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HIGH-DIMENSIONAL METHODS AND INFERENCE ON STRUCTURAL

AND TREATMENT EFFECTS

A. BELLONI, V. CHERNOZHUKOV, AND C. HANSEN

The goal of many empirical papers in economics is to provide an estimate of the causal or

structural effect of a change in a treatment or policy variable, such as a government intervention

or a price, on another economically interesting variable, such as unemployment or amount of a

product purchased. Applied economists attempting to estimate such structural effects face the

problems that economically interesting quantities like government policies are rarely randomly

assigned and that the available data are often high-dimensional. Failure to address either of

these issues generally leads to incorrect inference about structural effects, so methodology that

is appropriate for estimating and performing inference about these effects when treatment is

not randomly assigned and there are many potential control variables provides a useful addition

to the tools available to applied economists.

It is well-understood that naive application of forecasting methods does not yield valid

inference about structural effects when treatment variables are not randomly assigned. The lack

of random assignment of economic data has led to the adoption of estimation strategies among

applied economists such as instrumental variables (IV) methods and conditional on observables

estimators for treatment effects, the simplest of which is ordinary least squares (OLS) including

control variables. However, these strategies are typically motivated and justified in a setting

where the number of available variables is small relative to the sample size. Generally, these

traditional estimators are ill-defined when the number of conditioning variables is greater than

the sample size. Even in settings where the number of potential controls is smaller than the

sample size, inference may be complicated due to standard approximations providing a poor

guide to finite-sample behavior when the number of regressors is a non-vanishing fraction of

the sample size, and many conventional estimators fail to even be consistent in this setting.1

In very-high-dimensional settings where the number of controls may be larger than the sample

size, estimation and informative inference using traditional methods is impossible; and some

sort of dimension reduction is necessary if a researcher wants to learn from the data.

Date: First version: July 2, 2013. This version August 15, 2013.
1In the IV setting, there are many papers that examine the properties of various IV estimators under many-

instrument asymptotics where the number of instruments p is allowed to increase with the sample size n in such

a way that p < n and p/n→ ρ < 1; see, e.g. Bekker (1994), Chao and Swanson (2005), Hansen, Hausman, and

Newey (2008), and Hausman, Newey, Woutersen, Chao, and Swanson (2009). These approaches do not apply

when p ≥ n and tend to perform poorly when p/n ≈ 1.
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2 BELLONI CHERNOZHUKOV HANSEN

High-dimensional data, data in which the number of variables is large relative to the sample

size, is readily available and is becoming an increasingly common feature of data considered

by applied researchers. High-dimensional data arise through a combination of two different

phenomena. First, the data may be inherently high-dimensional in that data on many different

characteristics of each observation are available. For example, many data sources that have

been used for decades such as the SIPP, NLSY, CPS, U. S. Census, and American Housing Sur-

vey, to name a few, collect information on hundreds of individual characteristics. Economists

are also increasingly using large databases such as scanner data-sets that record transaction

level data for households across a wide-range of products or text data where counts of words

or word combinations in documents may be used as variables. In both of these examples, there

may be thousands or tens-of-thousands of available variables per observation. Second, even

when the number of available variables is small, researchers who are willing to admit that they

do not know the functional form with which the small number of variables enters the model of

interest are faced with a large set of potential variables formed as interactions and transforma-

tions of the underlying variables. There are many statistical methods available for constructing

forecasting models in the presence of high-dimensional data. However, it is well-known that

these methods tend to do a good job at what they are designed for, forecasting, but often lead

to incorrect conclusions when inference about model parameters such as regression coefficients

is the object of interest; see Leeb and Pötscher (2008a; 2008b) and Pötscher (2009).

One way to address both lack of random assignment in many economically interesting prob-

lems and the presence of high-dimensional data is to note that traditional structural or treat-

ment effects models may be recast as forecasting problems through the relevant first-stage or

reduced form relationships. High-dimensional methods may then be used to construct good

forecasting models for these reduced form quantities. Under some conditions, the structure

gained from modelling these reduced form relationships may then be exploited to obtain esti-

mates and valid inferential statements about structural effects of interest. The key condition

which has been exploited thus far in the literature is that the reduced form relationships are

approximately sparse; that is, good forecasts of the outcome and/or treatment variables may

be obtained using a small number of the available controls whose identities are not known to

the researcher but will be learned from the data. For example, see Bai and Ng (2009), Belloni,

Chen, Chernozhukov, and Hansen (2012), and Gautier and Tsybakov (2011) for applications to

IV model and Belloni, Chernozhukov, and Hansen (2011) for application to a linear model with

many controls as well as models with heterogeneous treatment effects and a binary treatment

variable.

1. Approximately Sparse Regression Models

A key concept underlying data-analysis with high-dimensional data is that dimension reduc-

tion (regularization) is necessary to draw meaningful conclusions. The need for regularization
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can easily be seen when one considers an example where there exactly as many variables, in-

cluding a constant, as there are observations. In this case, the OLS estimator perfectly fits

the data, returning an R2 of one. However, using the estimated model is likely to result in

very poor forecasting properties out-of-sample because the model estimated by least squares

is over-fit: the least-squares fit captures not only the signal about how predictor variables may

be used to forecast the outcome but also fits the noise that is present in the given sample but

is not useful for forming out-of-sample predictions. Producing a useful forecasting model in

this simple case requires regularization; i.e. estimates must be constrained so that overfitting

is avoided and useful out-of-sample forecasts can be obtained.

1.1. High-Dimensional-Linear-Models. To fix ideas, suppose we are interested in forecast-

ing outcome yi with controls xi according to the model

yi = g(xi) + ζi where E[ζi|xi] = 0, (1.1)

and that we have a sample of i = 1, ..., n (independent) observations. Note that in writing

down this model we have already imposed substantial regularization in that the function g(·) is

not allowed to change arbitrarily across observations but is only allowed to differ for different

values of xi. It is also clear that further regularization is necessary when xi may take on n

values in the observed sample as any attempt to estimate the n values of g(·) at the observed

values of xi will perfectly fit the outcome without further restrictions.

Given its necessity, it is unsurprising that there are many available approaches to regular-

ization. Perhaps the simplest and most widely applied approach in the context of estimation

of treatment or structural effects is ad hoc dimension reduction by the researcher. Typically,

an applied economist will assume that only a small number of controls is needed, the identities

of which are chosen by the researcher using intuition, and that the controls enter the model

in a simple fashion, usually linearly. I.e. the researcher assumes that g(xi) = z′iβ where zi has

s� n elements and zi may be made of the original xi as well as transformations of this set of

variables.2 While this approach has intuitive appeal and at a deep level is unavoidable in that

a researcher will always have to impose some ex ante dimension reduction driven by intuition,

it does leave one wondering whether the correct variables and functional forms were chosen.

A related approach can be found in traditional nonparametrics using series or sieve expan-

sions. In this approach, one assumes that a model depends only on a small number of variables

in a smooth but potentially unknown way and then uses the first few terms in a basis expansion

to approximate this relationship. Heuristically, one assumes that

g(xi) =
s∑

j=1

βjzj,i + rs,i (1.2)

2It is common to relax the restriction that E[ζi|xi] = 0 to E[ziζi] = 0 and estimate yi = z′iβ + ζi where β is

defined as the coefficients of the minimum mean-squared error linear approximation to g(xi).
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where {zj,i = pj(xi)}sj=1 are s approximating functions3 formed from the xi and rs,i is a re-

mainder term. It is then assumed that the remainder term is uniformly small relative to

sampling error so that its impact on the resulting estimator for g(xi) is negligible relative to

sampling uncertainty and can thus be ignored. See, for example, Newey (1997), Chen (2007),

or Chen and Pouzo (2009; 2012). As with the parametric model, practical implementation of a

nonparametric estimator requires that the researcher has done some ex ante variable selection

to come up with the initial set of variables xi and the set of approximating functions. The

number of basis terms to be used, s, will then typically be chosen based on cross-validation or

an information criterion.4 Relative to the fully parametric model, the nonparametric approach

has the virtue of not completely specifying the form of g(·); and it is also closely related to

the methods for high-dimensional-sparse-models that we recommend and outline below. Tra-

ditional nonparametrics are, however, still designed for an inherently low-dimensional setting

where it is assumed that the most important terms for predicting yi are contained within a

pre-specified s� n terms with the contribution of any remaining terms being negligible.5

A third approach to regularization is to model g(xi) as a high-dimensional-linear-model

(HDLM).6 In HDLMs, we assume that

g(xi) =

p∑
j=1

βjzj,i + rp,i where p� n (1.3)

is allowed and rp,i is a remainder term. The formulation is similar to that used for series-

based nonparametric estimators except that we allow one to consider very many terms, p� n,

in writing down the linear approximation. As with series, it is assumed that rp,i is uniformly

small relative to sampling error.7 Of course, without further restrictions on the model, practical

inference in HDLMs is still impossible.

A structure which has gained a great deal of popularity is to assume that the HDLM is

approximately sparse. Approximate sparsity imposes that only s � n variables among the

p � n variables zij in (1.3) have associated coefficients βj that are different from 0. Unlike

3Applied researchers often use simple power series where pj(xi) = xji in the scalar xi case or dummy variable

expansions where pj(xi) = 1(xi ∈ Ij) and the support of xi has been cut into s non-overlapping intervals

I1, ..., Is.
4E.g. the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC).
5Theory typically assumes s2/n→ 0 which approximates the case that the number of regressors considered

may be moderate but should be a very small fraction of the available sample size.
6There is also work on high-dimensional-nonlinear-models. For example, van de Geer (2008), Bach (2010),

and Belloni, Chernozhukov, and Wei (2013) consider high-dimensional logistic regression, and Belloni and Cher-

nozhukov (2011), Belloni, Chernozhukov, and Kato (2013), and Kato (2011) consider quantile regression. We

consider only linear models here for simplicity. The basic insights from HDLMs extend to nonlinear settings

though the theoretical analysis and practical computation is more complicated. HDLMs also encompass many

interesting settings and can accommodate flexible functional approximation just as nonparametric series esti-

mators can.
7Note that since one could always choose the same approximating functions and number of terms as in the

series case, the HDLM imposes a weaker set of conditions on the function g(·).
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in the parametric or traditional nonparametric approach, it is not assumed that the identities

of these s variables are known to the researcher a priori. The HDLM structure thus imposes

that a good predictive model of the outcome may be formed by a model with many coefficients

set exactly equal to zero. Thus, HDLM estimators that exploit the assumed structure involve

a model selection component where one attempts to learn the identities of the variables with

non-zero coefficients while simultaneously estimating these non-zero coefficients.

A simple and popular method for estimating the parameters of sparse HDLMs is bridge

estimation where coefficients are chosen to minimize the sum of the squared residuals subject

to a penalty. Formally, a conventional bridge estimator is defined as

β̂r = arg min
b

n∑
i=1

(yi − z′ib)2 + λ

p∑
j=1

|bj |r, (1.4)

for r > 0.8 The first term is the usual error sum of squares and would be minimized at the OLS

estimator for β in the absence of the second term. The second term is a term that imposes a

penalty for differences between the estimated coefficients and zero.9 It is the presence of the

second term that regularizes the problem and keeps the estimated model from perfectly fitting

the sample in cases where p ≥ n. The penalty level, λ, controls the degree of penalization and

must be specified by the researcher much like a bandwidth in kernel estimation or a number

of series terms in series estimation.

The parameter r controls the shape of the penalty term and is also specified by the re-

searcher. Usual choices of r are r = 2 which corresponds to the well-known ridge regression

and r = 1 which corresponds to the LASSO estimator introduced by Tibshirani (1996) and

Frank and Friedman (1993). When r > 1, the solution obtained by solving (1.4) has coeffi-

cients shrunk towards zero but does not set any coefficients exactly equal to 0. For 0 < r ≤ 1,

the penalty function is continuous but kinked (non-differentiable) at 0 which results in an es-

timator that will set some coefficients exactly to zero, thus providing variable selection, while

simultaneously shrinking coefficients estimated to be non-zero towards 0. Another consider-

ation when choosing r is that the penalty term is convex when r ≥ 1, so β̂r is obtained by

solving a convex optimization problem. For 0 < r < 1, the optimization problem is no longer

convex, and calculating β̂r may pose a computational hurdle. The LASSO estimator nicely

straddles this boundary providing an estimator that does model selection while remaining an

easily computable solution to a convex optimization problem.10 LASSO-type estimators have

8To make estimates invariant to trivial rescaling of regressors, it is conventional to rescale each regressor to

have sample second moment equal to one when using this formulation.
9Penalizing towards any fixed, known set of values is accomplished trivially by translating the coefficients.
10Many theoretical analyses of estimators for sparse HDLMs, including bridge estimators, focus on estab-

lishing so-called oracle results which show that HDLM estimators perform as well as the infeasible least squares

estimator that regresses the outcome on just the s variables with non-zero coefficients; see Fan and Li (2001)

or Zou (2006) for examples. Oracle properties can be established for bridge estimators with r < 1 as in

Huang, Horowitz, and Ma (2008) as well as related estimators. However, establishing oracle properties relies

on very stringent conditions including that the non-zero coefficients in the model are “far” from zero. In other
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also been shown to have appealing properties under plausible assumptions that allow for ap-

proximation errors as in (1.3), heteroskedasticity, and non-normality; see Bickel, Ritov, and

Tsybakov (2009) and Belloni, Chen, Chernozhukov, and Hansen (2012) among others. For

these reasons, we focus on LASSO, (1.4) with r = 1, and variants throughout the remainder

of this review.

Finally, it is important to note that the non-zero coefficients that are part of the solution

to (1.4) tend to be substantially biased towards zero. For a large coefficient, this bias is more

pronounced the larger the choice of r which partially motivates the use of penalized estimators

with r < 1.11 An intuitive alternative to using penalized estimators with r < 1 is to employ the

Post-LASSO estimator as in Belloni and Chernozhukov (2013). The Post-LASSO estimator

is simply conventional OLS regressing y on only the elements of z that are estimated to have

non-zero coefficients in solving (1.4). With r = 1, the Post-LASSO estimator is extremely

convenient to implement as it involves solving the LASSO problem for which fast algorithms

exist in most statistical software packages and then running conventional OLS using a small

number of variables. Belloni and Chernozhukov (2013) verify that this Post-LASSO estimator

does no worse than the conventional LASSO and may substantially outperform it in many

cases both theoretically and in simulations.

1.2. Feasible LASSO Allowing Heteroskedasticity. Heteroskedastic and non-Gaussian

data is a common concern among applied economic researchers, and procedures that are ro-

bust to heteroskedasticity are routinely employed in empirical economics. Belloni, Chen, Cher-

nozhukov, and Hansen (2012) provide a variant of the LASSO estimator and verify that it has

good risk and model selection properties allowing for heteroskedastic and non-Gaussian data.

They estimate the parameters of (1.3) by solving a weighted penalized optimization problem

β̂L = arg min
b

n∑
i=1

(yi − z′ib)2 + λ

p∑
j=1

|γ̂jbj | (1.5)

where as before λ is the penalty level that controls the overall weight given to the penalty

function and γ̂j are penalty loadings that help address heteroskedasticity and non-normality.

As with the conventional LASSO, one can also obtain Post-LASSO estimates that reduce the

shrinkage bias inherent in solving (1.5) by running conventional least squares using just the

variables that were estimated to have non-zero coefficients:

β̃L = arg min
b

n∑
i=1

(yi − z′ib)2 : bj = 0, if β̂Lj = 0. (1.6)

words, non-zero coefficients must be large enough to be distinguished from zero with very high probability

in finite-samples which rules out variables with small but non-zero effects. This coefficient structure seems

highly unrealistic in many economic applications, so we do not provide discussion of oracle results for HDLM

estimators.
11It is less well-appreciated that there is also bias in estimates of small, but non-zero coefficients which is

larger for r < 1. Generically, no choice of r can completely avoid these two sources of bias.
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Belloni, Chen, Chernozhukov, and Hansen (2012) confirm that this Post-LASSO estimator

continues to have good risk properties in heteroskedastic, non-Gaussian settings.

Implementation of (1.5) involves selection of penalty loadings γ̂j for j = 1, ..., p and the

penalty level λ. Rules-of-thumb for choosing λ are given in Belloni, Chen, Chernozhukov,

and Hansen (2012). Simple choices are to set λ = 2.2
√
nΦ−1(1 − q

2p) for Φ−1 defined to be

the quantile function of a standard normal random variable or λ = 2.2
√

2n log(2p/q) where

q → 0 is needed in either option in the theory.12 In our examples, we set either q = .05 or

q = .1/ log(n).

Belloni, Chen, Chernozhukov, and Hansen (2012) show that ideally one would set the penalty

weights equal to the infeasible values γj =
√

1
n

∑n
i=1 z

2
ijζ

2
i . These ideal weights are infeasible as

they depend on the unknown ζi, but valid estimates can be obtained through a simple iterative

scheme:

(1) For a fixed value of λ, choose an initial guess for b, say b0, and calculate ζ̂i,0 = yi− z′ib0
for i = 1, ..., n. Use ζ̂i,0 to calculate γ̂j,0 =

√
1
n

∑n
i=1 z

2
ij ζ̂

2
i,0 for j = 1, ..., p. Set k = 1.

(2) Solve (1.5) given λ and {γ̂j,k−1}pj=1. Let bk be the solution to (1.5) or the corresponding

Post-LASSO estimates.

(3) Calculate ζ̂i,k = yi−z′ibk for i = 1, ..., n, and use ζ̂i,k to calculate γ̂j,k =
√

1
n

∑n
i=1 z

2
ij ζ̂

2
i,k

for j = 1, ..., p.

(4) Stop if convergence is achieved or a maximum number of iterations is reached. Other-

wise, set k = k + 1 and repeat steps (2)-(4).

Results in Belloni, Chen, Chernozhukov, and Hansen (2012) show that this procedure will be

valid for estimating β. It is also worth noting that the theoretical results do not require that the

procedure be iterated. However, simulations suggest that iteration improves the performance

of the estimator and also that convergence is generally achieved after a relatively small number

of iterations.

2. Model Selection Targeting Inference

In the preceding sections, we have outlined penalized estimation of the coefficients of a sparse

linear model focusing on the use of LASSO. These methods are useful for obtaining forecasting

rules for some outcome and for estimating which variables have a strong association to the

outcome in the sparse framework. However, using the results obtained from such a procedure

12Another popular option is the use of cross-validation. Choosing λ by cross-validation is obviously com-

putationally more demanding than using a simple plug-in rule-of-thumb. In addition, we found very similar

results in our examples when taking λ as the largest value of λ which gives an average cross-validation error

within one-standard deviation of the cross-validation minimizer as suggested in Friedman, Hastie, and Tibshi-

rani (2010) using 10-fold cross-validation. Further exploration of the properties of cross-validation for selecting

λ in this setting seems like an interesting avenue for additional research.
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to perform inference about the values of the regression coefficients in (1.3) or to understand

structural economic effects more generally is problematic.

The intuition for the difficulty in doing inference after regularization is clear in cases where

one considers solutions to (1.4) with r > 1 and p > n. In this case, all variables enter the model

with coefficients biased towards zero, and the bias of the individual coefficients is not estimable

with p > n. Thus, valid inference about the population value of any individual coefficient is

precluded in general. One might hope this problem is eliminated by imposing the sparse

structure as only s � n coefficients need to be learned. Indeed, within a sparse model, valid

inference about non-zero coefficients following penalized estimation is possible if one believes

that all non-zero coefficients are so large that they can essentially be perfectly distinguished

from zero in finite-samples. Under this structure, one can perfectly learn the identities of the

variables with non-zero coefficients and can thus use conventional methods to perform inference

about the coefficients on these variables after learning their identities. However, the validity

of this approach is very delicate as it relies on perfect model selection. Once one allows for

variables that have moderately sized coefficients which cannot be perfectly differentiated from

zero, there is a possibility of model selection mistakes in which such variables are not selected,

and the omission of such variables then generally leads to a significant omitted variables bias.13

This intuition is formally developed in Leeb and Pötscher (2008a; 2008b) and Pötscher (2009).

As a concrete illustration of this problem, we present results from a simple simulated exam-

ple. Suppose that data are generated according to

yi = diα+ x′iθg + ζi, ζi ∼ N(0, 1) (2.7)

di = x′iθm + vi, vi ∼ N(0, 1) (2.8)

where E[ζivi] = 0, p = dim(xi) = 200, the covariates xi ∼ N(0,Σ) with Σkj = (0.5)|j−k|, α = .5

is the parameter of interest, and the sample size n is set to 100. In this example, di represents

a “treatment” variable whose effect conditional on the variables in xi, α0, we are interested in

inferring. The coefficients on the control variables are set as θg,j = cyβj and θm,j = cdβj with

βj = (1/j)2 for j = 1, ..., 200. The values of cy and cd are then chosen to generate population

values for the R2 of the (infeasible) regression of y onto x and the (infeasible) regression of d

onto x of 0.5. This simulation model fits within the approximately sparse framework as the

regression function in each equation is well-approximated using only the first few regressors

and discarding the rest.

One approach to estimating α would be to estimate the parameters α and θg by applying

LASSO to equation (2.7) without penalizing the coefficient on d to select a set of important

controls from x, say xc. One could then estimate α as the coefficient from the least squares

regression of y onto d and the selected controls xc, and inference about plausible values of

α could proceed using the results from this regression. This approach would provide valid

13This problem is not restricted to the high-dimensional setting but is present even in low-dimensional

settings when model selection is considered.
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naive post model selection estimator
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post-double-selection estimator

Distributions of Studentized Estimators

Figure 1. The finite-sample distributions (densities) of the naive post model selection

estimator (left panel) and the post-model-selection estimator of Belloni, Chernozhukov, and

Hansen (2012) designed targeting inference (right panel). The distributions are given for

centered and studentized quantities.

inference if the model were truly sparse with a small number of elements in θg being large

and the rest being identically equal to 0. The histogram in the left panel of Figure 1 displays

the sampling distribution of the t-statistic based on this procedure and 10,000 simulation

replications while the red curve gives the conventional asymptotic approximation. This figure

illustrates the problem with naive post-model-selection inference, showing that the sampling

distribution is bimodal and sharply deviates from the normal approximation. The second

mode is driven by model selection mistakes in which variables with moderate coefficients are

not included in the model.

Part of the difficulty in doing inference after regularization or model selection is that these

procedures are designed for forecasting, not for inference about model parameters. This ob-

servation suggests that more desirable inference properties may be obtained if one focuses on

model selection over the predictive parts of the economic problem, the reduced forms and

first-stages, rather than using model selection in the structural model directly. Another key

observation is that model selection mistakes are likely to occur in realistic settings where some

variables may have small but non-zero partial effects; thus, it is important to develop inference

procedures that are robust to such mistakes. An element to providing this robustness that has

been employed recently is focusing on a small dimensional set of structural objects of interest

over which no model selection will be done and leaving model selection or regularization only

over “nuisance” parts of the problem. Belloni, Chen, Chernozhukov, and Hansen (2012) and

Belloni, Chernozhukov, and Hansen (2013) provide an approach that does this in a canonical IV
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model, and Belloni, Chernozhukov, and Hansen (2013; 2012) provide an approach for inference

about structural coefficients in a partially linear model or about average treatment effects in a

heterogeneous treatment effects model with binary treatment. In addition to being canonical

econometric models, the basic intuition developed in these examples is helpful in understanding

how regularization may be used in other environments, so we outline the approaches below.

Developments in other contexts are a topic of ongoing research; e.g. Belloni, Chernozhukov,

Fernandéz-Val, and Hansen (2013) consider estimating heterogeneous treatment effects in a

program evaluation context.

2.1. Inference with Selection among Many Instruments. Consider the linear instru-

mental variables model with potentially many instruments

yi = αdi + εi (2.9)

di = z′iΠ + vi (2.10)

where E[εi|zi] = E[vi|zi] = 0 but E[εivi] 6= 0 leading to endogeneity, di is a scalar structural

variable of interest, and zi is a p dimensional vector of instruments where p � n is allowed.

Allowing for a small number of included exogenous variables is straightforward by defining the

variables in (2.9) and (2.10) as residuals after partialing these variables out, and we ignore it

for simplicity. The results in Belloni, Chen, Chernozhukov, and Hansen (2012) also allow for

a non-scalar but finite dimensional treatment vector and for (2.10) to have the structure of

(1.1).

One approach to estimation and inference about α in this context is to select a small num-

ber of instruments from zi to then use in conventional 2SLS estimation. Belloni, Chen, Cher-

nozhukov, and Hansen (2012) provide a set of formal conditions under which conventional

inference from the 2SLS estimator based on instruments selected by LASSO or another vari-

able selection procedure is valid for learning about the parameter of interest, α. The key

features that allow this can be illustrated by noting that this model also cleanly fits into the

heuristic outline for doing valid inference after using high-dimensional methods provided above.

The parameter of interest, α, is finite-dimensional and there is no selection over whether di

will be included in the model. The variable selection component of the problem is limited to

the first-stage equation (2.10) which is a pure predictive relationship. The structure of the

problem is such that model selection mistakes in which a valid instrument with a small but

non-zero coefficient is left out of the first-stage will not impact the consistency of the second-

stage 2SLS estimator of α as long as there are other instruments with large coefficients that

are selected. Such selection mistakes also do not have first-order impacts on the variance of

the 2SLS estimator as they do not substantially diminish the performance of the first-stage

predictions of di given zi under the conditions that lead to model selection estimators leading

to good predictive models. In other words, the second stage IV estimate is immunized against

errors where variables with small coefficients are mistakenly excluded from estimation of the

nuisance function E[di|zi].
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2.2. Inference with Selection among Many Controls. As a second example, consider a

linear model where a treatment variable is taken as exogenous after conditioning on control

variables:

yi = αdi + x′iθg + ζi (2.11)

di = x′iθm + vi (2.12)

where E[ζi|di, xi] = E[vi|xi] = 0 and xi is a p dimensional vector of controls where p � n is

allowed. Belloni, Chernozhukov, and Hansen (2012) consider this and more general models

that allow for a non-scalar but finite dimensional treatment vector, for (2.11) and (2.12) to

have the structure of (1.1), and for a binary treatment variable that is fully interacted with

the controls allowing for general heterogenous effects and a binary treatment.

As was illustrated by the simulation example above, simply applying a variable selection

procedure to (2.11) and then doing inference for α is complicated by the possibility of making

selection errors. Rather than work directly with (2.11), it is more productive to consider

the reduced forms associated with (2.11) and (2.12) formed by plugging the equation for the

treatment (2.12) into the structural equation (2.11):

yi = x′iπ + εi (2.13)

di = x′iθm + vi. (2.14)

Both of these equations then represent simple predictive relationships which may be estimated

using high-dimensional-methods. Interest focuses on the scalar parameter α, and there is no

selection or shrinkage related to this parameter. Variable selection is limited to selecting a set

of variables that are useful for predicting y, say xy, and a set of variables that are useful for

predicting d, say xd. In order to estimate α, we then want to take the information obtained by

building predictive models for y and d into account when estimating α from (2.11). A simple

way to do this is to estimate equation (2.11) by OLS regression of y on d and the union of

the variables selected for predicting y and d contained in xy and xd. This outlined procedure

corresponds to the double-selection-method developed in Belloni, Chernozhukov, and Hansen

(2012).

Belloni, Chernozhukov, and Hansen (2012) provide formal conditions under which this

double-selection procedure will lead to valid inference about α even when selection mistakes

are allowed in estimating both (2.13) and (2.14). The additional robustness relative to working

with just the structural equation (2.11) comes from using the two selection steps and taking

the union of the selected controls. If one took just the controls found to be highly predictive

of d, i.e. used only xd, one would potentially miss variables that have small but non-zero co-

efficients in (2.12) but large coefficients in (2.11). Ignoring these variables would then lead to

non-negligible omitted variables bias. On the other hand, using only equation (2.11) or (2.13)

would potentially miss variables that have small but non-zero coefficients in (2.11) but large

coefficients in (2.12) which would again lead to non-negligible omitted variables bias. Using

both variable selection steps immunizes the resulting procedure against both of these types of
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model selection mistakes as the variables that are missed will have small coefficients in both

(2.13) and (2.14) and will thus contribute little to the resulting omitted variables bias. Thus,

the double-selection-procedure results in more robust inference than a procedure that relies on

looking at only one equation or that does not take the union of the variables selected in both

selection steps. Using both selection steps also enhances feasible efficiency by finding variables

that are strongly predictive of the outcome and may remove residual variance.14

As a final illustration, we note that the right panel in Figure 1 results from applying this

double-selection procedure in the simulation example presented at the beginning of this section.

As can be seen, the sampling distribution of the t-statistic given by the histogram lines up quite

nicely with the asymptotic distribution derived in Belloni, Chernozhukov, and Hansen (2012)

which is represented by the red curve,15 and inference based on the asymptotic approximation

provides a good guide to the finite-sample performance of the double-selection estimator in

this example.

3. Examples

In the preceding sections, we have briefly discussed regularization and variable selection

through penalized estimation in linear models or series-based nonparametrics. We also provided

two abstract examples illustrating how one may use sparse-high-dimensional methods coupled

with econometric models to perform valid estimation and inference of structural parameters

when there are many observed variables. In this section, we provide three concrete examples

of the use of these methods as an aid to understanding economic phenomena. In all examples,

variable selection is done using the feasible LASSO estimator outlined in Section 1.2 with

penalty weights estimated via the iterative algorithm with a maximum of 100 iterations. All

presented results also use a plug-in penalty level for λ.16

3.1. Estimating the Impact of Eminent Domain on House Prices. In our first example,

we consider IV estimation of the effects of federal appellate court decisions regarding eminent

domain on the Case-Shiller Price Index. Our analysis is a simplified version of the analysis given

in Belloni, Chen, Chernozhukov, and Hansen (2012) and Chen and Yeh (2010) which provide

a more detailed discussion of the economics of takings law (or eminent domain), relevant

institutional features of the legal system, and a careful discussion of endogeneity concerns and

the instrumental variables strategy in this context. To try to uncover the relationship between

14Belloni, Chernozhukov, and Hansen (2012) show that this double-selection estimator achieves the semi-

parametric efficiency bound when approximate sparsity as in (1.3) holds in both (2.13) and (2.14) and errors

are homoskedastic.
15As the simulated object is the t-statistic using the standard error estimator from Belloni, Chernozhukov,

and Hansen (2012), the red curve is a standard normal density.
16Using λ selected by 10-fold cross-validation yielded similar results in all cases.
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takings law and housing prices, we estimate structural models of the form

log(Case-Shillerct) = αTakings Lawct + βc + βt + γct+W ′ctδ + εct

where Case-Shillerct is the level of the Case-Shiller price index for circuit c at time t, Takings

Lawct represents the number of pro-plaintiff appellate takings decisions in circuit c and year

t; Wct are judicial pool characteristics,17 a dummy for whether there were no cases in that

circuit-year, and the number of takings appellate decisions; and βc, βt, and γct are respectively

circuit-specific effects, time-specific effects, and circuit-specific time trends. An appellate court

decision is coded as pro-plaintiff if the court ruled that a taking was unlawful, thus overturning

the government’s seizure of the property in favor of the private owner. We construe pro-

plaintiff decisions to indicate a regime that is more protective of individual property rights.

The parameter of interest, α, thus represents the effect of an additional decision upholding

individual property rights on a measure of property prices. For simplicity and since all of the

controls, instruments, and the endogenous variable vary only at the circuit-year level, we use

the within-circuit-year average of the Case-Shiller index as the dependent variable. The total

sample size in this example is 183.

The analysis of the effects of takings law is complicated by the possible endogeneity between

takings law decisions and economic variables. To address the potential endogeneity of takings

law, we employ an instrumental variables strategy based on the identification argument of

Chen and Sethi (2010) and Chen and Yeh (2010) that relies on the random assignment of

judges to federal appellate panels. Since judges are randomly assigned to three judge panels to

decide appellate cases, the exact identity of the judges and their demographics are randomly

assigned conditional on the distribution of characteristics of federal circuit court judges in a

given circuit-year.

There are many potential characteristics of three judge panels that may be used as instru-

ments. While the basic identification argument suggests any set of characteristics of the three

judge panel will be uncorrelated with the structural unobservable, there will clearly be some in-

struments which are more worthwhile than others in obtaining precise second-stage estimates.

Given the large number of potential instruments that could be constructed by considering

all combinations of characteristics of three judge panels, it is also clearly infeasible to use all

possible instruments.

One approach to dealing with the large number of instruments is to choose a small number

based solely on intuition. For example, judges’ political affiliation is known to predict judicial

decisions in several contexts. One might hypothesize that this intuition carries over to judicial

decisions regarding eminent domain, perhaps with democratic leaning judges being more pro-

government and thus tending to rule against the government’s exercise of eminent domain less

often. If one uses the number of panels with one or more democrats as the single instrument,

17The judicial pool characteristics are 32 variables for the probability of a panel being assigned with the

characteristics used to construct the instruments.



14 BELLONI CHERNOZHUKOV HANSEN

the first-stage coefficient on the instrument is 0.0664 with an estimated standard error of

0.0713. Thus, one would not reject the hypothesis that this instrument is unrelated to the

endogenous variable, the number of pro-plaintiff decisions, at any reasonable confidence level

suggesting that this instrument does not satisfy the instrument relevance condition. Ignoring

this, one can still obtain an IV estimate of the effect of an additional pro-plaintiff decision on

property prices. Doing this gives a point estimate of -0.2583 with an estimated standard error

of 0.5251, though one should not take these numbers too seriously given the obvious weak

instrument.

An alternative would be to use variable selection methods to find a set of good instruments

from a large set of intuitively chosen potential instruments. It is important to note that

strong economic intuition is still needed even when using automatic variable selection methods

as these methods will fail if the baseline set of variables being searched over is poor. It is

also worth remembering that the theory of high-dimensional variable selection methods allows

for selection among a very large set of variables but that high-dimensional variable selection

methods work best in simulations when selection is done over a collection of variables that is

not overly extensive. That is, it is important to have a carefully chosen, well-targeted set of

variables to be selected over.

In this example, we first did ex ante dimension reduction by intuively selecting characteris-

tics thought to have strong signal about judge preferences over government versus individual

property rights. Specifically, we chose to consider only the individual characteristics gender,

race, jewish, catholic, protestant, evangelical, not-religious, democrat, bachelor obtained in-

state, bachelor from public university, JD from a public university, has an LLM or SJD, and

whether elevated from a district court. For each of these baseline variables, we then constructed

three new variables counting the number of panels with one member with each characteristic,

two members with each characteristic, and three members with each characteristic. To allow

for nonlinearities, we included first-order interactions between all of the previously mentioned

variables, a cubic polynomial in the the number of panels with at least one democrat, a cubic

polynomial in the number of panels with at least one member with a JD from a public univer-

sity, and a cubic polynomial in the number of panels with at least one member elevated from

within the district. In addition to limiting the selection to be over this set of baseline variables,

we also did some additional pre-processing to remove instruments that we thought likely to

be irrelevant based on features of the instrument set alone. We removed any instrument with

mean < .05, any instrument with standard deviation after partialling out controls < .000001,

and one instrument from any pair of instruments with bivariate correlation > .99 in absolute

value.18 After these initial choices, we are left with a total of 147 instruments.19

18Note that selection based on characteristics of the instruments without reference to the endogenous variable

or outcome cannot introduce bias as long as the instruments satisfy the IV exclusion restriction.
19The number of instruments plus the number of control variables is greater than the number of observations

in this example, so conventional instrumental variables estimators using the full set of variables are not defined.
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With this set of instruments, we then estimate the first-stage relationship using LASSO,

(1.5), with penalty level λ = 2.2
√
nΦ−1(1 − γ/(2p)) where γ = .1/ log(n). The estimated

coefficients have just one non-zero element, the coefficient on the number of panels with one

or more members with JD from a public university squared. Using this instrument gives a

first stage coefficient of 0.4495 with estimated standard error of 0.0511. This strong first-stage

is in sharp contrast to the first-stage obtained from the “intuitive” baseline using the num-

ber of panels with one or more democrats which had estimated coefficient (standard error)

of 0.0664 (0.0713). The second stage estimate using the LASSO-selected instrument is then

0.0648 with estimated standard error of 0.0240. This estimate is small but statistically sig-

nificant at the usual levels suggesting that judicial decisions reinforcing individual property

rights are associated with higher property prices. That one obtains a much stronger first-

stage using instruments selected by formal variable relative to that obtained by an “intuitive”

benchmark with a corresponding sensible and reasonably precise second-stage estimate suggests

that high-dimensional techniques may usefully complement researchers’ intuition for choosing

instruments in IV estimation settings.

3.2. Estimating the Effect of Abortion on Crime. As our second example, we consider

estimating the impact of abortion on crime rates as in Donohue III and Levitt (2001). The basic

problem in estimating the causal impact of abortion on crime is that state-level abortion rates

are not randomly assigned, and it seems likely that there will be factors that are associated to

both state-level abortion rates and state-level crime rates. Failing to control for these factors

will then lead to omitted variables bias in the estimated abortion effect.

To address these potential confounds, Donohue III and Levitt (2001) estimate a standard

differences-in-differences style model for state-level crime rates running from 1985 to 1997.

Their basic specification is

ycit = αcacit + w′itβc + δci + γct + εcit (3.15)

where i indexes states, t indexes times, c ∈ {violent, property, murder} indexes type of crime,

δci are state-specific effects that control for any time-invariant state-specific characteristics, γct

are time-specific effects that control for arbitrary national aggregate trends, wit are a set of

control variables to control for time-varying confounding state-level factors, acit is a measure

of the abortion rate relevant for type of crime c,20 and ycit is the crime-rate for crime type c.

Donohue III and Levitt (2001) use the log of lagged prisoners per capita, the log of lagged police

per capita, the unemployment rate, per-capita income, the poverty rate, AFDC generosity at

time t − 15, a dummy for concealed weapons law, and beer consumption per capita as wit.

Tables IV and V in Donohue III and Levitt (2001) present baseline estimation results based on

(3.15) as well as results from different models which vary the sample and set of controls to show

20This variable is constructed as weighted average of lagged abortion rates where weights are determined

by the fraction of the type of crime committed by various age groups. For example, if all crime of type c were

committed by 18 year olds, acit at time t would simply be the abortion rate at time t − 18. See Donohue III

and Levitt (2001) for further detail and exact construction methods.



16 BELLONI CHERNOZHUKOV HANSEN

Table 1. Effect of Abortion on Crime

Violent Property Murder

Estimator Effect Std. Err. Effect Std. Err. Effect Std. Err.

First-Difference -.152 .034 -.108 .022 -.204 .068

All Controls .006 .755 -.154 .224 2.240 2.804

Double Selection -.174 .120 -.052 .070 -.123 .148

This table reports results from estimating the effect of abortion on violent crime, property

crime, and murder. The row labeled “First-Difference” gives baseline first-difference estimates

using the controls from Donohue III and Levitt (2001). The row labeled “All Controls” includes

a broad set of controls meant to allow flexible trends that vary with state-level characteristics.

The row labeled “Double Selection” reports results based on the double selection method

outlined in Section 2.2 selecting among the variables used in the “All Controls” results.

that the baseline estimates are robust to small deviations from (3.15). We refer the reader to

the original paper for additional details, data definitions, and institutional background.

In this example, we take first-differences of equation (3.15) as our baseline. We use the same

state-level data as Donohue III and Levitt (2001) but delete Alaska, Hawaii, and Washington,

D.C. which gives a sample with 48 cross-sectional observations and 12 time series observations

for a total of 576 observations. With these deletions, our baseline estimates using the same

controls as in (3.15) are quite similar to those reported in Donohue III and Levitt (2001).

Estimates of the effect of abortion on crime from this first-difference model are given in the

first row of Table 1. These baseline results suggest that increases in abortion rates are strongly

associated with decreases in crime rates, and this association may be taken as causal under

the assumption that all confounds are either time-invariant or captured by a national trend.

By construction, the baseline specification perfectly controls for any factors that are related

to abortion and crime rates and either are time invariant or vary only at the national level

due to the inclusion of the state and time effects. While this is fairly flexible, it produces

valid estimates of the causal effect of abortion on crime rates only if time-varying state-specific

factors that are correlated to both abortion and crime rates are captured by the small set of

characteristics given in xit. An approach that is sometimes used to help alleviate this concern

is to include a set of state-specific linear time trends in the model to account for differences in

state-specific trends that may be related to both the outcome and treatment variable of interest.

This approach suffers from the drawback that it introduces many additional variables. Perhaps

more importantly, the assumption of a linear trend is questionable in many circumstances as

an approximation and certainly cannot capture the evolution of variables such as the crime

rate or the abortion rate over any long time horizon.

Instead of using state-specific linear trends, we consider a generalization of the baseline

model that allows for nonlinear trends interacted with observed state-specific characteristics
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and then use variable selection methods to find potentially important confounding variables.

This approach allows us to consider quite flexible models without including so many additional

variables that we mechanically cannot learn about the abortion effect. A key choice in using

high-dimensional variable selection methods is the set of candidate variables to consider. For

this example, our choice of these variables was motivated by our desire to accommodate a

flexible trend that might offer a sensible model of the evolution of abortion or crime rates over

a 12 year period. To accomplish this, we use the double-selection procedure outlined in Section

2.2 with models of the form

∆ycit = αc∆acit + z′itcβc + γ̃ct + ∆εcit (3.16)

∆acit = z′itcΠc + κ̃ct + ∆vcit

where ∆ycit = ycit − ycit−1 and ∆acit, ∆εcit, and ∆vcit are defined similarly; γ̃ct and κ̃ct

are time effects; zitc is a large set of controls; and we have introduced an equation for the

abortion rate to make the relation to Section 2.2 clear. zitc consists of 284 variables made

up of the levels, differences, initial value, initial level, and within-state average of the eight

state-specific time-varying observables, the initial level and initial difference of the abortion

rate relevant for crime type c, quadratics in each of the preceding variables, interactions of all

the aforementioned variables with t and t2, and the main effects t and t2. This set of variables

corresponds to a flexible cubic trend for the level of the crime rate and abortion rate that is

allowed to depend on observed state-level characteristics.

Since the set of variables we consider has fewere elements than there are observations, we

can estimate the abortion effect after controlling for the full set of variables. Results from

OLS regression of the differenced crime rate on the differenced abortion rate, a full set of

time dummies, and the full set of variables in zitc are given in the second row of Table 1.

Unsurprisingly, the estimated abortion effects are extremely imprecise with confidence intervals

at the usual levels including implausibly large negative and implausibly large positive values

for the abortion effect across all three outcomes. Of course, very few researchers would consider

using 284 controls with only 576 observations due to exactly this issue; and one may be willing

to believe that many of the variables within this set of potential controls do not actually have

any real association to the abortion rate or crime rate.

The final row of Table 1 provides the estimated abortion effects based on the double-selection

method of Belloni, Chernozhukov, and Hansen (2012). At each stage of the process, we

include the full set of time dummies without penalizing the parameters on these variables

as we wish to allow for a flexible aggregate trend. In this example, we use LASSO with

λ = 2.2
√

2n(log(2p/.05)) to select variables from zcit that are useful for predicting the change

in crime rate c and the change in the associated abortion rate. We then use the union of the

set of selected variables as controls in estimating (3.16). In all equations, the selected vari-

ables suggest the presence of a nonlinear trend in abortion rates that depends on state-specific
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characteristics.21 Looking at the results, we see that estimated abortion effects are much more

precise than the “kitchen sink” results that include all controls. However, the double-selection

estimates for the effect of abortion on crime rates are quite imprecise, producing 95% confidence

intervals that encompass large positive and negative values.

It is interesting that one would draw qualitatively different conclusions from the estimates

obtained using formal variable selection than from the estimates obtained using a small set

of intuitively selected controls. Looking at the set of selected control variables, we see that

the selected controls are strongly indicative of the presence of nonlinear trends that depend

on state-specific characteristics. We also see that we cannot precisely determine the effect of

the abortion rate on crime rates once one accounts for these trends. Of course, this does not

mean that the effect of the abortion rate provided in the first row of Table 1 is inaccurate for

measuring the causal effect of abortion on crime. It does, however, imply that this conclusion

is not robust to the presence of fairly parsimonious nonlinear trends. Interestingly, a similar

conclusion is given in Foote and Goetz (2008) based on an intuitive argument.

3.3. Estimating the Effect of Institutions on Output. For our final example, we consider

estimation of the effect of institutions on aggregate output following Acemoglu, Johnson, and

Robinson (2001). Estimating the effect of institutions on output is complicated by the clear

potential for simultaneity between institutions and output in that better institutions may lead

to higher incomes but higher incomes may also lead to the development of better institutions.

To help overcome this simultaneity, Acemoglu, Johnson, and Robinson (2001) make use of

a clever instrumental variable strategy where they instrument for institution quality using

early European settler mortality. The validity of this instrument hinges on the argument

that settlers set up better institutions in places where they were more likely to establish

long term settlements which is related to mortality at the time of initial colonization and

that institutions are highly persistent which leads to a potential first-stage relationship. The

exclusion restriction is then motivated by the argument that GDP, while persistent, is unlikely

to be strongly influenced by mortality in the previous century, or earlier, except through

institutions.

21For violent crime, lagged prisoners, lagged police, lagged unemployment, initial income, the initial income

difference × t, the initial beer consumption difference × t, initial income × t, initial prisoners squared × t2,

average income, average income × t, and the initial abortion rate are selected in the abortion equation; and the

initial difference in the abortion rate × t and the initial abortion rate × t are selected in the crime equation.

For property crime, lagged prisoners, lagged police, lagged income, the initial income difference, initial income,

the initial income difference × t, the initial beer difference × t, initial prisoners squared × t, initial prisoners

squared × t2, initial beer squared × t2, average income, and the initial abortion rate are selected in the abortion

equation; and initial income squared × t, initial income squared × t2, and average AFDC squared are selected

in the crime equation. For the murder rate, lagged prisoners, lagged unemployment, the initial unemployment

difference squared, initial prisoners × t, initial income × t, the initial beer difference × t2, average income × t,

the initial abortion rate, and the initial abortion rate × t are selected in the abortion equation and no variables

are selected in the crime equation.
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In their paper, Acemoglu, Johnson, and Robinson (2001) note that their IV strategy will be

invalidated if there are other factors that are highly persistent and related to the development

of institutions within a country and to the country’s GDP. A leading candidate for such a factor

that Acemoglu, Johnson, and Robinson (2001) discuss is geography. This possiblity leads to

Acemoglu, Johnson, and Robinson (2001) controlling for the distance from the equator in

their baseline specifications and also to their considering specifications with different sets of

geographic controls such as continent dummies; see Acemoglu, Johnson, and Robinson (2001)

Table 4.

As a complement to these results, we consider using high-dimensional methods to aid in

estimating the model

log(GDP per capitai) = α(Protection from Expropriationi) + x′iβ + εi

using the same set of 64 country-level observations as Acemoglu, Johnson, and Robinson

(2001) where “Protection from Expropriation” is a measure of the strength of individual prop-

erty rights that is used as a proxy for the strength of institutions and xi is a set of variables

that are meant to control for geography. The underlying identifying assumption is the same

as that employed in Acemoglu, Johnson, and Robinson (2001) that mortality risk is a valid in-

strument after controlling for geography. Of course, as more flexible controls for geography are

considered, power to identify the effect of institutions is lost. The specifications of Acemoglu,

Johnson, and Robinson (2001) resolve this difficulty by assuming that the confounding effect

of geography is adequately captured by a linear term in distance from the equator or a set of

dummy variables. The use of high-dimensional methods allow us to replace this assumption by

the assumption that geography can be sufficiently controlled for by a small number of variables

constructed from geographic information whose identities will be learned from the data.

To make use of high-dimensional methods, we note that the model in this example is equiv-

alent to the three equation system

log(GDP per capitai) = α(Protection from Expropriationi) + x′iβ + εi

Protection from Expropriationi = π1(Settler Mortalityi) + x′iΠ2 + vi

Settler Mortalityi = x′iγ + ui

which yields three reduced form equations relating the structural variables to the controls:

log(GDP per capitai) = x′iβ̃ + ε̃i

Protection from Expropriationi = x′iΠ̃2 + ṽi

Settler Mortalityi = x′iγ + ui.

After writing the model in terms of the reduced forms, the model is now seen to be struc-

turally the same as the model from Section 2.2. We can thus select a set of control terms by

performing variable selection on each of the three reduced form equations. Valid estimation

and inference of the structural parameter, α, can then proceed by conventional IV estimation
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Table 2. Effect of Institutions on Output

Latitude All Controls Double Selection

First Stage -0.5372 -0.2164 -0.5429

(0.1545) (0.2191) (0.1719)

Second Stage 0.9692 0.9480 0.7710

(0.2128) (0.7384) (0.1971)

This table reports results from estimating the effect of institutions using settler mortality as

an instrument for different sets of control variables. The column labeled “Latitude” controls

linearly for distance from the equator. The column labeled “All Controls” includes 16 controls

defined in the text, and the column labeled “Double Selection” uses the union of the set of

controls selected by LASSO for predicting GDP per capita, for predicting institutions, and

for predicting settler mortality. The row labeled “First Stage” gives the first stage estimate

of the coefficient on settler mortality, and the row labeled “Second Stage” gives the estimate

of the structural effect of institutions on log(GDP per capita). Standard errors are given in

parentheses.

using Settler Mortalityi as an instrument for Protection from Expropriationi with the union

of variables selected from each reduced form as included control variables.

As in the previous examples, it is important that a set of baseline variables be selected ex

ante before variable selection methods are applied. In this case, our target is to control for geog-

raphy, so we consider a flexible but still parsimonious set of variables constructed from geogra-

phy. Specifically, we set xi equal to the dummy variables for Africa, Asia, North America, and

South America plus the variables latitude, latitude2, latitude3, (latitude-.08)+, (latitude-.16)+,

(latitude-.24)+, ((latitude-.08)+)2, ((latitude-.16)+)2, ((latitude-.24)+)2, ((latitude-.08)+)3,

((latitude-.16)+)3, ((latitude-.24)+)3 where latitude denotes the distance of a country from

the equator normalized to be between 0 and 1 and (a)+ returns a when a is positive and 0

otherwise.

We report estimation results in Table 2. The first column of the table labeled “Latitude”

gives baseline results that control linearly for latitude. These results correspond to the findings

of Acemoglu, Johnson, and Robinson (2001) suggesting a strong positive effect of improved

institutions on output with an underlying reasonably strong first-stage. This contrasts strongly

with the second column of the table which gives results controlling for all 16 of the variables

defined in the previous paragraph. Controlling for the full set of terms results in a very

imprecisely estimated first-stage. The effect of institutions is also very imprecisely estimated

though the inference underlying this statement is unreliable given the weak first-stage. Of

course, very few researchers would control for such a flexible function with only 64 available

observations. The variable selection methods discussed in this paper are defined to produce

a reasonable trade-off between this and the first case by allowing flexible functions to be
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considered but only using terms which are useful for understanding the underlying reduced

form relationships.

The final column of Table 2 labeled “Double Selection” controls for the union of the set

of variables selected by running LASSO (1.5) on each of the three reduced form equations

with penalty level λ = 2.2
√

2n(log(2p/γ)) with γ = .1/ log(n). Interestingly, the same single

variable, the dummy for Africa, is selected in all three of the reduced form equations. Thus,

the final column is simply the IV estimate of the structural equation with the Africa dummy

included as the single control variable. Interestingly, the results are qualitatively similar to the

baseline results though the first-stage is somewhat weaker and the estimated structural effect

is slightly attenuated though still very strong and positive. The slightly weaker first-stage sug-

gests that the intuitive baseline obtained by controlling linearly for latitude may be inadequate

though the results are not substantively altered in this case. Again, we believe these results

suggest that high-dimensional techniques may usefully complement the sets of sensitivity anal-

yses that researchers are already doing such as those underlying Table 4 of Acemoglu, Johnson,

and Robinson (2001) by adding rigor to these exercises and thus potentially strengthening the

plausibility of conclusions drawn in applied economic papers.

4. Conclusion

In this paper, we consider estimation and inference in structural economic models allow-

ing for very many conditioning variables or instruments. Researchers may face scenarios with

many instruments or control variables in practice in settings where the data are inherently rich

in that many characteristics about individual observations are available or in settings where

researchers consider allowing variables to flexibly enter their models through the use of series or

other expansions. Doing inference about structural effects is complicated in high-dimensional

data as some sort of regularization or variable selection is necessary for informative inference

to proceed. We briefly reviewed penalized methods for doing regularized estimation and vari-

able selection in high-dimensional settings. While post-model-selection inference is generally

complicated, we have illustrated through examples how valid inference may be performed after

doing variable selection. In discussing the examples, we highlighted common features of the

structural models that seem to be important in establishing that valid inference after model

selection is possible. In three data examples, we have shown that high-dimensional methods

may provide a useful addition to the tools used in applied economic research by allowing one

to consider richer sorts of confounding information thus making arguments that rely on exo-

geneity of treatment or instrumental variables conditional on observables more plausible or by

allowing one to search among a set of instruments to find those that lead to stronger identifi-

cation. It is also worth noting that the methods discussed in this paper apply not only when

there are very many regressors but may also be used when the number of regressors is smaller

than sample size as in two of our three empirical examples.
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