A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Wilhelm, Daniel

Working Paper

Optimal bandwidth selection for robust generalized

method of moments estimation

cemmap working paper, No. CWP15/14

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Wilhelm, Daniel (2014) : Optimal bandwidth selection for robust generalized
method of moments estimation, cemmap working paper, No. CWP15/14, Centre for Microdata

Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2014.1514

This Version is available at:
https://hdl.handle.net/10419/97367

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2014.1514%0A
https://hdl.handle.net/10419/97367
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

cemmap

cenire for microdata methods and practice

Optimal bandwidth selection for
robust generalized method of
moments estimation

Daniel Wilhelm

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP15/14

An ESRC Research Centre

Institute for Fiscal Studies, 7 Ridgmount Street, London WCIE 7AE Tel: 44 (0)20 72914800 Email:inffo@cemmap.ac.uk www.cemmap.ac.uk



Optimal Bandwidth Selection for Robust

Generalized Method of Moments Estimation

Daniel Wilhelm*
UCL and CeMMAP

March 22, 2014

Abstract

A two-step generalized method of moments estimation procedure can be made
robust to heteroskedasticity and autocorrelation in the data by using a nonpara-
metric estimator of the optimal weighting matrix. This paper addresses the issue of
choosing the corresponding smoothing parameter (or bandwidth) so that the result-
ing point estimate is optimal in a certain sense. We derive an asymptotically optimal
bandwidth that minimizes a higher-order approximation to the asymptotic mean-
squared error of the estimator of interest. We show that the optimal bandwidth is
of the same order as the one minimizing the mean-squared error of the nonparamet-
ric plugin estimator, but the constants of proportionality are significantly different.
Finally, we develop a data-driven bandwidth selection rule and show, in a simu-
lation experiment, that it may substantially reduce the estimator’s mean-squared
error relative to existing bandwidth choices, especially when the number of moment

conditions is large.
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1 Introduction

Since the seminal paper by Hansen (1982) the generalized method of moments (GMM)
has become a popular method for the estimation of partially specified models based on
moment conditions. In time series applications, two-step GMM estimators can be made
robust to heteroskedasticity and autocorrelation (HAC) by using a nonparametric plug-
in estimator of the optimal weighting matrix. The goal of this paper is to develop a
selection rule for the corresponding smoothing parameter of the nonparametric estimator
such that the resulting point estimator minimizes a suitably defined mean-squared error
(MSE) criterion.

Many instances of poor finite sample performance of GMM estimators have been
reported in the literature. See for example Hansen, Heaton, and Yaron (1996) and ref-
erences therein. As an attempt to improve the properties different extensions and new
estimators have been proposed, e.g. the empirical likelihood estimator introduced by
Owen (1988), Qin and Lawless (1994), the exponential tilting estimator of Kitamura and
Stutzer (1997) and Imbens, Spady, and Johnson (1998) and the continuous updating es-
timator by Hansen, Heaton, and Yaron (1996). Newey and Smith (2004) show that all
these estimators are members of a larger class of generalized empirical likelihood (GEL)
estimators. A different approach termed “fixed-b” asymptotics is based on deriving more
accurate approximations of estimators and test statistics based on an asymptotic sequence
in which the HAC smoothing parameter tends to infinity at the same rate as the sam-
ple size. See for example Kiefer and Vogelsang (2002a,b, 2005). Instead of treating the
smoothing parameter as proportional to the sample size, Sun and Phillips (2008) and Sun,
Phillips, and Jin (2008) develop a higher-order asymptotic theory based on which they
find the optimal rate at which the smoothing parameter (here a bandwidth) minimizes
the coverage probability error or length of confidence intervals.

Similar in spirit, the present paper derives the optimal growth rate of the bandwidth
to minimize an asymptotic mean-squared error (AMSE) criterion. We approximate the
MSE of the second-step GMM estimator by the MSE of the first few terms in a stochas-
tic expansion. Since the proposed semiparametric estimator is first-order equivalent to
ordinary GMM estimators in the iid case, the optimal bandwidth derived in this paper
will minimize its second-order effects on the estimator and lead to second-order efficiency
gains. In an unpublished dissertation, Jun (2007) independently develops a similar expan-
sion and arrives at the same MSE-optimal bandwidth as derived in this paper, however
under a slightly different set of assumptions.!

Other bandwidth choices for HAC-robust estimation have been suggested by Andrews



(1991), Newey and West (1994) and Andrews and Monahan (1992), for example, and
are very popular in applied research. In this paper, we show that these are suboptimal
choices if MSE-optimal point estimation is of main interest. In finite samples, the existing
methods can select bandwidths that are significantly different from the MSE-optimal
bandwidth even though they share the same asymptotic order relative to the sample size.
The difference is due to the other methods minimizing the AMSE of the weighing matrix
estimator instead of minimizing the AMSE of the GMM estimator itself; they guarantee
accurate estimates of the optimal weighting matrix, but not necessarily of the parameter
of interest.

In the linear regression framework with potential autocorrelation and heteroskedastic-
ity, there are several papers (e.g. Robinson (1991), Xiao and Phillips (1998) and Tamaki
(2007)) that derive higher-order expansions of the MSE of semiparametric frequency do-
main estimators to determine an optimal bandwidth that minimizes higher-order terms
of such expansions. In the present paper, however, we allow for nonlinear models and
over-identification which significantly complicate the problem and require a different set
of tools to derive such expansions.

To approximate higher-order moments of the GMM estimator we develop a stochastic
expansion of the estimator similar to the approach in Nagar (1959). See Rothenberg
(1984) for an introduction to Nagar-type expansions and for further references. Several
other authors have analyzed higher-order properties of GMM and GEL estimators using
similar tools. Rilstone, Srivastava, and Ullah (1996) and Newey and Smith (2004) provide
expressions for the higher-order bias and variance of GMM and GEL estimators when the
data are iid. Anatolyev (2005) derives the higher-order bias in the presence of serial
correlation.

Finally, Goldstein and Messer (1992) present general conditions under which func-
tionals of nonparametric plug-in estimators achieve the optimal rate of convergence. De-
pending on the functional under-smoothing the plugin estimator relative to the smoothing
parameter used to optimally estimate the nonparametric quantity itself may be necessary.

The paper is organized as follows. The first section introduces the econometric setup,
derives a higher-order expansion of the two-step GMM estimator and the optimal band-
width that minimizes an approximate MSE based on that expansion. The third section
describes an approach to estimate the infeasible optimal bandwidths, followed by a simu-
lation experiment that demonstrates the procedure’s performance in finite samples. The
paper concludes with an appendix containing all mathematical proofs.

Let vec(-) denote the column-by-column stacking operation and vech(-) the column-

by-column stacking operation of entries on and above the diagonal of a symmetric matrix.



By K, denote the mn x mn commutation matrix so that, for any m x n matrix M,
K, nvec(M) = vec(M'). Let ® be the Kronecker product and V"F(3), with r € Z and
F() a matrix being r times differentiable in /3, denote the matrix of r-th order partial
derivatives with respect to (8, recursively defined as in Rilstone, Srivastava, and Ullah
(1996). VOF(B) := F(8). This notation for derivatives will sometimes be used to save
space and simplify notation. ||-|| denotes the Euclidean (matrix) norm, M’ the transpose
of a matrix M, “with probability approaching one” is abbreviated “w.p.a. 17 and “with
probability one” by “w.p. 1”7. The notation z7 = O,(1) means that the sequence {x7}7,

is uniformly tight.

2 Optimal Bandwidth

In this section, we introduce the basic framework, define an appropriate MSE criterion
and find the optimal bandwidth that minimizes it. The idea is to derive a higher-order
approximation of the second-step estimator and to the MSE from the moments of this
approximation. A higher-order analysis is required in this setup because first-order asymp-
totics do not depend on the smoothing parameter.

Consider estimation of a parameter 5y € B from the moment equation Fg(X;, fy) = 0
given a data sample {z,}{_;. If the dimension of the range of ¢ is at least as large as
the dimension of the parameter [y, then a popular estimator of 3 is the two-step GMM
estimator defined as follows. First, estimate 5, by some v/T-consistent estimator, say
3, that is then used to construct a consistent estimator Q(@) of the long-run variance
Qo = >0 _T(s), I'(s) :== Flg(Xiss,B0)9(Xs, 5o)]. In a second step, compute the

S§=—00

GMM estimator § of f with weighting matrix Q(5)~!, viz.

N ~

5= angmin 9(5)0r(5)"9(9) (2.1)
where g(f) = T~} Zthl g(xy, B). The second step improves the first-step estimator in
terms of efficiency. In fact, B is optimal in the sense that it achieves the lowest asymptotic
variance among all estimators of the form fy := arg mingeg §(8)'Wg(5) for some positive
definite weighting matrix W (see Hansen (1982)).

In the special case of an iid process {X;}, € collapses to Qy = E[g(X4, 5o)g(X¢, Bo)’]
and can simply be estimated by its sample analog QT(B) = T1 Zthl g(a:t,ﬁ)g(:nt,ﬁ)’.
When the iid assumption is not justified, one can perform inference robust to autocor-
related and/or heteroskedastic X; processes. Robustness here means that potential de-

pendence and heteroskedasticity are treated nonparametrically and one does not have to



be explicit about the data generating process of the X;’s. To that end, one needs to

“smooth” the observations g(zis, 5)g(xs, )

' over s to ensure that Qp(3) is consistent.

In this paper, we use a nonparametric kernel estimator of the form

o = min{T,T—s} . o
OIS D DD SR ¢ PO
T s=1-T t=max{1,1—s} St
with ¢:(8) := g(x¢, f) and k a kernel function. Sy, with S — oo as T — oo, is a
so-called bandwidth parameter that governs the degree of smoothing. Andrews (1991)
derives a range of rates (in terms of T') at which Sy is allowed to diverge in order to
guarantee consistency of QT(B) These conditions, however, do not suggest rules for
choosing St for a fixed sample size T'. Small values of Sy imply averaging over only
few observations which decreases the variability of the estimator QT(B), but increases
its bias. On the other hand, large bandwidths yield inclusion of more distant lags in
the above sum, thereby increasing the variance, but decreasing the bias of the estimator.
Below we show that the choice of St affects the bias and variance of the second-step
estimator B in a similar way. This trade-off can be used to derive decision rules on how
to pick St in finite samples. For example, Andrews (1991) derives the optimal bandwidth
minimizing a truncated asymptotic mean-square error (AMSE) criterion that balances
bias and variance of QT(B), thereby guaranteeing “good” properties of the estimator of
the optimal weighting matrix. However, in the GMM estimation framework, the second-
step estimator B is the quantity of interest and, thus, the bandwidth should be chosen so
as to take into account the bias and variance trade-off of B , rather than that of QT(B)
To that end the subsequent analysis develops a higher-order expansion of the MSE of the

second-step estimator and then minimize the leading terms with respect to the bandwidth.

Assumption 2.1. (a) The process {X;}
stationary and o-mixing with mixing coefficients «(j) satisfying Z;’il FPa(f)r=Dv <
oo for some v > 1. (b) {x;}L, is an observed sample of {X;}* _ . (c) h(-,B) =
(g(-, B),vec(Vyg(-, 8)—EVg(-,B)),vec(V3g(-, B) — EVZ3g(-, 3))') is a measurable function
for every 8 € B. (d) sup,, B[z, 5o)[|*] < 0. (€) supysy Elsupses [VFg(ar, B)|1°] <
oo for k =1,2,3. (f) There is a first-step estimator 3 satisfying 8 — 3y = O,(T~/?).

taking values in X C R™ is fourth-order

—00

As a slight abuse of notation, in the remainder, x; represents the random variable
X; as well as the observation x;, but the distinction should be clear from the context.
Furthermore, dropping [ as an argument of a function means that the function is evaluated
at B, e.g. Qr = Qr(By) or g := g:(Bo). Let Gy := EG(x,), G(xy, B) := 0g,(8)/98',
Gy(B) := G(x4, 8), and the sample counterpart Gp(3) := T~1 ZtT:l 0g:(5) /05"
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Following Parzen (1957), let ¢ be the characteristic exponent that characterizes the
smoothness of the kernel k at zero: ¢ := max{a € [0,00) : g, exists and 0 < |g,| < oo}
1-k(2)

with g, := lim,_, T For example, for the Bartlett, Parzen and Tukey-Hanning kernel

the values of ¢ are 1, 2 and 2, respectively.

Assumption 2.2. Let the kernel k satisfy the following conditions: (a) k 'R — [-1,1]
satisfies k(0) = 1, k(z) = k(-z) Vo € R, [T k*(z)dz < oo, [T |k(z)|dz < oo,
k(-) is continuous at 0 and at all but a finite number of other pomts, and Sr — o0,
S%/T — 0, S%/T — 0 for some ¢ € [0,00) for which g,, ||f@]| € [0,00) where f@ :=
! T (5). (b) [~ k(z)dx < oo with

37 Djeoo 1

k(z) = supy>, [k(y), 20
sup,<, [k(y)|, =<0

Assumptions 2.1 and 2.2(a) imply Assumptions A, B and C in Andrews (1991) applied
to {g:} and {G;}, allowing us to use his consistency and rate of convergence results for

HAC estimators. The necessity of Assumption 2.2(b) is explained in Jansson (2002).

Assumption 2.3. (a) g: X x B— R | > p, and By € int(B) is the unique solution to
Eg(x, Bo) = 0, B C RP is compact. (b) rank(Gy) = p. (c) For any z € X, g(z, -) is twice
continuously differentiable in a neighborhood N of ;. (d) There exists a function d : X’ X
X — Rwith Y 50 Ed(z44s, ;) < 0o so that g satisfies the condition ||V (g1s(5)g:(8))—
V(9t+5(80)9:(80))|| < d(2t4s,2¢) w.p. 1for § € N. (e) There exists a function b : X — R
with Eb(z;) < oo such that ||[V*g(z, 8) — V¥g(z, Bo)|| < b(x)||B — Bol| for k =2,3. (f) Qo
is positive definite.

The following proposition is the first main result of the paper, presenting an expansion
of the second-step GMM estimator B up to the lowest orders involving the bandwidth Sy.

This approximation constitutes a crucial ingredient for the computation of the optimal
bandwidth.

Proposition 2.1. Under Assumptions 2.1-2.3, B satisfies the stochastic expansion
B = 50 + /117TT71/2 + /€27T5711/2T71 + I€37TS;qT71/2 + OP(UTTil/Q) (22)
with nyp = S%/QT_U2 + S, Kir = Opy(1) fori=1,2,3,

RiT = —H()FT
RoT = H()\/T/ST (QT_§T> P()FT

R3T = H()S% (ﬁT - Qo) P()FT

6



and FT(ﬁ> = \/TA(ﬁ), FT = FT(BO); QT = EQT, EO = (GéQalGo)il, HO =
ZoGé)Qal and PO = Qal - QalGoHo.

Since the lowest-order term, —HyFpT /2, does not depend on the bandwidth, the
expansion (2.2) illustrates the well-known fact that nonparametric estimation of the GMM
weighting matrix does not affect first-order asymptotics as long as that nonparametric
estimator is consistent. The other two terms in the expansion involve the bandwidth and
arise from the bias (S%(Qp — Q) and variance (1/T/Sr(Qp — Q7)) of the nonparametric
estimator of the weighting matrix. In a similar expansion to (2.2) for the iid case, these
two components do not appear and the next higher-order term after #; 77~/2 is of order
T~ (see Newey and Smith (2004)), which here is part of the remainder and plays no role
in determining the optimal bandwidth derived below.

Anatolyev (2005) does not explicitly present a stochastic expansion such as (2.2), but
computes the higher-order bias By of B which turns out to be of order 77!, i.e. £ [B —Bo] =
BrT ' +o(T™1), and therefore does not depend on the bandwidth. Interestingly, one can
show that the two higher-order terms in (2.2) do not contribute to that bias (Jun (2007)).

In the class of GMM estimators defined by (2.1) and indexed by the bandwidth Sr,
we now characterize the most efficient one under quadratic loss. Specifically, we rank
estimators according to the MSE of the approximation (p := Bo—l—ml,TT_l/Q—l—mQ,TS;/QT_l+

li37TS,1_«qT71/2.

Theorem 2.1. Suppose Assumptions 2.1-2.3 hold. Let W € RP*P be a weighting matriz.
Define the weighted MSE MSEr := E[((r — Bo)W(¢r — 5o)]. Then

MSEr = nT7' + 15 SpT 2 + 138, T 4 o(n2T 1)

with
nim 3 BlgH Wi,
T N — N —
Vo (= 2llIﬂ —F |:F7,—1P6(QT — QT)H(I]WH()(QT - QT)P()FT}
—00 T

T o _
— 9 lim —FE [F}PA(QT - QT)H{)WHOFT]

T—oo T

vy = lim SHE [Fr.P)(Qr — Qo) HYWHo(Qr — Qo) Py Fr]

T—o00

where all the limits exist and are finite.

As explained above, the bias of the approximation (r is zero so that the MSE expansion

(2.1) represents only the variance of (r. Despite the lack of a bias component of (7,

7



the expansion displays the first-order tradeoff that is relevant for choosing a bandwidth:
1, SpT 2 increases in Sp and 35,71 decreases in Sp. The terms have the standard
order of squared bias and variance of HAC estimators as derived in Andrews (1991).
Under additional conditions, the moments of the approximation (7 correspond to the
moments of a formal Edgeworth expansion of the cdf of the second-step estimator B
The (finite) moments of such an Edgeworth expansion can be used to approximate the
distribution of B up to the specified order even when the corresponding moments of 5’
do not exist (Gotze and Hipp (1978), Rothenberg (1984), Magdalinos (1992)). In this
sense, we can regard (2.1) as an approximation of the MSE of B when B possesses second
moments and as the MSE of an approximate estimator that shares the same Edgeworth

expansion up to a specified order.

Remark 2.1. For linear instrumental variable models with id variables and normal er-
rors, Kinal (1980) shows that B has finite moments up to order Il — p. Similar results
have been congjectured for GMM and generalized empirical likelihood estimators (e.g. Ku-
nitomo and Matsushita (2003), Guggenberger (2008)). Therefore, one should be careful
in interpreting the MSE approximation in cases when the degree of over-identification is
less than two. Other loss functions may then be more appropriate (see Zaman (1981), for

example).

Having established Theorem 2.1, the calculation of an MSE-optimal bandwidth, S7.,
becomes straightforward: for the second-order term to attain its fastest possible rate of
convergence, the terms of order SyT~2 and S;QqT_1 have to be balanced which is the
case for Sk = c*(¢)T" 1729 and some constant c*(¢). We refer to this bandwidth as the
MSE(f)-optimal bandwidth. The bandwidth minimizing the MSE of Q7(3) as derived in

~

Andrews (1991) we call the MSE(£2)-optimal bandwidth.

Corollary 2.1. Under the assumptions of Theorem 2.1 and if | > p, minimizing the
lowest order of MSEr involving the bandwidth yields the optimal bandwidth growth rate
TY(+29) - Moreover, Sk = c*(q)T 129 minimizes the higher-order AMSE defined as the
limit of HMSEy := TU+40/0+20) L MSE. — v, T} with

*(q) = (%) Vi o 2q, sign(vz) = sign(vs) (2.3)
' LT -1, sign(im) # sign(vs) '

The expressions for v5 and v3 show that the optimal bandwidth growth rate is governed
by the convergence rate of the covariances between the moment functions and the HAC
estimator. The bias and variance of the HAC estimator itself only play an indirect role;
in particular, the AMSE of B is not an increasing function of the AMSE of the HAC

8



estimator. In consequence, none of the existing procedures minimizing the AMSE of the
HAC estimator (Andrews (1991), Newey and West (1994) and Andrews and Monahan
(1992) among others) are optimal in the above sense.

The convergence rate of the MSE of 3 is not affected by the bandwidth choice because
it is of order O(T~1), only the second-order terms of the MSE, converging at an optimal
rate of O(T~U+40/(1+20)) "are. By choosing kernels of very high order ¢, this rate can be
made arbitrarily close to O(7T~2). Nevertheless, kernels of order smaller than or equal to
2 are popular because, unlike kernels of higher order, they can produce positive definite

covariance matrix estimates.

Remark 2.2. Interestingly, the semiparametric estimator B converges at rate T~ but
the optimal bandwidth minimizing MSE(B) 15 of the same order as the optimal bandwidth
MINIMIZINg MSE(Q ). This result contrasts the findings in other semiparametric settings

such as those studied by Powell and Stoker (1996) and Goldstein and Messer (1992), for
example, in which under-smoothing the nonparametric plugin estimator leads to T—1/?-
convergence rates of smooth functionals of that nonparametric plugin estimator.

To gain more insight into which features of the data generating process determine the
value of the optimal bandwidth and to be able to directly estimate the quantities involved,

the following proposition derives more explicit expressions for the constants v;.

Proposition 2.2. Assume that {g;} follows a linear Gaussian process, viz.

gt = Z \I/set—s
s=0

fort =1,...,T, e, ~ N(0,3.) @d and U, satisfies Y o0y s*|Us]| < co. Define p; =
ffooo K'(z)dx fori=1,2 and Q(()q) =21 f 9. Then

v = tr(QoHyWH,),

vy = (2pm + p2) (I = p)tr(XoW),

vy = g2tr (O HOWHQ Ry )

2.1 Linear IV Model

In this sub-section, we specialize the expressions in Proposition 2.2 to a stylized instrumen-

N

tal variable model that allows us to analyze the difference between the MSE(3)-optimal

~

and the MSE(Q)-optimal bandwidths and subsequently serves as the data generating

process for the Monte Carlo simulations. Let y; and w; be random variables satisfying
Y = Powy + &

9



and z; an [-dimensional random vector of instruments such that
!/
Wy = YL 2 + vy

where ¢ := (1,...,1) € R and v € R. Define z; = (y;,w, 2;) so that g(x;, 3) =
(yr — Bwy)z. Further let {e,} and {v;} be AR(1) processes with autocorrelation coefficient
lp| € (0,1), viz. &, = pe;—1 + ny and v, = pvy_y + uy, where

1
(nt>~iidN<O,< U”)), 19 # 0.
Uy o 1

The instruments follow a VAR(1) process, z; = p,2z;_1 + € with p, := diag(0,p,...,p),
|p| € (0,1), and ¢ ~ iid N(0, I;) independent of {(7;,u;)}. Then, one can show that

deogip?p*(1 — p?)

1/3
(1) = ((2u1 ¥ )L — pp) (L + pp) (=l + (1 — 2)pp + P2 + pﬁ3)2>
¢'(2) = ( deogs?p* (14 pp) (1~ 7*) )1/5
(21 + p2) (1 = pp)2 (=1 + (1 = 2)pp + % + pp°)?

~

In this specific example, we can easily compare the MSE(/3)-optimal to the MSE(Q)-
optimal bandwidth derived in Andrews (1991), Sy = (qg2/p2 a(q)T)" 29 with a(q) =
2vec(Qéq))’WAvec(Qéq))/tr Wa(l2 + Ky) (20 ® Qp)). For W4 = 12, the constants of pro-
portionality become a(1) = 8(1 — 1)pp3/ f(p, p2,1) and a(2) = 8(1 — 1)ppa(1+ pp2)*/((1 —
pp2)* f(p, p2, 1)) With f(p, p2,1) := (1= pp2)*[[(1+1) +2(I =1 = 2)pp2 + (I°p* — (2 +3p°) +
4p* —2)p3 + 8pps + 2(1 + (1 = 3)p?) p3 — 4pp5 + 2p?pf).

Notice that the MSE(S)-optimal and the MSE({2)-optimal bandwidth both adapt to
the persistence of the error processes (p), the persistence of the instruments (p), and
the number of instruments (7), but through very different functional forms. Therefore,

we expect there to be scenarios in which the MSE(Q)-optimal bandwidth is clearly not

MSE(/)-optimal and the two bandwidths may differ significantly. The simulation evidence

in Section 4 confirms these findings.

3 Data-driven Bandwidth Choice

The optimal bandwidth S7. is infeasible because it depends on several unknown quantities.
In the case in which {g,} is a linear Gaussian process, we require knowledge of €2, Q(()q), and
Gy. In this section, I describe a data-driven approach to select the optimal bandwidth by

estimating the required quantities based on parametric approximating models for {g;},

10



similarly as proposed in Andrews (1991). The idea is to first construct the first-step
estimator (3, then fit a parsimonious auto-regressive (AR) model to {g;(3)}_, and, finally,
to substitute its parameter estimates into analytical formulae for €2y and Q(()q) assuming
that the AR is the true model. Together with the usual sample average estimator for Gy,
these estimates, are then substituted into the expressions of v and v3 in Proposition 2.2
to yield estimates of the optimal bandwidths.

We focus on estimating a univariate AR(1) model for each component of {gt(ﬁ)},
although other approximating models like vector autoregressions or models with more
lags could be considered. Let p; and &; be the estimated coefficient and the residual
variance of the i-th estimated AR(1) process. We can construct estimators of {2y and ng)
as Q= diag(&y, ..., &) and Q= diag(@?, ..., &) with &; := 62/(1 — p;)%, &V =
262p:/[(1 — p:)*(1 + p1)] and @ := 262p;/[(1 — p;)*]. Then, estimate Hy, 3o and Py by
o = S0Gr(BYOT S = (Gr(BYO: Gr(3))F and By = O — 051G (3) o, Finally,
substitute all these expressions into the formulae of Proposition 2.2 to get estimates

and 73 of vy and v3, and the estimator of the optimal bandwidth,
o\ 1/(1429)

The difference in performance one incurs by using Sy instead of the infeasible band-

width minimizing the finite-sample MSE of B has four sources: the error made by replacing
the MSE of 3 by the MSE of the first terms in the higher-order expansion ((7), the er-
ror due to the large sample approximation of the MSE, the estimation error in Qo and
Q(()Q), and the error made by potential misspecification of the approximating parametric
model for {g;}. In practice, one hopes that these errors are small. As mentioned in the
discussion after Theorem 2.1, the first type of error vanishes with the sample size under
additional assumptions. The second and third type also disappear as T" — oo. The fourth
type of error can typically be conjectured to be negligible because the MSE of B tends to
be relatively flat around its minimum (as is the case in the Monte Carlo simulations, for
example), so that misspecification in the approximating model is not expected to have a
large impact on the properties of the resulting GMM estimator. Nevertheless, the applied
researcher should bear in mind that the plugin procedure is not “automatic” and some
thought has to go into selecting an appropriate approximating model and the potential

impact of the aforementioned types of errors has to be considered.

Remark 3.1. As in Andrews and Monahan (1992) one may want to consider pre-whitening

the series {gt(B)}thl before fitting the AR process. The reported increases in accuracy of

11



test statistics in Andrews and Monahan (1992) and Newey and West (1994) are expected

to occur with the procedure presented here as well.

4 Simulations

In this section, we discuss a small simulation experiment that illustrates the theoretical

~

findings from the previous sections and, in particular, shows that the MSE(/)-optimal
bandwidth may lead to a substantially lower finite-sample MSE of B relative to choosing
the MSE(Q)-optimal bandwidth.

We simulate the model from Section 2.1, denoted by “AR(1)-HOM”, for different
degrees of serial correlation (p € {0.01,0.1,0.5,0.9,0.99}), weak and strong instruments
(v € {0.1,2}) and increasing number of instruments (I € {2,3,4,5,10,15,25}). We also
consider two variants of the model, one in which the outcome equation is replaced by a
model with heteroskedastic errors, y, = Sow; + |wy|e; (referred to as “AR(1)-HET”), and
one in which the AR(1) error process is replaced by an MA(1), i.e. & = pn;—1 + 1 and
vy = puy_1 + ug. We simulate 1,000 samples and, to save space, present only results for
sample size T' = 64, p = 0.9, 015 = 0.9, By = 1 and the Bartlett kernel. Other parameter
combinations yield similar results.

For each of the three different data generating processes, Tables 1, 3, and 5 report
four different bandwidths (“bw”) averaged over the simulation samples: “optimal”, “An-
drews”, “naive” and “sim”, referring to the MSE(B)—optimal, the MSE(Q)—optimal, the
naive choice Sy = T'(1+20) and to the (infeasible) bandwidth that minimizes the sim-
ulated MSE(B) over a grid of bandwidths, respectively. The optimal bandwidth is es-
timated based on the procedure in Section 3. The table also shows the bias, standard
deviation (“SD”) and MSE of /3. In almost all cases considered here, the MSE(3)-optimal

~

bandwidth is closer to the one minimizing the simulated MSE than the MSE(2)-optimal

~

bandwidth. In all scenarios, the MSE(3)-optimal bandwidth is smaller than the MSE(Q)-
optimal bandwidth one, in some cases substantially smaller.
Tables 2, 4, and 6 show the ratios of MSE (“MSE ratio”) and higher-order MSE

~

(“HMSE ratio”), as defined in Corollary 2.1, based on the MSE(f)-optimal bandwidth

A

divided by those based on the MSE(Q2)-optimal bandwidth. The number of instruments
is fixed at [ = 10, but other numbers yield qualitatively the same results. p?/l denotes the
standardized concentration parameter measuring the strength of the instruments (Stock,

~

Wright, and Yogo (2002)). The MSE ratios demonstrate that the MSE()-optimal band-

A

width may lead to substantial MSE gains relative to the MSE(2)-optimal bandwidth. The

gains are particularly large, up to more than 20%, when the number of instruments is large

12



and the estimator of the optimal weighting matrix becomes less precise. As predicted by

A

the theoretical results in the previous sections, the MSE(S)-optimal bandwidth may also
lead to dramatic higher-order MSE gains relative to the MSE()-optimal bandwidth of
up to more than 90%.

Unlike the MSE(Q)-optimal bandwidth defined by Andrews (1991), the MSE(f)-
optimal bandwidth is formally not defined for the case | = p in which the estimator
B is independent of the weighting matrix. To study scenarios in which [/p is close to
this boundary, we conclude this section by considering a robustness check in which [/p
approaches one. Table 7 reports the same MSE and HMSE ratio as Tables 2, 4, and 6,
but for a sequence I/p € {5/1,4/2,3/2,4/3,5/4,8/7,10/9} that approaches one. T, p, p,
and v are fixed at values 128, 0.5, 0.9, and 2, respectively, but other values yield similar

~

results. The MSE based on the MSE(/)-optimal bandwidth stays close to or slightly
smaller than the one based on the MSE(Q)-optimal bandwidth for all values of I/p. Sim-
ilarly, the HMSE is significantly smaller for the optimal bandwidth. In the case of the

AR(1)-HET model, the HMSE gains are even up to 67%.

5 Conclusion

This paper develops a selection procedure for the bandwidth of a HAC estimator of the
optimal GMM weighting matrix which minimizes the asymptotic MSE of the resulting
two-step GMM estimator. We show that it is of the same order as the bandwidth minimiz-
ing the MSE of the nonparametric plugin estimator, but the constants of proportionality
differ significantly. The simulation study suggests that the data-driven version of the
selection procedure works well in finite samples and may substantially reduce the first-
and second-order MSE of the GMM estimator relative to existing, sub-optimal choices,

especially when the number of moment conditions is large.

Notes

T thank Michael Jansson for making me aware of this work.
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A  Proofs

Lemma A.1. Under Assumptions 2.1-2.2 and 2.3(a)~(c), B — Bo = T~/ + 0,(T~/?)
with ¥ = —Gy'VT§ = 0,(1).

16



Proof. We need to check the assumptions of Newey and McFadden (1994, Theorem 3.2)
with W replaced by QT(B) First of all, by Assumptions 2.1-2.2 and Andrews (1991,
Theorem 1(b)) Qr(8) = Q. (i), (ii) and (v) hold by assumption. (iii) and (iv) hold by
Assumption 2.1 and White and Domowitz (1984, Theorem 2.3, 2.4). Q.E.D.

Proof of Proposition 2.1. Step 1. Expansion of the optimal weighting matrix. A Taylor

expansion of QT(B) around [y yields
vee (Qr(B)) = vec (0r) + VOr(3)(3 - )
= veo(Qo) + vee (Qr — o) + V(B — fo) + (V2 = V) (B - o)

+ (VOr(8) - V0r) (3 - o) (A1)
where £ lies on the line segment joining 3 and 8. By Assumptions 2.1-2.2 and Andrews
(1991, Proposition 1(a),(b)), Qr — Qy = oJl,TS}/QT_l/2 + wo Syt with wir = Op(1),
i =1,2, and VQr — VQy = O,(nr). Next, we show that VQr(3) — VQr = O,(||3 — Bl

To this end, let g, := ¢,(3). Notice that, by Assumption 2.1(f), 3 € N w.p.a. 1 and, thus,
B €N w.p.a. 1. From Assumption 2.3(d), we get

1 T—1 min{T,T—s}

>

|vor(3) - vor| <

S _ _
‘k? <—> [Vgt+sg£ - v.gt—i-sg;]

T s=1-T t=max{1,1—s} ST
C T—1 min{T,T—s} B
< ¢ S deesnrn) 13 - ol

s=1-T t=max{1,1—s}

=C < Y Bdwes,w) + Op(1)> 18 = Boll = Op(I13 = Boll)  (A-2)
which holds w.p.a. 1 and for some constant C. (A.1) together with (A.2) and the first-
order asymptotics in Assumption 2.1(f) then imply

Qr(B) = Qo + Sy T2 4+ wo.r 77 + Ry (A.3)

with Ry = Op(nrT~Y?), wir := /T/Sr(Qr — Qr) = O,(1) and war := SH(Qr — Q) =
O(1).

Step II: Expansion of the second-step GMM estimator. Write the second-stage esti-
mator 6 := (B’, 5\’)’ of Oy := (B),0) € Bx A, A :=[0,00)!, as the solution to

( A AGT@/& A ) = 0. (A.4)
9(B) + Qr(B)A



Further, define m(0) := %Z;‘le my(6) with

mi(6) :__< G, B )
9:(B) + QoA

for some 60 := (B, ')’ € B x A. Then use the expansion in (A.3) to rewrite (A.4) as

A 0
0=m(0) — N . A5
"o ( (wirSy > T2 + wy S + Rr)'A ) 4

Next, consider \ = —QT(B)_IQ(B). By Assumptions 2.1-2.2 and Andrews (1991, Propo-
sition 1(a),(b), Theorem 1(b)), Qr(3) — Qo = O,(nr). Also, by an expansion of §(J3)
around S, Lemma A.1, Assumption 2.1 and the CLT, §(3) = (I, — GoHy)j + 0,(T~Y/?),
and thus

A= —1Q0+O0,(nr)] " (I = GoHo) FrT™Y? + 0,(T~1?))
= —PyFrT7 V2 4 0,(nrT7V2) 4 0,(T71?). (A.6)

A~

Consider the following expansion of m(f) around 6y:
Y . . A Lo 2[4 A
(8) = 1i(0o) + Vii(00) (0 — 00) + 5 V2i(0) | (6 — 00) © (0 — o))

where @ lies on the line segment joining 6 and 6y. By Assumptions 2.1(e) and 2.3(c)—(d),
V2m(0) is Oy(1). Lemma A.1, Assumption 2.1 and the CLT for mixing sequences then

imply

m(0) = m(0o) + Mi(0 — o) + Op(T™1). (A7)
Substituting (A.6) and (A.7) into (A.5) and solving for 6 — 6 yields
0 — 0y = — M i (0y) — M 0
! Fo\ (W SEPTYE  wly SR Py Fr T

£ Op(T™) + Oy (BTY2) + 0, (1 T2)
where

o0 G D o)

GO QO H(,) PO

Therefore,

VT(B — Bo) = —HoFr + How 7 Py FrSy* T~ + Howly 7 PoFrS7® + 0y (7).

Since Fr, wyr and wer are Opy(1), we also have that k; 7 = O,(1) for i =1,2,3. Q.E.D.
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Proof of Theorem 2.1. We need to derive the order of E[x; Wk; ], i,j € {1,2,3}. Con-
sider the case i =5 = 1:

T
1
Elry o Weir] = E[FpHOWHo Fr] = T > ElgHyWHog,]

s,t=1

T—-1 [e%)
S
_ _}(T:l) (1 _ f) Elg.HWHog,—] — E_j Elg,HWHogi_y).

The limiting sum can be shown to be finite using Assumption 2.1, the Holder Inequality
and the mixing inequality of Hall and Heyde (1980, Corollary A.2). Similarly, we can
show that Elxy s Wha ] and E[r} pWhs r] are O(1), E[x] p;Whar] = O(S/*T~1/2), but
E[r) Wk 1] = o(nr) and E[x4 Wk 1] = o(1). Q.E.D.

Proof of Proposition 2.2. From the proof of Theorem 2.1,

Elk) Wk r] — Z E[giHIWHog;—s] = vec(Q)'vec (HYWH,) .

S§=—00

By Andrews (1991, Proposition 1(b)) we have S&(Qr — Qo) — —qu(()Q) and thus

E[/ﬁ)g7TW:‘€3,T] = E[F;PéS%(ﬁT — Qo)Hé)/VH()S%(ﬁT — QO)POFT]
=02 Y B |G B HWHS Py,

S§=—00

— g2vec(Q)'vec (Pgng)H(gWHOQg‘”PO)
— g2tr (O HWH O Ry
because, for conformable matrices A, B, tr(AB) = tr(BA), and PyGoHy = 0. Next,

consider the terms
E 8, Wrar] = E | FpHVHoy/T/S7(Qr - Or) RoFr |
- :(FT ® Fr)'vec (H()WHD\/W(QT - ﬁT)Poﬂ
:(FT ® Fr) (P ® HyWHo) vec (\/W(QT - ﬁT))]

—E -<FT ® Fr @ vec (\/W(QT . ﬁT)))'} vec (P} @ HIWH,)

and, similarly,
Elry 7 Wkar| = E [F%P(;\/ T/S7(Qr — Q) HYWHo/T/S7(Qr — ﬁT)POFT]

T A — N —
= S—VGC(P(; & Pé)/E [FT X FT & (QT — QT) X (QT — QT)} VeC(H(,)WH[)).
T
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In order to find expressions for these two cross-products involving /T'/ ST(QT —Qr),

we make use of the BN-decomposition of the linear process {g;}, viz.
g =Ver +¢1 — ¢

where W =3 " W, & == ;5 Ue,_; and the tail sums ¥ = >js1 Vi With this
representation of {g;} we can calculate limiting variances and covariances of g; based only
on Ve, and disregard the transient part of the process, é,_; — &. Since e, ~ N(0,3),

third and fourth moments are zero. Therefore,

Sy PT3?E [FT ® Fr ® vec (\/W(QT - ﬁT))]
—1  min{T,T—v}

=FE Z 9t ® gs ® Z Z k (SiT) vec <9u+vg; - E[giH-vg;])

| s:t= 1 v=1-T y=max{1,1—v}

T T
=F Z Ve, ® Uey ® Z vec (Ve We!, — E[We, Vel ]) | | +o(1)

t=1 u=1
uFt

— min{T,T—v}

T
+FE Z Ve, @ Ve, ® Z Z k (; ) vec (We, 1, Ve!)
T

s,t=1 v=1-T y=max{l,1—v}
v£0

min{7T,T—v}

Z Z >,k (S%) E[Te, ® Ue, ® Ve, @ Veyy,] + of1)

=1-T
v;ﬂ) u=max{1,1-v}

T
t_
- Zk( S)E[\Ilet®\lfes®\ﬂes®\llet]

T
t —
+ Zk( 8)E[\Ifet®\lles®\lfet®\lles]+o(l)

One can show that E[Ve, @ Ve, ® Ve, ® ‘Ilet] = EVe, @ Ve, @ Ve, ® Ve, = vec (2 ® Q)

k((t — s)/St) — p1, we then have

when s # t and 0 otherwise. Noticing 5T T zst 1

T
S_E [’fll,TW’fQ,T} — 2uyvec(Qp @ Q)'vec (Py @ H\)WH,)
T
= 2/L1t7’((Qo ® QD)(PO & H(/)WH()))
= 2M1tT<Qo.P0 X Q()H(,)WH()>
= 2,LL1t7’<Il — GoH())tT(Q(]QalGozowxoGgﬂal)
= 2/“([ — t’l”(HQGQ))tT(EQWE()GE)QSlGQ)

= 2u1 (I — p)tr(ToW)
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which uses the fact that HoGo = I,. By a similar derivation, E[ky - Wkar] — pa(l —
p)tr(XeW) so that vy = (2u1 + po) (I — p)tr(TeW). Q.E.D.

AR(1)-HOM, T = 64, [ = 10

v=0.1 =2
P optimal  Andrews naive sim optimal  Andrews naive sim
0.01 bw 0.651 1.150 4.000 0.000 0.645 1.098 4.000 0.000
bias 0.242 0.244 0.251 0.242 0.001 0.001 0.001 0.001
sd 0.185 0.188 0.211 0.185 0.011 0.012 0.013 0.011
MSE 0.093 0.095 0.107 0.093 0.000 0.000  0.000 0.000
0.1 bw 0.659 1.319 4.000 0.000 0.650 1.241 4.000 0.000
bias 0.263 0.266  0.274  0.262 0.001 0.001 0.001 0.001
sd 0.193 0.197 0.219 0.193 0.012 0.013 0.014 0.012
MSE 0.106 0.109 0.123 0.106 0.000 0.000 0.000 0.000
0.5 bw 0.954 3.225 4.000 0.000 0.918 2.948 4.000 0.000
bias 0.427 0.442 0.444 0.425 0.003 0.003 0.003 0.003
sd 0.232 0.242 0.248 0.232 0.021 0.022 0.023 0.021
MSE 0.236 0.254 0.259 0.235 0.000 0.001  0.001 0.000
0.9 bw 1.891 8.382 4.000 2.300 2.015 8.525 4.000 3.400
bias 0.788 0.786 0.785 0.786 0.012 0.012 0.013 0.012
sd 0.324 0.364 0.326 0.322 0.077 0.083 0.076  0.075
MSE 0.725 0.750 0.723 0.721 0.006 0.007 0.006 0.006
0.99 bw 2.488 18.469 4.000 1.200 2.566 15.929  4.000 4.500
bias 0.844 0.846 0.838 0.842 0.063 0.060 0.061 0.060
sd 0.541 0.597 0.532 0.519 0.228 0.228 0.221 0.221
MSE 1.005 1.071 0.986 0.978 0.056 0.055 0.052 0.052

Table 1: Bandwidths (“bw”), bias, standard deviation (“SD”) and MSE of 3 when computed based on
the MSE(2)-optimal (“optimal”), the MSE(Q)-optimal (“Andrews”), Sy = T/ (1+29) (“naive”) or the

simulated MSE-minimizing (“sim”) bandwidth.
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AR(1)-HOM, T = 64

v=0.1 =2
p l MSE ratio HMSE ratio w2/l MSE ratio HMSE ratio w2/l
0.01 2 0.945 0.251 1.951 0.994 0.763 760.534
3 1.009 0.879 2.458 0.995 0.799 946.225
4 0.958 0.686 2.607 0.982 0.782  1052.094
5 0.984 0.759 2.798 0.984 0.787  1118.489
10 0.977 0.735 3.056 0.970 0.747  1186.655
15 0.989 0.735 3.083 0.971 0.747  1223.093
25 0.992 0.714 3.148 0.990 0.733  1227.450
0.1 2 0.985 0.749 2.017 0.993 0.779 754.774
3 0.983 0.754 2.582 0.990 0.777 943.791
4 0.987 0.600 2.727 0.967 0.721  1050.000
5 0.972 0.710 2.941 0.975 0.729  1120.367
10 0.968 0.671 3.253 0.951 0.671  1203.529
15 0.977 0.660 3.304 0.957 0.668  1252.836
25 0.985 0.638 3.422 0.973 0.649  1279.956
0.5 2 1.015 0.453 2.296 1.011 0.797 595.776
3 0.976 0.613 3.214 1.005 0.669 770.276
4 0.980 0.631 3.331 0.931 0.587 864.166
5 0.963 0.522 3.662 0.942 0.557 945.503
10 0.930 0.441 4.295 0.867 0.459 1105.717
15 0.925 0.415 4.517 0.824 0.433 1236.639
25 0.911 0.361 4.907 0.811 0.387  1395.522
0.9 2 1.001 0.675 5.083 1.133 0.763 217.609
3 1.019 0.535 7.358 1.072 0.597 308.766
4 1.010 0.508 8.283 1.078 0.443 373.754
5 0.976 0.471 9.171 1.070 0.476 439.970
10 0.967 0.375 11.156 0.865 0.339 665.258
15 0.957 0.279  12.162 0.910 0.276 898.255
25 0.974 0.193  13.180 0.926 0.188  1248.500
099 2 1.228 0.426 8.982 1.082 0.745 99.308
3 1.036 0.608  12.269 1.254 0.496 144.471
4 0.980 0.406  15.458 1.187 0.386 185.307
5 0.984 0.323  16.999 1.095 0.356 230.003
10 0.938 0.096 23.119 1.010 0.231 409.860
15 0.956 0.171  27.098 1.033 0.000 601.000
25 0.924 0.079  32.242 0.952 0.127 948.061

Table 2: Ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE ratio”) based on the MSE(J)-
optimal bandwidth divided by those based on the MSE(Q)-optimal bandwidth. p?/I is the standardized
concentration parameter measuring the strength of the instruments.
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AR(1)-HET, T =64, [ = 10

v=0.1 =2
P optimal  Andrews naive sim optimal  Andrews naive sim
0.01 bw 0.651 1.150 4.000 0.000 0.645 1.098 4.000 0.000
bias 0.188 0.190 0.197 0.188 0.001 0.001 0.001 0.001
sd 0.235 0.240 0.263 0.235 0.012 0.012 0.014 0.012
MSE 0.091 0.094 0.108 0.090 0.000 0.000  0.000 0.000
0.1 bw 0.659 1.319 4.000 0.000 0.650 1.241  4.000 0.000
bias 0.204 0.207 0.215 0.204 0.001 0.001 0.002 0.001
sd 0.248 0.256  0.279  0.248 0.013 0.013 0.015 0.013
MSE 0.103 0.108 0.124 0.103 0.000 0.000  0.000  0.000
0.5 bw 0.954 3.225 4.000 0.000 0.918 2.948 4.000 0.000
bias 0.331 0.342 0.344 0.330 0.002 0.003 0.003 0.002
sd 0.337 0.349 0.355 0.337 0.022 0.023 0.024 0.022
MSE 0.223 0.239 0.244 0.222 0.000 0.001 0.001 0.000
0.9 bw 1.891 8.382 4.000 2.300 2.015 8.525 4.000 2.300
bias 0.619 0.620 0.619 0.618 0.011 0.012 0.011 0.011
sd 0.588 0.612 0.591 0.586 0.076 0.084 0.076 0.076
MSE 0.729 0.758 0.732 0.725 0.006 0.007 0.006 0.006
0.99 bw 2.488 18.469  4.000 0.000 2.566 15.929  4.000 3.400
bias 0.675 0.676  0.670 0.671 0.056 0.052 0.053 0.054
sd 0.781 0.818 0.759 0.745 0.235 0.237 0.226  0.226
MSE 1.064 1.125 1.024 1.005 0.058 0.059 0.054 0.054

Table 3: Bandwidths (“bw”), bias, standard deviation (“SD”) and MSE of 3 when computed based on
the MSE(2)-optimal (“optimal”), the MSE(Q)-optimal (“Andrews”), Sy = T/ (1+29) (“naive”) or the

simulated MSE-minimizing (“sim”) bandwidth.
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AR(1)-HET, T = 64

v=0.1 =2
p l MSE ratio HMSE ratio w2/l MSE ratio HMSE ratio w2/l
0.01 2 0.905 0.220 1.951 0.992 0.753 760.534
3 1.026 0.931 2.458 0.999 0.787 946.225
4 0.956 0.719 2.607 0.975 0.788  1052.094
5 0.995 0.772 2.798 0.979 0.789  1118.489
10 0.964 0.729 3.056 0.972 0.766  1186.655
15 0.990 0.738 3.083 0.972 0.758  1223.093
25 0.991 0.740 3.148 0.995 0.753  1227.450
0.1 2 0.977 0.789 2.017 0.992 0.761 754.774
3 0.962 0.718 2.582 0.985 0.754 943.791
4 0.985 0.621 2.727 0.956 0.733  1050.000
5 0.977 0.722 2.941 0.971 0.736  1120.367
10 0.949 0.666 3.253 0.962 0.689  1203.529
15 0.985 0.665 3.304 0.958 0.680 1252.836
25 0.986 0.662 3.422 0.982 0.662  1279.956
0.5 2 1.034 0.600 2.296 1.002 0.784 595.776
3 0.995 0.642 3.214 0.984 0.676 770.276
4 0.984 0.686 3.331 0.902 0.589 864.166
5 0.971 0.529 3.662 0.967 0.562 945.503
10 0.934 0.447 4.295 0.877 0.466  1105.717
15 0.917 0.427 4.517 0.785 0.434 1236.639
25 0.925 0.367 4.907 0.779 0.418  1395.522
0.9 2 1.011 0.709 5.083 1.152 0.751 217.609
3 1.039 0.575 7.358 1.093 0.601 308.766
4 1.006 0.487 8.283 1.059 0.472 373.754
5 0.982 0.464 9.171 1.134 0.495 439.970
10 0.961 0.359 11.156 0.831 0.351 665.258
15 0.937 0.283  12.162 0.939 0.300 898.255
25 0.982 0.178 13.180 0.944 0.197  1248.500
099 2 1.134 0.278 8.982 1.190 0.780 99.308
3 1.045 0.559  12.269 1.181 0.473 144.471
4 0.955 0.441  15.458 1.133 0.455 185.307
5 0.953 0.306  16.999 1.080 0.391 230.003
10 0.945 0.078  23.119 0.986 0.229 409.860
15 0.976 0.144  27.098 1.001 0.000 601.000
25 0.895 0.095  32.242 0.846 0.153 948.061

Table 4: Ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE ratio”) based on the MSE(J)-
optimal bandwidth divided by those based on the MSE(Q)-optimal bandwidth. p?/I is the standardized
concentration parameter measuring the strength of the instruments.
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MA(1), T =64, 1 = 10

v=0.1 =2
P optimal  Andrews naive sim optimal  Andrews naive sim
0.01 bw 0.651 1.150 4.000 0.000 0.645 1.098 4.000 0.000
bias 0.242 0.244 0.251 0.242 0.001 0.001 0.001 0.001
sd 0.185 0.188 0.211 0.185 0.011 0.012 0.013 0.011
MSE 0.093 0.095 0.107 0.093 0.000 0.000  0.000 0.000
0.1 bw 0.655 1.308 4.000 0.000 0.647 1.232  4.000 0.000
bias 0.261 0.264 0.273  0.261 0.001 0.001 0.001 0.001
sd 0.192 0.196 0.218 0.192 0.012 0.013 0.014 0.012
MSE 0.105 0.108 0.122 0.105 0.000 0.000  0.000  0.000
0.5 bw 0.796 2.486  4.000 0.000 0.769 2.328 4.000 0.000
bias 0.359 0.373 0.376  0.358 0.002 0.002 0.003 0.002
sd 0.215 0.226 0.240 0.214 0.017 0.018 0.019 0.017
MSE 0.175 0.190 0.199 0.174 0.000 0.000  0.000 0.000
0.9 bw 0.915 3.068 4.000 0.000 0.875 2.875 4.000 0.000
bias 0.458 0.473 0474 0.456 0.003 0.004 0.004 0.003
sd 0.225 0.238 0.247 0.225 0.021 0.023 0.024 0.021
MSE 0.260 0.280 0.286  0.259 0.000 0.001  0.001 0.000
0.99 bw 0.922 3.098 4.000 0.000 0.880 2.903 4.000 0.000
bias 0.478 0.494 0.495 0.477 0.004 0.004 0.004 0.004
sd 0.226 0.239 0.247 0.226 0.022 0.024 0.025 0.022
MSE 0.280 0.300 0.306 0.278 0.001 0.001 0.001 0.001

Table 5: Bandwidths (“bw”), bias, standard deviation (“SD”) and MSE of 3 when computed based on
the MSE(2)-optimal (“optimal”), the MSE(Q)-optimal (“Andrews”), Sy = T/ (1+29) (“naive”) or the
simulated MSE-minimizing (“sim”) bandwidth.

25



MA(1), T = 64

v=0.1 =2
p l MSE ratio HMSE ratio w2/l MSE ratio HMSE ratio u?/l
0.01 2 0.944 0.246 1.951 0.994 0.763 760.522
3 1.009 0.880 2.458 0.995 0.799 946.220
4 0.958 0.686  2.607 0.982 0.782  1052.082
5 0.984 0.759  2.798 0.984 0.787  1118.457
10 0.977 0.735  3.056 0.970 0.747  1186.630
15 0.989 0.735 3.083 0.971 0.747  1223.086
25 0.992 0.714 3.148 0.990 0.733  1227.355
0.1 2 0.984 0.766  2.008 0.993 0.779 754.471
3 0.995 0.743  2.567 0.990 0.778 943.247
4 0.982 0.591 2.711 0.967 0.723  1049.296
5 0.972 0.711  2.922 0.974 0.729  1118.885
10 0.968 0.672  3.233 0.951 0.673  1201.270
15 0.978 0.662  3.285 0.958 0.670  1249.736
25 0.984 0.639  3.402 0.977 0.651  1275.644
0.5 2 1.043 0.459 1.925 0.999 0.790 618.982
3 0.988 0.642 2.591 0.991 0.680 787.576
4 0.976 0.599  2.696 0.931 0.609 878.617
5 0.955 0.554  2.939 0.955 0.578 945.049
10 0.923 0474 3.414 0.871 0.482  1061.880
15 0.911 0.460 3.570 0.846 0.465 1143.806
25 0.915 0.437 3.918 0.867 0.441  1252.310
0.9 2 1.025 0.307 1.548 1.000 0.794 431.764
3 0.968 0.631  2.149 0.994 0.676 553.344
4 0.963 0.554  2.207 0.918 0.601 618.183
5 0.970 0.542 2.416 0.934 0.562 666.128
10 0.928 0.450 2.856 0.851 0.458 761.458
15 0.919 0.400 3.013 0.829 0.424 830.616
25 0.914 0.354  3.378 0.811 0.407 935.298
099 2 1.002 0.442  1.459 1.000 0.794 395.023
3 0.988 0.770 2.036 0.993 0.676 506.511
4 0.964 0.570  2.086 0.916 0.601 565.875
5 0.976 0.554 2.284 0.931 0.560 609.690
10 0.931 0.449 2.701 0.850 0.457 697.341
15 0.924 0.426  2.848 0.834 0.432 760.882
25 0.917 0.383 3.192 0.807 0.407 857.193

Table 6: Ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE ratio”) based on the MSE(J)-
optimal bandwidth divided by those based on the MSE(Q)-optimal bandwidth. p?/I is the standardized
concentration parameter measuring the strength of the instruments.
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model I/p MSE ratio HMSE ratio

AR(1)-HOM 5 0.967 0.564
2 0.990 0.654
1.50 0.986 0.388
1.33 1.005 0.754
1.25 1.012 0.647
1.14 0.997 0.707
1.11 0.998 0.690
AR(1)-HET 5 0.964 0.568
2 0.983 0.662
1.50 0.982 0.333
1.33 1.005 0.769
1.25 1.023 0.529
1.14 1.003 0.758
1.11 0.992 0.713
MA(1) 5 0.962 0.570
2 0.993 0.685
1.50 0.997 0.482
1.33 1.007 0.741
1.25 1.015 0.830
1.14 1.005 0.689
1.11 0.997 0.676

Table 7: Robustness check: ratios of MSE (“MSE ratio”) and higher-order MSE (“HMSE ratio”) based
on the MSE(3)-optimal bandwidth divided by those based on the MSE(Q)-optimal bandwidth. T = 128.

27



	Introduction
	Optimal Bandwidth
	Linear IV Model

	Data-driven Bandwidth Choice
	Simulations
	Conclusion
	Proofs

