
Bonhomme, Stéphane; Jochmans, Koen; Robin, Jean-Marc

Working Paper

Nonparametric estimation of finite mixtures

cemmap working paper, No. CWP11/14

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Bonhomme, Stéphane; Jochmans, Koen; Robin, Jean-Marc (2014) :
Nonparametric estimation of finite mixtures, cemmap working paper, No. CWP11/14, Centre for
Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2014.1114

This Version is available at:
https://hdl.handle.net/10419/97364

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2014.1114%0A
https://hdl.handle.net/10419/97364
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Nonparametric estimation of 
finite mixtures 
 
 
 

Stéphane Bonhomme 
Koen Jochmans 
Jean-Marc Robin 

 

 

 
 

 

 
The Institute for Fiscal Studies 
Department of Economics, UCL 

 
cemmap working paper CWP11/14 



Nonparametric estimation of finite mixtures
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Abstract. The aim of this paper is to provide simple nonparametric methods to estimate finite-
mixture models from data with repeated measurements. Three measurements suffice for the
mixture to be fully identified and so our approach can be used even with very short panel
data. We provide distribution theory for estimators of the mixing proportions and the mixture
distributions, and various functionals thereof. We also discuss inference on the number of
components. These estimators are found to perform well in a series of Monte Carlo exercises.
We apply our techniques to document heterogeneity in log annual earnings using PSID data
spanning the period 1969–1998.

Keywords: finite-mixture model, nonparametric estimation, series expansion, simultaneous-
diagonalization system.

Introduction

Finite-mixture models are widely used in statistical analysis. Popular applications include
modeling unobserved heterogeneity in structural models, learning about individual behavior
from grouped data, and dealing with corrupted data. As univariate mixtures are not non-
parametrically identified from cross-sectional data, the conventional approach to inference
is parametric; see, e.g., McLachlan and Peel (2000) for an overview. Recently, following
the seminal work of Hall and Zhou (2003), a number of studies have shown that data on
repeated measurements provide a powerful source of identification in mixture models; see
Hall et al. (2005), Hu (2008), Allman et al. (2009), and Kasahara and Shimotsu (2009),
among others.1

In this paper we present a simple and constructive identification argument and develop
a practical procedure to nonparametrically estimate finite mixtures from data on repeated

†Address for correspondence: Sciences Po, Department of Economics, 28 rue des Saints-Pères,
75007 Paris, France. E-mail: koen.jochmans@sciences-po.org. Replication material is available
at econ.sciences-po.fr/staff/koen-jochmans.

1 In related work, Henry et al. (2013) study the identifying power of exclusion restrictions in
conditional models.



2 S. Bonhomme, K. Jochmans, and J.-M. Robin

measurements. We show that finite mixtures are generically identified from panel data when
three or more measurements are available, and the component distributions are stationary
and linearly independent. Our conditions are of a similar nature as those assumed by
Allman et al. (2009). However, our approach is constructive. The resulting estimators are
attractive from a computational point of view, even when the number of components is
large, and have desirable large-sample properties.

We will focus on the case where outcomes are continuous and component densities are
square-integrable. Our analysis is based on projections of the marginal densities and mixture
components onto an orthonormal basis of functions. The mixture structure imposes a set of
multilinear restrictions on the generalized Fourier coefficients of these densities, which takes
the form of a joint-diagonalization problem for a set of commuting symmetric matrices. The
eigenvalues of these matrices identify the Fourier coefficients of the component densities up
to arbitrary relabeling. The component densities are therefore identified almost everywhere
on their support. The mixing proportions are then identified as the solution to a linear
system of equations.

To turn this identification result into an operational estimation procedure we appeal
to the literature on blind source separation, which has extensively investigated numerical
methods for the joint diagonalization of a set of matrices. Specifically, we propose estimating
the Fourier coefficients of the component densities via the joint approximate-diagonalization
algorithm developed by Cardoso and Souloumiac (1993). This procedure is straightforward
to implement, highly stable, and computationally extremely fast. Given estimates of the
projection coefficients, we then construct bona fide series estimators of the component
densities and a least-squares estimator of the mixing proportions. In addition, while most
of the analysis is conducted under the assumption that the number of components is known,
we also construct an estimator of the number of components using a sequential-testing
approach.

We derive integrated squared-error and uniform convergence rates of the estimator of
the component densities, and provide conditions for pointwise asymptotic normality. The
convergence rates coincide with those that would be obtained if the data could be sampled
directly from the component distributions. We further show that our estimator of the mixing
proportions converges at the parametric rate, and present distribution theory for two-step
semiparametric GMM estimators of finite-dimensional parameters defined through moment
restrictions involving the mixture components. Extensive numerical experimentation, which
we report on through a series of Monte Carlo illustrations, provides encouraging evidence
on the small-sample performance of our procedures.

As an empirical application, we investigate the presence of unobserved heterogeneity
in earnings data from the PSID for the period 1969–1998. This application illustrates
the usefulness of our approach as a tool to decompose earnings inequality into within-
group and between-group components, where group membership is unobserved and inferred
from the longitudinal dimension of the data. We find evidence of substantial unobserved
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heterogeneity that goes beyond what is captured by the location-scale models commonly
used in this literature. We further document the evolution of earnings inequality over time
and compare it to the recent work by Moffitt and Gottschalk (2012).

The paper is organized as follows. Section 1 formalizes the setup and presents our
identification results. Section 2 contains an exposition of the resulting estimators while
Section 3 is devoted to a derivation of their large-sample properties. Section 4 presents
simulation evidence on the performance of the various estimators, and Section 5 contains
our application to earnings dynamics. Three appendices collect auxiliary theorems and
technical proofs.

1. Identification

Let x be a latent discrete random variable, normalized to take on value k ∈ {1, 2, ...,K}
with probability ωk > 0. Let y be an observable outcome variable with probability density
function (PDF)

f(y) =

K∑
k=1

fk(y) ωk,

where fk denotes the PDF of y conditional on x = k. We assume that the component
densities fk are supported on the interval [−1, 1]. This is without loss of generality because
we can always transform the outcome by means of a suitably chosen strictly-monotonic
function.

Let ρ be an almost everywhere positive and integrable function on the interval [−1, 1].
Let {χi, i ≥ 0} be a complete system of functions that are orthonormal on this interval with
respect to the weight function ρ.2

Assume that the fk are square-integrable with respect to ρ on [−1, 1]. The projection
of fk onto {χ0, χ1, ..., χJ} is given by

ProjJ [fk] ≡
J∑
j=0

bjkχj , bjk ≡
ˆ 1

−1

χj(y)fk(y)ρ(y) dy = E[χj(y)ρ(y)|x = k],

and converges to fk in L2
ρ-norm, that is,

‖ProjJ [fk]− fk‖2 ≡
(ˆ 1

−1

[
ProjJ [fk](y)− fk(y)

]2
ρ(y) dy

)1/2

−→ 0

as J →∞.
Let y1, y2, . . . , yT be a set of repeated measurements on y that are independent and

identically distributed conditional on x. In a similar fashion as before, the joint density of

2Orthonormality with respect to ρ means that, for all pairs (i, j),
´ 1
−1
χi(y)χj(y)ρ(y) dy = δij ,

where δij is Kronecker’s delta.
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y1, y2, . . . , yH for any H ≤ T can be projected onto the tensor basis {χ0, χ1, ..., χI}⊗H , with
associated Fourier coefficients

ai1i2···iH ≡ E [χi1(y1)ρ(y1)χi2(y2)ρ(y2) · · ·χiH (yH)ρ(yH)] ,

where (i1, i2, . . . , iH) ranges over all H-tuples from the set {0, 1, . . . , I}. The data reveal
the coefficients {ai1i2···iH , i1, i2, . . . , iH ≥ 0}, which are linked to the Fourier coefficients
of component densities {bjk, j ≥ 0} and to the mixing proportions ωk through the set of
multilinear restrictions

ai1i2···iH =

K∑
k=1

bi1k bi2k · · · biHk ωk, (1.1)

for each H ≤ T and all i1, i2, . . . , iH ≥ 0. Below we will show that, under weak restrictions,
the relations in (1.1) can be uniquely solved for the Fourier coefficients of the component
densities bjk and their associated mixing proportions ωk up to arbitrary relabeling of the
components, which we maintain as our definition of identification for the remainder of the
paper. It is well known that nonparametric point-identification fails when T < 3—see Hall
and Zhou (2003), for example—and so we set T = 3 throughout the remainder of this
section.

For any non-negative integer I, let

B ≡


b01 b02 · · · b0K
b11 b12 · · · b1K
...

...
. . .

...
bI1 bI2 · · · bIK


be the (I + 1)×K matrix whose kth column contains the leading I + 1 Fourier coefficients
of fk. Impose the following condition.

Assumption 1 (rank). For sufficiently large I, rank[B] = K.

Assumption 1 states that the component densities are linearly independent.
Moving on, let a ≡ (a0, a1, . . . , aI)

′, and introduce the symmetric (I + 1) × (I + 1)

matrices

A∗ ≡


a00 a01 · · · a0I

a10 a11 · · · a1I

...
...

. . .
...

aI0 aI1 · · · aII

 , and Aj ≡


a00j a01j · · · a0Ij

a10j a11j · · · a1Ij

...
...

. . .
...

aI0j aI1j · · · aIIj

 , j ≥ 0,

which contain the Fourier coefficients of the bivariate and of the trivariate joint densities
of pairs and triples of measurements, respectively. The restrictions in (1.1) can then be
written as

a = Bω, A∗ = BΩB′, Aj = BΩ1/2DjΩ
1/2B′, (1.2)

for ω ≡ (ω1, ω2, . . . , ωK)′, Ω ≡ diag[ω], and Dj ≡ diag[bj1, bj2, . . . , bjK ].
The next theorem shows that Assumption 1 suffices for identification of the mixture

structure on the basis of repeated measurements.
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Theorem 1 (identification). Let I be chosen in such a way that Assumption 1 is
satisfied. Then (i) the number of components K, (ii) the component densities fk, and (iii)
the mixing proportions ωk are all identified.

The proof of Theorem 1 is constructive, and is therefore given here. By Assumption 1, the
matrix A∗ has rank K. As this matrix is known, so is its rank and, hence, the number of
mixture components. This proves Theorem 1(i). To establish Theorem 1(ii), note that A∗ is
real and symmetric, and that it has rankK. Therefore, it admits the spectral decomposition

A∗ = V ΛV ′,

where V is the (I + 1) × K orthonormal matrix containing the eigenvectors of A∗, and
Λ is the K × K diagonal matrix containing the associated eigenvalues. Construct the
K × (I + 1) whitening matrix W ≡ Λ−1/2V ′, and subsequently form the set of K × K

matrices Cj ≡WAjW
′, for j ≥ 0. Then, using (1.2), we obtain the system

Cj = UDjU
′, (1.3)

where U ≡ WBΩ1/2. As WA∗W
′ = UU ′ = IK , where IK denotes the K × K identity

matrix, U is a full-rank orthonormal matrix. Observe that V , and thus W , is not unique if
the eigenvalues of A∗ are multiple. Nevertheless, in this case (1.3) holds irrespective of the
choice of V . Now, by (1.3) the set of matrices {Cj , j ≥ 0} are simultaneously diagonalizable
in the same orthonormal basis; namely, the columns of U . The eigenvalues of Cj are
given by the diagonal coefficients of Dj , that is, the Fourier coefficients of the component
densities fk. Because B and U have full column rank and eigenvectors are orthonormal,
the decomposition in (1.3) is unique up to relabeling of the eigenvectors and eigenvalues,
and up to the directions of eigenvectors (see, e.g., De Lathauwer et al. 2004). Thus, for
each k, ProjJ [fk] is identified for all J . Because ‖fk − gk‖2 = 0 if and only if the function
gk has the same Fourier coefficients as fk, this implies that the densities fk are identified
almost everywhere on [−1, 1]. Finally, to show Theorem 1(iii), note that identification of
the matrices Dj implies identification of B. As B has maximal column rank, (1.2) identifies
ω = (B′B)−1B′a. This concludes the proof of Theorem 1.

We make the following remarks on the proof of Theorem 1. First, identification of the
mixture components implies identification of all their functionals. Furthermore, Bayes’ rule
implies that the posterior latent-class probabilities Pr{x = k|yt = y}, as a function of y,
are also identified. This is a key object of interest in latent-class analysis, as it allows to
classify observations based on marginal information.

Second, the proof of Theorem 1 shows that identification does not require calculating
the whole sequence {ai1i2i3 , i1, i2, i3 ≥ 0} to recover {bjk, j ≥ 0}. Only one dimension out of
all three indices i1, i2, i3 has to diverge. This observation will be important when deriving
distribution theory, and is key in obtaining univariate convergence rates for our estimator
of the component densities fk.
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Finally, note that simultaneous-diagonalization arguments have also been used elsewhere
to establish identification in related contexts; see Hu (2008), Hu and Schennach (2008), and
Kasahara and Shimotsu (2009), for example. Our approach here differs in two aspects. First,
we work with a discretization of the component densities in the frequency domain rather
than with a discretization of their support. Second, we explicitly construct an estimator
based on the joint-eigenvector decomposition. The development of this estimator is the
topic of the next section.

2. Estimation

Let {yn1, yn2, . . . , ynT , n = 1, 2, . . . , N} denote a random sample of size N . From now on,
we set T ≥ 3 and assume that an upper bound I > K is available so that Assumption 1 is
satisfied.

2.1. Number of components
Because the number of components equals the rank of A∗, a natural way to proceed is
to estimate K by sequentially testing the rank of its empirical analog.3 To describe the
procedure, note that a plug-in estimator of A∗, say Â∗, has (i1, i2)th-entry

âi1i2 ≡
1

N

(T − 2)!

T !

N∑
n=1

∑
(t1,t2)

χi1(ynt1)ρ(ynt1)χi2(ynt2)ρ(ynt2),

where (t1, t2) ranges over all ordered pairs from the set {1, 2, . . . , T}. The averaging across
all ordered pairs is done to exploit the stationarity restrictions across measurements. Note
that Â∗ is both an unbiased and a

√
N -consistent and asymptotically-normal estimator of

A∗ provided the basis functions have finite variance. We may then use the rank statistic of
Kleibergen and Paap (2006), r̂k, to test the null H0 : rank[A∗] = k against the alternative
H1 : rank[A∗] > k for any k. Moreover, following Robin and Smith (2000), a point estimator
of K is given by

K̂ ≡ min
k∈{0,1,...,I+1}

{
k : r̂` ≥ p1−α(`), ` = 0, 1, . . . , k − 1, r̂k < p1−α(k)

}
,

where p1−α(k) is the 100(1 − α)th percentile of the χ2((I + 1 − k)2) distribution and α

is a chosen significance level (with the convention that p1−α(I + 1) = +∞). That is,
the sequential-testing estimator is the first integer for which we fail to reject the null at
significance level α. Asymptotically, this estimator will not underestimate the true rank
of A∗. The probability of overestimation can be made to converge to zero by suitably

3This approach is similar in spirit to Kasahara and Shimotsu (2013), although their procedure
only yields a consistent estimator of a lower bound on the number of components. Note that, in
the absence of a known upper bound on K, our sequential-testing procedure, too, will only provide
a consistent estimator of a lower bound on the number of components in general.



Finite mixtures 7

decreasing the significance level α as a function of the sample size; see Robin and Smith
(2000) for details.

Although one could base the sequential testing procedure on a different test statistic,
r̂k has several attractive features and, therefore, carries our preference. Prime advantages
include its non-sensitivity to the ordering of variables, and the fact that its limit distribution
under the null is free of nuisance parameters.

2.2. Component densities and mixing proportions

2.2.1. Joint approximate diagonalization

We recover the Fourier coefficients from an empirical counterpart to the simultaneous-
diagonalization system in (1.3). To this end, let I and J be two non-negative integers.
In the asymptotic analysis we will let J tend to infinity, while keeping I fixed. We first
construct the (I+ 1)× (I+ 1) matrices Âj , j = 0, 1, . . . , J , whose typical (i1, i2)-entry takes
the form

âi1i2j ≡
1

N

(T − 3)!

T !

N∑
n=1

∑
(t1,t2,t3)

χi1(ynt1)ρ(ynt1)χi2(ynt2)ρ(ynt2)χj(ynt3)ρ(ynt3),

where (t1, t2, t3) ranges over all ordered triples from the set {1, 2, . . . , T}. We then form
Ĉj ≡ Ŵ ÂjŴ

′, where Ŵ is the sample counterpart to W , constructed from the spectral
decomposition of Â∗. Note that these matrices are all symmetric by construction. The
restrictions in (1.3) then suggest estimating the matrices Dj by D̂j ≡ diag

[
Û ′ĈjÛ

]
, where

Û ≡ arg min
U∈U

I∑
i=0

∥∥∥off
[
U ′ĈiU

]∥∥∥2

, (2.1)

with U the set of K×K orthonormal matrices, off[A] ≡ A−diag[A], and ‖·‖ the Euclidean
norm. That is, Û is the approximate joint diagonalizer of the Ĉi.

Even though Û is a least-squares estimator, the first-order conditions of the minimization
problem in (2.1) are highly nonlinear and difficult to solve using conventional gradient-based
methods. Fortunately, this joint diagonalization problem has been extensively studied in
numerical analysis (see, e.g., Bunse-Gerstner et al. 1993), and several numerical algorithms
have been developed. Here, we use the JADE algorithm by Cardoso and Souloumiac (1993).
This procedure is based on iteratively applying elementary Jacobi rotations. Its attractive
computational properties have made JADE a workhorse technique in blind source separation
(see, e.g., Comon and Jutten 2010). In extensive numerical experiments we found it to be
very stable and computationally extremely fast.
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2.2.2. Component densities and mixing proportions
Given an estimator of D̂j = diag[̂bj1, b̂j2, . . . , b̂jK ], we estimate fk by the orthogonal-series
estimator

f̂k ≡
J∑
j=0

b̂jkχj .

Bona fide density estimates, that is non-negative functions that integrate to one, may
then be obtained as fk(y) ≡ max{0, f̂k(y) − ck}, where ck is a constant chosen so that´ 1

−1
fk(z) dz = 1. Observe that fk is the projection of f̂k onto the space of square-integrable

functions that are non-negative and integrate to one, as shown by Gajek (1986) in a general
setting.

Given an estimator of the component densities, an estimator of the mixing proportions is
easily constructed. We use the leading (I + 1) matrices D̂i to construct a plug-in estimator
B̂ of B, and compute â ≡ (â0, â1, . . . , âI)

′, for

âi ≡
1

NT

N∑
n=1

T∑
t=1

χi(ynt)ρ(ynt).

The vector ω is then readily estimated by

ω̂ ≡ (B̂′B̂)−1B̂′â.

This estimator is similar in spirit to the minimum-distance proposal of Titterington (1983),
who worked in a framework where data can be sampled directly from the various mixture
components.

2.3. Functionals
Given estimates of the component densities and mixing proportions, we next consider the
problem of inferring a vector θ0 defined as the unique solution to a moment condition of the
form E[g(y; θ0)|x = k] = 0 for some known function g. The first moment of fk, for example,
is defined through E[y − θ0|x = k] = 0.

Note that E[g(y; θ)|x = k] = E[g(y; θ)φk(y)] for φk(y) ≡ fk(y)/f(y). Hence, a natural
way to proceed is to consider a GMM estimator of the form

θ̂ ≡ arg min
θ∈Θ

m̂(θ)′ Σ̂ m̂(θ), (2.2)

where Θ is the parameter space, Σ̂ is a positive-definite weight matrix that converges in
probability to a positive-definite and non-stochastic matrix Σ, and

m̂(θ) ≡ 1

N

N∑
n=1

m̂n(θ), m̂n(θ) ≡ 1

T

T∑
t=1

g(ynt; θ)φ̂k(ynt),

for φ̂k a suitable estimator of the weight function φk.
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An alternative way to construct an estimator of θ0 would be to replace m̂(θ) in (2.2) by

m̃(θ) ≡
J∑
j=0

b̂jkχj(θ), χj(θ) ≡
ˆ 1

−1

g(y; θ)χj(y) dy. (2.3)

Quadrature methods can be used to numerically approximate the χj(θ) if the integrals are
difficult to compute.

3. Distribution theory

The theory to follow uses orthonormal polynomials as basis functions. We first derive
the large-sample properties of our estimators of mixture densities and mixing proportions
assuming thatK is known. We then present distribution theory for semiparametric two-step
estimators of functionals. Technical details are collected in the appendix.

3.1. Component densities

3.1.1. Approximation to an infeasible estimator
To derive the large-sample properties of our estimator of fk, it is instructive to link it to
the infeasible estimator

f̃k ≡
J∑
j=0

b̃jkχj ,

where the b̃jk are the diagonal entries of D̃j ≡ diag[U ′WÂjW
′U ]. Note that this estimator

is not feasible because it assumes knowledge of the whitening matrix W and of the joint
eigenvectors U . We can write

f̃k(y) =
1

N

(T − 3)!

T !

N∑
n=1

∑
(t1,t2,t3)

τk(ynt1 , ynt2) κJ(y, ynt3)ρ(ynt3),

where κJ is the Christoffel-Darboux kernel associated with the system {χj , j ≥ 0}, that is,

κJ(y1, y2) ≡
J∑
j=0

χj(y1)χj(y2),

and where, using U = (u1, u2, . . . , uK) and W = (w0, w1, . . . , wI),

τk(y1, y1) ≡
I∑

i1=0

I∑
i2=0

u′kwi1χi1(y1)ρ(y1)χi2(y2)ρ(y2)w′i2uk.

The function τk has an interpretation as a tilt function. Moreover, because the sample
average of κJ(z, ynt)ρ(ynt) is just a conventional orthogonal-series estimator of f(z), the
infeasible estimator f̃k can be seen as a re-weighting estimator based on an estimator of the
marginal density.
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Our estimator of fk can be seen as an estimated counterpart to f̃k. Moreover, it equals

f̂k(y) =
1

N

(T − 3)!

T !

N∑
n=1

∑
(t1,t2,t3)

τ̂k(ynt1 , ynt2) κJ(y, ynt3)ρ(ynt3),

where τ̂k is an estimator of the tilt function based on the JADE program in (2.1), that is,

τ̂k(y1, y2) ≡
I∑

i1=0

I∑
i2=0

û′kŵi1χi1(y1)ρ(y1)χi2(y2)ρ(y2)ŵ′i2 ûk.

Under regularity conditions, replacing τk by its estimator τ̂k will not affect the limit behavior
of the density estimator.

3.1.2. Global convergence rates and pointwise asymptotic normality
To present distribution theory for the density estimator, let ‖·‖∞ denote the supremum
norm and let αJ(y) ≡

∑J
j=0 χj(y)2. The following two assumptions suffice for the analysis

of the infeasible estimator.

Assumption 2 (kernel). The sequence {χj , j ≥ 0} is dominated by a function π,
which is continuous on (−1, 1) and positive almost everywhere on [−1, 1]; πρ and π2ρ are
integrable; and there exists a sequence of constants {ζJ , J ≥ 0} so that ‖√αJ‖∞ ≤ ζJ .

These conditions are rather weak. They are satisfied for the class of Jacobi polynomials, for
example, which are orthogonal to weight functions of the form ρ(y) ∝ (1 − y)ϑ1(1 + y)ϑ2 ,
where ϑ1, ϑ2 > −1, and are dominated by π(y) ∝ (1 − y)−ϑ

′
1(1 + y)−ϑ

′
2 , where ϑ′i ≡

max{ϑi,−1/2}/2 + 1/4. Further, with ϑ ≡ 1/2 + max{ϑ1, ϑ2,−1/2}, ‖χj‖∞ = jϑ, and so
one can take ζJ = J (1+ϑ)/2; see, e.g., Viollaz (1989). Notable members of the Jacobi class
are Chebychev polynomials of the first kind (ϑ1 = ϑ2 = −1/2), Chebychev polynomials of
the second kind (ϑ1 = ϑ2 = 1/2), and Legendre polynomials (ϑ1 = ϑ2 = 0).

Assumption 3 (smoothness). For all k, fk is continuous and (πρ)4fk is integrable;
and there exists a constant β ≥ 1 such that ‖ProjJ [fk]− fk‖∞ = O(J−β) for all k.

The integrability condition imposes existence of suitable moments of fk. For consistency,
integrability of (πρ)2fk, which is implied by integrability of (πρ)4fk, suffices. However, the
fourth-order moments will be needed for establishing asymptotic normality. The condition
on the rate at which the bias shrinks is conventional in nonparametric curve estimation by
series expansions. Primitive conditions for it to hold depend on the orthogonal system used
and on the differentiability properties of the fk; see, e.g., Powell (1981).

The following assumption will allow us to extend the analysis to the feasible estimator.

Assumption 4 (eigenvalues). The non-zero eigenvalues of A∗ are all simple.
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This restriction is mainly done to facilitate the exposition. When Assumption 4 fails, the
eigenvalues of A∗ are no longer a continuous function of A∗, complicating the derivation of
the asymptotic properties of τ̂k; see, e.g., Magnus (1985). Moreover, it is well known that the
asymptotic distribution of eigenvalues depends in a complicated way on their multiplicity;
see, e.g., Eaton and Tyler (1991).

Our first main result provides integrated squared-error and uniform convergence rates.

Theorem 2 (convergence rates). Let Assumptions 1–4 be satisfied. Then∥∥f̂k − fk∥∥2

2
= OP (J/N + J−2β),

∥∥f̂k − fk∥∥∞ = OP (ζJ
√
J/N + J−β),

for all k.

The rates in Theorem 2 equal the conventional univariate rates of nonparametric series
estimators; see, e.g., Schwartz (1967) and Newey (1997). Thus, the fact that x is latent
does not affect the convergence speed of the density estimates. The integrated squared-error
result is further known to be optimal, in the sense that it achieves the bound established
by Stone (1982).

The next theorem states the pointwise limit distribution of the density estimator.

Theorem 3 (asymptotic normality). Let Assumptions 1–4 be satisfied. Suppose
that N, J → ∞ so that J2/N → 0 and NJ−2β → 0. Then, for each y that lies in an
interval on which f is of bounded variation,

√
NV −1/2

[
f̂k(y)− fk(y)

] L−→ N (0, 1),

where V is the covariance of (T−3)!
T !

∑
(t1,t2,t3) τk(yt1 , yt2)κJ(y, yt3)ρ(yt3)− ProjJ [fk](y).

The proof of Theorem 3 shows that V = O(αJ(y)), and so the pointwise convergence
rate is determined by the growth rate of αJ(y). A weak bound is OP (ζJ/

√
N) because

‖√αJ‖∞ ≤ ζJ .

3.2. Mixing proportions

Because a is estimated at the conventional parametric rate by â, the asymptotic behavior
of the estimator of the mixing proportions is driven by the properties of B̂, that is, of our
joint-diagonalization-based estimator of the leading Fourier coefficients. The analysis of
the JADE estimator in the appendix shows that B̂ is asymptotically linear. It then readily
follows that ω̂ is a

√
N -consistent and asymptotically-normal estimator of ω.

To present the limit distribution of ω̂, additional notation is needed. Let
col
⊗ and

row
⊗

denote the columnwise and rowwise Kronecker products, respectively. Under our maintained
assumptions, Ŵ is an asymptotically-linear estimator of the whitening matrix W . The
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influence functions of Ŵ and its transpose are

ψWn ≡
[(

II ⊗Λ−1V
)
− 1

2

(
IK

col
⊗W ′

)(
W

row
⊗ W

)]
ψA∗n ,

ψW
′

n ≡
[(

Λ−1V ⊗ II
)
− 1

2

(
W ′

col
⊗ IK

)(
W

row
⊗ W

)]
ψA∗n ,

(3.1)

respectively. Here, ψA∗n is the influence function of Â∗. It has typical entry equal to
(T−2)!
T !

∑
(t1,t2) χi1(ynt1)ρ(ynt1)χi2(ynt2)ρ(ynt2) − ai1i2 . The JADE estimators of U and its

transpose, too, are asymptotically linear. Their influence functions, in turn, are

ψUn ≡ (IK ⊗HU ′)−1
I∑
i=0

Qi(U
′ ⊗ U ′)ψCi

n ,

ψU
′

n ≡ (HU ′ ⊗ IK)−1
I∑
i=0

Qi(U
′ ⊗ U ′)ψCi

n ,

(3.2)

where [H]k,` ≡
∑I
i=0(bik − bi`)2 δk`, Qi ≡ diag[vec[DiιKι

′
K − ιKι′KDi]] for ιK a vector of

ones of length K, and where

ψCi
n ≡ (WAi ⊗ IK)ψWn + (W ⊗W )ψAi

n + (IK ⊗WAi)ψ
W ′

n , (3.3)

with ψAi
n having typical element

(T − 3)!

T !

∑
(t1,t2,t3)

χi1(ynt1)ρ(ynt1)χi2(ynt2)ρ(ynt2)χi(ynt3)ρ(ynt3)− ai1i2i.

Note that the matrix H−1 is well defined for any I + 1 ≥ K because B has full column
rank. It is readily shown that

√
N vec[B̂ −B] =

1√
N

N∑
n=1

ψBn + oP (1),

where ψBn ≡ vec[(ψD0
n , ψD1

n , . . . , ψDI
n )], with

ψDi
n ≡

[
Ik

col
⊗ IK

][
(IK ⊗U ′Ci)ψUn + (U ′ ⊗ U ′)ψCi

n + (U ′Ci ⊗ IK)ψU
′

n

]
. (3.4)

The functions ψDi
n are the influence functions of the D̂i, which contain the estimates of the

Fourier coefficients on their main diagonal.
Note that we also have

√
N(â− a) =

1√
N

N∑
n=1

ψan + oP (1),

where ψan has typical entry T−1
∑
t χi(ynt)ρ(ynt)− ai.

With these definitions at hand, we introduce

ψωn ≡ (B′B)−1
[
(a′ ⊗ IK)ψBn +B′ψan

]
. (3.5)

We can then state the following theorem.
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Theorem 4 (mixing proportions). Let Assumptions 1–4 be satisfied. Then
√
N
(
ω̂ − ω

) L→ N (0,V ),

where V is the covariance of ψωn .

3.3. Functionals
With Theorems 2 to 4 at hand we turn to the analysis of two-step semiparametric estimators.
Here we provide sufficient conditions for asymptotic linearity of the GMM estimator in
(2.2), which estimates the moment function E[g(y; θ)|x = k] by the re-weighting estimator
(NT )−1

∑
n,t g(ynt; θ)φ̂k(ynt) using

φ̂k(y) ≡ f̂k(y)
/( K∑

`=1

f̂`(y) ω̂`

)
.

In practical applications, one may wish to trim observations for which the weight function is
poorly estimated. Of course, other estimators of the moment function could be entertained.
One example would be the series-based estimator in (2.3). Under regularity conditions,
such estimators will all have similar properties, and so we omit a detailed analysis here for
the sake of brevity.

Write G for the Jacobian of g. Let g0 ≡ g(·; θ0) and G0 ≡ G(·; θ0). We impose the
following regularity conditions.

Assumption 5 (regularity). The value θ0 lies in the interior of the compact set Θ;
g0 is square-integrable with respect to ρ; g is twice continuously-differentiable on Θ, and
supθ∈Θ E‖g(y; θ)‖ and supθ∈Θ E‖G(y; θ)‖ are finite; the matrix E[G0φk(y)] has full column
rank; for each k, φk is bounded away from zero and infinity on [−1, 1], and there exists an
integer η ≥ 1 so that ‖ProjJ [g0φk]− g0φk‖∞ = O(J−η).

Assumption 5 contains familiar conditions for asymptotic normality of GMM estimators. It
also postulates a shrinkage rate on the bias of orthogonal-series estimators of the g0φ` that
is similar to Assumption 3.

To state the asymptotic distribution of θ̂, let Mθ ≡ E[G0φk(y)], and let Mω be the
matrix that has E[g(y; θ0)φk(y)φ`(y)] as its `th column. Define

ψθn ≡ (M ′θΣMθ)
−1M ′θΣ

[
mn(θ0) + ψφn

]
,

where mn(θ) ≡ T−1
∑T
t=1 g(ynt; θ)φk(ynt) and

ψφn ≡
(T − 3)!

T !

∑
(t1,t2,t3)

g0(ynt3)
[
τk(ynt1 , ynt2)− φk(ynt3)

K∑
`=1

τ`(ynt1 , ynt2) ω`

]
ρ(ynt3)−Mωψ

ω
n .

The function ψθn is the influence function of θ̂ and has a familiar structure, as the term
involving ψφn captures the impact of first-stage estimation error in φ̂k on the asymptotic
variance of θ̂.
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Theorem 5 (functionals). Let Assumptions 1–4 be satisfied. Suppose that N, J →
∞ so that ζ4

JJ
2/N → 0, NJ−2β → 0, and NJ−2η → 0. Then

√
N(θ̂ − θ0)

L→ N (0,V ),

where V is the covariance of ψθn.

4. Monte Carlo Simulation

We present numerical evidence on the small-sample performance of our estimators by means
of two illustrations. We will work with the family of Beta distributions on general intervals,
which is popular for modeling the distribution of income; see, e.g., McDonald (1984). On
the interval [y, y], the Beta PDF is

b(y;ϑ1, ϑ2; y, y) ≡ 1

(y − y)ϑ1+ϑ2−1

1

B(ϑ1, ϑ2)
(y − y)ϑ1−1(y − y)ϑ2−1,

where B(ϑ1, ϑ2) ≡
´ 1

0
zϑ1−1(1−z)ϑ2−1 dz, and ϑ1 and ϑ2 are positive real scale parameters.

Its mean and variance are

µ ≡ y + (y − y)
ϑ1

ϑ1 + ϑ2
, and σ2 ≡ (y − y)2 ϑ1ϑ2

(ϑ1 + ϑ2)2(ϑ1 + ϑ2 + 1)
, (4.1)

respectively.
Throughout this section and the next we use normalized Chebychev polynomials of the

first kind as basis functions. For y ∈ [−1, 1], the jth such polynomial is

χj(y) =
1

21{j=0} cos[j arccos(y)].

The system {χj , j ≥ 0} is orthonormal with respect to the weight function 2/
√
π2(1− y2),

is uniformly bounded by the constant function 1, and is dominated in supremum-norm by
ζJ =

√
J .

In each experiment, we estimate the number of components, the mixture densities and
their associated CDFs, as well as the mixing proportions and means and variances of the
mixture components. When estimating the component densities, we use fk to ensure bona
fide estimates. To infer the conditional CDFs, Fk(y) ≡

´ y
−1
fk(z) dz, we use Clenshaw-

Curtis quadrature to approximate the integral
´ y
−1
fk(z) dz. The components are labeled

according to the estimated modes, the smallest mode corresponding to k = 1. We also
present simple kernel estimates of the marginal density of the data.4

4Our quadrature approximation uses 101 quadrature nodes. Means and variances are estimated
using the GMM estimator from Section 3.3, without trimming. The estimates of the marginal
densities are obtained using a Gaussian kernel and a bandwidth set according to Silverman’s rule
of thumb. When the support of the fk is [a, b], y is translated to [−1, 1] through the transformation
(y − (a+ b)/2)/((b− a)/2).
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Table 1. Sequential rank test in Experiment 1
α = .100 α = .050 α = .025

N K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K

500 .005 .927 .068 .002 .959 .039 .001 .978 .021
750 .006 .926 .068 .002 .958 .040 .001 .976 .023

1000 .005 .924 .071 .002 .957 .041 .001 .979 .020
1500 .005 .929 .066 .002 .960 .038 .000 .976 .024
2000 .006 .930 .064 .002 .956 .042 .002 .980 .018
2500 .004 .929 .067 .002 .965 .033 .000 .975 .024

In all experiments we set I = J . In additional Monte Carlo exercises (not reported),
we experimented with several other choices for the truncation parameters. We observed
that the results were little affected by the choice of I. The choice of J has a larger impact,
affecting the estimated densities in the usual manner. Providing an optimal data-dependent
choice for J is a challenge that exceeds the scope of this paper.

Experiment 1. Our first experiment involves three generalized Beta distributions on the
interval [−1, 1]. We set

f1(y) = b(y; 2, 7;−1, 1), ω1 = .20,

f2(y) = b(y; 5, 4;−1, 1), ω2 = .35,

f3(y) = b(y; 6, 2;−1, 1), ω3 = .45.

Using (4.1), the means of the mixture components are µ1 = −5/9 ≈ −.556, µ2 = 1/9 ≈ .111,
and µ3 = 1/2, while their respective variances are σ2

1 = 28/405 ≈ .069, σ2
2 = 8/81 ≈ .099,

and σ2
3 = 1/12 ≈ .083. We set T = 4 and I = J = 6.

Table 1 presents simulation results for the estimator ofK defined through the sequential-
testing procedure based on the approach of Kleibergen and Paap (2006) for various values
of N and α. The table reports the frequency with which K was either underestimated,
correctly estimated, or overestimated in 10, 000 Monte Carlo replications. Overall, K̂ is
found to perform well, correctly picking the true number of mixture components in more
than 100(1− α)% of the cases.

The first three panels in Figure 1 show upper 95% and lower 5% envelopes (dashed
lines) over 1000 estimates from samples of size 1000 of the marginal PDF, the component
PDFs, and the component CDFs, together with their respective true values (solid lines).
The results reveal that our estimator reproduces the component densities very well, even
though inspection of the marginal densities does not directly suggest the particular mixture
structure.

The remaining three panels provide box plots of the sampling distribution of the mixing
proportions, and means and variances of the mixture components. All box plots are centered
around the respective true values. An asterisk marks zero. Overall, the plots suggest good
performance. The sampling distribution of the mixing proportions and mixture means
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Table 2. Sequential rank test in Experiment 2
α = .100 α = .050 α = .025

N K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K K̂<K K̂=K K̂>K

500 .140 .642 .218 .201 .644 .155 .264 .617 .119
750 .053 .748 .199 .083 .781 .136 .120 .782 .098

1000 .015 .790 .193 .030 .836 .134 .044 .864 .092
1500 .001 .804 .194 .001 .864 .135 .004 .900 .097
2000 .000 .809 .189 .000 .864 .136 .000 .904 .096
2500 .000 .816 .181 .000 .866 .134 .000 .905 .095

are broadly correctly centered and have small interquartile ranges. The box plots for the
variance show evidence of a slightly larger bias in the estimates of the mixture variances,
in particular for the first and third mixture component. Nonetheless, the magnitude of the
bias is small.

Experiment 2. Our methods contribute to the analysis of non-separable fixed-effect models,
that is, models of the form yt = g(x, εt), for some unobservable εt. A location-scale version
is

yt = x+ ηt, ηt = σ(x)εt, x ⊥⊥ εt,

for some function σ. The location-scale model can be seen as a stripped-down version of a
linear fixed-effect model or as a one-factor model. Note that here the factor x and the error
ηt are allowed to be dependent.

Suppose that εt is drawn from the generalized Beta distribution on [−1, 1] with ϑ1 =

ϑ2 = ϑ. Then its distribution is symmetric and var[εt] = 1/(2ϑ+1) while fk is supported on
the interval [k−σ(k), k+σ(k)]. Below we report results for the scale-function specification
σ(x) = (2ϑ+ 1)/

√
x. Here,

E[y|x = k] = k, var[y|x = k] =
1

k
,

so that the variability is inversely related to the mean. Table 2 and Figure 2, which have the
same structure as Table 1 and Figure 1 above, present simulation results for this location-
scale model for ϑ = 2 with K = 5 and ω = (.30, .20, .25, .15, .10)′. This choice of mixing
proportions implies that f is unimodal and virtually symmetric, hiding the underlying
mixture structure well. The simulations were performed with I = J = 8. The table was
generated over 10,000 replications. The plots are based on 1000 Monte Carlo runs.

Table 2 shows that the sequential rank test performs slightly worse than in the first de-
sign, although performance improves as N increases. The plots in Figure 2 display excellent
estimates of the component PDFs and CDFs. The box plots of the mixing proportions are
also broadly correctly centered, although interquartile ranges are higher than in Experiment
1. From the bottom panels in the figure it may be observed that the sampling distributions
of the GMM estimators of the mean and variance of the mixture components are now more
disperse. Variance estimates also suffer from non-negligible bias. This suggests that some
amount of trimming may be desirable in applications.
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Figure 1. Estimates in Experiment 1
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Figure 2. Estimates in Experiment 2
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5. Empirical Application

In an influential paper, Gottschalk and Moffitt (1994) decompose earnings inequality into
a permanent and a transitory component, and contrast earnings inequality in the 1970s
with inequality in the 1980s. In a recent paper, Moffitt and Gottschalk (2012) re-estimate
the trend in the transitory variance of male earnings in the United States using the PSID
from 1970 to 2004. They estimated both a simple one-factor model and more sophisticated
error-component models, and found that the transitory variance started to increase in the
early 1970s, continued to increase through the mid-1980s, and then remained at this new
higher level through the 1990s and beyond.

The literature on such decompositions of earnings dynamics builds on a representation
of individual n’s log earnings at time t as

ynt = xn + ηnt, (5.1)

where ynt is typically the residual from a standard Mincer regression, xn is a fixed effect,
and ηnt is an idiosyncratic white noise process. Extensions include replacing the fixed effect
by a random walk with individual-specific drift or initial condition, and replacing the white
noise by a stationary serially-correlated process. However, recent contributions have argued
that it may be important to allow for more heterogeneity than in the additive model (5.1);
see, e.g., Browning et al. (2010) for a parametric approach. In this section, we show how
finite mixtures can be used to shed some new light on the anatomy of the rise of earnings
inequality in the U.S.

From the PSID 1969–1998 we construct a set of five-year balanced subpanels, using a
rolling window of length one. This yields 26 subpanels. For each such subpanel, we obtain
our measure of log (annual) earnings as the residual of a pooled regression of reported log
earnings on a constant term, a set of time dummies, years of schooling, and a second-degree
polynomial in experience.5 Graphical inspection of the marginal densities in each subpanel
(not reported) suggests that our stationarity assumption within subpanels is reasonable.
We then estimate a trivariate mixture model for each subpanel. Experiments with up to
ten components yielded similar patterns in the estimated component densities. We focus
on a small number of components for ease of exposition. For example, one can think of x as
a latent ability type with three categories: low, intermediate, and high. The densities were
estimated as in the Monte Carlo experiments, setting I = 5 and J = N1/5 to accommodate
the increase in the number of cross-sectional observations in the subpanels spanning later
time periods. Alternative choices for the truncation parameter J were found to have little
effect on the estimated densities.

Figure 3 plots the estimated component densities for six non-overlapping subpanels. The
cross-sectional sample size is indicated below each plot. The figure reveals well-separated

5We excluded self-employed individuals and students, as well as individuals for whom earnings
were top coded. The sample was restricted to individuals between the ages of 20 and 60, with at
most 40 years of experience. We computed experience as age− (years of schooling + 6).
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Figure 3. Component densities in a selection of subpanels
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Figure 4. Evolution of functionals over the sampling period

1960 1970 1980 1990 2000
0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4
Mean

1960 1970 1980 1990 2000
0

0.04

0.08

0.12

0.16
Variance

1960 1970 1980 1990 2000
0.6

0.4

0.2

0

0.2

0.4

0.6

0.8
Median

1960 1970 1980 1990 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8
Interquartile range

1960 1970 1980 1990 2000
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6
Mode

1960 1970 1980 1990 2000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Interdecile range



22 S. Bonhomme, K. Jochmans, and J.-M. Robin

Figure 5. Decomposition of variance, interquartile range, and interdecile range

1965 1970 1975 1980 1985 1990 1995
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Variance decomposition

 

 
transitory component
permanent component
predicted variance

1965 1970 1975 1980 1985 1990 1995
0

1

2
Transitory component

 

 

1965 1970 1975 1980 1985 1990 1995
0

0.05

0.1
interquartile range (left)
interdecile range (left)
variance (right)

1965 1970 1975 1980 1985 1990 1995
0

0.2

0.4
Permanent component

 

 

1965 1970 1975 1980 1985 1990 1995
0.06

0.07

0.08
mode (left)
median (left)
mean (right)



Finite mixtures 23

unimodal component densities, which we label k = 1, 2, 3 according to their mode (from left
to right). The plots indicate that the component densities, and their dispersion in particular,
vary with k, which provides evidence against the common assumption of independence
between x and η in model (5.1).

The plots further suggest that the component densities evolve over time. To investigate
this, we estimate their mean, median, and mode as measures of location, as well as their
variance, interquartile range, and interdecile range as measures of dispersion. The results
are presented in Figure 4, which plots the point estimates as well as regression lines over
time, for k = 1 (×; full), k = 2 (◦; dashed), and k = 3 (+; dashed-dotted). Means
and medians show a slightly upward-sloping trend, with the lower-end component density
catching up over time. Modes, however, diverge over the period. The ranking of variances,
interquartile ranges, and interdecile ranges of the component densities are inversely related
to their measures of location, indicating that individuals at the lower end of the earnings
distribution are subject to higher volatility in earnings. Interestingly, Figure 4 shows that
all volatility measures increased over the sampling period. This suggests that earnings
inequality within the three latent groups k has increased over time. Note also that, while
the increase in within-group variance slows down at the end of the 1980s, this pattern is
much less apparent when considering interquartile and interdecile ranges.

In the top panel of Figure 5 we present the evolution of the within-group (dashed)
and the between-group (dashed-dotted) variances. In line with the literature, we interpret
the former as measuring a transitory component and the latter as reflecting a permanent
component. The transitory component is the average of the variances of the component
densities; the permanent component is the variance of the means over the latent classes.
We observe that the transitory component increased during the period, although it tended
to flatten out in the late 1980s. This is in line with the findings of the more parametrized
models of Moffitt and Gottschalk (2012). We also find that the permanent component has
been decreasing steadily throughout the sampling period. This decrease is dominated by
the evolution of the transitory component, however, as is apparent from the evolution of
the total variance (solid line).

The remaining panels in Figure 5 document the evolution of other measures of within-
group and between-group variation. The middle plot shows that, like the transitory variance
(solid line), the averages over groups of within-group interquartile ranges (dashed-dotted)
and of within-group interdecile ranges (dashed) both increased over time, although the
former did so at a slower pace. Unlike the transitory variance, however, these other measures
do not show signs of slowing down over the course of the sampling period. We tend to place
more confidence in inter-quantile ranges as measures of dispersion because they are well
known to be more robust than the variance (and other higher-order moments). When
tails get fatter more observations are needed to obtain the same precision for the variance.
Thus, the flattening-out of the transitory variance might just reflect the fattening tails of
the within-group distributions after 1980.
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Lastly, the bottom plot in Figure 5 shows the evolution of the variances (across the
three latent classes) of the group-specific means, medians, and modes. The plot shows that
the evolution of these permanent components is very different depending on the location
parameter considered.

Conclusion

In this paper we have introduced simple nonparametric procedures to estimate finite-
mixture models from short panel data. Our estimators rely on fast joint-diagonalization
techniques for efficient computation. Their theoretical properties as well as our Monte
Carlo experiments suggest good performance. In particular, the component densities are
estimated at the usual univariate nonparametric rates, and mixing proportions as well as
functionals converge at the parametric rate. Although we have focused on the case where
the outcome variable is continuous, our methods can also be applied with discrete outcomes.

Several directions for future research present themselves. First, it would be interesting
to extend our approach to continuous mixtures. Nonparametric estimation of continuous
mixtures is challenging, however, as an ill-posed inverse problem arises. A second extension
would be to assess the impact of estimating the number of components on the statistical
properties of our estimators. In numerical experiments, we have found that working with
a K that is too low yields density estimates that tend to aggregate the true component
densities over groups. A final direction would be to relax the assumption that the component
densities are stationary. These questions all raise challenges for computation and statistical
analysis, and are currently under study.
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Appendix A. Analysis of the infeasible density estimator

For notational simplicity, throughout the appendices, we set T = 3 and ignore permutations
of observations when constructing estimators; we set (t1, t2, t3) = (1, 2, 3).

Theorem A.1. Let Assumptions 2–3 be satisfied. Then∥∥f̃k − fk∥∥2

2
= OP (J/N + J−2β),

∥∥f̃k − fk∥∥∞ = OP (ζJ
√
J/N + J−β),

for all k.

Proof. Let b ≡ (b0k, b1k, . . . , bJk)′, and define b̃ in an analogous fashion. We begin by
showing that ‖b̃− b‖ = OP

(√
J/N

)
. First observe that, for any j,

E
∥∥Âj −Aj∥∥2

=

I∑
i1=0

I∑
i2=0

E
[
(âi1i2j − ai1i2j)2

]
=

I∑
i1=0

I∑
i2=0

E
[( 1

N

N∑
n=1

χi1(yn1)ρ(yn1)χi2(yn2)ρ(yn2)χj(yn3)ρ(yn3)− ai1i2j
)2]

=

I∑
i1=0

I∑
i2=0

E
[
χi1(y1)2ρ(y1)2χi2(y2)2ρ(y2)2χj(y3)2ρ(y3)2

]
− a2

i1i2j

N

≤
I∑

i1=0

I∑
i2=0

( ´ 1

−1
π(y)2ρ(y)2f(y) dy

)3 − a2
i1i2j

N

≤
(I + 1)2

( ´ 1

−1
π(y)2ρ(y)2f(y) dy

)3
N

.

As π2ρ2f is integrable, we thus have that E
∥∥Âj−Aj∥∥2

= O(1/N) uniformly in j. Therefore,

J∑
j=0

∥∥Âj −Aj∥∥2
= OP (J/N)

by Markov’s inequality. Now, because b̃jk − bjk is the kth diagonal entry of D̃j −Dj and
D̃j −Dj = diag[U ′W (Âj −Aj)W ′U ],

‖b̃− b‖2 ≤
J∑
j=0

∥∥D̃j −Dj

∥∥2 ≤
∥∥U ′W ⊗ U ′W∥∥2

J∑
j=0

∥∥Âj −Aj∥∥2
= OP (J/N)

follows by the Cauchy-Schwarz inequality and the fact that
∥∥U ′W ⊗ U ′W∥∥ = O(1). This

establishes the rate result on the Fourier coefficients.
Now consider the integrated squared-error result. Using orthonormality of the basis

functions, a small calculation shows that∥∥f̃k − fk∥∥2

2
=
∥∥f̃k − ProjJ [fk]

∥∥2

2
+
∥∥ProjJ [fk]− fk

∥∥2

2
= ‖b̃− b‖2 +

∥∥ProjJ [fk]− fk
∥∥2

2
.
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From above, ‖b̃− b‖2 = OP (J/N). Further, by Assumption 3,∥∥ProjJ [fk]− fk
∥∥2

2
≤
ˆ 1

−1

∥∥ProjJ [fk]− fk
∥∥2

∞ ρ(y) dy = O(J−2β)

because ρ is integrable. This proves the first part of Theorem A.1.
To derive the uniform convergence rate, finally, use the triangle inequality to obtain that∥∥f̃k − fk∥∥∞ ≤ ∥∥f̃k − ProjJ [fk]

∥∥
∞ +

∥∥ProjJ [fk]− fk
∥∥
∞.

By the Cauchy-Schwarz inequality in the first step and by the uniform bound on αJ(y) and
the convergence rate of ‖b̃− b‖ in the second, the first right-hand side term is bounded as∥∥f̃k − ProjJ [fk]

∥∥
∞ ≤ ‖

√
αJ‖∞ ‖b̃− b‖ = O

(
ζJ
)
OP
(√

J/N
)
.

By Assumption 3,
∥∥ProjJ [fk] − fk

∥∥
∞ = O(J−β). This yields the second part of Theorem

A.1 and thus concludes the proof. 2

Theorem A.2. Let Assumptions 2–3 be satisfied. Suppose that N, J → ∞ so that
J/N → 0 and J2β/N → ∞. Then, for each y that lies in an interval on which f is of
bounded variation, √

NV −1/2
[
f̃k(y)− fk(y)

] L−→ N (0, 1),

where V is the covariance of τk(y1, y2)κJ(y, y3)ρ(yt3)− ProjJ [fk](y).

Proof. Fix the evaluation point y throughout the proof. We first show that f̃k is an
unbiased estimator of ProjJ [fk].

E
[
f̃k(y)

]
=E

[
τk(y1, y2)κJ(y, y3)ρ(y3)

]
=

K∑
`=1

E
[
τk(y1, y2)

∣∣x = `
]
E
[
κJ(y, y3)ρ(y3)

∣∣x = `
]
ω`,

where the expectations are with respect to (y1, y2, y3) and we have used the conditional
independence of the measurements. Now,

E
[
τk(y1, y2)

∣∣x = `
]

=

I∑
i1=0

I∑
i2=0

u′kwi1bi1`bi2`w
′
i2uk = ω−1

k δk`

because U ′WBB′W ′U = Ω−1, which follows from (1.3). Further, the Christoffel-Darboux
kernel satisfies

E
[
κJ(y, y3)ρ(y3)

∣∣x = `
]

=

J∑
j=0

bj`χj(y) = ProjJ [f`](y)

for each `. Thus, E
[
f̃k(y)

]
= ProjJ [fk](y), as claimed.

Centering the estimator around its expectation gives

f̃k(y)− ProjJ [fk](y) =
1

N

N∑
n=1

ψn, ψn ≡ τk(yn1, yn2)κJ(y, yn3)ρ(yn3)− ProjJ [fk](y).
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Because Assumption 3 yields |ProjJ [fk](y)− fk(y)| ≤ ‖ProjJ [fk]− fk‖∞ = O(J−β) and we
require that

√
NJ−β → 0, the bias induced by truncating the projection is asymptotically

negligible. It thus suffices to derive the limit distribution of the sample average of the
ψn. For this we verify that the conditions of Lyapunov central limit theorem for triangular
arrays are satisfied. We have already demonstrated that E[ψn] = 0 and so, if we can show
that

(i) E
[
ψ2
n/αJ(y)

]
= O(1); (ii) E

[(
ψ2
n/ var[ψn]

)2]
= o(N),

the result will be proven.
To show Condition (i), use the conditional independence of the measurements to obtain

var [ψn] =

K∑
`=1

E
[
τk(y1, y2)2|x = `

]
E
[
κJ(y, y3)2ρ(y3)2|x = `

]
ω` − ProjJ [fk](y)2.

Exploiting conditional independence, a direct calculation shows that, for each `, the second
moment of the weight function is

E[τk(y1, y2)2|x = `] =

(
I∑

i1=0

I∑
i2=0

u′kwi1 E[χi1(y1)ρ(y1)χi2(y1)ρ(y1)|x = `]w′i2uk

)2

= O(1),

with boundedness following from the fact that the u′kwi are O(1) and the observation that

E[χi1(y1)ρ(y1)χi2(y1)ρ(y1)|x = `] ≤
ˆ 1

−1

π(y1)2ρ(y1)2f`(y1) dy1 = O(1),

which holds because π2ρ2f` is integrable. Next, under the conditions of Theorem A.2, we
can apply Theorem 2.2.3 in Viollaz (1989) to get

E
[
κJ(y, y3)2ρ(y3)2|x = `

]
αJ(y)

−→ f`(y)ρ(y),

which exists for all `. Finally, ProjJ [fk](y)/
√
αJ(y) = o(1) because ProjJ [fk](y) → fk(y),

which is finite. We therefore conclude that var [ψn] /αJ(y) tends to a positive constant, and
that Condition (i) is satisfied.

Finally, to verify Condition (ii), let Xnj be the (I + 1) × (I + 1) matrix with typical
entry [Xnj ]i1,i2 ≡ χi1(yn1)ρ(yn1)χi2(yn2)ρ(yn2)χj(yn3)ρ(yn3). This allows us to write ψn as

ψn =

J∑
j=0

(
u′kW [Xnj −Aj ]W ′uk

)
χj(y) =

J∑
j=0

tr
(

[W ′uku
′
kW ] [Xnj −Aj ]

)
χj(y).

By repeatedly applying the Cauchy-Schwarz inequality to this expression we then establish

ψ2
n ≤ ‖W ′uku′kW‖

2
J∑
j=0

‖Xnj −Aj‖2 αJ(y).
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Because ‖W ′uku′kW‖
2

= O(1) and var[ψn] � αJ(y) we then obtain

E
[(
ψ2
n/ var[ψn]

)2] ≤ O(1) E
[( J∑

j=0

‖Xnj −Aj‖2
)2]
≤ O(J)

J∑
j=0

E ‖Xnj −Aj‖4 ,

where the last transition follows by the Cauchy-Schwarz inequality. Using similar arguments
as in the proof of Theorem A.1, it is straightforward to show that E ‖Xnj −Aj‖4 = O(1)

uniformly in j, because π4ρ4f is integrable. Therefore,

1

N
E

[(
ψ2
n

var[ψn]

)2
]

= O

(
J2

N

)
,

which converges to zero as N → ∞. This shows that Condition (ii) is satisfied. With the
requirements of the central limit theorem verified, it follows that

1√
N

N∑
n=1

ψn√
var[ψn]

L−→ N (0, 1).

This completes the proof. 2

Appendix B. Distribution theory for the JADE estimator

The first step is to derive the asymptotic distribution of the estimated whitening matrix.

Lemma B.1. Let Assumptions 2–4 be satisfied. Then

√
N vec[Ŵ −W ] =

1√
N

N∑
n=1

ψWn + oP (1),
√
N vec[Ŵ ′ −W ′] =

1√
N

N∑
n=1

ψW
′

n + oP (1),

where ψWn and ψW
′

n are given in (3.1).

Proof. Recall that A∗ is real, symmetric, and has rank K. Also, its K non-zero
eigenvalues are all distinct by Assumption 4. Further, Â∗ satisfies

√
Nvec[Â∗ − A∗]

L→
N (0,VA∗) for VA∗ ≡ E[ψA∗n ψA∗′n ]. From Theorem 4.2 in Eaton and Tyler (1991) and
Theorem 1 in Magnus (1985), it then follows that

√
N(λ̂− λ)

L→ N (0,Vλ), where [Vλ]k,` ≡
(v′k ⊗ v′k)VA∗(v` ⊗ v`). With Λ = diag[λ], the Jacobian associated with the transformation

from λ to vec[Λ−1/2] is − 1
2 (IK

col
⊗ IK)diag[λ

−3/2
1 , λ

−3/2
2 , . . . , λ

−3/2
K ], where (IK

col
⊗ IK) is the

K2 × K selection matrix that transforms λ into vec[Λ]. Hence, by an application of the
delta method,

√
Nvec[Λ̂−1/2 − Λ−1/2] = −1

2
(IK

col
⊗ IK)Λ−1/2(W

row
⊗ W )

1√
N

N∑
n=1

ψA∗n + oP (1), (B.1)
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using W = Λ−1/2V ′. Moreover, from Corollary 1 in Bura and Pfeiffer (2008), we have that
the estimated eigenvectors satisfy

√
Nvec[V̂ − V ] = (Λ−1V ′ ⊗ II)

1√
N

N∑
n=1

ψA∗n + oP (1),

√
Nvec[V̂ ′ − V ′] = (II ⊗Λ−1V ′)

1√
N

N∑
n=1

ψA∗n + oP (1).

(B.2)

Combined with the linearization

Ŵ −W = (Λ̂−1/2 − Λ−1/2)V ′ + Λ−1/2(V̂ − V )′ + oP (1/
√
N),

(B.1) and (B.2) yield the influence functions as given in (3.1). This completes the proof. 2

The following lemma contains distributional results for the JADE estimator of U .

Lemma B.2. Let Assumptions 2–4. Then

√
N vec[Û − U ] =

1√
N

N∑
n=1

ψUn + oP (1),
√
N vec[Û ′ − U ′] =

1√
N

N∑
n=1

ψU
′

n + oP (1),

where ψUn and ψU
′

n are given in (3.2).

Proof. Because Ĉi = Ŵ ÂiŴ
′ and both Ŵ and Âi are asymptotically linear, we have

√
N vec[Ĉi − Ci] =

1√
N

N∑
n=1

ψCi
n + oP (1)

for ψCi
n as in (3.3). Theorem 5 in Bonhomme and Robin (2009) then yields the result. 2

Appendix C. Proofs of theorems in the main text

Proof of Theorem 2. Write b = (b0k, b1k, . . . , bJk)′ and define b̂ and b̃ in an analogous
fashion, as before. We first show that ‖b̂ − b̃‖ = OP (1/

√
N) + OP (

√
J/N). The theorem

will then follow easily. By the Cauchy-Schwarz inequality,

∥∥b̂− b̃∥∥2 ≤
J∑
j=0

∥∥D̂j − D̃j

∥∥2 ≤
∥∥Û ′Ŵ ⊗ Û ′Ŵ − U ′W ⊗ U ′W∥∥2

J∑
j=0

∥∥Âj∥∥2
.

Lemmas B.1 and B.2 imply that
∥∥Û ′Ŵ ⊗ Û ′Ŵ − U ′W ⊗ U ′W∥∥2

= OP (1/N). Further,

J∑
j=0

∥∥Âj∥∥2 ≤ 2

J∑
j=0

∥∥Aj∥∥2
+ 2

J∑
j=0

∥∥Âj −Aj∥∥2
= O(1) +OP (J/N),

which follows from the proof of Theorem A.1. Thus, ‖b̂− b̃‖ = OP (1/
√
N) +OP (

√
J/N).
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Now turn to the integrated squared-error result. Arguing as in the proof of Theorem
A.1, we have

‖f̂k − fk‖22 ≤ 2‖b̂− b̃‖2 + 2‖f̃k − fk‖22.

From above, the first right-hand side term is OP (1/N) +OP (J/N2). By Theorem A.1, the
second right-hand side term is OP (J/N + J−2β). Therefore, the difference between b̂ and b̃
is asymptotically negligible, and ‖f̂k − fk‖22 = OP (J/N + J−2β). This establishes the first
part of the theorem.

To show the second part, we use the triangle inequality to obtain the bound

‖f̂k − fk‖∞ ≤ ‖f̂k − f̃k‖∞ + ‖f̃k − fk‖∞

Here, by the Cauchy-Schwarz inequality and using Assumption 2 and the argument above,

‖f̂k − f̃k‖∞ ≤
∥∥√αJ∥∥∞ ∥∥b̂− b̃∥∥ = OP (ζJ/

√
N) +OP (ζJ

√
J/N),

while ‖f̃k−fk‖∞ = OP (ζJ
√
J/N+J−β), as was shown in the proof of Theorem A.1. Thus,

‖f̂k − fk‖∞ = OP (ζJ
√
J/N + J−β) and, again, the difference between the feasible and

infeasible density estimators is asymptotically negligible. This concludes the proof. 2

Proof of Theorem 3. Fix the evaluation point y throughout the proof. We will show that∣∣f̂k(y)− f̃k(y)
∣∣ = oP (

√
αJ(y)/N).

The result will then follow from the analysis of the infeasible estimator, which is provided
in Theorem A.2. Introduce the shorthand γi1i2(y1, y2) ≡ χi1(y1)ρ(y1)χi2(y2)ρ(y2). Then
we can write

τ̂k(y1, y2)− τk(y1, y2) =

I∑
i1=0

I∑
i2=0

(
û′kŵi1 û

′
kŵi2 − u′kwi1u′kwi2

)
γi1i2(y1, y2).

This allows us to bound |f̂k(y)− f̃k(y)| by

I∑
i1=0

I∑
i2=0

(∣∣∣û′kŵi1 û′kŵi2 − u′kwi1u′kwi2∣∣∣ ∣∣∣ 1

N

N∑
n=1

γi1i2(yn1, yn2) κJ(y, yn3)ρ(yn3)
∣∣∣) .

We will handle each of the terms inside the brackets in turn. First, by Lemmas B.1 and
B.2,

|û′kŵi1 û′kŵi2 − u′kwi1u′kwi2 | = OP (1/
√
N) (C.1)

for all (i1, i2), and so the first term converges at the parametric rate. It is readily verified
that E[γi1i2(y1, y2) κJ(y, y3)ρ(y3)] = O(1), and so

var[γi1i2(y1, y2) κJ(y, y3)ρ(y3)]

αJ(y)
=

E[γi1i2(y1, y2)2 κJ(y, y3)2ρ(y3)2]

αJ(y)
+ o(1) = O(1),
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which follows from the same arguments as those that were used in the proof of Theorem
A.2. Therefore, for all (i1, i2),∣∣∣ 1

N

N∑
n=1

γi1i2(yn1, yn2) κJ(y, yn3)ρ(yn3)
∣∣∣ = OP (

√
αJ(y)/N). (C.2)

Combining (C.1) and (C.2) then gives |f̂k(y)− f̃k(y)| = OP (
√
αJ(y)/N), which implies that√

N

αJ(y)

[
f̂k(y)− f̃k(y)

]
= oP (1).

Together with Theorem A.2, this yields the result and concludes the proof. 2

Proof of Theorem 4. Because bik = u′kCiuk for all i, Lemmas B.1 and B.2 directly imply
asymptotic linearity of B̂. To derive the form of its influence function, first consider the
linearization

Û ′ĈiÛ − U ′CiU =
(
Û − U

)′
CiU + U ′

(
Ĉi − Ci

)
U + U ′Ci

(
Û − U

)
+ oP (1/

√
N).

Recalling the K2 ×K selection matrix (IK
col
⊗ IK) used in the proof of Lemma B.1, we can

further linearize the rows of B̂ −B as

vec
[
Û ′ĈiÛ − U ′CiU

]′
(IK

col
⊗ IK).

We thus have that vec[B̂′ − B′] = N−1
∑N
n=1 ψ

B
n + oP (1/

√
N) for the random variables

ψBn = vec[(ψD0
n , ψD1

n , . . . , ψDI
n )], where the form of ψDi

n , which is the influence function of
D̂i, is given in (3.4). Now, by a linearization,

B̂′â−B′a =
1

N

N∑
n=1

(a′ ⊗ IK)ψBn +B′ψan + oP (1/
√
N).

Further, as ‖B̂ − B‖ = oP (1) and B′B has full rank, (B̂′B̂)−1 P→ (B′B)−1. It thus follows
that ω̂ is asymptotically linear with influence function ψωn , as given in (3.5). This proves
the result. 2

Proof of Theorem 5 Given our assumptions, standard arguments show that consistency
of θ̂ follows from uniform convergence of the empirical moment to the population moment.
Let m(θ) ≡ N−1

∑
nmn(θ). By a mean-value expansion around the first-step estimators,

Assumption 5, in tandem with Theorems 2–4, yields

sup
θ∈Θ

∥∥m̂(θ)− E[m(θ)]
∥∥ = OP (ζJ

√
J/N + J−β), (C.3)

which converges to zero as N → ∞. Turning to asymptotic normality, a Taylor expansion
around θ0 yields

√
N(θ̂ − θ0) = (M ′θΣMθ)

−1M ′θΣ
√
Nm̂(θ0) + oP (1),



32 S. Bonhomme, K. Jochmans, and J.-M. Robin

because Σ̂
P→ Σ and supθ∈Θ‖∂θ′m̂(θ) −Mθ(θ)‖ = oP (1), which follows as (C.3). It then

remains to show that

√
Nm̂(θ0) =

1√
N

N∑
n=1

(
mn(θ0) + ψφn

)
+ oP (1),

which amounts to quantifying the impact of the first-stage estimation error in the weight
function. First, note that a second-order Taylor expansion around the f̂`(ynt) and ω` yields

√
N
[
m̂(θ0)−m(θ0)

]
=

1√
N

N∑
n=1

K∑
`=1

[
ξn` + ∂ω`

mn(θ0)(ω̂` − ω`)
]

+ oP (1),

where the order of the remainder term stems from the fact that
√
N |ω̂` −ω`|2 = oP (1) and

that
√
N‖f̂` − f`‖2∞ =

√
N(ζ2

JJ/N + J−2β)→ 0 as N →∞ for all ` by Theorems 2 and 4,
and where we have introduced

ξn` =
1

T

T∑
t=1

g(ynt; θ0)∂f`(ynt)φk(ynt)
[
f̂`(ynt)− f`(ynt)

]
.

Using the linear representation of the f̂` in Theorem 3, the sample average of ξn` can be
expressed as a symmetric U -statistic of order two. The projection of this U-statistic equals

1

N

N∑
n=1

E
[
g0(y)∂f`(y)φk(y)

[
τ`(yn1, yn2)κJ(y, yn3)ρ(yn3)− ProjJ [f`](y)

]]
,

where the expectation is taken with respect to y. Computing this expectation for each `

and invoking Lemma A.3 in Ahn and Powell (1993) then shows that

1√
N

N∑
n=1

K∑
`=1

ξn` =
1√
N

N∑
n=1

g0(yn3)
[
τk(yn1, yn2)−φk(yn3)

K∑
`=1

τ`(yn1, yn2)ω`

]
ρ(yn3) + oP (1),

where we have used the assumption that
√
N‖ProjJ [g0φ`]− g0φ`‖∞ =

√
NO(J−η) = o(1),

as well as the fact that ∂f`(ynt)φk(ynt) = (δk` − φk(ynt)ω`)/f(ynt). Also, by essentially the
same argument,

1√
N

N∑
n=1

K∑
`=1

∂ω`
mn(θ0)(ω̂` − ω`) = − 1√

N

N∑
n=1

Mωψ
ω
n + oP (1),

were we have used that ∂ω`
φk(ynt) = −φk(ynt)φ`(ynt) in defining the Jacobian matrix Mω.

Putting together the result gives

√
N
[
m̂(θ0)−m(θ0)

]
=

1√
N

N∑
n=1

ψφn + oP (1).

This completes the proof. 2
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