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Abstract

We confirm that standard time-series models for US output growth, inflation, interest rates and stock
market returns feature non-Gaussian error structure. We build a 4-variable VAR model where the or-
thogonolised shocks have a Student t-distribution with a time-varying variance. We find that in terms of
in-sample fit, the VAR model that features both stochastic volatility and Student-t disturbances outper-
forms restricted alternatives that feature either attributes. The VAR model with Student -t disturbances
results in density forecasts for industrial production and stock returns that are superior to alternatives
that assume Gaussianity. This difference appears to be especially stark over the recent financial crisis.
JEL codes: C32, C53. Key words: Bayesian VAR, Fat Tails, Stochastic volatility.

1 Introduction

In policy circles, increasing attention has been given to fat tail events, particularly since the outbreak of the
recent crisis and during the ensuing uncertainty surrounding the political and economic environment. Many
argue that recent events can hardly be explained by models that are based on a Gaussian shock structure
(Mishkin, 2011). This has been recognised by recent efforts of the DSGE literature including Curdia et al.
(2013) and Chib and Ramamurthy (2014) who found evidence that models with a multivariate t-distributed
shock structure are strongly favoured by the data over standard Gaussian models. This project seeks to
complement these efforts by focusing on VAR models with Student-t distributed shocks (Student, 1908).
We build on previous work on univariate models with Student-t distributed shocks by Geweke (1992, 1993,
1994, 2005); Koop (2003), and the seminar paper of Zellner (1976) on the Bayesian treatment of multivariate
regression models. In addition, we draw on the DSGE literature (Fernandez-Villaverde and Rubio-Ramirez,
2007; Justiniano and Primiceri, 2008; Liu et al., 2011) by incorporating stochastic volatility of the error
structure, because by solely focusing on fat-tails and ignoring lower-frequency changes in the volatility of the
shocks (as in Ascari et al., 2012) tends to bias the results towards finding evidence in favour of fat tails, as
pointed out by Curdia et al. (2013). Our work is therefore closely related to Curdia et al. (2013). However
the focus of our analysis is very different from Curdia et al. (2013). Our main aim is to investigate if allowing
for fat tails and stochastic volatility can help improve the empirical performance of Bayesian VARs, both in
terms of model fit and forecasting performance.

We find that in terms of in-sample fit, the VAR model that features both stochastic volatility and Student-
t disturbances outperforms restricted alternatives that include either feature individually. The VAR model
with Student -t disturbances results in density forecasts for industrial production and stock returns that are
superior to alternatives that assume Gaussianity. The Student-t assumption appears especially important
over the 2008 and 2009 period. Forecast densities for industrial production generated from VARs with
Gaussian disturbances assign a zero probability to the low levels of industrial production actually realised in
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late 2008. In contrast, when Student-t shocks are incorporated, the left tail of the forecast density includes
the actual outcome.

The structure of the paper is as follows. Section 2 provides a description of the VAR model with stochastic
volatility and Student-t distributed shocks (TVARSVOL) model together with the priors and the conditional
posteriors and the computation of the marginal likelihood. This section also describes the restricted models
considered in our study. Section 3 presents the posterior estimates and compares the models based on
in-sample fit and forecasting performance. Section 4 concludes.

2 BVAR model with fat tails and stochastic volatility

The model presented in this section is a multivariate time series model with both time varying variance
covariance matrix and Student-t distributed shocks in each of the equations (denoted by TVAR-SVOL). As
in Primiceri (2005), the stochastic volatility is meant to capture possible heteroscedasticity of the shocks
and potential nonlinearities in the dynamic relationships of the model variables, which are related to the
low-frequency changes in the volatility. Introducing t-distribution in the shock structure is meant to capture
high-frequency changes of in volatility that are often of extreme magnitudes, hence potentially providing an
effective treatment of outliers and extreme events.1 By allowing for stochastic volatility and t-distributed
shocks, we let the data determine whether time variation in the model structure derives from rare but
potentially transient events, or from persistent shifts in the volatility regime.

Consider a simple VAR model:

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut t = 1, . . . , T. (1)

where yt is an n × 1 vector of observed endogenous variables, and c is an n × 1 vector of constants; Bi,
i = 1, . . . , p are n × n matrices of coefficients; ut are heteroscedastic shocks associated with the VAR
equations. In particular, we assume that the covariance matrix of ut is defined as

cov(ut) = Σt = A
−1HtA−1

′
(2)

where A is a lower triangular matrix and Ht = diag
(
σ21,t × 1

λ1,t
, σ22,t × 1

λ2,t
, ..., σ2n,t × 1

λn,t

)
with

lnσk,t = lnσk,t−1 + skt, var(sk) = gk (3)

for k = 1, 2, ..n.
As shown by Geweke (1993) and Koop (2003), assuming a Gamma prior for λk,t of the form p (λk,t) =

T∏
t=1

Γ (1, vλ,k) leads to a scale mixture of normals for the orthogonal residuals ε̃t = Aut where ε̃t = {ε̃1,t, ε̃2,t, ..ε̃n,t}
2 Geweke (1993) proves that this formulation is equivalent to a specification that assumes a Student t-
distribution for ε̃k,t with vλ,k degrees of freedom. Our specification allows the variance of this density to
change over time via equation 3.

There are two noteworthy things about the BVAR model. First, it allows for both low and high frequency
movements in volatility through the stochastic volatility σk,t and the weights λk,t respectively. Second, note
that these features apply to the orthogonal residuals Aut. This assumption allows the degrees of freedom
for the Student t-distribution to be independent across equations and simplifies the estimation algorithm.3

However, the assumption also implies dependence on the structure of the Amatrix. We show in the sensitivity
analysis that the ordering of the key variables does not have an impact on the main results.

1 In an important paper, Jacquier et al. (2004) provides a detailed analysis of this issue in a univariate framework.
2Note that Γ (a, b) denotes a Gamma density with mean a and degrees of freedom b.
3Chahad and Ferroni (2014) present a VAR model that incorporates a multivariate t-density for the error term.
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2.1 Estimation and model selection

In this section, we describe the prior distributions and provide details of the MCMC algorithm used to
estimate the model described above. We also introduce the alternative models considered in this study and
discuss the computation of the marginal likelihood for model comparison.

2.1.1 Priors

To define priors for the VAR dynamic coefficients, we follow the dummy observation approach of Banbura
et al. (2010). We assume Normal priors, p (B) ∼ N(B0, S0), where B = vec([c; bj ]), B0 = (x′dxd)

−1 (x′dyd)
and S0 = (YD −XDb0)′ (YD −XDb0)⊗ (x′dxd)−1. The prior is implemented by the dummy observations yD
and xD that are defined as:

yD =

⎡
⎢⎢⎢⎢⎢⎢⎣

diag(γ1s1...γnsn)
τ

0n×(p−1)×n
..............

diag (s1 . . . sn)
..............
01×n

⎤
⎥⎥⎥⎥⎥⎥⎦
, xD =

⎡
⎢⎢⎣

JP⊗diag(s1...sn)
τ 0np×1

0n×np 0n×1
..............

01×np c

⎤
⎥⎥⎦ (4)

where γ1 to γn denote the prior mean for the parameters on the first lag obtained by estimating individual
AR(1) regressions, τ measures the tightness of the prior on the VAR coefficients, and c is the tightness of the
prior on the constant term. We use relatively loose priors and set τ = 1. The scaling factor si are set using
the standard deviation of the residuals from the individual AR(1) equations. We set c = 1/1000, implying
a relatively flat prior on the constant. In addition, we introduce priors on the sum of lagged coefficients by
defining the following dummy observations:

yS =
diag (γ1μ1 . . . γnμn)

λ
, xS =

[
(11×p)⊗ diag (γ1μ1 . . . γnμn)

λ
0n×1

]
(5)

where μ1 to μn denote the sample means of the endogenous variables using a training sample, and the
tightness of period on this sum of coefficients is set to λ = 10τ .

We follow Geweke (1993); Koop (2003) in setting a hierarchical prior on the parameter controlling the
degree of freedom of the Student-t distributions vλ,n and the weighting vector λk,t,

p (vλ,n) ∼ Γ (v0, 2) (6)

p (λk,t) ∼ Γ (1, vλ,n) (7)

In the benchmark case, the prior mean v0 is assumed to equal 20. This allocates a substantial prior weight
to fat-tailed distributions as well as distributions that are approximately Normal. We show in the sensitivity
analysis below that a higher value for v0 produces similar results for key parameters. The rest of the priors are
relatively standard. We follow Cogley and Sargent (2005) in setting the prior on the variance of the shocks to
the volatility transition equation 3, and propose an inverse-gamma distribution, p (gk) ∼ IG(D0, T0), where
T0 = 1 and D0 = 0.001 are the degrees of freedom and scale parameter, respectively. The prior for the
off-diagonal elements A is P (A) ∼ N (0, 1000)

2.1.2 The Gibbs sampling algorithm

The Gibbs algorithm for the TVAR-SVOL model cycles through the following six conditional posterior
distributions:

1. G(λk,t\Ψ) where Ψ denotes the remaining parameters of the model.
2. G (vλ,k\λk,t)
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3. G (gk,t\Ψ)

4. G
(
σ2k,t\Ψ

)
5. G (A\Ψ)
6. G (B\Ψ)

The details of each conditional posterior density is provided below:

Drawing G(λk,t\Ψ) The conditional posterior distributions related to the t-distributed shock structure of
the model are described in Koop (2003). Note that conditional on B and A, the orthogonalized residuals
can be obtained as ε̃t = Aut. The conditional posterior distribution for λk,t derived in Geweke (1993) applies
to each column of ε̃t. As shown in Koop (2003)this posterior density is a gamma distribution with mean
(vλ,k + 1) /

1
σk,t
ε̃2k,t + vλ,k and degrees of freedom vλ,k + 1. Note that ε̃k,t is the kth column of the matrix ε̃t.

Drawing G (vλ,k\λn) The conditional distribution for the degree of freedom parameter capturing the
fatness of tails is non-standard and given by:

G (vλ,k\λk) ∝
(vλ,k
2

)Tvλ,n
2
Γ
(vλ,n
2

)−N
exp

(
−
(
1

v0
+ 0.5

T∑
t=1

[
ln
(
λ−1t,n

)
+ λt,n

])
vλ,n

)
(8)

As in Geweke (1993) we use the Random Walking Metropolis Hastings Algorithm to draw from this condi-
tional distribution. More specifically, for each of the n equations of the VAR, we draw vnewλ,n = voldλ,n + c

1/2ε

with ε ∼ N(0, 1). The draw is accepted with probability
G(vnewλ,n \λn)
G(voldλ,n\λn)

with c chosen to keep the acceptance

rate around 40%.

Drawing G (gk\Ψ) The conditional posterior of G (gk\Ψ) is inverse Gamma as in Cogley and Sargent
(2005). The posterior scale parameter is D0 +

(
lnσ2k,t − lnσ2k,t−1

)′ (
lnσ2k,t − lnσ2k,t−1

)
with degrees of

freedom T + T0.

Drawing G
(
σ2k,t\Ψ

)
The conditional posterior G

(
σ2k,t\Ψ

)
is sampled using the Metropolis Hastings

algorithm in Jacquier et al. (1994). Given a draw for β the VAR model can be written as A′
(
Ỹt

)
×H̄1/2

t = ut.

where Ỹt = Yt−c−
L∑
l=1

BlYt−l = vt and V AR (ut) = H̃t.Here H̄t = diag(λ1, λ2..) and H̃t = diag
(
σ21,t, σ

2
2,t, ..

)
.

Conditional on other VAR parameters, the distribution σ2k,t is then given by:

f
(
σ2k,t\σ2k,t−1, σ2k,t+1, un,t

)
= f

(
un,t\σ2n,t

)× f (σ2n,t\σ2n,t−1)× f (σ2k,t+1\σ2k,t)

=
1

σk,t
exp

(
−u2n,t
2σ2k,t

)
× 1

σ2k,t
exp

⎛
⎜⎝−

(
lnσ2k,t − μ

)2
2σhk

⎞
⎟⎠ ,

where μ and σhk denote the mean and the variance of the log-normal density
1
σ2k,t

exp

(
−(lnσ2k,t−μ)

2

2σhk

)
.

Jacquier et al. (1994) suggest using 1
σ2k,t

exp

(
−(lnσ2k,t−μ)

2

2σhk

)
as the candidate generating density with the

acceptance probability defined as the ratio of the conditional likelihood 1
σk,t

exp

(
−u2k,t
2σ2k,t

)
at the old and the

new draw. This algorithm is applied at each period in the sample.
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Drawing G (A\Ψ) The conditional posteriorG (A\Ψ) for the off-diagonal elements of matrix A is standard.
Consider the representation of the system as in Cogley and Sargent (2005), adopted for our 4-variable VAR
below:

⎛
⎜⎜⎝

vt
v2t + v1tα21,t

v3t + v2tα32,t + v1tα31,t
v4t + v3tα43,t + v2tα42,t + v1tα41,t

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
σ1,t

1
λ1t

)1/2
ε1t(

σ2,t
1
λ2t

)1/2
ε2t(

σ3,t
1
λ3t

)1/2
ε3t(

σ4,t
1
λ4t

)1/2
ε4t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The second, third and fourth lines gives the following system linear regressions:

v2t =− vtα21,t + (σ2,t
2,t)1/2 e2t
v3t =− v2tα32,t − v1tα31,t + (σ3,t
3,t)1/2 e3t
v4t =− v3tα43,t − v2tα42,t − v1tα41,t + (σ4,t
4,t)1/2 e3t

(10)

where, conditional on λk,t and σk,t, the parameters α′s have a Normal posterior and formulas for Bayesian
linear regressions apply.

Drawing G (B\Ψ) Finally, the the posterior distribution of the VAR coefficients is linear and Gaussian,
G (B\Ψ) ∼ N (BT\T , PT\T ). We use the Kalman filter to estimate BT\T and PT\T where we account for the
fact that the covariance matrix of the VAR residuals changes through time. The final iteration of the filter
delivers BT\T and PT\T .

2.1.3 Marginal Likelihood

For convenience, re-consider the main equations of the estimated model given by:

Yt = c+
P∑
j=1

bjYt−j +Σ
1/2
t et, (11)

Σt = A−1HtA−1
′

(12)

Ht = diag
(
σ21t (1/λ1) ...

)
(13)

Then Chib (1995)’s estimate of the marginal likelihood is based on the following identity:

lnG (Yt) = lnF
(
Yt\B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
+ lnP

(
B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
− lnH

(
B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
(14)

where the subscriptˆdenotes the posterior mean, F (.) denotes the likelihood function, P (.) is the joint prior
density, H(.) is the posterior distribution and Ξ denotes the state variables in the model. Equation 14 is
simply the Bayes equation in logs re-arranged with the marginal likelihood G (Yt) on the LHS. Note that
this equation holds at any value of the parameters, but is usually evaluated at high density points like the
posterior mean. The joint prior density is straight forward to evaluate. The likelihood and posterior are
more involved and described in appendix A.

2.1.4 Data

We use the dataset of Stock and Watson (2012) and focus on three key macroeconomic variables for the
US: industrial production, inflation and the interest rate. In addition, we add the SP500 stock market
index. The data is available at monthly frequency, spanning the period from January 1959 to September
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2011. As a measure of output we use industrial production (Total Index). Inflation is calculated based on
the personal consumption expenditure (chain-type) price index. Interest rate is measured as the 3-month
Treasury Bill (secondary market) rate. Output growth, inflation and stock returns are calculated by taking
the first difference of the logarithm of the series. The primary data source for all the four variables is the
St. Louis Fed.

2.2 Alternative models

We consider three restricted versions of the benchmark BVAR model with stochastic volatility and fat tails.
First, we assume that the orthogonolised shocks are Gaussian and consider a VAR model with stochastic
volatility only. This model (VARSVOL) is defined as

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut (15)

where

Σt = A−1HtA−1
′

(16)

Ht = diag
(
σ21t, σ

2
2t, ..σ

2
nt

)
(17)

where lnσ2k,t follows the process defined in equation 3. In contrast, the second restricted model does not
incorporate stochastic volatility but only assumes that the orthogonolised residuals follow an independent t
distribution (TVAR). This model, therefore, is defined as

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut (18)

Σt = A−1HtA−1
′

(19)

Ht = diag

(
σ21

1

λ1t
, σ22

1

λ2t
, ..σ2n

1

λnt

)
(20)

The final model considered is a standard BVAR. The estimation of these restricted models is carried out
via Gibbs sampling using a simplification of the algorithm presented in section 2.1.2. The marginal likelihood
for each of these alternative models is computed via the Chib (1995) algorithm.

3 Empirical Results

In this section we present results on the relative performance of each of the empirical models, both in terms of
in-sample fit and recursive forecast performance. Before moving to model comparison, however, we present
some of the key parameter estimates of the benchmark model over the full sample and compare them with
some of the restricted models.

3.1 A summary of the posterior

3.1.1 Degrees of freedom

Figure 1 plots the estimated marginal posterior density of the degrees of freedom (DOF) from the TVAR-
SVOL. Consider the estimates for the industrial production index. There is strong evidence that the or-
thogonolised shock associated with this variable is characterised by fat tails with the posterior density
centered around 4 or 5 DOF. Similarly, the estimated posterior for the DOF associated with the orthogono-
lised residuals of the SP500 equation points towards non-normality. In contrast, the estimated posteriors for
inflation and the T-Bill rate equations indicate DOF that are substantially higher. This suggests that the
usual normality assumption is appropriate for the residuals associated with these equations. We show in the
sensitivity analysis below that these results are robust to changing the ordering of the variables in the VAR.

The dotted red lines in figure 1 show the posterior density of the DOF from the TVAR model. It
is interesting to note that when the VAR model does not incorporate stochastic volatility, the estimated
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Figure 1: The posterior density of degrees of freedom from the benchmark model (TVAR-SVOL) and the
TVAR.

posterior densities indicate stronger evidence in favour of fat tails for all four residuals. This confirms the
argument in Curdia et al. (2013) that ignoring low frequency movements in volatility may bias the estimates
of DOF downwards.

3.1.2 Stochastic volatility

Figure 2 plots the estimated stochastic volatility from the benchmark model and compares it with the
estimate obtained from the VARSVOL model. Consider the top left panel of the figure. The estimated
volatility of the IP shock from the benchmark model is estimated to be high until the early 1980s. It then
declines smoothly and by 1985 is substantially lower than its pre-1985 average. There is some evidence of an
increase in this volatility towards the end of the sample period. It is interesting to note that the estimated
volatility of this shock from the model that does not account for the possibility of fat tails behaves very
differently. The dotted black line shows that this estimate is more volatile indicating large fluctuations over
the 1970s and the 1980s. While the decline in volatility in the early 1980s coincides across the two models,
the VARSVOL model indicates a substantial increase in shock volatility that is missing from the benchmark
estimate. Given that the shock to the IP equation displays fat tails (see figure 1), this difference highlights
the fact that ignoring the possibility of non-normal disturbances can lead to very different interpretation of
historical movements in volatility.

3.2 Model comparison

3.2.1 Marginal Likelihood

Table 1 lists the estimated log marginal likelihood for each model using the full sample. The marginal
likelihood is estimated via the Chib (1995) method using 10,000 additional Gibbs iterations to estimate the
components of the posterior density. It is clear from table 1 that the benchmark model displays the best in-
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Figure 2: Stochastic Volatility from the TVARSVOL and the VARSVOL model.

Model Log Marginal Likelihood
TVAR-SVOL -1725.3503
VAR-SVOL -1757.9607
TVAR -2444.6197
BVAR -2852.222

Table 1: Marginal Likelihood

sample fit while the BVAR has the lowest estimated marginal likelihood. Allowing for fat tails or stochastic
volatility improves the fit. However, it is the combination of fat tails and stochastic volatility that delivers
the best fitting specification. This indicates that both these features are crucial for the data we study.

3.2.2 Forecast performance

We compare the forecast performance of the four models considered above via a pseudo out of sample
forecasting exercise. The four models are estimated recursively from January 1970 to September 2010. At
each iteration, we construct the forecast density for the models:

P
(
Ŷt+k\Yt

)
=

∫
P (Ŷt+k\Yt,Ψt+k)P (Ψt+k\Ψt, Yt)P (Ψt\Yt) dΨ (21)

where k=1,2,..12 and Ψ denotes the model parameters. The last term in equation 21 represents the posterior
density of the parameters that is obtained via the MCMC simulation. The preceding two terms denote
the forecast of the (time-varying) parameters and the data that can be obtained by simulation. The point
forecast is obtained as the mean of the the forecast density. The recursive estimation delivers 490 forecast
densities.

Table 2 presents the average root mean squared error (RMSE) for each model relative to that obtained
using the BVAR. The table shows that it is difficult to distinguish between the models in terms of point
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1M 3M 6M 12M
IP

TVAR-SVOL 0.904 0.914 0.927 0.945
TVAR 0.899 0.906 0.921 0.950

VARSVOL 0.903 0.909 0.925 0.946

π

TVAR-SVOL 1.011 1.027 1.048 1.065
TVAR 0.994 1.011 1.031 1.050

VARSVOL 0.993 1.011 1.027 1.041

SP500

TVAR-SVOL 0.951 0.953 0.959 0.974
TVAR 0.950 0.951 0.956 0.970

VARSVOL 0.956 0.955 0.958 0.971

R

TVAR-SVOL 0.935 0.885 0.879 0.912
TVAR 0.930 0.886 0.888 0.928

VARSVOL 0.940 0.896 0.881 0.908

Table 2: RMSE relative to the Bayesian VAR model

forecasts. For variables such as industrial production, the interest rate and the stock price index, each of
the three models produce forecasts that lead to a 5% to 10% reduction in RMSE relative to the BVAR. For
inflation, the point forecast performance of the models under consideration is very similar to that of the
BVAR.

In the section below we focus on density forecast comparison. The density forecasts are evaluated using
probability integral transforms (PIT) and log scores (LS). The former are calculated as

PITt = Φ(Yt+k) (22)

where Φ (Yt+k) denotes the CDF associated with the forecast density evaluated at the realised data. Note
that if the forecast density equals the true density then PITt are distributed uniformly over (0, 1). At the
one step horizon, PITt are also independently distributed, while independence may be violated at longer
horizons due to serial dependence in multi step forecasts.

In addition to the PITs we consider the log scores. These are defined as

LSt = lnP (Yt+k)

where P (Yt+k) denotes the forecast density evaluated at the realised data. A higher value for LSt suggests
a more accurate density forecast. Note that we employ kernel methods to estimate the density and distrib-
ution function of the forecasts. This enables us to account for any potential non-linearities in the forecast
distribution.

PIT comparison
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Figure 3: PIT histograms at the one month forecast horizon.

10



Figure 3 plots the histogram of the estimated PITs and the implied histogram from a uniform distribution
and provides a visual assessment of density calibration. In figure 3 we consider the PITs for the one month
ahead forecast. The results are very similar at other horizons and available on request.

Consider the estimates for industrial production. The PIT histogram produced by the BVAR model ap-
pears hump shaped with mass concentrated over the 0.4 to 0.6 interval indicating departures from uniformity.
In contrast, the PIT histogram from the TVARSVOL model is closer to the uniform distribution. Similarly,
the distribution of the PITs from the TVAR model appears to approximate a uniform distribution. The
histogram from VARSVOL model, on the other hand, shows mass on the left tail and appears to different
from a uniform distribution. The forecast density of inflation from the benchmark model and the VARSVOL
model appear to be better calibrated than the estimates from the TVAR and the BVAR, with the histograms
from the latter displaying mass at the tails. For the SP500, it is difficult to distinguish between the PIT
histograms across models, with the estimates displaying mass at the tails. Finally, for the 3mth tbill yield,
the TVARSVOL and the VARSVOL model appear to perform better, the the PIT distributions from the
BVAR and the TVAR model displaying a hump shape.

Overall, the PIT distributions provide some visual evidence that both fat tails and stochastic volatility
are important for obtaining a well calibrated forecast density for variables such as industrial production.

1M 3M 6M 12M

IP

TVAR-SVOL 25.328 28.941 29.131 11.427
TVAR 27.356 32.937 35.005 30.937

VARSVOL 25.154 -13.997 -23.766 4.700

π

TVAR-SVOL 36.352 59.407 62.374 61.425
TVAR 34.845 52.010 46.987 51.887

VARSVOL 24.869 74.385 36.016 15.308

SP500

TVAR-SVOL 28.294 31.653 8.082 -21.550
TVAR 23.196 23.189 18.207 19.572

VARSVOL 32.420 31.181 17.647 -9.359

R

TVAR-SVOL 155.022 177.246 33.412 6.605
TVAR 85.714 44.122 16.813 7.378

VARSVOL 153.714 175.536 34.522 10.032

Table 3: Percentage improvement in log scores over the Bayesian VAR model

Log score comparison Table 3 considers the log score for each model relative to that obtained via the
BVAR. The table presents the average estimates across the forecasting sample, with a positive number
indicating an improvement over the BVAR model. Consider the results for industrial production. At the 1
month horizon, allowing for fat tails or stochastic volatility leads to a similar improvement over the BVAR
density forecasts. This is is not the case at longer horizons where fat tails are clearly important. At the 6
month horizon, the TVAR offers a 35% improvement over the BVAR log score. In contrast, the VARSVOL
model performs worse than the BVAR. Therefore, it appears that allowing for t-distributed shocks is crucial
for industrial production at policy relevant forecasting horizons. The results for SP500 are similar. At the 6
month and the 1 year horizon, the TVAR model outperforms the other models, highlighting the role of fat
tails.

For inflation and interest rates, both stochastic volatility and fat tails appear to be important. The
TVAR-SVOL model produces the largest improvement over the BVAR for inflation at the 6 and the 12
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month horizon. At the 1 and the 3 month horizon, the benchmark model produces the best performance,
with the VARSVOL model delivering the largest improvement over the BVAR at longer horizons.

12



Figure 4: Log scores (3 month horizon) relative to those from the BVAR model over the recent financial crisis.
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Figure 5: 3 month ahead forecast distribution for industrial production and actual out-turn in September
2008 (red vertical line).

In figure 4 we consider the evolution of log scores over the recent financial crisis. The left axis in each
panel shows the percentage improvement in log scores over the BVAR model. In this figure we consider the
3 month forecasting horizon but the results are similar at other horizons. The right axis shows the actual
data for the variable under consideration which is plotted as an area chart.

The top left panel shows the results for industrial production. The performance of the three models is
similar before the onset of the deep recession at the end of 2008. The large decline in industrial production
coincided with a very large divergence in the performance of models with and without fat tails. The TVAR
and the TVARSVOL model show a huge improvement in the log score. In contrast, the accuracy of the
VARSVOL model deteriorates substantially relative to the BVAR model. The reason for this divergence in
forecast performance is immediately clear from figure 5 which shows the 3 month ahead forecast density of
industrial production for September 2008 from the four models together with the actual out-turn in that
month. The left tails of the densities from the BVAR and the VARSVOL model do not include the actual
industrial production out-turn of -4.23%. In contrast, the densities from the models with fat tails cover
this eventuality. This highlights the fact that the assumption of normality may lead to one to ignore the
possibility of large movements in the data as seen in the recent financial crisis. It is interesting to note
that the performance of the three models was similar during the second dip in industrial production seen in
December 2008 and January 2009. This is because the 2% fall during this episode was accounted for by the
forecast densities from all models.

For the stock price index and inflation, both stochastic volatility and t-disturbances appear to be im-
portant, with the TVARSVOL model showing a large improvement during late 2008 and early 2009. The
performance of these models was more mixed for the interest rate over the initial cutting phase of 2007 and
2008. However, stochastic volatility appears to be important over the post 2009 period that was characterised
by persistently low interest rates.
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1M 3M 6M 12M

IP 23.184 20.395 30.253 30.544
π 38.261 62.279 40.970 60.381

SP500 32.287 31.482 16.459 -4.231
R 154.945 177.268 33.664 7.591

Table 4: Percentage improvement in log scores from the TVARSVOL over the Bayesian VAR model (Sensi-
tivity analysis )

Figure 6: Sensitivity of the DOF posterior to alternative orderings

3.2.3 Sensitivity Analysis

In table 4 we present the log scores (relative to the BVAR) from a version of the benchmark model that uses
an alternative prior. This version of the model the prior for the degrees of freedom parameter is chosen so
that a higher weight is given to the possibility of normality. In particular, we use the prior p (vλ,n) ∼ Γ (v0, 2)
where v0 = 50. A comparison of table 4 with the results presented in table 3 indicates that for industrial
production and stock market returns (the variables for which the orthogonolised errors displayed the most
evidence for non-gaussianity), the average relative log scores are fairly similar to the benchmark case. This
provides some evidence that the key results do not depend on the benchmark prior.

Figure 6 presents the marginal posterior for the DOF for the industrial production and SP500 returns
using alternative orderings for these variables in the TVARSVOL model. For example, while in the bench-
mark case IP is ordered first, ‘order1’, ‘order2’ and ‘order3’ in figure 6 refer to versions of the model where IP
is ordered second, third and fourth respectively. Similarly, SP500 is ordered first, second and fourth in these
alternative models. It is clear from the top panel of the figure that the strong evidence for non-normality
of the orthogonal residuals of the IP equation is not influenced by the recursive structure of the A matrix
in equation 2. The bottom panel of the figure suggests a similar conclusion for SP500. While there is a
rightward skew in the marginal density when SP500 is ordered last, the posterior is centered around a value
of DOF less than 10 in all cases.
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4 Conclusions

This paper introduces a BVAR model that incorporates stochastic volatility and fat tailed disturbances.
We show that this model fits a monthly US dataset better than alternatives that do not include these
features. The estimates of the model suggest strong evidence that disturbances to industrial production
and stock market returns are non-normal. Incorporating this non-normality in the model leads substantial
improvements in the accuracy of forecast densities. In particular BVARs with Gaussian disturbances fail to
attach any probability to low values of industrial production seen in late 2008. These results highlight the
importance of incorporating the possibility of fat tails in forecasting models.
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A Computation of the Marginal Density

A.1 Likelihood

The likelihood function of the model is calculated using a particle filter using 10,000 particles. We re-write
the model in state space form

Xt = HΓt

Γt = μ+ FΓt−1 +Q
1/2
t εt

ln qKt = ln qKt−1 + vt

where εt = {ε1t, ..εNt} with εKt follows a Student-t density with vK degrees of freedom and qKt denotes
the diagonal elements of Q. Xt is observed data, while Φt = (Γt, qKt) are the state-variables. Given the
non-normal disturbances, the Kalman filter cannot be employed.

Consider the distribution of the state variables in the model denoted Φt conditional on information up
to time t (denoted by zt)

f (Φt\zt) = f (Xt,Φt\zt−1)
f (Xt\zt−1) =

f (Xt\Φt, zt−1)× f (Φt\zt−1)
f (Xt\zt−1) (23)

Equation 23 says that this density can be written as the ratio of the joint density of the data and the states
f (Xt,Φt\zt−1) = f (Xt\Φt, zt−1) × f (Φt\zt−1) and the likelihood function f (Xt\zt−1) where the latter is
defined as

f (Xt\zt−1) =
∫
f (Xt\Φt, zt−1)× f (Φt\zt−1) dΦt (24)

Note also that the conditional density f (Φt\zt−1) can be written as

f (Φt\zt−1) =
∫
f (Φt\Φt−1)× f (Φt−1\zt−1) dΦt−1 (25)

These equations suggest the following filtering algorithm to compute the likelihood function:

1. Given a starting value f (Φ0\z0) calculate the predicted value of the state

f (Φ1\z0) =
∫
f (Φ1\Φ0)× f (Φ0\z0) dΦ0

2. Update the value of the state variables based on information contained in the data

f (Φ1\z1) = f (X1\Φ1, z0)× f (Φ1\z0)
f (X1\z0)

where f (X1\z0) =
∫
f (X1\Φ1, z0) × f (Φ1\z0) dΦ1 is the likelihood for observation 1. By repeating

these two steps for observations t = 1...T the likelihood function of the model can be calculated as
ln lik = ln f (X1\z0) + ln f (X2\z1) + ... ln f (XT \zt−1)

In general, this algorithm is inoperable because the integrals in the equations above are difficult to
evaluate. The particle filter makes the algorithm feasible by using a Monte-Carlo method to evaluate these
integrals.In particular, the partical filter approximates the conditional distribution f (Φ1\z0) via M draws
or particles from the Student-t density using the transition equation of the model. For each draw for the
state variables the conditional likelihood Wm = f (X1\z0) is evaluated. Conditional on the draw for the
state variables, the predicted value for the variables X̂M

i1 can be computed using the observation equation
and the prediction error decomposition is used to evaluate the likelihood Wm. Note that as the predictive
density is degenerate in this model, we need to add measurement error. The update step involves a draw
from the density f (Φ1\z1). This is done by sampling with replacement from the sequence of particles with
the re-sampling probability given by Wm

∑M
m=1W

m
. This re-sampling step updates the draws for Φ based on

information contained in the data for that time period. By the law of large numbers the likelihood function

for the observation can be approximated as ln likt = ln
∑M
m=1W

m

M .
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A.2 Evaluation of the posterior density H(.)

Consider the following decomposition

H
(
B̂, Â, ĝ, λ̂, vλ,Ξ

)
= H

(
B̂\Â, ĝ, λ̂, v̂λ,Ξ

)
×H

(
Â\ĝ, λ̂, v̂λ,Ξ

)
×H

(
ĝ\λ̂, v̂λ,Ξ

)
(26)

×H
(
λ̂\v̂λ,Ξ

)
×H (v̂λ,Ξ) (27)

Each term can be evaluated directly or by using a further MCMC run.

1. H
(
B̂\Â, σ̂2, λ̂, vλ,Ξ

)
. This a complete conditional density with a known form. This density is Normal

with mean and variance that can be calculated via the Kalman filter. The evaluation in done via an
additional Gibbs sampler that draws from (a) H

(
Bi\Â, σ̂2, λ̂, vλ,Ξj

)
and (b) H

(
Ξi\Â, σ̂2, λ̂, vλ, Bi

)
.

After a burn in period H
(
B̂\Â, σ̂2, λ̂, vλ,Ξ

)

2. H
(
Â\σ̂2, λ̂, vλ,Ξ

)
=
∫
H
(
Â\σ̂2, λ̂, v̂λ, B,Ξ

)
× H

(
B\σ̂2, λ̂, v̂λ,Ξ

)
dB . This term can be approxi-

mated using an additional Gibbs run that samples from the following conditionals with the current and

previous draws indexed by i and j (a) H
(
Ai\σ̂2, λ̂, v̂λ, Bj ,Ξj

)
and (b) H

(
Bi\σ̂2, λ̂, v̂λ, Aj ,Ξj

)
and (c)

H
(
Ξi\Bj , σ̂2, λ̂, v̂λ, Aj

)
. After a burn in period H

(
Â\σ̂2, λ̂, vλ,Ξ

)
≈ 1

J

∑J
i=1H

(
Â\σ̂2, λ̂, v̂λ, Bi,Ξj

)
where H

(
Â\σ̂2, λ̂, v̂λ, Bi,Ξj

)
is the Normal density described above.

3. H
(
ĝ\λ̂, v̂λ,Ξ

)
=
∫
⎡
⎢⎣∫ H (ĝ\λ̂, v̂λ, B̂, Â,Ξ)×H (Â\λ̂, v̂λ, B̂,Ξ) dA

H(ĝ\λ̂,v̂λ,B̂,Ξ)

⎤
⎥⎦×H (B̂\λ̂, v̂λ,Ξ) dB̂. This term

can be approximated using an additional Gibbs run that samples from the following conditionals (a)

H
(
gi\λ̂, v̂λ, Bj , Aj ,Ξj

)
(b)H

(
Bi\gj , λ̂, v̂λ, Aj ,Ξj

)
(c)H

(
Ai\Bj , gj , λ̂, v̂λ,Ξj

)
and (d)H

(
Ξi\Aj , Bj , gj , λ̂, v̂λ

)
.

After a burn-in period H
(
ĝ\λ̂, v̂λ,Ξ

)
≈ 1

J

∑J
i=1H

(
gi\λ̂, v̂λ, Bj , Aj ,Ξj

)
where this is an inverse

Gamma pdf.

4. H
(
λ̂\v̂λ,Ξ

)
. As in 3 above, this term can be approximated by a Gibbs run that draws from the fol-

lowing densities (a)H (λi\gj , v̂λ, Bj , Aj ,Ξj) (b) H (gi\λj , v̂λ, Bj , Aj ,Ξj) (c) H (Bi\gj , λj , v̂λ, Aj ,Ξj) (d)
H (Ai\Bj , gj , λj , v̂λ,Ξj) and (e)H (Ξi\Ai, Bj , gj , λj , v̂λ)After a burn-in periodH

(
λ̂\v̂λ

)
≈ 1

JH
(
λ̂\σ2j , v̂λ, Bj , Aj ,

where this is a Gamma pdf.

5. The final term H (v̂λ) is an unknown density. Therefore the algorithm Chib and Jeliazkov (2001) of is
required. They show that this density can be approximated as

H (v̂λ) =
E1
(
α
(
vλ, v̂λ\B,A, σ2, λ,Ξ

)
q
(
vλ, v̂λ\B,A, σ2, λ,Ξ

))
E2

(
α
(
v̂λ, v

j
λ\B,A, σ2, λ,Ξ

))
where α

(
voldλ , vnewλ

)
denotes the acceptance probability of Metropolis move from voldλ to vnewλ and

q(voldλ , vnewλ ) is the candidate density. The numerator term can be approximated by averaging the quan-

tity from the main MCMC run: α
(
vjλ, v̂λ\B,A, σ2, λ,Ξ

)
q
(
vjλ, v̂λ\B,A, σ2, λ,Ξ

)
where j indexes the

MCMC draws. The denominator term requires an additional Gibbs sampler as α
(
v̂λ, v

j
λ\B,A, σ2, λ,Ξ

)
is conditioned on the posterior mean v̂λ. This sampler draws from each posterior density conditioned
on v̂λ and then draws from the candidate density vjλ ∼ q

(
v̂λ, vλ\B,A, σ2, λ

)
. The average acceptance

probability from produces an estimate of the denominator.
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