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Invention in Energy Technologies: Comparing Energy Efficiency
and Renewable Energy Inventions at the Firm Level∗

Sascha Rexhäuser† and Andreas Löschel‡

Abstract - Many countries, especially in Europe, have ambitious goals to transform their national
energy systems towards renewable energies. Technological change in both renewable production
and efficient use of energy can help to make these targets come true. Using a panel of German
firms linked to the PATSTAT patent data, we study invention in both types of energy technologies
and how their inventors differ in terms of central firm-specific characteristics. More importantly,
we study the relation between conventional (i.e. non-energy) invention and energy invention
within the firms. The results from dynamic count data models point to a stimulating effect of
conventional inventions for energy efficiency technologies but have no effect on inventions in re-
newable energies.

Keywords - Innovation, invention, renewable energy, energy efficiency, dynamic count data.
Date - May 26, 2014

1 Introduction

In light of increasing prices for energy and increasing problems of climate
change due to the extensive use of fossil fuels, many countries pursue a transition
of their national energy systems towards renewable energies. In these countries—
for instance Denmark, Spain, and recently Germany, invention and innovation in
renewable energy technologies can help to achieve these targets at lower costs.
In addition, also innovation in energy efficiency is central to the realisation of the
energy transition. Technological change in this area has been identified as the cen-
tral driver of reducing aggregate energy intensity (Voigt et al., 2014). Moreover,
in countries where the share of total energy consumption due to energy-intensive
manufacturing increased in the last years—as for instance in Germany or Taiwan
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Schymura, and Reinhilde Veugelers for very helpful comments as well as Eva E. Speiser for ex-
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Association within the framework Helmholtz-Alliance ENERGY-TRANS.
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‡Centre for European Economic Research (ZEW), Mannheim, Germany, and Univeristy of Hei-

delberg, Germany. E-mail: loeschel@zew.de
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(Voigt et al., 2014)—technological change is even more important to economise
energy costs.

For a long time—when energy prices (relative to other input prices)—where
rather low, energy and technical change related to energy did not receive much, if
any, attention by economists. The situation changed completely in the late 1970s
and early 1980s, a time in which the oil price increased dramatically due to the
two oil crises. In this sense, economic research on energy issues seems to be
induced by energy prices, similar to energy price-induced innovation as docu-
mented by Lichtenberger (1986), Newell et al. (1999), Popp (2002). Figure 1 below
supports this view by illustrating the development of the energy economics (and
business) literature and the oil price over time. More robust support comes from
time series regressions documented in Appendix A, which point to a significant
effect of the oil price’s development on the one for publications.

Figure 1: Research in Energy Economics
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The underlying data for publications in the energy economics literature comes
from the Thompson and Reuters Web of Science1. Overall, more than 2277 studies
where identified and plotted by publication year in Figure 1a. Of much more im-
portance for this study is Figure 1b illustrating the strand of the energy economic
literature dealing with R&D, innovation, and issues of technical changes. As this
strand of the literature contains more than 100 scientific journal articles, the fol-
lowing survey is necessarily highly selective. The selection criteria that applies

1See Appendix A.1 for a comprehensive description of the underlying publication data and
how the respective publications were identified.
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here is the focus on the micro level.
A growing body of empirical literature studies the drivers of energy inven-

tions. Most of the existing research typically relies on the concept of induced
inventions—based on Hicks (1932). Energy price-induced technical change is
documented in several studies, such as Lichtenberger (1986), Newell et al. (1999),
Popp (2002), or more recently Crabb and Johnson (2010). In addition, regula-
tion is identified as a key driver of energy technologies, see Newell et al. (1999)
amongst many others2. For regulation-driven3 energy innovation, especially for
renewable energy technologies, much less empirical evidence exist. In the case of
renewable energy technologies, Johnstone et al. (2010, p. 146) conclude that: “In
general, policy, rather than prices, appears to be the main driver of innovation in
these technologies.” Moreover, most of this evidence is based on country-level
or sector-level data, whereas there is much less micro-economic evidence, such
as Aghion et al. (2012). They find that firms engaged in the automobile sector,
innovate more in electric or hybrid engine technologies in the presence of higher
fuel prices. Considering also conventional technologies on fossil fuel combustion
engines, they find that firms’ past innovation activities are a central determinant
of current innovation in either “clean”, i.e. electric or hybrid or “dirty”, i.e. com-
bustion engine technologies.

Another strand of literature the present paper takes a closer look at is dealing
with the sources of energy R&D within firms. An early study by Mansfield and
Switzer (1984) demonstrates that firms reduce their own energy R&D expendi-
tures if governmental energy R&D funding is reduced. However, the authors do
not find evidence for a crowding out, i.e. that government funded energy R&D
replaces firms’ own energy R&D spending. A much more recent contribution by
Popp and Newell (2012) points to the fact that energy R&D for alternative energy
(or patents measuring the outcomes of renewable energy R&D) comes at the ex-
pense of other types of R&D within firms. However, the authors note that this is

2Most of the regulation-induced literature deals rather with environmental innovation in gen-
eral, see Jaffe et al. (2002) and Popp et al. (2010) for comprehensive reviews of this literature. Policy
stimulated demand for renewable energy technologies (feed-in-tariffs), however, is not found to
be a significant driver of related innovation; see Braun et al. (2010) and especially Böhringer et al.
(2014) for German evidence.

3Note that there is also literature analysing the effect of deregulation on energy R&D. Nakada
(2005) set up a theoretical model and arrives at the conclusion that deregulation of an energy
market can foster innovation if the market structure is concentrated before the deregulation. Con-
versely, Jamasb and Pollitt (2011) find that liberalisation in the United Kingdom’s electricity sec-
tor has reduced its R&D spending but, on the other hand, led to more patents for renewable and
non-nuclear energy technologies in the time after the liberalisation. A more recent contribution
by Nesta et al. (2014) finds that deregulation complements environmental policies in stimulating
innovation in renewable energy technologies.
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not due to financial constraints, and thus not due to a crowding out, but changing
market opportunities.

We aim at contributing to this research by providing evidence for energy con-
servation inventions and compare the results to renewable energy inventions and
their relation to conventional (i.e. any other) inventions. This evidence is based
on a panel of German firms for the period 1992-2009. Given intensive regulation
for renewable energies (in particular feed-in tariffs) and energy and oil taxation,
there are strong invention incentives to be expected for both types of energy tech-
nologies in Germany. We find that inventors with more conventional inventions
(patents) have—holding any other factors (especially size and R&D expenditures)
fixed—on average more energy conservation patents. Conversely, for renewable
energy technologies, this relationship does not exist. To put it otherwise, energy
conservation technologies may complement firms’ conventional technology port-
folio. That is, firms with a larger amount of technological knowledge (accounted
for by conventional patents) produce at the same time more energy efficiency
patents and not less. Understanding in much more detail how energy invention
is related (or not related in the case of renewable inventions) to conventional in-
vention at the firm level is crucial for policymakers to set properly incentives for
invention and innovation.

Moreover, in contrast to previous research, we study invention in energy tech-
nologies in both firms located in manufacturing and firms located in service sec-
tors. This is of central importance as the overwhelming number of energy con-
servation patent holders come from manufacturing sectors, especially from the
sectors of manufacturing computers and electrical equipment as well as the au-
tomotive sectors. Conversely, the sector contributing most to the overall number
of renewable energy patents is the scientific research and development sector. By
jointly studying manufacturing and service sectors, our study allows to draw a
more comprehensive picture of invention activities in energy technologies.

The remainder of the paper is organised as follows. Section 2 describes the
underlying data sources of this paper and presents descriptive statistics on the
history of renewable energy and energy conservation technologies. The empirical
model is presented in Section 3 followed by a discussion of our results in Section
4. Section 5 concludes.
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2 Data and Descriptive Statistics

To investigate this papers’ central research questions, we link two data bases—
the Worldwide Patent Statistical Database (PATSTAT) from the European Patent
Office (EPO) and the Mannheim Innovation Panel (MIP). The latter is a represen-
tative firm-level data set based on the German Community Innovation Survey
(CIS). In contrast to CIS data for other EU member countries, the German Inno-
vation Panel has been conducted annually from 1992 on. It is a random, stratified
(by firm size, region, and sector), and representative sample of the German econ-
omy covering mostly manufacturing and service sectors. We exclude the sectors
mining and quarrying as well as public administration from our analysis. As the
sample is representative and as the German economy consists of a larger number
of rather small firms, the firm in our sample observed at the median has only 37
employees, whereas the mean firm has 474 employees. The Innovation Panel data
is highly unbalanced. However, we refrain from using a balanced sub-sample
as we would necessarily restrict the sample to rather old (surviving) and rather
large incumbent firms. Note that we cannot distinguish between firms being not
sampled in a period and firms that exit the market in this period.

The MIP data provides basic firm level information like the number of em-
ployees and R&D expenditures, as well as firm age and sector affiliation. This
database is merged with the firms’ number of granted patents per year (priority
year) from the PATSTAT data based on firm name and address data. The PAT-
STAT data provides ipc (international patent classification) codes that are used
to identify energy patents. Based on ipc codes listed in the WIPO Green Inven-
tory4 classification, we distinguish between energy efficiency (conservation) and
renewable energy technologies.

2.1 Descriptive Statistics at an Aggregate Level

Germany is one of the world’s leading countries in terms of energy technolo-
gies which justifies the application of German firm level data. For the whole
PATSTAT data and for a selection of countries, Figure 2 below presents the de-
velopment for energy conservation and renewable energy patents over time for
the same years (1992-2009) as we have firm level information in the Innovation
Panel.

4See World Intellectual Property Organization (WIPO): http://www.wipo.int/classifications/ipc/en/est/.
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Figure 2: International Comparison of Energy Patents
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The world’s most important countries with respect to energy technologies are
the United States (USA), Japan, and Germany. However, other countries like
South Korea have high growth rates for energy efficiency and renewable energy
patents in more recent times. In absolute numbers, China does not seem to play a
major role in energy technologies. Figure 3 plots the share of countries’ renewable
energy and energy conservation patents in all patents assigned by patent holders
from the respective country at the EPO. This allows us to study the change in
patenting activities for the two energy patent types relative to overall patenting
activities in the countries. For all countries, the years 1992, 2001, and 2009 are
presented, whereas the whole period 1992-2009 is plotted for Germany.
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Figure 3: International Comparison of Energy Patents
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For some countries like Spain and Denmark, we can observe a focus on re-
newable energy technologies over time. In general, the share of renewable en-
ergy patents in all patents in 2009 is higher than the one for energy efficiency
technologies for every country (but South Korea in 2009). For Germany as well as
for other countries like Japan, there was a stronger increase in renewable energy
patents’ share in all patents compared to the one for energy conservation patents
in early years. In more recent years, however, this trend is not observable as the
share of both patent classes was growing according to a similar pattern. Figure 4
below illustrates this development in much more detail for Germany.

Figure 4 below illustrates the relative importance of energy patents in the
whole invention process over time. In particular, Figure 4a documents the case of
renewable energy patents while Figure 4b illustrates the case for energy conser-
vation technologies.
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Figure 4: Patent Activities in Germany
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(b) Energy Conservation
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In both graphs, i.e. in Figure 4a and 4b, the share of the patents for the re-
spective energy type in all patents is shown for both the set of all German patents
granted by the European Patent Office (EPO) and for the set of the firms in the In-
novation Panel (MIP). For renewable energy patents, there is a large gap between
the line indicating the patents of firms in the MIP and all German patents. The
case for energy conservation patents reveals a different picture. The respective
lines for the firm sample and the set of all German patents are rather close to each
other. In this sense, energy conservation seems to be relatively more important
to firms than it is the case for renewable technologies. In contrast to renewable
energy patents, the energy conversation patents’ time series seem to be less corre-
lated with oil price (UK Brent in 2010 euros)5 that serves as a proxy for the energy
price and there is relatively less variation over time. In particular, for the early
years from 1978-2002, there seems to be no long-run upward tendencies. How-
ever, from 2002 on, Figure 4b reveals a long-run (and for Germany as a whole a
steady) increase in the share of energy conservation patents in all patents.

2.2 Descriptive Statistics for the Firm Panel

In total, we identified 733 energy conservation patents (836 renewable energy
patents) of the firms in our (representative) Innovation Panel data set. This corre-
sponds to about 9.54% (7.23%) of all energy-efficiency (renewable energy patents)
patents by German patent holders. Figure 4b shows that the share of energy-

5The oil price data is obtained from the Association of the German Petroleum Industry.
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efficiency patents in all patents for the firm sample is fits pretty well to the one for
all German patents. Interestingly, 39.84% of the energy-efficiency patents held by
German firms come from the information technology and electronic and optical
products sector (Nace 26). Another 12.28% come from the electronic equipment
sector (Nace 27). That is most of the energy-efficiency patents come from the elec-
tronic industry. For the 10 most important sectors, their contribution of energy
conservation patents is documented in Table 1 below, as well as for renewable
energy patents.

Table 1: Share of Energy Conservation Patents by Sectors

Sector Nace 2 Type of Energy Patents:
/ISIS 4 Conservat. Renewable

Manufacture of computer, electronic, and optical products 26 39.84% 11.36%
Manufacture of electrical equipment 27 12.28% 2.51%
Manufacture of motor vehicles, trailers, and semi-trailers 29 8.05% 5.86%
Manufacture of machinery, and equipment n.e.c. 28 5.05% 7.42%
Manufacture of basic metals 24 3.55% 0.01%
Scientific research and development 72 3.41% 16.03%
Wholesale trade, except of motor vehicles, and motorcycles 46 3.27% 2.03%
Office administrative, office support, and other business support activities 82 2.87% 4.90%
Manufacture of chemicals and chemical products 20 2.86% 15.19%
Manufacture of other non-metallic mineral products 23 2.59% 2.27%

In general, the distribution of energy patents over sectors differs largely be-
tween the two patent types (energy conservation patents and renewable energy
patents). The most important sector with respect to renewable energy patents is
the science sector. Also the chemical industry as well as the electronic sectors con-
tribute a significant number of renewable energy patents to the overall number
of renewable energy patents.

At the firm level, there is a very large number of firms with zero patents, nei-
ther energy nor non-energy patents. That is, only 10% of the firms in the entire
innovation panel are observed to have at least one or more patents granted by the
EPO in 1992-2009. Only the top percentile of the firms are observed to be holders
of at least one energy patent, while the remaining 99% are not active in energy
technologies. In what follows, we restrict our attention to this top percentile, i.e.
to firms engaged in energy technologies (patents), which are firms with at least
one energy conservation or at least one renewable energy patent granted by the
EPO in the sample period (i.e. between 1992 and 2009)6. Also in this sample of

6Note that restricting the sample in this fashion leaves the results largely unaffected. How-
ever, if the sample is not restricted, there is a large amount of firms that are never observed to have
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380 firms observed between 1992 and 2009, only for 10% of the firm-year obser-
vations, we detect non-zero energy patents. In contrast to cross-sectional data
where an excessive number of zero counts would require the use of zero-inflated
count data models, “panel data [...] provide a more robust alternative as allowing
explicit examination of the dynamic feedback” (Blundell et al., 1995, p.333f). In
what follows, we discuss such a panel data estimation approach that is robust to
a larger number of zero patent counts.

3 Model and Estimation Strategy

Let pit represent firm i’s number of patents observed in year t and assume
that xit is a vector of variables that may explain observed patents. In this sense,
we are interested in how the conditional mean E[pit|xit] changes due to changes
in xit. In count data models it is frequently assumed that pit given xit is Pois-
son distributed, where the mean parameter of the resulting density in log-linear
form is given by µ = e(x′itβ). β is a vector of parameters7. Assume that there
is a firm specific constant ci which accounts for differences in the propensity to
patent inventive output across firms, so that E[pit|xit, ci] = e(x′itβ+ci). The result-
ing regression model is

pit = µitvi + uit, (1)

where µit = e(x′itβ), vi = e(ci), and uit is a random error term that account for
instance for differences in organisational structures, creativity of the workforce,
motivation and other factors explaining success in inventive processes. Typically,
it is assumed that new inventive output (accounted for by pit) is produced in a
production process where technological knowledge is the only production factor.
Existing technological knowledge is assumed to be a representation of past and
current R&D expenditures (rit, rit−1, rit−2, ...). In this sense, the vector xit includes
past and current R&D expenditures. The functional form of the “technology” in
which past and current R&D expenditures are transformed into invective output
and thus patents is traditionally assumed to be of the Cobb-Douglas type, where
past R&D expenditures enter the model as a (distributed) lag function, see Pakes
and Griliches (1980) among others. Since pit−1 itself is also produced by the same
“technology” that use (rit−1, rit−2, ...) as inputs, we can replace (rit−1, rit−2, ...)

non-zero patents so these observations do not contribute to the coefficient estimates but increase
the number of observations and thus the level of significance.

7See Cameron and Trivedi (2013) for a general introduction into count data models.
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in xit by pit−1
8. That is pit−1 is a noisy measure of the input factor technological

knowledge.
There are three challenging issues in estimating the parameters of equation

1. First of all, strict exogeneity of the regressors in xit is unlikely to hold in a
dynamic panel model because some regressors might be predetermined. That
is, as successful invention process in the past may give rise to current R&D ex-
penditures, rit (included xit) is likely to be correlated with uit through a possible
correlation with uit−1 (Blundell et al., 2002). Of course, pit−1 is also predetermined
because of a correlation with past errors. Secondly, including the lagged depen-
dent variable pit−1 in the exponential model 1 can lead to explosive series (Blun-
dell et al., 2002). Finally, the remaining issue is how to deal with the firm specific
fixed effects vi.

To start with the latter issue, different methods have been proposed. Cham-
berlain (1992) and Wooldridge (1997) suggest GMM estimation techniques that
make use of quasi-first-differences to eliminate firm specific fixed effects. As an
alternative, Blundell et al. (1995) proposed to measure firm specific effects di-
rectly by using pre-sample means of the dependent variable. The pre-sample
mean is the mean of the dependent variable before the sample period. In this
sense, unobserved firm-specific heterogeneity (in patent counts) is assumed to
be only due to differences in knowledge stocks across firms, which itself can be
approximated using (pre-sample) patent information (Blundell et al., 1995). The
estimation technique suggested by Blundell et al. (2002) also proposes the use of
pre-sample means and provides a solution to the problem of predetermined re-
gressors as their approach does not require strict exogeneity of the regressors9.
Moreover, they suggest to exclude the lagged dependent variable from the vec-
tor xit and include it in a linear form in the model (the so-called linear feedback
model). The corresponding regression model reads as

pit = (1− δ)pit−1 + e(α+x′itβ+φ ln p̄i) + uit, (2)

where the parameter δ is the rate at which technological knowledge (represented

8The key advantage of using lagged patents to account for all lagged values of R&D expendi-
tures is that we do not lose so much observations later in the estimation due to this lag structure.
See also Griliches (1979) for a general discussion on the lag structure of R&D expenditures to
account for firms’ knowledge stocks.

9The reason is that the pre-sample mean—dated earlier than the other regressors—control for
any systematic and firm-specific differences in invention success so that the error term is likely
the represent only pure random success and failure in the invention process. The error term is
therefore expected to be uncorrelated with potentially pre-determined regressors in the presence
of pre-sample means.
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by the noisy indicator patents) depreciates. α denotes a constant and ln p̄i—the
(logged) pre-sample mean—is the measure for ci. According to Blundell et al.
(2002), the moment condition for this model to be solved by the method of mo-
ments estimator reads in the just identified case as

N∑
i=1

T∑
t=2

zit

(
pit − (1− δ)pit−1 − e(α+x′itβ+φ ln p̄i)

)
= 0, (3)

where zit = (1, pit−1,xit, p̄i) denotes the vector of instruments. Amongst R&D
expenditures, the vector xit includes further controls going to be discussed at
length in the next subsection. A focus will lie on the inclusion of conventional
(non-energy) patents and its relation to energy patents.

3.1 Variables of the Model

Dependent Variable — Energy efficiency inventions are accounted for by the
number of patents classified as energy conservation technology based on the re-
spective WIPO ipc-codes by priority year. Renewable energy patents are identi-
fied in the same fashion. To reduce the number of zero patent counts and to make
the firms more comparable, we restrict the sample only to firms that are active in
energy technologies. That is, firms that have at least one renewable or energy
conservation patent granted by the European Patent Office (EPO) (regardless in
which year)10. Moreover, as a further robustness check, we restrict the sample in
a later step to firms with non-zero overall patents for each (observed) year. The
rational behind this exercise is to exclude firms no longer active in patenting at
all so that we can rather explain the number of patents in energy technologies for
patent holders and exclude firms that do not patent their inventions or are not
innovative at all.

Independent Variables — A key explanatory variable in the model is the pre-
sample mean of the dependent variable. In this paper, it measures the mean of
granted energy patents (by priority year) for the five years before a firm was
sampled the first time. Thus, the pre-sample period differs between firms as the
panel is highly unbalanced. If a firm being sampled the first time in later years
(say in 2000) is an entrant, we cannot observe any pre-sample patents (for 1995-
1999) because no patents in prior years exist. In this case, the pre-sample mean is

10Restricting the sample in this fashion comes at the consequence that the firms are on av-
erage much bigger (i.e. have on average 4328 employees, the median is 500) compared to the
unrestricted sample (where the average is only 474 employees and the median is 37).

12



necessarily zero. However, the average firm was 25.13 years old when sampled
for the first time, the median firm was 12 years old. Note that the pre-sample
mean accounts for any firm-specific differences in the propensity to patent so that
other controls for sector affiliation are not necessarily required. However, we
control for firms’ affiliation in computer and electrical equipment sectors (NACE
26, 27) and in science and engineering sectors (NACE 71, 72) as we are interested
in estimates of the conditional mean of energy patents of firms in these special
sectors. Including these two sector dummies leaves other coefficient estimates
of other variables largely unaffected. Figures 4a and 4b, respectively, reveal dif-
ferences in energy patenting activities over time which motivates controlling for
year-specific effects that are common across all cross-sectional units. However, as
the number of 17 year dummies included in the model caused computational dif-
ficulties so that no convergence could be achieved11, we control for six three-year
period dummies, where the period 1992-1994 serves as the reference category.

The control for firm size is constructed as the log of the number of employ-
ees. Firms’ R&D-intensity is measured by R&D expenditures (in euros and 2010
prices12), scaled by the number of employees, and enters the model in logarithms.
As R&D information is not reported for some firms, we set R&D expenditures
for these firms to zero to avoid possible sample selection bias due to item non-
response. To control for an impact of this manipulation on our results, we fol-
low Hall and Ham Ziedonis (2001) by including a dummy variable that takes the
value of one if missing R&D information was replaced by a zero.

Moreover, xit includes the (logged) firm age and squared logged firm age al-
lowing for a possible non-linear relationship between age and the number of en-
ergy patents. Especially young firms or entrants are seen as responsible for inven-
tions, especially more radical ones13. In this sense, we would expect that younger
firms have ceteris paribus more energy patents while older ones have less. That
is older firms are expected to improve existing conventional technologies rather

11This was rather the case for the restricted sample and for the models using the number of
renewable energy patents as dependent variable. For the basic model and for energy conservation
patents, the model including the 16 year dummies (1992 served as control group) reports almost
identical coefficient estimates for the other explanatory variables compared to the model using
the three-year period dummies. This is likely due to the fact that coefficient estimates for the year
dummies where not significant nor are they for the three-year dummies.

12Price deflator information is taken from the German Statistical Office, destatis.
13Henderson (1993) provides first empirical evidence that incumbent (and thus older) firms

spend more on R&D for incremental technical change while entrants, i.e. younger firms, are re-
sponsible for rather radical innovation. Using German firm-level data, Schneider and Veugelers
(2010) find that younger and smaller firms are more likely to introduce radical innovation com-
pared to larger ones.
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than to become active in energy technologies.
Due to a different historical and especially economic development in the East-

ern (former communist) part of Germany, we expect firms located there to differ
in terms of inventive output from firms located in the Western part. This may
also be due to extensive subsidies to foster economic development in the Eastern
part after the reunification of Germany. Consequently, a dummy variable takes
the value of one if a firm is located in the Eastern part and zero otherwise.

Finally and most important, we control for the (logged) number of conven-
tional patents in t− 1 scaled by the number of employees. Scaling is important as
the number of conventional patents is—similarly to R&D expenditures—highly
correlated with firm size. This variable allows us to study whether a firm of equal
size, age, and so on produces more energy efficiency patents when it produces at
the same time more conventional patents. In this way, energy conservation tech-
nologies would be a valuable component in these firms’ technological portfo-
lio where possible complementarities among conventional and energy efficiency
technologies could exist. For renewable energy patents, we do not expect this
relationship to exist as we expect at least a part (those firms that provide renew-
able energy production equipment) of the holders of renewable energy patents
to be firms specialized in providing such technology. For the other part, for in-
stance firms in the chemical sectors, a positive relationship as for energy efficiency
patents could exist so that the overall effect is unclear.

Finally, Table 2 below presents the summary statistics for all variables.

Table 2: Summary Statistics of the Model’s Variables

Variables* Obs. Mean Std. Dev. Min. Max.

number of energy conservation patents 2469 0.292 1.919 0.000 >40.000
number of renewable energy patents 2469 0.321 1.423 0.000 >40.000
number of conventional patents 2469 11.160 43.098 0.000 >1000.000
ln(R&D-intensityt) (R&D/no. of employees) 2469 0.387 7.566 -12.388 12.717
dummy for missing R&D information 2469 0.490 0.500 0.000 1.000
number of employees 2469 4826.836 19716.920 1.000 >200000.000
firm age (median: 26 years) 2469 43.507 43.512 0.500 >150.000
dummy for location in East Germany 2469 0.120 0.325 0.000 1.000
pre-sample mean (energy conservation patents) 2469 0.103 1.123 0.000 34.600
pre-sample mean (renewable energy patents) 2469 0.129 0.729 0.000 13.400

* For some variables, we do not report (for reasons of confidentiality) the maximum values as these information would
allow to identify the respective firms.
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4 Results

The results obtained from the method of moments (and GMM) regressions are
discussed in the following.

4.1 Basic Results

Table 3 below presents the results for our basic models, i.e. the models not re-
stricted to firms that have non-zero (overall) patents in each observed year. Mod-
els 1a and 2a, respectively, report estimated based on the just identified moment
condition in Equation 3, whereas the Models 1b and 2b, respectively, provide
GMM estimates using one over-identification restriction. We use the logged one
year lagged oil price (UK Brent in 2005 euros) as an additional instrument that
is very likely to be completely exogenous to the number of patents. Exogene-
ity of the instruments is tested for using a Sargan test. In both Model 1b and
Model 2b, respectively, we cannot reject the Null that the vector of instruments
is orthogonal to the residuals. As the orthogonality condition applies, the instru-
ments are exogenous and the models are well specified. Moreover, the coefficient
estimates of both just-identified models differ from those two models using one
over-identification restriction only at the margin.
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Table 3: Results from the Basic Model

Dependent Variable: number of energy patents in t Energy Conservation Renewable Energy

(1a) (1b) (2a) (2b)
just ident. overident. just ident. overident.

Linear Feedback Part
number of energy conservation patents in t− 1 0.485*** 0.486*** - -

(0.148) (0.158)
number of renewable energy patents in t− 1 - - 0.672*** 0.668***

(0.075) (0.075)
Log-Link Part

constant -6.068*** -6.196*** -3.610*** -3.629***
(1.101) (1.051) (0.808) (0.801)

ln(R&D-intensity in t) (R&D/no. of employees) 0.077 0.074 -0.004 -0.003
(0.078) (0.076) (0.039) (0.039)

dummy for missing R&D information in t 1.375 1.237 0.324 0.341
(1.272) (1.226) (0.621) (0.623)

ln(firm size in t) (no. of employees) 0.315*** 0.314*** 0.295*** 0.298***
(0.070) (0.072) (0.081) (0.079)

ln(firm age in t) 0.759** 0.804** -0.106 -0.109
(0.325) (0.341) (0.220) (0.217)

ln(firm age in t)2 -0.139*** -0.140*** -0.018 -0.017
(0.049) (0.051) (0.054) (0.053)

dummy for location in East Germany in t -0.680 -0.586 -0.412 -0.418
(0.506) (0.501) (0.639) (0.633)

sectors computer and electrical equipment (NACE 26, 27) 1.075*** 1.018*** -0.187 -0.195
(0.272) (0.282) (0.387) (0.386)

engineering and science sector (NACE 71, 72) 0.037 0.129 1.069** 1.072**
(0.532) (0.505) (0.423) (0.418)

ln(pre-sample mean) (energy conservation patents) 1.427*** 1.527*** - -
(0.256) (0.241)

ln(pre-sample mean) (renewable energy patents) - - 1.205*** 1.187***
(0.214) (0.213)

Observations 2469 2469 2469 2469
Hansen J-test statistic - 0.902 - 0.209
Hansen J-test [p-value] [0.342] [0.647]

† The model includes 5 insignificant three-year period dummies.
* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses.

In general, the estimates reveal important differences between energy con-
servation and renewable energy patents. First of all, the coefficient estimate for
the lagged dependent variable, i.e. for (1 − δ), differs quite a lot. In model 1a,
the coefficient estimate that, following Blundell et al. (2002), represents in some
way the yearly “depreciated rate” of patents with respect to energy conservation
technologies is very high, namely 51.5 per cent per year. However, as we do not
measure patent stocks, the coefficient estimate of the lagged dependent variable,
can also be seen as to account for a correlation of current and past patents due
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to patents clusters (for instance one good invention can give rise to many others
in the future) or because the lagged dependent variable picks up some individ-
ual effects not entirely captured by other controls. For the case of renewable en-
ergy technologies, the respective “depreciation rate” in model 2a is much lower,
namely 32.8 per cent per year14. Note that the present analysis does not allow
to identify the reasons for these findings. A possible explanation could be that
in the case of energy efficiency technologies, the average firm is not a specialised
supplier of such technologies and develops it rather occasionally to complement
the core technologies and to provide further value to their customers in times of
high energy prices. As we expect providers of renewable energy technologies (at
least the equipment suppliers) to be rather specialised in these technologies, the
much lower estimate of 35.6 percent per year could be seen support in favor of
this argument.

The impact of firm size on inventive activities does not differ in a significant
way between energy conservation and renewable energy technologies. However,
the impact of firms’ age does. That is, for energy conservation patents, the re-
sults point to a significant inverted U-shaped relationship between firm age and
patenting activities, where, ceteris paribus, the maximum of patenting activities
is estimated to occur at an age of 15.336 years. Inventors that are more active
in energy conservation technologies are (ceteris paribus) much younger than the
average firm that is 43.507 years old (the median is 26). For renewable energy
patents, there is a negative, however, not significant relationship between age
and patenting activities.

Firms in the computer and electronic equipment sector have on average (and
holding any other factors fixed) 1.075 more energy conservation patents com-
pared to the control group of firms in any other sector but the science and engi-
neering sector. Moreover, a firm affiliated in the science and engineering service
sector (NACE71 and 72) is observed to have on average 1.069 renewable energy
patents more than firms in the reference group, holding any other factors fixed.
While this number seems to be rather small at the first glance, it is quite a lot
given that the average firm in our sample (of energy patenting active firms) has
only 0.321 new renewable energy patents in a certain year.

14Both estimated depreciation rates differ largely from those the literature provides. See
Griliches (1990) for more details and an overview on the literature that typically assumes a depre-
ciation rate of knowledge (capital) of 15 per cent.
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4.2 Extension: Relationship with other Technologies

In the following, we are interested in the relationship between conventional
technologies and energy technologies within firms’ inventive processes. Thus, we
include the (logged) number of conventional patents in t − 1, i.e. patents of any
technology class but energy classes, scaled by the number of employees to avoid
possible size effects and multicollinearity with firm size. One year lagged in-
formation on conventional patents is used to avoid (potential) simultaneity with
energy patents. Please note that we do not claim causality here as its direction
is per se unclear. For energy conservation patents, we would expect causality
to run rather from conventional technology to energy conservation if firms use
energy conservation technologies to complement their conventional ones by of-
fering the customers a further value in terms of reduced energy use. If, however,
a firm is rather specialised in energy technologies (no matter whether in energy
conservation or renewable energy), as for instance a manufacturer of solar pan-
els, causality is likely to run in the opposite direction. Therefore, for our sample
of different firms across different sectors, the direction of causality is per se hard
to judge so that the “effect” of conventional inventive activities on energy patents
is likely to represents (conditional) correlation rather than causality. Using one
year lagged information of conventional innovative activities does not necessar-
ily solve this problem. In addition, we are interested in the relationship between
invention of energy conservation and renewable energy technologies so that the
logged and one year lagged number of the other energy patents (scaled by em-
ployees) is included.

Moreover, the sample is restricted to firms with at least one patent, no mat-
ter of its technology class, for an observed year. As most of the firms report
zero patents for both energy and conventional technologies, including the logged
number of conventional (and the other energy type) patents in t− 1 would result
in a strong correlation with the lagged dependent variable and thus to multi-
collinearity problems. Restricting the sample to firms with non-zero patents in
an observed year avoids this problem.

Restricting the sample in this fashion leaves the central results largely unaf-
fected, except of the estimates for firm size that appear to be much smaller than
before15. The models 3a and 4a reproduce the basic regressions for the models 1b

15Recall that restricting the sample to firms with non-zero patents in an observed year comes
with a large increase in the average number of employees from 4826 to 7037. That is, the restricted
sample is composed of rather large firms so that much less variation in firm size exists leading to
a smaller, if any, impact of size on patenting activities.
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and 2b (the over-identified models), respectively, based on the restricted sample.
In another step, we include our measure of conventional inventive activities in
Models 3b and 4b, see the Tables 4 and 5 below.

Table 4: Extensions: Results for Energy Conservation Patents

Dependent Variable: number of energy patents in t Energy Conservation

(3a) (3b) (3c) (3d)
overident. overident. overident. overident.

Linear Feedback Part
number of energy conservation patents in t− 1 0.513*** 0.529*** 0.540*** 0.546***

(0.148) (0.143) (0.141) (0.140)
Log-Link Part

constant -3.688*** -3.544*** -3.412*** -3.346***
(0.929) (0.905) (0.883) (0.866)

ln(R&D-intensity in t) (R&D/no. of employees) 0.019 0.021 0.023 0.024
(0.047) (0.047) (0.048) (0.048)

dummy for missing R&D information in t 0.300 0.328 0.369 0.373
(0.731) (0.741) (0.747) (0.747)

ln(firm size in t) (no. of employees) 0.125 0.372 0.250** 0.383
(0.087) (0.278) (0.124) (0.288)

ln(firm age in t) 0.662** 0.695** 0.740** 0.756**
(0.292) (0.325) (0.343) (0.370)

ln(firm age in t)2 -0.119*** -0.126** -0.137** -0.140**
(0.046) (0.051) (0.054) (0.059)

ln(no. of renew. energy pat. in t− 1/no. of employees in t) - 0.275 - 0.157
(0.258) (0.274)

ln(no. of convent. patents in t− 1/no. of employees in t) - - 0.240** 0.225**
(0.111) (0.113)

dummy for location in East Germany in t -0.295 -0.324 -0.384 -0.397
(0.416) (0.425) (0.442) (0.445)

sectors computer and electrical equipment (NACE 26, 27) 0.850*** 0.885*** 0.857*** 0.885***
(0.250) (0.254) (0.255) (0.255)

engineering and science sector (NACE 71, 72) -0.058 -0.191 -0.156 -0.224
(0.464) (0.456) (0.466) (0.460)

ln(pre-sample mean) (energy conservation patents) 1.413*** 1.217*** 1.167*** 1.071***
(0.206) (0.233) (0.221) (0.234)

Observations 1552 1552 1552 1552
Hansen J-test statistic 0.424 0.696 0.296 0.425
Hansen J-test [p-value] [0.515] [0.404] [0.586] [0.514]

† The model includes 5 insignificant three-year period dummies.
* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses.
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Table 5: Extensions: Results for Renewable Energy Patents

Dependent Variable: number of energy patents in t Renewable Energy

(4a) (4b) (4c) (4d)
overident. overident. overident. overident.

Linear Feedback Part
number of renewable energy patents in t− 1 0.694*** 0.651*** 0.699*** 0.662***

(0.093) (0.088) (0.107) (0.097)
Log-Link Part

constant -1.353** -1.450** -1.368** -1.510**
(0.638) (0.600) (0.629) (0.598)

ln(R&D-intensity in t) (R&D/no. of employees) -0.031 -0.019 -0.031 -0.018
(0.029) (0.026) (0.029) (0.026)

dummy for missing R&D information in t -0.342 -0.241 -0.341 -0.236
(0.406) (0.379) (0.409) (0.384)

ln(firm size in t) (no. of employees) 0.079 0.537** 0.062 0.536**
(0.071) (0.242) (0.135) (0.247)

ln(firm age in t) -0.041 -0.033 -0.038 -0.024
(0.198) (0.190) (0.197) (0.192)

ln(firm age in t)2 -0.026 -0.020 -0.027 -0.021
(0.048) (0.046) (0.049) (0.047)

ln(no. of energy conv. pat. in t− 1/no. of employees in t) - 0.465** - 0.512**
(0.227) (0.241)

ln(no. of convent. patents in t− 1/no. of employees in t) - - -0.025 -0.070
(0.130) (0.123)

dummy for location in East Germany in t 0.226 0.300 0.227 0.315
(0.294) (0.283) (0.296) (0.289)

sectors computer and electrical equipment (NACE 26, 27) -0.438 -0.873** -0.424 -0.866**
(0.322) (0.417) (0.341) (0.425)

engineering and science sector (NACE 71, 72) 0.612* 0.664** 0.600* 0.642**
(0.333) (0.295) (0.355) (0.310)

ln(pre-sample mean) (renewable energy patents) 1.374*** 1.104*** 1.400*** 1.151***
(0.220) (0.253) (0.300) (0.284)

Observations 1552 1552 1552 1552
Hansen J-test statistic 0.150 0.127 0.146 0.116
Hansen J-test [p-value] [0.698] [0.721] [0.701] [0.734]

† The model includes 5 insignificant three-year period dummies.
* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses.

First of all, including the measure of conventional inventive activities or patents
of the other energy technology seem to have no large effect on the coefficient es-
timates for the other variables, with firm size being the only exception. That is,
although the number of conventional patents and other energy patents is scaled
by the number of employees, it is likely to pick up at least some size effects.

In Models 3b and 3d, there is no significant relationship of the measure of
lagged renewable energy inventions on inventive activities of energy conserva-
tion technologies. Conversely, there is a significant positive relationship in the
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Models 4b and 4d. Thus, invention of energy conservation technologies are posi-
tively related to the number of renewable energy patents within firms. A reason
could be that energy efficiency technologies seem to complement renewable en-
ergy inventions but not the other way round.

The (logged) number of conventional patents scaled by employees is signifi-
cantly (and positively) associated with energy conservation patents holding any
other factors (especially size) fixed, see Models 3c and 3d. In this sense, an in-
crease in conventional inventive activities do not come at the expense of energy
conservation technologies, it rather stimulates them. This result does not come
at a surprise. Very roughly speaking, whenever there is technological progress
in areas where new goods or products use energy, there is also some room for
technological change to improve energy efficiency. While these results seem to
be rather obvious they have some implications for economic policy. As energy
efficiency inventions come jointly with conventional inventions at the firm level,
incentives fostering energy efficient technical change exist and work out. In this
sense, technological progress with respect to more efficient use of energy would
come also as a side-effect of unspecific (or non-technology specific) R&D subsi-
dies to promote technological change in general.

Model 4c and 4d point out, that no such relationship between conventional
inventions and renewable inventions is found to exist. As pointed out earlier,
renewable energy inventions are generated in rather different sectors including
manufacturing sectors and also the science service sector. In this sense, inventors
differ strongly and are therefore hard to compare. However, one argument in
favour of these results would be that a non-trivial share of inventors of renewable
energy technology is rather specialized in this technology. If willing to promote
technological progress in renewable energy, policymakers should therefore set
more specific incentives in order to promote related technical change, for instance
R&D subsidies specific to clean renewable energy production techniques.

5 Conclusion

Technological progress in both renewable energy and energy conservation
technologies is key to ensure a secure and sustainable provision of energy at com-
petitive costs. This is of special interest for countries willing to increase their share
of energy produced using renewable resources such as Denmark, Spain, and re-
cently Germany. In this paper, we shed some more light on related technological
inventions at the level of inventors comparing renewable and energy conserva-

21



tion inventions by the use of patent data for a panel of German firms.
As a first result, we find that renewable energy and energy conservation in-

ventions are generated in very different sectors, where most of the energy conser-
vation patents come from the computer and electrical equipment as well as from
the automotive sector. Given that the most important contributions to the over-
all number of renewable energy patents have been made by sectors others than
those we would expect to matter most—i.e. manufacturing of wind turbines, so-
lar panels, etc.—policy makers should set properly and rather general incentives
to foster technological change in this area. That is policymakers should provide
unspecific R&D support with respect to sector affiliation of subsidy receivers as a
significant fraction of necessary technological knowledge required for renewable
energy innovation comes from other sectors. In this light, a feed-in-tariff alone,
for instance, is expected to foster technological change at the level of manufac-
turers of renewable energy production equipment (for instance for more efficient
production technologies) rather than in the science service sectors. A mix of in-
struments seems to be more effective to stimulate technical change in all areas and
sectors. Moreover, as a large fraction of renewable energy patents comes from the
science service sector, a part of renewable energy technologies seems to represent
basic research, rather than applied research. Conversely, the overwhelming ma-
jority of energy conservation patents comes from manufacturing sectors and rep-
resents therefore rather applied research. Policymakers should also consider this
finding by setting appropriate incentives to foster technological development.

As a second result, we find that the two types of energy inventions do not
differ much with respect to certain firm-specific characteristics, except for firm
age. A negative but not significant relationship is found for renewable energy
patents and a significant inverted U-shaped relationship for energy conservation
inventions, where the most active inventors are on average much younger than
the average firm (inventor) in our data set.

Finally and most importantly, the results indicate that energy conservation in-
ventions are positively associated with conventional inventions at the firm level
whereas no such relationship is found for the case of renewable energy inven-
tions. With respect to this finding, several policy implications have been ad-
dressed earlier in the paper. Future research should overcome the limitations
of this paper in a way as to study in much more detail the underlying mechanism
in which energy technologies are related to other types of technology at the firm
level. Moreover, future research should study the impact of firm-specific drivers
of invention on this relationship, especially using information on R&D subsidies
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(in general and specifically for energy technologies) to provide more detailed and
more robust evidence. Moreover, the use of a data set including firms from dif-
ferent (European) countries would allow to study the impact of country-specific
differences, for instance due to differences in regulation, on inventive processes
in the area of energy technologies.

Appendix A: Energy Prices and Publications

A.1 Description of the Data

For the year 1955 until 2013, information on publications and oil prices is
available so that the sample consists of 59 observations. Three time series are
available: 1) the oil price, i.e. the UK Brent16 in 2012 US Dollars. 2) scientific pub-
lications included in the Thompson and Reuters Web of Science database with
key words on energy issues as well as on energy innovation issues in the title17

and classified as economic article publications.
Overall, 2277 economic publications on energy are included in the analysis,

whereas the number of publications belonging to the innovation strand of the
literature is much smaller, i.e. only 102 publications.

A.2 Time Series Regression

In what follows, we consider a simple dynamic (first-order autoregressive,
AR(1)) model of the form:

ln(publicationst) = β0 + β1 ln(publicationst−1) + β2 ln(oil pricet−1)

+β3time+ ut, where (4)

ut = ρut−1 + εt (5)

That is, the error term (ut) is likely to follow an autocorrelated process of the first
order, with unknown ρ. Whether ρ is zero or not will be tested for in a later
step. Logged publications at time t are assumed to depend on publications in
t − 1 that are a result of several factors other beyond the econometrician’s con-

16The oil price date is taken from the BP historical oil price database.
17In detail, the keywords are: “Energy*” or “Wind Industry” or “Solar Industry” or “Pho-

tovoltaic Industry” or “Biomass Industry” or “Wind Sector” or “Solar Sector” or “Photovoltaic
Sector” or “Biomass Sector” for the field of energy economics and “Inventi*” or “Innovati*” or
“Techn* Change” or “Research and Development” or “R&D” or “Technology” for the strand of
the energy economics literature dealing with technical change.
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trol. Such factors are the number of energy economic departments, availability
of public research funds and so on. A linear time trend variable may catch up
influential factors such as the propensity to publish in economics at all as well as
the growth of the whole economic research field—at least to some extent. As a
positive side effect, the time trend may reduce possible problems of autocorrela-
tion and—more importantly—possible spurious regression. Note that spurious
regression is not a problem here. Augmented Dickey-Fuller tests do not allow
to reject the Null that both time series (ln(publicationst) and ln(oil pricet)) have a
unit root. Moreover, an Engel-Granger test allows to reject (t-statistic is -4.506) the
Null that both time series are not cointegrated. Provided that cointegration very
likely exists, a regression of ln(publicationst) on ln(oil pricet−1) is very likely to be
not spurious. The results from estimating model 4 appear in Table 6 below, next
to results from an estimation in logged differences (growth rates) to eliminate
autocorrelation and reduce possible problems of spurious regressions.

Table 6: Results from Time Series Regressions (OLS)

All Energy Publications Energy Innovation Publications

Dependent Variable ln(publications) ∆(ln(publicat.)) ln(publications) ∆(ln(publicat.))
(1) (2) (3) (4)

ln(all publicationst−1) 0.352***
(0.130)

ln(innovation publicationst−1) 0.330*
(0.177)

ln(oil pricet−1) 0.567*** 0.117
(0.132) (0.127)

linear time trend 0.020*** 0.022***
(0.005) (0.008)

∆(ln(oil price)) 0.302*** 0.247
(0.109) (0.223)

Constant -0.491 0.081 -0.612* 0.036
(0.322) (0.071) (0.307) (0.068)

R2 0.869 0.022 0.702 0.016
Observations 58 58 58 58

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses.

In Model 1, the energy price (oil price) has a significant effect on economic
publications on energy issues. A one percent increase in the (lagged) oil price is
associated with a 0.567 percent increase in publications. Results for Models 3 and
4 are for the strand of the energy economics literature on innovation issues. The
impact of the oil price in Model 3 is much below of the one for the whole litera-
ture but not significant. A straightforward reason is the data, i.e. the respective
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publication time series is highly volatile as there are only a few articles observed
every year (1.729 on average over the 59 years).

A Breusch-Pagan test allowed to reject the Null of constant variance of er-
ror the error term with a p-value of 0.000 in Model 1. In the presence of het-
eroscedasticity and possible endogeneity because of including a lagged depen-
dent variable the standard Durbin-Watson test for autocorrelation as well as the
Breusch-Godfrey test cannot be applied here. Instead, Durbin (1970)’s h-statistics
is applicable (although the number of observations is pretty small) and does not
allow to reject the Null that ρ is zero in Model 1 (p = 0.633)18.
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Johnstone, Nick, Ivan Haščič, and David Popp (2010): Renewable Energy Poli-
cies and Technological Innovation: Evidence Based on Patent Counts, in: Envi-
ronmental and Resource Economics, Vol. 45, No. 1, pp. 133-155.

Lichtenberger, Frank R. (1986): Energy Prices and Induced Innovation, in: Re-
search Policy, Vol. 15, No. 2, pp. 67–75.

26



Mansfield, Edwin and Lorne Switzer (1984): Source Effects of Federal Support
on Company-Financed R and D: The Case of Energy, in: Management Science,
Vol. 30, No. 5, pp. 562-571

Nakada, Minoru (2005): Deregulation in an Energy Market and its Impact on
R&D for Low-carbon Energy Technology, in: Resource and Energy Economics,
Vol. 27, No. 4, pp. 306–320.

Nesta, Lionel, Francesco Vona, and Francesco Nicolli (2014): Environmental Poli-
cies, Competition and Innovation in Renewable Energy, in: Journal of Environ-
mental Economics and Management, forthcoming.

Newell, Richard G., Adam B. Jaffe, and Robert N. Stavins (1999): The Induced
Innovation Hypothesis and Energy-Saving Technological Chnage, in: Quarterly
Journal of Economics, Vol. 114, No. 3, pp. 941-975.

Pakes, Ariel and Zvi Griliches (1980): Patents amd R&D at the Firm Level: A
First Report, in: Economic Letters, Vol. 5, No. 4, pp. 377-381.

Popp, David (2002): Induced Innovation and Energy Prices, in: American Eco-
nomic Review, Vol. 92, No. 1, pp. 160-180.

Popp, David and Richard G. Newell (2012): Where does Energy R&D come from?
Examining Crowding out from Energy R&D, in: Energy Economics, Vol. 34, No.
4, pp. 980–991.

Popp, David, Richard G. Newell and Adam B. Jaffe (2010): Energy, the Environ-
ment and Technological Change, in: Bronwyn H. Hall and Nathan Rosenberg
(eds.), Handbook of the Economics of Innovation, Ch. 21, pp. 873-937.

Schneider, Cédric and Reinhilde Veugelers (2010): On Young Highly Innova-
tive Companies: Why They matter and how (not) to Policy Support them, in:
Industrial and Corporate Change, Vol. 19, No. 4, pp. 969–1007.

Voigt, Sebastian, Enrica De Cian, Michael Schymura, and Elena Verdolini (2014):
Energy Intensity Developments in 40 Major Economies: Structural Change or
Technology Improvement?, in: Energy Economics, Vol. 41, pp. 47–62.

Wooldridge, Jeffrew M. (1997): Multiplicative Panel Data Models Without the
Strict Exogeneity Assumption, in: Econometric Theory, Vol. 13, No. 5, pp. 667-
678.

27


