF (Y − β ·X)′

]
=

1

NT

T∑
r=R+1

µr
[
(Y − β ·X)′ (Y − β ·X)

]
, (3.3)

where, µr(.) is the r’th largest eigenvalue of the matrix argument. Here, we first concen-
trated out Λ by use of its own first order condition. The resulting optimization problem
for F is a principal components problem, so that the the optimal F is given by the R
largest principal components of the T × T matrix (Y − β ·X)′ (Y − β ·X). At the op-
timum the projector MF therefore exactly projects out the R largest eigenvalues of this
matrix, which gives rise to the final formulation of the profile objective function as the
sum over its T − R smallest eigenvalues.11 Since the model is symmetric under N ↔ T ,
Λ ↔ F , Y ↔ Y ′, Xk ↔ X ′k there also exists a dual formulation of LRNT (β) that involves

solving an eigenvalue problem for an N × N matrix. We write L0
NT (β) for LR0

NT (β), the
profile objective function obtained for the true number of factors. Notice that we do not
impose a compact parameter set for β.

Assumption SF (Strong Factor Assumption).

(i) 0 < plimN,T→∞
1
N λ0′λ0 <∞,

(ii) 0 < plimN,T→∞
1
T f

0′f0 <∞.

Assumption NC (Non-Collinearity of Xk). Consider linear combinations α ·X =∑K
k=1 αkXk of the regressors Xk with K-vector α such that ‖α‖ = 1. We assume that

there exists a constant b > 0 such that

min
{α∈RK , ‖α‖=1}

T∑
r=R+R0+1

µr

[
(α ·X)′(α ·X)

NT

]
≥ b , wpa1.

Assumption LL (Low Level Conditions for Main Result).

(i) Decomposition of Regressors: Xk = Xk + X̃str
k + X̃weak

k , for k = 1, . . . ,K, where

Xk, X̃str
k and X̃weak

k are N × T matrices, and

(i.a) Low-Rank (strictly exogenous) Part of Regressors: rank(Xk) is bounded

as N,T →∞, and 1
NT

∑N
i=1

∑T
t=1X

2
k,it = OP (1).

10The profile objective function LRNT (β) need not be convex in β and can have multiple local minima. Depend-
ing on the dimension of β one should either perform an initial grid search or try multiple starting values for the
optimization when calculating the global minimum β̂R numerically. See also Section S.7 of the supplementary
material.

11This last formulation of LRNT (β) is very convenient since it does not involve any explicit optimization over
nuisance parameters. Numerical calculation of eigenvalues is very fast, so that the numerical evaluation of
LRNT (β) is unproblematic for moderately large values of T .
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(i.b) High-Rank (strictly exogenous) Part of Regressors: ‖X̃str
k ‖ = OP (N3/4),

as can be justified e.g. by Lemma A.1 in the appendix.

(i.c) Weakly Exogenous Part of Regressors: X̃weak
k,it =

∑t−1
τ=1 γτei,t−τ , where the

real valued coefficients γτ satisfy
∑∞

τ=1 |γτ | <∞.

(i.d) Bounded Moments: We assume that E |Xk,it|2, E
∣∣(Mλ0XkMf0)it

∣∣26
, E |(Mλ0Xk)it|8

and E
∣∣(XkMf0)it

∣∣8 are bounded uniformly over k, i, j, N and T .

(ii) Errors are iid Normal: The error matrix e is independent of λ0, f0, Xk, and

X̃str
k , k = 1, . . . ,K, and its elements eit are distributed as iid N (0, σ2).

(iii) Number of Factors not Underestimated: R ≥ R0 = rank(λ0f0′).

Remarks

(i) Assumption SF assumes that the factor f0 and the factor loading λ0 are strong. The
strong factor assumption is regularly imposed in the literature on largeN and T factor
models, including Bai and Ng (2002), Stock and Watson (2002) and Bai (2009b).

(ii) Assumption NC assumes that there exists significant sampling variation in the re-
gressors after concentrating out R + R0 factors (or factor loadings). It is a sample
version of the identification Assumption ID(iii), and it is essentially equivalent to
Assumption A of Bai (2009b), but avoids mentioning the unobserved loadings λ0.12

(iii) Assumption NC is violated if there exists a linear combination α ·X of the regressors
with α 6= 0 and rank(α ·X) ≤ R+R0, i.e. the assumption rules out “low-rank regres-
sors” like time invariant regressors or cross-sectionally invariant regressors. These
low-rank regressors require a special treatment in the interactive fixed effect model,
see Bai (2009b) and Moon and Weidner (2010), and we do not consider them in the
present paper. If one is not interested explicitly in their regression coefficients, then
one can always eliminate the low-rank regressors by an appropriate projection of the
data, e.g. subtraction of the time (or cross-sectional) means from the data eliminates
all time-invariant (or cross-sectionally invariant) regressors.

(iv) The norm restriction in Assumption LL(i.b) is a high level assumption. It is satisfied
as long as X̃weak

k,it is mean zero and weakly correlated across i and over t, for details
see Appendix A.1 and Lemma A.1 there.

(v) Assumption LL(i) imposes that each regressor consists of three parts: (a) a strictly
exogenous low rank component , (b) a strictly exogenous component satisfying a norm
restriction, and (c) a weakly exogenous component that follows a linear process with
innovation given by the lagged error term eit. For example, if Xk,it ∼ iidN (µk, σ

2
k),

independent of e, then we have Xk,it = µk, X̃
str
k,it ∼ iidN (0, σ2

k) and X̃weak
k = 0.

Assumption LL(i) is also satisfied for a stationary panel VAR with interactive fixed
effects as in Holtz-Eakin, Newey and Rosen (1988). A special case of this is a dynamic

12By dropping the expected value from Assumption ID(iii) and replacing the zero lower bound by a
positive constant one obtains infF [x′(MF ⊗Mλ0)x/NT ] ≥ b > 0, wpa1, which is equivalent to Assump-
tion A of Bai (2009b), and can also be rewritten as min‖α‖=1 infF Tr [Mλ0(α ·X)′MF (α ·X)/NT ] ≥ b. A
slightly stronger version of the Assumption, which avoids mentioning the unobserved factor loading λ0, reads
min‖α‖=1 infF infλ Tr [Mλ(α ·X)′MF (α ·X)/NT ] ≥ b, where F ∈ RT×R and λ ∈ RN×R0

, and this slightly
stronger version is equivalent to Assumption NC.

7



panel regression with fixed effects, where Yit = βYi,t−1 +λ0′
i f

0
t + eit, with |β| < 1 and

“infinite history”. In this case, we have Xit = Yi,t−1 = Xit + X̃str
it + X̃weak

it , where

Xit = λ0′
i

∑∞
τ=1 β

τ−1f0
t−τ , X̃str

it =
∑∞

τ=t β
τ−1ei,t−τ , and X̃weak

it =
∑t−1

τ=0 β
τ−1ei,t−τ .

(vi) Assumption LL(i) is more general than the restriction on the regressors in Pe-
saran (2006), where – in our notation – the decomposition Xk = Xk + X̃str

k is
imposed, but the lower rank component Xk needs to satisfy further assumptions,
and the weakly exogenous component X̃weak

k is not considered. Bai (2009b) requires
no such decomposition, but imposes strict exogeneity of the regressors.

(vii) Among the conditions in Assumption LL, the iid normality condition in Assump-
tion LL(ii) may be the most restrictive. In Section 4 provides more general high-
level conditions under which the main result in Theorem 3.1 holds. Verifying those
high-level conditions requires results on the eigenvalues and eigenvectors of random
covariance matrices, see Assumption EV below. By using results from the random
matrix theory literature we are able to verify those high-level condition for the case of
iid normal errors. We believe, however, that those high-level conditions and thus our
main result hold more generally, and we explore non-normal and serially correlated
errors in our Monte Carlo simulations below.

Theorem 3.1 (Main Result). Let Assumption SF, NC and LL hold and consider a limit

N,T →∞ with N/T → κ2, 0 < κ <∞. Then we have

√
NT

(
β̂R − β0

)
=
√
NT

(
β̂R0 − β0

)
+ oP (1).

Theorem 3.1 follows from Theorem 4.6 and Lemma 4.7 below. Under appropriate
conditions the theorem states that the inclusion of unnecessary factors in the estimation
does not change the asymptotic distribution of the LS estimator for β0. From Bai (2009b)
and Moon and Weidner (2010) it is known that

√
NT

(
β̂R0−β0

)
is asymptotically normally

distributed, so the same is true for
√
NT

(
β̂R − β0

)
, R > R0, and the asymptotic bias and

variance of β̂R0 and β̂R are also shown to be identical by the theorem.13,14

In the rest of this section we provide a heuristic discussion of the main result. Intu-
itively, the inclusion of unnecessary factors in the LS estimation is similar to the inclusion
of irrelevant regressors in an OLS regression. In the OLS case it is well known that if
those irrelevant extra regressors are uncorrelated with the regressors of interest, then they
have no effect on the asymptotic distribution of the regression coefficients of interest. It is
thus natural to expect that if the extra estimated factors in F̂R are asymptotically uncor-
related with the regressors, then the result of Theorem 3.1 should hold. To explore this,
remember that the estimator F̂R is given by the first R principal components of the matrix

13Bai (2009b) finds asymptotic bias in β̂R0 due to heteroscedasticity and correlation in eit, which in our
asymptotic result is ruled out by Assumption LL(ii), but is studies in our Monte Carlo simulations below. Moon

and Weidner (2010) work out the additional asymptotic bias in β̂R0 due to pre-determined regressors, which is
allowed for in Theorem 3.1.

14Interestingly, a result analogous to Theorem 3.1 does not hold when comparing the pooled panel OLS
estimator (β̂0) to the within group estimator (the analog of β̂1 for standard fixed effects) in a situation where no
fixed effects are present in the true DGP (R0 = 0). In that case one imposes a factor that is redundant (namely
f0 = (1, 1, . . . , 1)′), while in our case we are estimating a redundant factor by principal components.

8



(Y − β̂R ·X)′(Y − β̂R ·X), and write

Y − β̂R ·X = λ0f0′ + e− (β̂R − β0) ·X. (3.4)

The strong factor assumption guarantees that the first R0 principal components of (Y −
β̂R ·X)′(Y − β̂R ·X) are close to f0 asymptotically, i.e. the true factors are correctly picked
up by the principal component estimator. The additional R − R0 principal components
that are estimated for R > R0 cannot pick up anymore true factors and are thus mostly
determined by the remaining term e− (β̂R−β0) ·X. The key question for the properties of
the extra estimated factors, and thus of β̂R, is therefore whether the principal components
obtained from e− (β̂R − β0) ·X are dominated by e or by (β̂R − β0) ·X. Only if they are
dominated by e can we expect the extra factors in F̂R to be uncorrelated with X and thus
the result in Theorem 3.1 to hold.

Under our assumptions we have ‖e‖ = OP (
√
N) and ‖Xk‖ = OP (

√
NT ) as N and

T grow at the same rate. Thus, if the convergence rate of β̂R is faster than
√
N , i.e.

‖β̂R−β0‖ = oP (
√
N), then we have ‖e‖ �

∥∥∥(β̂R − β0) ·X
∥∥∥ asymptotically, and we expect

the extra F̂R to be dominated by e and thus the main result to hold. A key step in
the derivation of the main result is therefore to show faster than

√
N convergence of β̂R.

Conversely, we expect counter examples to the main result to be such that the convergence
rate of the estimator β̂R is not faster than

√
N , and we provide such a counter example

– which, however, violates Assumptions LL – in Section 4.3 below. Whether the nice
OLS intuition about “inclusion of irrelevant regressors” carries over to the “inclusion of
irrelevant factors” thus crucially depends on the convergence rate of β̂R.

4 Asymptotic Theory of β̂R

In this section we introduce the key intermediate results that lead to the main Theorem 3.1
stated above. These intermediate results may be useful independently of the main result,
e.g. Moon and Weidner (2010) and Moon, Shum, and Weidner (2012) use the results es-
tablished here for the case of known R = R0. The assumptions SN, EX, DX-1 and EV that
are sequentially introduced in this Section are all implied by the low-level Assumptions LL
above, see Lemma 4.7 below.

4.1 Consistency of β̂R

Here we present a consistency result for β̂R under an arbitrary asymptotic N,T → ∞,
i.e. without the assumption that N and T grow at the same rate, which is imposed
everywhere else in the paper. In addition to Assumption NC we require the following high
level assumptions to obtain the result.

Assumption SN (Spectral Norm of Xk and e).

(i) ‖Xk‖ = OP (
√
NT ), k = 1, . . . ,K,

(ii) ‖e‖ = OP (
√

max(N,T )).

Assumption EX (Weak Exogeneity of Xk).
1√
NT

Tr(Xke
′) = OP (1), k = 1, . . . ,K.
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Theorem 4.1. Let Assumptions SN, EX and NC be satisfied and let R ≥ R0. For

N,T →∞ we then have
√

min(N,T )
(
β̂R − β0

)
= OP (1).

Remarks

(i) One can justify Assumption SN(i) by use of the norm inequality ‖Xk‖ ≤ ‖Xk‖HS
and the fact that ‖Xk‖2HS =

∑
i,tX

2
k,it = OP (NT ), where the last step follows e.g. if

Xk,it has a uniformly bounded second moment.

(ii) Assumption SN(ii) is a condition on the largest eigenvalue of the random covariance
matrix e′e, which is often studied in the literature on random matrix theory, e.g.
Geman (1980), Bai, Silverstein, Yin (1988), Yin, Bai, and Krishnaiah (1988), Silver-
stein (1989). The results in Latala (2005) show that ‖e‖ = OP (

√
max(N,T )) if e has

independent entries with mean zero and uniformly bounded fourth moment. Weak
dependence of the entries eit across i and over t is also permissible, see Appendix A.1

(iii) Assumption EX requires exogeneity of the regressors Xk that is not necessarily strict
and some weak dependence of Xk,iteit across i and over t.15

(iv) The theorem imposes no restriction at all on f0 and λ0, apart from the condition
R ≥ rank(λ0f0′).16 In particular, the strong factor Assumption SF is not imposed
here, i.e. consistency of β̂R holds independently of whether the factors are strong,
weak, or not present at all. This is a remarkable robustness result, which is new in
the literature.

(v) Under an asymptotic where N and T grow at the same rate, which is imposed every-
where else in the paper, Theorem 4.1 shows

√
N (or equivalently

√
T ) consistency of

the estimator β̂R.

4.2 Quadratic Approximation of L0
NT (β)(≡ LR

0

NT (β))

To derive the limiting distribution of β̂R, we study the asymptotic properties of the profile
objective function LRNT (β) around β0. The expression in (3.3) cannot easily be discussed
by analytic means, since no explicit formula for the eigenvalues of a matrix is available.
In particular, a standard Taylor expansion of LRNT (β) around β0 cannot easily be derived.
Here, we consider the case of known R = R0 and we perform a joint expansion of the
corresponding profile objective function L0

NT (β) in the regression parameters β and in the
idiosyncratic error terms e. To perform this joint expansion we apply the perturbation
theory of linear operators (e.g., Kato (1980)). We thereby obtain an approximate quadratic
expansion of L0

NT (β) in β, which can be used to derive the first order asymptotic theory

15Note that 1√
NT

Tr(Xke
′) = 1√

NT

∑
i

∑
tXk,iteit.

16This is the main reason why we use a slightly different non-collinearity Assumption NC, which avoids
mentioning λ0, compared to Bai (2009b).
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of the LS estimator β̂R0 , see also Appendix A.2. Define

Wk1k2 =
1

NT
Tr(Mλ0 Xk1 Mf0 X

′
k2) ,

C
(1)
k =

1√
NT

Tr(Mλ0 XkMf0 e
′) ,

C
(2)
k = − 1√

NT

[
Tr
(
eMf0 e

′Mλ0 Xk f
0 (f0′f0)−1 (λ0′λ0)−1 λ0′)

+ Tr
(
e′Mλ0 eMf0 X

′
k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+ Tr

(
e′Mλ0 XkMf0 e

′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) ] . (4.1)

Let W be the K×K matrix with elements Wk1k2 , and let C(1) and C(2) be K-vectors with

elements C
(1)
k and C

(2)
k , respectively.

Theorem 4.2. Let Assumptions SF and SN be satisfied. Suppose that N,T → ∞ with

N/T → κ2, 0 < κ <∞. Then we have

L0
NT (β) = L0

NT (β0)− 2√
NT

(
β − β0

)′ (
C(1) + C(2)

)
+
(
β − β0

)′
W
(
β − β0

)
+ L0,rem

NT (β),

where the remainder term L0,rem
NT (β) satisfies for any sequence cNT → 0

sup
{β:‖β−β0‖≤cNT }

∣∣∣L0,rem
NT (β)

∣∣∣(
1 +
√
NT ‖β − β0‖

)2 = op

(
1

NT

)
.

The bound on remainder17 in Theorem 4.2 is such that it has no effect on the first order
asymptotic theory of β̂R0 , as stated in the following corollary (see also Andrews (1999)).

Corollary 4.3. Let Assumptions SF, SN, EX and NC be satisfied. In the limit N,T →∞
with N/T → κ2, 0 < κ < ∞, we then have

√
NT

(
β̂R0 − β0

)
= W−1

(
C(1) + C(2)

)
+

oP
(
1 + ‖C(1)‖

)
. If we furthermore assume that C(1) = OP (1), then we obtain

√
NT

(
β̂R0 − β0

)
= W−1

(
C(1) + C(2)

)
+ oP (1) = OP (1).

Note that our assumptions already guarantee C(2) = OP (1) and that W is invertible
with W−1 = OP (1), so this need not be explicitly assumed in Corollary 4.3.

Remarks

(i) Corollary 4.3 allows to replicate the result in Bai (2009b) on the asymptotic distri-

17The expansion in Theorem 4.2 contains a term that is linear in β and linear in e (C(1) term), a term that is
linear in β and quadratic in e (C(2) term), and a term that is quadratic in β (W term). All higher order terms
of the expansion are contained in the remainder term L0,rem

NT (β).
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bution of β̂R0 .18 Furthermore, the assumptions in the corollary do not restrict the
regressor to be strictly exogenous and do not impose Assumption LL. The techniques
developed here are applied in Moon and Weidner (2010) to discuss pre-determined
regressors in the linear factor regression model with R = R0.

(ii) If one weakens Assumption SN(ii) to ‖e‖ = oP (N2/3), then Theorem 4.2 still con-
tinues to hold. If we assume that C(2) = OP (1), then Corollary 4.3 also holds under
this weaker condition on ‖e‖.

More details on the expansion of L0
NT (β) are provided in Appendix A.2 and the formal

proofs can be found in in Section S.2 of the supplementary appendix.

4.3 Remarks On the Convergence Rate of β̂R for R > R0

The results in Bai (2009b) and Corollary 4.3 above show that under appropriate assump-
tions the estimator β̂R is

√
NT -consistent for R = R0. For R > R0 we know from

Theorem 4.1 that β̂R is
√
N consistent as N and T grow at the same rate, but we have not

shown faster than
√
N converge of β̂R for R > R0, yet, which according to the heuristic

discussion at the end of Section 3 is a very important step.19 However, one might not
obtain a faster than

√
N convergence rate of β̂R for R > R0 without imposing further

restrictions, as the following example shows:

Proposition 4.4. Let R0 = 0 (no true factors) and K = 1 (one regressor). The model

reads Yit = β0Xit + eit, and we consider the following data generating process (DGP)

Xit = aX̃it + λx,ifx,t, e =

(
1N + c

λxλ
′
x

N

)
u

(
1T + c

fxf
′
x

T

)
,

where e and u are N × T matrices with entries eit and uit, respectively, and λx is an N -

vector with entries λx,i, and fx is a T -vector with entries fx,t. Let X̃it and uit be mutually

independent iid standard normally distributed random variables. Let λx,i ∈ B and fx,t ∈ B
be non-random sequences with bounded range B ⊂ R such that 1

N

∑N
i=1 λ

2
x,i → 1 and

1
T

∑T
t=1 f

2
x,t → 1 asymptotically.20 Consider N,T →∞ such that N/T → κ2, 0 < κ <∞,

18Let ρ, D(.), D0, DZ , B0 and C0 be the notation used in Assumption A and Theorem 3 of Bai (2009b), and
let Bai’s assumptions be satisfied. Then, our κ, W , C(1) and C(2) satisfy κ = ρ−1/2, W = D(f0) →p D > 0,
C(1) →d N (0, DZ) and W−1C(2) →p ρ1/2B0 + ρ−1/2C0. Corollary 4.3 can therefore be used to replicate
Theorem 3 in Bai (2009b). For more details and extensions of this we refer to Moon and Weidner (2010).

19One reason why β̂R might only converge at
√
N rate, but not faster, are weak factors (both for R > R0

and for R = R0). A weak factor (see e.g. Onatski (2012) and Chudik, Pesaran and Tosetti (2011)) might not

be picked up at all or might only be estimated very inaccurately by the principal components estimator F̂R, in
which case that factor is not properly accounted for in the LS estimation procedure. If this happens and the
weak factor is correlated with the regressors, then there is some uncorrected weak endogeneity problem, and β̂R
will only converge at

√
N rate. The problem will become more severe if there are many weak factors, but we

restrict attention to R0 ≤ R here, in which case weak factors can only “spoil” the convergence rate of β̂R, but
not its consistency. We do not consider the issue of weak factors any further in this paper.

20The proposition also holds if λx and fx are random (but independent of e and X̃) and also if the range B is
unbounded. We assume non-random λx and fx to guarantee that the DGP satisfies Assumption D of Bai (2009b),
namely that X and e are independent (otherwise we only have mean-independence, i.e. E(e|X) = 0). Similarly,
we assume bounded B to satisfy the restrictions on eit imposed in Assumption C of Bai (2009b).
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and let 0 < a < (1/2)2/3 min(κ2, κ−2) and c ≥ (2+
√

2)(1+κ)(1+
√

3a−1/4)

min(1,κ)[1/2−a3/2 max(κ,κ−1)]
.21 Let L1

NT (β) be

the profile objective function for R = 1, defined in (3.3). Then, for any sequence ∆NT > 0

with ∆NT = o(N−1/2) we have

min
β∈R
L1
NT (β) < min

β∈[β0−∆NT ,β0+∆NT ]
L1
NT (β), wpa1.

This implies that
∥∥∥β̂1 − β0

∥∥∥ cannot converge to zero at a faster than
√
N rate.

Remarks

(i) In Proposition 4.4 we have R0 = 0, i.e. the estimator β̂0 based on the correct number
of factors is just the OLS estimator, which is

√
NT consistent for this DGP. However,

for R = 1 the proposition together with Theorem 4.1 shows that β̂1 only converges at
a
√
N rate to the true parameter β0, i.e. β̂0 and β̂1 are certainly not asymptotically

equivalent here.

(ii) The DGP in Proposition 4.4 satisfies all the assumptions imposed in Corollary 4.3 to
derive the limiting distribution of the LS-estimator for R = R0. It also satisfies all the
regularity conditions imposed in Bai (2009b) — see Section S.8 in the supplementary
material for more details.

(iii) The regressor Xit in Proposition 4.4 is strictly exogenous and it is a “high-rank re-
gressor” that satisfied the generalized non-collinearity Assumption NC for any values
of R and R0. The errors eit are mean zero and correlated across i and over t, namely

E(eitejs) = ΣijΩts, where Σ =
(
1N + c λxλ

′
x

N

)2
and Ω =

(
1T + c fxf

′
x

T

)2
. The cross-

sectional and time-serial covariance matrices Σ and Ω have diagonal elements of order
one and off-diagonal elements of order 1/N and 1/T , respectively, i.e. both types of
correlation become weak as N and T become large.

(iv) The aspect that is special about this DGP is that λx and fx feature both in Xit

and in the second moment structure of eit, characterized by Σ and Ω. The heuristic
discussion at the end of Section 3 provides some intuition why this can be problematic,
because the leading principal components obtained from only the error matrix e will
have a strong sample correlation with Xit for this DGP. It appears rather unlikely to
us that something like this would happen in a practical application, and we believe
that the example in Proposition 4.4 is really quite artificial in that regard. From a
theoretical perspective, however, the example is quite instructive, since it shows that
the main result in Theorem 3.1 does not necessarily hold under the assumptions we
have imposed so far in this section, and that stronger assumptions are necessary to
study β̂R for R > R0 than for R = R0.

4.4 N 3/4-Convergence Rate of β̂R for R > R0

The discussion at the end of Section 3 and in the last subsection reveals that showing
faster than

√
N convergence of β̂R is a very important step on the way to the main result.

21The bounds on the constants a and c imposed in the proposition are sufficient, but not necessary. Simulation
evidence suggests that the result in the proposition holds for a much larger range of a, c values.
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For purely technical reasons we show N3/4-convergence first, but it will usually be the case
that if β̂R is N3/4-consistent, then it is also

√
NT -consistent as N and T grow at the same

rate. We require one of the following two alternative assumptions.

Assumption DX-1 (Decomposition of Xk and Distribution of eit, Version 1).

(i) For k = 1, . . . ,K we have Xk = Xk + X̃k, where rank(Xk) is bounded as N,T →∞,

and ‖Xk‖ = OP (
√
NT ), and ‖X̃k‖ = OP (N3/4).

(ii) Let u be an N×T matrix whose elements are distributed as i.i.d. N (0, 1), independent

of λ0, f0 and Xk, k = 1, . . . ,K, and let one of the following hold

(a) either: e = Σ1/2 u, where Σ is an N × N covariance matrix, independent of

u, which satisfies ‖Σ‖ = OP (1). In that case, define g to be an N × Q ma-

trix, independent of u, for some Q ≤
∑K

k=1 rank(Xk), such that g′g = 1Q and

span(Mλ0Xk) ⊂ span(g) for all k = 1, . . . ,K.22

(b) or: e = uΣ1/2, where Σ is a T × T covariance matrix, independent of u, which

satisfies ‖Σ‖ = OP (1). In that case, define g to be a T ×Q matrix, independent

of u, for some Q ≤
∑K

k=1 rank(Xk), such that g′g = 1Q and span(Mf0X
′
k) ⊂

span(g) for all k = 1, . . . ,K.

In addition, we assume that there exist a (potentially random) integer sequence n =

nNT > 0 with 1/n = OP (1/N) such that µn(Σ) ≥ ‖g′Σg‖. Finally, assume that

either R ≥ Q or that g′Σg = ‖g′Σg‖1Q +OP (N−1/2).

Assumption DX-2 (Decomposition of Xk and Distribution of eit, Version 2).

(i) For k = 1, . . . ,K we have Xk = Xk + X̃k, such that Mλ0XkMf0 = 0, and ‖Xk‖ =

OP (
√
NT ), and ‖X̃k‖ = OP (N3/4).

(ii) ‖e‖ = OP (
√

max(N,T )). (same as Assumption SN(ii))

Theorem 4.5. Let R > R0. Let Assumptions SF, NC and EX hold, and let either

Assumption DX-1 or DX-2 be satisfied. Consider N,T →∞ with N/T → κ2, 0 < κ <∞.

Then we have N3/4
(
β̂R − β0

)
= OP (1).

Remarks

(i) Assumption SN is not explicitly imposed in Theorem 4.5, because it is already implied
by both Assumption DX-1 and DX-2, see also Lemma 4.7 below.

(ii) The restrictions that Assumption DX-1 imposes on Xk are weaker than those imposed
in Assumption LL above. The regressors are decomposed into a low-rank strictly
exogenous part Xk and a term X̃k, which can be both strictly or weakly exogenous.
The spectral norm bound ‖X̃k‖ = OP (N3/4) is satisfied as long as X̃k,it is mean zero

22The column space of g thus contains the column space of all Mλ0Xk. g′g = 1Q is just a normalization.
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and weakly correlated across i and over t, see Appendix A.1. We can always write
Xk = `h′ for some appropriate ` ∈ RN×rank(Xk) and h ∈ RT×rank(Xk). Thus, the
decomposition Xk = Xk + X̃k = `h′ + X̃k essentially imposes an approximate factor
structure on Xk, with factor part Xk and idiosyncratic part X̃k.

(iii) The restrictions that Assumption DX-1 imposes on e are also weaker than those im-
posed in Assumption LL above. Normality is imposed, but either cross-sectional cor-
relation and heteroscedasticity (case (a)) or time-serial correlation and heteroscedas-
ticity (case (b)), described by Σ, are still allowed. The condition ‖Σ‖ = OP (1)
requires the correlation of eit to be weak.23

(iv) The additional restrictions on Σ in Assumption DX-1 rule out the type of correlation
of the low-rank regressor part Xk with the second moment structure of eit that
was the key feature of the counter example in Proposition 4.4 above.24 Firstly,
the condition µn(Σ) ≥ ‖g′Σg‖ guarantees that the eigenvectors corresponding to
the largest few eigenvectors of Σ (the eigenvectors νr of Σ when normalized satisfy
µr(Σ) = ν ′rΣνr) are not strongly correlated with g (and thus with Xk). Secondly,
the condition g′Σg = ‖g′Σg‖1Q + OP (N−1/2) guarantees that Σ behaves almost as
an identity matrix when projected with g, thus not possessing special structure in
the “direction of Xk”. Both of these assumption are obviously satisfied when Σ is
proportional to the identity matrix.

(v) Instead of Assumption DX-1 we can also impose Assumption DX-2 to obtain N3/4-
consistency in Theorem 4.5. The Assumption on e imposed in Assumption DX-2 is
the same as in Assumption SN, and as already discussed above, this assumption is
quite weak (see also Appendix A.1). However, Assumption DX-2 imposes a much
stronger assumption on the regressors by requiring that Mλ0XkMf0 = 0. This con-

dition implies that Xk = λ0h′ + `f0′ for some ` ∈ RN×R0
and h ∈ RT×R0

, i.e. the
factor structure of the regressors is severely restricted. The AR(1) model discussed
in Remark (v) of Section 3 does satisfy Mλ0Xk = 0, and the same is true for a sta-
tionary AR(p) model without additional regressors, i.e. for such AR(p) models with
factors we obtain N3/4-consistency of β̂R without imposing strong assumptions (like
normality) of eit. Assumption DX-2(i) is furthermore satisfied if Xk = 0, i.e. if the
regressors Xk = X̃k satisfy ‖Xk‖ = OP (N3/4), which is true for zero mean weakly
correlated processes (see Appendix A.1).

(vi) Theorem S.5 in the supplementary material provides an alternative N3/4-consistency
result, in which Assumptions DX-1 and DX-2 are replaced by a high-level condition,
which is more general, but not easy to verify in terms of low-level assumptions.

4.5 Asymptotic Equivalence of β̂R0 and β̂R for R > R0

In this section, we provide high level conditions on the singular values and singular vectors
of the error matrix (or equivalently on the eigenvalues and eigenvectors of the corresponding
random covariance matrix). Under those assumptions we then establish the main result of

23A sufficient condition for ‖Σ‖ = OP (1) is, for example, maxi
∑
j |Σij | = OP (1), formulated here for case (a).

Note that Σ is symmetric.
24However, in the example of Proposition 4.4 we have both time-serial and cross-sectional correlation in eit,

one of which is already ruled out by Assumption DX-1.
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the paper that β̂R0 and β̂R with R > R0 are asymptotically equivalent, that is,
√
NT (β̂R−

β̂R0) = oP (1).

Assumption EV. (Eigenvalues and Eigenvectors of Random Cov. Matrix) Let

the singular value decomposition of Mλ0eMf0 be given by Mλ0eMf0 =
∑Q

r=1
√
ρr vr w

′
r,

where Q = min(N,T )−R0, and
√
ρr are the singular values, and vr and wr are normalized

N - and T -vectors, respectively.25 Let ρ1 ≥ ρ2 ≥ . . . ≥ ρQ ≥ 0. We assume that there exists

a constant c > 0 and a series of integers qNT > R − R0 with qNT = o(N1/4) such that as

N,T →∞ we have

(i)
ρR−R0

N
> c, wpa1.

(ii)
1

qNT

Q∑
r=qNT

1

ρR−R0 − ρr
= OP (1).

(iii) max
r
‖v′rePf0‖ = oP

(
N1/4 q−1

NT

)
, max

r
‖w′re′Pλ0‖ = oP

(
N1/4 q−1

NT

)
,

max
r
‖v′rXkPf0‖ = oP

(
N q−1

NT

)
, max

r
‖w′rX ′kPλ0‖ = oP

(
N q−1

NT

)
,

max
r,s,k
|v′rXkws| = oP

(
N1/4 q−1

NT

)
, where r, s = 1, . . . , Q, and k = 1, . . . ,K.

Theorem 4.6. Let R > R0. Let Assumptions SF, NC, EX, and EV hold, and let either

Assumption DX-1 or DX-2 hold, and assume that C(1) = OP (1). In the limit N,T → ∞
with N/T → κ2, 0 < κ <∞, we then have

√
NT

(
β̂R − β0

)
=
√
NT

(
β̂R0 − β0

)
+ oP (1) = OP (1).

Remarks

(i) Theorem 4.6 also holds if we replace the Assumptions EX, DX-1, DX-2 by any other

condition that guarantees that Assumption SN holds and that N3/4
(
β̂R − β0

)
=

OP (1).

(ii) Consider Assumption EV(iii). Since vr and wr are the normalized singular vectors
of Mλ0eMf0 we expect them to be essentially uncorrelated with Xk and ePf0 , and
therefore we expect v′rXkws = OP (1), ‖v′rePf0‖ = OP (1), ‖w′re′Pλ0‖ = OP (1). We

also expect ‖v′rXkPf0‖ = OP (
√
T ) and ‖w′rX ′kPλ0‖ = OP (

√
N), which is different to

the analogous expressions with e, since Xk can be correlated with f0 and λ0. The
key to making this discussion rigorous is a good knowledge of the properties of the
eigenvectors vr and wr. If the entries eit are iid normal, then the distribution of vr and
wr can be characterized as follows: Let ṽ be an N -vector with iidN (0, 1) entries and
let w̃ be an T -vector with iidN (0, 1) entries. Then we have vr =d ‖Mλ0 ṽ‖−1Mλ0 ṽ
and wr =d ‖Mf0w̃‖−1Mf0w̃, see also Lemma S.13 in the supplementary material.

25Thus, wr is the normalized eigenvector corresponding to the eigenvalue ρr of Mf0e′Mλ0eMf0 , while vr is
the normalized eigenvector corresponding to the eigenvalue ρr of Mλ0eMf0e′Mλ0 . We use a convention were
eigenvalues with non-trivial multiplicity appear multiple times in the list of eigenvalues ρr, but under standard
distributional assumptions on e all eigenvalues are simple with probability one anyways.
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Here, =d refers to “equal in distribution”. Thus, if R0 = 0, then vr and wr are
distributed as iidN (0, 1) vectors, normalized to satisfy ‖vr‖ = ‖wr‖ = 1. This
follows from the rotational invariance of the distribution of e when eit is iid normally
distributed. Using this characterization of vr and wr one can formally show that
Assumption EV(iii) holds, see Lemma 4.7 below. The conjecture in the random
matrix theory literature is that the limiting distribution of the eigenvectors of a
random covariance matrix is “distribution free”, i.e. is independent of the particular
distribution of eit (see, e.g., Silverstein (1990), Bai (1999)). However, we are not
aware of a formulation and corresponding proof of this conjecture that is sufficient
for our purposes, which is one reason why we have to impose iid normality of eit.

(iii) Assumption EV(ii) imposes a condition on the eigenvalues ρr of the random covari-
ance matrix Mf0e

′Mλ0eMf0 . Eigenvalues are studied more intensely than eigenvec-
tors in the random matrix theory literature, and it is well-known that the properly
normalized empirical distribution of the eigenvalues (the so called empirical spectral
distribution) of an iid sample covariance matrix converges to the Marčenko-Pastur-
law (Marčenko and Pastur (1967)) for asymptotics where N and T grow at the same
rate. This means that the sum over the function of the eigenvalues ρs in Assump-
tion EV(ii) can be approximated by an integral over the Marčenko-Pastur limiting
spectral distribution. To bound the asymptotic error of this approximation one needs
to know the convergence rate of the empirical spectral distribution to its limit law,
which is an ongoing research subject in the literature, e.g. Bai (1993), Bai, Miao and
Yao (2004), Götze and Tikhomirov (2010). This literature usually considers either
iid or iid normal distributions of eit.

(iv) For random covariance matrices from iid normal errors, it is known from John-
stone (2001) and Soshnikov (2002) that the properly normalized few largest eigenval-
ues converge to the Tracy-Widom law.26 This result can be used to verify Assump-
tion EV(i) in the case of iid normal eit.

(v) An additional subtlety when justifying Assumption EV is that we consider the eigen-
values and eigenvectors of the random covariance matrix Mf0e

′Mλ0eMf0 , not just
e′e. The additional projections with Mf0 and Mλ0 stem from integrating out the true
factors and factor loadings of the model. Those projectors are not normally present
in the literature on large dimensional random covariance matrices. If the idiosyn-
cratic error distribution is iid normal these projections are unproblematic, since the
distribution of e is rotationally invariant from the left and right in that case, i.e. the
projections are mathematically equivalent to a reduction of the sample size by R0 in
both directions.

(vi) Details on how to derive Theorem 4.6 are given in Section S.4 of the supplementary
material.

The following Lemma provides the connection between Theorem 4.6 and our main
result Theorem 3.1.

Lemma 4.7. Let Assumption LL hold, let R0 = rank(λ0) = rank(f0), and consider a

limit N,T →∞ with N/T → κ2, 0 < κ <∞. Then Assumptions SN, EX, DX-1 and EV

are satisfied, and we have C(1) = OP (1).

26To our knowledge this result is not established for error distributions that are not normal. Soshnikov (2002)
has a result under non-normality but only for asymptotics with N/T → 1.
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5 Monte Carlo Simulations

In this section we investigate the finite sample properties of β̂R through a small scale
Monte Carlo simulation. The model is a static panel model with one regressor (K = 1),
two factors (R0 = 2), and the following data generating process (DGP):

Yit = β0Xit +

2∑
r=1

λirftr + eit,

Xit = 1 + X̃it +

2∑
r=1

(λir + χir)(ftr + ft−1,r),

eit =
1√
2

(vit + vi,t−1). (5.1)

The random variables X̃it, λir, ftr, χir and vit are mutually independent; with X̃it and
ftr ∼ iidN (0, 1); λir and χir ∼ iidN (1, 1); and vit ∼ iid t(5), i.e. vit has a Student’s
t-distribution with 5 degrees of freedom.

Note that this model satisfies Assumptions SF, NC, and LL(i), but not LL(ii). The
error term eit is not distributed as iid normal. The time series of eit is serially correlated
and generated by the sum of two independent random variables whose distribution is t(5).
The purpose of this design is to demonstrate that the iid normality restriction on eit in
Assumption LL(ii) is a technical assumption as mentioned in Section 2 and may be relaxed.

We choose β0 = 1, and use 10, 000 repetitions in our simulation. The true number of
factors is chosen to be R0 = 2. For each draw of Y and X we compute the LS estimator
β̂R according to equation (3.1) for different values of R, namely R ∈ {0, 1, 2, 3, 4, 5}.

Table 1 reports bias and standard deviation of the estimator β̂R for different combi-
nations of R, N and T . For R < R0 = 2 the model is mis-specified and β̂R turns out to
be severely biased. There is also bias in β̂R for R ≥ R0, due to time-serial correlation of
eit. This bias was discussed in Bai (2009b), and bias correction is also discussed there.
We have purposefully chosen a DGP where β̂R exhibits such a bias to illustrate that all
features of the asymptotic distribution of β̂R0 are replicated by β̂R, R > R0, including the
bias.

Table 2 reports various quantiles of the distribution of
√
NT (β̂R−β0) for N = T = 100

and N = T = 300, and different values of R ≥ R0. From these tables, we see that as N,T
increases the distribution of β̂R gets closer to that of β̂R0 .

Monte Carlo Simulation results for an AR(1) model with factors can be found in Sec-
tion S.6 of the supplementary material. Those additional simulations show that the finite
sample properties (e.g. for T = 30) of β̂R0 and β̂R, R > R0, can be quite different, but
those differences vanish as T becomes large, as predicted by our asymptotic theory. In
general, we always expect some finite sample inefficiency from overestimating the number
of factors.

6 Conclusions

In this paper we showed that under certain regularity conditions the limiting distribution of
the LS estimator of a linear panel regression with interactive fixed effects does not change
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Table 1: For different combinations of sample sizes N and T we report the bias and standard deviation of the
estimator β̂R, for R = 0, 1, . . . , 5, based on simulations with 10, 000 repetition of design (5.1), where the true
number of factors is R0 = 2. See the main text for further explanations.

Table 2: For N = T = 100 and N = T = 300 we report certain quantiles of the distribution of
√
NT (β̂R−β0),

for R = 2, 3, 4, 5, based on simulations with 10, 000 repetition of design (5.1), where the true number of factors
is R0 = 2. See the main text for further explanations.

when we include redundant factors in the estimation. The important empirical implication
of this result is that one can use an upper bound of the number of factors in the estimation
without asymptotic efficiency loss. We impose iid normality of the regression errors to
derive this result, because we require certain results on the eigenvalues and eigenvectors
of random covariance matrices that are only known in that case. We expect that progress
in the literature on large dimensional random covariance matrices will allow verification
of our high-level assumptions under more general error distributions, and our simulation
results suggest that the result also holds for non-normal and correlated errors. We also
provide multiple intermediate asymptotic results under more general conditions.
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A Appendix

A.1 Spectral Norm of Random Matrices

Consider an N × T matrix u whose entries uit have uniformly bounded second moments.

Then we have ‖u‖ ≤ ‖u‖HS =
√∑

i,t u
2
it = OP (

√
NT ). However, in Assumption LL(i.b)

and Assumption DX-1(i) and Assumption DX-2(i) we impose ‖X̃str
k ‖ = OP (N3/4) and

‖X̃k‖ = OP (N3/4), respectively, as N and T grow at the same rate, and in Assump-
tion SN(ii) we impose ‖e‖ = OP (

√
max(N,T )) under an arbitrary asymptotic N,T →∞.

Those smaller asymptotic rates for the spectral norms of X̃str
k , X̃k and e can be justi-

fied by firstly assuming that the entries of these matrices are mean zero and have certain
bounded moments, and secondly imposing weak cross-sectional and time-serial correlation.
The purpose of this appendix section is to provide some examples of matrix distributions
that make the last statement more precise. We consider the N × T matrix u, which can
represent either e, X̃str

k or X̃k.
Example 1: If we assume that Euit = 0, that Eu4

it is uniformly bounded, and that
the uit are independently distributed across i and over t, then the results in Latala (2005)
show that ‖u‖ = OP (

√
max(N,T )).

Example 2: Onatski (2013) provides the following example, which allows for both
cross-sectional and time-serial dependence: Let ε be an N × T matrix with mean zero,
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independent entries that have uniformly bounded fourth moment, let εt denote the columns
of ε, and also define past εt, t ≤ 0, satisfying the same distributional assumptions. Let
ut =

∑m
j=0 ΨN,jεt−j , where m is a fixed integer, and ΨN,j are N ×N matrices such that

maxj ‖ΨN,j‖ is uniformly bounded. Then, the N × T matrix u with columns ut satisfies
‖u‖ = OP (

√
max(N,T )).

More examples of matrix distributions that satisfy ‖u‖ = OP (
√

max(N,T )) are dis-
cussed in Onatski (2013) and Moon and Weidner (2010). Theorem 5.48 and Remark 5.49
in Vershynin (2010) can also be used to obtain a slightly weaker bound on ‖u‖ under very
general correlation of u in one of its dimensions.

Note that the random matrix theory literature often only discusses asymptotics where
N and T grow at the same rate and shows ‖u‖ = OP (

√
N) under that asymptotic. Those

results can easily be extended to more general asymptotics with N,T →∞ by considering
u as a submatrix of a max(N,T )×max(N,T ) matrix ubig, and using that ‖u‖ ≤ ‖ubig‖.

Example 3: The following Lemma provides a justification for the bounds on ‖X̃str
k ‖

and ‖X̃k‖, allowing for a quite general type of correlation in both panel dimensions.

Lemma A.1. Let u be an N × T matrix with entries uit. Let Σij = 1
T

∑T
t=1E(uitujt),

and let Σ be the N × N matrix with entries Σij. Let ηij = 1√
T

∑T
t=1 [uitujt −E(uitujt)],

Ψij = 1
N

∑N
k=1E(ηikηjk), and χij = 1√

N

∑N
k=1 [ηikηjk −E(ηikηjk)]. Consider an asymp-

totic where N,T →∞ such that N/T converges to a finite positive constant, and assume

that

(i) ‖Σ‖ = O(1).

(ii) 1
N2

∑N
i,j=1E(η2

ij) = O(1).

(iii) 1
N

∑N
i,j=1 Ψ2

ij = O(1).

(iv) 1
N2

∑N
i,j=1E(χ2

ij) = O(1).

Then we have ‖u‖ = OP (N5/8).

The Lemma does not impose Euit = 0 explicitly, but justification of assumption (i) in
the lemma usually requires Euit = 0. The assumptions (ii), (iii) and (iv) in the lemma
can e.g. be justified by assuming appropriate mixing conditions in both panel dimensions,
see e.g. Cox and Kim (1995) for the time-series case.

As pointed out above, our results in Section 4.2 can be obtained under the weaker
condition ‖e‖ = oP (N2/3), and Lemma A.1 can also be applied with u = e then. In that
case, the assumptions in Lemma A.1 are not the same, but are similar to those imposed
in Bai (2009b).

A.2 Expansion of Objective Function when R = R0

Here we provide a heuristic derivation of the expansion of L0
NT (β) in Theorem 4.2. We

expand the profile objective function L0
NT (β) simultaneously in β and in the spectral norm

of e. Let the K + 1 expansion parameters be defined by ε0 = ‖e‖/
√
NT and εk = β0

k − βk,
k = 1, . . . ,K, and define the N × T matrix X0 = (

√
NT/‖e‖)e. With these definitions we
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obtain

1√
NT

(Y − β ·X) =
1√
NT

[
λ0f0′ + (β0 − β) ·X + e

]
=

λ0f0′
√
NT

+

K∑
k=0

εk
Xk√
NT

.

(A.1)

According to equation (3.3) the profile objective function L0
NT (β) can be written as the

sum over the T − R0 smallest eigenvalues of the matrix in (A.1) multiplied by its trans-
posed. We consider

∑K
k=0 εkXk/

√
NT as a small perturbation of the unperturbed matrix

λ0f0′/
√
NT , and thus expand L0

NT (β) in the perturbation parameters ε = (ε0, . . . , εK)
around ε = 0, namely

L0
NT (β) =

1

NT

∞∑
g=0

K∑
k1,...,kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
, (A.2)

where L(g) = L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
are the expansion coefficients.

The unperturbed matrix λ0f0′/
√
NT has rank R0, so that the T −R0 smallest eigen-

values of the unperturbed T × T matrix f0λ0′λ0f0′/NT are all zero, i.e. L0
NT (β) = 0 for

ε = 0 and thus L(0)
(
λ0, f0

)
= 0. Due to Assumption SF the R0 non-zero eigenvalues of

the unperturbed T×T matrix f0λ0′λ0f0′/NT converge to positive constants as N,T →∞.
This means that the “separating distance” of the T − R0 zero-eigenvalues of the unper-
turbed T ×T matrix f0λ0′λ0f0′/NT converges to a positive constant, i.e. the next largest
eigenvalue is well separated. This is exactly the technical condition under which the per-
turbation theory of linear operators guarantees that the above expansion of L0

NT in ε exists

and is convergent as long as the spectral norm of the perturbation
∑K

k=0 εkXk/
√
NT is

smaller than a particular convergence radius r0(λ0, f0), which is closely related to the sepa-
rating distance of the zero-eigenvalues. For details on that see Kato (1980) and Section S.2
of the supplementary appendix, where we define r0(λ0, f0) and show that it converges to
a positive constant as N,T → ∞. Note that for the expansion (A.2) it is crucial that we
have R = R0, since the perturbation theory of linear operators describes the perturbation
of the sum of all zero-eigenvalues of the unperturbed matrix f0λ0′λ0f0′/NT . For R > R0

the sum in LRNT (β) leaves out the R − R0 largest of these perturbed zero-eigenvalues,
which results in a much more complicated mathematical problem, since the structure and
ranking among these perturbed zero-eigenvalues needs to be discussed.

The above expansion of L0
NT (β) is applicable whenever the operator norm of the pertur-

bation matrix
∑K

k=0 εkXk/
√
NT is smaller than r0(λ0, f0). Since our assumptions guar-

antee that ‖Xk/
√
NT‖ = OP (1), for k = 0, . . . ,K, and ε0 = OP (min(N,T )−1/2) = oP (1),

we have
∥∥∥∑K

k=0 εkXk/
√
NT

∥∥∥ = OP (‖β−β0‖) + oP (1), i.e. the above expansion is always

applicable asymptotically within a shrinking neighborhood of β0 — which is sufficient since
we already know that β̂R is consistent for R ≥ R0.

In addition, to guaranteeing converge of the series expansion, the perturbation theory of
linear operators also provides explicit formulas for the expansion coefficients L(g), namely
for g = 1, 2, 3 we have L(1)

(
λ0, f0, Xk

)
= 0, L(2)

(
λ0, f0, Xk1 , Xk2

)
= Tr(Mλ0Xk1Mf0X

′
k2

),

L(3)
(
λ0, f0, Xk1 , Xk2 , Xk3

)
= −1

3 [Tr
(
Mλ0Xk1MfX

′
k2
λ0(λ0′λ0)−1(f0′f0)−1f0′X ′k3

)
+ . . .],

where the dots refer to 5 additional terms obtained from the first one by permutation of
k1, k2 and k3, so that the expression becomes totally symmetric in these indices. A general
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expression for the coefficients for all orders in g is given in Lemma S.1 in the appendix.
One can show that for g ≥ 3 the coefficients L(g) are bounded as follows

1

NT

∣∣∣L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∣∣∣ ≤ aNT (bNT )g
‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

, (A.3)

where aNT and bNT are functions of λ0 and f0 that converge to finite positive constants
in probability. This bound on the coefficients L(g) allows us to derive a bound on the
remainder term, when the profile objective expansion is truncated at a particular order.
The expansion can be applied under more general asymptotics, but here we only con-
sider the limit N,T → ∞ with N/T → κ2, 0 < κ < ∞, i.e. N and T grow at the
same rate. Then, apart from the constant L0

NT (β0), the relevant coefficients of the ex-
pansion, which are not treated as part of the remainder term turn out to be Wk1k2 =

1
NT L

(2)
(
λ0, f0, Xk1 , Xk2

)
, C

(1)
k = 1√

NT
L(2)

(
λ0, f0, Xk, e

)
= 1√

NT
Tr(Mλ0 XkMf0 e

′),

and C
(2)
k = 3

2
√
NT

L(3)
(
λ0, f0, Xk, e, e

)
, which corresponds exactly to the definitions in

(4.1) above. From the expansion (A.2) and the bound (A.3) we obtain Theorem 4.2. For
a more rigorous derivation we refer to Section S.2 in the supplementary appendix.
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