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Abstract

In many economic applications involving comparisons of multivariate distributions, super-
modularity of an objective function is a natural property for capturing a preference for greater
interdependence. One multivariate distribution dominates another according to the supermodu-
lar stochastic ordering if it yields a higher expectation than the other for all supermodular objec-
tive functions. We prove that this ordering is equivalent to one distribution being derivable from
another by a sequence of elementary, bivariate, interdependence-increasing transformations, and
develop methods for determining whether such a sequence exists. For random vectors resulting
from common and idiosyncratic shocks, we provide non-parametric sufficient conditions for su-
permodular dominance. Moreover, we characterize the orderings corresponding to supermodular
objective functions that are also increasing or symmetric. We use the symmetric supermodular
ordering to compare distributions generated by heterogeneous lotteries. Applications to wel-
fare economics, committee decision-making, insurance, finance, and parameter estimation are

discussed.

Keywords: Interdependence, Supermodular, Correlation, Copula, Concordance, Mixture, Ma-
jorization, Tournament. JEL Codes: D63, D81, G11, G22

1 Introduction

In many economic contexts, it is of interest to know whether one set of random variables displays

a greater degree of interdependence than another. The stochastic dominance approach expresses

*We are grateful for valuable comments from David Cox, Ian Jewitt, Paul Klemperer, and seminar participants
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the Conference in Honor of Paul Milgrom. Strulovici gratefully acknowledges financial support from the NSF (Grant
No. 1151410). Meyer: Nuffield College and Dept. of Economics, Oxford University, Oxford OX1 1INF, UK, and
CEPR, margaret.meyer@nuffield.ox.ac.uk; Strulovici: Dept. of Economics, Northwestern University, 2001 Sheridan
Road, Evanston, IL 60208, USA, b-strulovici@northwestern.edu.



attitudes towards interdependence through properties of objective functions whose expectations
are used to evaluate distributions. Since the expected values of additively separable objective
functions depend only on marginal distributions, attitudes towards interdependence must be rep-
resented through non-separability properties. We argue that supermodularity (Topkis, 1968, 1978)
of an objective function is a natural property with which to capture a preference for greater inter-
dependence. Supermodularity of a function captures the idea that its arguments are complements,
not substitutes: When an increasing function of two or more variables is supermodular and the val-
ues of any two variables are increased together, the resulting increase in the function is larger than
the sum of the increases that would result from increasing each of the values separately. Our main
objective in this paper is to characterize the partial ordering on distributions of n—dimensional
random vectors which is equivalent to one distribution’s yielding a higher expectation than another
for all supermodular objective functions. Following the statistics literature, we refer to this partial

ordering as the “supermodular stochastic ordering” (Shaked and Shanthikumar, 1997)E|

There are many branches of economics where the supermodular stochastic ordering is a valuable
tool for comparing distributions with respect to their degree of interdependence. We describe ap-
plications of our methods and results to the assessment of i) ex post inequality under uncertainty;
ii) multidimensional deprivation; iii) the equilibrium duration of search by committees, iv) the
dependence among claims in a portfolio of insurance policies or among assets in a financial institu-
tion’s portfolio; v) systemic risk in financial systems; and vi) the richness of datasets for parameter

estimation. Our approach also permits a non-parametric comparison of copulas.

For the special case of two-dimensional random vectors, the economics and statistics literatures have
provided a complete characterization of the supermodular ordering. Specifically, Levy and Paroush
(1974), Epstein and Tanny (1980), and Tchen (1980) have shown that one bivariate distribution
dominates another according to the supermodular ordering if and only if the first distribution
dominates the second in the sense of both upper-orthant and lower-orthant dominanceﬂ This
equivalence breaks down for three or more dimensions (Joe, 1990, and Miiller and Scarsini, 2000).
In general, the supermodular ordering is strictly stronger than the combination of upper-orthant

and lower-orthant dominance.

Meyer and Strulovici (2012) review several interdependence orderings, from the strongest (greater weak associa-
tion) to the weakest (concordance). While one may define a concept of “greater affiliation,” that notion is too strong
to be useful (see, e.g., Genest and Verret, 2002). For example, a vector can be “negatively affiliated” (or satisfy the
weaker requirement of “negative association”) only if it is deterministic (see Meyer and Strulovici, 2012). In con-
trast, tournament outcomes are negatively interdependent in the sense of the (symmetric) supermodular stochastic
ordering, as we establish in Section [] Furthermore, greater affiliation does not have the vectorial structure of the

stochastic supermodular ordering, which plays a crucial role in our analysis.
2 A multivariate distribution G' dominates another distribution F' according to upper-orthant (respectively, lower-

orthant) dominance if for any vector z, a random vector distributed according to G has a higher probability of being
above (respectively, below) z in each component than a vector distributed according to F. The ordering corresponding

to the combination of upper-orthant and lower-orthant dominance is known as the concordance ordering (Joe, 1990).



Focusing on random vectors with supports on a finite latticeﬁ we characterize the supermodular
ordering for an arbitrary number of dimensions. Section [3| proves (Theorem [I|) that one distribution
is preferred to another by every supermodular objective function if and only if the first distribution
can be derived from the second by a sequence of nonnegatively-weighted elementary, bivariate,
“interdependence-increasing transformations.” Our elementary transformations play a role similar
to the mean-preserving spreads defined by Rothschild and Stiglitz (1970) for univariate distributions
to capture the notion of increased riskiness, and can be described, by analogy to the univariate

case, as “marginal-preserving alignments.”

In the current context, where our concern is with interdependence between dimensions rather than
with riskiness in a single dimension, our elementary transformations leave all marginal distribu-
tions unaffected. Holding fixed the realizations of all but two of the random variables comprising
the random vector, our elementary transformations increase the probability that the remaining
two variables will take on (relatively) high values together or (relatively) low values together and
reduce the probability that one will be high and the other low. For multivariate distributions, our
elementary transformations provide a local characterization of the notion of “greater interdepen-
dence.” They are a natural generalization to multivariate distributions of the bivariate “correlation-
increasing transformations” defined by Epstein and Tanny (1980) and Tchen (1980). In another
sense, though, our definition of elementary transformations is more restrictive than that of these
other authors, in that our transformations affect only adjacent points in the support; because of
this restriction, as we prove (Proposition , our transformations are all extreme, in the sense that

none can be expressed as a positive linear combination of the others.

Our restrictive definition of elementary transformations allows a very simple proof of the known
characterization of the supermodular ordering for bivariate distributions. Our simple proof is based
on the observation that, for any pair of bivariate distributions with identical marginals, if we allow
elementary transformations to have weights of arbitrary sign, then there is a unique weighted

sequence of such transformations that converts one distribution into the other.

For three or more dimensions, even with our restrictive definition of elementary transformations,
there are many weighted sequences of such transformations that convert one distribution into
the other. How, then, can we determine whether g dominates f according to the supermodular
ordering? We introduce two different methods. One is to formulate a linear program such that the
optimum value of the program is zero if and only if there exist non-negative weights on elementary
transformations that will convert f to g. An alternative method, based on Minkowski’s and Weyl’s
representation theorems for polyhedral cones, allows us to compute once and for all, for any given
support, a minimal set of inequalities that characterize the supermodular ordering. This method

can be used for optimization problems such as mechanism design, where each mechanism or policy

3Some of our results can be extended to continuous support. See Section and the discussion following Theo-
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generates a multivariate distribution, and the set of mechanisms to be compared is large.

In some applications, it is natural to assume that objective functions are not only supermodular but
also increasing in their arguments. Theorem [2| demonstrates that comparison of two distributions
according to the increasing supermodular ordering can be decomposed into a two-step comparison,
comparing the marginals according to first-order stochastic dominance and then comparing the
joint distributions, after correcting to ensure identical marginals, according to supermodular dom-
inance. In Section [3.5] we prove that the supermodular ordering on a continuous support can be
characterized in terms of the supermodular ordering on all discretizations of the support, provided

that the multivariate distributions have continuous densities.

One important class of interdependent random vectors are those generated by both common and
idiosyncratic shocks. Section [4] studies precisely this class. First, a common shock determines, for
each random variable, the probability distribution from which it will be drawn. Then, each of the
random variables is drawn independently from the distribution determined by the realization of
the common shock. The resulting multivariate distribution is a mizture of conditionally indepen-
dent random variables. In finance and insurance contexts, mixtures of conditionally i.i.d. random
variables are frequently used to model positively dependent risks in a portfolio: the realization
of the common distribution represents an aggregate shock or common factor which affects all the
elements of the portfolio (Cousin and Laurent, 2008). In macroeconomics, the relative importance
of aggregate vs. sectoral shocks affects variation and covariation of output levels (Foerster, Sarte,
and Watson, 2011). Intuitively, for mixture distributions, the “more important” the common shock
relative to idiosyncratic shocks, the “more interdependent” the random variables should be. While
in simple parameterized settings, it is easy to formalize and confirm this intuition, two questions
arise when considering more general settings. First, how can “greater relative importance” of the
common shock be formalized? Second, how can greater interdependence of the resulting condition-
ally i.i.d. variables be assessed? Our Theorem [5| answers both questions. We use the supermodular
ordering to compare interdependence, and we present easily checkable sufficient conditions on the
structure of mixture distributions for two such distributions to be rankable according to the super-
modular ordering. Our sufficient conditions thus provide a useful non-parametric ordering of the

relative importance of common vs. idiosyncratic shocks for mixture distributions.

In some applications, it is natural to focus on objective functions that are symmetric. Sections
5 and 6 focus on the symmetric supermodular ordering, which corresponds to one distribution’s
generating a higher expected value than another for all symmetric supermodular objective functions.
Two distributions are ranked according to the symmetric supermodular ordering if and only if the
“symmetrized” versions of the distributions are ranked according to the supermodular ordering.
For the class of n-dimensional random vectors representing n independent lotteries, we identify
in Theorem [6] sufficient conditions for symmetric supermodular dominance and show that these

conditions have a natural interpretation in terms of lower dispersion among one set of lotteries



than another, holding fixed the average of the lotteries. At a mathematical level, moreover, these
sufficient conditions are very closely related to the sufficient conditions identified in Theorem [5| for
supermodular dominance of mixture distributions, and the proofs of Theorems [f| and [6] are likewise

very similar.

Section [7] discusses a wide range of applications of the supermodular ordering. Section focuses
on two applications in welfare economics: it shows how the ordering and Theorem [6] can be applied
to make comparisons of inequality in the presence of uncertainty and to compare multidimensional
distributions of economic status. Section[7.2]uses the ordering to analyze how changes in the degree
of alignment of the preferences of committee members affect equilibrium search and voting behavior.
Section applies the symmetric supermodular ordering to examine how the degree of systemic
risk in banking networks depends on the structure of the interconnections among banks. Finally,
Section [7.4] considers an application of the supermodular ordering to prediction and parameter

estimation, showing how the ordering may be used to compare the “richness” of datasets.

Section [§] presents a brief conclusion. All proofs not in the text are in the Appendix.

2 General Setting

We consider multivariate distributions with n variables and identical, finite support. The " vari-
able takes values in £; which is a totally ordered set with m; elements. The Cartesian product

x;L; is denoted L and is endowed with the usual partial order: x <y if and only if x; < y; for all

ieN={1,...,n}.

For any x € L, let x + e; denote the element y of £, whenever it exists, such that y; = z; for all
j € N\ {i} and y; is the smallest element of £; greater than but not equal to x;. For example, if
L£=10,1}2, (0,0) + e; = (1,0) and (1,0) + ez = (0,0) + €1 + 3 = (1,1).

Lattice vs. Vector Structures. The lattice structure of £ and its partial order are used to
compare distributions. In particular, supermodularity of objective functions is defined with respect
to that partial order. One may label the d = [, m; elements (or “nodes”) of £ and view real
functions on £ as vectors of R%, where each coordinate of the vector corresponds to the value of the
function at a specific node of £. This representation will prove particularly important for our dual
characterizations of interdependence relations. A multivariate distribution whose support is £ (or

a subset of £) can be represented as an element of the unit simplex A4 of R?.

Orderings of Multivariate Distributions. For any function w : £ — R and distribution

f € Ay, the expected value of w given f is the scalar product of w with f, seen as vectors of R%:

Elw|f]=) w(@)f(z) =w-[.

zeLl



To any class W of functions on £ corresponds an ordering of multivariate distributions:

f=wg < VYweW, Elu|f] < Elwlg]. (1)

3 The Supermodular Stochastic Ordering

Supermodular Functions and Elementary Transformations For any x,y € £, x Ay denotes
the component-wise minimum (or “meet”) of z and y, i.e., the element of £ such that (z Ay); =
min{z;,y;} € L; for all i € N. Let x V y similarly denote the component-wise maximum (or “join”)
of z,y. A function w is supermodular (on L) if w(z Ay) + w(x Vy) > w(zx) +w(y) for all z,y € L.

If, for all x,y € L, the reverse inequality holds, the function w is submodular.

The set of all supermodular functions is denoted S. The supermodular stochastic ordering is

a partial order, denoted <gpys, on the set of distributions over £, and is defined as follows:
f=spmg = VweS, Eluwlf] < Elwlg. (2)

For random vectors X and Y with distributions f and ¢ and cumulative distributions F' and G,

respectively, we will use the expressions X <spayr Y, f <spm ¢, and F' <spys G interchangeably.

To characterize this ordering, we introduce a class of elementary transformations which capture
the notion of “increasing interdependence”, analogously to the way that Rothschild and Stiglitz’s

(1970) mean-preserving spreads capture the notion of “increasing riskiness”.

For any x € £ such that z +¢; + ¢; € £, let t7; denote the function defined on £ by
tij(x) =t (x+e +e;) =1, tij(x+e) =t (x+e)=—1, (3)

and t;{j(y) = 0 for all other y € £. We call t7,; an elementary transformation on £, and let T

denote the set of all elementary transformations.

If two distributions f and g are such that g = f + at}; for some o > 0, then we say that g
is obtained from f by an elementary transformation with weight a. The a-weighted elementary
transformation raises the probability of nodes x and z + ¢; + e; by the common amount «, reduces
the probability of nodes x+e; and x+e; by the same amount, and leaves unchanged the probability
of all other nodes in £. Intuitively, such transformations increase the degree of interdependence
of a multivariate distribution, as for some pair of components ¢ and j, they make jointly high and
jointly low realizations more likely, while making realizations where one component is high and
the other low less likely. Furthermore, they raise interdependence without altering the marginal

distribution of any component.

If, for example, £ = {0,1,2}2, there are four elementary transformations, corresponding to the four
values of z, (0,0), (1,0), (0,1), and (1,1), such that x +e; +e; belongs to £. For £ = {0, 1}3, there



are six elementary transformations, one corresponding to each face of the unit cube. Observe that
our definition of elementary transformations confines attention to transformations that i) affect
only two of the n dimensions (as illustrated by the example of £ = {0,1}3) and ii) affect values
only at four adjacent points in the lattice, z,  + e;, © + e, and x + e; + e; (as illustrated by
L ={0,1,2}?).

THEOREM 1 (DUAL CHARACTERIZATION) f <spa g if and only if there exist nonnegative coeffi-

cients {oy }ieT such that, with f, g, and t seen as vectors of RY,

g=1rf+) _ at. (4)

teT
Proof. Supermodular functions are characterized by the property (Topkis, 1968, 1978) that
weS <= w@+te +e)+wx)>wx+e)+w(x+e)) (5)
for all i # j and = € £ such that z + ¢; + ¢; € L. Equivalently,
wesS <= w-t>0 VteT. (6)

Equation holds if and only if g — f belongs to the convex cone C(7T) generated by 7, defined by
C(T)={>crast :ap >0 Vte T} From (6], S is the dual cone of C(T). Since C(T) is closed
and convex, this implies (Luenberger, 1969, p. 215) that C(7) is the dual cone of S:

beC(T) <= w-6>0 YweS.

Therefore, f <spa g if and only if g — f € C(T). [ |

Observe that since any elementary transformation ¢ € 7T leaves the marginal distributions un-
changed, it is an immediate implication of Theorem [1| that if f <spas g, then f and g have

identical marginal distributions. Theorem [1| also allows a very simple proof of the following:

COROLLARY 1 Given random vectors X andY with distributions f and g, respectively, if f <spar g
and, for all i # j, Cov(X;, X;) = Cov(Y;,Y;), then f = g, that is, X and Y are identically
distributed.

Proof. Suppose that the hypotheses hold but that f # g. Then Theorem [I]implies that at least one
ay in must be strictly positive. Let tfj denote a t € T such that a; > 0. For the supermodular
function w(x) = x;x;, the inequality in is strict for all x, so w - t;; >0 and thus w-g > w- f-
Therefore E(Y;Y;) > E(X;X;), and since any ¢t € 7 leaves marginal distributions unchanged, it
follows that Cov(Y;,Y;) > Cov(X;, X;), yielding a contradiction. [



3.1 The Increasing Supermodular Ordering

In many economic settings, we want to compare multivariate distributions not just with respect
to interdependence but also with respect to the levels of the random variables. For example, the
class of objective functions that are both supermodular and increasing incorporates a preference
for greater interdependence as well as for higher values of each argument. We now characterize the

increasing supermodular ordering.

A function w on L is increasing if for any x € £ and i such that x +e; € £, w(z + €;) > w(zx). Let
7 denote the set of increasing functions on £. For any x € £ and i such that z 4+ e; € L, let 7*
denote the function on £ such that 77°(x) = —1, 7°(x + ;) = 1, and 7;° vanishes everywhere else.
Let U denote the set of all such functions. One may easily check that w belongs to Z if and only if

w -7 >0 for all 7 € U. First-order stochastic dominance for distributions on £ is defined by
g>=rosp f=w-g>w-f Ywel (7)

It is easy to adapt the proof of Theorem [I] to show that g =posp [ if and only if there exist

nonnegative coefficients {3, }re such that

g:f+2ﬁ‘r7-' (8)

TeU
The increasing supermodular ordering (denoted =7spas) is defined as follows:

g>=1zspm <= w-g>w-f Yw e SNT.

Since the functions w are now required to be increasing, g =zspas f (in contrast to g =spas f) does
not imply that g and f have identical marginals. Rather, g >=7gpas f implies that each marginal
distribution of g dominates the corresponding marginal distribution of f according to first-order
stochastic dominance: this can be seen by taking, for each i € A/ and each k; € £;, w(z) = Ik

which is both increasing and supermodular.

Theorem [2| below demonstrates that comparison of two distributions according to the increasing su-
permodular ordering can be decomposed into a two-step comparison, first comparing the marginals
according to first-order stochastic dominance and then comparing the joint distributions, after

correcting to ensure identical marginals, according to supermodular dominance.

To simplify notation, assume that £; = {0,1,...,m; — 1}. Given two distributions f and g with
0 = g — f, define the function v on L, to correct for differences in the marginals of f and g, as
follows. Let 7(z) vanish everywhere except on the set Ly of z’s that have at most one positive

component, and for any i € N and k € {1,2,...,m;_1}, let

y(kei) = Pr(Y;=k) — Pr(Xi =k) = > _ 6(2). 9)
k

Ziz;=



Finally, let v(0,0,...,0) be such that > . v(2) =0. Since >__ . d(2) =>__,(9(z) — f(2)) =0,
it follows from @ that for all ¢ and k, including k& = 0,

Yoz =) 6a). (10)
z:zi=k z:zi=k

Equation ensures that f + ~« has the same marginal distributions as g, so f + v and g can

be compared according to <sp ME| At the same time, v contains all the information necessary to

determine whether the marginals of g first-order stochastically dominate the marginals of f.

THEOREM 2 (INCREASING SUPERMODULAR ORDERING) The following statements are equivalent:

1) g =zspm f.

2) There exist nonnegative coefficients {aytieT, {Brtreu such that

a) y=23 ey BT, and
b) g=f+v+> ot

3) For each i, the i" marginal distribution of g dominates the i marginal distribution of f

according to first-order stochastic dominance, and for all supermodular w, w-g > w- (f +).

3.2 Coarsening and Relabeling

For many applications, the choice of a particular support is somewhat arbitrary. For example,
when comparing multivariate empirical distributions of attributes such as income, health, and
education (see Section , the distributions depend on the way the data for each attribute has
been aggregated into discrete categories. We now use Theorem [1| to show that the supermodular
ordering is robust to coarsening of the support (aggregation), as well as to monotonic relabeling of
coordinates. This is important, since some widely used orderings of interdependence, such as the

(bivariate) linear correlation coefficient, fail to satisfy this robustness criterion.

A coarsening L of £ is defined by a partitioning £; of £; for each i To any coarsening £ of £
corresponds a surjective map ¢ : £ — £ such that ¢(x) = ¢(z) if and only if 2; and z; belong to
the same element Z; of £; for all i. Each element of £ represents a hyperrectangle resulting from
slicing £ along each dimension. For any probability distribution f on £ and any coarsening £ of L,

let f denote the “coarsened version” of f, defined by

f@= > fl

zeLip(x)=2%

4Strictly speaking, we are assessing whether for all supermodular w, w - g > w - (f + ); this way of expressing

greater interdependence in g than in f + v is valid whether or not all elements of the vector f + + lie in [0, 1].
SFor example, if £ ={0,1,2,3} x {0,1,2}, one possible coarsening of £ is £ = {{0,1},{2,3}} x {{0},{1,2}}.



THEOREM 3 (COARSENING INVARIANCE) Suppose that f <spyr g and that L is a coarsening of
L. Then f <spPM G-

We can apply Theorem [3] as follows. Suppose that the functions ¢; : £; — R are nondecreasing,
and let ¢ = (¢1,...,bn). Define £; = {¢i(x;) : @ € L3} and £ = {¢(z) : € L}. Then it is easy
to show that £ = xiﬁi, so L is also a latticeﬁ

PROPOSITION 1 If X <spum Y, then ¢(X) <spam ¢(Y). Moreover, if each ¢; is strictly increasing,
then X <spa Y if and only if ¢(X) <spar ¢(Y).

Proof. Each ¢; defines a coarsening £; of £; such that x; and z; belong to the same element
z; of £; if and only if ¢;(x;) = ¢i(2). Let ¢ = (p1,...,pn) denote the increasing, one-to-one
map from xL; to xL;. A function @ is supermodular on x£; if and only if the function @(z%) =
W(o1(%1),. .., ¢n(ZTn)) is supermodular on x L;, as is easily checked. Combining this with Theorem
then shows the first part of the claim. For the second part, we have X = ¢ 1(¢(X)), where
P~ N(X) = ((ﬁl_l(f(l), ., 075(X,)) and qﬁi_l is the inverse of ¢;. Applying the first part of the
proposition to the function ¢~! and the relation ¢(X) <spy ¢(Y) then shows that X <spy V.1

3.3 The Supermodular Ordering and Copulas

A useful approach to modeling the interdependence of random variables, which is widespread in
finance and in actuarial science, is based on the concept of a copulaﬂ Given any distribution
function F' of n variables, with marginal distributions F7, ..., F},, Sklar’s theorem (1959) guarantees
the existence of a function C' : [0, 1]™ — [0, 1] such that

F(z1,...,2n) = C(Fi(x1), ..., Fo(zn)). (11)

C is called the copula of F. Since X; ~ F; implies that F;(X;) ~ UJ[0,1], the copula is a
distribution function each of whose marginal distributions is uniform on [0,1]. By normaliz-
ing marginal distributions to be uniform, copulas provide, intuitively, a “pure” measure of in-
terdependence. With discrete support, the values of the copula are pinned down on the do-
main £ = {(Fi(z1),...,Fn(zn)) : (z1,...,2,) € L}. The copula of a discrete distribution is

therefore essentially unique.

6The inclusion £ C ><¢£~¢ is straightforward. To show that the reverse inclusion holds, take any & € ><1£~, For
each i, there exists x; such that Z; = ¢;(x;). Letting x = (z1,...,2n), we have T = (¢1(z1),...,¢Pn(zn)), which
shows that & € L.

"Copulas have been systematically used, since Li’s (2000) influential model, to price credit derivatives. They are
used to analyze risk insurance (Denuit et al. (2005)) and risk management (Embrechts (2009)). Copulas are also
used in statistics and econometrics to model the intertemporal dependence of time series (see Joe (1997, Ch. 8),
Ibragimov (2005), and Beare (2010)).

10



As noted above, Theorem [1| implies that, for two multivariate distributions F' and G to be com-
parable according to the supermodular ordering, they must have identical marginals: G; = F; for
all i. This implies that the domain £ is the same for both copulas Cr and Cg. As observed before
Proposition [I| £ = x;£;, where £; = {Fi(x;) : x; € L;}, so L is a lattice. By definition, the
marginal distributions F; are nondecreasing. Moreover, without loss of generality, we can assume
that for each ¢, each level z; is achieved with positive probability (otherwise, we can simply remove
that level from the support £;), hence the F;’s are strictly increasing from L; to L;. Now define
X, = F;(X;) and Y, = G;(Y;)(= F;(Y;)). Proposition 1] implies that X <spps Y if and only if
X <spuy Y. Finally, observe from the definition of a copula in that the joint distributions
of X and Y on £ coincide, respectively, with the copulas Cr and C. We have thus proved the

following result.

PROPOSITION 2 F <spar G on L if and only if F' and G have identical marginals and their copulas
satisfy Cr <spayr Co on L.

Several works have examined whether copulas within specific parametric families with continuous
supports can be ranked according to the supermodular orderingﬂ In contrast, our methods for
characterizing the supermodular ordering, and generating distributions that are ranked according
to it, allow nonparametric comparisons. This feature makes our methods useful for comparing

multivariate empirical distributions.

3.4 Nonparametric Characterizations of the Supermodular Ordering

Two aspects of our approach greatly facilitate the use of Theorem [I| to determine, given a pair of
distributions f and g, whether or not f <spas g. The first is our restriction to a finite support EH
The second is our restriction that elementary transformations, defined in ({3f), affect only two of
the n dimensions and affect values at only adjacent points in the lattice. These two restrictions
make it straightforward, either manually or algorithmically, to list the entire set 7 of elementary
transformations on any given £. The next result guarantees that when looking for a representation

of g — f in the form ), oyt, none of the elementary transformations in 7 is redundant.

PROPOSITION 3 All elements of T are extreme rays of C(T), the convex cone generated by T .

8Wei and Hu (2002) obtain positive results for Archimedean copulas and asymmetric extensions thereof, and
Burtschell et al (2008) obtain positive results for Gaussian, Student ¢, Clayton, and Marshall-Olkin families of
copulas.

9Theorem [4] below may also be used, in conjunction with Theorem [1} to compare distributions on a continuous

support using our techniques, as long as the distributions have a continuous density.
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For two dimensions, a stronger result is easily shown: It is impossible to write any t € T as a
sum, with weights of arbitrary sign, of other elements of TE As a consequence, for any bivariate
distributions f and g with identical marginals (which is necessary for f <spas g), there is a unique
representation of g — f in the form ), a;t, when we allow the weights oy to have arbitrary signs.
To see this, note that if £ has mj X msg elements, then g — f is fully described by its values at
(m1—1) % (ma—1) points, and there are exactly (mj—1) x (mg—1) linearly independent elementary

transformations.

This uniqueness of the representation g — f = >, oyt allows a very simple proof of the known
characterization of the supermodular ordering in two dimensions. Define I,, and IV as the indicator
functions of the lower-orthant set {z|z < v} and the upper-orthant set {z|z > v}, respectively. For

two dimensions,
f=spmg = WweLl, I, f<I,-g and ["-f<I".g, (12)

that is, supermodular dominance for bivariate distributions is equivalent to the combination of
upper-orthant and lower-orthant dominanceEE Since I, and IV are both supermodular, the
implication = in is obvious. To prove the reverse implication, let £~ denote the (m; — 1) X
(mg — 1) points € £ such that z + e; + e2 € L, and observe that the right-hand side of is
equivalent to lower-orthant dominance of g over f for all v € L7, coupled with identical marginals
for g and f. Indexing the (mj — 1) x (mg — 1) transformations in 7 by the points in L=, we can

write the unique representation of g — f as > ., «a,t*. Hence for each v € L7,

Li-(g= =L () at)= > awly-t*) =au. (13)

zeL™ xeL™

The third equality in follows since I,,-t¥ = 1, whereas for all x € £~ such that z # v, I,-t* = 0.
It follows from that lower-orthant dominance of g over f, coupled with identical marginals,
implies that g — f = > .~ a,t*, with a > 0 for all x € £7, and hence that f <sps g.

Note that also identifies the weights «, in the unique decomposition of g — f for bivariate

distributions with identical marginals: o, = I, - (9 — f) = G(z) — F(z). In two dimensions, the

0For three or more dimensions, this stronger result does not hold. To see this, consider £ = {0, 1}3, and observe
0,0,0 0,1,0 1,0,0 0,0,0
that t\900 = (410 _ 4(1.0:0) 4 4(0.0.0),
'We can use Theorem [2| to provide an analogous proof that for two dimensions, f <zspm ¢ if and only if ¢

dominates f according to upper-orthant dominance.
12See Levy and Paroush (1974), Epstein and Tanny (1980), and Tchen (1980). The latter two papers proved the

implication < in constructively, by defining a notion of a simple “correlation increasing” transformation. (Levy
and Paroush’s proof assumed continuous distributions and used integration by parts.) These proofs were laborious,
because a) they did not restrict their transformations to affect values at only adjacent points in the support and
b) they sought a weighted sequence of transformations that, when added to f, yielded g and that produced, after
each step, a probability distribution. Our Theorem [1| makes clear that, in searching for a decomposition of g — f
into a weighted sum }, - at, it is irrelevant whether or not partial sums of the form f + 7, -+ cut are actual

probability distributions.
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indicator functions of lower orthant sets are in fact the extreme rays of the cone S of supermodular
functions, and there is a one-to-one mapping associating with each t* € 7 the only extreme ray I,
of §, namely I, such that I, -t* = 0.

For more than two dimensions, however, many decompositions of ¢ — f into weighted sums of
elementary transformations exist, and as a consequence such a one-to-one mapping between ele-
mentary transformations and extreme supermodular functions does not exist. In addition, for more
than two dimensions, the supermodular ordering is in general strictly stronger than the combina-
tion of upper-orthant and lower-orthant dominance (Joe, 1990, and Miiller and Scarsini, ZOOO)H
E These features make it considerably more difficult to determine, given distributions f and g,

whether or not f <spar g when (Xi,...,X,,) and (Y1,...,Y,) have three or more dimensions.

For three or more dimensions, we provide two methods for determining whether a pair of distribu-
tions can be ranked according to <spys. Both methods exploit Theorem [IJs dual characterization
of the ordering as well as Proposition [3[s result that all elementary transformations as defined in
are extreme. We now briefly summarize these methods; details are provided in Section @ of the

Appendix.

Theorem (1| shows that f <spas g if and only if there exists a representation of g — f in the form
ZteT ast with all oy > 0. This existence problem can be reformulated as establishing the non-
emptiness of the domain of a linear program. This, in turn, leads to the formulation of an auxiliary
linear program, based on the set of elementary transformations of £, such that the optimum value
of the program is equal to zero if and only if there exist non-negative coefficients {ay}ie7 such
that g — f = > ,c7 ayt. This method has the advantage, in the case where f and g are rankable
according to the supermodular ordering, of constructing an explicit sequence of transformations
that, added to f, result in g. However, it also has the drawback that one has to solve a different

linear program for each pair of distributions to be compared.

A second method, based on Minkowski’s and Weyl’s representation theorems for polyhedral cones,
allows one to compute, for any given support £, a minimal set of inequalities which completely
characterize the supermodular ordering. That is, f <spas g if and only if the vector g — f satisfies
all of these inequalities. This method can be used to compare many empirical distributions, or
to compare interdependence of many mechanism designs. Specifically, we develop an algorithm,
based on the “double description method” conceptualized by Motzkin et al. (1953) and developed
by Avis and Fukuda (1992), to generate, for any given support, the set of extreme rays of the
cone of supermodular functions. Each extreme ray defines an inequality of the minimal set charac-

terizing <spys. Using a package to implement the double description method freely available for

13In Meyer and Strulovici (2012), we contrast five orderings of interdependence, including the supermodular ordering
and the combination of upper-orthant and lower-orthant dominance. We show that, for two dimensions, all five

orderings are equivalent, but that, for an arbitrary number of dimensions, the five orderings are strictly ranked.
“Hu, Xie, and Ruan (2005) have shown that in the special case of three-dimensional Bernoulli random vectors,

the equivalence in 1) remains valid.
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Matlab (see Torrisi and Baotic (2005)), we have written and used programs to characterize both

the supermodular ordering and the symmetric supermodular ordering studied in Section

3.5 Continuous Support

The analysis so far has focused on discrete supports. We now prove that the supermodular ordering
on a continuous support can be characterized in terms of all its discrete coarsenings. For F,G
with continuous densities on £ = x;[a;, b;], define the supermodular ordering on L as follows:

F <c¢spym G if and only if E[w|F] < Ew|G] for all integrable supermodular functions on L.

Recall that a finite coarsening £ of £ is defined by a finite partitioning £; of each £;. The coarsening
of F on £ is the distribution F' such that for all Z € L, F (Z) is the probability that F' puts on the
on the cell (hyperrectangle) defined by the Cartesian product of the i;’s: F(&) = F (x;%;). For
any function w on £, the coarsened version @ of w on £ is the average of w over the hyperrectangle

defined by each x;Z;. Formally,
o fxijiw(x)dx
@) ==

L

(14)

In light of Theorem [3] it is not surprising that the supermodular ordering on L is stronger than the
supermodular ordering on every finite coarseninig of £. With continuous densities, the following

equivalence result holds.

THEOREM 4 Suppose that distributions F' and G have continuous densities. F <cspy G if and
only if F <spar G on all finite coarsenings L of L.

We note here that for random vectors X and Y with multivariate normal distributions, necessary
and sufficient conditions for X <spps Y and for X <zgppyr Y are easily stated. Miiller and Scarsini
(2000) have shown that X <spps Y if and only if X and Y have the same marginal distributions and
Cov(X;, Xj) < Cov(Y;,Y;) for all i # j. Arlotto and Scarsini (2009) have shown that X <zspa Y
if and only if £X; < EY; and Var(X;) = Var(Y;) for all i and Cov(X;, X;) < Cov(Y;,Y;) for all
1 # j. To highlight the relationship between our characterization of the increasing supermodular
ordering in Theorem [2| and the latter result, we can rewrite the latter result as X <zgpps Y if and
only if EX; < EY] for all ¢ and X’ <spy Y, where X| = X; + (EY; — EX;).

4 Aggregate vs. Idiosyncratic Shocks

In economics, particularly macroeconomics and finance, the interdependence of random variables
often arises from the presence of aggregate shocks or common factors. This section focuses on

the class of random vectors generated by both aggregate and idiosyncratic shocks, and provides

5The code is available online at http://faculty.wcas.northwestern.edu/ bhs675/.
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non-parametric sufficient conditions for one such random vector to display more interdependence,

in the sense of the supermodular ordering, than another.
Two familiar parametric examples will help to motivate our approach.

Example 1 Let the random vector X be such that X; = 6 + ¢;, where 6 and {¢;}icn are all
independent and normally distributed with mean 0 and where Var(f) = 7 and Var(e;) = (1— T)E
Intuitively, an increase in 7 raises the contribution to each X; of the common shock 6 relative to
that of the idiosyncratic shock g;, while leaving the marginal distribution of each X; unchanged.
More formally, an increase in 7 raises Cov(X;, X;) for each i # j. It therefore follows from Miiller
and Scarsini’s (2000) result quoted above for normal distributions that an increase in 7 yields a

distribution that dominates the original one according to the supermodular ordering.

Example 2 The conclusion in Example 1 need not hold if we relax the assumption of normal
distributions. Let X; = 0+ ¢;, where now 6 equals 1 or -1 with probability p and 1 — p, respectively,
and &; equals 2 or -2 with probability 1 — p and p, respectively. Similarly, let Y; = 0’ + ¢}, where ¢’
equals 2 or -2 with probability 1 —p and p, respectively, and ¢} equals 1 or -1 with probability p and
1—p, respectively. Y and X have identical marginals, and the common shock would seem to be more
important relative to the idiosyncratic shock in the distribution of Y than in X. Nevertheless, for

any p # %, the distributions of Y and X cannot be ranked according to the supermodular orderingm

In this section, we develop a general, non-parametric criterion for comparing two joint distributions
according to the relative importance of aggregate vs. idiosyncratic shocks, and we prove that if
two distributions can be ranked according to this criterion, then the one for which the aggregate

shock is relatively more important dominates the other according to the supermodular ordering.

We will consider the following class of “mixture distributions” (mixtures of conditionally indepen-
dent random variables)@ To each variable X, r € N, is associated a g X m row-stochastic matrix
A(r), where each row of A(r) represents a probability distribution for the variable X, on some
finite support with m values. The vector (X7, ..., X,) is constructed as follows. First, a row index
i € {1,...,q} is drawn randomly, according to a uniform distributionﬂ This step represents the
realization of the aggregate shock. Then, each variable X, is independently drawn from the distri-
bution described by the i*" row of A(r). This step represents the realization of the idiosyncratic

shocks. The unconditional marginal distribution of each X is described by the (equally-weighted)

16This additive-normal structure has been used, for example, to examine how interdependence in agents’ information
affects behavior in “beauty-contest” coordination games (Myatt and Wallace, 2012) and in voting games (Myatt,

2007).
17To see this, note that all upper-orthant and lower-orthant indicator functions are supermodular, and observe that
for p > (<) 3, P(Y1 > 3,Y2 > 3) > (<) P(X1 >3, X2 > 3) and P(Y1 < —3,Y2 < —3) < (>) P(X1 < -3, X» < -3).
18Tn the statistics literature, distributions generated as described below are often referred to as unidimensional

latent variable models (Holland and Rosenbaum, 1986).
19The analysis can easily be extended to accommodate non-uniform distributions of the index 4, by appropriate

replication of the rows of the matrix.
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average of the rows of A(r). Because, as we observed earlier (Proposition , the supermodu-
lar ordering is invariant with respect to monotonic coordinate changes, we take, without loss of

generality, the support of each variable to be {1,...,m}.

For mixture distributions of the form just described, greater importance of the aggregate shock
relative to the idiosyncratic shocks should correspond to the rows of the matrices A(r) being more
different from one another, holding the unconditional distribution of each X, unchanged by holding

the average of the rows of each A(r) fixed.

The following terminology and notation will be useful to formalize this idea. A matrix A is
row-stochastic if each row represents a probability distribution. For any matrix A, the (upper)
cumulative-sum matriz A of A is defined by A; ; = >_jL ;Ai k. Thus, A; j is decreasing in j. If A
is row-stochastic, the first column of A has all entries equal to 1. Clearly, there is a one-to-one

mapping between row-stochastic matrices and their cumulative-sum equivalents.

A row-stochastic matrix A is stochastically ordered if for each k, A;j is weakly increasing in i.
This is equivalent to the requirement that for all i € {2,...,q}, the i*® row of A dominates the
(i — 1) row in the sense of first-order stochastic dominance, so that high-index aggregate shocks
are more likely to yield high outcomes for the variable X generated by A. Given a row-stochastic
matrix A, the stochastically-ordered version of A, denoted A*°, is the stochastically-ordered matrix
obtained from A by reordering each of its columns from the smallest to the largest element. If A
is itself stochastically ordered, then A% = A, and in this case we will use the expressions “A is

stochastically ordered” and “A is stochastically ordered” interchangeably.

Before introducing our ordering of matrices, we recall Hardy, Littlewood, and Polya’s (1934, 1952)

definition of majorization, which formalizes greater dispersion in the elements of a vector.

DEFINITION 1 A vector a majorizes a vector b of identical dimension if i) the vectors have identical
sums, and i) for all k, the sum of the k largest entries of a is weakly greater than the sum of the

k largest entries of b .

We now present our ordering of matrices, which we term “cumulative column majorization”, that
formalizes the idea that the rows of a matrix A are “more different” from one another than the

rows of B (holding the average of the rows fixed).

DEFINITION 2 Given two row-stochastic matrices A and B of dimension ¢ x m, A dominates B
according to the cumulative column majorization criterion, denoted A =ccpy B (or equiva-
lently A =ccou B), if for all k < m, the k" column vector of A majorizes the k' column vector of
B. Equivalently, A ~ccwm B if for for alll < q and k < m, Y27 A% > 331, BSS, with equality
holding for 1 =1, for all k < m.

Note that the definition of A =ccar B requires that A and B have equal column sums. Hence,

16



if random variable X is generated by matrix A and random variable Y by B, A =ccpy B implies

that the unconditional distributions of X and Y are identical.

The condition that A >=cca B says that, for each point in the support {1,...,m}, the g-vector
of upper cumulative probabilities corresponding to the g possible conditional distributions (rows of
the matrix) is more dispersed for matrix A than for matrix B. In turn, the fact that the ¢ possible
conditional distributions are everywhere more diverse for matrix A than for matrix B, while the
unconditional distribution is the same, implies that the aggregate shock is more important in the

mixture distribution generated by A than in the mixture distribution generated by B.

The main result of this section is the following theorem.

THEOREM 5 Let (A(1),...,A(n)) and (B(1),...,B(n)) be two sets of row-stochastic matrices gen-
erating the random vectors (X1, ..., X,) and (Y1,...,Y,), respectively. Suppose that, i) for eachr €
N, A(r) is stochastically ordered, and ) for eachr € N', A(r) =com B(r). Then (Xi,...,Xn) =spm
(Y1,...,Y,).

We have examples showing that Theorem [5| does not hold if we drop either condition i) or condition
1'1')@ We further conjecture that Theorem [5|can be extended to lattices with continuous supportm

The condition that for each r, A(r) =ccm B(r) says that the realization of the aggregate shock
is relatively more informative about what the realizations of { X, }_; will be than about what the
realizations of {Y;}"_; will be. In the special case where both A(r) and B(r) are stochastically
ordered, A(r) =ccn B(r) reduces to

qg m

Z ZAW(T) = ZZAZ,]C(T) > Z B@k(r) = Z ZBi’j(T) ) > 2, k > 2, (15)

i=l j=k i=l i=l j=k

coupled with the condition that A(r) and B(r) have matching column sums. Inequality can be

read as saying that the matrix A(r) dominates B(r) in the sense of “upper-orthant dominance”@

20Jogdeo (1978) showed that for any stochastically ordered row-stochastic matrices {A(r)}, the distribution of

(X1,...,X5) generated from them displays association, a widely-used dependence concept defined in Esary, Proschan,
and Walkup (1967). It follows from this and Theorem 2 of Meyer and Strulovici (2012) that the distribution of
(X1,...,X,) dominates its independent counterpart (the independent distribution with identical marginals to X)

according to the supermodular ordering. Jogdeo’s result, weakened to supermodular dominance, corresponds to the

special case of Theorem [5| where for each r, the matrix B(r) consists of ¢ identical rows.
2Indeed, if random-vector sequences {X»} and {Y,} satisfy X,, >=spam Y, for all n and respectively converge in

law to X and Y, then X >spa Y. Starting from, say, a continuous common shock, one can discretize the “matrices”
A and B, and apply Theorem [5| to the resulting random vectors X,, and Y,,. The ‘SOA’ and 'CCM’ conditions have
straightforward extensions to continuous supports.

22 Athey and Levin (2001) compared information structures (joint distributions of signal and state of the world) for
“monotone decision problems”. For the special case where both A(r) and B(r) are stochastically ordered, the partial
ordering A(r) =ccm B(r) is formally very similar to the partial ordering on information structures that Athey and

Levin showed to correspond to preference by all decision-makers with payoff functions supermodular in the state
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To provide some insight into the proof of Theorem [5 we focus on the special case where the random
vectors X and Y have symmetric mixture distributions: this is the case where the sets of matrices
{A(r)}, and {B(r)}, are each independent of r. Denote by A (resp. B) the common cumulative-

sum matrix generating the X,’s (resp. the Y;’s). Then we seek to show that for all supermodular

w7
1< 1< _
Bw(Xy,...,X,) = gZE[w(Xl,..., )| Aie) > 52 w(Y1,...,Y,)|Bie) = Bw(Yy,...,Y,),
i=1 i=1
(16)
where A; o (resp. B;4) denotes the i*" row of A (resp. B).
Let p = (p1,...,Pm) denote an arbitrary upper-cumulative vector corresponding to a discrete

distribution on support {1,...,m}. We have p; = 1 and py_1 > pi, for all k. For any supermodular

objective function w on R", define w(p) by
’lD(ﬁ) = E[w(Xla X27 cee 7Xn)’ﬁ]

Using this definition, can be rewritten as

E’LU(Xl, ce

Q\H
MQ
Q| =

q
> =) @(Bi.) = Bw(Yi,...,Yn). (17)
=1 =1

The function w is defined on a convex lattice of R™ and, importantly, inherits several properties
from the supermodularity of w, as shown in the following lemmaﬂ A function hA(z1,...,Zp, ..., Tm)
is componentwise conver if, when considered as a function of just z,, it is convex, for each r €

{1,...,m}, for all values of the other m — 1 arguments@

LEMMA 1 If w is supermodular, w is supermodular and componentwise conver.

Now suppose that the aggregate shock takes only two possible values, so both the matrices A
and B have only two rows (¢ = 2). The following lemma shows how Lemma [1} in conjunction
with stochastic ordering of A and A >ccn B, ensures that holds. With ¢ = 2, condition
i) in Lemma 2| implies that A is stochastically ordered, and conditions ii) and iii) are equivalent
to A =com B. Recall that for all row-stochastic matrices, the first column of the corresponding

cumulative-sum matrix has all entries equal to 1.

LEMMA 2 Suppose that ¢ = 2 and that there exists a nonnegative vector € such that for all
ke {2,....,m}, i) Aoy > A1p +ex; i) Bip = Arg + ex; and iii) Boy = Asy —ex.  Then
(Xl, - ,Xn) ~SPM (Yl, - ,Yn).

and the action. Both orderings have the interpretation that one set of (first-order) stochastically ordered conditional

distributions is more dispersed than the other.
23The domain of @ is a simplex and is clearly convex. Moreover, the inequalities p1 > P2 > --- Pm reduce to

pairwise inequalities of the form p; > p;, and define a lattice, as is well known (Topkis (1968, 1978)).
24Functions that are both supermodular and componentwise convex have been studied by Marinacci and Montruc-

chio (2005) and by Miiller and Scarsini (2012), where they are termed “ultramodular”.
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Proof. The function w is polynomial in p and hence twice differentiable. Moreover, by Lemma
it is supermodular and componentwise convex, which implies that all of its second-order derivatives
are everywhere nonnegative on its domain. Letting p (resp. ¢) denote the first (resp. second) row
of A, we need to show that for any m-vectors p,q, and ¢ > 0 such that p+ ¢ < g and 1 = 0, the
following inequality holds

w(p) +w(q) = w(p+¢) +w(q —e).

Equivalently, we need to show that

w(p+e)— /Zwkp+asskda</ Zwk q—¢e+ ag)epda = w(q) —w(q —e),

0 k-

where wj, denotes the k" partial derivative of w. Let § = §—e —p > 0. For each k € {2,...,m},

Wi (g — € + ae) —wg(p + ae) = /Zwkk (p+ ac + 56)0;dB > 0,
k=2

where the inequality holds since, by Lemma (1| all second-order derivatives of w are nonnegative.

Summming these inequalities over k and integrating with respect to « then yields the result. W

Starting from the stochastically ordered matrix A, the matrix B described in Lemma [2|is obtained
by a simple transformation that shifts a small amount of weight from the stochastically dominant
row (row 2) to the dominated row (row 1), in (possibly) every column except the first. Such a
transformation clearly makes the rows of the cumulative-sum matrix more similar, while keeping
the column sums fixed, thus reducing the importance of the aggregate shock while leaving the
unconditional distribution of each variable unchanged. The proof of Theorem [5| for the case of
symmetric mixture distributions is completed by showing that, given any A and B such that
A is stochastically ordered and A =ccay B, A can be converted into B through a sequence of
simple transformations of the form in Lemma [2, affecting only two of the ¢ rows. From , the
unconditional expectation of any objective function w is the average of the ¢ possible expected values
of w, conditional on the realization of the aggregate shock, i.e. the average of the ¢ possible values
of w, as in . Therefore, given Lemma (1], for any supermodular w each simple transformation

in the sequence reduces the average value of w and hence reduces the expected value of w.

Example 3 Consider the n-dimensional random vectors X, Y, Z, and V with symmetric mixture

distributions on support £ = {1, 2, 3