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Abstract

Games with imperfect information often feature multiple equilibria, which depend

on beliefs off the equilibrium path. Standard selection criteria such as passive beliefs,

symmetric beliefs or wary beliefs rest on ad hoc restrictions on beliefs. We propose a new

selection criterion that imposes no restrictions on beliefs: we select the action profile that

is supported in equilibrium by the largest set of beliefs. We conduct experiments to test

the predictive power of the existing and our novel selection criteria in two applications:

a game of vertical multi-lateral contracting, and a game of electoral competition. We

find that our selection criterion outperforms the other selection criteria.

Keywords: Equilibrium selection, passive beliefs, symmetric beliefs, vertical contract-

ing, multiple equilibria, imperfect information.

JEL Codes: C72, D86, H41, D72.

∗We thank Antonio Cabrales, Christoph Engel, Ignacio Esponda, Kristoffel Grechenig, PJ Healy, Asen
Ivanov, Matthew Jackson, Isabel Marcin, Marco Ottaviani, Nicolas Roux, Andrew Schotter, Chris Tyson,
Piercarlo Zanchettin, seminar attendants at NYU-CESS, Carlos III, Venice and DICE, and participants
at ASSET 2013 and the IV Workshop on Institutions, Individual Behavior and Economic Outcomes at
Porto Conte for their helpful suggestions. We would also like to thank Dominic Land, Nicolas Meier and
Maximilian Pohl for excellent assistance at running the experiments. We acknowledge financial support from
NYU-NYC, NYU-AD and Università di Padova.

†Department of Economics, Univ. of Bristol. and Department of Politics, New York Univ. Email
(corresponding author): jon.eguia@bristol.ac.uk.

‡School of Economics and Finance, Queen Mary, Univ. of London. Email: a.llorente-saguer@qmul.ac.uk.
§Department of Politics, NYU-NYC and NYU-Abu Dhabi. Email: rebecca.morton@nyu.edu.
¶School of Social Sciences, Univ. of Manchester. Email: antonio.nicolo@manchester.co.uk.

1



1 Introduction

We propose a solution to the problem of multiplicity of equilibria in a class of two-stage

games in which players who move at the second stage (receivers) are imperfectly informed

about the actions played by those who move at the first stage (proposers). These games

typically feature multiple Perfect Bayesian and sequential equilibria. Equilibria depend on

how, after observing a deviation, receivers update their beliefs about proposers’ actions.

Refinements that are useful for signaling games such as the intuitive criterion (Cho and

Kreps (7)), D1 or universal divinity (Banks and Sobel (2)) have no bite in this context,

because the lack of information is about the proposers’ actions, not about their type (the

game is one of imperfect information, not incomplete information; players’ types are known).

Our main application of interest in this class of games is multi-lateral vertical contract-

ing. One or more upstream firms make private offers to each of two or more downstream

firms. Each contract signed by a downstream firm affects all downstream firms (contracts

generate externalities), but at the time a downstream firm decides whether or not to accept

the offer it receives, it does not know what offers other firms have received (downstream

firms operate under imperfect information).

The industrial organization literature on multi-lateral vertical contracting has dealt with

this multiplicity of equilibria by imposing particular beliefs that are deemed more appealing

off the equilibrium path, selecting equilibria that can be supported by these beliefs, and

discarding all other equilibria. McAfee and Schwartz (22) propose three possible beliefs to

consider: passive beliefs, symmetric beliefs, and wary beliefs.

Passive beliefs, sometimes called “passive conjectures” (Rey and Tirole (27)), are such

that a downstream firm that receives an out of equilibrium offer does not update her beliefs

on the offers received by all other players; rather, she believes that all the other unobserved

actions remain as in equilibrium. The selection criterion based on selecting equilibria that

can be supported by such passive beliefs is the one most frequently used in the literature, not

only in games of multilateral vertical contracting (Hart and Tirole (16); O’Brien and Shaffer

(23); Segal (30); Fontenay and Gans (10); Rey and Tirole (27); Inderst and Ottaviani (18))

but also in games of electoral competition in which two candidates make offers to voters
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in multiple districts (Gavazza and Lizzeri (12)). The assumption of “passive beliefs” is

also common in the consumer search literature: for instance consumers do not revise their

beliefs about a firm’s quality when it charges an unexpected price (see for instance recent

applications by Bar-Isaac, Caruana and Cuñat (4) or Buehler and Schuett (5)). However,

“in many circumstances the ad hoc restriction to passive beliefs may not be compelling”

(Segal and Whinston (31)). Indeed, while defending the assumption of passive beliefs in the

particular game in which they use it, Rey and Tirole (27) concede that assuming passive

beliefs “is much less appealing in the case of Bertrand competition, and indeed in many

games of contracting with externalities.”

An alternative criterion to solve the multiplicity problem is to select equilibria that can

be supported by symmetric beliefs. These beliefs are such that a downstream player that

receives an out of equilibrium offer believes that all other downstream players must have

received the same out of equilibrium offer as well. If an upstream player in equilibrium was

anticipated to offer x to all downstream players, a downstream player who receives an offer

of y believes that the offers to all other downstream players is also y. This selection criterion

is used, among others, by Pagnozzi and Piccolo (24). However, most of the literature seems

to agree with McAfee and Schwartz’s (22) initial assessment: “[Symmetric] beliefs are not

very compelling.”

A third suggestion is to consider equilibria supported by wary beliefs. These beliefs are

such that a downstream player who observes a deviation believes that the upstream player

must have deviated to a strategy that is optimal given the action that the downstream

player observes. This criterion has had scant following in the literature (Rey and Vergé

(28), Avenel (1)).

The problem common to all these criteria is the lack of a convincing argument for why

only one particular set of beliefs should be admissible off the equilibrium path. The very

existence of several alternative choices of specific beliefs that have received consideration in

the literature underscores that none of these beliefs are an obvious choice for all possible

games of imperfect information. Eliminating all equilibria that rest on different beliefs is

not warranted. We argue that passive beliefs, wary beliefs, or symmetric beliefs, may be
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plausible in a given particular application, but not in others. A sharp restriction on the

set of admissible beliefs to the exclusion of all others is not often appropriate. Martin,

Normann and Snyder (21) provide evidence of the weakness of this approach. Using a

laboratory experiment that mimics a vertical industry structure with an upstream firm and

two competing downstream firms, they find that no specific restriction on beliefs (passive

or symmetric beliefs) is consistent with the data.

A more cautious or modest approach is to accept that we cannot pin down the exact

beliefs off the equilibrium path, beyond the restrictions given by standard refinements such

as those implicit in a Perfect Bayesian or a sequential equilibrium (Kreps and Wilson (19)).

Any assumption of specific equilibrium beliefs, even a plausible one, is ad hoc and it is

difficult to justify it as superior to all others. In application of Bernoulli (3) and Laplace’s

(20) “Principle of Insufficient Reason,” absent any motivation to consider some equilibrium

beliefs as more likely to emerge than others, we should treat all equilibrium beliefs as a

priori equally probable to emerge.1

We solve the multiplicity problem by suggesting that the equilibrium action profile most

likely to emerge is the action profile that can be supported in equilibrium by a larger set of

different equilibrium beliefs. If we assume that each set of equilibrium beliefs is equally likely

to emerge, the strategy profile most likely to emerge in equilibrium and the action profile

most likely to be played along the equilibrium path are the ones that can be sustained by

a largest variety of different equilibrium beliefs. This selection criterion provides a “stress

test” measure of the robustness of an equilibrium path of play to changes in the beliefs for

which it is sustained. the criterion explores how likely is it that the particular path of play

is still played in equilibrium if beliefs change, and then selects the equilibrium path of play

most likely to still be played in a new equilibrium after the change of beliefs.

If a profile of actions a is played in equilibrium only under some very specific beliefs

(very few equilibria result in playing a), while on the other hand action profile a� can be

supported regardless of agents’ off-path beliefs, or for a wide array of possible beliefs (so

1As defined by Wolfram Mathworld, the Principle of Insufficient Reason “states that if we are ignorant of
the ways an event can occur (and therefore have no reason to believe that one way will occur preferentially
compared to another), the event will occur equally likely in any way.”
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that lots of different equilibria result in playing a�), then we predict that in equilibrium,

players will play according to a�, not a. For instance, in Section 3, we consider a vertical

contracting game in which a producer can offer a product to each of two retailers at either

a high or low price, and each retailer chooses how many units to buy. The producer can

price-discriminate, and neither retailer knows the price offered to the other retailer. There

are two equilibria in pure strategies in this game, one in which each retailer is offered a high

price and buys one unit, and one in which each is offered a low price and buy two units.

Both equilibria hold if a retailer who observes a deviation believes that the other retailer

is offered a high price with a probability lower than a given threshold. This threshold

depends on parameters of the games and differs across the two equilibria. For given specific

parameters,2 the equilibrium with high prices holds for any beliefs such that a retailer who

observes a deviation (an unexpected offer of a low price) believes that the other retailer is

offered a high price with probability in [0, 0.92], while the equilibrium with low prices holds

for any beliefs such that a retailer who observes a deviation believes that the other retailer

is offered a high price with probability in [0, 0.16]. Since the first case encompasses a larger

set of beliefs, we predict that the strategy profile played in equilibrium is the one in which

the producer offers high prices and retailers buy one unit.

More generally, to identify and select the equilibrium actions that are most robust in

the sense that they can be sustained in equilibrium by the largest set of beliefs, we proceed

in three steps:

1. We define a measure over sets of out of equilibrium beliefs. In line with the Principle

of Insufficient Reason, we use the standard Lebesgue measure.

2. For each strategy profile, we identify the set of beliefs that support this strategy profile

in equilibrium. For each action profile, we calculate the measure of the set of beliefs

that support at least one equilibrium strategy profile in which this action profile is

played.

3. We select the action profile with the largest set of beliefs that support it as an equi-

2These parameters correspond to Treatment H in Section 3 (see Table 1).
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librium action profile.

In games with finitely many equilibria, including any finite game, our criterion yields a

non-empty prediction, a desirable property of any solution concept that selection by passive,

symmetric or wary beliefs fail to meet.

Notice that equilibrium selection by the largest set of beliefs results in the selection of

an equilibrium action profile and the strategy profiles in which it is played. The criterion,

however, does not select the specific beliefs that accompany these strategy profiles in equi-

librium. We remain agnostic and make no predictions about the specific equilibrium beliefs;

selection by the largest set of beliefs predicts only the strategies and the actions played in

equilibrium.3

Above and beyond the appealing theoretical properties of selection by the largest set of

beliefs, we are interested in the predictive power of this criterion. Using laboratory experi-

ments, we test our selection by the largest set of beliefs against selection by other criteria in

two applications of interest: vertical multilateral contracting, and electoral competition over

multiple districts. Our experiments consists in two very simple sequential games. Relative

to the seminal work by Martin, Norman and Snyder (21), the simplicity of our games has

the advantage that most groups of subjects play some equilibrium; whereas, not a single

group of subjects play according to equilibrium in the complex games in the Martin, Nor-

man and Snyder (21) experiments.4 We can therefore conduct a more meaningful analysis

of equilibrium selection within the large collection of groups of subjects who play according

to some equilibrium.

Overall we find that selection according to the largest set of beliefs has better predictive

power than any of the other selection criteria. In the application to vertical contracting,

in the aggregate over all treatments, 74% of groups of agents play some equilibrium, and

among these, 94% play the equilibrium selected by the largest set of supporting beliefs, while
3We do not provide a theory of belief formation, nor do we assume that players regard all equilibrium

beliefs as equally likely. Our interpretation is that players play one equilibrium, which they hold as certain
and all others as entirely unlikely. But the analyst forecasting how a game will be played does not know
how beliefs are formed, so a priori we treat all equilibrium beliefs as equally probable in order to make a
prediction for the game.

4Their experiment is aimed at testing different theories of vertical foreclosure and the analysis of out of
equilibrium beliefs and the relative performance of different selection criteria are not the goals of their paper.
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only 54% play the equilibrium selected by passive or wary beliefs and only 46% play the

equilibrium supported by symmetric beliefs. In the electoral competition application results

are weaker: only 49% of groups play an equilibrium. Within these, selection according to the

largest set of supporting beliefs (76% correct predictions) dominates selection by symmetric

beliefs (4% correct predictions), but it does not predict significantly better or worse than

selection by passive beliefs (78%) or by wary beliefs (67%). In each of the two applications

we run two different treatments. We find strong and significant comparative statics across

treatments in each of the two applications. These differences across treatments correspond

perfectly with the comparative static predictions of our selection criterion, and clash with

the predictions of each of the other equilibrium selection criteria.

For completeness, we have also considered a number of other refinements that, to our

knowledge, have not been previously used in our applications of interest (vertical contracting

and electoral competition), but are prominent in other game theoretic research. Harsanyi

and Selten (14) propose payoff dominance and risk-dominance. Payoff dominance selects a

Pareto superior equilibrium (one that yields higher payoffs to every player) over a Pareto

inferior one. This criterion may seem plausible when it is applicable, which is only seldom.5

Risk dominance, extended by Harsanyi (15) and Selten (32) selects the equilibrium that is

least risky in the sense that each player minimizes the potential losses if she cannot anticipate

which equilibrium will be played by other agents. Risk dominance is defined for normal

form games and while it has performed well in laboratory experiments on coordination

games (Cabrales, Garcıa-Fontes, Motta (6); Schmidt, Shupp, Walker and Ostrom (29)), it

is not obvious how to apply the intuition underlying this concept to games with imperfect

information in a compelling manner. Peski (25) introduces two variations of risk dominance

that apply to any finite normal form game, but the intuition behind these two refinements

does not extend well to sequential games and in our application, both refinements deliver an

empty prediction. Forward induction as defined by Govindan and Wilson (13) is applicable

and makes a non-empty prediction. Alas, this prediction does not solve our multiplicity

5Payoff dominance only offers a prediction in one of the four treatments in our experiments, and when it
does, it coincides with our prediction.
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problem: all equilibria in the vertical contracting game we study satisfy forward induction.6

Myerson’s (21) Proper Equilibrium refinement is the only one of these concepts that is

applicable and offers a sharper prediction in our games. However, its predictive power is

underwhelming: its predictions coincide with those of selection by wary beliefs, and thus in

both applications it underperforms relative to equilibrium selection based on identifying the

strategy profile that can be supported in equilibrium by the largest set of beliefs. Finally, in

a more recent reseach paper, In and Wright (17) propose a new equilibrium concept to refine

the set of Perfect Bayesian equilibria in a class of senders-receivers games. They name this

concept “RI-equilibrium.” In the application to vertical contracting, the RI-equilibrium

coincides with the equilibrium with wary beliefs and with the proper equilibrium (and

more generally, the RI-equilibria are a superset of the proper equilibria), and therefore in

our applications, the RI-equilibrium does not offer as good a prediction as our selection

criterion.

In what follows we first define our selection criterion for a class of two-stage finite

games, and then we provide the theory, empirical implications, and experimental tests in

two applications of interest: vertical contracting, and electoral competition. An Appendix

contains proofs to the theoretical propositions, and additional figures.

2 A New Selection Criterion

Consider a class of finite extensive form games G with one or more upstream players (pro-

posers), and two or more downstream players (receivers). Let P denote the set of proposers,

R denote the set of receivers, N = P ∪ R denote the set of players, nP = |P | the number
of proposers, and nR = |R| the number of receivers. Proposers move first, simultaneously:
each proposer j chooses an action aj = (aj,1, aj,2, ..., aj,nR) ∈ Aj ⊂ RK×nR , where K is a

strictly positive integer, aj,i ∈ RK is a vector for each j ∈ P and i ∈ R, and Aj is a finite
set of feasible actions. A proposer action aj is a matrix with nR vectors. We interpret each

vector aj,i ∈ RK as an offer made to receiver i. Each receiver i observes each element of

each matrix of offers with some probability in [0, 1]. These probabilities may differ across

6A proof of this statement is available from the authors.
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elements of the matrix, they may be correlated across elements and across receivers, and

they may be degenerate so that Nature plays no role and i observes some vectors but not

others. We assume that there is at least one proposer j, one receiver i, and one element of

aj such that i observes this element of aj with probability strictly less than one, so that the

game is not one of perfect information. Our motivation is that receiver i is more likely to

observe the offers made to her (aj,i by each proposer j) than the offers made to any other

receiver, but we do not need to assume this as a restriction. At the second and last stage,

all receivers take simultaneous actions in response to the information they have observed.

We do not impose any restriction or assumption (beyond finiteness) on the action set of

receivers.

For any finite extensive form game Γ ∈ G, let sP denote a proposers’ pure strategy

profile, sR a receivers’ pure strategy profile, and s = (sP , sR) a pure strategy profile. Let si

denote the strategy for agent i, and let s−i denote a strategy profile for every other agent,

so s = (si, s−i). Let SP , SR and S = SP× SR be the set of all proposers’ pure strategy

profiles, the set of all receivers’ strategy profiles, and the set of all strategy profiles. Let I

be an information set in game Γ, let I be the collection of all information sets, so that |I|
denotes the number of information sets in this collection, and for each I ∈ I, let i(I) be the
player who moves at information set I. Let IP ≡ {I ∈ I : i(I) ∈ P} be the collection of
information sets in which the mover is a proposer. For each information set I ∈ I, let a(I)
denote an action taken at I. For each information set I ∈ I and each strategy profile s, let
s(I) be the action (or behavioral strategy) taken by i(I) at I according to strategy profile

s. Let a proposers’ action profile, denoted aP , be a list specifying the action taken at each

information set in which the mover is a proposer. That is, a proposers’ action profile is a

list of all the actions taken by the set of proposers.

Given any proposers’ action profile aP , let I(aP ) ⊂ I be the collection of all information
sets contained in the branches of the game tree that follow after proposers play aP . That is,

each I ∈ I(sP ) is reached after proposers play aP for some realization of Nature’s moves,
and no node outside I(aP ) is reached after proposers play aP , regardless of Nature’s moves.

Given a proposer’s action profile aP , let O(aP ) ⊂ I be the collection of all information
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sets that:

i) cannot be reached if proposers play aP , i.e. the intersection O(aP ) ∩ I(aP ) is empty,
ii) are reached for some realization of Nature’s moves if exactly one proposer j deviates

from aP , and

iii) there are at least two actions a�j and a
��
j such that information set I can be reached

if j plays a�j or a
��
j (hence receiver i(I) must form beliefs about proposer j�s actions).

We interpret O(aP ) as the collection of information sets one step out of the path of aP .
Since the game Γ is finite, the size of O(aP ), denoted |O(aP )|, is also finite for any aP . At
each information set I, let beliefs μI be a probability distribution over the nodes contained

in I. Let μ = (μ1, ...,μ|I|) be a list of such beliefs, one per information set.

Since each proposer’s set of pure strategies is the set of actions available to the proposer,

the proposers’ strategy profile and proposers’ action profile coincide: given any candidate

strategy profile sP , the proposers’ action profile is aP = sP . Given a proposers’ action

profile aP , let a receivers’ action profile be a list specifying the action to be taken at each

information set I ∈ I(aP ), and let this receivers’ action profile be denoted aaPR . We then
refer to the pair a = (aP , a

aP
R ) as an action profile. Each equilibrium strategy profile s is

associated with one equilibrium action profile a, which specifies the actions taken along the

equilibrium paths. Notice, however, that if there is uncertainty, not all information sets

along the equilibrium paths are reached along the path of play in every realization of the

game, as Nature’s resolution of uncertainty directs the game along one or another path of

play. Let A be the set of all possible action profiles, and let a ∈ A be an arbitrary action
profile.

A pure Perfect Bayesian Equilibrium (PBE) of game Γ is a pair (s,μ) such that

given μ and given s−i, each player at each information set maximizes her expected utility

playing according to si, and such that given s, beliefs μ are correct along the equilibrium

path, and satisfy Bayes Rule and other consistency requirements off the equilibrium path

(see, for instance, Fudenberg and Tirole (11) p. 331-332).

Given any Perfect Bayesian Equilibrium strategy profile s∗ with associated action profile

a∗, beliefs along the path of equilibrium play are pinned down by equilibrium strategies and
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Bayes rule. Beliefs about the actions of other receivers at information sets that follow an

observed deviation by one (or more) proposers are also pinned down by receiver’s equilibrium

strategies, as are the beliefs about the proposers that have not been observed to deviate from

s∗. There is, however, some indeterminacy in the beliefs held by receivers about the actions

taken by any proposer j who is observed to have deviated from s∗. For any information set

I ∈ O(a∗P ), let jI be the proposer who must deviate from a∗P in order for I to be reached.
7

Then AjI is the set of all feasible actions for j
I . Let BjI ⊂ AjI be the subset of actions for

proposer jI such that information set I can be reached if every proposer in P\{jI} plays
according to aP .

Let ΔI be the set of all probability distributions over BjI and let ωI ∈ ΔI be a proba-
bility distribution over BjI . Set ΔI is the set of all beliefs that i(I) might hold at I about

what proposer jI did to make the game unexpectedly reach information set I. Hereafter we

refer to ωI as the belief by i at I. The standard “belief” μI over the nodes in information

set I can be calculated directly from the belief ωI .

Let ΔO(aP ) =
I∈O(aP )

ΔI be the set of all possible belief profiles over the collection of

information sets O(aP ), and let ω = (ω1, ...,ω|O(aP )|) ∈ ΔO(aP ) be a belief profile, which
specifies beliefs at each information set in O(aP ).

For each equilibrium strategy profile s = (sP , sR) and for each information set I ∈
O(aP ), let ΔsI ⊆ ΔI be the set of beliefs of i(I) such that a Perfect Bayesian Equilibrium
with strategy profile s and with beliefs ωI at each I ∈ O(aP ) exists if and only if ωI ∈ ΔsI
for each I ∈ O(aP ). Then,

I∈O(aP )
ΔsI is the set of belief profiles that sustain a PBE with

strategy profile s.

Let ΔsO(aP ) =
I∈O(aP )

ΔsI . A PBE in which agents play s and hold belief profile ω exists

if and only if ω ∈ ΔsO(aP ).
For any action profile a = (aP , a

aP
R ), let S

a = {s ∈ S : sP = aP and sR(I) = aR(I)

for each I ∈ I(aP )} be the subset of strategy profiles such that according to any strategy
profile in Sa, agents play action profile a along the equilibrium path.

7 If more than one proposer deviates, beliefs about each deviating proposer are determined independently.
Therefore, a specification of beliefs in O(a∗P ) suffices to construct a complete belief system everywhere in I.
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Let ΔaO(aP ) =
s∈Sa

ΔsO(aP ). Then Δ
a
O(aP ) is the set of belief profiles such that a PBE in

which agents play a and hold belief profile ω exists if and only if ω ∈ ΔaO(aP ).
Let L be the Lebesgue measure over ΔO(aP ), where ΔO(aP ) is the Cartesian product

of |O(aP )| simplexes and hence is itself a subset of a unit hypercube. Then, L(ΔO(aP ))
represents the size of all the set of belief profiles over the collection of information sets

O(aP ), and L(ΔaO(aP )) is the size of the subset of these that support action profile a in a
PBE. The fraction

L(ΔaO(aP ))
L(ΔO(aP ))

captures the relative size of the belief profiles that support

action profile a in a Perfect Bayesian Equilibrium, over all belief profiles. We refer to this

size as the “Size of Supporting Beliefs of a” or SSB(a).

Definition 1 The size of beliefs that support an action profile a in equilibrium is SSB(a) =
L(ΔaO(aP ))
L(ΔO(aP ))

. An equilibrium action profile a∗ has a largest set of supporting beliefs if SSB(a∗) ≥
SSB(a) for any a ∈ A.

We refer to a∗ as the equilibrium action profile with the largest set of beliefs.8 The

motivation for this selection criterion is agnosticism about beliefs off the equilibrium path.

Selection criteria based on passive, symmetric or wary beliefs assume that off-path beliefs

take a particular form, and discard any equilibria not supported by these very particular

beliefs. But the focality of these beliefs in exclusion of all others is often difficult to justify,

as we discuss in the introduction. We take a more open-minded approach toward off-path

beliefs. Following traditional pure game theory, we conjecture that agents may have any

beliefs off the equilibrium path, and that we are unable to predict which of these beliefs

agents will hold. If we have a uniform prior over these off equilibrium beliefs, any equilibrium

may hold.

However, we highlight that if all equilibria are equally likely, some equilibrium strategy

profiles or equilibrium action profile are more likely than others. An equilibrium is a pair

(s,μ), composed of a strategy profile and beliefs. If an equilibrium action profile a is played

according to several different equilibrium strategy profiles, each of which holds for many

8Note that there can be more than one equilibrium action profiles with a largest set of beliefs. In the
Appendix, however, we show that the equilibrium supported by a largest set of beliefs is most often unique.
Hence, we refer to a∗ as the equilbirium action profile with the largest set of beliefs.
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different beliefs, action profile a holds in many equilibria. If action profile a� is played

according to a few different strategy profiles, each of which holds for a few beliefs, a� holds

in a few equilibria.

Consider the following algorithm: Randomly draw an action profile a from a uniform

distribution over A. Then, randomly draw a profile of off-path beliefs ω from a uniform

distribution over ΔO(aP ) =
I∈O(aP )

ΔI . If a PBE with action profile a and beliefs ω exists,

stop. If not, restart the algorithm drawing a new action profile. The action profile most

likely to be the outcome of this algorithm is the one supported by the largest set of beliefs.

We predict an equilibrium action profile. We do not specify the particular equilibrium

that supports this equilibrium action profile. We seek to explain agents’ behavior and

choices, and an action profile contains a full prediction over these.

The purpose of any equilibrium refinement or selection criterion is to solve the problem

of multiplicity under a preferred solution concept by imposing additional restrictions to

yield a sharper, ideally unique, prediction. An essential property of a useful refinement or

selection criterion is that the criterion must make a non-empty selection. Unfortunately,

selection by passive or symmetric beliefs fail this basic requirement even for finite games:

in some finite games with pure strategy equilibria, requiring beliefs to be passive, or to

be symmetric, eliminates all pure strategy equilibria (see Rey and Tirole (27) for lack of

existence of pure equilibria with passive beliefs).9 In contrast, given a non-empty set of

pure equilibria in a finite game, our selection criterion always makes a non-empty selection.

Proposition 1 Given any game Γ ∈ G with a non-empty set of pure Perfect Bayesian

equilibria, there exists an equilibrium action profile with the largest set of supporting beliefs.

More generally, in any game with a finite set of equilibria, selecting the equilibrium

action profile supported by the largest set of beliefs guarantees delivery of a well-defined

9For lack of existence with symmetric beliefs, consider a game in which the proposer privately makes an
offer A or B to each of two receivers, and receivers accept or reject. Let the proposer prefer an outcome in
which one receiver accepts A and the other B to an outcome in which both accept A, and prefer both offers
rejected to any other outcome; and let receivers prefer both to accept A more than to both accept B, and
both to reject their offers more than any other combination. The only pure equilibrium is for both to accept
A, and it is not sustained by symmetric beliefs.
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prediction, while the alternative criteria of selection based on passive or symmetric beliefs

do not.

In addition to existence of a non-empty prediction, sharpness is a desirable property

of a selection criterion. In most games, selection by the size of supporting beliefs yields a

unique prediction; the subset of equilibrium action profiles with a largest set of supporting

beliefs is a singleton. An exception are games in which two or more equilibrium action

profiles are supported by all off-path beliefs: in this class of games, all equilibria supported

by any beliefs appear to be equally compelling, and they are both selected according to

passive beliefs, symmetric beliefs, wary beliefs, the largest set of beliefs, or any other belief-

based notion: there is no belief-based reason to favor an equilibrium action profile over the

other. However, in a vast collection of games, each equilibrium holds for some beliefs and

not for others. Within this class of games, selection by the largest set of beliefs obtains

uniqueness generically (while selection using passive or symmetric beliefs does not attain

generic uniqueness). We formalize and prove this claim in the Appendix.

Having established that our selection criterion better satisfies desirable theoretical prop-

erties (existence and uniqueness), in the next two sections we test how its predictive power

compares to that of other alternatives in two applications of interest: vertical contracting,

and electoral competition.

3 Application: Vertical Contracting

The main application to test our selection criterion is a theory of vertical contracting with

imperfect information and externalities. The game form we present is adapted from Segal

(30) and Rey and Tirole (27) (see as well Hart and Tirole (16); McAfee and Schwartz (22);

or Rey and Vergé (28) among others).

3.1 Theory and Predictions

We present a game form of a simplified multi-lateral vertical contracting game that allows

us to generate multiple equilibria and different predictions according to different selection
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criteria for varying parameter values.

A proposer, interpreted as a producer or upstream firm, and labeled 0, makes indepen-

dent offers to each of two receivers {1, 2}, interpreted as retailers or downstream firms. Let i
denote an arbitrary retailer and let −i denote the other retailer. The producer sells a good.
An offer takes the form of a price, which is either high (pH ∈ R++) or low (pL ∈ R++). Let
p1, p2 ∈ {pH , pL} be the prices offered by the producer to retailers 1 and 2. The strategy set
of the producer is S0 = {(pH , pH), (pH , pL), (pL, pH), (pL, pL)}, where the first component
indicates the offer made to retailer 1 and the second the offer made to retailer 2. Offers

are simultaneously and privately made, so that each retailer observes the offer she receives,

but not the offer the other retailer receives. Retailers choose how many units to purchase.

Because we prefer a more parsimonious game, we constrain the strategy set of retailers. If

the price is pH , we assume that retailers can buy zero or one units; and if the price is pL,

zero, two or three units. Hence the strategy set for each retailer i is Si = {0, 1} × {0, 2, 3},
where each strategy (siH , siL) ∈ Si corresponds to how much to purchase following a pH

offer (first coordinate) and following a pL offer (second coordinate). A strategy profile is an

element of {pH , pL}2 × ({0, 1} × {0, 2, 3})2 .
The producer incurs a transaction cost c0 ∈ R+ for each executed trade, and each retailer

incurs a transaction cost cr ∈ R+ for each executed transaction (but they do not incur any
cost if an offer is not accepted). Let qi ∈ {0, 1, 2, 3} be the quantity purchased by retailer
i. Retailers sell their units of the good in the consumer market. The price of the good

in the consumer market is a function p : {0, 1, 2, 3, 4, 5, 6} −→ R+ of the aggregate supply

Q = q1 + q2. We assume p(Q) : {0, 1, 2, 3, 4, 5, 6} −→ R+ is strictly decreasing in Q.

Profits for the producer are 2
i=1(piqi−c01[qi > 0]), where 1[P ] is an indicator function

such that 1[P ] = 1 if P is true, and 1[P ] = 0 if P is false. Retailer i profits are (p(Q) −
pi)qi − cr1[qi > 0].

Because retailer profits depend on the number of units purchased by the other retailer,

contracts between the producer and one retailer exert an externality to the other retailer.

Because contracts with one retailer are not observed by the other, each retailer faces un-

certainty about the expected payoff of purchasing any positive number of units from the
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producer: willingness to purchase depends on beliefs about the trades executed between the

producer and the other retailer.

The game form contains ten parameters. Let θ = (pH , pL, c0, cr, p(1), p(2), p(3), p(4), p(5), p(6))

be a parameter vector. We are interested in parameter values that generate multiple (two)

equilibria in which different selection criteria generate different predictions.

Definition 2 Let Θ be the set of parameter vectors such that θ ∈ Θ if and only if

i) 3pL > pH > 2pL > c0, and

ii) for each retailer i, the best response correspondences BRi(pi, q−i) are given by the

following table:

Quantity q−i

0 1 2 3

BRi(p
H , q−i) 1 1 0 0

BRi(p
L, q−i) 2 3 2 0

The first condition is that for the producer, selling one unit at a high price is better

than selling two at a low price, but not as good as selling three at a low price (and any

transaction is better than no transaction). The second condition on retailers’ best responses

leads to the existence of two equilibria: one in which both retailers purchase one unit at

price pH , and another in which both retailers purchase two units at price pL. No other

outcome can be sustained in a pure equilibrium.

For any parameter vector θ, let Γθ be the game with the specified game form, and

parameter values θ.

In this game each equilibrium action profile is played in only one equilibrium strat-

egy profile, and therefore each equilibrium action profile identifies an equilibrium strategy

profile. It follows that ΔsO(aP ) = Δ
a
O(aP ).

Claim 2 For any θ ∈ Θ, the set of action profiles that are sustained in a pure Perfect

Bayesian Equilibrium (PBE) of game Γθ is {((pL, pL), 2, 2), ((pH , pH), 1, 1)}.
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The first equilibrium action profile is ((pL, pL), 2, 2), that is, the producer offers a low

price to both retailers, and each retailer purchases two units. We refer to this action profile

as the L equilibrium action profile. Producer profits are low; the producer would like to

deviate offering a high price to both retailers. The strategy profile that sustains this action

profile in equilibrium is such that retailers would not purchase any unit if offered the high

price, because they both mutually fear that the other retailer would still purchase two units

at a low price. The producer is thus stuck in a low price equilibrium, being unable to

credibly deviate to offer the high price to both retailers.

In the second equilibrium action profile, denoted H, prices are high, quantities low. The

producer could be tempted to deviate to offer a low price to a retailer, who would then

benefit from purchasing three units, which would increase the producer’s profit. However,

the strategy profile that sustains action profile H in equilibrium is such that retailers who

observe a deviation to a low price do not believe that the offer is exclusive to them: they fear

the other retailer got it as well, and thus that quantities in the market will be high, which

limits their willingness to purchase to only two units, thwarting the producer’s incentive to

deviate in the first place. Off-path beliefs are critical to sustain one or the other equilibria.

The most common assumption on off-path beliefs is that they are passive, i.e., retailer i

does not update her beliefs on the offer received by retailer −i, when i receives a price offer
pi that is off equilibrium. Rather, retailer i believes that −i still receives the equilibrium
price offer.

Claim 3 For any θ ∈ Θ, the unique action profile supported by passive beliefs in a pure
Perfect Bayesian equilibrium of game Γθ is ((pL, pL), 2, 2).

In the equilibrium action profile supported by passive beliefs, retailers buy two units

at a low price in either game. Wary beliefs are such that if the producer offers an off

equilibrium price p̂i to retailer i, retailer i believers that the offer to retailer −i is an
optimal one for the producer, given p̂i. Because contracts are unobservable, wary beliefs

coincide with passive beliefs (McAfee and Schwartz (22)) and action profile L is also the

unique pure equilibrium action profile supported by wary beliefs. We prove in the Appendix

(Claim 11) that there is a unique action profile sustained in a proper equilibrium and
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it coincides with the action profile supported in equilibrium by wary beliefs or by passive

beliefs, and also by In and Wright’s RI-equilibrium.

Alternatively, under symmetric beliefs, if retailer i receives an out of equilibrium offer

pi, then she believes that p−i = pi with probability one (the producer must have deviated

to make the same offer to all retailers).

Claim 4 For any θ ∈ Θ, the unique action profile supported by symmetric beliefs in a
pure Perfect Bayesian equilibrium of game Γθ is ((pH , pH), 1, 1).

In the equilibrium action profile supported by symmetric beliefs, retailers purchase one

unit at a high price.

Whether an equilibrium holds or not hinges on the belief that the other retailer was

offered a high price pH , following a deviation. If, following a deviation, the probability as-

signed to a high price for the other retailer is low enough, the equilibrium holds. Otherwise,

it fails.

Out of equilibrium beliefs are a pair (ω1(pH |p̃1),ω2(pH |p̃2)) ∈ [0, 1]2, where p̃1 and p̃2 are
off-equilibrium offers observed by retailer 1 and retailer 2, and ωi(p

H |p̃i) is the probability
assigned to p−i = pH by agent i with beliefs ωi who observes p̃i.

Equilibrium action profile L is supported by beliefs such that, after observing offer

pi = p
H , retailer i chooses not to purchase any units, which implies that

ωi(p
H |p̃i)p(1) + (1− ωi(p

H |p̃i))p(3)− pH − cr ≤ 0

ωi(p
H |p̃i) ≤ pH + cr − p(3)

p(1)− p(3) .

Equilibrium action profile H is supported by beliefs such that, observing offer pi = pL,

retailer i chooses to purchase two units, and not three, units, which implies that

2[ωi(p
H |p̃i)p(3) + (1− ωi(p

H |p̃i))p(4)− pL]− cr
≤ 3[ωi(p

H |p̃i)p(4) + (1− ωi(p
H |p̃i))p(5)− pL]− cr
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ωi(p
H |p̃i) ≤ pL + 3p(5)− 2p(4)

2p(3)− 5p(4) + 3p(5) .

Let

ΘL = θ ∈ Θ : p
H + cr − p(3)
p(1)− p(3) >

pL + 3p(5)− 2p(4)
2p(3)− 5p(4) + 3p(5) and

ΘH = θ ∈ Θ : p
H + cr − p(3)
p(1)− p(3) <

pL + 3p(5)− 2p(4)
2p(3)− 5p(4) + 3p(5) .

The hyperplane pH+cr−p(3)
p(1)−p(3) = pL+3p(5)−2p(4)

2p(3)−5p(4)+3p(5) divides the set of parameter vectors Θ into

a subset ΘL in which a larger set of beliefs sustains the equilibrium action profile L and

a subset ΘH in which a larger set of beliefs sustains the equilibrium action profile H. We

obtain the following claim.

Claim 5 For any θ ∈ Θ, the unique action profile supported by the largest set of be-
liefs in a pure Perfect Bayesian equilibrium of game Γθ is ((pL, pL), 2, 2)) if θ ∈ ΘL and
((pH , pH), 1, 1)) if θ ∈ ΘH .

Notice that Θ− (ΘL ∪ΘH) has measure zero; the equilibrium supported by the largest

set of beliefs is generically unique over the set of parameters.

3.2 Experimental Design and Procedures

We use controlled laboratory experiments to evaluate the predictive power of the different

selection criteria. We designed two treatments that only differ in their parameter constel-

lations, one with parameter values θL ∈ ΘL and another with parameter values θH ∈ ΘH .
We label these Treatments L and H respectively.

The parameters related to producer payoffs are kept fixed across the two games: pro-

ducer prices are pH = 36, pL = 15 and the producer’s transaction cost for any executed

trade is c0 = 15. The two treatments differ, however, in the variables that affect retailers’

payoffs. In Treatment L, the retailer’s transaction cost for any positive purchase is cr = 29

and the vector of consumer market prices is (72, 71, 35, 34, 27, 22), where coordinate k de-

notes the price if k units are sold in the market, for any number of units k ∈ {1, 2, 3, 4, 5, 6}.
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Treatment L Quantity bought Treatment H Quantity bought
by the other retailer by the other retailer

0 1 2 3 0 1 2 3
0 33 33 33 33 0 28 28 28 28

Quantity 1 40 39 3 2 Quantity 1 79 64 18 4
bought 2 116 44 42 28 bought 2 175 83 55 19

3 64 61 40 25 3 127 85 31 4

Table 1: Retailer’s payoffs.

Quantity bought
by the retailer

0 1 2 3
Price Charged High 0 28 − −
by the supplier Low 0 − 20 40

Table 2: Supplier’s payoffs for each transaction.

In Treatment H, the retailer’s transaction cost for any positive purchase is cr = 33, and the

vector of consumer market prices is (120, 105, 59, 45, 27, 18).

In Treatment L with parameter values θL, the size of the set of beliefs that support

action profile L in equilibrium is 0.81, and the size of the set of beliefs that support H is

0.10. In Treatment H with parameter values θH , this size is 0.16 for action profile L and

0.93 for action profile H.

We made an affine transformation to the payoff function, which has no strategic conse-

quences, but yields two advantages for experimental purposes: we avoid negative payoffs to

subjects by adding a constant, and we equalize producer and retailers’ expected payoffs by

multiplying the producer’s payoffs by 4/3. Tables 1 and 2 respectively summarize retailers’

payoffs and supplier’s payoffs. All these payoffs are expressed in talers, the experimental

currency.10

10The total amount earned in these periods was transformed into euros through the conversion rate of
0.03 in Treatment L and 0.045 in Treatment H. In total, subjects earned an average of €12.87, including a
show-up fee of €4. Each experimental session lasted approximately one hour.
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All participants were given the role of either a supplier or a retailer, and kept that role

throughout the experiment. Participants played the game for 50 rounds, being rematched

after every round within matching groups of 12 subjects. After each round, subjects received

full feedback about actions of all subjects in their subgroup and their payoffs for that round.

To determine payment, the computer randomly selected five periods for the final payment.

Experiments were conducted at the BonnEconLab of the University of Bonn in March

2013. We ran a total of 6 sessions with 24 subjects each. No subject participated in

more than one session. Therefore, we have six independent observations per treatment.

Students were recruited through the online recruitment system ORSEE (Greiner 2004)

and the experiment was programmed and conducted with the software z-Tree (Fischbacher

2007).

All experimental sessions were organized along the same procedure. Subjects received

detailed written instructions, which an instructor read aloud (see supplementary appendix).

Subjects were asked to answer a questionnaire to check their full understanding of the ex-

perimental design before beginning the experiment. At the end of the experiment, subjects

completed a short questionaire which we describe in more detail below.

3.3 Experimental Results

We organize our discussion of the experimental results by focusing, in turn, on prices,

quantities and beliefs.

3.3.1 Prices

Figure 1 plots the aggregate prices offered by suppliers in both treatments, aggregated by

groups of five periods. Each bar is divided into three tones of gray: the dark gray part

represents the frequency of suppliers who offered both retailers the high price, the medium

gray part represents the frequency of suppliers who offered a high price for one retailer and

a low price for the other, and the light gray part represents the frequency of suppliers who

offered the low price to both retailers.

The figure makes two points quite clearly. First, there is stark contrast between the
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Figure 1: Aggregate prices in both treatments, aggregated by groups of five periods.

Coef. Std. Err. Odds Ratio z Pr > |z|
Treatment L -1.66 0.58 0.19 -2.86 0.00
Period 0.07 0.01 1.07 13.57 0.00
Treatment L * Period -0.10 0.01 0.90 -12.58 0.00
Cut 1 -0.39 0.40 -0.96 0.34
Cut 2 0.95 0.40 2.35 0.02
Group variance 0.49 0.38
Subject variance 1.52 0.44
Number of Observations 2400
Number of Groups 12
Number of Subjects 48
Log Likelihood -1450.58
Wald χ2 255.56
Hausman test χ2 ∗ 0.00

Table 3: Three-level (overall, group, and subject) mixed effects ordered logistic regression of high
prices offered by supplies as a function of treatment, period, and treatment and period interacted.
Treatment L is a dummy variable that takes value one if the treatment is L and zero otherwise.
∗ The Hausman test is done on a linear mirror version of the model.
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pricing strategies used in both treatments: although in Treatment L prices are high only

in 12% of the cases, in Treatment H they are high in 72.21% of the cases. This difference

is clearly significant (Mann-Whitney test, z = 2.882, p = 0.0039).11 This difference across

treatments is line with the prediction of the largest set of beliefs but not by the competing

selection criteria. Second, although this difference is evident from the first periods, it

increases over time due to opposite convergence processes. In the last five periods, the

percentage of high prices in Treatment L is as low as 8.33%, while in Treatment H is as

high as 91.67%.

Table 3 formalizes these ideas by displaying the results of a three-level (overall, match-

ing group, and subject levels) mixed-effects ordered logistic regression of the amount of

high prices set by suppliers as a function of treatment and the period number, and both

interacted. Table 3 indicates the strong treatment effect found above and the convergence

pattern observed in Figure 1.

3.3.2 Quantities

Figure 2 displays the aggregate quantities bought conditional on the price in each treatment

in groups of five periods. The graphs in the top (bottom) belong to Treatment L (H). The

graphs on the left (right) correspond to situations in which retailers were offered a high

(low) price. Each bar is divided into different tones of gray which represent the amount

bought: dark gray if the retailer bought zero units, dark/medium for one, light/medium for

two and light gray for three.

Figure 2 shows two clear patterns. First, retailers’ behavior when receiving a low price

is in line with the predictions of all equilibria and similar across treatments: they buy

two units in around 89.96% of the time in Treatment L and 91.90% in Treatment H.

The small difference across treatments is not significant (Mann-Whitney test, z = 0.961,

p = 0.3367). Second, there is a substantial difference in retailers’ behavior across treatments

when receiving a high price. In Treatment L, retailers demand one unit 24.65% of the time.

11 In all nonparametric tests we used a matching group as an independent observation, because from period
2 onwards, individual choices were affected by observing other group members. Unless otherwise noted, we
aggregated the data across all periods in a matching group.
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Figure 2: Quantities bought conditional on the price in each tratment.

In contrast, this percentage is 93.48% in Treatment H. This difference in percentages is

not surprisingly highly significant (Mann-Whitney test, z = 2.882, p = 0.0039). Awe we

found with prices, this significant difference across treatments is in line with the predictions

of behavior given by our largest set of beliefs criterion but not with the predictions from

passive, symmetric or wary beliefs criteria.

3.3.3 Goodness of Fit

The main goal of the experimental part of this paper is to evaluate the predictive power

of the different selection criteria described in the previous section. In this subsection we

address this question by comparing a measure of goodness of fit. The measure of fit that

we use is the percentage of observations in which the entire group behaved as predicted

by a given equilibrium conditional on playing an equilibrium. Table 4 displays the results

for the second half of the experiment as well as the percentage of groups that played an
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All Data L H
Passive beliefs 54.10 99.57 10.43
Symmetric beliefs 45.90 00.43 89.56
Wary beliefs / Proper Eq. 54.10 99.57 10.43
Largest set of beliefs 94.46 99.57 89.56
Random 50.00 50.00 50.00

% Equilibrium Play 73.92 76.33 71.50

Table 4: Measure of fit of the different selection criteria. "Random" displays a measure of fit of a
randomly picked equilibrium. The data is restricted to the second half of the experiment.

equilibrium action profile.12

Overall, we find that our selection criterion outperforms both the common prediction of

passive/wary beliefs and proper or RI equilibrium, as well as the prediction of symmetric

beliefs. While our selection criterion makes the right prediction in 94.46% of cases, pas-

sive/wary beliefs/proper equilibrium and symmetric beliefs make the right prediction in

54.10% and 45.90% of cases, respectively. These differences are significant (Wilcoxon test,

z = 1.819, p = 0.0690 and z = 2.411, p = 0.0159).

When we disaggregate by the different games, the predictive power of our selection

criterion equalizes the best of the other criteria. Recall that in L, the prediction of our

criterion coincides with the prediction of the equilibrium under passive and wary beliefs or

proper equilibrium, while in H, the prediction of our criterion coincides with the prediction

of the equilibrium under symmetric beliefs. Therefore, our selection criterion coincides with

one of the others in each game by construction. The noticeable feature is that our criterion

matches in each case the best performer of the other criteria.

3.3.4 Beliefs

Beliefs are a crucial element of equilibrium selection in the games presented. In order to

assess whether game play was somehow related to participants’ beliefs, we elicited beliefs

of voters in a non-incentivized manner at the end of the experiment. Immediately after

12We restrict the measure to the second half of the experiment due to the convergence process observed
in Section 3.3.1. Qualitatively similar results are obtained when considering the whole sample.
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Other Retailer’s price
if offered a high price

Treatment L Treatment H

High Low High Low
Other Retailer’s price High 1 2 17 4
if offered a low price Low 15S 30P 20S 7P

Table 5: Joint distribution of beliefs (in absolute numbers). P indicates the prediction by the
passive beliefs and S indicates the prediction by symmetric beliefs.

finishing the main part of the experiment, subjects completed a questionnaire. The two

first questions of the questionnaire related to their beliefs. In particular, we asked the

following questions: “Suppose that you play an additional period as a retailer. If the

supplier offers you a low / high price, which price do you think the supplier will offer to the

other retailer?” They could either answer “Low Price” or “High Price."

Table 5 shows the joint distributions of beliefs. The matrix shows substantial difference

across treatments. As indicated in the table, according to the equilibrium with symmetric

beliefs, a retailer i would expect the retailer j to be offered a low price when i is offered a

low price, and a high price when i is offered a high price. In the equilibrium with passive

beliefs, retailers would expect the other retailer to be offered a low price regardless of the

price offered to themselves.

Note that in Treatment L, most retailers’ beliefs are in line with the beliefs predicted by

passive beliefs although in Treatment H, instead, most retailers’ beliefs are in line with the

prediction of symmetric beliefs. These findings reinforce the results shown in the previous

section: a selection criterion that imposes an invariant assumption on beliefs regardless of

the nature of the game is inappropriately restrictive, and a poor fit of the data. Off-path

beliefs depend on the particular game.
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4 Application: Electoral Competition

4.1 Theory and Predictions

The second application to test our selection criterion is a theory of electoral competition

(adapted from Eguia and Nicolò (8)). We present a game of local public good provision.

Two candidates {A,B} play the role of upstream agents making offers, which in this case

take the form of binding campaign promises. Three representative voters {1, 2, 3}, one from
each of three districts, play the role of downstream agents with imperfect information who

simultaneously vote for one of the two candidates, or abstain.

Each candidate J ∈ {A,B} chooses whether or not to provide a local public good in
each district. Let SJ = {0, 1}3 be the strategy set of candidate J and let sJ = (sJ1 , sJ2 , sJ3 )
be a pure strategy, where sJi = 0 indicates that J does not offer the local public good to

voter i, and sJi = 1 indicates that J does offer the public good to voter i. If candidate J

uses a mixed strategy, let pJ = (sJ1 , s
J
2 , s

J
3 ) ∈ {0, 1}3 denote the action taken (the policy

proposal chosen) by the candidate. If J uses a pure strategy sJ , then pJ = sJ .

Each voter i observes pAi and p
B
i , that is, whether or not each candidate proposes to

provide the local public good in the voter’s own district. With probability 1 − π, this

information is all that voters observe. With probability π ∈ 0, 12 , voters become fully

informed and observe pA and pB, what candidates propose to all districts. Voters choose

whether to vote for candidate A, B, or abstain.

Candidates obtain utility equal to one if they win, zero if they lose. The candidate who

receives the most votes wins and implements her proposed policy. Ties are decided by a

coin toss.

Voters obtain a benefit β < 1 if the local public good is provided in their own districts,

and pay a cost k3 if the public good is provided to k districts. Therefore, the utility for voter

i if candidate J wins is βpJi − pJ1+p
J
2+p

J
3

3 . Notice that local public goods are inefficient: their

total cost, normalized to one, surpasses their total benefit β. The socially efficient outcome

that maximizes the sum of utilities is not to provide these inefficient local public goods to

any district.
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The timing is as follows. First, candidates simultaneously choose their policy proposals.

Second, Nature determines whether voters become fully informed or not: with probability

π ∈ 0, 12 both candidates’ proposals become public information, with probability 1 − π,

each voter i ∈ {1, 2, 3} only observes the offers each candidate makes to his or her own
district and remains unaware of what is offered to other districts. Third, the election is

held and voters simultaneously choose one of the candidates or abstain. The candidate who

receives the most votes, or a randomly selected candidate in case of a tie, wins the election

and implements her policy proposal.

Candidates and voters are strategic, rational agents who evaluate lotteries according to

standard expected utilities. We assume that voters choose the candidate whose proposal

maximizes their expected payoffs (that is, voters are sequentially rational; see Cho and

Kreps (7)), do not use weakly dominated strategies, and, if indifferent between the two

candidates, abstain. The solution concept we use is a pure Perfect Bayesian Equilibrium in

which no agent uses weakly dominated strategies.

If voters do not fully observe (pA, pB), each voter i is unaware of the proposals made

by candidates for districts other than i : voter i only observes either pJi = 0 or pJi = 1

for each candidate J ; that is, voter i observes (pAi , p
B
i ) ∈ {0, 1} × {0, 1}, so that i has

four information sets in which to make a decision. Voters have imperfect information,

and must assign beliefs in each of these information sets. Let Δ {0, 1}3 × {0, 1}3 be a

probability distribution over the set of policy proposal pairs offered by the two candidates.

Let ωi : {0, 1}×{0, 1} −→ Δ {0, 1}3 × {0, 1}3 be the set of beliefs of agent i as a function

of what she observes. Equilibria depend on the beliefs that voters assign out of equilibrium

path. Let ω = (ω1,ω2,ω3) be the belief profile of the three voters.

Multiple equilibria exist.

Claim 6 (Multiple Equilibria) For any β ∈ 2
3 , 1 and any k ∈ {0, 2, 3}, there exists a

pure Perfect Bayesian equilibrium (PBE) in which both candidates propose to provide the

local public good to k districts. For any β ∈ 1
3 ,
2
3 and any k ∈ {0, 1, 2, 3}, there exists a

PBE in which both candidates propose to provide the local public good to k districts.

In particular, both the efficient outcome with no local public good provision and the least
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efficient outcome in which the public good is provided to every district can be supported in

equilibrium by off-path beliefs such that a voter who observes a deviation believes that the

deviating candidate offers the local public good to the other two districts.

Selection criteria based on alternative specific off-path beliefs yield sharper predictions.

Let pJ−i denote the offers by J to districts other than i.

Given a pure strategy equilibrium in which candidates use strategy pair (sA, sB), a voter

i has passive beliefs if she believes that the deviating candidate has only deviated to make

a different proposal in i�s district, while all other districts receive their equilibrium offers.

For each candidate J , if i observes a deviation to p̂Ji = 1− sJi , i believes that candidate J
has played p̂J such that p̂J−i = s

J
−i.

Claim 7 The unique action profile supported by passive beliefs in a pure Perfect Bayesian

equilibrium is such that both candidates offer the local public good to all three districts and

each voter abstains.

Passive beliefs select the equilibria with maximum inefficiency.

Given a pure strategy equilibrium in which candidates use strategy pair (sA, sB), a

voter i has symmetric beliefs if she believes that the deviating candidate has deviated to

make the same proposal to all districts. For each candidate J , if i observes a deviation to

p̂Ji = 1 − sJi , i believes that candidate J has played p̂J such that p̂J−i = (p̂Ji , p̂Ji ). Selection
of equilibria supported by symmetric beliefs does not fully resolve the multiplicity problem

in this application.

Claim 8 If β > 2
3 , the unique action profile supported by symmetric beliefs in a pure

Perfect Bayesian equilibrium is such that candidates do not offer the local public good to

any district and each voter abstains. If β ∈ 1
3 ,
2
3 , there are two classes of action profiles

supported by symmetric beliefs in a pure PBE: one in which candidates do not offer the local

public good to any district, and another in which both candidates offer the local public good

to only one (the same) district.

Selection by symmetric beliefs is particularly problematic in the case of asymmetric
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equilibria: it is difficult to justify why agents who receive different offers in equilibrium

must believe that they all receive the same offers off equilibrium.

A voter i has wary beliefs if she believes that the deviating candidate has deviated to

make a proposal that is optimal for the candidate given what voter i observes. If β > 2
3 ,

selection by passive beliefs, selection by wary beliefs, and the proper equilibrium refinement

yield the same result: the selected equilibrium action profile is unique and is such that

candidates propose to provide the local public good to all districts. If β < 2
3 , selection by

wary beliefs and the proper equilibrium refinement coincide once again, but they do not

offer a sharp prediction. They both select the union of all the equilibrium action profiles

that can be supported in equilibrium either by passive beliefs or by symmetric beliefs: an

action profile in which candidates do not provide the local public good to any district,

another in which candidates provide the public good to all districts, and a class of action

profiles in which both candidates offer the local public good to only one (the same) district.

We next identify the action profile with the largest set of supporting beliefs.
Comparing the size of the set of beliefs that support each equilibrium action profile is

made simpler by noting that a voter with imperfect information who observes a deviation

only cares about the expected number of projects in other districts. This expectation,

without details of the distribution of these projects across other districts, is a sufficient

statistic to form a best response given beliefs. For any observed deviation by a candidate,

voter i votes for the deviating candidate if she expects (given her beliefs and the observed

deviation) that the number of other projects is sufficiently low. Therefore, any equilibrium

strategy profile holds if beliefs are such that following any deviation, the expected number

of projects in other districts calculated by any voter observing the deviation is sufficiently

high. For example, assume β = 5/6. Let E[k|pJi ] ≡ E[ 3
j=1 p

J
j − pJi |pJi ,ωi] denote the

expected number of projects offered by J in districts other than i calculated by voter i with

beliefs ωi who observes an offer pJi ∈ {0, 1} by candidate J to district i. Consider the action
profile in which candidates propose ((0, 0, 0), (0, 0, 0)) and each voter abstains. In order for

this action profile to be sustained in equilibrium, a voter who observes a deviation to pJi = 1

must not vote for J . The expected utility for voter i who observes a deviation to pJi is then
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β − 1+E[k|pJi ]
3 and the expected utility of voting for −J is zero. Voter i votes for −J or

abstains (so the deviation fails and the equilibrium holds) if and only if β− 1+E[k|pJi ]
3 ≤ 0 or

equivalently E[k|pJi ] ≥ 3β− 1 = 3
2 . Therefore, the action profile is supported in equilibrium

if E[k|pJi ] ∈ 3
2 , 2 for each voter i and candidate J. Consider now an action profile in which

candidates propose ((1, 1, 1), (1, 1, 1)) and each voter abstains. In order for this action profile

to be sustained in equilibrium, a voter who observes a deviation to pJi = 0, must vote for −J
or abstain, which requires −E[k|pJi ]

3 ≤ β − 1 = −1
6 or equivalently, E[k|pJi ] ∈ 1

2 , 2 . Thus,

the size of the set of beliefs supporting ((1, 1, 1), (1, 1, 1)) in equilibrium is larger than the

size of the set of beliefs supporting ((0, 0, 0), (0, 0, 0)).13 Therefore, the selection criterion

based on the size of beliefs selects ((1, 1, 1), (1, 1, 1)) ahead of ((0, 0, 0), (0, 0, 0)) if β = 5
6 . In

fact, this criterion selects ((1, 1, 1), (1, 1, 1)) among all equilibria for any β > 2/3.

Claim 9 If β ∈ 2
3 , 1 , the unique action profile supported by the largest set of beliefs

in a Perfect Bayesian equilibrium (PBE) is such that candidates offer the local public good

to all three districts (and each voter abstains). If β ∈ 1
3 ,
2
3 , the unique action profile

supported by the largest set of beliefs in a pure PBE is such that candidates do not offer the

local public good to any district (and each voter abstains).

Selection by passive beliefs fails to recognize that the two cases with β larger or smaller

than 2
3 are fundamentally different: if β is close to one, there is much to gain (β − 1

3) from

supporting a deviation away from the efficient policy (no provision) to one that provides

the local public good to one district: few beliefs sustain the action profile that leads to an

efficient outcome. In contrast, if β is low, there is little to gain (β − 1
3) from supporting a

deviation away from the efficient policy to one that offers to provide the local public good to

one district, and the action profile is sustained for almost any beliefs. Our selection criterion

selects the equilibrium action profile in which candidates do not provide the public good

to any district when its provision is highly inefficient, but discards this action profile when

public good provision is almost efficient. Selection by passive beliefs treats both situations

as identical even though the incentives are quite different. The symmetric beliefs criterion,

13As shown in the Appendix, the size of beliefs supporting ((0, 0, 0), (0, 0, 0)) is 1
16
, while the size of beliefs

supporting ((1, 1, 1), (1, 1, 1)) is 15
16
.
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Treatment I Total Investment Treatment NI Total Investment
in other districts in other districts

0 1 2 0 1 2
Investment in Yes 90 70 50 Investment in Yes 60 40 20
Own District No 56 36 16 Own District No 56 36 16

Table 6: Voter’s payoffs.

implausibly, predicts more public good provision when β is low and public good provision

is more inefficient. Selection by wary or symmetric beliefs, or properness, fails to yield a

unique prediction.

4.2 Experimental Design and Procedures

We designed two treatments to test the predictive power of the different selection principles

in the voting game presented in the previous section. The two treatments only differed on the

level of inefficiency of the public good. In Treatment I the public good was slightly inefficient

(β = 0.9) while in Treatment NI the public good was highly inefficient (β = 0.4). Our

selection criterion predicts that candidates propose to Invest in every district in Treatment

I, and to Not Invest in any district in Treatment NI. The remaining parameters were the

same across treatments. Candidates earned 10 experimental talers if they lost an election

and 94 if they won. Voters were informed about investment promises in other districts

with probability π = 0.25. The initial endowment of voters was 56 and the price of the

investment in each district was 60.14 Table 6 summarizes voters’ payoffs in both treatments.

All participants were given the role of either a voter or a candidate, and kept that role

throughout the experiment. Participants played the game for 40 rounds, being rematched

after every round within matching groups of 10 subjects. After each round, subjects received

full feedback about actions of all subjects in their subgroup and their payoff for that round.

To determine payment, the computer randomly selected four periods for the final payment.

The experiment was conducted at the BonnEconLab of the University of Bonn in Oc-

14The total amount earned was transformed into euros through the conversion rate of 0.05. In total,
subjects earned an average of €12.56, including a show-up fee of €3.

32



tober 2012. We ran a total of 6 sessions with 20 subjects each. No subject participated in

more than one session. We therefore have 6 independent matching groups for each treat-

ment. Students were recruited through the online recruitment system ORSEE (Greiner

2004) and the experiment was programmed and conducted with the software z-Tree (Fis-

chbacher 2007). All experimental sessions were organized along the same procedure as in

the previous experiment.Each experimental session lasted approximately one hour.

4.3 Experimental Results

4.3.1 Politicians’ Proposals and Aggregate Investment

Figure 3 plots the aggregate proposals made by politicians in both treatments, aggregated

by groups of five periods. The proposals are similar in the first periods: average investment

proposed by politicians in the first five periods is not significantly different across treatments

(Mann-Whitney test, z = 0.816, p = 0.414). However, as subjects gain experience playing

the game, substantial differences arise. While the average investment proposal in Treatment

I amounts to 2.62, it is 1.80 in Treatment NI. This difference is statistically significant

(Mann-Whitney test, z = 2.242, p = 0.025). This strong and significant comparative static

result is predicted by our selection criterion, as well as by wary beliefs and proper equi-

librium. Instead, passive beliefs predicts no difference between treatments and symmetric

beliefs predicts a difference in the opposite direction.

The clear and opposite trend in the different treatments is evident in Table 7. In Table

7 we estimate a similar multilevel mixed effects logistic regression as Table 3 above with

the amount of investment of politicians as the dependent variable.

In Treatment I, we observe a significant increase in the total amount of proposed in-

vestment through time, clearly converging to the full investment equilibrium. Furthermore,

behavior across different independent groups is relatively homogeneous in Treatment I.15

Investment proposals are substantially different in Treatment NI. First, we observe a sig-

nificant decrease in the total amount of investment proposals over time. However, we do

15Figure 5 in Appendix B displays investment proposals made by politicians disaggregated for each inde-
pendent group in Treatment I.
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Figure 3: Investment proposals by politicians in each treatment, aggregated in groups of five periods.

Coef. Std. Err. Odds Ratio z Pr > |z|
Treatment I -0.19 1.07 0.82 -0.18 0.86
Period 0.07 0.01 1.07 9.18 0.05
Treatment I * Period -0.12 0.01 0.89 -11.97 0.00
Cut 1 -3.90 0.76 -5.14 0.00
Cut 2 -2.67 0.75 -3.54 0.00
Cut 3 -0.04 0.75 -0.06 0.96
Group variance 2.59 1.42
Subject variance 3.36 0.96
Number of Observations 1920
Number of Groups 12
Number of Subjects 48
Log Likelihood -1458.36
Wald χ2 147.90
Hausman test χ2 ∗ 0.00

Table 7: Three-level (overall, group, and subject) mixed effects ordered logistic regression of invest-
ment offered by politicians as a function of treatment, period, and treatment and period interacted.
Treatment I is a dummy variable that takes value one if the treatment is I and zero otherwise. ∗ The
Hausman test is done on a linear mirror version of the model.
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Figure 4: Investment proposals by politicians in each group in Treatment NI, aggregated in groups
of five periods.

not observe full convergence to the zero investment equilibrium. Second, as evidenced in

Figure 4, we observe heterogeneity across independent groups. Figure 4 displays politician’s

proposals disaggregated by each independent group.

The analysis above describes proposed policies made by politicians. We now turn to

the policies of the winning candidates which were implemented and whether they differ

from the proposals. We find the comparison varies by treatment. In Treatment I, we find

that implemented policies are significantly higher than politicians’ proposals (Wilcoxon test,

z = 2.201, p = 0.0277). As we describe in detail in the next subsection, in Treatment I voters

choose such that they select the politicians who offer a higher total investment. In Treatment

NI instead, we find no significant difference between the proposed and implemented policies

(Wilcoxon test, z = 0.524, p = 0.6002).
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Conditional Vote

Treatment I Treatment NI

a b ∅ a b ∅
F Best a 91 3 6 91 5 4
I Alternative: b 3 96 1 4 92 4

equal 38 16 45 26 26 48

P Highest : a 93 2 5 60 29 11
I Investment b 1 96 3 27 65 8

equal 41 29 30 36 26 38

Table 8: Conditional Vote in the different treatments.

4.3.2 Voters’ Behavior

Table 8 plots subjects’ voting behavior across different treatments and across different

information conditions. In line with the theoretical predictions, subjects mostly vote for

the alternative that yields the highest payoff whenever they have full information about the

investments in each district (93.60% of the cases in Treatment I, and in 91.22% in Treatment

NI). The difference is not significant (Mann-Whitney test, z = 0.401, p = 0.6884).

We observe however, a significant difference between treatments in voting behavior

whenever subjects are uninformed about investments in other districts. Although in Treat-

ment I the percentage of subjects voting for the candidate who offers them a higher invest-

ment is 94.63%, the percentage is much lower, 62.94% in Treatment NI =. This significant

difference in behavior (Mann-Whitney test, z = 2.741, p = 0.0061) stems from the different

natures of the equilibri to which groups converge. As seen in the previous section, all groups

in Treatment I converge to the inefficient equilibrium. In such an equilibrium (supported

by passive beliefs, wary beliefs and proper equilibrium), voters should indeed vote for the

candidate offering a higher investment in their district. In contrast, in Treatment NI, some

groups converge to the efficient equilibrium (supported by symmetric beliefs as well as by

wary beliefs, proper equilibrium and by largest beliefs). In this alternative equilibrium, vot-

ers should optimally vote for the candidate offering no investment. For groups in Treatment

NI, we observe a significant correlation between voting for the candidate offering higher

investment and the implemented level of investment (Spearman’s ρ = 0.8286, p = 0.0416).
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All Data I NI
Passive beliefs 77.68 94.00 48.19
Symmetric beliefs 3.97 0 11.14
Wary beliefs / Proper Eq. 67.12 94.00 18.55
Largest set of beliefs 75.97 94.00 43.37
Random 10.14 12.50 5.88

% Equilibrium play 48.54 62.50 34.58

Table 9: Measure of fit of the different selection criteria. Row "Random" displays a measure of fit
of a randomly picked equilibrium. The data is restricted to the second half of the experiment.

This difference in behavior explains, in turn, the asymmetric relation between proposed

policies and implemented policies across treatments.

4.3.3 Goodness of Fit

In this section we apply the same measure of fit introduced in Section 3.3.3 to the new

setting. As a reminder, the measure of fit that we use is the percentage of observations in

which an entire group behaved as prescribed by the respective equilibrium. Note, however,

that in the games presented in this section, selection by symmetric beliefs, wary beliefs,

and the proper equilibrium refinement do not deliver unique predictions in Treatment NI.

In order to correct for the bigger set of predicted equilibria, we divide the percentage of

observations in which a whole group behaved as prescribed by one of the predicted equilibria

by the total number of predicted equilibrium profiles. Table 9 displays the results for the

second half of the experiment.16

The results differ considerably from the results observed in the contracting experiment.

First, equilibrium predictions have less predictive power in the electoral competition setting

than in the contracting one. Overall, the fraction of groups which play according to an

equilibrium is 48.54%, compared to 73.92% observed in the contracting experiment. One

explanation for the difference in results might be the slower convergence in the voting

game, particularly in Treatment NI. Additionally, the contracting game was played 10

16We restrict the measure to the second half of the experiment due to the convergence process observed
in Section 4.3.1.
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extra periods.17 The second difference between the voting and contracting games relates to

the qualitative ranking of the selection criteria. As in the contracting setting, our selection

criterion outperforms symmetric beliefs in terms of predictive power (Wilcoxon test, z =

2.412, p = 0.0159). But unlike the first setting, the predictive power of our selection criterion

(75.97%) does not differ significantly from the predictive power of passive beliefs (77.68%),

or wary beliefs or proper equilibrium (67.12%), (Wilcoxon test, z = 0.042, p = 0.9661 in

the first case and z = 0.127, p = 0.8989 in the second).

The picture does not change much when we disaggregate by treatment. In Treatment

I, the prediction by the largest set of beliefs coincides with the prediction using passive

beliefs, wary beliefs and proper equilibrium. Most groups converge to this prediction of full

investment and, therefore, all these selection criteria vastly outperform the prediction of

symmetric beliefs. In Treatment NI, subjects’ behavior is more diverse, equilibrium play

is rarer, and accurate predictions more difficult. The predictive power of selection by the

largest set of supporting beliefs is not significantly different from that of passive beliefs or

wary beliefs, but it remains significantly better than selection by symmetric beliefs. Results

in Section 4.3.1 help to explain these findings. On the one hand, most groups in Treatment

NI start with relatively high levels of investment (which is consistent with the prediction

of passive beliefs). On the other hand, all but one group show a significant decrease of total

investment over time, but most groups did not fully converge to a stable situation within

the 40 periods played. Playing for additional periods might result in convergence to the

zero investment equilibrium, which is the equilibrium supported by the largest set of beliefs.

The combination of both forces leads to such mixed results.

4.3.4 Voters’ Beliefs

As in the first experiment, we elicited beliefs of voters (in a non-incentivized manner). In

particular, we asked the following questions: “Suppose that you play an additional period

as a voter, and that you only receive information about investment in your district. If a

17Actually, the voting experiment was conducted first. In light of the slow convergence, we extended
the number of periods in the contracting game in order to increase the likelihood of observing, if at all,
convergence to equilibrium.
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Total Investment in other districts if
there is no Investment in own district

Treatment I Treatment NI

0 1 2 0 1 2

Total Investment in 0 0 1 0 6 0 0
other districts if there is 1 1 1 7 5 7 3
Investment in own district 2 4S 0 22P 1S 5 9P

Table 10: Joint distribution of voter’s beliefs (in absolute number of observations).

politician offers investment / no investment in your district, in how many other districts do

you think he will offer investment?” To which they could answer “In none of the others”,

“In one other district” or “In all the other districts”. Table 10 shows the joint distributions

of beliefs.

As in the contracting game, we observe a large difference across treatments. In Treat-

ment I, 61.11% of the subjects’ beliefs are in line with the prediction of passive beliefs. In

Treatment NI, although still the modal response, the percentage of subjects whose beliefs

are in line with passive beliefs is only 25%. Surprisingly though, the percentage of subjects

whose beliefs are in line with symmetric beliefs is also lower in Treatment NI. Still, the

significant difference in beliefs across games points in the same direction: off-path beliefs

depend on the particular game.

5 Discussion

In the absence of a theory that explains how agents form out of equilibrium beliefs, any

“ad hoc” assumption on out of equilibrium beliefs is arbitrary. The out of equilibrium

beliefs held by the players depend on the specific game they play: games with different

characteristics lead to different patterns of beliefs. To the extent that we cannot predict

with confidence which specific beliefs are salient in a given game, we recommend that we

consider all out of equilibrium beliefs as equally likely.

Under a uniform prior over these out of equilibrium beliefs, any equilibrium may hold,
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but not all equilibrium strategy profiles and action profiles are equally likely to emerge in

the equilibrium actually played: those that require very specific beliefs are less likely to be

played than action profiles that hold in equilibrium for a large set of beliefs. The probability

that a particular strategy profile is played in equilibrium increases in the size of the set of

beliefs that support this strategy profile as an equilibrium profile. The equilibrium action

profile that is more likely to be played is the one which is supported by the largest set of

beliefs. This is the equilibrium action profile we select.

To compute the size of beliefs that support a strategy profile s in equilibrium, we must

construct a measure over sets of beliefs. In finite games, we use the standard Lebesgue mea-

sure defined over the set of all possible beliefs at each out of equilibrium information set that

follows an individual deviation. For each information set I, we calculate the fraction of the

Lebesgue measure of the set of beliefs at information set I that support the strategy profile

in equilibrium, over the Lebesgue measure of the set of all possible beliefs at information

set I. We then calculate the Cartesian product of these fractions over all information sets

that follow from an individual deviation from the equilibrium strategy profile by a first

mover in the sequential game under consideration. This Cartesian product defines the size

of supporting beliefs of the strategy profile s.

Our criterion selects the action profile that has the largest set of supporting beliefs.

The confidence in our prediction is increasing in the ratio of the largest set of supporting

beliefs, over the size of the set of beliefs that sustain other action profiles. If the largest

set is little larger than others, we conjecture that the equilibrium action profile with the

largest set of beliefs may not always be played, but that nevertheless the frequency of play

of each equilibrium action profile that is played will be increasing in the size of beliefs that

support it in equilibrium. If our reasoning is correct, we can construct an order or ranking

of equilibrium action profiles from most to least likely to be played, where each action

profile is ranked according to the size of the set of beliefs that support it in equilibrium. In

this paper we have used the size of the set of beliefs only to identify the action profile(s)

with the largest set of supporting beliefs (without seeking to construct an order of action

profiles) because we wished to compare our criterion to criteria such as selection by passive,
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symmetric or wary beliefs, which offer only a binary partition of the set of equilibrium

action profiles (selected / not selected), not a full order. Future experiments can test the

order prediction, and measure how the predictive success of selection by the largest set of

beliefs depends on the relative size of the largest set of supporting beliefs over the size of

the smaller sets of beliefs that support other equilibrium action profiles.

The only previous experiment on equilibrium selection in vertical contracting games is

by Martin, Normann and Snyder (21).18 Their finding that no specific restriction on the

set of beliefs can fit well with the data is consistent with our theory. Beyond this nega-

tive finding, it is difficult to conduct an equilibrium analysis with their data, because in

their experiment, no group of players play according to any equilibrium. Since all their

subject groups, without exception, are out of equilibrium, comparisons of equilibrium selec-

tion predictions are problematic. Martin, Normann and Snyder (21) suggest that subjects

have heterogeneous beliefs and that their behavior can be explained by a (non-equilibrium)

model in which a fraction of subjects hold passive beliefs and the remaining subjects hold

symmetric beliefs. We agree that agents may have different beliefs (see our Table 5 and

Table 10) and this explanation can ex-post rationalize their observed experimental results.

However, a theory based on heterogeneous beliefs has poor predictive power as long as the

source of this heterogeneity remains unexplained and the fraction of agents who have each

class of beliefs is ex-ante unknown. We propose a selection criterion that offers a clear

and in most cases unique prediction, determined ex-ante by the characteristics and payoff

matrix of each specific game. Our selection criterion not only rationalizes the observed data

ex-post, but more importantly, it also predicts ex-ante the results we expect to obtain.

Our theory can be extended to larger classes of finite sequential games, including games

with more than two stages or with a more complex information structure. To make it

applicable to continuous games, we must overcome two challenges. First, if the set of

strategies available to proposers is uncountable, beliefs at out of equilibrium information

sets are now a probability measure over an uncountable set. Calculating and comparing sizes

of such probability measures is impractical. We resolve this difficulty by considering only

18To our knowledge, there is no previous experimental work on equilibrium selection in games of electoral
competition.
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degenerate beliefs that assign all probability mass to a pure strategy. Calculating the size

of degenerate beliefs that support an equilibrium at a given information set is sufficiently

straightforward. The second challenge is that with an uncountable set of strategies, there

are uncountably many out of equilibrium information sets. The Cartesian product over

them is not defined, so the Lebesgue measure of beliefs over this Cartesian product is also

not defined. Therefore, we must use a different measure of beliefs across information sets.

We suggest to define the size of the set of supporting beliefs as the infimum of the size that

supports an action profile at a particular information set, where the minimization is over

all the information sets in O(aP ). In this manner, we obtain a size of supporting beliefs for
games in which the strategy set of proposers is uncountable.19

The motivation to use our selection criterion is that we cannot predict players’ out of

equilibrium beliefs, and it is therefore more appropriate to consider that any beliefs might

emerge, than to make ad hoc assumptions about them. However, if previous experience in

a particular game, or survey data, provide good reasons to anticipate that players are more

likely to hold some beliefs than others, we can consider a more general family of selection

criteria based on weighted sizes of beliefs. For each information set I with k information

nodes, let μI = (μI1,μ
I
2, ...,μ

I
k) be a vector of weights (

k

i=1
μIi = 1 and μIi ∈ [0, 1] for

each i ∈ {1, 2, ..., k}), which is determined by the prior (held by a theorist modeling the
game) over the beliefs that players may hold at that information set. For each strategy

profile s, we can then calculate the weighted size of the set of beliefs that support s as

an equilibrium strategy profile, where beliefs that are deemed a priori more likely carry a

greater weight. This approach generates a family of selection criteria, characterized by the

weights μ. Selection by passive, symmetric or wary beliefs are special cases of this family, in

which the prior is degenerate and assigns all weight to passive, symmetric or wary beliefs.

We interpret our selection criterion as the benchmark member of this family with a

uniform prior, which we see as the default to be used in any game in which we lack solid

grounds to form good conjectures on out of equilibrium beliefs. Our experiments show that

19This modified definition of the size of supporting beliefs can also be adopted as an alternative to simplify
the calculations in games where the number of strategies available to the proposers is finite but very large.
This alternative leads to the same predictions as the ones presented in both applications.
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vertical contracting is one application in which using passive, symmetric or wary beliefs is

unwarranted: the predictive power of equilibrium selection by any of these criteria is not

better than selecting equilibria at random. In contrast, selection by the largest set of beliefs

predicts the right equilibrium in 94% of cases in which an equilibrium is played. While

using a weighted measure could in theory (if we knew the correct prior and weights) lead

to better predictions, we have shown that in our vertical contracting games, selecting the

equilibrium strategy profile that can be supported by the unweighted largest set of beliefs

performs remarkably well.
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Appendices

Appendix A: Proofs

Proof of Proposition 1
Proof. Given a finite game, there are only finite many action profiles, and thus, only finitely many
of them are equilibrium action profiles. Let k be the number of different action profiles that can be
supported in equilibrium. For an arbitrary action profile a that can be supported in equilibrium,

L(ΔaO(aP )) and L(ΔO(aP )) are well defined, and thus
L(Δa

O(aP ))

L(ΔO(aP ))
and SSB(a) are well defined as well.

There are at most k different values of size SSB, and thus, there exists a maximum among them.

In Section 2 we claim that selection by the largest set of supporting beliefs generically yields
a unique prediction if no more than one equilibrium action profile is supported by every off-path
belief. We provide a formal statement and proof of this claim.

Let G be a game form, which indicates a set of agents N with n = nP +nR players (nP proposers
and a nR receivers), a set of feasible strategy profiles S = S1× ...×Sn of size |S|, and the timing and
information structure of a collection of games in G, without specifying the payoffs. Let U ∈ R|A|×n
define the payoff for each agent, for each possible action profile. Then Γ = (G,U) ∈ G defines a
specific game. For any ε > 0, let Pε(U) be the set of possible perturbations of U such that the
payoff of each proposer stays unaltered, and the payoff of each receiver is altered by no more than
ε. Formally, let Ua ∈ Rn denote the payoff vector for any action profile a ∈ A, and let Uak denote
the k− th component of vector Ua. Then, for any ε ≥ 0, Pε(U) = {U � ∈ R|A|×n : Uak = U �ak for any
k ∈ {1, 2, ...nP }, and |Uak −U �ak| ≤ ε for any k ∈ {nP + 1, nP + 2, ..., nP + nR}, for any a ∈ A}. Let
Pε(Γ) = (G,Pε(U)) be the collection of games with the same set of pure strategy equilibria as game
Γ that can be generated by perturbing game Γ according to perturbations in Pε(U).

Proposition 10 Assume action profiles a and a� can be supported by a largest set of beliefs in game
Γ = (G,U) ∈ G and SSB(a) = SSB(a�) ∈ (0, 1). Then there exists ε > 0 such that the equilibrium
action profile with a largest set of supporting beliefs is generically unique over the class of games
Pε(Γ).

Proof. Assume SSB(a) = SSB(a�) ∈ (0, 1) in game Γ = (G,U). That is, in game Γ, L(Δ
a
O(aP ))

L(ΔO(aP ))
∈

(0, 1). Then there exists ε̄ > 0 such that for any ε ∈ (0, ε̄] and any Ũ ∈ Pε(U), in game Γ̃ = (G, Ũ)
we also find that

L(Δa
O(aP ))

L(ΔO(aP ))
∈ (0, 1) and thus SSB(a) ∈ (0, 1). By an analogous reasoning, in game

Γ̃ = (G, Ũ), SSB(a�) ∈ (0, 1). Consider any perturbation Ũ ∈ Pε(U) and let Ũλ be the family
of perturbations such that for any λ, Ũa k = Ũλa k for any agent k and any action a

�� /∈ {a, a};
Ũλak = Ũak − λ; and Ũλa k = Ũa k + λ. Then ΔaO(aP ) strictly decreases with λ, and ΔaO(sP ) strictly
increases with λ, while ΔO(aP ) and ΔO(sP ) do not depend on λ. Thus, there is at most one value

of λ for which
L(Δa

O(aP ))

L(ΔO(aP ))
=

L(Δa
O(s

P
)
)

L(ΔO(s
P
))
and hence SSB(a) = SSB(a�) is a non-generic event in the

family of games perturbed by Ũλ.
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Proof of Claim 2
Proof. Consider an arbitrary game Γθ; we first prove that there are two pure strategy profiles that
are supported in a Perfect Bayesian Equilibrium (PBE) of the game. Consider first strategy profile
((L,L), (0, 2), (0, 2)). For each retailer to buy two units is the unique best response when the price
offered is low and the other retailer is buying two units. If the producer deviates proposing a high
price to some retailer, then she decreases her payoff because the retailer buys zero unit and the
deviation is not observed by the other retailer. When the price offered is high, to buy zero unit is a
best response for a retailer who assigns probability one that the producer is proposing a low price
to the other retailer.
Consider the strategy profile ((H,H), (1, 2), (1, 2)). For each retailer to buy one unit is the unique
best response when the price is high and the other retailer is buying one unit. If the producer
deviates proposing a low price to any retailer, she decreases her payoff because the retailer buys two
units and by assumption pH > 2pL. To buy two units when the price offered is low is a best response
for a retailer who assigns probability one that the producer is proposing a low price to the other
retailer, too.
Consider now any other strategy profile. First, notice that if the producer proposes a high price to
retailer i = 1, 2, retailer i buys a positive amount if and only if retailer j = i buys at most one unit.
If retailer i buys at most one unit (as he forced to do if the price offered to him is high), retailer j�s
best response is to buy two or three units when the price offered to him is low. It follows that if the
retailer in equilibrium offers a high price to retailer i and a low price to retailer j, then retailer i buys
zero unit, and retailer j buys two units. However, if the producer deviates and offers a low price to
retailer i, then retailer i’s best response is to buy a positive amount, irrespective of his beliefs about
the price offered by the producer to retailer j. Therefore the deviation is profitable for the producer.
It follows that there are not asymmetric equilibria such that the producer offers a high price to a
retailer and a low price to the other one. If the producer offers a high price to both retailers, to
buy one unit is the best response for each retailer irrespective of the amount that the other retailer
buys. If the producer offers a low price to both retailers, if retailer i buys three units, retailer j�s
best response is to buy zero unit. However, to buy three units for retailer i is not the best response
when retailer j buys zero unit. Hence, there are no equilibria such that the producer offers a low
price to both retailers and some retailer buys a quantity different than two.

Proof of Claim 3 and Claim 4
These claims follow immediately from the proof of Claim 2 and the definitions of passive beliefs,

and symmetric beliefs.

Claim 11 For any θ ∈ Θ, the unique proper equilibrium of the vertical contracting game with
parameter vector θ is such that agents play strategy profile ((pL, pL), (0, 2), (0, 2)).

Proof. For any θ ∈ Θ, the set of pure strategy profiles that are sustained in a Perfect Bayesian
Equilibrium (PBE) of game Γθ is {((pL, pL), (0, 2), (0, 2)), ((pH , pH), (1, 2), (1, 2))}. Consider first the
equilibrium ((pH , pH), (1, 2), (1, 2)). A PBE in which (q1, q2) = (1, 1) is supported by strategy profile
((pH , pH), (1, 2), (1, 2))} and beliefs such that retailer i observing pi = pL believes with sufficiently
high probability that p−i = pL and thus expects q−i = 2. However the deviation (consistent with
pi = p

L) that provides the highest payoff to the producer is such that the producer is still playing
the strategy p−i = pH and therefore in any proper equilibrium, the retail should assign a probability
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which gives a higher weight (of the order of 1ε for ε > 0 infinitesimally small) to strategies according
to which the deviating proposer plays p−i = pH . However, the best response according to these
beliefs are such that when i observes pi = pL should buy three units and not two units as prescribed
by the equilibrium, making the deviation profitable for the producer. Therefore this equilibrium
strategy profile cannot be supported as a proper equilibrium.
Consider the equilibrium (pL, pL), (0, 2), (0, 2)). A PBE in which (q1, q2) = (2, 2) is supported by
strategy profile ((pL, pL), (0, 2), (0, 2))} and beliefs such that retailer i observing pi = pH believes
with sufficiently high probability that p−i = pL and thus expects q−i = 2. Since the deviation
(consistent with pi = pH) that provides the highest payoff to the producer is such that the producer
is still playing the strategy p−i = pL, then this strategy profile is supported by beliefs that satisfy
the ε− proper equilibrium refinement.

Claim 5 is proved directly in the text preceding the claim.

Proof of Claim 6
Proof. The result follows as a corollary from Proposition 8 in Eguia and Nicolò (8).

Proof of Claim 7
Proof. We first show that the action profile such that candidates promise sA = sB = (1, 1, 1), and
voters abstain, is supported in equilibrium by passive beliefs, and then we prove that it is unique.
Consider the candidate action profile sA = sB = (1, 1, 1) and suppose voters have passive beliefs. If
candidate J deviates to ŝJ with ŝJi = 0, i votes for the other candidate. Therefore for any possible
deviation, candidate J loses the election if the electorate does not become fully informed. Since
π < 1

2 , no deviation is profitable. Given Claim 6 we have to show that action profiles such that
either k = 0, or k = 2, or k = 1 (an action profile with k = 1 is part of an equilibrium only if β < 2

3 ),

cannot be supported by passive beliefs. Consider first any candidate equilibrium strategy profile
such that either k = 0, or k = 1. Consider a voter i with sJi = 0 for both J = A,B. If candidate
J deviates to ŝJ with ŝJi = 1 (and ŝJl = sJl for both l = i), voter i votes for candidate J and J
wins the election if the electorate does not become fully informed. Since π < 1

2 , then the deviation
is profitable. Consider now a candidate action profile with k = 2 and for all i = 1, 2, 3 there exists
J such that sJi = 1 (there is no equilibrium with k = 2 and both candidates promising the public
goods to the same voters). Consider a voter i such that sJi = 1 and s

−J
i = 0. If candidate J deviates

to ŝJi = 0 (and ŝ
J
l = s

J
l for both l = i), voter i with passive beliefs still votes for candidate J and

therefore candidate J ties the election if the electorate does not become fully informed and wins the
election if the electorate becomes fully informed. Hence the deviation is profitable.

Proof of Claim 8
Proof. First, we prove that the action profile such that sA = sB = (0, 0, 0) and voters abstain is
supported in equilibrium if voters have symmetric beliefs. In equilibrium, candidates tie the election.
If candidate J deviates to ŝJ with ŝJi = 1 voter i with symmetric beliefs votes for the other candidate.
For any possible deviation J loses the election if the electorate does not become fully informed, and
therefore no deviation is profitable.
Second, we prove that the candidate action profile such that k = 1 and both candidates offer the
public good to the same voter i is supported in equilibrium if and only if β ∈ ( 13 , 23 ). Suppose that
β ∈ ( 13 , 23 ). If candidate J deviates and proposes ŝji = 0 voter i votes for the other candidate. If
candidate J deviates and proposes ŝJl = 1 to some voter l = i, then voter l votes for the other
candidate if the electorate does not become fully informed. Since π < 1

2 , it follows that no deviation
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is profitable. Suppose that β > 2
3 . Let l be a voter such that s

J
l = 0. If candidate J deviates to

ŝJl = 1, then voter l vote for J , irrespective of being informed or not. Therefore, it is profitable for
candidate J to deviate to ŝJ , with ŝJi = 0 and ŝ

J
l = 1 for both l = i.

We prove now that there are not any other action profiles supported in equilibrium by symmetric
beliefs. Suppose that β ∈ ( 13 , 23 ), k = 1 and each candidate proposes the public good to a different
district. Consider voter i such that sJi = 1. If candidate J deviates to ŝJ = (0, 0, 0), then voter i
still votes for J irrespective of being informed or not . Hence J ties the election when the electorate
is not fully informed and wins the election when the electorate is fully informed, and the deviation
is profitable. Consider a candidate action profile with k = 3 for both candidates. If candidate J
deviates to ŝJ = (0, 0, 0) all voters vote for candidate J both in case they are fully informed and
when they are not fully informed and, therefore, the deviation is profitable. Consider, finally, a
candidate action profile such that k = 2 for both candidates, and for all i = 1, 2, 3, there exists J
such that sJi = 1 (the action profile with k = 2 and both candidates offering the public good to
the same districts cannot be supported in equilibrium by any beliefs). Consider a voter i such that
sJi = 1 and s−Ji = 0. If candidate J deviates to ŝJi = 0, (and ŝJl = sJl for both l = i), then voter
i still votes for candidate J irrespective of being informed or not, and therefore candidate J ties
the election if the electorate does not become fully informed and wins the election if the electorate
becomes fully informed. Hence the deviation is profitable.

Proof of Claim 9
Proof. We calculate the size of the set of belief profiles that support each equilibrium action profile.

Part I: β ∈ 2
3 , 1 . There are three classes of equilibrium action profiles.

i) Equilibrium action profiles such that both candidates promise (0, 0, 0) and all voters abstain.
ii) Equilibrium action profiles such that both candidates promise (1, 1, 1) and all voters abstain.
iii) Equilibrium action profiles such that candidate action profile is an element of the set

{((0, 1, 1), (1, 0, 1)), ((0, 1, 1), (1, 1, 0), ((1, 0, 1), (0, 1, 1)), ((1, 0, 1), (1, 1, 0)), ((1, 1, 0), (0, 1, 1)), ((1, 1, 0),
(1, 0, 1))} and the voters’ action profile is such that each voter i votes for J if sJi > s−Ji and abstains
if sJi = s

−J
i .

I.i. Equilibria with candidate strategy profile ((0, 0, 0), (0, 0, 0)).
Suppose voter 1 observes off equilibrium ŝJ1 = 1. There are four strategies by candidate J

consistent with what is observed: (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1). Let beliefs assigned to these
strategies be denoted ω1,ω2,ω3 and ω4. The Lebesgue measure of the set of probability distributions
over these four strategies (the 3 dimensional simplex) is 1

0
x2

2 dx =
1
6 . Let ω1 = 1− (ω2 + ω3 + ω4).

The payoff voting for candidate −J is zero.
The expected payoff voting for candidate J is

β − 1 + ω2 + ω3 + 2ω4

3
.

An equilibrium with candidate action profile ((0, 0, 0), (0, 0, 0)) holds if

β − 1 + ω2 + ω3 + 2ω4

3
≤ 0, or

ω2 + ω3 + 2ω4 ≥ 3β − 1.
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The absolute size of the set of beliefs such that ω2 + ω3 + 2ω4 ≥ 3β − 1, relabeling ω2 as x, is

3(1−β)

0

1− 3β−1
2 − x

2 (3(1− β)− x)
2

dx =
9

4
(1− β)

3
.

The relative size with respect to the whole simplex is then 27
2 (1− β)

3
.

Each voter has only one information set out of equilibrium beliefs reached by single-player
deviation. Hence, the absolute size of the set of belief profiles ω = (ω1,ω2,ω3) supporting the
equilibrium is

33

2
(1− β)

3
3

=
(3(1− β))9

8
.

I.ii. Equilibria with candidate strategy profile ((1, 1, 1), (1, 1, 1)).
Suppose voter 1 observes off equilibrium pJ1 = 0. There are four strategies consistent with what

is observed: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1). Let beliefs assigned to these strategies be denoted
ω1,ω2,ω3 and ω4 and let ω1 = 1− ω2 − ω3 − ω4.

The payoff if candidate −J wins is β − 1.
The expected payoff voting if candidate J wins is

−ω2 + ω3 + 2ω4

3
.

The equilibrium holds if

−ω2 + ω3 + 2ω4

3
≤ β − 1

ω2 + ω3 + 2ω4 ≥ 3(1− β).

The absolute size of the set of beliefs such that ω2 + ω3 + 2ω4 ≥ 3(1− β), relabeling ω2 as x is

1

6
−

3(1−β)

0

3(1−β)
2 − x

2 (3(1− β)− x)
2

dx =
1

6
− 9
4
(1− β)

3
.

The relative size is six times larger, 1− 27
2 (1− β)

3
.

Since there are three voters, the size of the set of beliefs profiles ω = (ω1,ω2,ω3) supporting the

equilibrium is 1− 27
2 (1− β)

3
3

. Easy computation shows that for all β ∈ 2
3 , 1 ,

1− 27
2
(1− β)

3
3

>
27

2
(1− β)

3
3

1

27
> (1− β)3

and therefore the equilibrium ((1, 1, 1), (1, 1, 1)) has a larger set of beliefs than ((0, 0, 0), (0, 0, 0)).

I.iii. Equilibria with any permutation of candidate action profile ((1, 1, 0), (0, 1, 1)).
This equilibrium requires that voter 1 believe with probability 1 that pA = (0, 1, 1) given an
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observed deviation pA1 = 0. Otherwise, voter 1 continues to vote for A after a deviation to (0, 1, 0)
and A wins if information is revealed. Thus, the size of beliefs that support this equilibrium is zero.

Therefore, if β ∈ 2
3 , 1 , the equilibrium action profile supported by the largest set of beliefs is

such that both candidates promise (1, 1, 1) and voters abstain.

Part II: β ∈ 1
3 ,

2
3 . There are five classes of equilibria: i) ((0, 0, 0), (0, 0, 0)), ii) ((1, 1, 1), (1, 1, 1)),

iii) permutations of ((1, 1, 0), (0, 1, 1)), iv) permutations of ((1, 0, 0), (1, 0, 0)) and v) permutations of
((1, 0, 0), (0, 1, 0)).

II.i. Equilibria with candidate strategy profile ((0, 0, 0), (0, 0, 0)).
Suppose voter 1 observes off equilibrium ŝJ1 = 1. There are four strategies consistent with what

is observed: (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1). Let beliefs assigned to these strategies be denoted
ω1,ω2,ω3 and ω4.

The payoff voting for candidate −J is zero. The expected payoff voting for candidate J is
β − 1+ω2+ω3+2ω4

3 .

The equilibrium holds if

β − 1 + ω2 + ω3 + 2ω4

3
≤ 0 (1)

ω2 + ω3 + 2ω4 ≥ 3β − 1.

The absolute size of the set of beliefs such that ω2 + ω3 + 2ω4 ≥ 3β − 1, relabeling ω2 as x is

1

6
−

3β−1

0

3β−1
2 − x

2 (3β − 1− x)
2

dx =
1

6
− 1

12
(3β − 1)3 .

So the relative size of beliefs is 1− 1
2 (3β − 1)3 .

Since there are three voters, the relative size of the set of beliefs profiles ω = (ω1,ω2,ω3)

supporting the equilibrium is 1− 1
2 (3β − 1)3

3

.

II.ii. Equilibria with candidate strategy profile ((1, 1, 1), (1, 1, 1)).
Suppose voter 1 observes off equilibrium pJ1 = 0. There are four strategies consistent with what

is observed: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1). Let beliefs assigned to these strategies be denoted
ω1,ω2,ω3 and ω4.

The payoff if candidate −J wins is β − 1. The expected payoff voting if candidate J wins is

−ω2 + ω3 + 2ω4

3
.

The equilibrium holds if

−ω2 + ω3 + 2ω4

3
≤ β − 1

ω2 + ω3 + 2ω4 ≥ 3(1− β).
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The absolute size of the set of beliefs such that ω2 + ω3 + 2ω4 ≥ 3(1− β), relabeling ω2 as x is

3β−1

0

1− 3(1−β)
2 − x

2 (3β − 1− x)
2

dx =
1

12
(3β − 1)3 .

So the (relative) size of beliefs is 1
2 (3β − 1)3 .

Since there are three agents, the size of the set of beliefs profiles ω = (ω1,ω2,ω3) supporting the

equilibrium is 1
8 (3β − 1)9 . For all β ∈ ( 13 , 23 ), we have that 1− 1

2 (3β − 1)3
3

> 1
8 (3β − 1)9 and,

therefore, the equilibrium action profile such that candidates promise ((0, 0, 0), (0, 0, 0)) and voters
abstain, has a larger set of beliefs than the equilibrium action profile such that candidate promise
((1, 1, 1), (1, 1, 1)) and voters abstain.

II.iii. Equilibria with any permutation of candidate strategy profile ((1, 1, 0), (0, 1, 1)).
This equilibrium requires that voter 1 believe with probability 1 that pA = (0, 1, 1) given an

observed deviation pA1 = 0. Otherwise, voter 1 continues to vote for A after a deviation to (0, 1, 0)
and A wins if information is revealed. Thus, the size of beliefs that support this equilibrium is zero.

II.iv. Equilibria with any permutation of candidate strategy profile ((1, 0, 0), (1, 0, 0)).
Deviations in district 1 are never successful, for any beliefs. A deviation to pA2 = 1 is consistent

with beliefs that assign probability one to the set of strategies {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}.
Let the probabilities for each of these four strategies be respectively labeled ω1,ω2,ω3,ω4.

The expected payoff for voter 2 voting for B is − 1
3 . The expected payoff voting for A is β −

1+ω1+ω2+2ω3

3 . Hence the equilibrium holds if

−1
3

≥ β − 1 + ω1 + ω2 + 2ω3

3

ω1 + ω2 + 2ω3 ≥ 3β.

The absolute size of the set of beliefs such that ω1 + ω2 + 2ω3 ≥ 3β is (defining ω1 = x)

2−3β

0

1− 3β
2 − x

2 (2− 3β − x)
2

dx =
1

12
(2− 3β)3 .

So the (relative) size of beliefs is 1
2 (2− 3β)3 .

Since there are two agents receiving zero in equilibrium, the size of the set of beliefs profiles
ω = (ω1,ω2,ω3) supporting the equilibrium is 1

4 (2− 3β)6 .
II.v. Equilibrium with any permutation of candidate strategy profile ((1, 0, 0), (0, 1, 0)).
Without loss of generality, consider a deviation by candidate A. First consider a deviation to

pA1 = 0. In order for the equilibrium to hold, it must be that voter 1 does not vote for A. Let
ω1,ω2,ω3 and ω4 be the beliefs that voter 1 assigns to, respectively, (0, 0, 0), (0, 0, 1), (0, 1, 0) and
(0, 1, 1) subject to observing pA1 = 0. The expected utility for 1 if B wins the election is − 1

3 . The
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expected utility if A wins is −ω2−ω3−2ω4
3 . So in order for the equilibrium to hold, it must be

−ω2 − ω3 − 2ω4 ≤ −1
ω2 + ω3 + 2ω4 ≥ 1.

The relative size of beliefs that satisfy this inequality is 1
2 .

A deviation to pA2 = 1 is only successful with degenerate beliefs by voter 2 who believes with
probability one that the deviation is to (0, 1, 0). So the equilibrium holds for a relative size of beliefs
of 1.

A deviation to pA3 = 1 fails and the equilibrium holds if voter 3 does not vote for A after the devia-
tion. Let α1,α2,α3,α4 be the the beliefs that voter 3 assigns to, respectively, (0, 0, 1), (0, 1, 1), (1, 0, 1)
and (1, 1, 1) after observing pA3 = 1. The expected payoff for voter 3 is B wins is − 1

3 . The expected

payoff if A wins is β − 1+α1+α2+2α3

3 . So in order for the equilibrium to hold, it must be

−1
3
≥ β − 1 + α1 + α2 + 2α3

3
.

The relative size of beliefs that satisfy this inequality, as noted in case II.4., is 1
2 (2− 3β)3 .

So the size of the set of belief profiles that sustain the equilibrium is 12
1
2 (2− 3β)3 = 1

4 (2− 3β)3
Notice that 1

4 (2− 3β)3 > 1
4 (2− 3β)6 for any β ∈ 1

3 ,
2
3 . Then compare 1

4 (2− 3β)3 to 1 −
1
2 (3β − 1)3 :

1− 1
2
(3β − 1)3 >

1

4
(2− 3β)3

4 > (2− 3β)3 + 2 (3β − 1)3 > 1 + 2.

So the equilibrium supported by the largest set of beliefs is ((0, 0, 0), (0, 0, 0)) for any β ∈ 1
3 ,

2
3 .
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Appendix B
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Figure 5: Investment proposals by politicians in each group in Treatment I, aggregated in groups
of five periods.
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Appendix C. Not For Publication

Equilibria with Wary Beliefs in the Electoral Game

Claim 12 If β ∈ 2
3 , 1 , the unique equilibrium that can be supported by wary beliefs is such that

candidates promise ((1, 1, 1), (1, 1, 1)). If β ∈ ( 13 , 23 ) and π ≤ 1
3 , the set of candidate strategy profiles

that can be supported in an equilibrium with wary beliefs is {((0, 0, 0), (0, 0, 0)), ((1, 1, 1), (1, 1, 1)),
((1, 0, 0), (1, 0, 0)), ((0, 1, 0), (0, 1, 0)), ((0, 0, 1), (0, 0, 1))}; while if β ∈ ( 13 , 23 ) and π ∈ 1

3 ,
1
2 , the set

is {((0, 0, 0), (0, 0, 0)), ((1, 1, 1), (1, 1, 1))}.

Proof Part I: Suppose β ∈ 2
3 , 1 .

There are three classes of equilibria with candidate strategy profiles, respectively: ((0, 0, 0),
(0, 0, 0)), ((1, 1, 1), (1, 1, 1)), and permutations of ((1, 1, 0), (0, 1, 1)).

1. Equilibria with candidate strategy profile ((0, 0, 0), (0, 0, 0)).
Candidate strategy profile sA = sB = (0, 0, 0) is supported by beliefs such that every voter i

who observes 1 believes that the public good is promised to at least 3β districts. Suppose district i
observes candidate J proposing ŝJi = 1. The optimal strategy for candidate J subject to ŝ

J
i = 1 is to

propose the local public good to two districts because J wins the election if information is revealed.
Therefore wary beliefs do not support this strategy profile.

2. Equilibria with candidate strategy profile ((1, 1, 0), (0, 1, 1)) or permutations of the order of
districts.

Consider a voter i such that sJi = 1 and s
−J
i = 0. Suppose candidate J deviates and proposes

ŝJ1 = 0. The optimal strategy for candidate J conditional on ŝ
J
1 is to propose to provide the public

good to a lower number of districts to win the election when information is fully revealed and
therefore wary beliefs do not support this strategy profile as an equilibrium.

3. Equilibria with candidate strategy profile ((1, 1, 1), (1, 1, 1)).
Suppose voter i observes J proposing ŝJi = 0. For all possible deviation J loses the election

when information is not revealed. If candidate J proposes ŝJl = 1 for both l = i, then J wins the
election when information is revealed. Voter i�s beliefs that assign probability one that the deviating
candidate is proposing k = 2 (and therefore voter i votes for candidate −J) satisfy the notion of
wary beliefs and therefore the equilibrium strategy profile ((1, 1, 1), (1, 1, 1)) is supported by wary
beliefs.

Part II: Suppose β ∈ 1
3 ,

2
3 .

1. Equilibria with candidate strategy profile ((0, 0, 0), (0, 0, 0)).
candidate strategy profile sA = sB = (0, 0, 0) is supported by beliefs such that every voter

who observes 1 believes that the public good is promised with some positive probability to another
district. Suppose voter i observes ŝJi = 1. All strategies ŝ

J such that ŝJi = 1 provide the same payoff
to candidate J, because with any of them candidate J loses the election whether information is
revealed or not. Therefore voter i’s beliefs that assign probability one to the deviation ŝJ = (1, 1, 1)
satisfy the notion of wary beliefs, and sustain the equilibrium.

2. Equilibria with candidate strategy profile ((1, 1, 1), (1, 1, 1)).
Suppose voter i observes ŝJi = 0. An optimal deviation for candidate J is to propose ŝJl = 1

for both l = i; in this case candidate J wins the election when information is revealed. Voter i�s
beliefs that assign probability one that the deviating candidate is proposing k = 2 satisfy the notion
of wary beliefs, and thus sustain this equilibrium.
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3. Equilibria with candidate strategy profile ((1, 0, 0), (0, 0, 1)) or permutations.
Suppose voter i with sJi = 1 observes a deviation ŝ

J
i = 0. The optimal strategy for candidate J

is to propose ŝJ = (0, 0, 0) because candidate J wins the election when information is fully revealed.
Therefore voter i should still vote for candidate J when observing a deviation: wary beliefs do not
support this strategy profile as an equilibrium.

4. Equilibria with candidate strategy profile ((1, 0, 0), (1, 0, 0)) or permutations.
Consider an equilibrium such that both J = A,B promise (1, 0, 0), and given that information

is not fully revealed, voter 1 votes for J if s−J1 = 1 and sJi = 0, and abstains otherwise, and voters
l = 2, 3 always abstain. Notice that for voter l = 2, 3 to abstain when ŝJl = 1 and sJl = 0 is a
best response only if l believes that the number k of districts to which the deviating candidate J
promises to provide the local public good is such that − 1

3 = β− k
3 , or k = 3β+1. Suppose candidate

A deviates to ŝA2 = 1. The unique deviation (ŝA1 , 1, ŝ
A
3 ) such that candidate A wins the election if

information is fully revealed is ŝA = (0, 1, 1); candidate A ties the election if ŝA1 + ŝ
A
2 + ŝ

A
3 = 1

and loses for any other deviation. If information is not revealed, candidate A loses the election if
ŝA1 = 0 and ties the election in all other cases. It follows that if A deviates playing (0, 1, 1), she
loses the election if information is not revealed and wins if the information is revealed; if A deviates
playing (1, 1, 1), (1, 1, 0), or (1, 0, 1), A ties the election if information is not revealed and loses if
information is revealed; the deviation strategies according to which ŝA1 = 1 provide the highest payoff
to candidate A if and only if (1 − π) 12 ≥ π, that is π ≤ 1

3 . Therefore if π ≤ 1
3 wary beliefs support

this strategy profile.
5. Equilibria with candidate strategy profile ((1, 1, 0), (1, 0, 1)) or permutations.
Consider a voter i such that sJi = 1 and s

−J
i = 0. Suppose candidate J deviates and proposes

ŝJ1 = 0. The optimal strategy for candidate J is to propose the public good to a lower number of
districts to win the election if information is fully revealed and therefore wary beliefs do not support
this strategy profile as an equilibrium.

Proper Equilibria in the Electoral Game

Claim 13 Assume β ∈ 2
3 , 1 . The unique proper equilibrium is such that both candidates propose

three projects.

Proof: For any π ∈ 0, 12 , there are three classes of equilibria. We consider each in turn.
1. Equilibria with candidate strategy profile ((0, 0, 0), (0, 0, 0)).
This strategy profile is supported as an equilibrium only if a voter i ∈ N who observes ŝJi = 1

believes that candidate J promises k ≥ 3β. If candidate J deviates to ŝJi = 1, J wins the election
when information is revealed if and only if J promises k = 2 public goods. For any other deviations
J loses the election when information is not revealed and when information is revealed. In any
ε − proper equilibrium, voter i assigns probability which gives a higher weight (of the order of 1ε
for π > 0 infinitesimally small) to strategies according to which the deviating candidate J promise
two public goods than to any other strategy. It follows that the expected number of public goods
promised by the deviating candidate J must be lower than 3β for all β > 2

3 and therefore in any
ε− proper equilibrium the best response of voter i when observing ŝJi = 1 is voting for candidate J.
Hence the strategy profile sA = sB = (0, 0, 0) cannot be part of a proper equilibrium.

2. Equilibria with candidate strategy profile ((1, 0, 1), (1, 1, 0)) or permutations.
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Assume without loss of generality that sJ = (1, 0, 1) and s−J = (1, 1, 0). This strategy profile
is part of an equilibrium only if, when observing sJc = 0, voter c does not vote for candidate J ,
otherwise candidate J can profitably deviate by promising sJ = (1, 0, 0). Consider a deviation by
candidate J such that ŝJc = 0. If candidate J deviates and promises (0, 0, 0), then J loses the election
when information is revealed; if candidate J promises (1, 1, 0), then candidate J ties the election
when information is revealed, and, finally, if candidate J promises (1, 0, 0) or (0, 1, 0), J wins the
election when information is revealed. Hence voter c should assign a probability that gives a higher
weight to strategies according to which the deviating candidate J promises one project than two
projects. It follows that in any ε− proper equilibrium the best response of voter i when observing
sJi = 1 is voting for candidate J.

3. Equilibria with candidate strategy profile ((1, 1, 1), (1, 1, 1)).
Suppose candidate J deviates and promises ŝJi = 0, candidate J wins the election when infor-

mation is revealed, either promising zero projects or two projects in the other districts, while J loses
the election promising only one project. Beliefs such voter i assigns sufficiently high probability that
the deviating candidate is promising k = 2, satisfy the proper refinement and therefore this strategy
profile is supported by beliefs that satisfy the ε− proper requirements.

Claim 14 Assume β ∈ 1
3 ,

2
3 and π ≤ 1

3 ; then the set of proper equilibria is such that candidate
strategy profile are respectively {((0, 0, 0), (0, 0, 0)), ((1, 1, 1), (1, 1, 1)), ((1, 0, 0), (1, 0, 0)), ((0, 1, 0),
(0, 1, 0)), ((0, 0, 1), (0, 0, 1))}. Assume β ∈ 1

3 ,
2
3 and π ∈ 1

3 ,
1
2 ; then the set of proper equilibria is

such that candidate strategy profile are {((0, 0, 0), (0, 0, 0)), ((1, 1, 1), (1, 1, 1))}.

Proof For any π ∈ 0, 12 , there are five classes of equilibria. We consider each in turn.
1. Equilibria with candidate strategy profile ((0, 0, 0), (0, 0, 0)).
This strategy profile is supported as an equilibrium only if no voter i ∈ N votes for a candidate

j = A,B when ŝJi = 1. Therefore, each voter i has to believe that the expected total number of
projects k promised by candidate J is such that β − k

3 ≤ 0, that is k ≥ 3β. When information is
revealed no deviation is profitable, because the deviating candidate always loses the election, and
therefore any belief satisfies the proper refinement.

2. Equilibria with candidate strategy profile ((1, 1, 0), (1, 0, 1)) or permutations.
Suppose without loss of generality that sA = (1, 1, 0) and sB = (1, 0, 1). Suppose candidate A

deviates to ŝAc = 1. In order to be an equilibrium, voter c should still vote for candidate B, and
therefore according to his beliefs the number of projects promised by the deviating candidate A
must be larger than two k > 2. However, when information is revealed, J wins the election if k = 1,
ties the election if k = 2, and loses if k = 3. Therefore voter c should assign higher probability to
a deviation with k = 2 and consequently vote for A. It follows that this strategy profile cannot be
supported by beliefs that satisfy the ε− proper requirement.

3. Equilibria with candidate strategy profile ((1, 1, 1), (1, 1, 1)).
This strategy profile is supported by beliefs such that if voter i observes a deviation ŝJi = 0,

he votes for candidate −J. If a deviating candidate deviates to ŝJ such that ŝJi = 0 and ŝJl = 1

for both l = i, J wins the election when information is fully revealed. Therefore to assign a high
probability that the candidate is still promising the project to the other two districts satisfies the
proper requirement.

4. Equilibria with candidate strategy profile ((1, 0, 0), (1, 0, 0)) or permutations.
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Consider an equilibrium such that both J = A,B promise (1, 0, 0), and when information is not
fully revealed, voter 1 votes for J if s−J1 = 1 and sJi = 0, and abstains otherwise, voters l = 2, 3

always abstain. Notice that for voter l = 2, 3 to abstain when ŝJl = 1 and s
J
l = 0 is a best response

only if in case l believes that the number k of public goods promised by the deviating candidate J
is such that − 1

3 = β− k
3 , or k = 3β+1. Suppose candidate J deviates to ŝ

J
2 = 1.When information

is fully revealed, the unique deviation such that candidate J wins the election is ŝJ = (0, 1, 1). If
ŝJ is such that k = 1 candidate J ties the election and for all other possible deviation candidate
J loses the election. When information is not revealed, candidate J loses the election if ŝJa = 0

and ties the election in all other cases. It follows that if J deviates by playing (0, 1, 1), he loses the
election when information is not revealed and wins when the information is revealed; if J deviates
by playing (1, 1, 1), or (1, 1, 0), J ties the election when information is not revealed and loses when
the information is revealed; the deviation strategies according to which ŝJa = 1 provide the highest
payoff to candidate J if and only if (1− π) 12 ≥ π that is π ≤ 1

3 . Therefore if π ≤ 1
3 beliefs of voters

b and c that induce these voters to abstain in case of deviation, satisfy the proper refinement.
5. Equilibria with candidate strategy profile ((1, 0, 0), (0, 0, 1)) or permutations.
Suppose voter i with sJi = 1 and s

−J
i = 0 observes a deviation ŝJi = 0. The optimal strategy for

candidate J is to propose ŝJ = (0, 0, 0) because candidate J wins the election when information is
fully revealed. Therefore voter i should assign larger probability to this deviation and vote for the
deviating candidate J .
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