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Abstract

Weitzman’s [15] search model requires that, conditional on stopping,

the agent only takes boxes which have already been inspected. We relax

this assumption and allow the agent to take any uninspected box without

inspecting its contents when stopping. Thus, each uninspected box is now

a potential outside option. This introduces a new trade-off: every time the

agent inspects a box, he loses the value of the option to take it without

inspection. Nevertheless, we find that, under conditions common in the

search and information acquisition literature, boxes are inspected following

the same order as in Weitzman’s rule; however, the stopping rule is different,

and we characterize it. Moreover, we provide additional results that partially

characterize the optimal policy when these conditions fail.
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1 Introduction

Weitzman’s [15] model has been used in a wide variety of situations (see Olszewski

[11], and the references therein) that fit the following framework: an agent pos-

sesses N boxes, each of which contains an unknown prize, he can search for prizes

sequentially at a cost, and search is with recall. Weitzman characterizes the opti-

mal search rule, which is defined by an order in which boxes are inspected, and a

stopping rule: boxes are assigned reservation values, they are inspected in descend-

ing order of their reservation values, and search stops when the maximum sampled

prize is greater than the maximum reservation value amongst uninspected boxes.

An assumption in Weitzman [15] is that the agent cannot take a box without first

inspecting its contents. This assumption is responsible for the simplicity of the

rule, and it restricts the applications of the model (see Section 2 for examples).

Our paper addresses Weitzman’s search problem without this assumption. Within

this framework, we show that, under conditions commonly used in the search and

information acquisition literature, the optimal order coincides with Weitzman’s.

However, the optimal stopping rule is different and we characterize it (see Section

1.1, and Propositions 1, 2 and 3 in Section 5).

Before discussing our results in detail, consider the following example. Say the

agent is a student who has to make a choice between schools A and B, to which

he has been admitted to, or not going to school (call this option Z). The student

has the option of attending the visit day at each institution and finding out how

suitable a match the school is. This requires effort and time, which are costly to

the agent. We interpret each school as a box, how good a match the school is as

the prize in the box, attending the visit day as inspecting a box, and the effort

and time invested as the box’s inspection cost. Weitzman’s assumption implies

the agent can only choose from programs whose visit day he has attended.

To make the example more concrete assume that each school’s distribution over

prizes is given by the following table, based on an example by Postl [13]:
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A Prize 1 2 5
Probability 0.25 0.50 0.25

Inspection cost
0.25

B Prize 0 3
Probability 0.50 0.50

Inspection cost
0.25

Z Prize xZ
Probability 1

Inspection cost
0

Table 1: Prize distribution for each school

Assume, for now, that xZ = 0. Under Weitzman’s assumption, it is easy to

show that the following is the optimal policy: school A should be visited first;

if the prize is xA = 5 search stops, while if the prize is xA ∈ {1, 2}, the agent

visits school B and chooses the school with the highest realized prize. To see this,

first, note that if search starts with school A, it should stop if the realized prize

is xA = 5: visiting school B is costly, and the highest feasible prize is xB = 3.

Second, if the realized prize at school A is xA ∈ {1, 2}, it is worth visiting school

B as well: visiting foregoes xA + 0.25 which is outgained by the expected gain

0.5× xA + 0.5× 3. Third, notice it is optimal to visit at least one school: visiting

school A alone yields expected utility 2.5− 0.25 = 1.75 > 0. Fourth, it is optimal

to visit school A first: since the agent may obtain a prize xA = 5, and prizes can’t

be collected without inspection, it is optimal to start search with A. Moreover, it

can be shown that, for any xZ , if it is optimal to visit any school, the agent should

visit school A first; the inspection order is independent of the value of xZ .

However, a student always has the option to accept admission to a school without

attending its visit day, and this may be optimal. In this example, taking into

account this option changes the optimal search rule when xZ = 0. In this case,

school B should be visited first; if the prize is xB = 0 search stops, and school A is

selected without inspection, while if the prize is xB = 3, the agent visits school A

and chooses the school with the highest realized prize. We show this in five steps.

First, conditional on visiting school B first, if xB = 0, it is optimal to accept school

A without visiting it: since xA > 0, school A dominates school B with probability

1. Second, by a similar argument as before, conditional on xB = 3, visiting school

A and selecting the best school is optimal. Third, if the agent visits school A first,

the optimal continuation policy is the one in the previous paragraph: (i) if xA = 5,

it is clear that school A dominates school B, (ii) if xA = 2, visiting school B and
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choosing the best school dominates stopping and accepting school A (which is the

best alternative conditional on stopping), and (iii) if xA = 1, visiting school B and

choosing the best school dominates accepting school B without visiting it. Fourth,

it is optimal to visit at least one school: visiting school A first, and following the

optimal continuation, dominates accepting school A without visiting it. Finally, it

is optimal to visit school B first: visiting school A has a benefit (he might discover

xA = 5 and can save the cost of visiting school B) and a cost (he could have

visited school B, learned that xB = 0, and saved the inspection costs of A). The

parameters in the example imply that the cost of visiting A first outweighs the

benefit. Since at least one school should be visited (by step 4), the agent must

start search with B. Steps 1 and 2 complete the description of the optimal search

rule.

We conclude the example with two remarks. First, we could have tried an

alternative method to prove that the above rule is optimal. Namely, create, for

each school, a virtual school with zero inspection cost, and a prize equal to the

mean prize in that school. Then, treat this problem as a search problem with

four schools (boxes), and use similar arguments as in the first part of the example.

Section 1.3 discusses why this approach does not work in our setting. Second,

note that, contrary to Weitzman’s model, in which the value of xZ only determines

whether it is optimal to search or not, the optimal search order may also depend

on xZ in our setting. In particular, if xZ = 2.1, the optimal policy coincides with

Weitzman’s. When xZ = 0, and the agent finds out that xB = 0, visiting school

A has no value. By contrast, when xZ = 2.1, and the agent finds out that xB = 0,

then, by not committing to accepting school A without visiting it first (which he

values at 2.5), the agent has the option of choosing whatever is best between going

to school A, and not going to school at all (exercising this option yields utility
1
4
×5 + 3

4
×2.1 = 2.575). Since the agent visits school A regardless of xB, the same

arguments as before show that Weitzman’s policy is optimal.

4



1.1 Discussion of results

In our model, each box is characterized by two cutoff values, defined formally in

Section 3.2 (see equations (1)-(2)), and represented in Figure 1 below. The first,

the reservation value (denoted by xR), is the value of the maximum previously

sampled prize that would make the agent indifferent between inspecting the box

and taking the sampled prize. It reflects the trade-off between exploration and

exploitation: by inspecting the box, the agent may obtain a higher reward (explo-

ration), but this comes at a cost since inspection is not free (exploitation). It is not

optimal to inspect the box if the maximum sampled prize is above the reservation

value. The second cutoff, which we call the box’s backup value (denoted by xB),

is the value of the maximum previously sampled prize that would make the agent

indifferent between inspecting the box and taking it without inspection. It reflects

the trade-off between insurance and exploration: by taking the box without inspec-

tion, the agent receives a certain expected payoff without paying the inspection

costs (insurance), but by inspecting the box, he learns its contents (exploration).

The agent takes the box without inspecting it first if the maximum sampled prize

is below the box’s backup value.

Figure 1 illustrates the search/stopping regions as a function of the maximum

sampled prize, z, when there is only one box left to inspect with mean µ:

xB µ xR

Stop search and take µ

Inspect box

Stop search and take z

z

Figure 1: Optimal policy for one box

In general, the order of xB, x
R is not determined; though, it must be the case

that µ ∈ [min{xB, xR},max{xR, xB}]. Assumption 1 in Section 3.2 implies that

xB < xR. This assumption rules out uninteresting cases (see Appendix A.4 for

details).

Without further assumptions, the solution for one uninspected box cannot be

applied inductively to the case of N boxes. While Weitzman [15] shows that boxes
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should be inspected in decreasing order of their reservation values, this is not nec-

essarily the case in our model. Whenever the agent decides which box he inspects

next, he foregoes the option of taking that box without inspection. The agent

would like to inspect boxes in increasing order of their backup values, since boxes

with higher backup values are the ones that, without inspection, he values the

most. Since the boxes with high reservation values might also be the boxes with

high backup values, this introduces a trade-off when deciding which box to sample

next; how this trade-off is resolved depends on the available boxes and the already

sampled prizes, and determines in which order boxes are inspected. Hence, the

problem of finding the optimal search policy without imposing further assumptions

is intractable.1

Our contribution lies in identifying conditions under which the optimal order

policy coincides with Weitzman’s. These conditions are common in the search and

information acquisition literature. However, the optimal stopping rule is different,

and we characterize it (see Section 5, Propositions 1-3). We also provide a num-

ber of additional results that partially characterize the optimal policy when the

conditions of Propositions 1-3 fail (see Section 4, Lemmas 1-3).

Proposition 1 in Section 5 states that if, given any two boxes i, j, box i has a

higher reservation value than box j if, and only if, box i has a lower backup value

than box j, then the optimal order policy coincides with Weitzman’s [15], and

his stopping rule applies to all but the last box. As explained, Weitzman’s order

requires inspecting first boxes with high reservation values, while boxes with high

backup values are the best to take without inspection. Therefore, if the box with

the highest reservation value is the box with the lowest backup value, then, when

inspecting this box, the agent never foregoes the option of taking without inspec-

tion his best backup. Proposition 1 holds if, for example, given any two boxes the

prize distribution of one box is obtained by a mean preserving spread of the prize

distribution of the other, and all boxes share the same inspection cost. On the

one hand, boxes with higher ‘‘variance’’ are better for inspection since the agent

1Indeed, the search problem can be cast as a multi-armed restless bandit, i.e. a multi-armed
bandit where, conditional on pulling one arm, the states of all arms may change. This class of
bandit problems is shown to be P-SPACE hard in [12]. Indeed, our paper may be seen as a
contribution to the restless bandit literature by providing instances of a restless bandit problem
where an exact solution can be computed.
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can get better draws; on the other, these are the boxes that are not good backups:

they can also contain worse draws. The mean preserving spread assumption is

used in Vishwanath [14] to obtain the reservation value rule in her parallel search

model, while Chade and Smith [4] apply it in their simultaneous search model.

Under the conditions for Propositions 2 and 3, given any two boxes i, j, box i

has a higher reservation value than box j if, and only if, box i has a higher backup

value than box j. The conditions are: (i) all boxes have the same binary prizes,

same inspection cost, and differ on the probability of obtaining the highest prize

(Section 5, Proposition 2), or (ii) there are only two boxes which share the same

inspection cost, and prizes normalized by their mean are distributed according to

the same symmetric distribution (Section 5, Proposition 3). The conditions in (i)

allows us to extend Chade and Smith’s [4] simultaneous search model with binary

prizes to our setting. Indeed, while their model is well suited to analyze the de-

cision of which colleges to apply to, our model can be used to determine how to

sequentially acquire information on the schools the agent has been admitted to.

Unlike Proposition 1, where the optimal stopping rule coincides with Weitzman’s

for all but the last box, the agent may choose to stop, and take a box without

inspection, before reaching the last box under the conditions of Propositions 2 and

3. Stopping and taking a box without inspection is optimal in (i) whenever all

realized prizes coincide with the lowest possible prize, the maximum realized prize

is less than the highest backup value amongst uninspected boxes, and the value of

inspecting the box with the highest reservation value and proceeding according to

our rule is less than this box’s backup value. The rule’s complexity, compared to

Weitzman’s, is because continuation values depend on the combination of realized

prizes and backup values of uninspected boxes.

Our results, which analyze cases in which Weitzman’s order remains optimal, are

valuable for two reasons. The first is tractability: when Weitzman’s order is not

optimal, the problem becomes intractable and not useful for applications. Second,

the conditions on primitives that are sufficient for our results to hold coincide with

assumptions that are common in the search and information acquisition literature.

In those settings, Weitzman’s order is optimal without loss of generality.

Besides our results on when Weitzman’s order policy is still optimal, we provide

a number of additional results that partially characterize the optimal policy when
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the conditions of Propositions 1-3 fail, and are presented as lemmas (see Section

4). Lemmas 1 and 2 in Section 4 illustrate the role of the backup value in this

search problem. Indeed, if the maximum sampled prize is higher than the backup

value (not the mean) of the remaining uninspected boxes, then Weitzman’s sam-

pling policy is optimal in the continuation search problem, and if it is optimal

to stop and take a box without inspection, it has to be that this box is the one

with the highest backup value. Lemma 3 illustrates the nature of deviations from

Weitzman’s ordering of boxes.

1.2 Related Literature

To the best of our knowledge, this is the first attempt to provide a solution to

this search problem in its general form, without restricting the number of boxes

or the inspection costs. Postl [13] postulates this search problem explicitly within

the context of a principal-agent model. He focuses on the two-box version of our

search problem, and assumes boxes have equal inspection costs. He discusses an

analogue of Proposition 1 in this simplified setting. Proposition 1 in our paper

generalizes this result, showing that it is not necessary to assume two boxes nor

that the boxes have equal costs.

Regarding the search literature, the most relevant paper for us is Klabjan, Ol-

szewski and Wolinsky [7], who study optimal search for attributes. Contrary to our

setting, the agent’s utility function is given by the sum of the prizes (attributes)

in their model. The agent has to choose whether or not he acquires an object that

is characterized by a series of attributes (boxes), which he can inspect by paying a

cost. The agent does not have to inspect all attributes in order to make his deci-

sion: he may decide to accept the object, taking the rest of the attributes without

inspection. Under sequential search, the authors characterize the optimal solution

when there are only two attributes whose distributions are symmetric around 0.

The rule coincides with inspecting attributes in decreasing order of their reserva-

tion value (see Section 5, Proposition 3, for a similar result in our setup).

The double-sided stopping rule in Figure 1 has appeared in previous work in the

mechanism design literature (Chade and Kovrijnykh [3], Krahmer and Strausz [8]),
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though none of these papers provide a solution for the search problem analyzed

here. It also appears in Klabjan, Olszewski and Wolinsky [7] up to a relabelling

of what the outside option (z) is in their paper.

1.3 A “solution”

To further explain the difficulties involved, it is useful to present what might ap-

pear to be a natural approach to solving our search problem. We then explain

why this approach is flawed. Assume there are two boxes. For each box i ≤ 2,

create a virtual box î which has zero inspection cost, and contains a prize equal

to the mean prize in box i. This construction leads to a set of 4 boxes. Then one

could apply Weitzman’s rule to the new set of boxes. This “solution” is intuitive:

virtual box î represents the option of taking box i without inspection. Indeed, if

the agent does so, he does not pay the inspection cost of box i, and he receives a

prize, in expectation, equal to the mean prize in box i.

Assume, without loss of generality, that the four boxes’ reservation values are

such that Weitzman’s rule indicates inspecting box 1 first, then box 1̂, and then

the remaining boxes.2 Moreover, assume that after inspecting box 1, the prize is

below the reservation value of box 1̂. Weitzman’s rule indicates the agent should

inspect box 1̂ next. However, inspecting box 1̂, that is, taking box 1 without in-

spection, is no longer an option for the agent.

There is another reason why this approach is flawed. Since the virtual boxes are

free to take, and there is no uncertainty regarding their contents, the reservation

values of these boxes coincide with the prize inside the box. This is saying that

the value of the option of taking the box without inspection coincides with the

mean value of the box’s prize distribution. Part of our contribution is to show

that this option value is given by the backup value of the box, and not the mean

of the prize inside the box (Section 4, Lemmas 1 and 2).

The rest of the paper is organized as follows. Section 2 illustrates several appli-

cations where this relaxation of Weitzman’s model is natural and relevant; it may

be skipped without loss of continuity. Section 3 describes the model, provides a

2Indeed, this is the case in the school choice example outlined before.
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formal definition of the cutoffs and intuition of their role in the search problem.

Section 4 provides a series of properties the optimal sampling policy must satisfy

regardless of the environment. Section 5 focuses on the optimal order and stop-

ping policies, and contains our main results. The statements of Propositions 1-3

are presented informally to streamline notation; the Appendix contains the formal

statements. Section 6 concludes. Proofs are relegated to the Appendix.

2 Examples

Besides the school choice example already outlined, this extension of Weitzman’s

search problem is useful in other settings. We consider three examples in detail,

though it is clear that our relaxation is useful in other settings. The examples are

based on existing papers in the search and information acquisition literature. This

highlights that our relaxation is useful for settings that are already being studied,

and may provide new insights to these. It is worth noting that none of these papers

solve for our search problem within their setup. The authors either (i) consider

a one-box setup (first example), (ii) analyze a mechanism design setting where

incentive compatibility implies the mechanism designer learns the unknown values

of the prizes without having to inspect the boxes (second example), or (iii) they

maintain Weitzman’s setting (third example).

The first example is pre-project planning (see Krahmer and Strausz [8], and the

references therein). An agent wants to complete a project, which he values v. He

can complete it with expected cost µ. The agent can invest in pre-project planning

to observe the true production cost x. Pre-project planning costs k > 0. If the

agent has the option to complete the project without further investigations, then

he would only acquire information for intermediate values of the mean cost. If

the mean cost is either too low or too high, then costly information acquisition

is deemed unnecessary. If, on the contrary, he can only complete the project

upon acquiring information, he would choose to acquire information more often.

In particular, whenever he was willing to complete the project without acquiring

information, he now acquires information first. In this sense, Weitzman’s model

makes the agent acquire too much information.
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The second example is the mechanism design model with costly state verification

of Ben Porath, Dekel and Lipman [2]. A dean has one job slot to allocate to one

of N departments. Each department has private information about the quality

of its candidate, and wants his candidate to obtain the job slot regardless of the

candidate’s quality. The dean can verify at a cost the quality of any department’s

candidate. In terms of our setting, the dean is the agent, the departments are the

boxes, the candidate’s quality is the prize inside the box, and the verification cost is

the cost of inspecting the box. As long as the dean has the option of allocating the

job slot to a department without verifying its candidate’s quality, the dean faces

the same decision problem as the one presented in our paper. It is worth noting

that what we define as a backup value plays a key role in the optimal mechanism

characterized in [2], despite the differences in the setup. Indeed, if all departments

have the same inspection cost, then the optimal mechanism assigns the slot to the

department with the highest backup value, if all announced values are below this

cutoff; it requires the principal to inspect any department that announces a value

above this cutoff, and assign it the slot if the report is truthful 3.

The third example is the social search model of Mueller-Frank and Pai [10].

In their model, each member of a group selects sequentially and irreversibly an

action from a finite set. Each agent freely observes the actions already chosen by

others before making his choice. Actions are ex-ante identical, and their utilities

are unknown. Each agent, in order to select an action, must pay a cost and find

out its value. That is, each action represents a box in terms of our model, and

each agent faces a search problem that resembles Weitzman’s when choosing which

action to select. If we consider the case in which the different actions correspond

to different restaurants, agents observe other agents’ choices by observing their

check-ins at Yelp, and learning a restaurant’s quality corresponds to reading the

online reviews, then it is natural to assume that an agent can choose to go to a

restaurant without reading the reviews.

By similar relabellings the search deterrence model of Armstrong and Zhou [1],

and the limited attention model of De Clippel, Eliaz and Rozen [5] can be cast

in terms of our setup, and represent other applications where the assumption of

3A similar intuition applies if the departments have different inspection costs, but now the
cutoff depends on both the backup value and the inspection cost.
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being able to choose an option without inspection is natural.

3 Model and preliminary lemmas

An agent possesses a set N = {1, ..., N} of boxes, each containing a prize, xi, dis-

tributed according to distribution function Fi, with mean µi. Box i has inspection

cost ki. Fi and ki are known, however xi is not. Prizes are distributed indepen-

dently of one another, and we assume that, for all i ∈ N ,
∫
|xi|dFi(xi) < +∞.

The agent has an outside option, x0, which is normalized to 0. We assume the

agent is risk neutral, and given a vector of realized prizes z = (z1, ..., zn), his utility

function is given by u(z) = maxj∈{1,..,n} zj.

3.1 Sampling Policy

The agent inspects boxes sequentially, and search is with recall. Given a set of

boxes U (“U” stands for uninspected), and a vector of already sampled prizes z,

the agent decides which box to inspect first, if any. Let σ(U , z) denote such box.

If he inspects box σ, he pays kσ, and observes its prize, xσ. Having observed xσ,

the agent decides whether to stop search, which we denote by ϕ(U , z ∪ {xσ}) = 1,

or to continue search (ϕ = 0). If ϕ = 1, the agent chooses between xσ, any prize

in z, and any uninspected box in U\{σ}. If ϕ = 0, the agent chooses which box

to inspect next out of the boxes in U ′ ≡ U\{σ}, taking into account that the

vector of realized prizes is z ∪ {xσ}. Given a vector z, we denote by z, its highest

coordinate. Given (U , z), the strategy σ, ϕ, together with the distributions {Fi}i∈U
determine a probability distribution over continuation paths in the natural way.

Throughout, we denote with stars the optimal strategies.

Given a decision node described by (U , z), each strategy σ, ϕ determines the

agent’s expected payoff at that decision node, which we denote V (U , z). We use

stars to denote the payoff V when it results from using the optimal policy in (U , z).
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3.2 Cutoffs

Suppose the agent has only one box left to inspect, i, with expected value µi.

Recall z is the maximum sampled prize, i.e., his outside option. Suppose z > µi;

hence, conditional on stopping the agent would take z. The agent inspects the last

box if, and only if, the following holds:

z ≤
∫ z

−∞
zdFi(xi) +

∫ +∞

z

xidFi(xi)− ki ⇔ ki ≤
∫ +∞

z

(xi − z)dFi(xi)

Define the box’s reservation value to be the number xRi such that:

ki =

∫ +∞

xRi

(xi − xRi )dFi(xi) (1)

i.e., xRi is the value of the outside option that leaves the agent indifferent between

stopping and taking prize xRi , and inspecting box i. The agent inspects the last

box whenever z ≤ xRi .

Consider now the case in which z ≤ µi. Thus, if the agent stops, he takes the

box without inspection. Therefore, the agent inspects the last box if, and only if

the following holds:

µi ≤ −ki +

∫ z

−∞
zdFi(xi) +

∫ +∞

z

xidFi(xi)

⇔
∫ +∞

−∞
xidFi(xi) ≤ −ki +

∫ z

−∞
zdFi(xi) +

∫ +∞

z

xidFi(xi)

⇔ ki ≤
∫ z

−∞
(z − xi)dFi(xi)

The first line of the above expression makes clear that, conditional on inspecting

the box, the agent loses the option of getting a payoff equal to µi. Indeed, the

possible prizes are either z, or the new sampled prize in the expression on the right

hand side. Define the backup value to be the value xiB such that:

ki =

∫ xiB

−∞
(xiB − xi)dFi(xi) (2)
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i.e., xiB is the value of the outside option that leaves the agent indifferent between

inspecting box i and taking it without inspection. The agent inspects box i if

xiB ≤ z; otherwise, he takes it without inspection. Throughout, we make the

following assumption to ensure that xiB ≤ µi ≤ xRi always holds:

Assumption 1. (∀i ∈ N ) : ki ≤
∫ µi
−∞(µi − xi)dFi(xi)

If the set of boxes N contains a (at least one) box that violates Assumption 1,

then said box is (boxes are) never inspected (see Appendix A.4 for a proof, and

for a discussion of why Assumption 1 rules out uninteresting cases).

Notice that, when there is one box left, the optimal policy is determined by

comparing the maximum sampled prize, z, with the cutoffs, xB, x
R. This is sum-

marized in Figure 1 in Section 1.1, and is recorded in Lemma 0 below.

Lemma 0. Assume that N = 1, and let z be the agent’s outside option. The

optimal policy is as follows:

1. If z < xB, the agent takes the box without inspection.

2. If xB ≤ z ≤ xR, the agent inspects the box, and keeps the maximum prize

between z and the sampled prize x.

3. If xR < z, the agent does not inspect the box, and keeps his outside option.

Results similar to Lemma 0 have appeared in the one-box-settings of Chade and

Kovrijnykh [3], and Krahmer and Strausz [8], in the two-box setting of Postl [13],

as well as in the attributes model of Klabjan, Olszewski and Wolinsky [7].

We can use Lemma 0 to provide an intuition for why we refer to xiB as box i’s

backup value. The next table represents, for different values of the outside option

z, the payoff the agent obtains by applying the optimal policy:

z < xiB xiB ≤ z ≤ xRi xRi < z
xRi < xi µi xi − ki z

xiB ≤ xi ≤ xRi µi max{xi, z} − ki z
xi < xiB µi max{xi, z} − ki z

Table 2: Payoff obtained by applying Lemma 0
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Table 3 below is obtained from Table 2 by applying equation (1) to the middle

column, which allows us, for each value of z, to substitute ki with xi − xRi when

xi > xRi and with 0 otherwise. The subsequent table, Table 4, is obtained from

Table 3 by rewriting equation (2) in the following way:

µi = −ki +

∫ +∞

xiB

xidFi(xi) +

∫ xiB

−∞
xiBdFi(xi) (3)

Equation (3) then allows us to replace µi in the first column by xi − ki when

xi ≥ xiB and by xiB − ki otherwise. Finally, we also replace ki as we did in

creating Table 3.

z < xiB xiB ≤ z ≤ xRi xRi < z
xRi < xi µi xRi z

xiB ≤ xi ≤ xRi µi max{xi, z} z
xi < xiB µi max{xi, z} z

Table 3: Table 2 replacing ki in column 2

z < xiB xiB ≤ z ≤ xRi xRi < z
xRi < xi xRi xRi z

xiB ≤ xi ≤ xRi xi max{xi, z} z
xi < xiB xiB max{xi, z} z

Table 4: Table 3 replacing µi and, then, ki in column 1

We remark on two features of Table 4. First, the reservation value represents

the highest prize the agent expects to get from inspecting box i, after internalizing

inspection costs. Second, if the agent didn’t have the option of taking box i without

inspection, the first column of Table 2 would have max{xi, z}−ki in each row since

z < xRi . Hence, by similar steps, the first and second columns of Table 4 would

be equal; in particular, when z and xi are both less than xiB, the payoff would be

max{xi, z} < xiB (after internalizing inspection costs). However, when the agent

has the option of taking box i without inspection, the payoff he obtains when z

and xi are both less than xiB is xiB, after internalizing that he did not pay box

i’s inspection cost. This is the reason why we refer to xiB as box i’s backup value:

when the agent takes box i without inspection, it is as if his payoff is bounded
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below by xiB.

The next subsection provides a different interpretation of the cutoffs. It can be

skipped without loss of continuity, but is useful for intuition.

3.3 A different interpretation of xR and xB

We conclude Section 3 by providing a different interpretation for the cutoffs. Con-

sider again the case in which N = 1. When z > µ, if the agent stops, he chooses

to take z. However, if he inspects the box, he may discover that it contains a

prize better than z, increasing his ex-post payoff by x− z. Thus, by inspecting the

box, the agent avoids rejecting a box that contains a better prize than the outside

option (type I error). Ex-ante, the value of inspecting the box is then given by:

VI(z) =
∫ +∞
z

(x − z)dF (x). When z ≤ µ, if the agent stops, he chooses to take

the uninspected box. However, if he inspects the box, he may discover that the

box contains something worse than z, which yields an ex-post loss of z − x. By

inspecting the box, the agent avoids taking boxes that are worse than what he has

(type II error). Ex-ante, this is worth VII(z) =
∫ z
−∞(z − x)dF (x) to the agent.

Thus, given the outside option, the value of the new information for the agent is

given by:

V (z) =

{
VII(z) if z ≤ µ

VI(z) if z > µ

Hence, the decision whether to acquire information or not is determined by whether

V (z) ≥ (≤)k, as illustrated by the following figure:
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V (·)
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VII(·)

VI(·)
xB xR

Figure 2: The value of information

We have that VII(µ) = VI(µ) since µ :
∫ µ
−∞(µ− x)dF (x) =

∫ +∞
µ

(x− µ)dF (x).

VI(z) represents the value of information in Weitzman’s problem. The higher

the outside option, the lower the value of finding out that the uninspected box

contains a better option. VII(z) represents the value of information when the

agent is considering taking the box without inspecting it first: it decreases with

the difference between the outside option and µ.

The existence of two cutoffs introduces two different priorities for inspecting

boxes. The first is given by the ordering of the reservation values: when the

agent is considering his choice between stopping and taking the highest sampled

prize, or inspecting one more box, it should be the box with the highest xR. The

second is given by the ordering of the backup values: when deciding which box

to take without inspection, in case he finishes search, the agent prefers boxes

with higher backup values (see Lemma 2). Thus, he prefers inspecting boxes with

higher backup values last. Therefore, whenever he decides to search, the agent

must decide which box he inspects next, and which he leaves to take without

inspection, knowing that the first, once inspected, can never be taken without

inspection.
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4 Preliminary Lemmas

Lemmas 1 and 2 below formalize the idea that the backup value of box i represents

the value of the option of taking box i without inspection. To see this, recall that

U is the set of uninspected boxes, and that µi = EFi
x, for each i ∈ U . If, for

all i ∈ U , the maximum sampled prize, z, is greater than µi, from then onwards,

the optimal sampling policy is given by applying Weitzman’s rule to the boxes in

U . Lemma 1 shows that this is not necessary for Weitzman’s rule to be optimal.

Indeed, it states that whenever the maximum sampled prize exceeds the highest

backup value amongst uninspected boxes, the option of taking a box without

inspection has no value to the agent. Hence, Weitzman’s rule is optimal from

that moment on. Lemma 2 shows that, given (U , z), if the optimal policy implies

stopping and taking a box without inspection, then the chosen box, which is the

box with the highest µi in the set U , is also the box with the highest backup value.

Moreover, this is also the box with the highest reservation value. This last part

follows from the following. Lemma 1 implies that, since it is optimal to stop and

take a box without inspection, it has to be that z < maxi∈U xiB, and assumption

1 implies that maxi∈U xiB < maxi∈U x
R
i . Therefore, if the box with the highest

reservation value is not the box with the highest backup value, the agent always

prefers inspecting the first box, and choosing whatever is best between keeping

the prize and taking the second box without inspection to stopping and taking the

second box without inspection.

Lemma 1. Let (U , z) denote the set of boxes, and the vector of realized prizes,

respectively. If (∀i ∈ U) : z ≥ xiB, then Weitzman’s optimal sampling policy is

optimal in all continuation histories.

Lemma 2. Let (U , z) denote the set of boxes, and the vector of realized prizes.

Assume z < maxi∈U xiB. If ϕ∗(U , z) = 1, then it has to be the case that:

arg max
i∈U

xiB = arg max
i∈U

xRi ⊆ arg max
i∈U

µi

Moreover, the sets arg maxi∈U xiB and arg maxi∈U x
R
i are singletons.
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Observe that Lemma 1 also shows that the differences between our search prob-

lem and Weitzman’s arise when the maximum sampled prize falls below the highest

backup value.

Our next result, Lemma 3, shows that there are two reasons why, given a set of

boxes U and a maximum sampled prize z, the agent may deviate from Weitzman’s

order when selecting which box to inspect next. Let l be the box with the maxi-

mum reservation value, and let j 6= l be the box which is inspected now according

to the optimal policy. Then, he expects that after inspecting j, he might either (i)

take box l without inspection in U\{j}, or (ii) continue search in U\{j} whenever

z and xj are below xRl , but deviate yet again from Weitzman’s order.

To understand (i), consider the school choice example in the introduction. There,

the agent inspects school B (box j) first, which is the one with the lowest reser-

vation value. Notice that, if after inspecting school B, the agent observes xB = 0,

then he accepts school A (box l) without inspection. That is, the agent deviates

from Weitzman’s order since he assigns positive probability to accepting school A

without inspection: had he visited school A first, he would have lost the option to

do so.

To understand (ii), consider the following example. Let U = {l, j, i}, let l =

arg maxk∈U x
R
k , and let j be the box which is inspected next according to the opti-

mal strategy. Suppose further that the maximum sampled prize, z < xkB, for some

k ∈ U .4 Lemma 3 states that there exists a sufficiently low value of max{xj, z}
such that the agent finds it optimal, conditional on continuing search, to violate

Weitzman’s order once more, and open box i.5

Lemma 3. Let (U , z) denote the set of boxes, and the vector of realized prizes,

respectively. Assume that σ∗(U , z) = j, where xRj < maxi∈U x
R
i ≡ xRl . Then, it

cannot be the case that σ∗(U\{j}, z ∪ {xj}) = l, and ϕ∗(U\{j}, z ∪ {xj}) = 0,

whenever max{xj, z} ≤ xRl .

4Otherwise, by Lemma 1, Weitzman’s policy is optimal.
5Moreover, by (i), it has to be that, conditional on deviating and inspecting box i, the agent

expects he might take box l without inspection in the continuation.
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5 Optimal Policy: Order and Stopping

Applying Lemma 0 and the results in Section 4 inductively to the case of N boxes

is hard since, as the example in the introduction illustrates, the order in which

boxes are inspected may be history dependent. Nevertheless, we identify conditions

under which the optimal order policy coincides with Weitzman’s [15] after every

history. However, the optimal stopping rule is different, and we characterize it.

Our first result, Proposition 1, requires that, given any two boxes i, j, xRj ≤ xRi

if, and only if, xiB ≤ xjB. Since the box with the highest xR is the box with the

lowest xB, the agent never foregoes taking without inspection a good backup. This

implies that Weitzman’s order is optimal. Moreover, by Lemma 2, we know that

stopping and taking a box without inspection is never optimal when there is more

than one box to be inspected: the box with the highest backup value is never the

box with the highest reservation value. Hence, Weitzman’s stopping rule applies

to all, but the last box. Proposition 1 states the result formally, and Corollary 1

provides conditions under which the conditions in Proposition 1 are satisfied.6

Proposition 1. Fix a set N = {1, ..., N} of boxes. Assume that boxes can be

labelled so that [xiB, x
R
i ] forms a monotone sequence in the set inclusion order.

The following is the optimal policy:

Order If a box is to be inspected next, it should be the box with the highest

reservation value.

Stopping

1. If there is more than one box remaining, stop only if the maximum

sampled prize is higher than the highest reservation value amongst unin-

spected boxes, and take the maximum sampled prize.

2. If only one box remains, stop if the maximum sampled prize is less than

xB or is higher than xR. In the first case, take the remaining box without

inspection; otherwise, take the maximum sampled prize.

6An analogue of Proposition 1 is discussed in Postl [13] for a two-boxes-equal-inspection-costs
setup. We show that the restriction to two boxes or equal inspection costs is not necessary, and
provide meaningful properties of the distributions under which Proposition 1 holds.
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Corollary 1 shows conditions on the primitives such that the ordering of the

cutoffs is the one in Proposition 1.

Corollary 1. Assume {Fi}i∈N is such that if i < i′, then Fi′ is a mean-preserving

spread of Fi. Moreover, assume ∀i ∈ N ki = k. Then, the optimal policy is given

by Proposition 1.

Corollary 1 has an easy interpretation. On the one hand, boxes with higher

dispersion are better for inspection since the agent can get better draws; on the

other, these are the boxes that are not good backups: they can also contain worse

draws. As discussed in Section 1.1, the same assumptions as in Corollary 1 are

used in Vishwanath’s [14] to obtain the reservation value rule in her parallel search

model, and in the working paper version of Chade and Smith [4] to extend their

binary-prize simultaneous search model to one with a continuum of possible prizes.

Remark 1. It is worth noting that something weaker than mean-preserving spreads

is needed for Proposition 1 to hold when all boxes share the same inspection cost.

Indeed, it suffices that if i < i′, then, for all convex functions with non-negative

range φ : R 7→ R+,
∫
φ(x)dFi(x) ≤

∫
φ(x)dFi′(x).7

The two-box case serves to illustrate the reasoning behind Proposition 1, and

serves as a proof sketch for the N -box case.8 To see this, assume that N = 2, and

denote the two boxes i = 1, 2. Consider the case in which xR2 ≤ xR1 . Weitzman’s

rule states the agent should inspect box 1 first. We want to see when we can have

the same property. Once the agent inspects box i, the optimal policy is to take xi

whenever xi ≥ xRj , inspect box j 6= i if xjB ≤ xi ≤ xRj , and take box j without

inspection otherwise (see Lemma 0). Denote by Πij this payoff. The difference

7Mean preserving spreads, or the convex-order as it is defined in Ganuza and Penalva [6], and
Li and Shi [9], requires the condition to hold for all convex functions.

8A similar calculation appears in Postl [13].
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Π12 − Π21 determines which box should be inspected first, and is given by:

Π12 − Π21 =

∫ +∞

xR2

∫ +∞

xR2

(min{x1, x2, x
R
1 } − xR2 )dF1dF2︸ ︷︷ ︸

ΠW
12 −ΠW

21

(4)

+

∫ max{x1B ,0}

−∞

∫ max{x1B ,0}

−∞
(max{x1, x2,max{x2B, 0}} −max{x1B, 0})dF1dF2︸ ︷︷ ︸

(Π12 −ΠW
12 )− (Π21 −ΠW

21 )

where the terms max{xjB, 0}, j = 1, 2 cover the cases in which the optimal policy

after inspecting box i 6= j involves not taking box j without inspection.

The two terms in (4) correspond to the two trade-offs the agent has to balance

when deciding which box to inspect first. The first term is identical to what

appears in Weitzman’s [15] model, and it favors inspecting box 1 first since it is

the box with the highest reservation value. It is the difference between inspecting

box 1 first and following Weitzman’s policy (denote this by ΠW
12), and inspecting

box 2 first and following Weitzman’s policy (denote this by ΠW
21).

The second term corresponds to the trade-off between taking box 1 or box 2

without inspection, and it favors the box with the highest backup value. It is

the difference between two terms. The first one is Π12 − ΠW
12 : it measures the

improvement in the agent’s payoff from having the option to take box 2 without

inspection. The second one is Π21 −ΠW
21 . The difference between these two terms

yields the second term in (4). It shows that, if x1B < x2B, then adding the option

of taking a box without inspection improves more the value of starting search with

box 1 than the value of starting search with box 2 since, by starting search with

box 1, the agent retains the option of taking the better backup box (box 2) without

inspection.

Equation (4) makes clear that if box 1 is more efficient for search (i.e. xR2 < xR1 ),

and box 2 is a better backup than box 1 (i.e. x1B < x2B), the difference is

unambiguously non-negative. Proposition 1 shows this reasoning can be extended

to an arbitrary number of boxes N .

Proposition 1 is not enough to characterize the optimal sampling policy in every

environment: we need to consider the case in which xR2 < xR1 and x2B < x1B.
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When x2B < x1B, inspecting box 1 first implies the agent has to forego his best

backup box. There are two cases of interest in which, despite this trade-off being

present, the optimal policy still involves inspecting boxes according to Weitzman’s

order. The first case considers boxes with only two prizes (Proposition 2). The

second case is when the agents possesses 2 boxes, both boxes share the same

inspection cost, and prizes normalized by their mean are distributed according to a

symmetric distribution (Proposition 3). Similar conditions have been used before

in search models: Chade and Smith [4] use binary prizes in their simultaneous

search model, while Klabjan, Olszewski and Wolinsky [7] consider two boxes with

symmetric distributions. Under these conditions, given any two boxes i, j it holds

that xRj ≤ xRi if, and only if, xjB ≤ xiB. The propositions show that the trade-off

between inspecting the box with the highest reservation value and taking it without

inspection is resolved either by continuing search with this box, or stopping search

and taking this box without inspection; the agent never finds it optimal to search

boxes in a different order.

Proposition 2. Fix a set N = {1, ...N} of boxes. Assume that boxes have binary

prizes, i.e. xi ∈ {y, x}, 0 < x, y < x, P (xi = x) = pi, and all boxes have the same

inspection cost. The following is the optimal policy:

Order If a box is to be inspected next, it should be the box with the highest

reservation value.

Stopping Search stops when: (i) the maximum sampled prize is x, or (ii)

the maximum sampled prize is below the highest backup value, and the con-

tinuation value of inspecting one more box according to the optimal policy is

below the highest backup value amongst uninspected boxes. If (i), take the

maximum sampled prize; if (ii), take the box with the highest backup value

without inspection. Moreover, whenever the maximum sampled prize is below

the highest backup value, if the second highest reservation value is smaller

than the highest backup value amongst uninspected boxes, (ii) holds.

Contrary to Weitzman’s model, in which, given z, the highest reservation value

is the only number needed to determine whether to stop search or not, the rule

in Proposition 2 requires calculating the value of continuing search to determine
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whether to stop or not. The last statement in Proposition 2 provides a sufficient

condition under which looking at the reservation and backup values alone suffices

to know when to stop search.

Proposition 3. Let N = {1, 2}, and assume prizes xi ∼ F (· − µi), where F has

pdf f , which is symmetric around 0. Moreover, assume that ki = k > 0 for all

i ∈ N . Then, if xR2 ≤ xR1 , the following is the optimal policy:

Order Box 1 is inspected first.

Stopping If x2B ≥ 0, search stops when x1 is either (i) less than x2B, or

(ii) higher than xR2 . If (i), take box 2 without inspection; if (ii) take x1. If

x2B < 0, search stops only if (ii). Search starts if, and only if, µ1 < Π12.

The intuition for why Proposition 3 holds lies in equations (1),(2) and (4). Equa-

tion (1) shows that the reservation value depends only on the upper tail of the

probability distribution over prizes, while equation (2) shows that the backup value

depends only on the lower tail of the distribution. A distribution with a fat upper

tail has a high reservation value, and a distribution with a fat lower tail has a low

backup value. Equation (4) then shows that the choice to start search with box

1 or 2 depends on the weight each distribution puts on the upper and lower tails.

When distributions coincide up to the mean, and are symmetric, both tails are

treated “equally” by both distributions, and when x2B ≥ 0, both terms exactly

offset each other. When x2B < 0, and, hence, by Lemma 1, Weitzman’s rule ap-

plies to box 2, after inspecting box 1, the first term in (4) dominates the second.

Propositions 2 and 3 suggest that whenever N = {1, 2} such that F1 first-order

stochastically dominates F2, and k1 = k2, then box 1 should be inspected first, if

any. The next example shows that this is not true:

Example. Suppose N = {1, 2}, and X1 = X2 = {0, 2, 10}. Suppose P (X1 = 2) =

P (X2 = 2) = 0.2, and P (X1 = 10) = 0.7, P (X2 = 10) = 0.5, so that F1 >FOSD F2.

Assume that k1 = k2 = 1. It can be shown that x1B = 14
3
> x2B = 2.8, and xR1 =

60
7
> xR2 = 8. Notice that after inspecting box i, search always stops: the agent

takes the inspected box when xi = 10, and takes box j without inspection whenever

xi ≤ 2. Since µ1 < xR2 , one can show that inspecting box 2 first dominates taking

box 1 without inspection; moreover, inspecting box 2 first dominates inspecting
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box 1 first since: 8.62 = 0.7× 10 + 0.3× µ2 < 0.5× 10 + 0.5× µ1 = 8.7.

Contrast this with Weitzman’s model where if Fi first-order stochastically dom-

inates F ′i , and ki = ki′ , then box i is inspected first. This is because it is more

probable to obtain a higher prize under Fi than under Fi′ , and the agent has to

inspect boxes in order to obtain prizes in Weitzman’s model. However, Fi also has

a higher backup value than Fi′ : box i has lower probability of yielding a low prize

when taken without inspection. Therefore, a first-order stochastic dominance shift

makes box i both more attractive to search and to take without inspection. The

example shows that the trade-off is not always resolved in favor of either inspecting

first box i, or taking box i without inspection and not searching at all, as is the

case in Propositions 2 and 3. It also shows why Corollary 1 cannot be relaxed to

second-order stochastic dominance.

6 Conclusions

We consider a relaxed version of Weitzman’s search problem; namely, we allow

the agent to take any uninspected box without inspecting its contents first upon

stopping. We show that, under conditions common in the search and information

acquisition literature, the optimal policy involves following Weitzman’s inspection

order, and characterize the optimal stopping rule in those cases. Moreover, we

provide properties of the optimal policy that must hold across all environments.

A Appendix

We denote by | · | the cardinality of a set in what follows.

A.1 Proof of Propositions 1 and 2

Proposition1. Fix a set U of boxes, and let z be the vector of previously realized

prizes. Assume that boxes are labelled so that [xiB, x
R
i ] forms a monotone sequence
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in the set inclusion order, that is i < i′ implies [xiB, x
R
i ] ⊂ [xi′B, x

R
i′ ]. The following

is the optimal policy:

Order σ∗(U , z) = arg max{i|i ∈ U}

Stopping If |U| > 1, ϕ∗(U , z) = 1 if, and only if, z > arg maxi∈U x
R
i . If |U| = 1,

ϕ∗(U , z) = 1 if, and only if, (i) z > arg maxi∈U x
R
i , or (ii) z < arg maxi∈U xiB

Proof. The argument is the same as the one in Weitzman’s proof of Pandora’s

rule. We include it for completeness and since it is used in the proof of Lemma 1.

We proceed by induction on U = |U|. Let P (U) denote the following predicate:

P(U): (∀z)(∀U) : |U| = U , and U is enumerated as in Proposition 1, the order

and stopping rules in Proposition 1 are optimal.

Lemma 0 shows that P (1) = 1. We show that Proposition 1 is valid for

U = 2, and, then, prove the inductive step.

Step 1: P (2) = 1

Recall 2 is the box with the highest label in U . We start by showing that the

stopping rule is optimal. We do so by considering two cases:

z ≥ xR2 Note that if some box i ∈ {1, 2} is inspected, then, by Lemma 0, since

max{z, xi} > xRj , j 6= i, stopping is optimal. Moreover, the payoff from

inspecting i and stopping is less than z since:

−ki +

∫
max{xi, z}dFi(xi) < z

by equation (1). Therefore, when xR2 ≤ z it is optimal to stop search.

z < xR2 If max{z,maxi µi} 6= µ2, then inspecting box 2 alone, and stopping domi-

nates stopping and obtaining payoff max{z,maxi∈U µi} by (1). If max{z,maxi µi} =

µ2, since max{z, µ1} > x1B ≥ x2B, by equation (2) we have that inspecting

box 2 and stopping dominates obtaining payoff µ2.

Finally, it remains to show that inspecting box 2 first is optimal whenever z < xR2 .

This follows from equation (4), replacing 0 with z.

Step 2: P (U) = 1⇒ P (U + 1) = 1
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Assume P (U) is true. Fix U as in P (U + 1), and recall U + 1 = arg max{i|i ∈ U}.
Note that, by assumption, U + 1 is the box with the highest reservation value. Let

y = max{z,maxi∈U µi} be the outside option. We show first that the stopping rule

is optimal. We do so by considering two cases.

1. Assume xRU+1 < y, and that box U + 1 is inspected.9 Since µU+1 < xRU+1,

and xRU+1 < y we have that xRU+1 < max{z,maxi∈U\U+1 µi}. Thus,

(∀xU+1) max{z, xU+1,maxi∈U\{U+1} µi} > xRU+1. Since |U\{U + 1}| = U , it

is optimal to stop by the inductive hypothesis. Therefore, the payoff from

inspecting box U + 1 is:

−kU+1 +

∫
max{z, xU+1}dFU+1(xU+1) < z

which follows from (1), since z > xU+1 (see footnote 9). Therefore, it is

optimal to stop.

2. Assume that y ≤ xRU+1. Since, by assumption 1, xkB < µk, and (∀k ∈ U\{U+

1})xU+1B ≤ xkB, it must be the case that y > xU+1B, and max{z,maxi∈U\{U+1} µi} >
xU+1B. Then, inspecting box U + 1 and stopping dominates the payoff the

agent obtains by stopping. If µU+1 = y, this follows from max{z,maxi∈U\{U+1} µi} >
xU+1B, and equation(2); if µU+1 < y, this follows from 1. above.

Now we show that the order in Proposition 1 is optimal. Assume y ≤ xRU+1

(otherwise, we just showed search stops). Let j ∈ U be a box such that xRj < xRU+1,

and let U = arg maxi∈U\{U+1} x
R
i . Consider the following two policies:

P.J Open box j first. There are now U boxes left to be inspected, stop, or continue

search according to the rule described in Proposition 1.

P.U+1 Open box U + 1 first. If x∗U ≤ xU+1, stop. Otherwise, open box j and,

stop or continue search according to the rule described in Proposition 1.

Since the continuation policy is different if there are two or more boxes remaining

after opening U + 1, we prove that the ordering is optimal by considering the case

in which U + 1 = 3, and U + 1 > 3. Moreover, when U + 1 = 3, we focus on the

9Note that, since U + 1 is the box with the highest reservation value, and, by Assumption 1,
(∀k ∈ U)µk < x∗k ≤ xRU+1, y > xRU+1 ⇒ z > xRl
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case in which xUB > z (if this is the case, when box h is the only one left to be

inspected, it may be taken without inspection). When xUB ≤ z, the proof is the

same as in the case in which U + 1 > 3.

When U + 1 = 3, xUB ≥ z, define the following quantities:

πU+1 = P (xU+1 ≥ xRU+1) wU+1 = E[xU+1|xU+1 ≥ xRU+1]
πj = P (xj ≥ xRU+1) wj = E[xj|xj ≥ xRU+1]

λU+1 = P (xRU ≤ xU+1 ≤ xRU+1) ṽj = E[max{xj, µU , z}|xj ∈ [xRU , x
R
U+1]]

λj = P (xRU ≤ xj ≤ xRU+1) ṽU+1 = E[max{xU+1, µU , µj, z}|xU+1 ∈ [xRU , x
R
U+1]]

νU+1 = P (xUB ≤ xU+1 ≤ xRU) vU+1 = E[max{xU+1, µU , z}|xU+1 ∈ [xRU , x
R
U+1]]

νj = P (xUB ≤ xj ≤ xRU) d = E[max{xU+1, xj, µU , z}|xU+1, xj ∈ [xRU , x
R
U+1]]

d = E[max{xU+1, xj, µU , z}|xU+1 ∈ [xUB, x
R
U ]xj ∈ [xRU , x

R
U+1]]

ΦO = −kU + E[max{xU+1, xU , xj, z}|xU+1, xj ∈ [xUB, x
R
U ]]

Φm
O = −kU + E[max{xU+1, xU , xj, z}|x−m ≤ xUB, xm ∈ [xUB, x

R
U ]]

Φm
u = −kU + E[max{xU+1, xU , xj, z}|xm ≤ xUB, x−m ∈ [xUB, x

R
U ]]

where m,−m ∈ {U+1, j}. Then, the payoffs from P.J and P.U+1 maybe written

as:

P.J = −kj + πjwj + λj[−kU+1 + πU+1wU+1 + λU+1d+ (1− λU+1 − πU+1)ṽj]

+ νj[−kU+1 + πU+1wU+1 + λU+1vU+1 + νU+1ΦO + (1− πU+1 − λU+1 − νU+1)Φj
O]

+ (1− πj − λj − νj)

[
−kU+1 + πU+1wU+1 + λU+1vU+1 + νU+1Φj

u

+(1− πU+1 − λU+1 − νU+1)µU

]
P.U + 1 = −kU+1 + πU+1wU+1 + λU+1ṽU+1

+ νU+1[−kj + πjwj + λj ṽj + νjΦO + (1− πj − λj − νj)ΦU+1
O ]

+ (1− πU+1 − λU+1 − νU+1)[−kj + πjwj + λj ṽj + νjΦ
U+1
u + (1− πj − λj − νj)µU ]

The difference P.U + 1− P.J , after canceling terms, is:

P.U + 1− P.J = −kU+1πj + πU+1πjwU+1 + λU+1(λj + πj)vU+1 + kj(πU+1 + λU+1)

− πjwj(λU+1 + πU+1)− λjλU+1d (5)

Use the fact that kU+1 = πU+1[wU+1 − xRU+1], kj = πj[wj − xRj ] + λj[vj − xRj ] +
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τj[uj − xRj ], where uj = E[xj|xj ∈ [xRj , x
R
U ]], τj = P (xj ∈ [xRj , x

R
U ]), vj = E[xj|xj ∈

[xRU , x
R
U+1]] to rewrite equation (5) as:

P.U + 1− P.J = πjπU+1(xRU+1 − xRU) + πjλU+1(vU+1 − xRj ) + λj(λU+1 + πU+1)(vj − xRj )

+ τj(uj − xRj ) + λU+1λjvU+1 − λU+1λjd

Note that d can be written as:

d = E[max{max{xU+1,max{µU , z}}, xj}|xU+1, xj ∈ [xRU , x
R
U+1]]

= xRU + E[max{max{xU+1,max{µU , z}} − xRU , xj − xRU}|xU+1, xj ∈ [xRU , x
R
U+1]]

≤ xRU + E[max{xU+1,max{µU , z}} − xRU + xj − xRU |xU+1, xj ∈ [xRU , x
R
U+1]]

= xRU + vU+1 − xRU + vj − xRU
≤ vU+1 − xRj + vj

Therefore,

P.U + 1− P.J ≥ πjπU+1(xRU+1 − xRj ) + πjλU+1(vU+1 − xRj )

+ λjπU+1(vj − xRj ) + τj(λU+1 + πU+1)(uj − xRj ) > 0

This shows, when U + 1 = 3, and xUB > z, that it is optimal to start search with

box U + 1.

When either U + 1 > 3 or xUB < 0, define Φ = E[V ∗(U\{U + 1, j}, z ∪{xU+1}∪
{xj})], to be the expected (continuation) payoff the agent obtains by applying

the rule in Proposition 1 when the set of boxes is U\{U + 1, j} and the vector of

realized prizes is z ∪ {xU+1} ∪ {xj}. Note that since |U\{U + 1, j}| < U + 1, and

the boxes in |U\{U + 1, j}| < U + 1 can be enumerated as assumed in Proposition

1, the policy in Proposition 1 is optimal when applied to that set. Consider, again,
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the payoffs obtained from following policies P.U + 1 and P.J :

P.J = −kj + πjwj + λj[−kU+1 + πU+1wU+1 + λU+1d+ (1− λU+1 − πU+1)ṽj]

+ (1− πj − λj)[−kU+1 + πU+1wU+1 + λU+1vU+1 + (1− πU+1 − λU+1)Φ]

P.U + 1 = −kU+1 + πU+1wU+1 + λU+1ṽU+1

+ (1− πU+1 − λU+1)[−kj + πjwj + λj ṽj + (1− πj − λj)Φ]

Taking the difference P.U + 1 − P.J yields the same expression as in (5), which

shows that inspecting box U + 1 first is optimal. This completes our proof.

Corollary 1. Assume {Fi}i∈N is such that if i < i′, then Fi′ is a mean-preserving

spread of Fi. Moreover, assume ∀i ∈ N ki = k. Then, the optimal policy is given

by Proposition 1.

Proof. It suffices to show that if i < i′, then [xiB, x
R
i ] ⊆ [xi′B, x

R
i′ ]. To see this,

rewrite equation (1) for box i as:

k =

∫ +∞

xRi

(x− xRi )dFi(x) =

∫ +∞

−∞
max{x− xRi , 0}dFi(x)

and, note that, Fi′ is a mean-preserving spread of Fi, then we have that:

k =

∫ +∞

−∞
max{x− xRi , 0}dFi(x) ≤

∫ +∞

−∞
max{x− xRi , 0}dFi′(x)

Since
∫ +∞
xRi

(x−xRi )dF (x) is decreasing in xRi , we conclude that xRi ≤ xRi′ . Likewise,

we may rewrite equation (2) as:

k =

∫ xiB

−∞
(xiB − x)dFi(x) =

∫ +∞

−∞
max{xiB − x, 0}dFi(x)

Using the mean-preserving spread assumption again, we obtain that i < i′ implies

that:

k =

∫ +∞

−∞
max{xiB − x, 0}dFi(x) ≤

∫ +∞

−∞
max{xiB − x, 0}dFi′(x)
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Since
∫ xiB
−∞ (xiB − x)dF (x) is increasing in xiB, we conclude that xi′B ≤ xiB.

Therefore, we conclude that [xiB, x
R
i ] ⊆ [xi′B, x

R
i′ ].

Proposition2. Fix a set U of boxes, and let z ∈ {x0}×{x, y}n, n ≥ 0 be the vector

of previously realized prizes. Assume all boxes have xi ∈ {y, x}, y < x, 0 < x,

P (xi = x) = pi, and ki ≡ k. The following is the optimal policy:

Order σ∗(U , z) ∈ arg maxi∈U x
R
i

Stopping ϕ∗(U , z) = 1 if, and only, if z > xRσ∗(U ,z), or z = max{x0, y} < xσ∗(U ,z)B

and V ∗(U\{σ∗(U , z)}, z ∪ {y}) < xσ∗(U ,z)B

Define l = arg maxi∈U xiB, h = arg maxi∈U\{l} x
R
i . If max{z, xRh } < xlB, then it is

optimal to stop and take box l without inspection.

Proof. The proof is divided in two parts. First, we show that the order and

stopping rule are optimal. Second, we show the sufficient condition for stopping.

The proof of the first part is by induction on U = |U|. Let P (U) denote the

following predicate:

P(U) (∀z)(∀U) : (|U| = U), and U satisfies the assumptions in Proposition 2, the

order and stopping rules in Proposition 2 are optimal.

Step 1: P (1) = 1 The proof follows from Lemma 0.

Step 2: P (U) = 1⇒ P (U + 1) = 1

Let U be such that |U| = U + 1, and let l = arg maxi∈U x
R
i . We first show that

when z ≥ xRl it is optimal to stop. Note that z > µl = maxi∈U µi, hence, if the

agent stops he selects z as payoff. Moreover, if the agent inspects any box k ∈ U ,

|U\{k}| = U , and then, by the inductive hypothesis, it is optimal to stop search.

Moreover, by equation (1), it is not optimal to inspect a box in U and stop.

Hence, assume that z < xRl . We first show that, if a box is to be opened first, it

has to be box l. Let j be any other box j 6= l. Let V ∗(U\{l, j}, z ∪ {xl} ∪ {xj})
denote the value function in the continuation problem after inspecting boxes l, j.10

10That is, the payoff the agent obtains by following the policy stated in Proposition 2, which
is optimal by the inductive step since |U\{l, j}| < U + 1
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In a slight abuse of notation, define V ∗(U ,max{x0, y}) ≡ V ∗(U , z) whenever z < x.

If V ∗(U\{l, j},max{x0, y}) ≥ xlB consider the following two policies:

P.L Open box l first. If xl = x, stop. Otherwise, open box j and continue with

the policy in the inductive hypothesis.

P.J Open box j first, and continue as indicated in the inductive hypothesis.

The payoff from applying P.L is:

plx+ (1− pl)[pjx+ (1− pj)V ∗(U\{l, j},max{x0, y})− k]− k

and the payoff from applying P.J is:

pjx+ (1− pj)[plx+ (1− pl)V ∗(U\{l, j},max{x0, y})− k]− k

The comparison of the payoffs yields the result, by noticing that it reduces to the

case in which there are only two boxes l, j. When V ∗(U\{l, j},max{x0, y}) < xlB,

compare the following two policies:

P.L Open box l first. If xl = x, stop. Otherwise, take box j without inspection.

P.J Open box j first, and continue as indicated in the inductive hypothesis.

The payoff from policy [P.L] is plx+(1−pl)(pjx+(1−pj)y)−k, and that of policy

[P.J] is pjx + (1− pj)(plx + (1− pl)y)− k. The difference is null. Then, opening

box l first dominates (weakly) opening any other box j 6= l. Now, to verify the

rest of the stopping rule, note that if z = max{x0, y} and z < xlB,

plx+ (1− pl)V ∗(U\{l},max{y, 0})− k ≥ plx+ (1− pl)y

⇔ V ∗(U\{l},max{y, 0}) ≥ y +
k

1− pl
= xlB

Now we show that if xlB > max{z, xRh }, h = arg maxi∈U\{l} x
R
i , it is optimal to

stop. In order to do so, we prove the following claim:

Claim 1. Fix a set of boxes U , and let z be the vector of previously realized

prizes. Then, V ∗(U , z) ≤ max{z,maxi∈U x
R
i }
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Proof. The proof is by induction in U = |U|. Let P (U) denote the following

predicate:

P(U) (∀z ∈ {x0}×{x, y}n, n ≥ 0)(∀U) : (|U| = U), and U satisfies the properties

in Proposition 2, V ∗(U , z) ≤ max{z,maxi∈U x
R
i }

Step 1: P (1) = 1 Given z and U = l, by Lemma 0, we have that:

V ∗(U , z) = max{z, µl,−k + plx+ (1− pl)z}

where we use the fact that if y ≥ z, then µl ≥ z, and then it is not optimal

to inspect the box to write the third term. Using that pl(xl − xRl ) = k, we

rewrite the above equation as:

V ∗(U , z) = max{z, µl,−k + plx+ (1− pl)z}

= max{z, µl, plxRl + (1− pl)z} ≤ max{z, xRl }

which shows that P (1) = 1.

Step 2: P (U) = 1⇒ P (U + 1) = 1 Fix z and U such that |U| = U +1. Consider

first the case in which ϕ∗(U , z) = 1. In that case, letting l = arg maxi∈U x
R
i

we have:

V ∗(U , z) = max{z, µl} ≤ max{xRl , z}

Now, consider the case in which ϕ∗(U , z) = 0; in particular, this means that

z 6= x. Then,

V ∗(U , z) = −k + plx+ (1− pl)V ∗(U\{l}, z ∪ {y})

= plx
R
l + (1− pl)V ∗(U\{l}, z ∪ {y})

≤ plx
R
l + (1− pl) max{z, max

i∈U\{l}
xRi }

≤ max{z,max
i∈U

xRi }

where the second equality comes from pl(x−xRl ) = k, and the first inequality

comes from applying the inductive hypothesis. This completes the proof.
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To prove the sufficient condition, note that if, given U and z = max{x0, y} < xlB,

the agent inspects box l, then his expected payoff is bounded above by:

−k + plx+ (1− pl)V ∗(U\{l},max{x0, y}) ≤ −k + plx+ (1− pl) max{z, xRh }

≤ plx+ (1− pl)y ⇔ xlB = y +
k

1− pl
≥ max{z, xRh }

where the first inequality follows from the result in Claim 1. Therefore, it is

optimal to stop and take box l without inspection.

A.2 Proofs of Lemmas 1, 2, and 3

Lemma 1. Let U be a set of boxes, and let z be the vector of realized prizes.

If (∀i ∈ U) : z ≥ xiB, Weitzman’s sampling policy is optimal in all continuation

histories.

Proof. The proof is by induction on U = |U|. Let P (U) denote the following

predicate:

P(U) (∀U) : (|U| = U), (∀z) : (z ≥ maxi∈U xiB), the order and stopping policy

indicated in Lemma 1 is optimal.

Step 1: P (1) = 1 This follows from Lemma 0.

Step 2: P (U) = 1⇒ P (U + 1) = 1

Let U + 1 = |U|, and let z be as in the statement of Lemma 1. Let l ∈
arg maxi∈U x

R
i . First, we show that the stopping rule is optimal. We consider

two cases:

z ≥ xRl The argument in Step 2 of Proposition 1 implies that it is optimal to stop

when z ≥ xRl .

z < xRl If max{z,maxi∈U µi} 6= µl, then, by equation (1), inspecting box l and

stopping dominates stopping and obtaining payoff max{z,maxi∈U µi}, since
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max{z,maxi∈U µi} < xRl . If max{z,maxi∈U µi} = µl, since z ≥ xlB, we have

that max{z,maxi∈U\{l} µi} ≥ xlB, and hence, by equation (2), inspecting box

l and stopping dominates stopping and taking box l without inspection.

Finally, when z < xRl , we need to show that inspecting box l first is optimal. This

follows from the same argument as in Proposition 1.

Lemma 2. Let (U , z) denote the set of boxes, and the vector of previously realized

prizes. Assume z < maxi∈U xiB. If ϕ∗(U , z) = 1, then it has to be the case that:

arg max
i∈U

xiB = arg max
i∈U

xRi ⊆ arg max
i∈U

µi

Moreover, the sets arg maxi∈U xiB and arg maxi∈U x
R
i are singletons.

Proof. We will use l for boxes with the highest reservation value, k for boxes with

the highest mean, and j for boxes with the highest backup value. We first show

that arg maxi∈U xiB ⊆ arg maxi∈U µi. We do so by contradiction. Assume that

(∃j, k ∈ U)(j 6= k) : µj < µk = max∈U µi;xkB < xjB = maxi∈U xiB. Note that

z < xjB by assumption. We show that inspecting box k first, and then applying the

policy in Lemma 0 to box j dominates stopping, and getting payoff µk. Therefore,

it can’t be optimal to stop, a contradiction.

If the agent inspects box k, and then applies Lemma 0 to inspect/take without

inspection box j, his payoff is:

Πkj = −kk +

∫ +∞

xRj

xkdFk +

∫ xRj

xjB

(−kj +

∫
max{xj, xk}dFj)dFk +

∫ xjB

−∞
µjdFk

The payoff of stopping, and taking a box without inspection is given by µk. By

definition:

µk = −kk +

∫ xkB

−∞
xkBdFk +

∫ +∞

xkB

xkdFk
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Therefore, we can write:

Πkj − µk =

−
∫ xRj

xkB

xkdFk +

∫ xRj

xjB

(−kj +

∫
max{xj, xk}dFj)dFk +

∫ xkB

−∞
(µj − xkB)dFk

+

∫ xjB

xkB

µjdFk

=

∫ xRj

xjB

(

∫ +∞

xRj

xRj dFj +

∫ xRj

−∞
max{xj, xk}dFj − xk)dFk +

∫ xjB

xkB

(µj − xk)dFk

+

∫ xkB

−∞
(µj − xkB)dFk

and, note the above is strictly positive: (i) the first integrand is non-negative

because max{min{xj, xRj }, xk} ≥ xk when xk < xRj , (ii) the second integrand is

positive because µj > xjB > xk by assumption 1, and (iii) the third integrand is

positive because µj > xjB > xkB. This shows that arg maxi∈U xiB ⊆ arg maxi∈U µi.

Now suppose that arg maxi∈U x
R
i * arg maxi∈U xiB. Then, there exists (∃j, l ∈

U)(j 6= l) : xRj < xRl = max∈U x
R
i ;xlB < xjB = maxi∈U xiB. Note that z < xjB <

xRj < xRl . Consider the following policy: inspect box l first, and apply the policy

in Lemma 0 to box j. By Proposition 1, and the fact that xlB < xjB ≤ xRj < xRl ,

and z ≤ xjB, we know that:

−kl +

∫ +∞

xRj

xldFl +

∫ xRj

xjB

(−kj +

∫
max{xl, xj})dFj)dFl +

∫ xjB

−∞
µjdFl > µj

Therefore, arg maxi∈U xiB ⊆ arg maxi∈U x
R
i , and note that we can actually conclude

that both sets are equal.

Finally, we show that arg maxi∈U x
R
i , arg maxi∈U xiB are singletons. Suppose not.

Then (∃l, l′ ∈ U) : xRl = xRl′ , xlB = xl′B. Moreover, by the previous step, we have

that µl = µl′ . Consider the following policy: inspect box l first, and then apply

the policy in Lemma 0 for inspecting box l′. This improves upon stopping and
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taking box l′, because:

−kl +

∫ +∞

xR
l′

xldFl +

∫ xR
l′

xl′B

(−kl′ +
∫

max{xl, xl′})dFl′)dFl +

∫ xl′B

−∞
µl′dFl

=

∫ +∞

xRl

(xRl − µl′)dFl +

∫ xR
l′

xl′B

(

∫ +∞

xR
l′

xRl +

∫ xR
l′

−∞
max{xl, xl′}dFl′ − µl′)dFl > 0

where the first equality comes from using equation (1) for boxes l and l′, and the

inequality comes from Assumption 1, and the fact that µl′ =
∫ +∞
xR
l′
xRl +

∫ xR
l′

xl′B
xl′dFl′+∫ xl′B

−∞ xl′BdFl′ (note that the inequality is an equality only when xRl = µl = xlB).

Therefore, we conclude that arg maxi∈U x
R
i , arg maxi∈U xiB are both singletons.

Moreover, the proof shows that the box with the highest backup value is taken

without inspection when it is optimal to stop.

Lemma 3. Let U be a set of boxes, and z be the vector of previously realized

prizes. Assume that σ∗(U , z) = j, where xRj < maxi∈U x
∗
i ≡ xRl . Then, it cannot

be the case that σ∗(U\{j}, z ∪ {xj}) = l, and ϕ∗(U\{j}, z ∪ {xj}) = 0, whenever

max{xj, z} ≤ xRl .

Proof. Suppose σ∗(·) = {j} and the optimal continuation policy dictates inspect-

ing box l whenever max{xj, z} ≤ xRl . The following policy improves on this, as

shown by Proposition 1: inspect box l first. Whenever xRl < xl, stop. Otherwise,

open box j and then proceed by using the prescribed policy when U = U\{l, j}.

A.3 Proof of Proposition 3

Proof.

Lemma 4 (Cutoffs are linear in means). Let x be a random variable such that

x ∼ F (· − µ), E[x] = µ. Let k be the cost of inspecting the box with prizes

distributed according to F . Then, (∃b, b) : xB = µ− b, xR = b.

Proof. We do the proof for xR, the other one follows immediately. Recall that:

k =

∫ +∞

xR
(x− xR)dF (x− µ)
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We guess and verify that xR = µ+ b, for some b > 0.

k =

∫ +∞

µ+b

(x− µ− b)dF (x− µ)

Let u = x− µ and perform a change of variables in the above expression:

k =

∫ +∞

b

(u− b)dF (u) (6)

It remains to show that there is a solution to the above equation. Note that

assumption 1 implies that if b = 0, then k <
∫ +∞

0
udF (u). On the other hand,

as b → ∞,
∫ +∞
b

(u − b)dF (u) → 0 < k. Hence, since g(b) =
∫ +∞
b

(x − b)dF is

continuous and decreasing in b, there exists b > 0, such that the equality holds.

This completes the proof.

Corollary 2. Consider the same assumptions as before. If F is symmetric around

0 then b = b = b > 0

Proof. The fact that b > 0 comes from the condition that xB < µ < xR for the

problem to be well-defined.

Recall the definition of xB:

k =

∫ xB

−∞
(xB − x)dF (x− µ)

Replacing our assumptions we get that the equation can be rewritten as:

k =

∫ −b
−∞

(−b− u)dF (u)

where we changed variables by defining u = x− µ. Also, we have that:

k =

∫ +∞

xR
(x− xR)dF (x− µ) =

∫ +∞

b

(u− b)dF (u)

Now, symmetry of F implies that:

∫ +∞

b

udF (u) = −
∫ −b
−∞

udF (u)
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Hence, (1−F (b))E[u|u ≥ b] = −F (−b)E[u|u ≤ −b] and −(1−F (b))b = −F (−b)b.
Hence, b = b.

Now we are ready to prove Proposition 3. We start with the case in which

0 ≤ xjB ≤ xiB, xRj ≤ xRi . Equation (4) in Section 5 established that the difference

between opening box i first and opening box j first is given by:

Πij − Πji =

∫ xiB

−∞

∫ xiB

−∞
(max{xi, xj, xjB} − xiB)dFidFj

+

∫ +∞

xRj

∫ +∞

xRj

(min{xi, xj, xRi } − xRj )dFidFj

= (1− Fi(xRi ))(1− Fj(xRi ))(xRi − xRj ) +

∫ xRi

xRj

∫ +∞

xi

(xi − xRj )dFjdFi

+

∫ xRi

xRj

∫ xi

xRj

(xj − xRj )dFjdFi + (1− Fi(xRi ))

∫ xRi

xRj

(xj − xRj )dFj

+ Fi(xjB)Fj(xjB)(xjB − xiB) + Fi(xjB)

∫ xiB

xjB

(xj − xiB)dFj

+

∫ xiB

xjB

∫ xiB

xi

(xj − xiB)dFjdFi +

∫ xiB

xjB

∫ xi

−∞
(xi − xiB)dFjdFi

Replacing our assumptions,u = xi − µi, û = xj − µj and writing a = µi − µj ≥ 0,

we have that:

G(a) =

∫ b

b−a

∫ +∞

u+a

(u+ a− b)dF (û)dF (u) +

∫ b

b−a

∫ u+a

b

(û− b)dF (û)dF (u)

+ F (−b)
∫ b+a

b

(û− b)dF (û) + F (−b− a)

∫ −b+a
−b

(û+ b− a)dF (û)

+

∫ −b
−b−a

∫ −b+a
u+a

(û+ b− a)dF (û)dF (u) +

∫ −b
−b−a

∫ u+a

−∞
(u+ b)dF (û)dF (u)

Note that G(0) = 0. We will show that G′(0) = 0, G′′(a) = 0(∀a). All of these
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together imply that G(a) ≡ 0.

G′(a) = −[

∫ b

b−a
F (−b− a)dF (u) +

∫ −b
−b−a

(F (−b+ a)− F (u+ a))dF (u)

−
∫ b

b−a
F (−u− a)dF (u)]

Note that G′(0) = 0. Moreover,

G′′(a) = F (−b− a)f(b− a)−
∫ b

b−a
f(−b− a)dF (u) + (F (−b− a)− F (−b))f(−b− a)

+

∫ −b
−b−a

(f(−b+ a)− f(u+ a))dF (u)− F (−b)f(b− a) +

∫ b

b−a
f(−u− a)dF (u) = 0

where we used that f(x) = f(−x), F (−x) = 1 − F (x) several times to cancel

terms. This shows that G(a) ≡ 0. When xjB ≤ 0 ≤ xiB, we have that:

Πij − Πji =

∫ xiB

−∞

∫ xiB

−∞
(max{xi, xj, 0} − xiB)dFidFj

+

∫ +∞

xRj

∫ +∞

xRj

(min{xi, xj, xRi } − xRj )dFidFj

Since the previous proof never used the fact that xjB ≥ 0, and xjB < 0 in this case,

this shows that the previous difference is positive. Finally, when xjB ≤ xiB ≤ 0,

the problem is exactly as Weitzman’s, hence we know that the difference is strictly

positive. This completes the proof.

A.4 Boxes for which xR < xB are never inspected in the

optimal policy

This last subsection shows that, if we allow for boxes i ∈ N such that xRi < xiB,

then box i is never inspected in the optimal policy. Therefore, for any such box

i ∈ N , it is either taken without inspection upon stopping search, or it is never

used in the optimal policy. Moreover, note that only one such box can be taken
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without inspection conditional on stopping search. Then, by redefining x0 to be

whatever is best between the agent’s initial outside option and the best of the

boxes for which xRi < xiB, our analysis carries through by focusing on the boxes

for which xiB < xRi .

Given a set of boxes U , define:

UB<R = {i ∈ U : xiB ≤ xRi }

UR<B = {i ∈ U : xRi < xiB}

Given a decision node (U , z), we use (U ′, z′),U ′ ⊂ U , z′ = (z, zU\U ′) to denote

a generic continuation history in which boxes in U\U ′ have been inspected, and

prizes zU\U ′ have been sampled.

Proposition 4. Let U be the set of boxes, and let z be a vector of realized prizes.

Assume that UR<B 6= ∅. Then, ∀i ∈ UR<B, @(U ′, z′) : i ∈ U ′ ⊂ U , z′ = (z, z̃U\U ′)

such that ϕ∗(U ′, z′) = 0, σ∗(U ′, z′) = i.

Proof. The proof is by double induction in the cardinality of U and UR<B. Since

UR<B ⊂ U , we know that |UR<B| ≤ |U|. Induction will be done in U = |U|, and

n, where |UR<B| = max{U, n}. Let P (U, n) denote the following predicate:

P(U,n): (∀z)(∀U) : |U| = U , UR<B 6= ∅, |UR<B| = max{n, U}, the optimal policy

satisfies the property in Proposition 4.

We proceed by showing that P (1, 1) = 1, and that if P (U ′, n′) = 1 holds for

U ′ ≤ U , and n′ ≤ n, not both with equality, then P (U, n) = 1 holds.

P(1,1)=1: Let U = {i} and let z denote the vector of already realized prizes.

Since U = n = 1, we have that UR<B = {i}. We show that:

−ki +

∫
max{xi, z}dFi ≤ max{µi, z}

Suppose that z ≥ µi. Then, since i ∈ UR<B, xRi < µi ≤ z. Then,

−ki +

∫
max{xi, z}dFi − z = −ki +

∫
z

(xi − z)dFi(xi) < 0
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since z > xRi (recall the derivation of equation (1)). Now, suppose that

µi > z. Then, xiB > µi > z, and it follows from (2) that:

−ki +

∫
max{xi, z}dFi − µi = −ki +

∫ z

−∞
(z − xi)dFi(xi) < 0

P(U,n)=1: Assume now that (∀U ′ ≤ U)(∀n′ ≤ n), not both with equality,

P (U ′, n′) = 1. We show that P (U, n) = 1. Let U be the set of boxes, |U| = U ,

and let z denote the vector of already sampled prizes. Let UR<B ⊂ U ,

|UR<B| = max{U, n}. We use i to denote a box in UR<B, and j to denote a

box in U\UR<B, whenever the latter is not empty.

We make two remarks. First, notice that if a box j ∈ U\UR<B is in-

spected, then we move to continuation history (U ′, z ∪ {xj}), where U ′ =

U\{j},U ′R<B = UR<B, and |U ′| = U − 1, and U ′R<B = n (note that

if there was j ∈ U\UR<B, then it can’t be the case that |UR<B| = U).

Since, by the inductive step, we know that P (U − 1, n) = 1, then boxes

in UR<B are not inspected in any continuation history. Second, if a box

i ∈ UR<B were to be inspected, then we move to continuation history

(U ′, z ∪ {xi}), where U ′ = U\{i}, U ′R<B = UR<B\{i}, and |U ′| = U − 1,

|U ′R<B| = max{U − 1, n − 1}. Since, by the inductive step, we know that

P (U − 1, n− 1) = 1, then boxes in U ′R<B are not inspected in any continua-

tion history. The first remark implies that to prove P (U, n) = 1 it remains to

show that no box in UR<B is inspected in history (U , z). The second remark

will be used when computing the payoff of inspecting a box in i ∈ UR<B.

Given the above, we want to show that:

max

{
z, max

i∈UR<B
µi, max

j∈UB<R
µj, max

j∈UB<R
{−kj +

∫
V ∗(U\{j}, z ∪ {xj})dFj}

}
≥ max

i∈UR<B
{−ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi} (7)

where the LHS of the above expression denotes the payoff the agent can

get by either stopping, and getting max{z,maxi∈UR<B µi,maxj∈UB<R µj}, or

continuing search by inspecting a box in UB<R; the RHS denotes the payoff

of inspecting a box in UR<B. The stars in V denote that the agent follows
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the optimal policy in the continuation histories, and the two remarks above

apply, by the inductive step to those histories.

Note that we can write, for any box i ∈ UR<B:

−ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi

= −ki +

∫
max

{
xi, z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
dFi

= −ki +

∫
max

{
xi,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}}
dFi

=

∫ +∞

xRi

xRi + max

{
0,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
− xi

}
dFi

+

∫ xRi

−∞
max

{
xi,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}}
dFi

where the first equality is by definition of the set of actions available to the

agent, and we use the second remark above; the second equality is just a

rearrangement of terms, and the third equality follows from using (1) for

box i.

Notice that the second term in the first integrand:

max

{
0,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
− xi

}

is decreasing in xi: the slope of −xi is −1, and the slope of the term in the

max{·} as a function of xi is at most one (it would be 1 only if xi is better

than any of the terms in the max{·} for all xi ∈ [xRi ,+∞]). Therefore, we

have that:∫ +∞

xRi

xRi + max

{
0,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
− xi

}
dFi

≤
∫ +∞

xRi

max

{
xRi ,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}}
dFi

43



Also, we have that:

∫ xRi

−∞
max

{
xi,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}}
dFi

≤
∫ xRi

−∞
max

{
xRi ,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}}
dFi

since the integrand is increasing in xi. Putting all of this together, we con-

clude that for all i ∈ UR<B, the following holds:

−ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi

= −ki +

∫
max

{
xi, z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
dFi

≤ max

{
xRi , z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}

But, then we conclude that, for all i ∈ UR<B:

max

{
z, max

i∈UR<B
µi, max

j∈UB<R
µj, max

j∈UB<R
{−kj +

∫
V ∗(U\{j}, z ∪ {xj})dFj}

}
≥ max

{
xRi , z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}
≥ −ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi

where the first inequality follows from xRi < µi for i ∈ UR<B, and the fact

that taking box i without inspection and getting µi is always an option in

the optimal policy in the first line, while not in the second.

Since the above holds for each i ∈ UR<B, we conclude that (7) holds, and,

thus, P (U, n) = 1
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