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Abstract

A growing empirical literature has considered the impact of uncertainty
using SVAR models that include proxies for uncertainty shocks as endogenous
variables. In this paper we consider the possible impact of measurement error
in the uncertainty shock proxies on the estimated impulse responses from these
SVAR models. We show via a Monte Carlo experiment that measurement error
can result in attenuation bias in the SVAR impulse responses. In contrast, the
proxy SVAR that uses the uncertainty shock proxy as an instrument to identify
the underlying shock does not suffer from this bias. Applying this proxy SVAR
method to the Bloom (2009) data set results in estimated impulse responses
to uncertainty shocks that are larger in magnitude and persistence than those
obtained from a standard recursive SVAR.
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1 Introduction

The recent financial crisis and ensuing recession has spurred a growing literature
on the impact of uncertainty shocks on the economy. While a number of theoreti-
cal papers focus on modelling the channels of transmission of these shocks (see for
example Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez and Uribe (2011)
and Fernandez-Villaverde, Guerron-Quintana, Kuester and Rubio-Ramirez (2011)), a
large strand of this literature is empirical and focusses on estimating the percentage
change in real activity following a shock to a measure of uncertainty via empirical
models such as structural VARs (SVARs).

A seminal paper that applies a SVAR model to this issue is Bloom (2009). The
author builds a dummy variable indicator of volatility shocks for the US. The indicator
takes a value of one when a measure of options implied stock market volatility (VIX)
significantly exceeds its mean. This indicator is then added as an endogenous variable
in a SVAR model containing standard macroeconomic variables. The author finds that
a shock to the volatility indicator leads to a 1% decline in industrial production. Baker
et al. (2012) build an index of US economic policy uncertainty by using a combination
of textual analysis, data on tax code expiration and dispersion of economic forecasts.
In an SVAR model, a 102 point increase in this uncertainty index reduces industrial
production by 2.5% while aggregate employment declines by 2.3 million. Leduc and
Liu (2012) use survey based measures of uncertainty in an SVAR model and find that
an increase in uncertainty depresses economic activity.

This strand of the literature on uncertainty has two common elements. First,
these studies necessarily use proxies as measures of uncertainty as the true value is
not directly observed. Second these proxies are entered directly into the VAR systems
as endogenous variables.

In this paper we explore the consequences of these features for estimates of the
impact of uncertainty. First, we use a simulation experiment to show that when the
proxy for uncertainty differs from the true underlying measure, estimates of the im-
pulse response from VARs that include the uncertainty measure are biased downwards.
In contrast, structural VARs that use this measure as an ‘external instrument’ (this
proxy SVAR approach was proposed in Stock and Watson (2008) and Mertens and
Ravn (2012)) to identify the uncertainty shock are less susceptible to this bias. Sec-



ond we re-visit the empirical work in Bloom (2009) using this proxy SVAR approach
and find important differences in the estimates of the impact of uncertainty shocks
and their importance over the business cycle. Using the proxy SVAR, the estimated

impact of these shocks is larger and more persistent.

2 The SVAR approach to estimating the impact of

uncertainty shocks

The existing empirical papers on the impact of uncertainty mentioned above consider
the following SVAR models

P
Y;g = C—’_ZB]'Y%—P_’_AOQ (1)

j=1
where Y; is a matrix of endogenous variables that include a measure of uncertainty &,
and a set of macroeconomic variables of interest. The structural shocks ¢; are related
to the VAR residuals u; via the relation Age; = u; where Ag is a matrix such that
VAR (uy) = Q = ApAj. In applications to uncertainty Ay is typically chosen to be
the Cholesky decomposition of €2 with 6; usually ordered before the macroeconomic
variables. For example the benchmark VAR in Bloom (2009) includes a stock price
index, the dummy variable measure of uncertainty shocks, the federal funds rate,
wages, CPI, hours, employment and industrial production.

Given that &, is a proxy for true underlying value for uncertainty, it is reasonable
to assume a degree of measurement error. For example, the relationship between
the constructed measure of uncertainty and its underlying value may be defined as
0 = o0 + o,v; where v; is standard normal. It is easy to see that the presence
of measurement error would bias the estimate of the structural shock of interest. In
addition, it is well known that OLS estimates of the VAR coefficients would suffer from
attenuation bias due to the correlation between the RHS variables and the residuals
introduced by the measurement error.

In contrast, the proxy SVAR approach is less susceptible to the measurement error

problem. The underlying VAR model is given by the following equation:

P
}N/t = C‘f‘ZBjY/tfp‘f'Aog‘t (2)

Jj=1



The matrix of endogenous variables Y; does not contain the constructed measure of
uncertainty shocks directly but, instead, this is used as an instrument to estimate the
structural shock of interest. Denoting the structural shock related to uncertainty by
g7 and the remaining shocks by &}, this approach requires the proxy for uncertainty

a; to satisfy the following conditions
E(64,8) = a#0 (3)
E (&t, gt.) - O

The first expression in equation 3 states the instrument &; is correlated with the
structural shock to be estimated, while the second expression rules out a correla-
tion between &, and the remaining structural shocks and establishes exogeneity of
the instrument. As shown in Stock and Watson (2008), Mertens and Ravn (2012)
and Mertens and Ravn (2011), these conditions along with the requirement that the
structural shocks &; are contemporaneously uncorrelated can be used to derive a GMM
estimator for the column of A, that corresponds to £7.Mertens and Ravn (2011) also
provide a measure of reliability of the instrument. The reliability statistic is a measure
of the correlation between the instrument and the shock of interest and can be used
to gauge the quality of the instrument.

Equation 3 imposes less stringent conditions on the quality of 6;. In particular, the
only requirements are that 7, is correlated with the shock of interest and uncorrelated

with other shocks. These conditions can be satisfied even if 7, is measured with error.

2.1 A simple Monte Carlo experiment

To gauge the possible impact of measurement error on VAR estimates of responses to
uncertainty shocks we conduct a simple simulation experiment. In particular we gen-
erate data from a simple non-linear DSGE model where the variance of a structural
shock of interest is characterised by stochastic volatility. We use the generated data
to estimate the standard recursive VAR and the proxy SVAR. Using these VAR esti-

mates, we check if the DSGE responses can be recovered using the empirical models.

2.1.1 The data generating process

The data is generated from a standard model of the monetary transmission mecha-

nism. The model is derived in detail in appendix 1. Here we present an overview of
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the key characteristics.

The household side of the model consists of a continuum of households that con-
sume, save in bonds, work and pay taxes. On the firms side, there is continuum of
intermediate good producers that sell differentiated goods to final output producers.
Intermediate good producers face a quadratic cost of adjusting prices (see Rotemberg
(1982))—there is full indexation to either steady state value added inflation or to a
lagged measure of inflation.

The government purchases units of final output and finances its expenditure using
lump-sum taxes.

Finally, the monetary policy authority follows a rule for the nominal interest rate
(R;) that responds to deviations of CPI inflation (7;) from its target (II), and to

deviations of output (y;) from its steady-state value. This gives the following rule:

&: R, PR (E)(l‘bf)‘z’n Y (1—¢R)¢Y€R (4)
R R m Y ¢

R is the steady state nominal interest rate that ensures that CPI inflation is at target

in the long run. We assume that ¥ is a heteroscedastic interest rate shock, given by
logef = porlogefy + of'nf (5)

The evolution of policy uncertainty is given by
logof' = (1= p,r) 0or + porlog ol + oonnf (6)

The model, therefore, incorporates uncertainty in the monetary policy rule and
this is the focus of the estimation on the generated data described below.

The model is solved using third-order perturbation methods (see Judd (1998))
since for any order below three, stochastic volatility shocks that we are interested in
do not enter into the decision rule as independent components. The calibration of the
parameters is standard and is described in Table 2.

We use artificial data for ot y;, 7, R; and the structural shock to volatility M; =
o0l + vy, with v, ~ N(0,02). Note that v; is assumed to be a measurement
error, and when this equals zero, the structural shock is measured perfectly. In the
experiment below we assume that o2 varies between 0 and 5. Note that the calibrated
value o,r equals 1 and therefore these values for the variance of the measurement

error cover a large range.



The data is generated for 2200 periods with the first 2000 observations discarded to
remove the impact of starting values. The final 200 observations are used to estimate
the following VAR models:

First we estimate the standard recursive SVAR:

P
VO = et 3B+ AP o
j=1
where Yt(l) = { My, ys, T, Ry} and Aél) is obtained via a Cholesky decomposition with
the ordering of the variables as in Y;(l). This mimics the kind of SVAR models
considered for example in Bloom (2009) where a measure of the uncertainty shock
enters the VAR system directly.
The second empirical model is the proxy SVAR that takes the following form
P
Y =d+ 3 Dy + AP (8)

J
j=1
where Y;(Q) = {of y;, 7, Ri}. The first shock in 5752) is the volatility shock and is

identified by using the following moment restrictions:

E (Mt,gg?g) = a0 9)

E(Mt,ggi)> — 0,i=2,3,4 (10)

In figure 1 we consider the scenario where measurement error equals zero and
M, = O'O.RT]?R. The dotted lines in the figure present the response of the macroeconomic
variables to a one unit increase in policy uncertainty in the DSGE model. The blue
line and the shaded area present the median and the 90% error band (based on 1000
replications) of the same response estimated using the proxy and recursive SVARs.
When the uncertainty shock is observed without error, the two SVAR models deliver
a similar performance. The median response of Y and R from the SVAR models
tracks the true response closely. While the contemporaneous SVAR response of 7 is
close to the DSGE response, there appears to be a slight downward bias at medium
horizons. This probably reflects the fact that the linear VAR models abstract from
the non-linear dynamics present in the reduced form of the DSGE model obtained via

third order perturbation.
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Figure 1: A comparison of SVAR and DSGE impulse responses to policy uncertainty

shocks in the absence of measurement error.

Figure 2 presents the results of the simulation when measurement error is present.
Each panel of the figure reports the median bias in the SVAR impulse responses
(Z-axis) as the variance of the measurement error increases in importance relative to
o,r. The impact of the measurement error on the estimated responses from the proxy
SVAR is muted. As discussed above, this is because the mis-measured uncertainty
shock does not enter the VAR system directly but is used as an instrument. In
contrast to these results, there is a clear attenuation bias evident in the responses
estimated using the recursive SVAR model. Even for relatively small values of 0, /0,
the estimated impulse response is less negative than the DSGE response, with this

difference much more pronounced than the proxy SVAR and the recursive VAR that
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Figure 2: Bias in SVAR impulse responses to policy uncertainty shocks under mea-
surement error.

allows for measurement error. Note that this bias is present both at horizon 0 and
beyond indicating that the estimates of the contemporaneous impact matrix and the

VAR coefficients are affected by the measurement error problem.

3 Empirical results: The Bloom (2009) VAR model
re-visited
In this section, we re-estimate the VAR model in Bloom (2009) and consider the pos-

sible role of measurement error. Bloom (2009) estimate a variety of VAR models that

contain the following variables (in this order): (1) log S&P500 stock market index ,



(2) an indicator of shocks to stock-market volatility, (3) Federal Funds Rate, (4) log
average hourly earnings , (5) log consumer price index , (6) hours, (7) log employ-
ment , and (8) log industrial production. The benchmark volatility shock indicator
is constructed by the author to correspond to periods when stock market volatility
is above a given threshold. As shown in figure 1 of Bloom (2009), the constructed
shocks correspond closely to periods of economic and/or political turbulence. The dif-
ferent VAR specifications in Bloom (2009) correspond to different measures of stock
market volatility shocks constructed by the author. The author shows, however, that
the key results remain unchanged across the different measures. In particular, all the
VARs that include the different measures result in very similar responses for industrial

production.

In the left panel of figure 3 we produce the results in Bloom (2009) using the
benchmark volatility shock measure employed in Bloom (2009)!. The panel shows
the response to 1 unit volatility shock.?. As in Bloom (2009), both industrial produc-
tion and employment decline. Both variables increase subsequently, with the rise in
industrial production statistically significant. Note that the response of the stock price
index shows a similar pattern—there is an initial decline and a subsequent bounceback.
The shock also results in a fall in hours, the federal funds rate, wages and CPI, with
the decline in these variables lasting for less than a year.

The right panel of figure 3 shows the impulse responses to a one unit volatility
shock from a version of the VAR that uses the benchmark Bloom volatility shock

measure as an instrument. In particular, we estimate the following VAR(12) model:

12
Zt =d+ Z Dth_j + A0€t (11)

j=1
where Z; contains the VIX stock market volatility index and the 7 macroeconomic and

financial variables included in the Bloom (2009) VAR model above. For convenience,

"'We use the data and data transformations employed by Bloom (2009). The data can be down-
loaded at http://www.stanford.edu/ “nbloom/replication.zip. The data is monthly and available

from 1962M7 to 2008M6. Following Bloom (2009) we employ a lag length of 12.
2Note that we scale the underlying volatility shock measure to have the same units as the VIX.

Therefore the 1 unit volatility shock is comparable across the two VAR models presented in this

section.
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Figure 3: Impulse response to a volatility shock using a recursive VAR and the Proxy
SVAR. The shaded area represents the 90% confidence interval estimated using a wild
bootstrap with 10,000 replications. The shock is scaled to the units of the VIX index.

the VIX is ordered first in the VAR model. The shock to volatility is identified using

the following moment conditions
E(Myer) = a#0 (12)
E (Mt, gi,t) = O,Z = 2, 3, .8 (].3)
where M, is the benchmark volatility shock measure employed by Bloom (2009) in

their VAR model.> Thus unlike the VAR model in Bloom (2009), M, does not enter

directly into the VAR, but is used as an instrument to estimate the first column of the

3We show in the sensitivity analysis that similar results are obtained using the alternative defin-
itions of the volatility shock employed by Bloom (2009).
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Ao matrix and the volatility shock e;,. The reliability statistic is estimated to be 0.6,
suggesting a high correlation between M; and the shock of interest. The estimated
impulse responses suggest a larger response to the volatility shock. For instance, while
the stock market index declines by 0.1% in Bloom’s SVAR, the estimated response
is around 1% in the proxy SVAR. Note also that this response in the proxy SVAR is
persistent and lasts for about one year. Similarly, the responses of employment, CPI,
Federal Funds rate and industrial production from the proxy SVAR are estimated to
be larger and more persistent. Note that the bounceback in industrial production
occurs at around the 20 month horizon, rather than after about 6 months in the
Cholesky case.

These results match those obtained in the Monte-Carlo simulation described above.
In particular, the responses to the volatility shock appear to be smaller in size when
the shock measure is included directly into the VAR system. In contrast, when the
shock measure is used as an instrument to identify the volatility shock in the proxy
SVAR, the estimated impulse responses are larger in size and persistence. This is
consistent with the attenuation bias revealed by the Monte-Carlo experiment.

Figure 4 plots the contribution of the estimated volatility shock to the main vari-
ables using the two VAR models. The black lines in the figure represent the de-trended
data for each variable. The blue and the red lines are the counterfactual estimates of
these series assuming the presence of only the volatility shock, where the two VAR
models are used, respectively, to identify the volatility shock. The volatility shock
estimated using the proxy SVAR appears to be more important. For instance, the
contribution of this shock in the benchmark VAR model to fluctuations in the stock
market index is relatively small. In contrast, the results from the proxy SVAR imply
that this shock accounts for a large proportion of the movement in this variable. This
feature is especially apparent during the large troughs in the stock market index in
the early and mid-1970s, the early 1980s and during the recession in the early 2000’s.
Similarly, the proxy VAR suggests that the volatility shock makes a more important
contribution to employment and industrial production, especially during the recession
in the early years of the last decade. This estimated contribution is smaller when the
benchmark VAR model is used.
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Figure 4: Historical Decomposition: The contribution of the volatility shock using
the Cholesky VAR and the Proxy SVAR.

3.1 Sensitivity Analysis

We test the robustness of the empirical results along two dimensions. First, we re-
estimate the proxy SVAR using the additional volatility shock measures considered
by Bloom (2009). Second, we consider alternatives to the VIX index included in the
proxy SVAR.

Figure 5 shows the impact of a 1 unit volatility shock from the benchmark VAR
model and using the additional volatility shock measures constructed by Bloom (2009)
as instruments. The figure shows that the impulse response of the key variables are
similar in magnitude and persistence across the different instruments.

Figure 6 shows the impulse response to a volatility shock using two alternatives
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Figure 5: The impact of a volatility shock from the proxy SVAR using different shock
measures. ‘First month timing’ refers to the indicator where shocks are dated by first
month rather than the highest month. ‘Oil and Terror’ refers to shocks associated
with war, terrorism and oil. The final measure is the benchmark shock scaled by
the size of movement in stock market volatility. These different shock measures are
described in appendix A1 of Bloom (2009).

to the VIX measure of volatility.* First, we employ a non-parametric estimate of
stock market volatility where the monthly standard deviation is estimated as the
sample standard deviation of the the daily observations within that month. Second,
we use a stochastic volatility model to estimate the volatility. This model is defined
as AS, = hi'?e, where e,”N(0,1), by = a + 9y + g*/%vy, v, N(0,1) and S, denotes
the monthly S&P500 stock price index.” Figure 6 shows that the impulse responses

using the alternative measures are similar to the benchmark case.

4The benchmark shock measure is used as an instrument for each model.
>The model is estimated using the MCMC algorithm described in Jacquier et al. (2004).
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Figure 6: Impulse responses to the volatility shock from the proxy SVAR using differ-
ent measures of stock market volatility. Model M2 uses a monthly volatility measure
based on standard deviation of daily stock returns. Model M3 uses a measure esti-

mated via a stochastic volatility model.

4 Conclusions

This paper re-considers the SVAR approach to estimating the impact of volatility
shocks and investigates the role played by measurement error. First by estimating
VAR models on data simulated from a DSGE model with stochastic volatility, we
show that estimates of impulse responses to volatility shocks from a recursive SVAR
suffer from a downward bias in the presence of measurement error. In contrast, the
proxy SVAR produces impulse responses close to the underlying DSGE responses.
This is because the proxy SVAR uses the volatility shock as an instrument rather
than an endogenous variable, thus ameliorating the effect of measurement error.

An application of the proxy SVAR to the Bloom (2009) data-set results in re-

sponses to the volatility shock that are larger in magnitude to those obtained using
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the recursive SVAR employed in Bloom (2009). Similarly, a historical decomposition
exercise using the volatility shock estimated from the proxy SVAR suggests a larger
role for this shock than implied by the recursive SVAR. These results suggest that it
may be important to account for measurement error when considering the impact of

volatility using VAR models that include a proxy for volatility shocks.

Appendix 1: the nonlinear DSGE model

This appendix describes the model used in the Monte Carlo simulation exercise dis-

cussed in section 2.1.

4.1 Households

There is a continuum of households defined on the zero one interval j € [0, 1]. House-

holds consume, save in bonds, work and pay taxes. The functional utility function:

i . . _h S 1-oc l 1407,
Et Z/Blgtc { (C.],t 1 f],t 1) - w 7,5t } (14>

— oc 1+op
where ¢;, denotes consumption, /;; denotes the household’s labour supply, o¢ is the
inverse of elasticity of intertemporal substitution, o, is the elasticity of labour supply
with respect to the real wage, h is the habit formation parameter and E;[-] is the
expectations operator. The period utility function is affected by a consumption shock

(5? ) that increases the utility of current consumption relative to future consumption:
loget = (1 — p.c)loge® + p.clogel | + oent (15)
Utility is maximised with respect to the budget constraint:
Powjlis + Ry 1 P_1Bjyq + Ptfj,t = Picjs + BB + Bty

where w;, denotes real wages, Bj; is the value of real government debt, £, ; stands for
real profits, 7, is lump-sum taxes, P, is the consumer price index and R, is the gross

value of the nominal interest rate. In real terms the budget constraint becomes:

R,
wiilis + —ﬂ B+ &y = Cie+ Bie+ T (16)
t
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where II, = Pf *— is consumer price inflation. If we focus on a symetric equilibrium

then the maximisation of (14) subject to (16) with respect to ¢;;, B;+ and l;; deliver

the marginal utility function, the consumption Euler equation and the labour supply,

respectively:
C h C
i E Phecs 5o =M\ (17)
(Ct — th_1> (Ct+1 — th)
where is the Lagrange multiplier associated with the budget constraint
R
A= BE; {AM t } (18)
T+1
wh = e Iy (19)
4.2 Firms

Intermediate Good Producers There is a continuum of intermediate good pro-
ducers defined on the interval 0 to 1 and subindexed by n. The production function

of firm n is given by
Ynt = Atlmt (20)

where A; is a temporary total factor productivity shock common to all intermediate

good producers:

log A; = (1 —pa)log A+ pylog TFP,_1 + oani (21)

Final Good Producers Intermediate firms sell a differentiated goods to final out-
put producers with firm j facing demand
P’n t o
=—= 22
me=(24) 22)
from the producers of final goods, where P, ; is the price set by firm n, y, and P, are
the aggregate quantity and price of final good and ¢, is the elasticity of substitution.

The aggregate quantity of final good is given by the CES aggregator

€

1 ep—1 sp%l
Y = { / <yn§” )dn} (23)
0

and the final good price index is given by

P = [ / (P dn} - (24)
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Intermediate good producers face a quadratic cost of adjusting prices, where ¢, is
the parameter that determines the degree of price stickiness in this sector and where
there is full indexation to either steady state value added inflation (IT*), or to a lagged

measure of inflation. Each firm n solves the following problem

LB} i P,
max B, [Z ﬁl% (Pn,tyn,t - Pn,twtljt -9, (P—tl’ Pn,tyn,t>)] (25)
i=0 t n,t—

Pn,taln,t

subject to the production function (20) and demand equation (22). The first order
with respect to labour delivers the labour demand equation and again focusing only

on a symmetric equilibrium
Wy

4

where mc; is the shadow cost of one additional unit of output for the firm, which

(26)

mcy =

equals the real marginal cost. While the inflation Philips curve equation is derived

from the maximisation of the profit function with respect to P,

At+1 T+1Yit1
]-:gp_lmct_¢p{(cf_1><f_/BEt ;\_—:%( f+1_1) Ci)ﬂ (27>
where
¢ =t (28)
mi=tem,”

4.3 The government sector

The government purchases g units of final output and finances its expenditure using

lump-sum taxes. The government’s budget constraint is

Ry

gy + B,y =1+ DB (29)

Tt

4.4 Monetary policy

The monetary policy maker follows a rule for the nominal interest rate that responds
to deviations of CPI inflation from its target (II), and to deviations of output from

its steady-state value. This gives the following rule:
¢r (=¢Rr)én (1-¢Rr)dy
() e (30)
R R m Y ¢
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R is the steady state nominal interest rate that ensures that CPI inflation is at target

in the long run, and 7 is a conditional heteroscedastic interest rate shock, given by
loge;" = p.rloger, +ofn) (31)
The evolution of policy uncertainty is given by

logof = (1 — p,r) oor + pyrlog ol + orn]” (32)

4.5 Aggregation and market-clearing conditions

After some algebra the market clearing condition is

o)
Ui = ¢+ gy + 71’ (IT, — I1)* y, (33)

For simplicity and without loss of generality we set g equal to zero implying that
O 2
ye=c+ 5 (I =17y, (34)

Table 1 collects all the equation required for the solution of the model

Table 1: DSGE Nonlinear Model Equations

Equations ‘ Mnemonics
Marginal Utility of Cosumption o= hitc o — E; G mf;?c“l)ac =\

t t—1 t+1 t
Consumption Euler Equation At = BEy S M1 W}zl
Labour Supply wihy = e&PlT"
Production Function yr = Aely
Labour Demand me; = %
Price Phillips Curve 1= ej%lmct - ¢, {(C? —1)¢¥ - BE, [Ai—tliﬂ”;jt“ (-1 Cf_H] }
Policy Rule % _ (RE1)¢R (%)% <%)(1*¢R)¢Y Eﬁ
Market Clearing Condition Y = ¢ + % (I, — H)2 Yt
Consumption Preference Shock | loge{’ = (1 — p.c)loge® + p.c logel | + o.onf
Temporary TFP Shock log Ay = (1 — py)log A+ pylog TEP; 1 + o ant
Policy Shock logel = p.rlogell | + ofnk
Policy Uncertainty logoft = (1 —p,r)oor + pyrlogol | + Ugnn‘t’R
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4.6 Steady-States

The steady-states of this model are readily derived. From (27) we obtain the solution

for marginal cost
ep—1

(35)

me =
€p

The steady-state of hours has been calibrated to 1/3 and this delivers the steady-state

value of output using the intermediate goods production function (20)
y = Al (36)
From the Euler equation (18) we get the value of the nominal interest rate

The steady state value of consumption is given by using the market clearing condition
(34)

c=y
The marginal utility expression (17) is used to derive the steady-state value of La-

grange multiplier

e’ (1 — jh)
A= ——— s
(Erk 9
We use the labour demand equation (26) to obtain wages
w = Amc (39)
Finally, we solve for ) that ensures that [ = 1/3 at the steady-state
wA

4.7 Solution and Calibration

The model is solved using third-order perturbation methods (see Judd (1998)) since
for any order below three stochastic volatility shocks that we are interested in do not
enter into the decision rule as independent components. One difficulty of using these
higher-order solution techniques is that paths simulated by the approximated policy
function often explode. As it is explained by Kim et al. (2008) regular perturbation
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approximations are polynomials that have multiple steady state and could yield un-
bounded solutions. In other words, this approximation is valid only locally and along
the simulation path we may enter into a region where its validity is not preserved
anymore.

To avoid this problem Kim et al. (2008) suggest to ‘prune’ all those terms that have
an order that is higher than the approximation order, while Andreasen et al. (2013)
show how this logic can be applied to any order. Although there are studies that
question the legitimacy of this approach (see den Haan and de Wind (2010)), it has
by now been widely accepted as the only reliable way to get the solution of n — where
n > 1 — order approximated DSGE model. Finally, due to model’s nonlinearity we
employ the procedure introduced to Koop et al. (1996) (known as generalised impulse
responses) to study the agents’ dynamic responses to structural disturbances.

The calibration of the model is fairly standard, similar to Justiniano et al. (2010)
we set o = 1 (log utility), while following Christiano et al. (2005) and Adolfson
et al. (2007) we set o, = 1. The values of ¢, = 21, ¢, = 236.1, 3 = 0.9945,
7 = 1.0045 (R = § = 4%) are taken from the study of Fernandez-Villaverde, Guerron-
Quintana, Kuester and Rubio-Ramirez (2011), the habit formation parameter value
(h = 0.75) is the one estimated by Christiano et al. (2005) and it is also used by
Fernandez-Villaverde, Guerron-Quintana, Kuester and Rubio-Ramirez (2011). The
policy reaction function parameters (¢ = 0.83, ¢, = 2.03 and ¢, = 0.3) and the
coefficients of the stochastic process (p.c = 0.18, 1000.c = 0.23, p, = 0.95, 10004 =
0.45, p.r = 0.15, 1000,z = 0.24) are those estimated by Smets and Wouters (2007).
Finally, the parameters of the policy uncertainty process have been set p,» = 0.9 and

1000,z = 1. Table 2 provides a summary of the calibration.
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Table 2: DSGE Parameters

Mnemonics ‘ Values ‘

Source

B
oc

oL

1000 .c
1000 4
1000 r
1000 ,r

0.9945
1
1
21
236.1
0.75
1.0045
0.81
2.03
0.3
0.75
0.18
0.95
0.15
0.9
0.23
0.45
0.24

Fernandez-Villaverde, Guerron-Quintana, Kuester and Rubio-Ramirez (2011)
Justiniano et al. (2010)
Christiano et al. (2005)

Fernandez-Villaverde, Guerron-Quintana, Kuester and Rubio-Ramirez (2011)
Fernandez-Villaverde, Guerron-Quintana, Kuester and Rubio-Ramirez (2011)
Benati (2008)

Fernandez-Villaverde, Guerron-Quintana, Kuester and Rubio-Ramirez (2011)
Smets and Wouters (2007)

Smets and Wouters (2007)

Smets and Wouters (2007)

Christiano et al. (2005)

Christiano et al. (2005)

Christiano et al. (2005)

Christiano et al. (2005)

Mumtaz and Theodoridis (2012)

Christiano et al. (2005)

Christiano et al. (2005)

Christiano et al. (2005)

Mumtaz and Theodoridis (2012)
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