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Abstract. I examine a class of utility maximization problems with a not necessarily law-
invariant utility, and with a not necessarily law-invariant risk measure constraint. The objective
function is an integral of some function U with respect to some probability measure P , and the
constraint set contains some risk measure constraint which is not necessarily P -law-invariant.
This introduces some heterogeneity in the perception of uncertainty. The primitive U is a
function of some given underlying random variable X and of a contingent claim Y on X. Many
problems in economic theory and financial theory can be formulated in this manner, when a
heterogeneity in the perception of uncertainty is introduced. Under a consistency requirement
on the risk measure that will be called Vigilance, supermodularity of the primitive U is sufficient
for the existence of optimal continent claims, and for these optimal claims to be comonotonic
with the underlying random variable X. Vigilance is satisfied by a large class of risk measures,
including all distortion risk measures. An explicit characterization of an optimal contingent
claim is also provided in the case where the risk measure is a convex distortion risk measure.

1. Introduction

Problems of “utility” maximization in financial theory are not only some of the most fun-
damental issues, but they have also been recently re-examined in general abstract settings,
hence allowing for various applications. See, for instance, Carlier and Dana [9, 10], Cvitanić,
Schachermayer, and Wang [14], Dana [15], Föllmer and Schied [21], Hugonnier and Kramkov
[31], Kramkov and Schachermayer [36, 37], Owen and Žitković [45], Schachermayer [51], Schied
[52, 53, 54, 55], and Schied and Wu [56], to cite only a few. The generality of such problems
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allows for numerous interpretations, depending on the particular consumer demand problem at
hand. By far the most common application of these problems is the – by now folkloric – problem
of portfolio choice under uncertainty. The road paved by the seminal contributions of Merton
[40, 41] has been often walked on, and the literature on portfolio choice is far too large for us to
give a meaningful review here. Nevertheless, some of the recent contributions include He and
Zhou [29], Jin and Zhou [33, 34, 35], and Zhang, Jin, and Zhou [62], for instance. These authors
use a novel approach to utility maximization, based on a quantile reformulation of optimization
problems, whereby problems involving a given choice variable are replaced by problems involving
this variable’s quantile function. Such quantile problems often turn out to be easier to handle
and better behaved.

In this paper I use similar quantile techniques to show the existence of monotonic solutions
to a general utility maximization problem, with a non-law-invariant indirect utility and a non-
law-invariant risk measure constraint. This problem can be seen as a problem of demand for
contingent claims under uncertainty, and it is an abstraction of many common problems in
economic theory that were hitherto only considered in a framework of complete homogeneity of
beliefs about the realizations of an underlying uncertainty. It can be formulated as

(1.1) sup
Y PΘ

V pX,Y q :“

ż
U pX,Y q dP

where X is a given random variable on a probability space pS,Σ, P q, B pΣq is the linear space of
all bounded and Σ-measurable functions on S, Θ Ă B pΣq is a given non-empty constraint set,
and U pX,Y q is bounded and Σ-measurable for each Y P Θ. The objective function V pX,Y q is
understood to be a decision maker’s (DM) indirect utility function, that is, V pX,Y q represents
the DM’s expected utility of terminal wealth.

1.1. Objective vs. Subjective Uncertainty. When the constraint set Θ of Problem (1.1) con-
tains, for example, another party’s individual rationality constraint (participation constraint),
one can distinguish between two types of problems, depending on how the underlying uncer-
tainty is perceived by both parties: (i) either both parties agree on the distribution of this
uncertainty (which will hence be induced by the probability measure P ), or (ii) they have differ-
ent perceptions of such randomness. The first type of problem is one where uncertainty can be
called homogeneous, whereas the second type is a problem in which uncertainty can be referred
to as being heterogeneous.

Surprisingly, the literature is mostly silent on problems of the form (1.1) where the uncer-
tainty is heterogeneous, whereas problems of the form (1.1) with homogeneous uncertainty are
abundant. For example, the vast majority of problems of optimal insurance design, or demand
for insurance coverage are based on the classical formulation of Arrow [3], Borch [8], and Ra-
viv [48], and are usually stated as a problem of the form (1.1) with homogeneous uncertainty.
That is, both the insurer and the insured share the same beliefs about the realizations of some
underlying insurable loss random variable X. In these problems, monotonicity of an optimal
insurance contract Y is typically desired because such contracts can avoid ex-post moral hazard
that might arise from a voluntary downward misrepresentation of the loss by the insured.

Problems of debt contracting between investors (lenders) and entrepreneurs (borrowers), such
as the ones studied by Gale and Hellwig [22], Townsend [59], or Williamson [61], are also usually
stated as a problem of the form (1.1) with homogeneous uncertainty. In this case, a contract
specifies the repayment Y that the borrower makes to the lender as a function of the (uncertain)
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return X on the project being financed. The monotonicity of an optimal contract as a function
of the return on investment is a coveted feature since such contracts will be de facto truthtelling,
and will avoid any misrepresentation of the profitability of the project by the borrower.

Principal-agent problems have also been traditionally stated as problems of the form (1.1)
with homogeneous uncertainty, as in the work of Grossman and Hart [27], Holmstrom [30],
Mirrlees [44], Page [46], or Rogerson [49], for instance. In that setting, a contract specifies the
wage Y that an agent receives from the principal, as a function of the (uncertain) outcome,
or output X that occurs as a result of the agent’s activity. Since the work of Rogerson [49],
monotonicity of the optimal wage contract in the observed output is usually sought after1.

Numerous other problems can be formulated as in (1.1), such as problems of demand for
financial securities given a pricing or budgeting constraint. In such problems, monotonicity
properties of optimal claims were studied first by Dybvig [18, 19]. Problem (1.1) can also be
interpreted as a Neyman-Pearson type problem. In these problems, monotonicity properties
of optimal solutions were discussed by Schied [52], for instance. Whatever the nature of the
problem might be, it is interesting to examine under what conditions an optimal choice of
the choice variable Y is monotone in the underlying variable X, and the theory of monotone
comparative statics has usually been very fruitful in answering similar questions of monotonicity
of solutions. However, it is of no help here, as the next section argues.

1.2. The Theory of Monotone Comparative Statics and its Limitations. The impor-
tance of monotone comparative statics analyses in economic theory is well-understood. One can
even say that at the core of the motivation behind a sizeable collection of problems in economic
theory, very often lies the question of whether or not a quantity is a monotone function of a
parameter, or whether a variable output changes monotonically with a variable input. This is
even more so significant if the monotonicity of an optimal such output as a function of an input
parameter is desired, and indeed, monotone comparative statics techniques have proven to be
very fruitful (see [58, 60]). Such techniques can be, and have been used in consumer theory,
theory of production, portfolio choice theory, financial economics, and contract theory to answer
some basic and intuitive questions.

The theory of monotone comparative statics is typically concerned with the behavior of a
solution to a given optimization problem when a primitive of the problem changes. Specifically,
let pL,ěLq be a lattice, B Ď L a choice set, pT,ěT q a partially ordered set interpreted as a set
of parameters, and f : L ˆ T Ñ R a given objective function. For the problem of choosing an
x P B that maximizes the objective function given a value t of the parameter, the chief concern
is the isotonicity of an optimal choice x˚ ptq of x as a function of t, that is,

(1.2) t1 ěT t2 ùñ x˚ pt1q ěL x
˚ pt2q

The classical theory of monotone comparative statics [42, 43, 57, 58] seeks conditions on the
function f that guarantee that eq. (1.2) holds.

Athey [5] examined a problem of monotone comparative statics in the presence of uncertainty,
where the objective function is an integral of some function with respect to some measure.
Specifically, let pL,ěLq be a lattice, B Ď L a choice set, S “

śm
i“1

Si with Si Ď R for i “
1, . . . ,m, Θ Ď R a set of parameters, µ a finite nonnegative product measure on S, and u :

1For various reasons that are beyond the scope of this paper.
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L ˆ S Ñ R and ψ : S ˆ Θ Ñ R given bounded measurable functions. Define the objective
function Φ : Lˆ Θ Ñ R by

Φ px, θq “

ż

S

u px, sqψ ps, θqdµ psq

For the problem of choosing an x P B that maximizes the objective function given a value θ of
the parameter, the problem of monotone comparative statics in this situation of uncertainty is to
find conditions on the primitives u and ψ so that an optimal choice x˚ pθq of x is a nondecreasing
function of θ, that is,

θ1 ě θ2 ùñ x˚ pθ1q ěL x
˚ pθ2q

In particular, in both situations of certainty and uncertainty, the interest is in the variation
of the optimal solution with respect to the lattice order ěL on L, given a variation of the
parameter (t or θ, respectively) in the order on the parameter set (ěT or the usual order on
R, respectively). Often, however, these notions of order are too strong for the problem under
consideration. For instance, in problems of the form (1.1), conditions on the primitive U for the
optimal choice Y ˚ of Y to be monotone in X are desired. Specifically, under what conditions
on U does one have that for all s, s1 P S, X psq ě X ps1q ñ Y ˚ psq ě Y ˚ ps1q? The classical
techniques of monotone comparative statics are of no help in these situations since the lattice
order on B pΣq is not adequate here. This order ěL on L “ B pΣq is defined by

Y1 ěL Y2 if and only if Y1 psq ě Y2 psq , for all s P S

1.3. A Class of Demand Problems. Since the seminal contribution of Artzner et al. [4] and
Delbaen [16], the literature on risk measures has grown exponentially2. This motivated an active
area of research where many classical problems arising in financial theory were re-examined
using general risk measures beyond the classical dispersion measures such as the variance3. The
problem that will be examined in this paper can be seen as an abstraction of problems of this
sort, and it takes the form

(1.3) sup
Y “I˝X

#ż
U pX,Y q dP

ˇ̌
ˇ̌
ˇ 0 ď Y ď X, ρ pY q ď R

+

where X is a given underlying uncertainty on the measurable space pS,Σ, P q, Y “ I ˝ X is
a claim contingent on this uncertainty,

ş
U pX, I ˝ Xq dP is a DM’s expected utility of wealth

with respect to the probability measure P , ρ : B` pΣq Ñ R is a given risk measure, and R P R

is fixed.

The first constraint is standard in many problems in economic theory. In the insurance
framework [3, 48], this constraint says that an indemnity is nonnegative and cannot exceed
the loss itself. In a framework of debt contracting [22], this constraint is a limited liability
constraint. The second constraint is simply a risk measure constraint, but it can be interpreted
as a budget constraint, or a pricing constraint. In some situations, this constraint can also be
seen as another party’s individual rationality constraint (participation constraint). For instance,
in problems of insurance demand, the constraint ρ pY q ď R would be a “premium constraint”
of the form

ş
Y dP ď Π, which is nothing more than a rephrasing of the (risk-neutral) insurer’s

participation constraint.

2See, for instance, Föllmer and Schied [21] for a review.
3See, for instance, Balbás [6] for a brief review.
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In Problem (1.3), the objective function (indirect utility function) is not necessarily law-
invariant with respect to P (Definition 2.6). This is an important point of departure from the
recent literature on utility maximization, such as in Carlier and Dana [9, 10] or Schied [52].
Moreover, in the constraint set of Problem (1.3), the mapping ρ : B` pΣq Ñ R need not be law-
invariant with respect to P . When ρ is not law-invariant with respect to P , this creates some
heterogeneity in the perception of the uncertainty X, and poses some important mathematical
complications. For instance, in the insurance framework, it might be that the DM and the
insurer assign different “distributions” to the underlying uncertainty. The latter problem has
been examined by Ghossoub [23, 25, 26].

This paper’s main result (Theorem 3.1) is that when the risk measure ρ satisfies a property
that will be called Vigilance (Definition 2.7) and a continuity property that will be called the
Weak DC-Property (Definition 2.5), supermodularity of the function U : R2 Ñ R (Definitions
2.3 and B.5) is sufficient for an optimal choice of Y “ I ˝ X to be a nondecreasing function
of the underlying uncertainty X. Roughly speaking, vigilance of the risk measure ρ can be
understood as a (weak) preference for comonotonicity with X (Definition 2.2), on the collection
of all functions that are identically distributed for the probability measure P . Given two elements
Y1 and Y2 of B` pΣq that have the same distribution with respect to the probability measure P ,
vigilance of a risk measure ρ : B` pΣq Ñ R means that if any one of Y1 or Y2 is a nondecreasing
function of X, it will assigned a lower value by ρ than the other function, and it will hence
be seen as less risky. The Weak DC-Property of an operator roughly means that the operator
preserves dominated convergence. This property is satisfied by a large class of operators on
B` pΣq, such as the Lebesgue integral or the Choquet integral (Definition A.3).

The idea of vigilance introduced here is an extension of the notion of vigilant beliefs introduced
by Ghossoub [23, 25, 26] in the insurance framework under Bayesian uncertainty, and extended
by Amarante, Ghossoub, and Phelps [2] to the case of Knightian uncertainty (Ambiguity).
Ghossoub [23, 25, 26] re-examines the classical Arrow-Borch-Raviv model of insurance demand,
but allowing for belief heterogeneity between the insurer and the insurance buyer. He shows
that if the insurer’s subjective probability measure on the state space satisfies a property called
vigilance, then an optimal contract for the insurance buyer takes the form of what the author
calls a generalized deductible contract. Moreover, he characterizes the collection of all optimal
contracts in terms of their distribution for the insurance buyer. In Ghossoub’s [23, 25, 26]
setting, where X is the insurable loss random variable, P is the insurance buyer’s (subjective)
probability measure on the state space, and Q is the insurer’s (subjective) probability measure
on the state space, Q is said to be pP,Xq-vigilant if for any two insurance contracts I1 pXq and
I2 pXq that are identically distributed under P , and such that I2 is a nondecreasing function4,
it follows that I2 pXq is preferred by the insurer to I1 pXq. Ghossoub [23, 25, 26] argues that
pP,Xq-vigilance of Q indicates a kind of credibility that the insurer assigns to the insurance
buyer’s assessment of the riskiness of the insurance contracts being compared, and he shows
that vigilance is a (strictly) weaker assumption than that of a monotone likelihood ratio, when
the latter can be defined5. In this paper, the definition of vigilance is extended from the notion
of vigilant beliefs to the concept of a vigilant real-valued mapping ρ on the collection of functions
Y over which a decision maker (DM) has a given preference. When ρ pY q “

ş
Y dP , one will

4So that I2 pXq and X are comonotonic (Definition 2.2).
5That is, when the measure P and Q are such that the laws P ˝X´1 and Q ˝X´1 have densities (with respect

to Lebesgue measure), so that a likelihood ratio can be defined as the ratio of these densities.
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recover Ghossoub’s [23, 25, 26] definition of vigilant beliefs as a special case of the definition of
vigilance given here (Definition 2.7).

1.4. Utility Maximization with a Convex Distortion Risk Measure. As an illustration,
I consider a utility maximization problem under a risk measure constraint, where the risk mea-
sure is a convex distortion risk measure. These risk measures are automatically vigilant and
possess the Weak DC Property. Our Theorem 3.1 then yields the existence of optimal con-
tingent claims that are nondecreasing functions of the underlying random variable X. Using
a quantile reformulation procedure, I show that under mild regularity conditions on the DM’s
utility function, an optimal contingent claim has an explicit characterization, and a crisp and
tractable form.

Specifically, when U pX,Y q :“ u pW0 ` Y ´Xq, for some utility function u satisfying some
mild regularity conditions, and when the risk measure ρ is a Choquet integral of the form

ρ pY q “ pş Y dT ˝ P , for some convex distortion function T , then an optimal contingent claim
takes the form

(1.4) Y˚ “ max

«
0,min

!
F´1

X pUq ,
`
u1
˘´1 `

λ˚T 1 p1 ´ Uq
˘

` F´1

X pUq ´W0

)ff

where λ˚ is chosen so that
ş
T 1 p1 ´ UqY˚ dP “ R, U is a uniformly distributed random variable

on p0, 1q, and F´1

X denotes the quantile function of X (defined as in equation (4.1)).

1.5. Outline. The rest of this paper is organized as follows. Section 2 introduces some prelimi-
nary notation and definitions. Section 3 presents this paper’s main result, which gives sufficient
conditions for the existence of comonotonic optimal continent claims. Section 4 gives a charac-
terization of comonotonic optimal contingent claims in terms of quantile functions, when the risk
measure is a distortion risk measure. Section 5 examines a special case of demand for contingent
claims under a convex risk measure, and gives an explicit characterization of a comonotonic op-
timal continent claim in this case. Finally, Section 6 concludes. Some proofs and some related
analysis can be found in the Appendices.

2. Preliminaries and Notation

Let S denote the set of states of the world, and suppose that G is a σ-algebra of subsets of S,
called events. Denote by B pGq the supnorm-normed Banach space of all bounded, R-valued and
G-measurable functions on pS,Gq, and denote by B` pGq the collection of all R`-valued elements
of B pGq. For any f P B pGq, the supnorm of f is given by }f}sup :“ supt|f psq| : s P Su ă `8.
For C Ď S, denote by 1C the indicator function of C. For any A Ď S and for any B Ď A, denote
by AzB the complement of B in A.

For any f P B pGq, denote by σtfu the σ-algebra of subsets of S generated by f , and denote
by B pσtfuq the linear space of all bounded, R-valued and σtfu-measurable functions on pS,Gq.
Then by Doob’s measurability theorem [1, Theorem 4.41], for any g P B pσtfuq there exists
a Borel-measurable map ζ : R Ñ R such that g “ ζ ˝ f . Denote by B` pσtfuq the cone of
nonnegative elements of B pσtfuq.
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Definition 2.1. A finite nonnegative measure η on a measurable space pΩ,Aq is said to be
nonatomic if for any A P A with η pAq ą 0, there is some B P A such that B Ĺ A and
0 ă η pBq ă η pAq.

For any f P B pGq, if A is any sub-σ-algebra of G such that σtfu Ď A, and if P is any
probability measure on the measurable space pS,Aq, it will be said that f is a continuous
random variable for P when the law P ˝ f´1 of f is a nonatomic Borel probability measure.

Definition 2.2. Two functions Y1, Y2 P B pGq are said to be comonotonic if
”
Y1 psq ´ Y1

`
s1
˘ ı”

Y2 psq ´ Y2
`
s1
˘ ı

ě 0, for all s, s1 P S

For instance any Y P B pGq is comonotonic with any c P R. Moreover, if Y1, Y2 P B pGq, and
if Y2 is of the form Y2 “ I ˝ Y1, for some Borel-measurable function I, then Y2 is comonotonic
with Y1 if and only if the function I is nondecreasing.

Definition 2.3. A function L : R2 Ñ R is supermodular if for any x1, x2, y1, y2 P R with x1 ď x2
and y1 ď y2, one has

L px2, y2q ` L px1, y1q ě L px1, y2q ` L px2, y1q

Appendix B contains more material about supermodular functions on lattices (Definition
B.5). For instance, if g : R Ñ R is concave, and a P R, then the function L1 : R2 Ñ R defined
by L1 px, yq “ g pa ´ x ` yq is supermodular (see Example B.7).

2.1. Vigilant Risk Measures and the Weak DC-Property. Let P be a given probability
measure on the measurable space pS,Gq. In many situations of choice under uncertainty, the
elements of choice are the elements of B` pGq, as in the problem that will be examined in this
paper. Often, a problem of choice involving these elements is stated as an optimization problem
subject to some constraints. In an abstract form, some of these constraints can be stated in
terms of operators Ψ : B` pGq Ñ R, and might be called “aggregation constraints”, or “risk
measure constraints”. Here I will define two special kinds of these operators (or risk measures):
vigilant risk measures, and risk measures having the Weak DC-Property.

Definition 2.4. A risk measure is any mapping Ψ : B` pGq Ñ R.

Definition 2.5 (Weak DC-Property). A risk measure Ψ : B` pGq Ñ R is said to have the Weak
DC-Property if for any Y ˚ P B` pGq and for any sequence tYnuně1 Ă B` pGq such that

(1) lim
nÑ`8

Yn “ Y ˚ (pointwise), and

(2) there is some Z P B` pGq such that Yn ď Z, for each n ě 1,

the following holds:

lim
nÑ`8

Ψ pYnq “ Ψ pY ˚q



8 MARIO GHOSSOUB

When Ψ is defined as a Lebesgue integral with respect to P , i.e. Ψ pY q “
ş
Y dP for each

Y P B` pGq, then Lebesgue’s Dominated Convergence Theorem [13, Th. 2.4.4] implies that Ψ
has the Weak DC-Property. More generally, if Ψ is a Choquet integral (Appendix A) with

respect to some continuous capacity ν on pS,Gq (Definition A.2), i.e. Ψ pY q “ pş Y dν for each
Y P B` pGq, then when seen as an operator on B` pGq, Ψ has the Weak DC-Property. This is a
consequence of [47, Th. 7.16]6.

Definition 2.6. Recall that P is a probability measure on pS,Gq. A mapping Ψ : B pΣq Ñ R

is said to be P -law-invariant, or law-invariant with respect to P , if for any φ1, φ2 P B pΣq,
Ψ pφ1q “ Ψ pφ2q whenever φ1 and φ2 have the same distribution according to P .

Definition 2.7 (Vigilance). Let X be a given element of B` pGq, and recall that P is a proba-
bility measure on pS,Gq. Denote by Σ the σ-algebra σtXu of subsets of S generated by X. A
risk measure Ψ : B` pΣq Ñ R is said to be pP,Xq-vigilant if for any Y1, Y2 P B` pΣq such that

(i) Y1 and Y2 have the same distribution under P , i.e. P ˝ Y ´1

1
“ P ˝ Y ´1

2
, and,

(ii) Y2 is a nondecreasing function of X, i.e. Y2 and X are comonotonic,

the following holds:
Ψ pY2q ď Ψ pY1q

Clearly, if Ψ is P -law invariant then it is pP,Xq-vigilant. This covers a large collection of
operators on B` pΣq such that a Lebesgue integral with respect to P , a Choquet integral with
respect to a distortion of P (Appendix A), and so on. When Ψ is not P -law invariant, the same
intuition as that behind Ghossoub’s [23] definition applies here. Namely, the elements of choice
are those elements of B` pΣq. Any Y P B` pΣq can be written as a function of X, i.e. of the
form Y “ I ˝ X. One can then think of such Y , rather informally, as possessing two sources of
variability: one which results from the state space itself and the indeterminacy of the state of
nature at the time of decision, and the other which is associated with the variability of Y with
respect to X, i.e. with the variability of the function I with respect to the identity function (on
the range of X). The first kind of variability depends on the distribution of X, and it is called
baseline randomness by Ghossoub [23]. The second kind of variability does not depend on the
distribution of X, and it is called idiosyncratic randomness by Ghossoub [23]. pP,Xq-vigilance
of the risk measure Ψ : B` pΣq Ñ R can then be understood as requiring that:

(1) For a given variability of the first kind, fixed according to the probability measure P
(that is, when the distribution of X is considered with respect to the measure P ), a
comparison of two contingent claims through Ψ can be restricted to a comparison of
their idiosyncratic randomness only; and,

(2) If a given function I’s variability is similar to that of the identity function Id (that is, I
is comonotonic with Id), then less idiosyncratic randomness is attributed to I than to
another function J for which the variability is not similar to that of Id, and hence I ˝X
will be attributed a lower value than J ˝ X through Ψ (i.e. a lower measure of risk).

6Theorem 7.16 in Pap [47] is a Dominated Convergence Theorem for the Šipoš integral, or the symmetric
Choquet integral. However, the latter coincides with the Choquet integral for nonnegative functions.
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3. Existence of Comonotonic Optimal Contingent Claims

Consider the setting of Section 2, and let X be a given element of B` pGq with closed range
X pSq “ r0,M s, where M :“ }X}sup ă `8. Denote by Σ the σ-algebra σtXu of subsets of
S generated by X, and let P be a probability measure on pS,Gq. I also assume that X is a
continuous random variable7 for P .

Let U : R2 Ñ R be a given function, and let ρ : B` pΣq Ñ R be a given risk measure. The
random variable X is fixed, and the objects P , U , and ρ are considered to be the primitives of
the following problem:

(3.1) sup
Y PBpΣq

#ż
U pX,Y q dP

ˇ̌
ˇ 0 ď Y ď X, ρ pY q ď R

)

where R P R is fixed. The following theorem gives sufficient conditions for the optimal choice
Y ˚ of the choice variable Y to be a nondecreasing function of X. The proof of the theorem is
given in Appendix C.

Theorem 3.1. If the following hold:

(1) Problem (3.1) has a nonempty feasibility set,

(2) The mapping U : R2 Ñ R is supermodular,

(3) The mapping E on B` pΣq defined by E pY q :“ U pX,Y q is uniformly bounded and se-
quentially continuous in the topology of pointwise convergence8,

(4) ρ is pP,Xq-vigilant, and,

(5) ρ has the Weak DC-Property,

then Problem (3.1) admits a solution Y ˚ which is comonotonic with X. Moreover, any other
solution Z˚ which is comonotonic with X and identically distributed as Y ˚ under P is such that
Y ˚ “ Z˚, P -a.s.

A few comments on the assumptions in Theorem 3.1 are in order. First, the assumption of
nonemptiness of the feasibility set of Problem (3.1) is made simply to rule out trivial cases where
no solution can exist. The assumption of supermodularity of the mapping U : R2 Ñ R is not
a strong assumption by any means. It is usually given in many situations by the very nature
of the problem considered. This happens for instance when U pX,Y q “ u pa´X ` Y q, for a
concave utility function u and some a P R. See Example B.7 (1). Assumption (4) in Theorem
3.1 is typically obtained whenever U pX,Y q “ u pa´X ` Y q, for some continuous and bounded
utility function u, and some a P R. Assumptions (5) and (6) were discussed in Section 2.1.

Theorem 3.1 is a general result that can be used in many situations. For instance, it can be
applied to problems of demand for insurance indemnities as in the model of Arrow [3] and Raviv
[48], but also allowing for heterogeneous beliefs unlike the classical approach to that problem.

7This is a standard assumption (e.g. Carlier and Dana [9, 10], Dana [15], and parts of Schied [52]), and it holds
in many instances, such as when it is assumed that a probability density function for X exists.

8That is, (i) there exists some N ă `8 such that } E pY q }sup ď N for each Y P B` pΣq; and, (ii) if tYnun
is a sequence in B` pΣq that converges pointwise to some Y P B` pΣq, then the sequence tE pYnqun converges
pointwise to E pY q.
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4. A Quantile Characterization of Optimal Contingent Claims

under a Distortion Risk Measure

LetH :“
!
Y P B pΣq

ˇ̌
ˇ 0 ď Y ď X and ρ pY q ď R

)
denote the feasibility set of Problem (3.1).

For each Y P B` pΣq, let FY ptq :“ P
`
ts P S : Y psq ď tu

˘
denote the cumulative distribution

function (cdf) of Y with respect to the probability measure P , and let FX ptq :“ P
`
ts P S :

X psq ď tu
˘
denote the cdf of X with respect to the probability measure P . Let F´1

Y ptq be the
left-continuous inverse of the cdf FY (i.e. the quantile function of Y ), defined by

(4.1) F´1

Y ptq :“ inf
!
z P R

`
ˇ̌
ˇ FY pzq ě t

)
, @t P r0, 1s

Lemma 4.1. If X is a continuous random variable for the probability measure P , then

(1) U :“ FX pXq is a random variable on the probability space pS,Σ, P q with a uniform
distribution on p0, 1q,

(2) X “ F´1

X pUq , P -a.s.

If, in addition, ρ is pP,Xq-vigilant, and the mapping U : R2 Ñ R is supermodular, then for
each Y P H, the function Y ˚ defined by Y ˚ :“ F´1

Y pFX pXqq is such that:

(1) Y ˚ P H,

(2) Y ˚ is comonotonic with X,

(3)
ş
U
´
X,Y ˚

¯
dP ě

ş
U
´
X,Y

¯
dP , and,

(4) ρpY ˚q ď ρpY q.

The proof of Lemma 4.1 is given in Appendix D. Under the assumptions of Lemma 4.1, it
follows that for each Y P H the following holds:

(1)
ş
E
´
F´1

Y pUq
¯
dP “

ş
U
´
F´1

X pUq , F´1

Y pUq
¯
dP ě

ş
U
´
X,Y

¯
dP

(2) ρ
`
F´1

Y pUq
˘

ď ρ pY q.

where the mapping E on B` pΣq is defined by E pY q “ U pX,Y q. Hence, by Lemma 4.1, one
can look for a solution to Problem (3.1) of the form F´1 pUq, where F is the cdf of a function
Z P B` pΣq such that 0 ď Z ď X and ρ pZq ď R.

4.1. Distortion Risk Measure. In the following, the risk measure ρ is assumed to be a dis-
tortion risk measure. Specifically, I make the following assumption.

Assumption 4.2. There exists a function T : r0, 1s Ñ r0, 1s such that:

(1) T is increasing and continuously differentiable,

(2) T p0q “ 0 and T p1q “ 1,

(3) ρ pY q “ pş Y dT ˝ P , for each Y P B` pΣq, where integration is in the sense of Choquet
as in Appendix A.
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It follows immediately from the definition of vigilance that the distortion risk measure ρ is
pP,Xq-vigilant. Moreover, by a classical result [47, Th. 7.16], ρ has the Weak DC-Property.
Hence, Theorem 3.1 yields the existence of a solution to the following problem:

(4.2) sup
Y PBpΣq

#ż
U pX,Y q dP

ˇ̌
ˇ 0 ď Y ď X, ρ pY q :“

pż
Y dT ˝ P ď R

)

Now, for any given Y P B` pΣq, if Y ˚ “ F´1

Y pFX pXqq “ F´1

Y pUq, then one can write9

ρ pY ˚q “
pż
F´1

Y pUq dT ˝ P “

ż
1

0

T 1 p1 ´ tqF´1

Y ptq dt “

ż
T 1 p1 ´ UqF´1

Y pUq dP

and ż
U
´
X,Y ˚

¯
dP “

ż
U
´
F´1

X pUq , F´1

Y pUq
¯

“

ż
E
´
F´1

Y pUq
¯
dP “

ż
1

0

E
`
F´1

Y ptq
˘
dt

Definition 4.3. Let Q denote the collection of all quantile functions. That is,

Q :“
!
f : p0, 1q Ñ R

ˇ̌
ˇ f is nondecreasing and left-continuous

)

Let Q˚ denote the collection of all quantile functions f P Q of the form F´1, where F is the
cdf of some function Y P B` pΣq such that 0 ď Y ď X. That is,

(4.3) Q˚ “
!
f P Q

ˇ̌
ˇ 0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)

4.2. A Quantile Problem. Consider the following problem:

(4.4) sup
fPQ˚

#ż
E pf pUqq dP

ˇ̌
ˇ̌
ˇ

ż
T 1 p1 ´ Uq f pUq dP ď R

+

In light of Lemma 4.1, the following result is immediate.

Proposition 4.4. Suppose that the assumptions of Lemma 4.1 hold. If f˚ is optimal for Problem
(4.4), then the function f˚ pUq is optimal for Problem (4.2).

Proof. Suppose that f˚ P Q˚ is optimal for Problem (4.4), and let Z˚ P B` pΣq be a cor-
responding function. That is, f˚ is the quantile function of Z˚. Hence, 0 ď Z˚ ď X, and

ρ pZ˚q “ pş Z˚ dT ˝ P “
ş
T 1 p1 ´ UqF´1

Z˚ pUq dP “
ş
T 1 p1 ´ Uq f˚ pUq dP ď R. Therefore, Z˚

is feasible for Problem (4.2). Let rZ˚ :“ f˚ pUq. Then, by Lemma 4.1, rZ˚ “ f˚ pUq is feasible
for Problem (4.2). To show optimality, let Z be any feasible solution for Problem (4.2), and let

F be the cdf of Z. Then, by Lemma 4.1, the function rZ :“ F´1 pUq is feasible for Probem (4.2),
comonotonic with X, and satisfies:

‚
ş
U
´
X, rZ

¯
dP ě

ş
U
´
X,Z

¯
dP , and,

9This is a standard exercise. See, for instance, [34, p. 418] or [29, p. 213].
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‚ pş rZ dT ˝ P ď pş Z dT ˝ P ď R.

Moreover, rZ has also F as a cdf. To show optimality of rZ˚ “ f˚ pUq for Problem (4.2) it
remains to show that ż

U
´
X, rZ˚

¯
dP ě

ż
U
´
X, rZ

¯
dP

Now, let f :“ F´1, so that rZ “ f pUq. Since rZ is feasible for Probem (4.2), it follows that

R ě ρ
´
rZ
¯

“

ż
T 1 p1 ´ Uq f pUq dP

Hence, f is feasible for Problem (4.4). Since f˚ is optimal for Problem (4.4), it follows that
ż
E pf˚ pUqq dP ě

ż
E pf pUqq dP

That is ż
U
´
X, rZ˚

¯
dP ě

ż
U
´
X, rZ

¯
dP

Therefore, rZ˚ “ f˚ pUq is optimal for Problem (4.2). �

5. An Example: Utility Maximization with a Convex Distortion Risk Measure

Consider the previous setting, and assume the following.

Assumption 5.1. There exists a utility function u : R Ñ R such that:

(1) u is bounded and satisfies Inada’s [32] conditions. That is:

‚ u is bounded,

‚ u p0q “ 0,

‚ u is strictly increasing and strictly concave,

‚ u is continuously differentiable, and,

‚ u1 p0q “ `8 and lim
xÑ`8

u1 pxq “ 0.

(2) For each Y P B` pΣq, E pY q “ U pX,Y q “ u pW0 ` Y ´Xq.

The strict concavity and the continuous differentiability of u imply that u1 is both continuous
and strictly decreasing. The latter implies that pu1q´1 is continuous and strictly decreasing, by
the Inverse Function Theorem [50, pp. 221-223].

Assumption 5.2. The DM has initial wealth W0 such that X ď W0, P -a.s. That is,

P

˜!
s P S : X psq ą W0

)¸
“ 0

Assumption 5.2 simply states that the DM is well-diversified so that the particular exposure
to X is sufficiently small, with respect to the DM’s total portfolio exposure.
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5.1. A Utility Maximization Problem. The initial Problem (3.1) then becomes the following
utility maximization problem.

(5.1) sup
Y PBpΣq

#ż
u pW0 ` Y ´Xq dP

ˇ̌
ˇ 0 ď Y ď X, ρ pY q :“

pż
Y dT ˝ P ď R

)

The concavity of the utility function u (Assumption 5.1) implies that the function U : R2 Ñ R

defined by U px, yq “ u py ´ xq is supermodular (Example B.7 (1)). Moreover, the risk measure ρ

given by ρ pY q “ pş Y dT ˝P is pP,Xq-vigilant and has the Weak DC-Property. Hence, Theorem
3.1 yields the existence of a solution to Problem (5.1).

Remark 5.3. For any Y P B pΣq which is feasible for Problem 5.1, one has 0 ď Y ď X.
Therefore, by monotonicity of the Choquet integral (Proposition A.4 (5)), it follows that

0 ď
pż
Y dT ˝ P ď

pż
X dT ˝ P

Hence, for the risk measure constraint ρ pY q ď R to be meaningful in the present context, it will

be assumed that R ď pş X dT ˝ P . This will then imply that any Y P B pΣq which is feasible for
Problem 5.1 satisfies:

0 ď
pż
Y dT ˝ P ď R ď

pż
X dT ˝ P

Now, let U “ FX pXq, and consider the following problem.

(5.2) sup
fPQ˚

#ż
u
`
W0 ` f pUq ´ F´1

X pUq
˘
dP

ˇ̌
ˇ̌
ˇ

ż
T 1 p1 ´ Uq f pUq dP ď R

+

where Q˚ is given by Equation (4.3).

Proposition 5.4. Suppose that the assumptions of Lemma 4.1 hold. If f˚ is optimal for Problem
(5.2), then the function f˚ pUq is optimal for Problem (5.1).

Proof. By Lemma 4.1, X “ F´1

X pUq , P -a.s. Therefore, for any quantile function f P Q,

ż
u
`
W0 ` f pUq ´ F´1

X pUq
˘
dP “

ż
u pW0 ` f pUq ´Xq dP “

ż
E pf pUqq dP

The rest follows from Proposition 4.4. �

Note that Proposition 5.4 holds for any distortion function T , and the convexity of T has not
been assumed yet.
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5.2. Characterizing a Solution.

Lemma 5.5. Suppose that X is a continuous random variable for the probability measure P . If
f˚ P Q˚ satisfies the following:

(1)
ş
1

0
T 1 p1 ´ tq f˚ ptq dt “ R,

(2) There exists λ ě 0 such that for all t P p0, 1q,

f˚ ptq “ argmax
0ďyďF´1

X
ptq

«
u
´
W0 ` y ´ F´1

X ptq
¯

´ λT 1 p1 ´ tq y

ff
,

then f˚ solves Problem (5.2).

If, in addition, the rest of the assumptions of Lemma 4.1 hold, then the function f˚ pUq is
optimal for Problem (5.1), where U “ FX pXq.

Proof. Suppose that f˚ P Q˚ satisfies conditions p1q and p2q above. Then, in particular, f˚

is feasible for Problem (5.2). To show optimality of f˚ for Problem (5.2), let f by any other

feasible solution for Problem (5.2). Then
ş
1

0
T 1 p1 ´ tq f ptq dt ď R and, for all t P p0, 1q,

u
´
W0 ` f˚ ptq ´ F´1

X ptq
¯

´ λT 1 p1 ´ tq f˚ ptq ě u
´
W0 ` f ptq ´ F´1

X ptq
¯

´ λT 1 p1 ´ tq f ptq ,

that is,
”
u
´
W0 ` f˚ ptq ´ F´1

X ptq
¯

´ u
´
W0 ` f ptq ´ F´1

X ptq
¯ı

ě λT 1 p1 ´ tq
”
f˚ ptq ´ f ptq

ı

Integrating yields
ż

1

0

u
´
W0 ` f˚ ptq ´ F´1

X ptq
¯
dt´

ż
1

0

u
´
W0 ` f ptq ´ F´1

X ptq
¯
dt

ě λ

„
R ´

ż
1

0

T 1 p1 ´ tq f ptq dt


ě 0

or,
ż
u
´
W0 ` f˚ pUq ´ F´1

X pUq
¯
dP “

ż
1

0

u
´
W0 ` f˚ ptq ´ F´1

X ptq
¯
dt

ě

ż
1

0

u
´
W0 ` f ptq ´ F´1

X ptq
¯
dt “

ż
u
´
W0 ` f pUq ´ F´1

X pUq
¯
dP

as required. The rest follows from Proposition 5.4. �

Lemma 5.5 suggests that in order to find a solution for Problem (5.2), one can start by solving
the problem

(5.3) max
0ďfλptqďF´1

X
ptq

”
u
´
W0 ` fλ ptq ´ F´1

X ptq
¯

´ λT 1 p1 ´ tq fλ ptq
ı

for a given λ ě 0, and for a fixed t P p0, 1q.

Assumption 5.6. T is convex and T 1 p1q ă `8.
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Assumption 5.6 yields an explicit characterization of an optimal solution to Problem (5.1), as
given in the following Corollary.

Corollary 5.7. Suppose that the assumptions of Lemma 4.1 hold, and let U “ FX pXq. If As-
sumption 4.2, Assumption 5.1, Assumption 5.2, and Assumption 5.6 also hold, then an optimal
solution for Problem (5.1) takes the form:

(5.4) Y˚ “ max

«
0,min

!
F´1

X pUq ,
`
u1
˘´1 `

λ˚T 1 p1 ´ Uq
˘

` F´1

X pUq ´W0

)ff

where λ˚ is chosen so that
ş
T 1 p1 ´ UqY˚ dP “ R.

Proof. For a given λ ě 0, and for a fixed t P p0, 1q, consider the problem:

(5.5) max
fλptq

”
u
´
W0 ` fλ ptq ´ F´1

X ptq
¯

´ λT 1 p1 ´ tq fλ ptq
ı

By Assumption 5.1, the first-order conditions are sufficient for an optimum for Problem (5.5),
and they imply that the function

f˚
λ ptq :“

`
u1
˘´1 `

λT 1 p1 ´ tq
˘

` F´1

X ptq ´W0

solves Problem (5.5). Concavity of u and convexity of T imply that the function f˚
λ : p0, 1q Ñ R

is nondecreasing, since F´1

X is a nondecreasing function. Assumption 4.2 and Assumption 5.1
also yield left-continuity of f˚

λ . Consequently, f
˚
λ P Q, the set of all quantile functions.

Now, define the function f˚˚
λ by

(5.6) f˚˚
λ ptq :“ max

«
0,min

!
F´1

X ptq , f˚
λ ptq

)ff

It is then easy to check that f˚˚
λ P Q, since f˚

λ P Q and since F´1

X is a nondecreasing function.

Moreover, 0 ď f˚˚
λ pzq ď F´1

X pzq, for each z P p0, 1q. Therefore, f˚˚
λ P Q˚. Finally, it is

easily seen that f˚˚
λ ptq solves Problem (5.3) for the given λ and t, since the concavity of u

yields the concavity of the function z ÞÑ u
´
W0 ` z ´ F´1

X ptq
¯

´ λT 1 p1 ´ tq z, for each t P

p0, 1q. Hence, in view of Lemma 5.5, it remains to show that there exists a λ˚ ě 0 such thatş
1

0
T 1 p1 ´ tq f˚˚

λ˚ ptq dt “ R. This is given by Lemma E.1 in Appendix E. �

6. Conclusion

In this paper I examined a general utility maximization problem, with a non-law-invariant
indirect utility and a non-law-invariant risk measure constraint. This problem of demand for
contingent claims is an abstraction of many common problems in economic theory that were
hitherto only considered in a framework of complete homogeneity of beliefs about the realizations
of an underlying uncertainty. The problem examined in this paper takes the following form:

(6.1) sup
Y PBpΣq

#ż
U pX,Y q dP

ˇ̌
ˇ̌
ˇ 0 ď Y ď X, ρ pY q ď R

+
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where X is a given underlying uncertainty on some state space S, Σ “ σtXu, Y “ I ˝ X is
a claim contingent on this uncertainty,

ş
U pX, I ˝ Xq dP is a DM’s expected utility of wealth

with respect to the probability measure P , ρ : B` pΣq Ñ R is a given risk measure, and R P R

is fixed. The set B pΣq is the linear space of all bounded and Σ-measurable functions on S.

Conditions on the primitives U and ρ for the optimal choice Y ˚ of Y to be monotone in X
are desired. Using some quantile reformulation techniques inspired by the theory of monotone
equimeasurable rearrangements, I showed that a set of sufficient conditions on U and ρ for this
to hold is that the risk measure ρ be Vigilant and satisfy the Weak DC-Property, and that the
function U : R2 Ñ R be supermodular. Roughly speaking, vigilance of the risk measure ρ can
be understood as a (weak) preference for comonotonicity, on the collection of all functions that
are identically distributed for the probability measure P . The Weak DC-Property is verified
by a large class of operators on B` pΣq, such as the Lebesgue integral or the Choquet integral

(Appendix A). For instance, any distortion risk measure of the form ρ pY q “ pş Y dP is pP,Xq-
vigilant. In this case, I gave a characterization of an optimal contingent claim in terms of a
quantile problem, in which the uncertainty may be seen as being homogeneous. In the special
case of a convex distortion risk measure, a full explicit characterization of an optimal contingent
claim was given.

Appendix A. Related Analysis

A.1. A Useful Result.

Lemma A.1. If pfnqn is a uniformly bounded sequence of nondecreasing real-valued functions
on some closed interval I in R, with bound N (i.e. |fn pxq | ď N, @x P I, @n ě 1), then
there exists a nondecreasing real-valued bounded function f˚ on I, also with bound N , and a
subsequence of pfnqn that converges pointwise to f˚ on I.

Proof. [11, Lemma 13.15]. �

A.2. Capacities and the Choquet Integral.

Definition A.2. A (normalized) capacity on a measurable space pS,Σq is a set function ν :
Σ Ñ r0, 1s such that

(1) ν p∅q “ 0;

(2) ν pSq “ 1; and,

(3) ν is monotone: for any A,B P Σ, A Ď B ñ ν pAq ď ν pBq.

The capacity ν is said to be

(1) Continuous from above if for any sequence tAnun in G such that An`1 Ď An for each
n ě 1, one has lim

nÑ`8
ν pAnq “ ν

`Ş`8
n“1

An

˘
.

(2) Continuous from below if for any sequence tAnun in G such that An Ď An`1 for each
n ě 1, one has lim

nÑ`8
ν pAnq “ ν

`Ť`8
n“1

An

˘
.

(3) Continuous if it is both continuous from above and continuous from below.



VIGILANT MEASURES OF RISK AND THE DEMAND FOR CONTINGENT CLAIMS 17

For instance, if P is a probability measure on pS,Σq and T : r0, 1s Ñ r0, 1s is increasing,
with T p0q “ 0 and T p1q “ 1, then the set function ν :“ T ˝ P is a capacity on pS,Σq. Such a
function T is usually called a probability distortion, and the capacity T ˝ P is usually called a
distorted probability measure. If, moreover, the function T is continuous, then the set function
ν :“ T ˝P is a capacity on pS,Σq which is continuous. This is an immediate consequence of the
continuity of the measure P for monotone sequences [13, Prop. 1.2.3] and the continuity of T .
In particular, any probability measure is continuous.

Definition A.3. For a given capacity ν on pS,Σq and a given φ P B pΣq, the Choquet integral
of φ with respect to ν is defined by

pż
φ dν :“

ż `8

0

ν pts P S : φ psq ě tuq dt `

ż
0

´8
rν pts P S : φ psq ě tuq ´ 1s dt

where the integrals are taken in the sense of Riemann.

The Choquet integral with respect to a measure is simply the usual Lebesgue integral with
respect to that measure [39, p. 59]. Unlike the Lebesgue integral, however, the Choquet integral
is not an additive operator on B pΣq. However, the Choquet integral is additive on comonotonic
functions (Definition 2.2).

Proposition A.4. Let ν be a capacity on pS,Σq.

(1) If φ1, φ2 P B pΣq are comonotonic, then pş pφ1 ` φ2q dν “ pş φ1 dν `pş φ2 dν.

(2) If φ P B pΣq and c P R, then pş pφ ` cq dν “ pş φ dν ` c.

(3) If A P Σ then pş 1A dν “ ν pAq.

(4) If φ P B pΣq and a ě 0, then pş a φ dν “ a p
ş
φ dν.

(5) If φ1, φ2 P B pΣq are such that φ1 ď φ2, then
pş φ1 dν ď pş φ2 dν.

For more about capacities and Choquet integrals, I refer to Marinacci and Montrucchio [39].

Appendix B. Equimeasurable Monotone Rearrangements and Supermodularity

The concept of an equimeasurable rearrangement of a Borel-measurable function on R with
respect to a finite Borel measure, and the notion of an equimeasurable rearrangement of a
measurable function f from a measurable space into R with respect to a finite Borel measure
on the range of f is by now part of the classical literature [7, 12, 28, 38]. It is the basic tool
that will be used to show the existence of a monotone solution to the DM’s problem. Here, the
idea of an equimeasurable rearrangement of a random variable with respect to another random
variable is discussed. The nomenclature used has been chosen with the present context in mind,
whereby the same measurable space may be endowed with different measures. In this section I
introduce a specific formulation of the nondecreasing rearrangement of any element Y of B` pΣq
with respect to the fixed underlying uncertainty X. Although some of the results presented here
are not new, the approach is novel, to the best of my knowledge. All proofs and some additional
results may be found in Ghossoub [26] or Ghossoub [24]. The latter introduces the idea of a
rearrangement in a context of non-additive probability measures (capacities).
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B.1. The Nondecreasing Rearrangement. Let pS,G, P q be a probability space, and let X P
B` pGq be a continuous random variable (i.e. P ˝X´1 is nonatomic) with range r0,M s :“ X pSq,
where M :“ suptX psq : s P Su ă `8, i.e. X is a mapping of S onto the closed interval r0,M s.
Denote by Σ the σ-algebra σtXu, and denote by φ the law of X defined by

φ pBq :“ P
´!
s P S : X psq P B

)¯
“ P ˝ X´1 pBq

for any Borel subset B of R.

If I, In : r0,M s Ñ r0,M s, for each n ě 1, I will write In Ó I, φ-a.s., to signify that the
sequence tInun is a nonincreasing sequence of functions and that lim

nÑ`8
In ptq “ I ptq, for φ-

a.a. t P r0,M s. Similarly, I will write In Ò I, φ-a.s., to signify that the sequence tInun is a
nondecreasing sequence of functions and that lim

nÑ`8
In ptq “ I ptq, for φ-a.a. t P r0,M s.

Definition B.1. For any Borel-measurable map I : r0,M s Ñ R, define the distribution function
of I as the map φI : R Ñ r0, 1s defined by

(B.1) φI ptq :“ φ
´!
x P r0,M s : I pxq ď t

)¯

Then φI is a nondecreasing right-continuous function, and the function t ÞÑ 1 ´ φI ptq is called
the survival function of I.

Definition B.2. Let I : r0,M s Ñ r0,M s be any Borel-measurable map, and define the function
rI : r0,M s Ñ R by

(B.2) rI ptq :“ inf
!
z P R

`
ˇ̌
ˇ φI pzq ě φ

`
r0, ts

˘)

The following proposition gives some useful properties of the map rI defined above.

Proposition B.3. Let I : r0,M s Ñ r0,M s be any Borel-measurable map and let rI : r0,M s Ñ R

be defined as in equation (B.2). Then the following hold:

(1) rI is left-continuous, nondecreasing, and Borel-measurable;

(2) For each t P r0,M s, φI

´
rI ptq

¯
ě φ pr0, tsq;

(3) rI ptq ě 0, for each t P r0,M s, rI p0q “ 0, and rI pMq ď M ;

(4) If I1, I2 : r0,M s Ñ r0,M s are such that I1 ď I2, φ-a.s., then rI1 ď rI2;
(5) If Id : r0,M s Ñ r0,M s denotes the identity function, then rId ď Id;

(6) rI is φ-equimeasurable with I, in the sense that for any Borel set B,

(B.3) φ
´!
t P r0,M s : I ptq P B

)¯
“ φ

´!
t P r0,M s : rI ptq P B

)¯

(7) If I : r0,M s Ñ R
` is another nondecreasing, Borel-measurable map which is φ-equimeasurable

with I, then I “ rI, φ-a.s.;



VIGILANT MEASURES OF RISK AND THE DEMAND FOR CONTINGENT CLAIMS 19

(8) If I, In : r0,M s Ñ r0,M s, for each n ě 1, and In Ó I, φ-a.s., then rIn Ó rI, φ-a.s.

rI will be called the nondecreasing φ-rearrangement of I (see also [20, pp. 224-225]). Now,

define Y :“ I ˝X and rY :“ rI ˝X. Since both I and rI are Borel-measurable mappings of r0,M s

into itself, it follows that Y, rY P B` pΣq. Note also that rY is nondecreasing in X, in the sense

that if s1, s2 P S are such that X ps1q ď X ps2q then rY ps1q ď rY ps2q, and that Y and rY are P -

equimeasurable, that is, for any α P r0,M s, P
´!
s P S : Y psq ď α

)¯
“ P

´!
s P S : rY psq ď α

)¯
.

Call rY a nondecreasing P -rearrangement of Y with respect to X, and denote it by
rYP to avoid confusion in case a different measure on pS,Gq is also considered. For example, in

case both P1 and P2 are probability measures on the measurable space pS,Gq, denote by rYP1

(resp. rYP2
) a nondecreasing P1-rearrangement (resp. P2-rearrangement) of Y with respect to X.

In the general case, nothing can be said a priori about the relationship between rYP1
and rYP2

.
What can be asserted, however, is that:

(1) Both rYP1
and rYP2

are nondecreasing in X, and hence rYP1
and rYP2

are comonotonic, i.e.”
rYP2

psq ´ rYP2
ps1q

ı”
rYP1

psq ´ rYP1
ps1q

ı
ě 0, for all s, s1 P S;

(2) Y and rYP1
are P1-equimeasurable; and,

(3) Y and rYP2
are P2-equimeasurable.

Note that rYP is P -a.s. unique. Note also that if Y1 and Y2 are P -equimeasurable and if
Y1 P L1 pS,G, P q, then Y2 P L1 pS,G, P q and

ş
ψ pY1q dP “

ş
ψ pY2q dP , for any measurable

function ψ such that the integrals exist.

Similarly to the previous construction, for a given a Borel-measurableB Ď r0,M s with φ pBq ą

0, there exists a φ-a.s. unique (on B) nondecreasing, Borel-measurable mapping rIB : B Ñ r0,M s
which is φ-equimeasurable with I on B, in the sense that for any α P r0,M s,

φ
´!
t P B : I ptq ď α

)¯
“ φ

´!
t P B : rIB ptq ď α

)¯

rIB is called the nondecreasing φ-rearrangement of I on B. Since X is G-measurable, there

exists A P G such that A “ X´1 pBq, and hence P pAq ą 0. Now, define rYA :“ rIB˝X. Since both

I and rIB are bounded Borel-measurable mappings, it follows that Y, rYA P B` pΣq. Note also

that rYA is nondecreasing in X on A, in the sense that if s1, s2 P A are such that X ps1q ď X ps2q

then rY ps1q ď rY ps2q, and that Y and rYA are P -equimeasurable on A, that is, for any α P r0,M s,

P
´!
s P S : Y psq ď α

)
XA

¯
“ P

´!
s P S : rYA psq ď α

)
XA

¯
.

Call rYA a nondecreasing P -rearrangement of Y with respect to X on A, and denote it

by rYA,P to avoid confusion in case a different measure on pS,Gq is also considered. For example,

in case both P1 and P2 are probability measures on the measurable space pS,Gq, denote by rYA,P1

(resp. rYA,P2
) a nondecreasing P1-rearrangement (resp. P2-rearrangement) of Y with respect to

X on A. In the general case, nothing can be said a priori about the relationship between rYA,P1

and rYA,P2
. What can be asserted, however, is that:
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(1) Both rYA,P1
and rYA,P2

are nondecreasing in X on A, and hence rYP1
and rYP2

are comono-

tonic on A, i.e.
”
rYA,P2

psq ´ rYA,P2
ps1q

ı”
rYA,P1

psq ´ rYA,P1
ps1q

ı
ě 0, for all s, s1 P A;

(2) Y and rYA,P1
are P1-equimeasurable on A; and,

(3) Y and rYA,P2
are P2-equimeasurable on A.

Note that rYA,P is P -a.s. unique. Note also that if Y1,A and Y2,A are P -equimeasurable on A
and if

ş
A
Y1,A dP ă `8, then

ş
A
Y2,A dP ă `8 and

ş
A
ψ pY1,Aq dP “

ş
A
ψ pY2,Aq dP , for any

measurable function ψ such that the integrals exist.

Lemma B.4. Let Y P B` pΣq and let A P G be such that P pAq “ 1 and X pAq is a Borel

set10. Let rYP be the nondecreasing P -rearrangement of Y with respect to X, and let rYA,P be the

nondecreasing P -rearrangement of Y with respect to X on A. Then rYP “ rYA,P , P -a.s.

B.2. Supermodularity and Hardy-Littlewood-Pólya Inequalities. A partially ordered
set (poset) is a pair pT,ěq where ě is a reflexive, transitive and antisymmetric binary relation
on T . A point t P T is called an upper bound (resp. lower bound) for a subset S of T if t ě x

(resp. x ě t) for each x P S. A point t˚ P T is called a least upper bound (resp. greatest lower
bound) for S if it is an upper bound (resp. lower bound) for S and for any other upper bound
(resp. lower bound) t of S one has t ě t˚ (resp. t˚ ě t). It is easily seen that the least upper
bound and the greatest lower bound are unique. For any x, y P S denote by x_ y (resp. x^ y)
the least upper bound (resp. greatest lower bound) of the set tx, yu. A poset pT,ěq is called a
lattice when x_ y, x^ y P T , for each x, y P T .

For instance, the Euclidian space R
n is a lattice for the partial order ě defined as follows:

for x “ px1, . . . , xnq P R
n and y “ py1, . . . , ynq P R

n, write x ě y when xi ě yi, for each
i “ 1, . . . , n. It is then easy to see that x _ y “ pmax px1, y1q , . . . ,max pxn, ynqq and x ^ y “
pmin px1, y1q , . . . ,min pxn, ynqq.

Definition B.5. Let pT,ěq be a lattice. A function L : T Ñ R is said to be supermodular if
for each x, y P T ,

(B.4) L px _ yq ` L px^ yq ě L pxq ` L pyq

In particular, a function L : R2 Ñ R is supermodular if for any x1, x2, y1, y2 P R with x1 ď x2
and y1 ď y2, one has

(B.5) L px2, y2q ` L px1, y1q ě L px1, y2q ` L px2, y1q

A function L : R2 Ñ R is called strictly supermodular if for any x1, x2, y1, y2 P R with x1 ă x2
and y1 ă y2, one has

(B.6) L px2, y2q ` L px1, y1q ą L px1, y2q ` L px2, y1q

10Note that if A P Σ “ σtXu then X pAq is automatically a Borel set, by definition of σtXu. Indeed, for
any A P σtXu, there is some Borel set B such that A “ X´1 pBq. Then X pAq “ B X X pSq [17, p. 7]. Thus
X pAq “ B X r0,Ms is a Borel subset of r0,Ms.
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Lemma B.6. A function L : R2 Ñ R is supermodular (resp. strictly supermodular) if and only
if the function η pyq :“ L px` h, yq ´ L px, yq is nondecreasing (resp. increasing) on R, for any
x P R and h ě 0 (resp. h ą 0).

Example B.7. The following are useful examples of supermodular functions:

(1) If g : R Ñ R is concave, and a P R, then the function L1 : R
2 Ñ R defined by

L1 px, yq “ g pa´ x` yq is supermodular. If, moreover, g is strictly concave then L1 is
strictly supermodular.

(2) If f : R Ñ R is concave, and a P R, then the function L2 : R
2 Ñ R defined by

L2 px, yq “ f pa` x´ yq is supermodular. If, moreover, f is strictly concave then L2 is
strictly supermodular.

(3) The function L3 : R
2 Ñ R defined by L3 px, yq “ ´ py ´ xq` is supermodular.

(4) If ψ, φ : R Ñ R are both nonincreasing or both nondecreasing functions, then the
function L4 : R

2 Ñ R defined by L4 px, yq “ φ pxq ψ pyq is supermodular.

Lemma B.8 (Hardy-Littlewood-Pólya Inequalities). Let Y P B` pΣq and let A P G be such that

P pAq ą 0 and X pAq is a Borel set. Let rYP be the nondecreasing P -rearrangement of Y with

respect to X, and let rYA,P be the nondecreasing P -rearrangement of Y with respect to X on A.
If L is supermodular, then:

(1)
ş
L
´
X,Y

¯
dP ď

ş
L
´
X, rYP

¯
dP , and if L is strictly supermodular then equality holds

if and only if Y “ rYP , P -a.s., and,

(2)
ş
A
L
´
X,Y

¯
dP ď

ş
A
L
´
X, rYA,P

¯
dP ,

provided the integrals exist (i.e. they are not of the form 8 ´ 8).

Lemma B.9. Let Y P B` pΣq and let A P G be such that P pAq ą 0 and X pAq is a Borel

set. Let rYP be the nondecreasing P -rearrangement of Y with respect to X, and let rYA,P be the
nondecreasing P -rearrangement of Y with respect to X on A. Then the following hold:

(1) If 0 ď Y ď X, P -a.s., then 0 ď rYP ď X; and,

(2) If 0 ď Y ď X, P -a.s. on A, then 0 ď rYA,P ď X, P -a.s. on A.

Appendix C. Proof of Theorem 3.1

First note that by the assumption that X is a continuous random variable for the probability
measure P , it follows that the Borel probability measure P ˝ X´1 is nonatomic. Now, suppose

that H “
!
Y P B pΣq

ˇ̌
ˇ 0 ď Y ď X and ρ pY q ď R

)
‰ ∅, ρ is pP,Xq-vigilant and has the Weak

DC-Property, the mapping U : R2 Ñ R is supermodular, and the mapping E : B` pΣq Ñ B pΣq
defined by E pY q “ U pX,Y q is uniformly bounded and sequentially continuous in the topology
of pointwise convergence.
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Lemma C.1. For each Y P H there is Y ˚ P H such that:

(1) Y ˚ is comonotonic with X, i.e. Y ˚ is of the form I˚ ˝ X where I˚ : r0,M s Ñ r0,M s is
nondecreasing;

(2)
ş
U
´
X,Y ˚

¯
dP ě

ş
U
´
X,Y

¯
dP ; and,

(3) ρpY ˚q ď ρpY q.

Proof. By Assumption, H ‰ ∅. Choose any Y “ I ˝ X P H, and let Y ˚ :“ rYP , where rYP
denotes the nondecreasing P -rearrangement of Y with respect to X. Then (i) Y ˚ “ rI ˝X where
rI : r0,M s Ñ r0,M s is nondecreasing, bounded, and Borel-measurable; and, (ii) 0 ď Y ˚ ď X, by
Lemma B.9. Furthermore, since ρ is pP,Xq-vigilant, it follows that ρpY ˚q ď ρpY q, by definition
of pP,Xq-vigilance. But ρpY q ď R since Y P H. Therefore, ρpY ˚q ď R. Thus, Y ˚ P H is
comonotonic with X. Moreover, since the function U is supermodular, it follows from Lemma

B.8 that
ş
U
´
X,Y ˚

¯
dP ě

ş
U
´
X,Y

¯
dP . �

Now, let HÒ denote the collection of all elements of H that are comonotonic with X. Then
HÒ ‰ ∅, by Lemma C.1. Also, by Lemma C.1, one can choose a maximizing sequence tYnun
in HÒ for Problem (3.1). That is, lim

nÑ`8

ş
U pX,Ynq dP “ N :“ supY PB`pΣq

 ş
U pX,Y q dP

(
ă

`8. Since 0 ď Yn ď X ď M :“ }X}sup, the sequence tYnun is uniformly bounded. Moreover,
for each n ě 1 one has Yn “ In ˝ X, with In : r0,M s Ñ r0,M s. Consequently, the sequence
tInun is a uniformly bounded sequence of nondecreasing Borel-measurable functions. Thus, by
Lemma A.1, there is a nondecreasing function I˚ : r0,M s Ñ r0,M s and a subsequence tImum of
tInun such that tImum converges pointwise on r0,M s to I˚. Hence, I˚ is also Borel-measurable,
and so Y ˚ :“ I˚ ˝ X P B` pΣq is such that 0 ď Y ˚ ď X. Moreover, the sequence tYmum,
defined by Ym “ Im ˝ X, converges pointwise to Y ˚. Thus, by the assumption that ρ has the
Weak DC-Property, Y ˚ P HÒ. Now, by the assumption of uniform boundedness and sequentially
continuity of the map U pX, .q in the topology of pointwise convergence, and by Lebesgue’s
Dominated Convergence Theorem [1, Theorem 11.21] one has

ż
U pX,Y ˚q dP “ lim

mÑ`8

ż
U pX,Ymq dP “ lim

nÑ`8

ż
U pX,Ynq dP “ N

Hence Y ˚ solves Problem (3.1). The P -a.s. uniqueness of Y ˚ is a consequence of Proposition
B.3. This concludes the proof of Theorem 3.1. l

Appendix D. Proof of Lemma 4.1

Let ζ :“ P ˝X´1 be the image measure of P underX. By the assumption that X is a continu-
ous random variable for the probability measure P , the Borel probability measure ζ is nonatomic.
One can then define the P -a.s. unique nondecreasing P -rearrangement of X with respect to X,
as in Appendix B. Since X is a nondecreasing function of X and P -equimeasurable with X, it
follows from the P -a.s. uniqueness of the equimeasurable nondecreasing P -rearrangement (see
Proposition B.3) that X “ F´1

X pFX pXqq, P -a.s. (see also [21, Lemma A.21]). Moreover, since
ζ “ P ˝ X´1 is nonatomic, it follows that U :“ FX pXq has a uniform distribution over p0, 1q
[21, Lemma A.21], that is, P

`
ts P S : FX pXq psq ď tu

˘
“ t for each t P p0, 1q.
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Now, let Y P H be given, and let rY denote the nondecreasing P -rearrangement of Y with
respect toX. Since Y P B` pΣq, it can be written as φ˝X for some nonnegative Borel-measurable
and bounded map φ on X pSq. Moreover, since 0 ď Y ď X, φ is a mapping of r0,M s into r0,M s.

Since, ζ is nonatomic (by assumption), one can define the mapping rφ : r0,M s Ñ r0,M s as in
Appendix B (see equation (B.2) on p. 18) to be the nondecreasing ζ-rearrangement of φ, that
is,

rφ ptq :“ inf
!
z P R

`
ˇ̌
ˇ ζ

`
tx P r0,M s : φ pxq ď zu

˘
ě ζ

`
r0, ts

˘)

Then, as in Appendix B, rY “ rφ ˝ X. Therefore, for each s0 P S,

rY ps0q “ rφ pX ps0qq “ inf
!
z P R

`
ˇ̌
ˇ ζ

`
tx P r0,M s : φ pxq ď zu

˘
ě ζ

`
r0,X ps0qs

˘)

However, for each s0 P S,

ζ
`

r0,X ps0qs
˘

“ P ˝ X´1
`

r0,X ps0qs
˘

“ FX pX ps0qq :“ FX pXq ps0q

Moreover,

ζ
`
tx P r0,M s : φ pxq ď zu

˘
“ P ˝ X´1

`
tx P r0,M s : φ pxq ď zu

˘

“ P
`
ts P S : φ pX psqq ď zu

˘
“ FY pzq

Consequently, for each s0 P S,

rY ps0q “ inf
!
z P R

`
ˇ̌
ˇ FY pzq ě FX pXq ps0q

)
“ F´1

Y pFX pX ps0qqq :“ F´1

Y pFX pXqq ps0q

That is,

rY “ F´1

Y pFX pXqq

where F´1

Y is the left-continuous inverse of FY , as defined in equation (4.1). Therefore, the

function Y ˚ “ F´1

Y pFX pXqq coincides with the function rY (he nondecreasing P -rearrangement
of Y with respect to X).

Consequently, it follows that Y ˚ is comonotonic with X. Moreover, by Lemma B.9, it follows

that 0 ď Y ˚ ď X. Also, as in the proof of Lemma C.1, one has
ş
U
´
X,Y ˚

¯
dP ě

ş
U
´
X,Y

¯
dP

(by supermodularity of U), ρpY ˚q ď ρpY q (by vigilance of ρ), and Y ˚ P H. l

Appendix E. A Useful Lemma

Lemma E.1. Suppose that Assumption 4.2, Assumption 5.1, Assumption 5.2, and Assumption
5.6 hold. Let ψ be the function of the parameter λ ě 0 defined by

ψ pλq :“

ż
1

0

T 1 p1 ´ tqmax

«
0,min

!
F´1

X ptq ,
`
u1
˘´1 `

λT 1 p1 ´ tq
˘

` F´1

X ptq ´W0

)ff
dt

Then there exists a λ˚ ě 0 such that ψ pλ˚q “ R.
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Proof. Since X is bounded and since F´1

X is nondecreasing, it follows that for each t P r0, 1s,

min
!
F´1

X ptq ,
`
u1
˘´1 `

λT 1 p1 ´ tq
˘

` F´1

X ptq ´W0

)
ď F´1

X ptq ď F´1

X p1q ď }X}sup ă `8.

Moreover, since T is convex and increasing, T 1 is nondecreasing and nonnegative, and so for
each t P r0, 1s, 0 ď T 1 p1 ´ tq ď T 1 p1q. But T 1 p1q ă `8, by Assumption 5.6. Hence, for each
t P r0, 1s,

min
!
F´1

X ptq ,
`
u1
˘´1 `

λT 1 p1 ´ tq
˘

` F´1

X ptq ´W0

)
T 1 p1 ´ tq ď F´1

X p1qT 1 p1q ă `8

Hence, Lebesgue’s Dominated Convergence Theorem [1, Theorem 11.21] implies that ψ is a
continuous function of λ. Moreover, ψ is a noincreasing function of λ (by concavity of u,
convexity of T , and monotonicity of the Lebesgue integral).

Now, Assumption 5.1 implies that

ψ p0q “
pż
X dT ˝ P “

ż
1

0

T 1 p1 ´ tqF´1

X ptq dt

and that

lim
λÑ`8

ψ pλq “

ż
1

0

T 1 p1 ´ tqmax

«
0,min

!
F´1

X ptq , F´1

X ptq ´W0

)ff
dt

“

ż
1

0

T 1 p1 ´ tqmax

«
0, F´1

X ptq ´W0

ff
dt

Furthermore, by Assumption 5.2, FX pW0q “ 1. Therefore, for all t P p0, 1q, F´1

X ptq ď W0, and
so

lim
λÑ`8

ψ pλq “ 0

Consequently (recall Remark 5.3),

0 “ lim
λÑ`8

ψ pλq ď R ď
pż
X dT ˝ P “

ż
1

0

T 1 p1 ´ tqF´1

X ptq dt “ ψ p0q

Hence, by the Intermediate Value Theorem [50, Theorem 4.23], there exists a λ˚ ě 0 such that
ψ pλ˚q “ R. �
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