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Abstract

Similar to Ingram and Whiteman (1994), De Jong et al. (1993) and Del Negro and Schorfheide

(2004) this study proposes a methodology of constructing Dynamic Stochastic General Equilibrium

(DSGE) consistent prior distributions for Bayesian Vector Autoregressive (BVAR) models. The

moments of the assumed Normal-Inverse Wishart (no conjugate) prior distribution of the VAR

parameter vector are derived using the results developed by Fernandez-Villaverde et al. (2007),

Christiano et al. (2006) and Ravenna (2007) regarding structural VAR (SVAR) models and the

normal prior density of the DSGE parameter vector. In line with the results from previous studies,

BVAR models with theoretical priors seem to achieve forecasting performance that is comparable

– if not better – to the one obtained using theory free “Minnesota” priors (Doan et al., 1984).

Additionally, the marginal-likelihood of the time-series model with theory founded priors – derived

from the output of the Gibbs sampler – can be used to rank competing DSGE theories that aim

to explain the same observed data (Geweke, 2005). Finally, motivated by the work of Christiano

et al. (2010b,a) and Del Negro and Schorfheide (2004) we use the theoretical results developed

by Chernozhukov and Hong (2003) and Theodoridis (2011) to derive the quasi Bayesian posterior

distribution of the DSGE parameter vector.
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1 Motivation

Bayesian inference relies on the properties of the posterior distribution of the parameter vector, which

is proportional to the product of the likelihood times the prior distribution. The role of the latter is

to integrate into the estimation the econometrician’s “knowledge” about the parameter vector. For

example, let us say that we want to measure the persistence of the real consumption series by estimating

an autoregressive of order one model and the prior knowledge is that real (detrended) macroeconomic

series display high degree of sluggishness. These two features – stationarity and significant positive

autocorrelation – can be incorporated into the estimation by using the beta distribution, which is

defined between zero and one, as the prior density of the lag coefficient with a mean that reflects the

high rigidity.

The importance of the prior distribution increases further as the length of parameter vector expands

and the size of the sample remains relatively small, which is the case when a macro-variable VAR is

estimated. For instance, a seven variable VAR with three lags – like the one considered in this study

– consists of one hundred and seventy five parameters whose estimation poses serious difficulties even

with fifty years of quarterly data, i.e. 1.14 observations per parameter. Under these circumstances,

priors can be used to shrink the number of the estimated parameters by focusing on some of them

and ignoring others.

Minnesota priors (Litterman, 1980, 1986; Doan et al., 1984) act exactly in this way and this prob-

ably explains why it is always econometricians’ first choice when the estimation of a macroeconomic

BVAR model is considered (Kadiyala and Karlsson, 1997; Bandbura et al., 2010). They rely on the

stylised fact that random walk models deliver superior forecasting performance, implying that the

prior mean of all autoregressive coefficients, except those on the main diagonal of the first lag, is equal

to zero. In terms of the previous example this means that only seven parameters – out of one hundred

and seventy five – are non zero before the estimation.

The above assumption, however, seems inconsistent with the economic theory according to which

macroeconomic variables are functions of common structural shocks and, consequently, they exhibit

a high degree of comovement. For example, a real business cycle model with persistent productivity

and labour supply shock processes (see, Hansen, 1985) predicts strong correlation among model’s

endogenous series (i.e. consumption, investment, wages, output etc), meaning that the orthogonality

assumption adopted by the Minnesota literature cannot be easily founded on the basis of economic

theory. This lack of theoretical consistency limits researchers’ intuition and, therefore, complicates

the posterior inference.

The question that naturally arises is whether we are able to construct prior distributions for BVAR

models that do not conflict with economic theory. Similar to Ingram and Whiteman (1994), De Jong

et al. (1993) and Del Negro and Schorfheide (2004), this study illustrates how the relation between VAR

and DSGE models can be explored to deliver theory consistent priors. Why we would like to do this?

DSGE models are devices where stylised facts can be decomposed into agents’ optimisation problems,

implying that data features can be expressed as functions of the structural parameters. For example,

the hump shaped real consumption response after a monetary policy shock observed in VAR studies

(Christiano et al., 1998) could be reproduced by a DSGE model where households form consumption

habits (Smets and Wouters, 2007), and by varying the consumption smoothing parameter in this

model the researcher controls the peak – or the trough – of the shock and, consequently, the time-series

properties of the entire state vector. This mapping between the DSGE parameters and stylised facts

is what guides model developers to decide about the prior mean of the structural parameter vector,
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while its standard deviation aims to capture most of the values used in the literature. Answering

the previous question, it seems that the prior distribution of the structural parameter vector is well

motivated and, given the close association between DSGE and VAR models, this information can be

used to develop prior distributions for the time-series model, which are clearly not subject to the

orthogonality critique discussed in the previous paragraph.

Also we illustrate how the mapping between the DSGE and SVAR models – identified by Fernandez-

Villaverde et al. (2007), Christiano et al. (2006) and Ravenna (2007) – the normal prior density of

the structural parameter vector and the “Mean Value Theorem”(see, White, 2001) are combined to

derive the moments of the Normal-Wishart prior distribution of the time-series model. Non conjugate

priors implies that the posterior distribution of the VAR parameter vector does not have an analytic

form. However, the kernel of the latter distribution can be re-written as the product of two conditional

distributions – Normal-Inverse Wishart – and the posterior distribution of the reduced-form parameter

vector can be approximated using the Monte Carlo Markov Chain (MCMC) Gibbs sampler.

Arguing in favour of DSGE consistent priors does not make much sense if the fit or/and the

forecasting performance of the VAR model deteriorates relative to theory free priors. A set of met-

rics – marginal-likelihood assessment, mean squared forecast error comparison and predictive density

evaluation – is employed here to assess the performance of the proposed priors. Similar to the pre-

vious studies, all results indicate that theory motivated priors deliver time-series properties that are

comparable – if not better – to the one obtained using theory free priors.

The marginal-likelihood of the time series model with theoretical priors – approximated from the

output of the Gibbs sampler using either the methodology developed by Chib (1995) or Geweke’s

modified harmonic mean estimator (Geweke, 1999) – can be viewed as a measure of fit that assesses

the quality of the restrictions imposed by the structural model or/and the prior distribution of the

DSGE parameter vector on the data. This information can be used to rank competing DSGE theories

or/and structural parameter prior moments thus helping the researcher to increase the fit of his DSGE

model. An increasing number of studies – for instance, Iskrev (2010) and Caglar et al. (2012) – suggests

that DSGE models are weakly identified, making the marginal-likelihood of the estimated structural

model a spurious measure of fit that it cannot be used with confidence, as the posterior estimates

tend to be dominated by their prior moments (Kleibergen and Mavroeidis, 2011). In other words, we

believe that the “indirect” likelihood is the only reliable way of assessing competing DSGE models.

Finally, we use the impulse-response matching estimator proposed by Theodoridis (2011) and

the theoretical results developed by Chernozhukov and Hong (2003) to derive the quasi Bayesian

posterior distribution of the DSGE parameter vector. This estimator has many similarities with the

one proposed recently by Christiano et al. (2010b,a), however, ours utilises all moments/conditions

– for all shocks and observable variables – implied by the structural model. The estimator proposed

by Theodoridis under certain conditions mimics the maximum-likelihood one – see the discussion in

Lewis and Reinsel (1985) – and this perhaps explains why Canova and Sala (2009) use the term

“full-information” for such estimators.1

The paper is organised as follows. The notation needed for this study is developed next, the

structural model is reviewed in Section 3, the existing methodologies of constructing theoretical priors

are discussed in Section 4, the proposed methodology is described in Section 5, an application is

considered in Section 6 and the final section concludes.

1The term “full-information” is loosely used here.
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2 Notation

The required notation is developed in this section. R denotes the real line, da indicates the dimension

of the vector a, Rda ≡ R × R × ... × R is the da-cartesian power of the real line, Ida stands for the

(da× da) identity matrix, the vec operators transforms a matrix with dimensions da×da to an da2×1

vector by stacking the columns. The symbol ⊗ denotes the Kronecker product operator, while, ∇af (a)

represents the matrix of the first derivatives of the vector function f (a) with respect to the vector a.

The state space representation of a solved (log) linear approximated DSGE model is given by

yt = A (γ) ξt (1)

ξt = B (γ) ξt−1 + Υ (γ)ωt (2)

where the equation (2) describes the evolution of the state vector
(
ξt ∈ Rdξ

)
of the model, expression

(1) illustrates the relation between the unobserved state of the economy and the observable variables(
yt ∈ Rdy

)
, the vector of the structural shocks

(
ωt ∈ Rdω

)
is normally distributed with mean zero

and Idy covariance matrix (N ∼ (0, Idy)) and the elements of the matrices A (γ), B (γ), and Υ (γ)

are nonlinear functions of the DSGE parameter vector, which is also called the structural parameter

vector, γ ∈ Γ. The VAR(p) model is described by

yt =

p∑
i=1

∆iyt−i + vt (3)

where vt, the vector of the reduced form error, is normally distributed with zero mean and Σv variance-

covariance matrix and its standard regression representation is

Y = ∆X + V (4)

where ∆ =
[

∆1 · · · ∆p

]
is the dy × pdy matrix of the VAR coefficients, T is the sample size, Y

is the dy × T data matrix of the observed variables, X is the pdy × T matrix of the lagged data and

V is the dy × T matrix of the VAR innovations. δ ≡ vec (∆)′ and σv ≡ vec(Σv)
′ are the components

of the VAR parameter vector θ ≡
(
δ′, σ′v

)′ ∈ Θ, which is called the reduced-form parameter vector;

Γ and Θ are compact subsets of Rdγ and Rdθ, respectively. The OLS estimates of Σv, ∆, δ, σv and

θ are defined as Σ̂v, ∆̂, δ̂, σ̂v and θ̂, respectively. Cyy = E (YtY
′
t ), Cxx = E (XtX

′
t), Cyx = E (YtX

′
t),

Ĉyy = T−1Y Y ′, Ĉxx = T−1XX ′, Ĉyx = T−1Y X ′ are the population moments of the data and their

estimates. N (µα,Σα) stands for the normal distribution, where µα and Σα denote the mean and

the covariance matrix of the vector α, respectively. The Wishart and its inverse distributions with η

degrees of freedom and Π scale matrix are defined as W (Π, η) and IW
(
Π−1, η

)
, respectively. p (a)

denotes the prior distribution of a, L (Y |θ) and m (Y ) ≡
∫
L (Y |θ) p (θ) dθ stand for the likelihood and

marginal-likelihood of the VAR. Finally, the companion matrix ∆̄ is defined as

∆̄ ≡



∆1 ∆2 · · · · · · ∆p

Idy 0dy×dy · · ·
... 0dy×dy

0dy×dy Idy · · ·
...

...
...

...
. . .

...
...

0dy×dy 0dy×dy · · · Idy 0dy×dy


(5)
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3 Structural Model

This section briefly discusses some of the key linearised equilibrium conditions of the model devel-

oped by Smets and Wouters (2007).2 Readers who are interested in agents’ decision problems are

recommended to consult the references mentioned above directly. All the variables are expressed as

log deviations from their steady-state values, Et denotes expectation formed at time t, ‘−’ denotes the

steady state values and all the shocks (ωit) are assumed to be normally distributed with zero mean

and unit standard deviation.

The demand side of the economy consists of consumption (ct), investment (it), capital utilisation

(zt) and government spending εgt = ρgε
g
t−1 + σgω

g
t , which is assumed to be exogenous. The market

clearing condition is given by

yt = cyct + iyit + zyzt + εgt (6)

where yt denotes the total output, Table 1 provides a full description of the model’s parameters and

their prior moments.

The consumption Euler equation is given by

ct =
h

1 + h
ct−1 +

1

1 + h
Etct+1 +

(1− σC)
(
W̄ hL̄|C̄

)
σC (1 + h)

(Etlt+1 − lt)

− 1− h
σC (1 + h)

(
rt − Etπt+1 + εbt

)
(7)

where lt is the hours worked, rt is the nominal interest rate, πt is the rate of inflation and εbt =

ρgε
b
t−1 + σgω

b
t is the risk premium shock. If the degree of habits is zero (h = 0), equation (7) reduces

to the standard forward looking consumption Euler equation. The linearised investment equation is

given by

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

1

(1 + β)S′′
qt + εit (8)

where it denotes the investment and qt is the real value of existing capital stock (Tobin’s Q). The

sensitivity of investment to real value of the existing capital stock depends on the parameter S′′ (see,

Christiano et al., 2005). The corresponding arbitrage equation for the value of capital is given by

qt = β (1− δ)Etqt+1 + (1− β (1− δ))Etrkt+1 −
(
rt − Etπt+1 + εbt

)
(9)

where rkt = − (kst − lt) + wt denotes the real rental rate of capital which is negatively related to the

capital-labour ratio and positively to the real wage.

On the supply side of the economy, the aggregate production function is defined as

yt = φp (αkst + (1− α) lt + εat ) (10)

where kst represents capital services which is a linear function of lagged installed capital (kt−1) and the

degree of capital utilisation, kst = kt−1 + zt. Capital utilization, on the other hand, is proportional to

the real rental rate of capital, zt = 1−ψ
ψ rkt . The total factor of productivity follows an AR(1) process,

2The only difference between the model described in this Section and that developed by Smets and Wouters (2007)
is that we have switched off the linear trend.
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Table 1: DSGE Parameter Description & Prior Moments

Symbols Description Prior Mean Prior Standard Probability
Deviation Density

Function

B Fixed Cost 1.250 0.125 Normal
S” Steady State Capital Adjustment Cost Elasticity 4.000 1.500 Normal
α Capital Production Share 0.300 0.050 Normal
σ Intertemporal Substitution 0.850 0.375 Normal
h Habit Persistence 0.700 0.050 Beta
ξw Wages Calvo Parameter 0.500 0.100 Beta
σl Labour Supply Elasticity 2.000 0.750 Normal
ξp Prices Calvo Parameter 0.500 0.100 Beta

iw Wage Indexation 0.500 0.150 Beta
ip Price Indexation 0.500 0.150 Beta
z Capital Utilisation Adjustment Cost 0.500 0.150 Beta
φπ Taylor Inflation Parameter 1.750 0.150 Normal
φr Taylor Inertia Parameter 0.750 0.100 Beta
φy Taylor Output Gap Parameter 0.125 0.05 Normal

ρi Investment Shock Persistence 0.750 0.100 Beta
ρg Government Spending Shock Persistence 0.750 0.100 Beta

ρa Productivity Shock Persistence 0.750 0.100 Beta
ρb Premium Shock Shock Persistence 0.750 0.100 Beta
ρp Prices Markup Shock Persistence 0.750 0.100 Beta

ρw Wages Markup Shock Persistence 0.750 0.100 Beta
θp Prices Markup Shock Moving Average 0.750 0.100 Beta
θw Wages Markup Shock Moving Average 0.750 0.100 Beta
ρr Monetary Policy Shock Shock Persistence 0.750 0.100 Beta
σi Investment Shock Uncertainty 0.500 0.100 Inv. Gamma
σg Government Spending Shock Uncertainty 0.500 0.100 Inv. Gamma
σa Productivity Shock Uncertainty 0.500 0.100 Inv. Gamma
σb Risk Premium Shock Uncertainty 0.500 0.100 Inv. Gamma
σp Prices Markup Shock Uncertainty 0.500 0.100 Inv. Gamma
σw Wages Markup Shock Uncertainty 0.500 0.100 Inv. Gamma
σr Policy Shock Uncertainty 0.500 0.100 Inv. Gamma

εat = ρgε
a
t−1 + σgω

a
t . The accumulation process of installed capital is simply described as

kt = (1− δ) kt−1 + δit + (1 + β) δS′′εit (11)

where the investment shock, εit = ρiε
i
t−1 + σiω

i
t, increases the stock of capital in the economy exoge-

nously. Monopolistic competition within the production sector and Calvo-pricing constraints gives the

following New-Keynesian Phillips curve for inflation

πt =
ip

1 + βip
πt−1 +

β

1 + βip
Etπt+1 +

1

(1 + βip)

(
1− βξp

) (
1− ξp

)(
ξp
((
φp − 1

)
εp + 1

))mct + εpt (12)

where mct = αrkt +(1− a)wt −εat is the marginal cost of production and εpt = ρpε
p
t−1+σpω

p
t−θpσpω

p
t−1

denotes the price mark-up shock. Monopolistic competition and Calvo wage-setting in the labour
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market also gives rise to a similar wage New-Keynesian Phillips curve

wt =
1

1 + β
wt−1 +

β

1 + β
(Etwt+1 + Etπt+1)− 1 + βiw

1 + β
πt +

iw
1 + β

πt−1

+
1

1 + β

(1− βξw) (1− ξw)

(ξw ((φw − 1) εw + 1))
µwt + εwt (13)

where µwt =
(
σllt + 1

1−h (ct − hct−1)
)
− wt is the households’ marginal benefit of supplying an extra

unit of labour service and εwt = ρwε
w
t−1 + σwω

w
t − θwσwωwt−1 is the wage mark-up shock.

Finally, the monetary policy maker is assumed to set the nominal interest rate according to the

following Taylor-type rule

rt = ρrt−1 + (1− ρ) (rππt + ryyt) + εrt (14)

where εrt = ρrε
r
t−1 + σrω

r
t is the monetary policy shock.

Similarly to Smets and Wouters (2007) we assume that real consumption, real investment, real

output, hours, inflation, real wages and nominal interest rates are observed.

4 Existing Methodologies

Ingram and Whiteman (1994)

Ingram and Whiteman were the first to construct theoretical priors for BVAR models based on a

simple Real Business Cycle (King et al., 1988) model, with two state variables (capital and technology

process) and one stochastic disturbance (the innovation of the technology process). The simplicity of

the model allows the state vector to be expressed as a linear function of the observed series – this is

achieved through the use of the Generalized Inverse3 –[(
A (γ)′A (γ)

)−1
A (γ)′

]
yt = ξt (15)

meaning that the DSGE system – equations (1)-(2) – can be rewritten as a VAR(1)

yt = A (γ)B (γ)
[(
A (γ)′A (γ)

)−1
A (γ)′

]
yt−1 +A (γ) Υ (γ)ωt

= ∆1 (γ) yt−1 + C (γ)ωt (16)

with the last expression illustrating the mapping between the VAR and DSGE parameter vector

θ(γ) ≡
(
vec (∆1 (γ))′ , vec

(
C (γ)C (γ)′

)′)′
(17)

The existence of this mapping and the properties of the normal distribution – the distribution of a

non-linear function of normal variables can be approximated by the normal distribution – are, possibly,

the reasons behind Ingram and Whitemans’ selection of the normal probability density function (pdf)

as the prior distribution of the DSGE parameter vector. To be precise, the assumption that γ is

normally distributed with mean and variance-covariance matrix equal to µγ and Σγ , respectively, and

the use of the “Mean Value Theorem”(White, 2001) imply that θ (γ) is also normally distributed with

mean and variance-covariance matrix given by µθ (γ) ≡ θ
(
µγ
)

and Σθ (γ) ≡ ∇γθ
(
µγ
)

Σγ∇γθ
(
µγ
)′

,

respectively.

3See, Magnus and Neudecker (2002)
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Having derived the prior distribution of the time-series parameter vector, the posterior estimation

of the VAR is carried out by adopting single equation “mixed” estimation procedures introduced by

Theil and Goldberger (1961).

De Jong et al. (1993) & Del Negro and Schorfheide (2004)

The work of Del Negro and Schorfheide can be viewed as an attempt to provide the theoretical vali-

dation behind the study of De Jong et al. (1993) and, therefore, we review only the former procedure.

In this case the actual data set is augmented with a number of artificial observations simulated by

the structural model – Y (γ) ≡ {Y (γ)t}
λT
t=1 and X (γ) ≡ {X (γ)t}

λT
t=1 –, which is proportional to the

size of the actual sample – λT where λ ∈ (0,∞). The VAR likelihood of this augmented sample is

factorised into the likelihood of the true data and the likelihood of the artificial one

L (Y (γ) , Y |θ) = L (Y |θ)L (Y (γ) |θ) (18)

with the latter to be interpreted as the prior density of θ. To avoid the stochastic variation rising by

the simulation of the model, the authors replace the non-standarised sample moments of the likelihood

– Y (γ)Y (γ)′, Y (γ)X (γ)′ and X (γ)X (γ)′ – with their expected values, which are written as function

of the structural parameters and the hyperparameter that controls the size of the simulated data –

λTCyy (γ), λTCxx (γ) and λTCyx (γ). Since the likelihood can be decomposed into the product of the

conditional Normal times the Wishart distribution (see, Canova, 2005), expression (18) can be viewed

as the kernel of the posterior distribution of the VAR parameter vector

p (θ|Y ) ∝ L (Y |θ) p (δ|σv, γ) p (σv|γ) (19)

with the prior moments written as function of γ

p (σv|γ) ≡ IW (λTΣv (γ) , λT − (pdy + 1)) (20)

p (δ|σv, γ) ≡ N
(

∆ (γ) ,Σv ⊗ (λTCxx (γ))−1
)

(21)

∆ (γ) ≡ Cxx (γ)−1Cxy (γ) (22)

Σv (γ) ≡ Cyy (γ)− Cyx (γ) ∆ (γ) (23)

Conjugate priors imply an analytic posterior distribution for θ – conditional Normal-Inverse Wishart

– and its moments can be written as weighted average between the DSGE implied moments and the

OLS estimates

p (σv|Y, σ̂v, γ) ≡ IW
(
(λ+ 1)T Σ̄v (γ) , (λ+ 1)T − (dyp+ 1)

)
(24)

p
(
δ|Y, δ̂, σv, γ

)
≡ N

(
∆̄ (γ) ,Σv ⊗ (λTCxx (γ))−1

)
(25)

∆̄ (γ) ≡
(
λTCxx (γ) +X ′X

)−1
(
λTCxx (γ) ∆ (γ) +X ′X∆̂

)
(26)

Σ̄v (γ) ≡ 1

(λ+ 1)T

[(
λTCyy (γ) + Y ′Y

)
−
(
λTCyx (γ) + Y ′X

)
∆̄ (γ)

]
(27)

It is not hard to see that this is not exactly the prior distribution of the reduced-form parameter vector

θ(γ) but the distribution of the OLS VAR estimate θ̂(γ) under the assumption that the DSGE model

is the true data generation process. The consistency property of the OLS estimator ensures that θ̂(γ)
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converges in probability to θ(γ) as the size of the pseudo sample tends to infinite – θ̂(γ)− θ(γ)
Pr→ 0dθ

as λ → ∞ –, however, the variance-covariance matrix Σv ⊗ (λTCxx (γ))−1 does not measure the

dispersion of the prior probability density function of θ(γ) – p (θ (γ)) – but it reflects the variance

of the estimation error – E
(
θ̂(γ)− θ(γ)

)(
θ̂(γ)− θ(γ)

)′
, which converges to zero as λ → ∞. This

implies that information captured by the second moments of p(γ) is not properly explored. The

variance of γ reflects econometrician’s confidence about µγ and researchers may be more certain about

some parameters than others, meaning that some VAR parameters should get more prior weight than

others. Additionally, the functional form of the variance-covariance matrix – Σv ⊗ (λTCxx (γ))−1 –

strongly restricts the covariances among the VAR coefficients. For instance, it implies that ratios of

variances of coefficients on the same variable in different equations are identical (see, De Jong et al.,

1993; Sims and Zha, 1998), a feature clearly not in line with the DSGE model.

5 The Proposed Method

This section describes the proposed methodology, which can be seen as an extension of Ingram and

Whitemans’ work. The mapping between DSGE and SVAR models – identified by the studies of

Fernandez-Villaverde et al. (2007), Christiano et al. (2006) and Ravenna (2007) – and the assumption

that the DSGE parameter vector is normally distributed are used to derive the moments of the

Normal-Inverse Wishart (no conjugate) prior distribution of the SVAR parameter vector.

The starting point of our methodology is the DSGE model described by equations (1) and (2). It

is known from the work of Fernandez-Villaverde et al. (2007), Christiano et al. (2006) and Ravenna

(2007) that when the number of shocks coincides with the number of the observable variables and the

eigenvalues of the matrix

M (γ) ≡
[
Idξ −Υ (γ) [A (γ) Υ (γ)]−1A (γ)

]
B (γ) (28)

are less than one in absolute terms then there is an analytical mapping between the structural and

VAR parameter vector

φ : γ → θ (29)

namely,

δ (γ)i = vec (∆ (γ)i) (30)

∆ (γ)i ≡ A (γ)B(γ)M (γ)i−1 Υ(γ) [A (γ) Υ (γ)]−1 (31)

Σu (γ) = [A (γ) Υ (γ)] [A (γ) Υ (γ)]′ (32)

where i = 1, ...,∞. In this frameword, it is not hard to see that the VAR residuals are linked with the

stuctural disturbances via

vt = A (γ) Υ (γ)ωt (33)

Prior distribution of δ

The assumption that the VAR coefficient parameter vector δ is normally distributed implies that we

need only two moments – mean and variance – to define its prior distribution. In the current setup

these can be obtained by combining (i) the assumption that the structural parameter vector γ is
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normally distributed, (ii) the “Mean Value Theorem” and (iii) equations (30) and (31),

µδ (γ) ≡ φ
(
µγ
)

(34)

Σ̃δ (γ) = ∇γφ
(
µγ
)

Σγ∇γφ
(
µγ
)′

(35)

From the discussion in the previous paragraph we know that the selection of the prior mean of the

structural parameter vector – µγ – must satisfy the condition that the eigenvalues of the matrix M
(
µγ
)

are less than one in absolute terms in order the mapping (29) to exist.

Singularity of Σ̃δ (γ)

Structural parameters have an economic interpretation and they are not arbitrary added like the VAR

ones aiming to capture all the structure observed in the data – for example, we usually increase the

number of VAR lags up to the point where the estimated residuals behave like identically independently

distributed (i.i.d.) processes. This implies that the dimension of the DSGE parameter vector γ

is expected to be (much) smaller than the reduced-form parameter vector δ (γ), meaning that the

variance-covariance matrix of the latter – Σ̃δ (γ) – is positive semi-definite. This singularity – the rank

of Σ̃δ (γ) is equal to the dimension of γ and not equal to the number of elements of δ – is another

restriction imposed by the theory on the data. We take this constraint into account when we construct

the prior distribution of the VAR parameter vector and this is in sharp contrast with De Jong et al.

(1993) and Del Negro and Schorfheide (2004) who implicitly ignore this feature (see the discussion in

Section 4).

To be precise, we relax this constraint by using only the diagonal elements of Σ̃δ (γ) and setting

all the off diagonal elements equal to zero

Σδ (γ) = diag
(

Σ̃δ (γ)
)

(36)

This choice is motivated by the Minnesota priors literature and, in the current framework, it means

that we discard cross-correlation moments restrictions implied by the DSGE model regarding VAR

autoregressive parameters. By taking this route, we avoid working with singular distributions since

the variance-covariance matrix Σδ (γ) is now – by construction – a positive-definite matrix.

We would like also to emphasise that for those special cases where the number of the structural

parameters exceeds the number of the VAR coefficients the above action is not required

Σδ (γ) = Σ̃δ (γ)

and the rest of the analysis remains exactly the same.

Prior distribution of Σv

In this case only two parameters – the degrees of freedom (η) and the scale matrix (Π) – are required

to define the prior distribution of the reduced-form error variance-covariance matrix. We use the first

moment of the Inverse-Wishart distribution (see, Poirier, 1995) to decide about them. To be precise,

the mean of a random variable that follows the Inverse-Wishart distributed with η degrees of freedom

and Π scale is given by

µΣv
=

1

η − dy − 1
Π (37)
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We set µΣv
equal to Σv

(
µγ
)

– expression (31) – and η equal to dy + 2, meaning that

Π (γ) =
[
A
(
µγ
)

Υ
(
µγ
)] [

A
(
µγ
)

Υ
(
µγ
)]′

(38)

In other words, we select the parameters η and Π (γ) in such way that the prior mean of Σv coin-

cides with the reduced-form error variance-covariance matrix implied by the DSGE model when the

structural parameter vector is set equal to its prior mean.4

Normality of γ

The normal pdf does not fully describe the stochastic properties of the DSGE parameter vector, for

instance, Calvo probability, indexation and shock persistence parameters are defined between 0 and

1, while the variances of the structural disturbances cannot be nonnegative. However, under the

assumption that the VAR coefficient vector δ is normally distributed we need only two moments from

the pdf of the structural parameter vector to define the prior distribution of δ, and this is also true for

the prior distribution of Σv. In other words, ignoring information about the higher moments of γ does

not seem to have a substantial effect on the specification of prior distribution of the VAR parameter

vector.

To illustrate this point we use the model discussed in Section 3 to conduct the following simulation

exercise.5 We draw γN from the normal pdf – where the proposed methodology relies on – and γGD

from distribution functions typically used in the DSGE estimation literature – they can be found in

the last column of Table 1. Both γN and γGD have the same first and second moments and they

are given by the third and fourth column of Table 1. We then use equations (28), (31) and (32) to

calculate the impulse response function for both θ (γN ) and θ (γGD)

IRF (θ (γN )) =
(
vec (B1 (γN ))′ , ..., vec (Bp (γN ))′

)′
IRF (θ (γGD)) =

(
vec (B1 (γGD))′ , ..., vec (Bp (γGD))′

)′
where Bj (γN ) = J∆̄ (γN )j−1 J ′A (γN ) Υ (γN ), Bj (γGD) = J∆̄ (γGD)j−1 J ′A (γGD) Υ (γGD) for j =

1, ..., p, J =
[
Idy 0dy×(p−1)dy

]
, finally, the matrices ∆̄ (γN ) and ∆̄ (γGD) are obtained after replacing

in the matrix ∆̄ – Expression (5) – the matrices ∆j with ∆j (γN ) and ∆j (γGD), respectively. These

steps are repeated 10000 times and Figures 1 and 2 plot the prior mean and the 16%-84% confidence

interval of IRF (θ (γN )) – black solid line and shaded area, respectively – against the same moments

of IRF (θ (γGD)) – red dashed and red dashed-cross lines, respectively.

From these charts it seems fair to conclude that the prior distribution of IRF (θ (γN )) almost

coincides with the prior distribution IRF (θ (γGD)) and our simplifying assumption does not ‘harm’

the prior distribution of θ (γN ) and, consequently, the prior distribution of IRF (θ (γN )).6

4Similar to Ingram and Whiteman (1994) and De Jong et al. (1993), however, in contrast to Del Negro and Schorfheide
(2004), our methodology does not offer a device of controlling the tightness of the prior such as the λ hyperparmeter in
Del Negro and Schorfheide (2004). An anonymous referee suggested us a “way” of extending our analysis to allow for
such hyperparameter that we are going to investigate in a future work.

5The exact steps of this Monte Carlo exercise are described in Appendix A.
6Instead of presenting 175 histograms – the total number of VAR parameters, 3× 72 + 0.5× 7× (7 + 1) – that plot

the prior distribution of the individual components θ (γN ) against the elements of θ (γGD) we thought that it would be
more constructive for the reader to present the impulse response function as it best summarises all the VAR parameters.
However, all the graphs are available from the authors upon request.
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Figure 1: Simulated Impulse Responses Prior Distribution I: (ωat ) denotes the responses to a produc-
tivity, (ωbt) to a preference, (ωgt ) to a government spending and (ωit) to an investment specific shock.
The solid black line represents the pointwise mean impulse response function, and the shaded area is
the corresponding 16th and 84th percentiles drawing γN from the prior normal pdf. The red dashed
and red dashed-cross lines represents the same moments of the impulse responses function drawing
γGD from more “standard” probability density functions.
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Figure 2: Simulated Impulse Responses Prior Distribution II : (ωrt ) denotes the responses to a monetary
policy, (ωpt ) to a prices markup and (ωwt ) to a wages markup shock. The solid black line represents
the pointwise mean impulse response function, and the shaded area is the corresponding 16th and
84th percentiles drawing γN from the prior normal pdf. The red dashed and red dashed-cross lines
represents the same moments of the impulse responses function drawing γGD from more “standard”
probability density functions.
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VAR Posterior Estimation

The posterior distribution of the VAR parameter vector θ does not have an analytic form since no

conjugate priors are assumed. However, it is well known that the posterior kernel of the VAR parameter

vector can be reexpressed as the product of two conditional distributions – see, for instance, Canova

(2005) and Koop and Korobilis (2010)

p (θ|Y, γ) ∝ N
(
µ̄δ, Σ̄δ|Σv

)
IW

(
Π̄, T + η|∆

)
(39)

where

Σ̄δ ≡
[
Σ̂−1
δ + Σδ (γ)−1

]−1
(40)

µ̄δ ≡ Σ̄δ

[
Σδ (γ)−1 µδ (γ) + Σ̂−1

δ δ̂
]

(41)

Π̄ ≡ Π (γ) + T Σ̂v +
(

∆− ∆̂
)′
X ′X

(
∆− ∆̂

)
(42)

From expressions (40)-(42) it is apparent that in our case the conditional moments are expressed

as weighted averages between the DSGE implied VAR prior moments and the OLS estimates. Finally,

writing p (θ|Y, γ) as the product of two conditional distributions allows us to employ the MCMC Gibbs

sampler to approximate the posterior distribution of the VAR parameter vector (see, Canova (2005);

Koop (2003)).

DSGE Posterior Estimation

Del Negro and Schorfheide (2004) derive the quasi Bayesian posterior distribution of the DSGE pa-

rameter vector – γ – by combining the marginal likelihood function of the VAR model with the prior

distribution of the structural parameter vector. Motivated by the work of Christiano et al. (2010b,a)

and using the theoretical results developed by Chernozhukov and Hong (2003) and Theodoridis (2011),

we are also able to derive the posterior distribution of the DSGE parameter vector. Theodoridis (2011)

proposes an impulse-response matching estimator that:

A) matches the k-period responses of the whole vector of the observable variables described by the

structural model – caused after a small perturbation to the entire vector of the structural errors

– with those observed in the historical data, which have been recovered through the use of a

structurally identified vector autoregressive model, and

B) minimises the distance between the reduced-form error covariance matrix implied by the structural

model and the one estimated in the data7

γ̂ = arg minm
(
γ|θ̄
)

= arg min
∥∥∥W1/2

[
IRF (θ (γ))− ÎRF

(
θ̄
)]∥∥∥ (43)

where ÎRF
(
θ̄
)

is the mean of the posterior distribution of the VAR impulse-response function –

discussed earlier, W is the inverse of the variance-covariance matrix of the posterior distribution of

7Canova and Sala (2009) call this type of estimators ‘full-information’ as it utilises all the available impulse-response
information.
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VAR impulse-response function and ‖·‖ denotes the Euclidean norm.8

Theodoridis (2011) shows that this estimator is efficient and from the work of Chernozhukov and

Hong (2003) it is known that when a minimum distance estimator is efficient then its quasi Bayesian

version

p
(
γ|θ̄
)
∝ m

(
γ|θ̄
)
p (γ) (44)

can be approximated through the random walk Metropolis-Hastings MCMC resampling scheme. The

implementation steps are described in Appendix B.

SVAR Identification

As it is explained in Theodoridis (2011) the identification of the VAR and the estimation of the

structural model take place, simultaneously. This idea relies heavily on the fast growing methodology

where external instruments are used to identify the VAR structural shocks known as “proxy SVAR”

(see Mertens and Ravn (2013a), Mertens and Ravn (2013b), Stock and Watson (2012) and Carriero

et al. (2013)).

The starting point of this approach is that the fact that although structural shocks (ωt) are

unobserved, there are available instruments (zt) correlated with the structural disturbances that can

be used to identify them. An obvious example of such an instrument is the Romer and Romer (2004)

measure of U.S. monetary policy shocks. These instruments can be used to identify the structural

shocks through a set of moment conditions. These necessary identification moments/restrictions are

given by

E
(
ωit, z

j
t

)
= υ 6= 0

E
(
ωit, z

j
t

)
= 0

if i = j

otherwise
(45)

In Theodoridis (2011) these instruments are the DSGE disturbances9

zt = ωt (46)

where by using expression (33) we derive the identification matrix implied by the DSGE model. For

instance

E
(
vt, z

′
t

)
= E

(
[A (γ) Υ (γ)]ωt, z

′
t

)
= E

(
[A (γ) Υ (γ)]ωt, ω

′
t

)
= [A (γ) Υ (γ)]E

(
ωt, ω

′
t

)
= A (γ) Υ (γ)

were the second equality is obtained using expression (46). However, matrices A (γ) and Υ (γ) are

unknown quantities since γ is not known, meaning that the estimation of the structural model and

the identification of the VAR take place simultaneously. Loosely speaking, the identification matrix

is obtained by regressing the VAR residuals on the structural errors (Mertens and Ravn, 2013a).

8In Theodoridis (2011) the set of instruments employed for the estimation of the structural parameter vector corre-

spond to the impulse response function calculated using the OLS estimate of θ – ÎRF
(
θ̂
)

– and W is the inverse of the

asymptotic variance-covariance matrix of ÎRF
(
θ̂
)

.
9Similarly, Stock and Watson (2012) use the monetary policy shock from Smets and Wouters (2007) model to identify

the policy shock in the VAR.

15



6 Applications

6.1 DSGE Posterior Estimation

In this subsection we estimate the structural model discussed in Section 3. We use the macroeconomic

data set compiled by Smets and Wouters (2007).10 Due to the absence of any kind of model trend

– either deterministic or stochastic – the elimination of the zero frequency component of the non-

stationary real output, real consumption and real investment series is achieved by linearly detrending

them.11 The estimation sample is 1966Q1–1999Q4 and the period 2000Q1–2004Q4 is used for the

evaluation of the out of sample forecasting performance of the BVARs discussed below.

Figure 3 plots the posterior distribution of the structural parameters – red solid line – against their

prior distributions – dashed black line. The first striking observation is that the posterior uncertainty

is substantially smaller than the prior one – the peak of p
(
γ|θ̄
)

is significantly higher than the peak

of p (γ) – and this is true for all parameters. The second interesting feature is that in most cases

the posterior mode has shifted away from the prior mode; Table 2 summarises the same information.

These two observations seem to suggest that the posterior inference is not driven by prior assumptions

and this is a supporting evidence for the proposed methodology.12
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Figure 3: Posterior (red solid line) versus Prior (black dashed line) Structural Parameter Distribution

10This data set is publicly available from the website of the American Economic Association.
11This choice is consistent with the work of Smets and Wouters (2007).
12Canova and Ferroni (2012) employ similar checks to assess the contribution of the prior moments to the posterior

DSGE estimates.
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Table 2: Structural Parameter Posterior Moments
Mean Mean STD 5% 95%

σa 0.500 0.449 0.019 0.419 0.482
σb 0.500 0.242 0.011 0.223 0.260
σg 0.500 0.530 0.025 0.489 0.572
σi 0.500 0.492 0.026 0.451 0.535
σr 0.500 0.243 0.010 0.227 0.261
σp 0.500 0.100 0.008 0.089 0.114
σw 0.500 0.279 0.020 0.247 0.313
ρa 0.500 0.973 0.008 0.957 0.985
ρb 0.500 0.254 0.028 0.210 0.302
ρg 0.500 0.877 0.024 0.829 0.914

ρi 0.500 0.640 0.024 0.598 0.673
ρr 0.500 0.103 0.030 0.045 0.138
ρp 0.500 0.874 0.020 0.841 0.909

ρw 0.500 0.736 0.015 0.715 0.764
θp 0.500 0.282 0.015 0.258 0.310
θw 0.500 0.647 0.035 0.589 0.706
S′ 6.000 5.990 0.007 5.981 6.001
σ 1.500 1.544 0.101 1.419 1.728
h 0.700 0.676 0.024 0.636 0.712
ξw 0.500 0.775 0.043 0.713 0.851
σl 2.000 1.449 0.138 1.219 1.676
ξp 0.500 0.563 0.019 0.539 0.598

ιw 0.500 0.664 0.028 0.627 0.718
ιp 0.500 0.133 0.031 0.088 0.181
z 0.500 0.958 0.028 0.903 0.996
B 1.250 1.606 0.055 1.534 1.722
φπ 1.500 2.015 0.034 1.956 2.063
φr 0.750 0.811 0.012 0.793 0.830
φy 0.125 0.147 0.011 0.130 0.167

φ∆y 0.125 0.224 0.015 0.199 0.250

ρgy 0.500 0.356 0.054 0.259 0.443

α 0.300 0.191 0.011 0.173 0.211

We believe that the most prominent element of our approach is the similarity of our posterior

estimates – second column of Table 2 – with those from the study of Smets and Wouters (2007) – Tables

1A and 1B. Although we use different type of priors – normal pdf – and limited information estimation

techniques we obtain very similar estimates with the latter study. This seems very encouraging for

the following reasons:

• it is another evidence – along with simulated prior distribution of IRF (θ (γN )), Figures 1 and 2

– that our assumption about normality regarding the prior distribution of the DSGE parameter

vector γ does not distort the posterior inference

• our limited information quasi Bayesian estimator mimics the full-information one and this is

important as there are several – both econometric and economic – advantages of using impulse-

response matching estimators – see the discussion in Theodoridis (2011)

• our methodology offers a naturally way to assess how well the structural model replicates the

dynamics observed in the real world by comparing the impulse responses of the DSGE model
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against the VAR. This informal metric has been extensively used in DSGE applied studies– see,

for instance, Rotemberg and Woodford (1998) and Christiano et al. (2005)13

Figures 4 and 5 display this measure of fit for our exercise, where we plot the mean – solid line

– and the 16%-84% confidence interval – shadowed area – of the posterior distribution of the VAR

identified impulse response function against the DSGE posterior mean – dashed line. The following

discussion illustrates how these charts can be used to improve the fit of the model.

Productivity Shock: The model underestimates the persistence of the wealth effect (see, Gali, 1999).

In the data, hours fall persistently below the steady state due to the shock, while the model

predicts that they are back to their equilibrium after 2 years. This leads to DSGE responses

of higher output and higher consumption provided that the effect on investment is correctly

estimated. Moreover, higher supply in the theoretical economy causes larger fall in prices than

it actually happens in the real world. The model policymaker responds to weak inflation by

cutting interest rates more than what we observe in the real economy as he aims to stimulate

the demand and bring inflation back to its target.

Time Preference Shock: In the data this shock increases consumption and lowers investment. This

is hard to be replicated by the model as this shock enters positively in both the Euler consumption

and investment equations. As it is explained by Smets and Wouters (2007) this shock captures

– in a reduced-form manner – the financial accelerator mechanism proposed by Bernanke et al.

(1999). In other words, in the model this shock by construction co-moves consumption and

investment.

Government Spending Shock: In the data this shock crowds out consumption and investment by

more than it is predicted by theoretical economy. The fiscal authorities in the model run a

balanced budget and this is achieved through lump-sum taxes. However, in the real economy

the government uses instruments that distort heavily consumption and investment decisions such

as VAT and capital taxes, respectively.

Investment Efficiency Shock: This shock in the data causes investment to rise but reduces con-

sumption. However, it behaves differently in the model where it raises both consumption and

investment and, consequently, leads to higher output than the VAR output response. Inflation

in the DSGE model does not increase as much as it is predicted by the VAR model and as a

result the theoretical monetary authorities do not need to ‘tight’ policy as much as in the real

world.

Monetary Policy Shock: Interestingly this shock has significantly larger effect on the real side of

the economy on the data than it is actually predicted by the model. However, this is not true for

inflation, where VAR evidence suggests that inflation overshoots the steady-state in the second

period, while according to the model it returns back to the target monotonically. This probably

signals that the structural model misses a working capital channel (see, Christiano et al., 2005),

as it would imply that interest rate changes directly affect firms’ marginal cost and puts an

upward pressure on inflation.

Finally, the wage and price mark-up shocks are well replicated by the model.

13Data dynamics are summarised by the impulse responses and they are influenced by the choice of the identification
matrix.
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Figure 4: Impulse Responses Posterior Distribution I: (ωat ) denotes the responses to a productivity,
(ωbt) to a preference, (ωgt ) to a government spending and (ωit) to an investment specific shock. The
solid black line represents the pointwise mean impulse response function, and the shaded area is the
corresponding 16th and 84th percentiles of the BVAR model. The red dashed denotes the posterior
mean DSGE impulse response function.
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Figure 5: Impulse Responses Posterior Distribution II: (ωrt ) denotes the responses to a monetary
policy, (ωpt ) to a prices markup and (ωwt ) to a wages markup shock. The solid black line represents the
pointwise mean impulse response function, and the shaded area is the corresponding 16th and 84th
percentiles of the BVAR model. The red dashed denotes the posterior mean DSGE impulse response
function.
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6.2 BVAR Analysis

It is time to examine the empirical performance of the priors proposed in this study. We use the

structural model considered in Section 3 to derive eight BVAR models with theory driven priors:

1. M0: Benchmark DSGE Model

2. M1: Flexible wages, iw = 0 and ξw = 0.05

3. M2: Flexible prices, ip = 0 and ξp = 0.05

4. M3: Flexible wages and prices, iw = 0, ξw = 0.05, ip = 0 and ξp = 0.05

5. M4: No consumption habits, h = 0

6. M5: No consumption habits and flexible wages and prices, h = 0, iw = 0, ξw = 0.05, ip = 0 and

ξp = 0.05

7. M6: No capital utilisation, z = 0

8. M7: No capital utilisation and flexible wages and prices, z = 0, iw = 0, ξw = 0.05, ip = 0 and

ξp = 0.05

Finally, we augment this set with Minnesota priors – M.14

In this exercise we want to investigate, i) which BVAR model fits better the past data and ii)

which time-series model delivers more accurate out-of-sample forecasts.

Marginal-Likelihood Evaluation

The first row of Table 3 illustrates the log marginal-likelihood of all estimated BVAR models, the

second line reports their posterior probabilities – Prj ≡ mj(Y )∑
j mj(Y ) , where j =M0,M1,M2,M3,M4,

M5,M6,M7 and M (see, Koop, 2003) and the Bayes factors
mj(Y )
mM(Y ) and mM0(Y )

mj(Y ) are presented in

lines three and four, respectively.15 Two messages can be drawn from Table 3:

Table 3: Log Marginal-Likelihood & Posterior Probabilities
M0 M1 M2 M3 M4 M5 M6 M7 M

logm(Y ) -801.795 -885.019 -850.567 -947.942 -806.082 -891.875 -806.081 -955.7244 -958.589
Pr 0.973 0.000 0.000 0.000 0.013 0.000 0.013 0.000 0.000
mj(Y )

mM (Y )
1.25E+68 8.94E+31 8.20E+46 4.21E+04 1.71E+66 9.41E+28 1.71E+66 1.76E+01 1

mM1
(Y )

mj(Y )
1 1.39E+36 1.52E+21 2.96E+63 72.835 1.32E+39 72.786 7.10E+66 1.25E+68

I. DSGE priors do not harm the fit of the time-series model

All statistics seem to suggest that theory based priors do not deteriorate the empirical per-

formance of the VAR model. Posterior probabilities and Bayes factor quantities – in-sample fit

statistics – do not seem to support the “orthogonality” assumption imposed by Minnesota priors

on macroeconomic data. For example, a truly bayesian econometrician would never use a unique

model to draw his inference but this would be based on the weighted average of all elements

14The details about Minnesota priors can be found in Appendix C.
15The marginal-likelihood in this study has been approximated using Geweke’s modified harmonic mean estimator

(Geweke, 1999). The calculation step can be found in either An and Schorfheide (2007) or Schorfheide (2000)

21



of the model set – nine BVAR models in our case – and the weights used for this aggregation

would be the posterior probabilities. The second line of Table 3 seems to indicate that – in

this example – the contribution of the BVAR model with Minnesota priors to the total outcome

would be almost zero. Additionally, the third line, which reports the Bayes factor that compares

the in-sample fit of the BVAR models with theoretical priors against the one with Minnesota

priors, seems again to suggest that time-series models with DSGE driven priors achieve higher

in-sample empirical performance.

II. Wage and price rigidities do increase the fit of the time-series model

We know from the work of Christiano et al. (2005) and Smets and Wouters (2007) that wage

and price frictions are important DSGE modelling devices that help structural models to match

the properties of the aggregated macroeconomic data. The time-series evidence presented in this

section point again towards this direction, as labour and price rigidities seem to help the VAR

model to achieve higher in-sample fit.

The analysis so far examines the in-sample performance of the time-series models considered in

this study and – sometimes – this is not representative for their out-of-sample forecasting performance.

Univariate Out-of-Sample Forecast Evaluation

Chart 6 plots the mean-square-forecast-error for one, four, eight and twelve-quarters-ahead forecasts

calculated using the posterior mean of the VAR parameter vector. Just to remind the reader that all

models are estimated over the period between 1966Q1 and 1999Q4 and the period between 2000Q1

and 2004Q4 is used to calculate the out of sample measures of fit. The univariate measure considered

in this section suggests that no model delivers superior forecasts. This is important because the

use of Minnesota priors is usually motivated on the basis that these theory free priors deliver better

out-of-sample forecasting fit.

Focusing on the labour market variables – hours and real wages – we see two very interesting

features:

• Minnesota priors deliver the less accurate forecasts for these series

• Flexible price-wage priors provide significantly better forecasts for hours and wages16

Multivariate Out-of-Sample Forecast Evaluation

The same results hold even when multivariate measures of forecasting performance are used. Under the

assumption that one, four, eight and twelve quarters ahead forecasts – ET (yT+h|T ), where h = 1, 4, 8

and 12 and T =M0,M1,M2,M3,M4,M5,M6,M7 andM– are normally distributed we are able

to use the predictive density function

pdf (yT+h|T ) ≡ (2π)−dy/2
∣∣ΣET (yT+h|T )

∣∣−1/2

exp

(
−1

2

(
yT+h − µET (yT+h|T )

)′
Σ−1
ET (yT+h|T )

(
yT+h − µET (yT+h|T )

))
(47)

16This is an interesting evidence that deserves further research that goes beyond the scope of this study.

22



Q1 Q4 Q8 Q12

1

2

3

4

Consumption

Q1 Q4 Q8 Q12

20

40

60

Investment

Q1 Q4 Q8 Q12

0.5

1

1.5

2

2.5

Output

Q1 Q4 Q8 Q12

1

2

3

4

Hours

Q1 Q4 Q8 Q12

0.1

0.2

0.3

0.4

Inflation

Q1 Q4 Q8 Q12

5

10

15

Wages

Q1 Q4 Q8 Q12

0.2
0.4
0.6
0.8

1
1.2

Interest−Rate

 

 
M0
M1
M2
M3
M4
M5
M6
M7
M

Figure 6: Mean Square Forecast Error

to construct forecast probability weights

Pr (yT+h|T ) ≡ pdf (yT+h|T )∑
T pdf (yT+h|T )

(48)

which illustrate how likely the out-run is, conditional on model T . If we put ourselves into truly

Bayesian econometrician’s shoes, then we need some weights to construct the average forecast of all

these seven BVAR models. These weights can be the posterior probabilities calculated using the

marginal-likelihood – Table 3 – or the one implied by (48). In the second case, we use model’s

forecasting performance in the current period to construct our next period forecasts.17

The first four subplots of Chart 7 illustrate these probabilities for one, four, eight and twelve-

quarters-ahead forecasts, respectively, and for the period 2000Q1-2004Q4. Again, all models for all

periods – with few exceptions – appear to get the same support from the data and there are no

apparent reasons why Minnesota priors should be preferred.

The final measure considered in this study aims to assess the forecasting performance of each

model for the entire period – 2000Q1-2004Q4

Pr (Yh|T ) ≡
∑

T pdf (yT+h|T )∑
T
∑

T pdf (yT+h|T )
(49)

The fifth subplot of Chart 7 illustrates this metric, where it can be seen that the BVAR model with

theoretical priors, which assign zero rigidities to wages and prices, seems to perform significantly better

than any other model over this period for forecast horizons greater than four quarters.

Summarising the outcome of this exercise we can conclude that theory motivated priors do not

damage the empirical – both in-sample and out-of-sample – performance of the time series model. In

fact, some evidence suggests that BVAR models with DSGE priors attain better in and out-of-sample

fit.

17The steps required to calculate these weights are described in Appendix C.
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Figure 7: Forecast Time-Varying Probability Weights

7 Conclusion

This paper proposes a methodology of constructing DSGE theory consistent prior distributions for

BVAR models eliminating theoretical difficulties rising from the use of theory free Minnesota prior dis-

tribution. Similar to previous studies, the empirical exercises presented here illustrate that theoretical

consistency does not “harm” the forecasting-fit cost of the VAR. Additionally, the marginal-likelihood

of the time-series model with theoretical prior can be used to assess the fit of competing DSGE theories

that aim to explain the same observed data.

The second contribution of this study is the quasi Bayesian impulse response matching estimator

that is used for the posterior estimation of the structural parameter vector. The proposed DSGE

estimator shares some similarities with the one introduced by Christiano et al. (2010b,a), however,

the one discussed in this study is a “full-information” one – using Canova and Sala (2009) terminology

– as it matches all the responses for all observable variables and for all structural shocks. Our estimator

is inline with the finding of the work of Canova and Sala (2009) and the analysis of Iskrev (2010) that

strongly recommend to “use as many implications of the model as possible to avoid the presence of

estimation identification failures”.
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A Simulation

STEPS:

1. We draw γN from the normal distribution and its first and second moments are given by the

third and fourth column of Table 1, respectively.

27



2. We draw γG from more “DSGE standard” probability density distributions, which are reported

in the last column of Table 1. The first two moments γG are the same with those of γN .

3. We use γN and equations (28), (31) - (32) to construct ∆ (γN )i, A (γN ) Υ (γN )

4. We do the same with γG, ∆ (γG)i and A (γG) Υ (γN )

B Random-Walk Implementation

This implementation steps follow closely An and Schorfheide (2007)

STEPS:

1. Use a numerical optimization routine to maximize lnm
(
γ|θ̄
)

+ ln p (γ). Denote the posterior

mode by γ̄.

2. Let Σ̃ be the inverse of the Hessian computed at the posterior mode γ̄.

3. Draw γ(0) from N
(
θ̄, c2

0Σ̃
)

or directly specify a starting value.

4. For s = 1, ..., nsim, draw γ from the proposal distribution N
(
γ(s−1), c2Σ̃

)
. The jump from γ(s−1)

is accepted
(
γ(s) = γ

)
with with probability min

{
1,

m(γ|θ̄)p(γ)

m(γ(s−1)|θ̄)p(γ(s−1))

}
The constant is c is calibrated to deliver an acceptance rate about 25%.

C Forecast Probability Weights

For each T = 2000Q1, ..., 2004Q4 and for each T =M0, ...,M5

1. Draw ∆ and Σv from the posterior distrubution of p (θ|Y, T )

2. Draw vT+h from N (0,Σv), were h = 1, ..., 12

3. Use ∆, vT+h and yT to simulate ỹjT+h from the VAR model

4. Repeat Steps 1-3 J times

5. Use
{
ỹjT+h

}J
j=1

to calculate µET (yT+h|T ) and ΣET (yT+h|T )

6. Finally, use the actual data realisation – yT+h, µET (yT+h|T ), ΣET (yT+h|T ) and expression (48) to

calculate pdf (yT+h|T )

These steps deliver a time series of pdf (yT+h|T ).

D Minnesota Priors

The posterior inference is obtained as follows. It is assumed that the prior distribution of the VAR

parameter vector has a Normal-Wishart conjugate form

δ|Σv ∼ N(δ0,Σv ⊗ Ω0), Σv ∼ IW (v0, S0). (50)
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where δ is obtained by stacking the columns of ∆. The prior moments of δ are given by

E[(∆k) i, j] =

{
δi i = j, k = 1

0 otherwise
, V ar[(∆k) i, j] = λσ2

i /σ
2
j ,

and as it is explained by Bandbura et al. (2010) they can be constructed using the following dummy

observations

YD =



diag(δ1σ1...δNσN )
λ

0N×(K−1)N

..............

diag (σ1...σN )

..............

01×N


and XD =


JK⊗diag(σ1...σN )

λ

0N×NK

..............

01×NK

 (51)

where JK = diag (1, 2, ...,K) and diag denotes the diagonal matrix. The prior moments of (50) are

just functions of YD andXD, ∆0 = YDX
′
D (XDX

′
D)−1, Ω0 = (XDX

′
D)−1, S0 = (YD −∆0XD) (YD −∆0XD)′

and v0 = TD − NK. Finally, the hyper-parameter λ controls the tightness of the prior. Since the

normal-inverted Wishart prior is conjugate, the conditional posterior distribution of this model is also

normal-inverted Wishart (Kadiyala and Karlsson, 1997)

δ|Σv, Y ∼ N(δ̄,Σv ⊗ Ω̄), Σv|Y ∼ IW (v̄, S̄), (52)

where the bar denotes that the parameters are those of the posterior distribution. Defining ∆̂ and V̂ as

the OLS estimates, we have that ∆̄ = (Ω−1
0 Ψ0 +Y X ′)(Ω−1

0 +X ′X)−1, Ω̄ = (Ω−1
0 +X ′X)−1, v̄ = v0 +T ,

and S̄ = ∆̂XX ′∆̂′ + ∆0Ω−1
0 ∆′0 + S0 + V̂ V̂ ′ − ∆̄Ω̄−1∆̄′.

The values of the persistence – δi – and the error standard deviation – σi – parameters of the

AR(1) model are obtained from its OLS estimation. Finally, λ has been set equal to 8.15 and this

values maximises the marginal-likelihood over the grid λ ∈ (0, 100).
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