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Abstract

We develop a theory of price discrimination in many-to-many matching markets in which
agents’ preferences are vertically and horizontally differentiated. The optimal plans induce nega-
tive assortative matching at the margin: agents with a low value for interacting with other agents
are included in the matching sets of only those agents from the opposite side whose value for
matching is sufficiently high (cross-subsidization). We deliver testable predictions relating the
optimal matching plans and price schedules to the distribution of the agents’ preferences and
attractiveness. The analysis has implications for the design of business-to-business platforms,
advertising, and cable TV packages.
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1 Introduction

Matching intermediaries play a central role in modern economies. In electronic commerce, for ex-
ample, business-to-business (B2B) platforms match vendors with procurers in search of business
opportunities.1 These platforms often engage in price-discriminatory practices by offering different
“matching plans” to each side of the market. The matching plans offered to the procurers determine
the matching plans faced by the vendors, while the matching plans offered to the vendors determine
the matching plans the platform can offer to the procurers. As a consequence of this interdepen-
dency, when designing their matching plans, B2B platforms have to internalize the cross-side effects
on profits that each side induces on the other side.

Another example of mediated many-to-many matching is the provision of cable TV services. The
cable company’s problem can be seen from two perspectives. The more familiar one is that of designing
a menu of packages of channels to offer to the viewers. The mirror image of this problem consists in
designing a menu of packages of viewers to offer to the channels (reaching more viewers yields larger
advertising revenues for the channels, but may also imply larger expenses in terms of broadcasting
rights). As in the case of B2B platforms, when designing its menus on each side, the cable company
has to internalize the cross-side effects on profits that each side induces on the other side. The
presence of such cross-side effects is the defining feature of mediated many-to-many matching, which
is the focus of this paper.2

We start by studying markets in which preferences are purely vertically differentiated. In such
markets, all agents agree on the salience of the dimension that is responsible for each agent’s attrac-
tiveness. Because of this concordance over salience, two agents from the same side may disagree on
the relative attractiveness of any two agents from the opposite side only when one of the two agents
positively values interacting with agents from the other side, while the other agent negatively values
such interactions. Consider, for example, the market for nontargeted advertising. While all users
may agree that one media outlet offers a larger quantity of advertising than the other (the relevant
salience dimension in this example), different users may exhibit different degrees of tolerance towards
advertising. In particular, while many users dislike advertising, some actually enjoy it. Vertical dif-
ferentiation is believed to be an important dimension in B2B matching, in markets for nontargeted
advertising, and in credit cards markets.

We then extend the analysis to markets in which preferences exhibit elements of both vertical
and horizontal differentiation. In such markets, two agents from the same side may disagree on the
relative attractiveness of any two agents from the opposite side even when both agents positively (or
negatively) value interacting with such agents. Furthermore, the same agent may value interacting

1According to the U.S Census Bureau, electronic commerce accounted for 47 percent of manufacturing total value
in the US in 2010 (http://www.census.gov/econ/estats/2010/2010reportfinal.pdf).

2What makes the platform’s problem nonseparable between the two sides is the fact that the cost of expanding the
matching sets on each side depends on the entire matching schedule offered on the other side, which is part of the
design.
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with certain agents positively but with others negatively. For example, in the market for cable TV,
viewers typically differ not only in the overall importance that they assign to cable TV (the vertical
dimension in their preferences) but also in the attractiveness that they assign to different channels
(e.g., some viewers prefer sports channels, while others prefer movie channels). Other examples of
markets where horizontal differentiation is believed to play an important role include online targeted
advertising, online dating sites, and the market for the provision of employment matching services.

For both types of markets (with and without horizontal differentiation), we consider the problem
of a monopolistic platform that operates on two sides. Agents from each side have private infor-
mation both about their own preferences and about personal characteristics that determine their
attractiveness to those agents they are matched to. For example, in the market for B2B matching,
each procurer has private information not only about his willingness to pay for meeting business
partners, but also about his expected budget, his purchasing history, and various other traits of his
profile that determine his attractiveness to the vendors. Similarly, in the cable TV example, each
viewer possesses private information not only about the importance that he assigns to cable TV
(the vertical dimension in his preferences) but also about his ideal channel profile (the horizontal
dimension), which determines the viewer’s attractiveness to the channels.

Our analysis explores the implications of such heterogeneity in preferences and in attractiveness
for such questions as: What matching allocations are likely to emerge under profit maximization
(private provision of matching services) and under welfare maximization (public provision)? How are
these allocations affected by shocks that alter the joint distribution of the agents’ preferences and
attractiveness? What price schemes sustain such allocations?

We answer these questions using a mechanism design approach. The platform’s problem consists
in choosing a matching rule along with a pricing rule for each side of the market that jointly maximize
either welfare or profits. We will refer to both the profit-maximizing and the welfare-maximizing rules
as the “optimal rules”, and will often refrain from distinguishing between the two, when this is not
needed. A matching rule assigns each agent to a set of agents from the other side. We require only
that these rules satisfy a minimal feasibility constraint, which we call reciprocity. This condition
requires that if agent i from side A is matched to agent j from side B, then agent j is matched to
agent i.

Pure Vertical Differentiation. Our first result shows that, when the conditions described
below hold, the optimal matching rules (i) discriminate only along the willingness-to-pay dimension
(that is, any two agents with the same value for matching are matched to the same set of agents,
irrespective of possible differences in their salience),3 and (ii) have a threshold structure, according

3Hereafter, by value for matching, we mean the value an agent assigns to interacting with agents from the other
side (the vertical dimension in the agent’s preferences); this can be either positive or negative. By salience, we
mean a combination of various dimensions in the agent’s profile that determine the agent’s attractiveness. A high
salience implies a high attractiveness when evaluated from the perspective of someone from the other side whose value
for matching is positive, but a low attractiveness when evaluated from the perspective of someone whose value for
matching is negative.
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to which each agent is matched to all agents from the other side whose value for matching is above
a certain threshold.4 The thresholds are decreasing in the reported values, thus implying negative
assortativeness at the margin: those agents with a low value for matching are matched only to those
agents from the other side whose value is sufficiently high.

We can divide into two sets the primitive conditions that imply that the optimal matching rules
satisfy the above two properties. The first set of conditions requires that (1a) each agent’s salience
be either independent of or positively correlated with the agent’s value for matching and (1b) those
agents with a positive value for matching (i.e., who like being matched to other agents) have weakly
diminishing marginal utility for the quality of their matching set, while those agents with a negative
value for matching (i.e., who dislike being matched to other agents) have weakly diminishing marginal
disutility. In the context of B2B matching, condition (1a) captures the idea that those procurers and
vendors who are willing to pay the most to find a partner are, in general, seen as better matches.
In turn, condition (1b) captures the idea that both procurers and vendors have scarce resources to
evaluate the business potential of the proposed partners. Together with the fact that each agent
has private information both about his salience and his value for matching, conditions (1a) and (1b)
above imply that the cost-minimizing way to provide a matching set of high quality to those agents
with a positive value for matching is to match those agents to all agents from the other side whose
value for matching is sufficiently high, irrespective of their salience. This is because (a) the latter
agents are, on average, the most attractive ones and (b) because using an agent with a negative value
for matching intensively is less costly than using different agents with a negative value.

The second set of conditions that guarantee that the optimal rules both discriminate only along
the willingness-to-pay dimension and have a threshold structure are the mirror image of conditions
(1a) and (1b) above. Namely, they require that (2a) each agent’s salience be independent of or
negatively correlated with the agent’s value for matching, and (2b) those agents with a positive value
for matching have weakly increasing marginal utility for the quality of their matching set, while those
agents with a negative value for matching have weakly increasing marginal disutility. Together with
asymmetric information, conditions (2a) and (2b) above imply that the most effective way of using
those agents with a negative value for matching is to match them to those agents with the highest
positive values. This is because the latter agents are, on average, the least salient ones (and hence the
most attractive ones to those agents with a negative value for matching) and because these agents
have the largest matching sets (by virtue of incentive compatibility) and hence the highest positive
marginal utility for increasing the quality of their matching set.

The threshold structure described above implies two interesting properties of optimal matching
rules. First, the matching sets of any two agents from the same side are either identical, or nested,
in the sense that one is a superset of the other. Second, for any two matching sets, the “marginal”

4Note that this property is not a consequence of incentive compatibility. The latter property requires only that the
quality of the matching sets be invariant over characteristics that are irrelevant for individual preferences. It does not
require that the composition of the matching sets also be invariant.
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agents included only in the larger set are always those with the lowest value for matching among those
included in either set. This implies that, as matching sets expand, the marginal agents are either the
most or the least attractive ones, depending on whether matching is positively or negatively valued
and on the correlation between values and salience.

Building on these results, we then identify the crucial condition that determines when a single
complete network in which all agents from each side are matched to all agents from the other side
is optimal. Specifically, such a network is optimal if and only if welfare (or, alternatively, profits)
decrease when one removes from the complete network the link between the two agents from each
side with the lowest values.5 When, instead, welfare (or, alternatively, profits) increase by deleting
such link, the optimal matching rule entails separation: those agents with a higher value for matching
receive matching sets that are supersets of those offered to agents with a lower value for matching.

We also show that, when separation is optimal, the thresholds that define the optimal matching
sets are given by an Euler equation that equalizes (i) the marginal gains in efficiency (or, alternatively,
in profits) from expanding the matching sets on one side to (ii) the marginal losses in efficiency (or,
alternatively, in profits) that, by reciprocity, arise on the other side of the market. Intuitively, this
equation endogenously separates agents from each side into two groups. The first group consists of
agents who play the role of consumers. These agents contribute positively to the platform’s objective
by “purchasing” sets of agents from the other side of the market. The second group consists of agents
who play the role of inputs. These agents contribute negatively to the platform’s objective, but serve
to “feed” the matching sets of those agents from the opposite side who play the role of consumers.

As in the standard price discrimination problem analyzed in Mussa and Rosen (1978) and Maskin
and Riley (1984), we identify conditions that ensure that a profit-maximizing platform separates
types as finely as possible. It turns out that the familiar regularity condition (Myerson, 1981),
according to which virtual values increase in true values, is not the right condition in our matching
environment. In a standard setting, the marginal cost is independent of the agent’s type; as a result,
the monotonicity of the virtual values then implies the monotonicity of the trades. In contrast, in
a matching environment, by virtue of reciprocity, the marginal cost of increasing the quality of the
matching set of those agents who play the role of consumers is the profits loss that results from adding
these agents to the matching sets of those agents from the opposite side who play the role of inputs.
Since salience and values are potentially correlated, the marginal cost of expanding a matching set
is thus also a function of the agent’s value for matching. For the optimal matching rule to separate
types as finely as possible, one must then require that the virtual values increase with the true values
faster than their corresponding marginal cross-side effects do. In analogy to Myerson (1981), we refer
to this condition as Match Regularity. Under this condition, bunching can occur only at “the top”
(i.e., for the agents with the highest value for matching) due to capacity constraints, that is, because
the stock of agents from the other side of the market has been exhausted; or at “the bottom” (i.e.,
for those agents with the lowest values) due to complete exclusion.

5Note that, although the "only if" part of the result is trivial here, the "if" part is not.
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Building on the work of Wilson (1997), we then derive a pricing formula that relates (observable)
marginal prices to the elasticities of the demand for matching services on both sides of the mar-
ket. Intuitively, this formula derives the optimal price schedule by setting marginal prices so that
the marginal gains in revenue from expanding the matching sets sold to consumer-agents equal the
marginal costs of procuring input-agents from the opposite side. Interestingly, these marginal costs
are endogenous and depend on the entire network structure of the matching allocations.

Our analysis also delivers testable predictions about the effects on profits of shocks that alter
the joint distributions of values and salience. In particular, we show that a shock that (i) increases
(stochastically) the salience of every agent from side A (albeit not necessarily uniformly across agents)
while (ii) leaving unchanged the marginal distribution of the values for matching, (a) increases the
quality of the matching sets sold to side-A agents with a low value for matching, but (b) reduces
the quality of the matching sets sold to side-A agents with a high value. In terms of surplus, these
shocks make low-value agents from side A better off at the expense of high-value ones. For example,
in the B2B application, a positive shock to the salience of the procurers may induce the platform to
respond by cutting the quality of the matching sets offered to high-value procurers.

Vertical and Horizontal Differentiation. Building on the above insights, we then extend the
analysis to markets in which preferences combine elements of vertical and horizontal differentiation.
To isolate the novel effects, we suppress the salience dimension and instead introduce a new spatial
dimension that captures horizontal differentiation. Assuming that agents from each side are located
on a circle, we then let the utility that each agent i from side A obtains from being matched to
each agent j from side B continue to be an increasing function of agent i’s value for matching (as
in the model with only vertical differentiation), but now assume it is a decreasing function of the
distance between the two agents’ locations. In the cable TV example, a channel’s location should
be interpreted as the channel’s profile (say, a “news” channel), while a viewer’s location should be
interpreted as the viewer’s most preferred type of channel (say, a “sports” channel).

We show that, under fairly reasonable conditions that depend on the observability of the loca-
tions6, the optimal matching rules (i) actively discriminate along the horizontal dimension (i.e., they
assign different matching sets to agents with the same value for matching but with different loca-
tions), and (ii) display a location-specific threshold structure. These rules work as follows: for any
given location xA on side A and any given value vA for matching, the optimal matching rule specifies
a threshold t(xB|xA, vA) for each location xB on side B such that an agent from side A located at
xA and with value for matching vA is matched to all agents from side B located at xB whose value
for matching vB is above this threshold. Figure 1 below illustrates this structure.

As in the model with purely vertically differentiated preferences, the optimal rules thus induce
a form of negative assortative matching at the margin according to which agents with a low value
for matching are matched only to those agents from the other side with a sufficiently high value.

6Our analysis accommodates both the case where locations are public information (e.g., a channel’s profile) and the
case where they are private information (as in the case of viewers’ tastes for news, sports, and movies).
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Figure 1: Optimal matching rule with horizontal differentiation. The shaded area in the figure
describes the matching set for an agent from side A located at xA = 1/2.

The difference is that, with horizontal differentiation, this form of negative assortativeness takes into
account the agents’ mutual attractiveness. As a result, in markets where horizontal differentiation
plays a prominent role, the matching sets of any two agents are nested only if the two agents share
the same location. This distinction has implications, for example, for the provision of cable TV
services where the market has gradually moved from menus of packages with a nested structure
(basic, premium, premium plus) to a non-nested structure whereby users can now personalize their
packages by adding individual channels (see the discussion in Section 5).

We also show that when the utility functions are supermodular in the vertical dimension and in
the distance between locations, then the thresholds increase with distance (therefore reducing the
mass of agents included in the matching set).7 In other words, the composition of the matching sets
naturally respects the agents’ idiosyncratic preferences: those agents from the opposite side whose
profile makes them more attractive are present in the matching set in larger numbers.8

As in the case of vertical differentiation, we show how the optimal thresholds can be characterized
by an Euler equation. In contrast to the case of vertical differentiation, however, the separation of
agents between consumers and inputs now depends on their joint location: the same agent from side
A may play the role of a consumer when matched to an agent from side B with a certain location,
but the role of an input when matched to another agent with a different location.

Finally, we show how the optimal matching rules can be indirectly implemented by offering each
agent a menu of matching plans. In the cable TV application, a plan is indexed by its category
(e.g., movies, sports, news, etc.) and comes with a baseline price and a baseline configuration (the

7In the cable TV application, the supermodularity assumption means that viewers with a high value for cable TV
are, in general, more likely to also watch channels that are far away from their ideal profile.

8Importantly, this property, while natural, need not hold without the supermodularity assumption, which guarantees
that the benefit of permitting two agents with given (vertical) preferences to interact increases with their proximity.
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group of channels included in the baseline package), along with the specification of the price that
the subscriber has to pay to add channels from each possible category. Agents then select the plan
that best fits their preferences (e.g., viewers who like sports choose the sports package) and then
personalize the package by adding a few additional channels. Using techniques similar to those in
the case of vertical differentiation, we show how the marginal prices in each plan can be conveniently
expressed by means of a Lerner-Wilson formula that uses the (location-specific) elasticities of the
aggregate demands to equalize the marginal gains of expanding the matching sets on each side to the
cross-subsidization losses on the opposite side.

Group-design Problem. A related problem is that of a principal operating in a single-sided
market populated by multiple agents who experience differentiated peer effects from the agents with
whom they interact. In this setting, the principal’s problem consists in assigning the agents to nonex-
clusive groups. This one-sided problem is mathematically equivalent to a two-sided matching problem
where both sides have symmetric primitives and the platform is constrained to selecting a symmetric
matching rule. As it turns out, in two-sided markets with symmetric primitives, the optimal matching
rules are naturally symmetric. Therefore, all our results naturally extend to single-sided matching
problems. In particular, our results have implications for such problems in organization and personnel
economics that pertain to the optimal design of teams.

Outline of the Paper. The rest of the paper is organized as follows. Below, we close the
introduction by briefly reviewing the pertinent literature. Section 2 studies markets with purely
vertically differentiated preferences. Section 3 shows how to extend the analysis to accommodate
horizontal differentiation. Section 4 presents a few extensions, while Section 5 discusses how our
predictions relate to a few markets of interest. Section 6 concludes. All proofs are in the appendix
at the end of the document.

Related Literature

The paper is related to the following literatures.
Price Discrimination. The paper contributes to the literature on second-degree price discrim-

ination (e.g., Mussa and Rosen (1978), Maskin and Riley (1983), Wilson (1997)) by considering a
setting in which the product sold by the monopolist is access to other agents. The study of price
discrimination in markets for many-to-many matching introduces two novel features relative to the
standard monopolistic screening problem. First, the platform’s feasibility constraint (namely, the
reciprocity of the matching rule) has no equivalent in markets for commodities. Second, each agent
serves as both a consumer and an input in the matching production function. This feature of match-
ing markets implies that the cost of procuring an input is endogenous and depends in a nontrivial
way on the entire matching rule.

Two-Sided Markets. Markets where agents purchase access to other agents are the focus of the
literature on two-sided markets (e.g., Caillaud and Jullien (2003), Rochet and Tirole (2003, 2006),
Armstrong (2006), Hagiu (2008), Ambrus and Argenziano (2009), Weyl (2010), and Jullien (2011)).
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This literature, however, restricts attention to a single network or to mutually exclusive networks.9

Our contribution relative to this literature is in allowing for general matching rules and in introducing
private information on both the agents’ preferences and their attractiveness.

Matching Design with Transfers. Rayo (2010) studies second-degree price discrimination by
a monopolist selling a menu of conspicuous goods that serve as signals of consumers’hidden char-
acteristics. Rayo’s model can be interpreted as a one-sided matching model with purely vertically
differentiated preferences where the utility of a matching set is proportional to the average quality
of its members. Allowing for more general peer effects, Board (2009) studies the design of groups
by a profit-maximizing platform (e.g., a school) that can induce agents to self-select into mutually
exclusive groups (e.g., classes).10

In a two-sided matching environment with purely vertically differentiated preferences, McAfee
(2002) shows that partitioning agents on each side in two categories (“high” and “low”), and performing
random one-to-one matching within category generates at least half of the welfare produced by
one-to-one positive assortative matching. Hoppe, Moldovanu and Ozdenoren (2010) (i) sharpen
McAfee’s lower bounds in the case of welfare-maximization, and (ii) obtain lower bounds in the case
of profit-maximization. Damiano and Li (2007) identify primitive conditions for a profit-maximizing
platform to match agents in one-to-one positive assortative way. Johnson (2010) studies indirect
implementations of one-to-one positive assortative matching through positions auctions. In turn,
Hoppe, Moldovanu, and Sela (2009) derive one-to-one positive assortative matching as the equilibrium
outcome of a costly signaling game.

In contrast to these papers, we allow for matching rules that assign agents to nonexclusive groups,
and study a setting with both vertically and horizontally differentiated preferences in which the quality
of a matching set is determined by the sum of the attractiveness of its members as opposed to the
average attractiveness.11 As a result, our predictions are fundamentally different from those derived
in the above papers: the optimal rules induce many-to-many matching and are characterized by a
threshold structure that implies a form of negative assortative matching at the margin, as described
above.

Decentralized Matching. In a decentralized matching economy, Eeckhout and Kircher (2010a)
9Mutually exclusive networks correspond to matching rules with the following property: any two agents from the

same side whose matching sets overlap, have the same matching sets. This property is not satisfied in markets for cable
TV, B2B matching, and online advertising.

10See also Arnott and Rowse (1987), Epple and Romano (1998), Helsley and Strange (2000), and Lazear (2001) for
models of group design under complete information.

11The assumption that agents care only about the average quality of their partners offers an appropriate description
of those markets in which (i) agents are interested in a single interaction with agents from the other side and (ii) the
identity of the partner is, to a large extent, random. It is less appropriate for those markets in which (a) multiple
interactions are possible and (b) agents can select their partner(s) deterministically, as in the case of cable TV or
business-to-business matching. While we assume that the quality of a matching set is determined by the sum of the
attractiveness of its members, we do accommodate the possibility that an agent’s marginal utility for additional matches
decreases with the quality of his matching set, thus potentially tempering the effect of match size on match quality.
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study price discrimination by principals who are randomly matched with agents. They show that, for
partially rival meeting technologies, principals offer a distribution of posted prices, and agents with
higher valuations choose principals with higher prices (ex-ante sorting).

Another strand of the literature (see, among others, Shimer and Smith (2000) and Eeckhout and
Kircher (2010b)) extends the assignment model of Becker (1973) to settings with search/matching
frictions. These papers show that the resulting one-to-one matching allocation is positive assortative
provided that the match value function satisfies appropriate forms of supermodularity. Relative to this
literature, we study mediated matching, abstract from search frictions, and consider many-to-many
matching rules.

2 Vertical Differentiation

2.1 Model and Preliminaries

A monopolistic platform matches agents from two sides of a market. Each side k ∈ {A, B} is
populated by a unit-mass continuum of agents indexed by i ∈ [0, 1]. Each agent i ∈ [0, 1] from
each side k ∈ {A, B} has a type θi

k = (σi
k, v

i
k) ∈ Θk ≡ Σk × Vk. The first component σi

k ∈ Σk ≡
[σk,σk] ⊆ R+ parametrizes the “salience” of agent i; the latter should be interpreted as a combination
of various personal characteristics that determines agent i’s attractiveness. The second component
vi
k ∈ Vk ≡ [vk, vk] ⊆ R parametrizes agent i’s “value for matching”; that is, the value that agent i

assigns to interacting with agents from the other side. Formally, given any (Lebesgue measurable)
set s of agents from side l &= k and any complete type profile θ ≡(θi

k)
i∈[0,1]
k=A,B, the payoff that agent

i ∈ [0, 1] from side k ∈ {A, B} obtains from being matched, at a price p, to the set s is given by

πi
k(s, p; θ) ≡ vi

k · gk (|s|l)− p, (1)

where gk(·) is a positive, strictly increasing, and continuously differentiable function satisfying gk(0) =

0, and where
|s|l ≡

ˆ

j∈s
σj

l dλ(j)

is the total salience of s (λ(·) denotes the Lebesgue measure).
The case where agent i dislikes interacting with agents from the other side is thus captured

by a negative value for matching vi
k < 0. To avoid the uninteresting case where no agent from

either side benefits from interacting with agents from the opposite side, we assume that v̄k > 0 for
some k ∈ {A, B}. Importantly, note that any two agents from the same side who both benefit (or,
alternatively, suffer) from interacting with agents from the other side rank any two agents from the
opposite side in the same way. In this sense the model is one of pure vertical differentiation. Also
note that, fixing the sign of the value for matching vi

k, the attractiveness of any set s of agents from
side l &= k coincides with its salience. Hereafter, we will thus often use the two terms interchangeably
when there is no risk of confusion. The role of the functions gk(·), k = A, B, is to capture increasing
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(or, alternatively, decreasing) marginal utility (or, alternatively, disutility) of expanding the salience
of the matching sets.

Each agent’s type θi
k = (σi

k, v
i
k) is the agent’s own private information and is an independent

draw from a distribution Fk with support Θk. We assume that Fk is absolutely continuous with
respect to the Lebesgue measure, and denote by F v

k the marginal distribution of Fk with respect
to vk (with density fv

k ), and by F σ
k (·|vk) the distribution of the salience conditional on vk. We will

assume that, for any k = A, B, the family of functions 〈F σ
k (·|vk)〉vk∈Vk

is uniformly continuous in
vk in the L1-norm. As is standard in the mechanism design literature, we also assume that each
marginal distribution F v

k is regular in the sense of Myerson (1981), meaning that the virtual values
for matching vk − [1− F v

k (vk)]/fv
k (vk) are continuous and nondecreasing.

The payoff formulation in (1) is fairly flexible and accommodates the following examples as special
cases.

Example 1 (linear network externalities for quantity) Suppose that all agents have the same
salience and that the marginal utility/disutility of higher salience are independent of the matching
sets. This is equivalent to letting σi

k ≡ 1 for all i ∈ [0, 1], k = A, B, and to assuming that each agent
i’s payoff from each side k = A, B is equal to

πi
k(s, p; θ) ≡ vi

k ·
ˆ

j∈s
dλ (j)− p = vi

k · λ (s)− p.
\\

These preferences are the ones typically considered in the two-sided market literature (see Rysman
(2009) for a survey) and in particular in the literature on B2B platforms (see, e.g., Jullien (2012))
and in the literature on credit-card payments (see, e.g., Rochet and Tirole (2003)).

Example 2 ( supermodular matching values) Suppose that the match between agent i ∈ [0, 1]

from side k ∈ {A, B} and agent j ∈ [0, 1] from side l ∈ {A, B}, l &= k, produces a surplus of vi
k · v

j
l

to each of the two agents, independently of the two agents’ matching sets. These preferences can
be re-conducted to the formulation in (1) by setting σi

k ≡ vi
k and gk(x) = x for all i ∈ [0, 1] and

k = A, B. \\

This specification appears, for example, in Damiano and Li (2007), Hoppe, Moldovanu and Sela
(2009), as well as in the assignment/search literature (e.g., Becker (1973), Lu and McAfee (1996) and
Shimer and Smith (2000)). Applications of interest include online job matching agencies and online
dating agencies.

Example 3 (limited attention/nuisance costs) Suppose that the payoff that each agent i ∈ [0, 1]

from side k ∈ {A, B} obtains from being matched to each agent j ∈ [0, 1] from side l ∈ {A, B}, l &= k,

is given by
vi
k · σ

j
l

(|s|l)
α

10



where s is agent i’s matching set. If α ∈ (0, 1) and Vk ⊂ R+, the specification above captures the idea
that the positive value of meeting an extra agent decreases with the total quality of the matching set
(e.g., due to limited attention). In turn, if α < 0 and Vk ⊂ R−, the above specification captures the
idea that nuisance costs (e.g., in advertising markets) are convex in the intensity of advertising.

In either case, agent’s i’s total payoff is equal to
ˆ

j∈s

vi
k · σ

j
l

(|s|l)
α dλ (j)− p = vi

k · gk (|s|l)− p,

with gk(x) = x1−α. The function g(·) is concave when α ∈ (0, 1) (limited attention) and convex when
α < 0 (nuisance costs). \\

Matching Mechanisms

Appealing to the Revelation Principle, we focus on direct-revelation mechanisms, which consist of a
matching rule

{
ŝi
k(·)

}i∈[0,1]
k=A,B

along with a payment rule
{
p̂i

k(·)
}i∈[0,1]

k=A,B
such that, for any given type

profile θ ≡(θi
k)

i∈[0,1]
k=A,B, ŝi

k(θ) represents the set of agents from side l &= k that are matched to agent i

from side k, whereas p̂i
k(θ) denotes the payment made by agent i to the platform (i.e., to the match

maker).12

A matching rule is feasible if and only if the following reciprocity condition is satisfied: whenever
agent j from side B belongs to the matching set of agent i from side A, then agent i belongs to agent
j’s matching set. Formally:

j ∈ ŝi
A(θ) ⇔ i ∈ ŝj

B(θ). (2)

Because there is no aggregate uncertainty and because individual identities are irrelevant for
payoffs, without any loss of optimality, we restrict attention to anonymous mechanisms. In these
mechanisms, the composition (i.e., the cross-sectional type distribution) of the matching set that
each agent i from each side k receives, as well as the payment by agent i, depend only on agent i’s
reported type as opposed to the entire collection of reports by all agents (whose distribution coincides
with Fk on each side k, by the analog of the law of large numbers for a continuum of random variables).
Furthermore, any two agents i and i′ (from the same side) reporting the same type are matched to
the same set and are required to make the same payments.

Suppressing superscripts, an anonymous mechanism M = {sk(·), pk(·)}k=A,B is thus described
by a pair of matching rules and a pair of payment rules such that, for any θk ∈ Θk, pk(θk) is the
payment, and sk(θk) ⊆ Θl is the set of types from side l included in the matching set of any agent
from side k reporting type θk. Note that pk(·) maps Θk into R, and sk(·) maps Θk into the Borel
sigma algebra over Θl. With some abuse of notation, hereafter we will then denote by |sk(θk)|l the
total salience of the matching set of any agent i from side k reporting type θk.

12Restricting attention to deterministic mechanisms is without loss of optimality under the assumptions in the paper.
The proof is based on arguments similar to those in Strausz (2006) and is available upon request.
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Denote by Π̂k(θk, θ̂k;M) ≡ vi
k · gk(|sk(θ̂k)|l) − pk(θ̂k) the payoff that type θk = (σk, vk) obtains

when reporting type θ̂k = (σ̂i
k, v̂

i
k), and by Πk(θk;M) ≡ Π̂k(θk, θk;M) the payoff that type θk obtains

by reporting truthfully. A mechanism M is individually rational (IR) if Πk(θk;M) ≥ 0 for all θk ∈ Θk,
k = A, B, and is incentive compatible (IC) if Πk(θk;M) ≥ Π̂k(θk, θ̂k;M) for all θk, θ̂k ∈ Θk, k = A, B.

A matching rule {sk(·)}k=A,B is implementable if there exists a payment rule {pk(·)}k=A,B such that
the mechanism M = {sk(·), pk(·)}k=A,B is individually rational and incentive compatible.13

Efficiency and Profit Maximization

We start by defining what we mean by “efficient” and “profit-maximizing” mechanisms. Because there
is no aggregate uncertainty, for any given type profile θ, the welfare generated by the mechanism M

is given by
ΩW (M) =

∑

k=A,B

ˆ

Θk

vk · gk (|sk(σk, vk)|l) dFk(σk, vk), (3)

whereas the expected profits generated by the mechanism M are given by

ΩP (M) =
∑

k=A,B

ˆ

Θk

pk(σk, vk)dFk(σk, vk). (4)

A mechanism MW is then said to be efficient if it maximizes ΩW (M) among all mechanisms that are
individually rational, incentive compatible, and satisfy the reciprocity condition

θl ∈ sk(θk) ⇒ θk ∈ sl(θl). (5)

Analogously, a mechanism MP is said to be profit-maximizing if it maximizes ΩP (M) among all
mechanisms that are individually rational, incentive compatible, and satisfy the above reciprocity
condition.

Note that the reciprocity condition implies that the matching rule {sk(·)}k=A,B can be fully
described by its side-k correspondence sk(·).

It is standard to show that a mechanism M is individually rational and incentive compatible if
and only if the following conditions jointly hold for each side k = A, B:

(i) the salience of the matching set is nondecreasing in the value for matching vk, i.e., |sk(σk, vk)|l ≥
|sk(σ′k, v

′
k)|l for any (σk, vk) and (σ′k, v

′
k) such that vk ≥ v′k;

(ii) the expected payoff of any two agents with the same value for matching vk is the same,
irrespective of their salience σk;

(iii) the equilibrium payoffs Πk((σk, vk);M) of the agents with the lowest values for matching are
non-negative, for all σk ∈ Σk;

13Implicit in the aforementioned specification is the assumption that the platform must charge the agents before they
observe their payoff. This seems a reasonable assumption in most applications of interest. Without such an assumption,
the platform could extract the entire surplus by using payments similar to those in Crémer and McLean (1988) — see
also Mezzetti (2007).

12



(iv) the pricing rule satisfies the envelope formula

pk(σk, vk) = vk · gk (|sk(σk, vk)|l)−
ˆ vk

vk

gk (|sk(σk, x)|l) dx−Πk((σk, vk);M). (6)

It is immediate to see that in any mechanism that maximizes the platform’s profits, the IR con-
straints of those agents with the lowest values for matching bind, i.e., Πk((σk, vk);MP ) = 0, for all
σk ∈ Σk, k = A, B. Using the expression for payments (6), we can rewrite the platform’s profit max-
imization problem in a manner analogous to the welfare maximization problem. We simply replace
the true values with their virtual analogs (i.e., with the values discounted for informational rents).
Formally, for any k = A, B, any vk ∈ Vk, let ϕW

k (vk) ≡ vk and ϕP
k (vk) ≡ vk − [1 − F v

k (vk)]/fv
k (vk).

Using the superscript h = W (or, alternatively, h = P ) to denote welfare (or, alternatively, profits),
the platform’s problem then consists in finding a matching rule {sk(·)}k=A,B that maximizes

Ωh(M) =
∑

k=A,B

ˆ

Θk

ϕh
k(vk) · gk (|sk(σk, vk)|l) dFk(σk, vk) (7)

among all rules that, together with the corresponding payment rules given by (6) (with Πk((σk, vk);M) =

0 all σk ∈ Σk) satisfy constraints (i)-(ii) above and the reciprocity condition (5). Hereafter, we will
say that a matching rule {sh

k(·)}k=A,B is h-optimal if it solves the above h-problem. For future ref-
erence, for both h = W, P, we also define the reservation value rh

k ≡ inf{vk ∈ Vk : ϕh
k(vk) ≥ 0} when

{vk ∈ Vk : ϕh
k(vk) ≥ 0} &= ∅. Finally, we let 1h denote the indicator function that equals one if h = P

and zero if h = W .

2.2 Optimal Matching Rules

As anticipated in the Introduction, our first result provides fairly natural primitive conditions under
which the optimal matching rules have a simple structure.

Condition 1 [TP] Threshold Primitives: One of the following two sets of conditions holds for
both k = A and k = B:

(1.a) the function gk(·) is weakly concave, and (1.b) the random variables σ̃k and ṽk are weakly
positively affiliated;

(2.a) the function gk(·) is weakly convex, and (2.b) the random variables σ̃k and ṽk are weakly
negatively affiliated.14

Condition TP covers two alternative scenarios. The first one is one where agents with a positive
value for matching have diminishing marginal utility for meeting new agents and where agents with
a negative value for matching have diminishing marginal disutility for meeting additional agents. In
either case, condition TP also requires that those agents with the highest values for matching are,
on average, the most salient ones. These agents are thus seen as the most attractive ones by those

14See Milgrom and Weber (1982) for a formal treatment of affiliation.
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agents from the other side with a positive value for matching and as the least attractive ones by those
agents with a negative value for matching.

The second scenario covers a symmetrically opposite situation. It assumes that those agents with
a negative value for matching have a convex disutility for meeting new agents, whereas those agents
with a positive value for matching have a weakly increasing marginal utility for meeting additional
agents.15 In either case, condition TP also requires that those agents with the highest values for
matching are, on average, the least salient ones. These agents are thus seen as the most attractive
ones by those agent from the opposite side with a negative value for matching and as the least
attractive ones by those with a positive value for matching.

Importantly, note that when marginal benefits and costs are constant (linear gk(·), k = A, B),
Condition TP accommodates either positive or negative affiliation between salience and values for
matching (in particular, it accommodates for the possibility that vk and σk are independent) . In
this case, the only restriction imposed by Condition TP is that the sign of the correlation between
the two dimensions vk and σk be the same on either side. We then have the following result.

Proposition 1 (threshold structure) Assume Condition TP holds. Then both the profit-maximizing
(h = P ) and the welfare-maximizing (h = W ) rules discriminate only along the willingness-to-pay
dimension (that is, sh

k(σk, vk) = sh
k(σ′k, vk) for any k = A, B, vk ∈ Vk, σk, σ′k ∈ Σk, h = W, P ).

Suppressing the dependence on salience, the h-optimal matching rule sh
k(·) has the following threshold

structure, k = A, B, h = W, P :

sh
k(vk) =

{
Σl × [thk(vk), vl] if vk ∈ [ωh

k , vk]

. otherwise,
(8)

where ωh
k ∈ [vk, vk] is the value for matching below which types are excluded, and where the non-

increasing threshold function thk(·) determines the matching sets.

To understand the result, consider an agent with type θk = (σk, vk) such that ϕh
k(vk) ≥ 0. In case

of welfare maximization (h = W ), this is an agent who values positively interacting with agents from
the other side. In case of profit maximization (h = P ), this is an agent who contributes positively
to profits, even when accounting for informational rents. Ignoring for a moment the monotonicity
constraints, it is easy to see that it is always optimal to assign to this type a matching set sk(σk, vk) ⊃
{(σl, vl) : ϕh

l (vl) ≥ 0} that includes all types θl = (σl, vl) from side l &= k whose ϕh
l -value is non-

negative. This is because (i) irrespective of their salience σl, these latter types contribute positively
to type θk’s payoff and (ii) these latter types have a non-negative ϕh

l -value which implies that adding
type θk to these latter types’ matching sets never reduces the platform’s payoff.

In turn, consider now an agent with type θk = (σk, vk) such that ϕh
k(vk) < 0. It is also easy to

see that it is never optimal to assign to this type a matching set sk(σk, vk) that contains agents from
15An increasing marginal utility for meeting new agents may result from possible complementarities in socio-economic

interactions, as in the case of a team where the productivity of each member increases with the average productivity
of the members.
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side l &= k whose ϕh
l -value is also negative. The reason is that matching two agents with negative

values (or, alternatively virtual values) for matching can only decrease the platform’s payoff.
Building on the observations above, the proof of Proposition 1 establishes the optimality of a

threshold structure for either one of the two scenarios covered by Condition TP. The arguments in
the two scenarios are symmetric. Consider first the case where g is weakly concave on both sides and
pick a type θk from side k with ϕh

k(vk) > 0. Imagine that the platform wanted to assign to this type
a matching set whose total salience

q = |s|l >

ˆ

Σl×[rh
l ,vl]

σldFl(σl, vl)

exceeds the salience of those agents from side l with a non-negative ϕh
l -value (i.e., for whom vl ≥ rh

l ).
The combination of the assumptions that (i) salience and values are weakly positively affiliated, (ii)
gl are weakly concave and (iii) both salience and values for matching are private information, then
implies that the least costly way to do so is to match type θk to all agents from side l whose ϕh

l (vl) is
the least negative, irrespective of their salience. This is because (a) these latter types are, on average,
the most salient ones, (b) using the same agents with a negative ϕh

l -value intensively is less costly than
using different agents with a negative ϕh

l -value, and (c) asymmetric information poses restrictions on
how the matching sets can vary with the agents’ reported types16. This, in turn, means that type
θk’s matching set takes the form Σl × [tk(vk), vl], where the threshold tk(vk) is computed so that

ˆ

Σl×[tk(vk),vl]
σldFl(σl, vl) = q. (9)

In other words, starting from any incentive compatible matching rule, one can construct a threshold
rule that weakly improves upon the original one. The idea is that threshold rules minimize the costs
of cross-subsidization by delivering to those agents who play the role of consumers (i.e., whose ϕh

k-
value is nonnegative) matching sets of high quality in the most economical way. The formal proof in
the Appendix uses results from the theory of stochastic orders (in particular, the monotone concave
order) to verify the heuristics above.

Next, consider the case where g is weakly convex on both sides and pick a type θk from side
k with ϕh

k(vk) < 0. Imagine that the platform wanted to assign to this type a matching set s

of salience |s|l > 0. The combination of the assumptions that (i) salience and values are weakly
negatively affiliated, (ii) gl(·) are weakly convex and (iii) both salience and value for matching are
private information, then implies that the most profitable way of using type θk as an input in the
matching process is to match him to those agents from side l with the highest positive ϕh

l -value,
irrespective of their salience. This is because (a) these latter types are the ones that benefit the most
from interacting with type θk (they have the highest ϕh

l (vl) > 0 values and, by virtue of incentive
compatibility, the largest matching sets and hence, by the convexity of gl, the highest marginal utility)

16In particular, it imposes that the total salience of the assigned set can vary with each agent’s own salience at most
over a countable set of reports about values for matching.
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and (b) these latter types are, on average, the least salient ones and hence exert the lowest negative
externalities on type θk (recall that ϕh

k(vk) < 0). Once again, this in turn means that type θk’s
matching set takes the form Σl × [tk(vk), vl], where the threshold tk(vk) is computed according to
(9). Note that, contrary to the first scenario considered above, the reason why a threshold structure
is optimal in the second scenario is that it maximizes the profits of cross-subsidization.

Lastly note that the result that the optimal matching rules discriminate only along the v-dimension
is not a mere consequence of incentive compatibility: the latter property only requires that the salience
of the matching set be nondecreasing in v, thus permitting the composition of the matching set to
depend on salience. Likewise, the optimality of threshold rules does not follow directly from incentive
compatibility, for there exist multiple rules that are monotone (and hence implementable) and that
do not have a threshold structure (for example, partitional rules).

Given the result in Proposition 1, hereafter we restrict attention to mechanisms whose matching
rule takes the form given in (8). Letting ĝk : Vl → R+ denote the functions defined by

ĝk(vl) ≡ gk

(
ˆ vl

vl

ˆ

Σl

σdFl(σ, v)
)

,

k, l = A, B, l &= k, the platform’s problem can then be recasted in the following simplified manner.
The platform’s problem consists in choosing a pair of exclusion thresholds (ωh

k )k∈{A,B} and a pair of
non-increasing threshold functions (thk(·))k∈{A,B} so as to maximize the objective

Ωh(M) =
∑

k=A,B

ˆ vk

ωh
k

ĝk(thk(vk)) · ϕh
k(vk)dF v

k (vk) (10)

subject to the reciprocity constraint that

thk(vk) = inf{vl : thl (vl) ≤ vk} (11)

for all vk ∈ [ωh
k , vk], k, l = A, B, l &= k.

In order to further investigate the properties of optimal matching rules, the next definition extends
to our two-sided matching setting the notion of separating schedules, as it appears, for example, in
Maskin and Riley (1984).

Definition 1 (separation) The h-optimal matching rule entails separation if there exists a (positive
measure) set V̂k ⊂ Vk of values such that, for any vk, v′k ∈ V̂k thk(vk) &= thk(v′k). The rule is maximally
separating if thk(·) is strictly decreasing over [ωh

k , thl (ωh
l )] (which, hereafter, we call the "separating

range"). It entails exclusion at the bottom on side k if ωh
k > vk and bunching at the top on side k if

thl (ωh
l ) < v̄k.

We are now ready to characterize the optimal matching rules for both welfare- and profit-
maximizing platforms. This characterization is obtained by assuming that the following condition
holds, which extends the standard monotonicity of virtual values to two-sided matching environments.
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Condition 2 [MR] Match Regularity: The functions ψh
k : Vk → R given by

ψh
k (vk) ≡

fv
k (vk) · ϕh

k(vk)
−ĝ′l(vk)

=
ϕh

k(vk)
g′l (|Σk × [vk, v̄k]|k) · E [σ̃k|ṽk = vk]

are strictly increasing, k = A, B, h = W, P.

To understand the condition above, take the case of profit-maximization, h = P . The numerator
in ψh

k (vk) accounts for the effect on the platform’s revenue of an agent from side k with value vk as
a consumer (as his virtual value ϕh

k(vk) is proportional to the marginal revenue produced by this
agent). In turn, the denominator accounts for the effect on the platform’s revenue of this agent as an
input (as −ĝ′l(vk) is proportional to the marginal utility brought by this agent to every agent from
side l who is already matched to any other agent from side k with value above vk). Therefore, the
above match regularity condition requires that the value of an agent as a consumer (as captured by
his virtual value) increases faster than his contribution as an input.

Note that, when gk(·) is linear, we have that ψh
k (vk) = ϕh

k(vk)/E [σ̃k|ṽk = vk]. Therefore, condition
MR is immediately satisfied when E [σ̃k|ṽk = vk] is nonincreasing in vk (which is true, for example,
when σ̃k and ṽk are weakly negatively affiliated). When σ̃k and ṽk are strictly positively affiliated, MR
holds provided that expected salience does not increase “too fast” with an agent’s value for matching
relative to his virtual value.

Now let 2h
k : Vk × Vl → R denote the functions defined by

2h
k(vk, vl) ≡ −ĝ′k(vl) · ϕh

k(vk) · fv
k (vk)− ĝ′l(vk) · ϕh

l (vl) · fv
l (vl), (12)

for k, l ∈ {A, B}, l &= k. Note that 2h
A(vA, vB) = 2h

B(vB, vA) represents the marginal effect on the
platform’s objective of decreasing the threshold thA(vA) below vB, while, by reciprocity, also reducing
the threshold thB(vB) below vA. Equivalently, −2h(vA, vB) represents the marginal effect of deleting
the link between vA and vB starting from a network structure where each agent from side A with
value vA is matched to all agents from side B with value above vB and each agent from side B with
value vB is matched to all agents from side A with value above vA.

Importantly, condition MR implies that 2h
k(vk, vl) satisfies the following single-crossing property:

whenever2h
k(vk, vl) ≥ 0, we have that2h

k(vk, v̂l) > 0 for all v̂l > vl and2h
k(v̂k, vl) > 0 for all v̂k > vk.

As established in Proposition 2 below, this single-crossing property rules out nonmonotonicities in
the optimal matching rule. In this sense, MR is the analog of Myerson’s standard regularity condition
in two-sided matching problems.

Proposition 2 (optimal rules under vertical differentiation) Assume Conditions TP and MR
hold. Then, for both h = W and h = P, the h-optimal matching rules are such that sh

k(vk) = Θl for
all vk ∈ Vk, k = A, B (that is, each agent from each side of the market is matched to any other agent
from the opposite side) if 2h

k(vk, vl) ≥ 0. When, instead, 2h
k(vk, vl) < 0, the h-optimal matching rule

(i) is maximally separating;
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(ii) entails bunching at the top on side k and no exclusion at the bottom on side l if 2h
k(v̄k, vl) > 0;

(iii) entails exclusion at the bottom on side l and no bunching at the top on of side k if 2h
k(v̄k, vl) <

0;17

(iv) is characterized by a threshold function thk(·) that satisfies the following Euler equation

2h
k(vk, t

h
k(vk)) = 0, (13)

for any vk in separating range [ωh
k , thl (ωh

l )] (from this equation, one obtains thk(vk) =
(
ψh

l

)−1 (
−ψh

k (vk)
)
).

To illustrate, assume vk < 0, k = A, B. An important feature of the maximally separating h-
optimal rule described above is that thk(vk) ≤ rh

l if and only if vk ≥ rh
k . Consider the case of profit

maximization (the arguments for the case of welfare maximization are analogous). Agents from side
k with positive virtual values are matched to all agents from side l with positive virtual values,
plus a measure of agents with negative virtual values (cross-subsidization). The optimal level of
cross-subsidization is then determined by the Euler equation (13). As explained above, this equation
equalizes the marginal benefit −ĝ′k(t

P
k (vk)) ·ϕP

k (vk) ·fv
k (vk) of expanding the matching set of an agent

from side k with virtual value ϕP
k (vk) > 0 who is already matched to all agents from side l with value

above tPk (vk), with the marginal cost −ĝ′l(vk) ·ϕP
l (tPk (vk)) · fv

l (tPk (vk)) of expanding the matching set
of any agent from side l with value vl = tPk (vk) who is already matched to all agents from side k with
value above vk = tPl (vl), as required by reciprocity (recall that ϕP

l (tPk (vk)) < 0).
Intuitively, agents from each side of the market are endogenously partitioned in two groups. Those

agents with positive virtual values (equivalently, with values vk ≥ rP
k ) play the role of consumers,

“purchasing” sets of agents from the other side of the market (these agents contribute positively to
the platform’s profits). In turn, those agents with negative virtual values (equivalently, with value
vk < rP

k ) play the role of inputs in the matching process, providing utility to those agents from the
opposite side they are matched to (these agents contribute negatively to the platform’s profits).

It is also worth noticing that optimality implies that there is bunching at the top on side k if and
only if there is no exclusion at the bottom on side l. In other words, bunching can only occur at the
top due to binding capacity constraints, that is, when the “stock” of agents from side l &= k has been
exhausted. This is illustrated in the next example.

Example 4 (linear network externalities for quantity) Consider the case of linear network
externalities, as described in Example 1 above, and assume that values vk are uniformly distributed
over [vk, vk] (independently across sides). The welfare-maximizing rule matches each agent from each
side to any other agent from the opposite side if 2W

A (vA, vB) = vA + vB ≥ 0, and is maximally
separating otherwise. In turn, the profit-maximizing rule matches each agent from each side to any
other agent from the opposite side if 2P

A(vA, vB) = 2W
A (vA, vB)− [(vA − vA) + (vB − vB)] ≥ 0 and is

17In the knife-edge case where !h
k(v̄k, vl) = 0, the h-optimal rule entails neither bunching at the top on side k nor

exclusion at the bottom on side l.
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Figure 2: The optimal matching rules under linear network externalities for quantity when each agent
from side A has a value drawn from a uniform distribution on [1, 3/2], while each agent from side B

has a value drawn from a uniform distribution on [−1, 0]. Notice that, under profit-maximization,
there is bunching at the top and exclusion at the bottom on side B.

maximally separating otherwise. When the h-optimal rule entails separation, the threshold function
is given by

thk(vk) = 1h ·
vk + vl

2
− vk. \\

Example 5 (supermodular matching values) Consider the environment with supermodular match-
ing values, as in Example 2. Each agent from each side has a value drawn independently from a
uniform distribution on [v, v], where v > 0 and 2v < v̄. Since 2W

k (v, v) = 2v2 and 2P
k (v, v) =

2v(2v− v̄) < 0, the welfare-maximizing rule matches each agent to any other agent from the opposite
side, while the profit-maximizing rule entails separation and is described by the threshold function
tPk (vk) = vk·v̄

4·vk−v̄ defined over (ωk, v̄) = ( v̄
3 , v̄). Under profit-maximization, there is exclusion at the

bottom on both sides and each agent who is not excluded is matched to a strict subset of his efficient
matching set. \\

Relative to what is efficient, the profit-maximizing matching rule thus (i) completely excludes
more agents from the market, and (ii) provides to each agent who is not excluded a matching set
that is a subset of his efficient set. As reported in the next corollary, these distortions are general
properties of profit-maximizing matching mechanisms (the proof follows directly from Proposition 2).

Corollary 1 (distortions) Assume Conditions TP and MR hold. Relative to the welfare-maximizing
rule, the profit-maximizing rule

1. completely excludes a larger group of agents (exclusion effect) — i.e., ωP
k ≥ ωW

k , k = A, B;

2. matches each agent from each side of the market to a subset of his efficient matching set (iso-
lation effect) — i.e., sP

k (vk) ⊆ sW
k (vk) for all vk ≥ ωP

k , k = A, B.
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Figure 3: The profit-maximizing matching rule under supermodular matching values when each agent
from each side has his value drawn independently from a uniform distribution on [1, 6].

The intuition for both effects can be seen from the Euler condition (13): under profit-maximization,
the platform only internalizes the cross-effects on marginal revenues (which are proportional to the
virtual values), rather than the cross-effects on welfare (which are proportional to the true values).
Contrary to the standard mechanism design problem, profit-maximization in a matching market may
result in inefficiently small matching sets for all agents, including those with the highest values for
matching. The reason is that, although the virtual values coincide with the true values for these lat-
ter agents, the cost of cross-subsidizing these agents is higher under profit maximization than under
welfare maximization due to the inframarginal losses implied by reciprocity on the opposite side.

2.3 Pricing: The Lerner-Wilson Formula Under Vertical Differentiation

The analysis so far restricted attention to direct-revelation mechanisms, where the matching set and
the payment of each agent depend on the reported type. While these mechanisms helped us identify
the allocations that are induced both under welfare and under profit maximization, in reality these
allocations are typically obtained by letting agents choose from a menu of matching plans. For
example, business-to-business platforms typically offer menus of plans that differ by the number of
matches available to each firm. Accordingly, we now show how the characterization from Proposition
2 translates into properties of price schedules that indirectly implement the optimal mechanism Mh.

In order to express the optimal pricing formulas in terms of observable variables, in this subsection
we will restrict attention to markets where agents care only about the total number of agents they
are matched to, which amounts to letting σk(·) ≡ 1 for k = A, B. For any qk ∈ [0, 1], then let ρh

k(qk)

denote the total price that each agent from side k has to pay for a matching set of size qk under the
h-optimal mechanism Mh. By optimality, the tariff ρh

k(·) has to satisfy

ρh
k(qk) = ph

k(σk, vk) for all (σk, vk) such that |sh
k(vk)|l = qk. (14)

At any point of differentiability of the tariff ρh
k(·), we will then denote by dρh

k
dqk

(qk) the marginal price
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for the qk unit. Now, given the tariff ρh
k(·), let

yh
k (vk) ∈ arg max

qk∈[0,1]

{
vk · gk(qk)− ρh

k(qk)
}

denote the individual demand of each agent from side k whose value for matching is vk. At any point
yh

k (vk) of differentiability of the tariff ρh
k(·), the following first-order condition must hold:

vk · g′k(yh
k (vk))−

dρh
k(yh

k (vk))
dqk

= 0. (15)

Given the monotonicity of the individual demands in vk, the side-k aggregate demand for the qk unit
at the marginal price dρh

k
dqk

(qk) is given by:18

Dk

(
qk,

dρh
k

dqk
(qk)

)
≡ 1− F v

k




dρh

k
dqk

(qk)
g′k(qk)



 .

Given the expression for the aggregate demand above, we can compute the elasticity of the
aggregate demand for the qk unit with respect to its marginal price:

εk

(
qk,

dρh
k

dqk
(qk)

)
≡ −

∂Dk

(
qk,

dρh
k

dqk
(qk)

)

∂
(

dρh
k

dqk
(qk)

) ·
dρh

k
dqk

(qk)

Dk

(
qk,

dρh
k

dqk
(qk)

) =

fv
k

(
dρh

k
dqk

(qk)

g′k(qk)

)

1− F v
k

(
dρh

k
dqk

(qk)

g′k(qk)

) ·
dρh

k
dqk

(qk)
g′k(qk)

. (16)

As usual, this elasticity measures the responsiveness of the aggregate demand for the qk unit to
variations of the marginal price of the qk unit. The elasticity is positive (in the sense that an increase
in the marginal price reduces demand) for all agents with positive values vk > 0 (observe that
dρh

k(qk)
dqk

1
g′k(qk) =

(
yh

k

)−1 (qk)) and negative for all agents with negative values vk < 0.
The next proposition recasts the first-order Euler condition (13) in terms of demand elasticities

and marginal prices. The expression below extends to matching markets the familiar Lerner-Wilson
formula for second-degree price discrimination in commodity markets (see Wilson (1997)).

Proposition 3 (Lerner-Wilson under vertical differentiation) In addition to Conditions TP
and MR, suppose that network effects depend only on quantities (σk(·) ≡ 1 for k = A, B}), and that
the h-optimal rule entails separation (i.e., 2h

k(vk, vl) < 0). Then the optimal price schedules ρh
k(·)

and ρh
l (·) are differentiable and the marginal prices satisfy the Lerner-Wilson formula

dρh
k

dqk
(qk)− 1h ·

dρh
k

dqk
(qk)

εk

(
qk,

dρh
k

dqk
(qk)

)

︸ ︷︷ ︸
net effect on side-kwelfare (profits)

+
dρh

l

dql

(
qh
l (qk)

)
− 1h ·

dρh
l

dql

(
qh
l (qk)

)

εl

(
qh
l (qk),

dρh
l

dql

(
qh
l (qk)

))

︸ ︷︷ ︸
net effect on side-lwelfare (profits)

= 0, (17)

where qh
l (qk) ≡ Dk

(
qk,

dρh
k

dqk
(qk)

)
is the aggregate demand for the qk unit on side k at marginal price

dρh
k(qk)/dqk.

18This is the measure of agents whose matching set is of size greater than or equal to qk.
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Importantly, note that the Lerner-Wilson formula (17) only depends on the aggregate demand for
matching services on the two sides of the market. It can therefore be used for a structural estimate
of the demand for matching services.

To provide intuition for (17), let us consider the case of profit-maximization (welfare maximization
is analogous). Take a matching set of size qk sold to an agent from side k that plays the role of a
consumer (i.e., for whom marginal revenue is positive, that is, vk > rP

k ). The formula in (17) is the
analog of the familiar Lerner formula

p−MC

p
=

1
εd

for optimal monopoly pricing. It equalizes the marginal revenue of expanding the matching set on
side k to the marginal cost of “procuring” extra agents from side l. In many-to-many matching
markets, this cost is endogenous and is given by the revenue loss of expanding the matching sets of
input-agents from side l who select a matching set of size qh

l (qk) = Dk

(
qk,

dρh
k

dqk
(qk)

)
, as implied by

the threshold structure of the optimal rule. That this cost in turn depends on the elasticity of the
the side-l aggregate demand reflects the fact that the platform is a monopolist on both sides of the
market.19

2.4 The Detrimental Effects of Becoming More Attractive

Shocks that alter the cross-side effects of matches are common in two-sided markets. Changes in
the income distribution of readers, for example, affect the pricing strategies of advertising platforms
(such as newspapers), since the advertisers’ profits change for the same population of readers.

The next definition formalizes the notion of a change in attractiveness.

Definition 2 (higher attractiveness) Consider a market where all side-l agents benefit from in-
teracting with side-k agents, i.e., such that vl ≥ 0. Side k is more attractive under the distribution
Fk than under the distribution F̂k if the following two conditions jointly hold: (a), for all vk ∈ Vk,
F σ

k (·|vk) dominates F̂ σ
k (·|vk) in the sense of first-order stochastic dominance, and (b) F v

k = F̂ v
k .

The next proposition describes how the profit-maximizing matching rule changes as side k becomes
more attractive.

Proposition 4 (increase in attractiveness) In addition to Conditions TP and MR, suppose that
the following conditions jointly hold: (i) network effects are linear (i.e., gA(x) = gB(x) = x, all
x ∈ R+); (ii) the P -optimal rule entails separation (i.e., 2P

k (vk, vl) < 0); and (iii) all side-l agents
benefit from interacting with side-k agents (i.e., vl ≥ 0). Then, if the attractiveness of side k increases

19In contrast to commodity markets (e.g., Maskin and Riley (1984)), quantity discounts are not a natural feature of
the optimum in matching markets. In the case of linear network externalities for quantities (gk(x) ≡ x), the first-order
condition (15) implies that marginal prices increase with quantities, meaning that the price schedule ρh

k(·) is a convex
function of qk (i.e., the platform charges a quantity premium to those agents who play the role of consumers). In
the case of strictly diminishing marginal utility for match quality (gk(·) strictly concave), the emergence of quantity
discounts depends nontrivially on the interplay between the elasticities of demands on both sides.
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(in the sense of Definition 2), the platform switches from a matching rule sP
k (·) to a matching rule

ŝP
k (·) such that

1. the matching sets on side k increase for those agents with a low value for matching and decrease
for those agents with a high value— ŝP

k (vk) ⊇ sP
k (vk) if and only if vk ≤ rP

k ;

2. low-value agents from side k are better off, whereas the opposite is true for high-value ones —
there exists ν̂k ∈ (rP

k , v̄k] such that Πk(θk; M̂P ) ≥ Πk(θk;MP ) if and only if vk ≤ ν̂k.

Perhaps surprisingly, agents from side k can suffer from a positive shock to their attractiveness.
Intuitively, an increase in the attractiveness of side-k agents alters the costs of cross-subsidization
between the two sides. Recall that agents with vk ≥ rP

k are valued by the platform mainly as
consumers. As these agents become more attractive, the costs of cross-subsidizing their “consumption”
using agents from side l with negative virtual values increases, whereas the revenue gains on side k

are unaltered. As a consequence, the matching sets of these agents shrink. The opposite is true for
those agents with value vk ≤ rP

k . These agents are valued by the platform mainly as inputs; as they
become better inputs, their matching sets expand.

In terms of payoffs, for all vk ≤ rP
k

Πk(θk;MP ) =
ˆ vk

vk

|sk(ṽk)|l dṽk ≤
ˆ vk

vk

|̂sk(ṽk)|l dṽk = Πk(θk; M̂P ),

meaning that all agents from side k with value vk ≤ rP
k are necessarily better off. On the other hand,

since |̂sk(vk)|l ≤ |sk(vk)|l for all vk ≥ rP
k , then either payoffs increase for all agents from side k, or

there exists a threshold ν̂k > rP
k such that the payoff of each agent from side k is higher under the

new rule than under the original one if and only if vk ≤ v̂k.
Next, consider the effect of the increase in attractiveness on side k on the payoffs of side-l agents.

On the one hand, the fact that side k is more attractive implies that the payoff that each agent
from side l derives from interacting with each side-k agent increases. On the other hand, by virtue of
reciprocity, the matching sets for all agents with value vl < rP

l shrink, which contributes negatively
to payoffs. The net effect on the payoffs of side-l agents can thus be ambiguous and non-monotone
in vl. However, using (6), one can show that if a type θl with value for matching ν̂l ≥ rP

l is better
off, then the same is necessarily true true for all types θl for which vl > ν̂l.

Next, consider the effect of an increase in the attractiveness of side k on the price schedule ρP
k (qk)

that implements the P -optimal matching rule, as defined in 14.

Corollary 2 (effect of an increase in attractiveness on prices) In addition to Conditions
TP and MR, suppose that the following conditions jointly hold: (i) network effects are linear (i.e.,
gA(x) = gB(x) = x, all x ∈ R+); (ii) the P -optimal rule entails separation (i.e., 2P

k (vk, vl) < 0);
and (iii) all side-l agents benefit from interacting with side-k agents (i.e., vl ≥ 0). Then, if the
attractiveness of side k increases (in the sense of Definition 2), the platform switches from a price
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schedule ρP
k (·) to a price schedule ρ̂P

k (·) such that ρ̂P
k (qk) ≤ ρP

k (qk) for any matching set of quality
qk ≤ q̂k, where q̂k >

∣∣sP
k (rP

k )
∣∣
l
=

∣∣̂sP
k (rP

k )
∣∣
l
.

An increase in the attractiveness of side-k agents thus triggers an increase in the price that the
platform charges to side-k agents for matching sets of high quality, and a decrease in the price that
the platform charges to side-k agents for low-quality matching sets.

3 Vertical and Horizontal Differentiation

We now turn to markets where the agents’ preferences exhibit elements of both vertical and hori-
zontal differentiation. In such markets, two agents from the same side may disagree on the relative
attractiveness of any two agents from the opposite side even when both former agents value positively
(or, alternatively, negatively) interacting with such latter agents. Examples of markets in which hor-
izontal differentiation is believed to play a prominent role include the market for cable TV and for
online targeted advertising.

3.1 Preliminaries

The model is the same as in the previous section, except for the following adjustments. Each agent
i ∈ [0, 1] from each side k ∈ {A, B} has a bidimensional type θi

k = (xi
k, v

i
k) ∈ Θk ≡ Xk × Vk.

The first component, xi
k, is the “location” of agent i. For convenience, we assume that agents are

located on a circle of perimeter one, in which case Xk = [0, 1], k = A, B. As in the model with
vertical differentiation, the second component vi

k ∈ Vk ≡ [vk, v̄k] parametrizes the intensity of an
agent’s preferences for interacting with agents from the other side. For example, in the cable TV
application, vi

k captures the importance that a viewer assigns to cable TV or the importance that a
channel assigns to reaching the viewers, reflecting the channel’s expected advertising revenue as well
as possible costs stemming from broadcasting rights. In turn, the location parameter xi

k captures
a viewer’s (horizontal) tastes for different types of programming as well as a channel’s broadcasting
profile.

We assume that the vertical parameters vi
k are the agents’ own private information. As for the

horizontal parameters xi
k, the analysis covers both the case where they are publicly observable as

well as the case where they are the agents’ private information. It the cable TV application, for
example, it seems appropriate to assume that each viewer’s ideal type of broadcasting is his own
private information, whereas each channel’s broadcasting profile is publicly observable.

The utility enjoyed by agent i ∈ [0, 1] from side k ∈ {A, B} from being matched to agent j ∈ [0, 1]

from side l &= k is given by
uk(vi

k, |xi
k − xj

l |)

where |xi
k − xj

l | is the distance between the two agents’ locations. The function uk is Lipschitz
continuous, strictly increasing, continuously differentiable, and weakly concave in vi

k, and weakly
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decreasing in |xi
k − xj

l |. The following example illustrates the type of preferences covered by the
aforementioned specification.

Example 6 (log utility) The utility that each agent i ∈ [0, 1] from each side k ∈ {A, B} obtains
from being matched to each agent j ∈ [0, 1] from side l &= k is given by

uk(vi
k, |xi

k − xj
l |) = log

[
vi
k ·

(
1− λk · |xi

k − xj
l |

)]
,

where the parameter λk ∈ [0, 1) measures the intensity of horizontal differentiation in the preferences
of side-k agents. If vi

k < 1, agent i derives a negative utility from being matched to any agent j from
side l. In turn, if vi

k > 1, then agent i derives a positive utility from being matched to agent j from
side l if and only if j’s location is sufficiently close to i’s, that is, if and only if |xi

k − xj
l | ≤

vi
k−1

λk·vi
k
.

For example, in the cable TV application, viewers (on side k) are certainly heterogeneous in their
tastes for channels, and therefore λk > 0. In contrast, channels (on side l) are sometimes best viewed
as homogenous (to a first approximation) in their tastes for viewers, in which case λl = 0. \\

The type θi
k = (xi

k, v
i
k) of each agent i ∈ [0, 1] from each side k = A, B is an independent draw

from the distribution Fk with support Θk. We assume that Fk is absolutely continuous with respect
to the Lebesgue measure, and denote by F v

k (with density fv
k ) the marginal distribution of Fk with

respect to the preference parameter vk, and by F x
k the marginal distribution of Fk with respect to

xk. The conditional distribution of vk given xk is denoted by by F v
k (·|xk), with density fv

k (·|xk).
The net utility that each agent i ∈ [0, 1] from each side k = A, B with type θi

k = (xi
k, v

i
k) obtains

from being matched, at a price p, to any (Lebesgue measurable) set s of agents from side l &= k with
type profile (θj

l )j∈s is given by
ˆ

s
uk

(
vi
k, |xi

k − xj
l |

)
dλ(j)− p. (18)

As in the previous section, the platform’s problem consists in choosing a matching rule and
a pricing rule that jointly maximize welfare (or, alternatively, profits) subject to the reciprocity
constraints and the individual rationality and incentive compatibility constraints considered in the
previous section (note, however, that these constraints now depend on the observability of the location
parameters xk).

Remarks. In contrast to what assumed in the model of pure vertical differentiation of the
previous section, here the utility that each agent i ∈ [0, 1] from each side k ∈ {A, B} obtains
from each individual match is independent of who else the agent is matched to. Our result be-
low about the optimality of (location-specific) threshold rules extends to more general payoffs of the
form πi

k(s, p; θ) ≡ gk (〈s, θ〉i)− p, where θ ≡(θi
k)

i∈[0,1]
k=A,B, 〈s, θ〉i ≡

´

s uk

(
vi
k, |xi

k − xj
l |

)
dλ(j) and where

gk(·) is an increasing and weakly concave function that possibly captures diminishing marginal util-
ity for match quality. The characterization of the optimal thresholds is, however, more convoluted
than in the case where gk(·) is linear, as assumed in (18). On the other hand, it is important that
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uk

(
vi
k, |xi

k − xj
l |

)
be allowed to be nonlinear in its arguments; the special case where uk is linear is

uninteresting, for, in this case, the optimal thresholds can be shown to be location-independent.
As anticipated above, the payoff specification in (18) clearly accommodates the possibility that

two agents from the same side may disagree on the relative attractiveness of any two agents from
the opposite side even when both former agents like (or, alternatively, dislike) interacting with such
latter agents (this is in contrast to what assumed in the previous section). It also accommodates the
possibility that the same agent may derive a positive utility from being matched to certain agents,
while a negative utility from being matched to others (this possibility too was absent in the model
of pure vertical differentiation of the previous section). For example, while a viewer may derive a
positive utility from adding a news channel to his package, he may derive a negative utility from
adding a channel that broadcasts movies with a high degree of violence or nudity in case parental
control is difficult to enforce.

Finally, note that the assumption that payoffs on each side are (weakly) decreasing in the “circular”
distance |xi

k − xj
l | implies a certain type of symmetry in the payoff structure. For example, in the

context of online advertising, let web browsers belong to side k and advertisers to side l and interpret
Xk = Xl = [0, 1] as the spectrum of possible interests shared by browsers and advertisers. The above
assumption then implies that if browser i’s location is xi

k and advertisers j and ̂ have the same
vertical dimension (i.e., vj

l = v̂
l ) but different locations (i.e., xj

l &= x̂
l), then if browser i prefers j to

̂, then advertiser j’s profits from reaching browser i are (weakly) higher than advertiser ̂’s. This
property seems reasonable in the applications discussed in this paper, but is clearly not without loss
of generality.

3.2 Optimal Matching Rules

We now show that, under certain conditions, the optimal matching rules continue to have a simple
threshold structure. We start by describing these conditions.

Condition 3 [LR] Location Regularity: For any k, l ∈ {A, B}, l &= k, and any pair of locations
(xk, xl) ∈ Xk ×Xl, the virtual values

ϕh
k (vk, |xk − xl|) ≡ uk (vk, |xk − xl|)− 1h ·

1− F v
k (vk|xk)

fv
k (vk|xk)

· ∂uk

∂v
(vk, |xk − xl|)

are continuous and nondecreasing in vk, h = W, P.

Condition 4 [Ik] Independence on side k ∈ {A, B}: for any (xk, vk) ∈ Xk × Vk, Fk(vk, xk) =

F x
k (xk) · F v

k (vk).

Condition 5 [Sk] Symmetry on side k ∈ {A, B}: for any (xk, vk) ∈ Xk × Vk, Fk(xk, vk) =

xk · F v
k (vk).

Condition 6 [MS] Matching Supermodularity: The match value functions uk(·, ·) are (weakly)
supermodular, k = A, B.
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Condition LR extends the usual Myerson regularity condition to the conditional distribution of
vk, given the locations (xk, xl).

Condition Ik requires that the location parameter xk and the vertical parameter vk be indepen-
dently distributed. In the cable TV application, this condition implies that knowing a viewer’s “bliss
point” (i.e., his preferred channel profile) carries little information about the overall importance that
the viewer assigns to watching cable TV.

Condition Sk strengthens the previous independence condition by further requiring that locations
be uniformly distributed over [0, 1], as typically assumed in models of horizontal differentiation. As
shown below, this assumption simplifies the analysis by guaranteeing that the relevant incentive-
compatibility constraints remain the one pertaining the vertical differentiation parameters, vk.

Finally, Condition MS means that agents who value a lot interacting with agents from the other
side (i.e., with a high vk) suffer less from a deterioration in the attractiveness of their matching
partners (that is, from an increase in the distance |xk−xl|). In the cable TV example, this assumption
implies that those viewers who, in general, are keener on watching TV are also those who are more
likely to watch channels whose profile is distant from their ideal one.

Now let 2h
k : Θk ×Θl → R denote the functions defined by

2h
k(θk, θl) ≡ ϕh

k (vk, |xk − xl|) + ϕh
l (vl, |xk − xl|) (19)

= uk (vk, |xk − xl|)− 1h ·
1− F v

k (vk|xk)
fv

k (vk|xk)
· ∂uk

∂v
(vk, |xk − xl|)

+ ul (vl, |xl − xK |)− 1h ·
1− F v

l (vl|xl)
fv

l (vl|xl)
· ∂ul

∂v
(vl, |xl − xk|)

for k, l = A, B, l &= k. Note that 2h
A(θA, θB) = 2h

B(θB, θA) represents the marginal effect on the
platform’s objective of adding a link between types θA and θB. We then have the following result.

Proposition 5 (optimal rules under horizontal differentiation) Assume that, in addition to
Condition LR, one of the following three conditions holds: (a) locations are public on both sides; (b)
locations are private on side k ∈ {A, B} and public on side l &= k and Conditions Ik and Sl hold; (c)
locations are private on both sides and Conditions Sk hold, k = A, B.

Then the h-optimal matching rule sh
k(·) has the following threshold structure, k = A, B, h = W, P :

sh
k(θk) =

{
(xl, vl) ∈ Θl : vl > thk(xl|θk)

}
.

The threshold functions thk(·|·) are such that for any θk ∈ Θk, (xl, vl) ∈ Θl, k, l = A, B, l &= k,
h = W, P :

1. thk(xl|θk) = vl if 2h
k (θk, (xl, vl)) > 0,

2. thk(xl|θk) = v̄l if 2h
k (θk, (xl, v̄l)) < 0,

3. thk(xl|θk) is the unique solution to

2h
k

(
θk, (xl, t

h
k(xl|θk))

)
= 0 (20)
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if 2h
k (θk, (xl, vl)) < 0 < 2h

k (θk, (xl, v̄l)) . In this case, the threshold thk(xl|θk) is locally strictly
decreasing in vk. When either (i) h = W or (ii) h = P and Condition MS holds, the threshold
thk(xl|θk) is also locally weakly increasing in the distance |xk − xl|.

As in the case of pure vertical differentiation, when the conditions in Proposition 5 are satisfied, the
optimal matching rules continue to have a threshold structure: agents with a low value for matching
are matched only to those agents from the other side whose value for matching is sufficiently high.
Contrary to the case of vertical differentiation, however, the thresholds are now location-specific: the
optimal matching rules thus actively discriminate on the basis of mutual attractiveness (as captured
by the joint location of any two agents).

The determination of the optimal thresholds follows from arguments similar to those in the model
of pure vertical differentiation. Consider the problem of welfare maximization (the problem of profit
maximization is analogous). Take a type θk = (xk, vk) from side k and a location xl on side l such
that uk (vk, |xk − xl|) > 0. This last condition makes type θk = (xk, vk) a consumer of xl-agents.
Type θk’s matching set naturally includes all agents located at xl who like interacting with side-k
agents located at xk, i.e., for whom ul (vl, |xk − xl|) ≥ 0. It also includes some agents θl located at xl

who dislike interacting with side-k agents located at xk, provided that the cross-side effects on welfare
generated by linking types θk and θl are positive, i.e., provided that 2W

k ((xk, vk), (xl, vl)) > 0. The
latter xl-agents included in type θk’s matching set play the role of inputs in the W -optimal matching
rule.

Contrary to the case of vertical differentiation, however, the role of type θk = (xk, vk) as a
consumer or as an input now varies across the xl-locations. While type θk is a consumer of side-
l agents located at xl, he may be an input for side-l agents θ̂l = (x̂l, v̂l) located at x̂l for whom
uk (vk, |xk − x̂l|) < 0 and2W

l (θ̂l, θk) > 0. That is, contrary to the case of pure vertical differentiation,
the separation of agents between consumers and inputs now depends on the joint locations of any
two agents.

As established in the proposition, the threshold tWk (xl|xk, vk) are weakly increasing in the distance
|xk−xl|. To understand why, pick again a type θk = (xk, vk) from side k and a location xl on side l such
that uk (vk, |xk − xl|) > 0. Because consumer values uk (vk, |xk − xl|) > 0 go down as the partners’
quality decreases (that is, as the distance |xk−xl| increases), the input costs ul

(
tWk (xl|θk), |xk − xl|

)
<

0 at the threshold tWk (xl|θk) have to go down as well. In turn, this means that, as the distance |xk−xl|
increases, the marginal xl-agent thk(xl|θk) in type θk’s matching set must have a higher value vl for
matching. This logic extends to profit maximization under the supermodularity condition, which
controls for how informational rents vary with the distance |xk − xl|.

The role of condition LR is to guarantee that, for any reported location xk, the size of the
matching sets increase in the value for matching vk, as required by incentive compatibility. In turn,
the role of conditions Sk and Ik, k = A, B, is to ensure that, under the optimal rules, the only binding
incentive compatibility constraints are those that pertain the vertical dimension, vk. Obviously,
these conditions can be dispensed with when locations are public on both sides, for in this case

28



0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

v

Figure 4: The welfare (blue) and profit-maximizing (red) matching rules under log utility preferences
when λA = 4

3 , λB = 0, and agents from both sides have valuations and locations independently and
uniformly drawn from [0, 2] and [0, 1], respectively.

the only dimension that the agents can misreport is the vertical one. To understand the role of
these two conditions, consider first the case where locations are private on side k but public on side
l. Conditions Ik and Sl, together with the Euler condition (20), then imply that, for any report vk

about the vertical dimension, the matching sets associated with different reports about the horizontal
dimension xk are parallel translations of one another. As a consequence, misreporting the location xk

is never profitable, irrespective of whether or not the agent reports truthfully the vertical dimension
vk. This is because both the prices pk(xk, vk) and the sizes

´

θl∈sk(xk,vk) dFl(θl) of the matching sets
are invariant in the reported xl-dimension. Therefore, misreporting the bliss point (i.e., the horizontal
dimension xk) negatively affects the composition of the matching set, but does not change either its
size or its price and hence is unprofitable. By the same logic, when locations are private on both
sides, one has to replace Condition Ik with the stronger Condition Sk to guarantee that side-l agents
find it optimal to report the locations xl truthfully. We conjecture that the results in Proposition
5 extend to distributions Fk that are sufficiently “close” to the ones covered by the Symmetry and
Independence conditions, but did not attempt to establish this formally.

The following example illustrates the structure of the optimal matching rules when preferences
are as in Example 6.

Example 7 (optimal matching rules for log utility) Suppose that preferences are as in Example
6 and that the conditions in Proposition 5 hold.20 The welfare-maximizing matching rule is described
by the following threshold function (at any point where tWk (xl|θk) ∈ (vl, v̄l)) :

tWk (xl|θk) =
1
vk

· 1
(1− λk · |xk − xl|) · (1− λl · |xk − xl|)

.

20Note that Condition MS is implied by the log-utility specification.
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In turn, the profit-maximizing matching rule is described by the following threshold function (at any
point where tPk (xl|θk) ∈ (vl, v̄l)):

tPk (xl|θk)

exp
{

1−F v
l (tPk (xl|θk))

fv
l (tPk (xl|θk))·tPk (xl|θk)

} =
exp

{
1−F v

k (vk)
fv

k (vk)·vk

}

vk
· 1
(1− λk · |xk − xl|) · (1− λl · |xk − xl|)

.

The threshold functions tWk (xl|θk) and tPk (xl|θk) are illustrated in Figure 4. \\

3.3 Implementation: The Lerner-Wilson Formula Under Horizontal Differentia-
tion

We now show how the characterization in Proposition 5 translates into properties of price schedules
that indirectly implement the optimal matching rules.

To help the exposition, we describe the platform’s pricing strategies in the context of the cable
TV application. The platform offers to each viewer a menu of packages (also known as plans)

Mk ≡ {P(xk) : xk ∈ [0, 1]}k .

Each package P(xk) = (βk(xk), Pk(xk), ρk(·.·;xk)) is indexed by its category xk ∈ [0, 1] (sports, news,
movies, etc.) which coincides with the profile of channels that are present in the largest number. In
addition, a package specifies a baseline price Pk(xk) and a baseline configuration

βk(xk) =
⋃

xl∈[0,1]
q
xl

(xk)

where q
xl

(xk) denotes the quantity of xl-channels included in the xk-package. Finally, each package
P(xk) specifies the (possibly non-linear) incremental price

ρk(q, xl;xk)

that the viewer has to pay to bring the total number of xl-channels in the package to q ∈ [0, 1], for
every category xl ∈ [0, 1]. Given the menu Mk, each viewer i from side k is then asked to choose a
package and then personalize it by adding channels. Denoting by qxl(xk) the quantity of xl-channels
selected by a viewer who chooses the package P(xk), we then have that the total price paid by the
viewer is given by

P (xk) +
ˆ 1

0
ρk(qxl(xk), xl|xk)dxl.

Next, consider the channels’ side. Here too the platform offers to each channel a menu of pricing
plans, where each plan is again indexed by the channel’s category. There are different ways one can
describe such plans. By symmetry with the viewers’ side, a plan could specify the type of viewers
present in the package in the largest number along with a baseline price and a collection of additional
prices that the channel will have to pay to increase the number of viewers in each category to the
desired level. Alternatively, and more realistically, a plan can be described by the price the channel has
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to pay to be included in each of the viewers’ packages. Because these distinctions are inconsequential
to our results, we will not further pursue them and instead focus our discussion below on the viewers’
side.

We now use the results from Proposition 5 to relate the marginal prices in each package to the
(category-specific) demand elasticities on each of the two sides. For the proposed indirect mechanism
to implement the allocations and payments of the corresponding h-optimal direct revelation mecha-
nism, we will let the baseline price Pk(xk) and the baseline configuration βk(xk) coincide, respectively,
with the equilibrium price and with the equilibrium matching set of any xk-agents with the lowest
value vk for matching, in the corresponding h-optimal direct revelation mechanism. That is, we let

P h
k (xk) = ph

k(xk, vk) (21)

and, for any xl ∈ [0, 1], we let qh
xl

(xk) ≡ 1− F v
l (thk(xl|(xk, vk)|xl) so that

βh
k (xk) = sh

k(xk, vk). (22)

Next, consider the additional price ρh
k(q, xl|xk) that a viewer selecting the package Ph

k (xk) has to
pay to increase the number of xl-channels to q. At any point of differentiability of the tariff ρh

k(·, xl|xk),
we denote by dρh

k
dq (q, xl|xk) the marginal price for the q unit of xl-channels under the package Ph

k (xk).

Now consider the problem of a viewer with type θk = (xk, vk) who selected the plan Ph
k (xk). His

individual demand for xl-channels then satisfies

qh
k (xl|θk) ∈ arg max

q∈[0,1]

{
uk(vk, |xk − xl|) · q − ρh

k(q, xl|xk)
}

.

At any point qh
k (xl|θk) of differentiability of the tariff ρh

k(·, xl|xk), the following first-order condition
must hold:

uk(vk, |xk − xl|)−
dρh

k

dq
(qh

k (xl|θk), xl|xk) = 0. (23)

Given the monotonicity of the individual demands in vk, the xk-aggregate demand for the qk unit of
xl-agents at the marginal price dρh

k
dqk

(qk, xl|xk) — in the cable TV application, the measure of viewers
who demand qk or more xl-channels after selecting the package Ph

k (xk) — is given by

Dk

(
qk,

dρh
k

dq
(qk, xl|xk), xl|xk

)
≡ 1− F v

k (vk(qk, xl|xk)|xk) ,

where vk(qk, xl|xk) solves uk(vk(qk, xl|xk), |xk − xl|)−
dρh

k
dq (qk, xl|xk) = 0.

Given the expression for the aggregate demand above, we can compute the elasticity of the xk-
aggregate demand for the qk unit of xl-agents with respect to its marginal price:

εk

(
qk,

dρh
k

dq
(qk, xl|xk), xl|xk

)
≡ −

∂Dk

(
qk,

dρh
k

dq (qk, xl|xk), xl|xk

)

∂
(

dρh
k

dq (qk, xl|xk)
) ·

dρh
k

dq (qk, xl|xk)

Dk

(
qk,

dρh
k

dq (qk, xl|xk), xl|xk

)

(24)
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=
fv

k (vk(qk, xl|xk)|xk)
1− F v

k (vk(qk, xl|xk)|xk)
·
[
∂uk

∂v
(vk(qk, xl|xk), |xk − xl|)

]−1

·
dρh

k

dq
(qk, xl|xk).

The next proposition uses the results in Proposition (5) to relate the marginal prices under the
optimal menu of packages to the (location-specific) elasticities of the aggregate demands from each
side of the market.

Proposition 6 (Lerner-Wilson formula under horizontal differentiation) Assume the con-
ditions in Proposition 5 hold. The h-optimal mechanism can be implemented by offering to each side
a menu of matching plans Mh

k =
{
Ph

k (xk) : xk ∈ [0, 1]
}

k=A,B
. Each plan Ph

k (xk) is defined by a base-
line price P h

k (xk) and a baseline matching set βh
k (xk) given by (21) and (22) respectively, along with

a collection of incremental prices ρh
k(q, xl|xk) that any agent from side k selecting the Ph

k (xk) plan
has to pay to raise the quantity of xl-agents in his matching set to q. The h-optimal price schedules
ρh

k(·, xl|xk) are differentiable and satisfy the following Lerner-Wilson formulas

dρh
k

dq
(qk, xl|xk)− 1h ·

dρh
k

dq (qk, xl|xk)

εk

(
qk,

dρh
k

dq (qk, xl|xk), xl|xk

)

︸ ︷︷ ︸
net effect on side-kwelfare (profits)

(25)

+
dρh

l

dq
(qh

l (qk, xl|xk), xk|xl)− 1h ·
dρh

l
dq (qh

l (qk, xl|xk), xk|xl)

εl

(
qh
l (qk, xl|xk),

dρh
l

dq (qh
l (qk, xl|xk), xk|xl)

)

︸ ︷︷ ︸
net effect on side-lwelfare (profits)

= 0,

where qh
l (qk, xl|xk) ≡ Dk

(
qk,

dρh
k

dq (qk, xl|xk), xl|xk

)
is the aggregate demand for the qk unit of xl-agents

by xk-agents at the marginal price dρh
k

dq (qk, xl|xk), xk, xl ∈ [0, 1], k, l ∈ {A, B}, l &= k.

The intuition for the formulas above is analogous to that for the formulas in Proposition 3:
marginal prices are chosen so as to equalize the marginal revenue gains of expanding the number
of xl-agents in the matching set of each xk-agent to the marginal costs of “procuring” the extra
xl-agents from side l, taking into account the threshold rule used by the platform to minimize the
cross-subsidizations costs. When preferences are horizontally differentiated, these marginal prices
are naturally pairwise location-specific; that is, they condition on both the characteristics of the
agents added to the matching set as well as the preferences of the agent whose matching set is under
consideration.

4 Extensions

The analysis developed above can accommodate a few simple enrichments which we discuss hereafter.
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Coarse Matching. In reality, platforms typically offer menus with finitely many alternatives.
As pointed out by McAfee (2002) and Hoppe, Moldovanu and Ozdenoren (2010), the reason for such
coarse matching is that platforms may face costs for adding more alternatives to their menus.21

Consider a market with purely vertically differentiated preferences. It is easy to see that the
analysis developed in Section 2 extends to a setting where the platform can include no more than
N plans in the menus offered to each side. Furthermore, as the number of plans increases (e.g.,
because menu costs decrease), the solution to the platform’s problem uniformly converges to the
h-optimal nested rule identified in the paper (This follows from the fact that any weakly decreasing
threshold function tk(·) can be approximated arbitrarily well by a step function in the sup-norm, i.e.,
in the norm of uniform convergence). In other words, the maximally-separating matching rules of
Proposition 2 are the limit as N grows large of those rules offered when the number of plans is finite.
A similar conclusion applies to the model with both vertical and horizontal differentiation.

Quasi-Fixed Costs. Permitting an agent to interact with agents from the other side of the
market typically involves a quasi-fixed cost. In the case of cable TV, for example, the platform must
incur a cost to connect a house to the cable system. Likewise, in the case of credit cards, the platform
must incur a cost to provide a merchant with the technology to operate its payment system. From
the perspective of the platform, these costs are quasi-fixed, in the sense that they depend on whether
or not an agent is completely excluded, but not on the composition of the agent’s matching set.

The analysis developed above can easily accommodate such costs. Consider the model of pure
vertical differentiation, and let ck denote the quasi-fixed cost that the platform must incur for each
agent from side k whose matching set is non empty. The h-optimal mechanism can then be obtained
through the following two-step procedure:

1. Step 1: Ignore quasi-fixed costs and maximize (10) among all weakly decreasing threshold
functions thk(·).

2. Step 2: Given the optimal threshold function thk(·) from Step 1, choose the h-optimal exclusion
types ωh

A, ωh
B by solving the following problem:

max
ωA,ωB

∑

k=A,B

ˆ vk

ωk

(
ĝk(max{thk(vk), ωl}) · ϕh

k(vk)− ck

)
· dF v

k (vk).

As the quasi-fixed costs increase, so do the exclusion types ωh
k (cA, cB), k = A, B. For ck sufficiently

high, the exclusion types reach the reservation values rh
k , in which case the platform switches from

offering a menu of matching plans to offering a unique plan. Therefore, another testable prediction
that the model delivers is that, ceteris paribus, discrimination should be more prevalent in matching
markets with low quasi-fixed costs. A similar procedure can be used in the model with both vertical
and horizontal differentiation (in this case, the exclusion types are location-specific).

21See also Wilson (1989).
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Insulating Tariffs and Robust Implementation. Consider again the model with only vertical
differentiation. In the direct revelation version of the matching game, each agent from each side is
asked to submit a report θk which leads to a payment ph

k(θk), as defined in (6), and grants access to
all agents from the other side of the market who reported a value above thk(vk). This game admits one
Bayes-Nash equilibrium implementing the h-optimal matching rule sh

k(·), along with other equilibria
implementing different rules.22

As pointed out by Weyl (2010) in the context of a monopolistic platform offering a single plan,
equilibrium uniqueness can however be guaranteed when network effects depend only on quantities
(i.e., when σk(·) ≡ 1 for k = A, B).23 In the context of our model, it suffices to replace the payment
rule (ph

k(·))k=A,B given by (6) with the payment rule

/h
k(vk, (v

j
l )

j∈[0,1]) = vk · gk

(∣∣∣{j ∈ [0, 1] : vj
l ≥ tk(vk)}

∣∣∣
k

)
−
ˆ vk

vk

gk

(∣∣∣{j ∈ [0, 1] : vj
l ≥ tk(ṽk)}

∣∣∣
k

)
dṽk,

(26)
where

∣∣∣{j ∈ [0, 1] : vj
l ≥ tk(vk)}

∣∣∣
k
≡
´

{j:vj
l≥tk(vk)} dλ(j) denotes the measure of agents from side l &= k

reporting a value above tk(vk). Given the above payment rule, it is weakly dominant for each agent to
report truthfully. This follows from the fact that, given any profile of reports (vj

l )
j∈[0,1] by agents from

the other side, the quality of the matching set for each agent from side k is increasing in his report,
along with the fact that the payment rule /h

k(·; (vj
l )

j∈[0,1]) satisfies the familiar envelope formula with
respect to vk. In the spirit of the Wilson doctrine, this also means that the the optimal allocation
rule can be robustly (fully) implemented in weakly undominated strategies.24

5 Discussion

Second-degree price discrimination is ubiquitous in markets for many-to-many matching. In what
follows, we discuss how our results relate to the actual practices in many such markets, and draw
attention to both the limitations of our analysis and, in some cases, to the somewhat puzzling impli-
cations of our results.

Business-to-business. B2B platforms work as brokers matching vendors with procurers for a
fee (see, e.g., Lucking-Reyley and Spulber (2001) and Jullien (2012)). Typically, these platforms offer
menus that include a “join for free” option along with plans that provide richer matching possibilities

22In the implementation literature, this problem is referred to as “partial implementation”, whereas in the two-sided
market literature as the “chicken and egg” problem (e.g., Caillaud and Jullien (2001, 2003)) or the “failure to launch”
problem (e.g., Evans and Schmalensee (2009)). See also Ellison and Fudenberg (2003) and Ambrus and Argenziano
(2009).

23See also White and Weyl (2010).
24With more general preferences, it is still possible to robustly (fully) implement any monotone matching

rule in weakly undominated strategies by replacing the definition of
˛̨
{j ∈ [0, 1] : vj

l ≥ tk(vk)}
˛̨
k

in (26) with
˛̨
{j ∈ [0, 1] : vj

l ≥ tk(vk)}
˛̨
k
≡
´

{j:vj
l ≥tk(vk)} σldλ(j), where σl ≡ min{σl : σl ∈ Σl}. However, these payments gen-

erate less revenue than the ones given in (6), implying that, in general, there is a genuine trade-off between robust
(full) implementation and profit-maximization.
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at increasing subscription fees. These practices appear broadly consistent with what is predicted by
the version of our model with purely vertically differentiated preferences. In particular, the presence
in these menus of “join for free” options reflects cross-subsidization effects similar to those highlighted
in the paper. On the other hand, B2B platforms have recently expanded their services to include
e-billing and supply-management support. These recent developments opened the door to more
sophisticated price discriminatory practices that use instruments other than the composition of the
matching sets. Extending the analysis to accommodate for such richer instruments represents an
interesting line for future research.

Cable TV. Cable TV platforms are known to price-discriminate on the viewer side of the market
by offering viewers different packages of channels at different prices. What is perhaps less understood
is that they also price-discriminate on the channel side by setting transfers that depend on the
audience level attained.

As reported by Crawford (2000) and Crawford and Yurukoglu (2012), before the 1990s, technolog-
ical limitations in the available bandwidth were forcing cable TV providers to offer no more than two
packages: a basic one targeted to viewers with a low willingness to pay and consisting primarily of
“cheap” channels; and a premium package targeted to viewers with a high willingness to pay and in-
cluding channels with higher costs per viewer in addition to the channels included in the basic package.
This practice can be viewed as consistent with what is predicted by the pure vertical-differentiation
specification of our model. To see this, let values be positive on the viewers’ side; assume that payoffs
are linear, and that salience and willingness to pay are independent on the viewers’ side and negatively
affiliated on the channels’ side. That the channels’ willingness to pay is negatively affiliated with the
quality of their programs may reflect the fact that high-quality channels typically have outside op-
tions superior to the low-quality channels and/or have higher bargaining power vis-a-vis the cable
providers. Our results then imply that low-willingness-to-pay viewers should be directed toward basic
packages consisting primarily of cheap lower-quality channels, while high-willingness-to-pay viewers
should be directed toward premium packages which include also higher-quality channels which are,
however, less lucrative for the platform.

Advances in digital technology after the 1990s enabled cable TV providers to offer viewers cus-
tomized packages to better respond to the heterogeneity in viewers’ preferences. Many cable TV
providers now offer a few (vertically differentiated) plans, and then allow viewers to add (horizontally
differentiated) packages such as “sports”, “news” and “foreign”. For example, Direct TV offers five
vertically differentiated (i.e., nested) English packages, four vertically differentiated Spanish packages,
and eight international packages. It then allows viewers to add to these packages nine (horizontally
differentiated) premium packages, which bundle together channels specialized in movies, sports, news,
and games. In addition, viewers can choose among eighteen individual sports channels, specialized
in golf, tennis, basketball, and other sports. Finally, viewers can purchase hundreds of individual
pay-per-view movies and events and combine them with mobile applications and Internet services.
Similar combinations of packages with different degrees of horizontal and vertical differentiation are
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offered by other providers. While the industry has not (yet) reached the “extreme” form of customiza-
tion predicted by our model with vertically and horizontally differentiated preferences, these recent
developments seem to indicate a trend toward the practice of offering a combination of pre-designed
packages and customization options in the spirit of what is predicted in the paper.

Our model, however, has two important limitations when one applies it to the cable TV industry.
First, it abstracts from competition among providers. A second, related, limitation is that it assumes
that the monopolistic platform can make take-it-or leave offers to the channels. In contrast, the
empirical analysis of Crawford and Yurukoglu (2012) suggests that large channel conglomerates enjoy
nontrivial bargaining power vis-a-vis the cable TV providers. Extending the analysis to settings where
(i) channels have bargaining power, and/or (ii) there are multiple providers is likely to provide new
insights into the bundling practices of the cable TV industry and thus represents a promising line for
future research.

In-Print Advertising. Many off-line advertising outlets, such as newspapers and magazines,
offer different editions of the same outlet, combining different levels of advertising and content, at
different prices (see, e.g., Ambrus and Argenziano (2009) and Kaiser and Wright (2006)). The
Washington Post, for example, offers a tabloid edition for free, and a regular (paid) edition, with
less advertising and more content. Advertisers typically face higher prices to place ads in the regular
edition (which attracts readers with a lower tolerance for advertising and higher interest in content)
than in the tabloid edition. As a consequence, advertisers with a high willingness to pay to reach
readers advertise in both editions, while advertisers with a lower willingness to pay favor the tabloid
edition. This structure appears broadly consistent with what is predicted by the version of our model
with purely vertically differentiated preferences, subject to one important qualification. Our model
does not consider the possibility that either one or both sides of the market derive utility directly from
the product provided by the platform, as in this application where readers derive a positive utility
from content in addition to disliking advertising. By considering only the disutility from advertising,
our model predicts negative prices on the viewers’ side of the market. If one were to add to the model
a direct utility for content which is negatively correlated with the readers’ tolerance for advertising,
the model would then predict a positive price for the regular edition and a lower (possibly zero) price
for the tabloid. Introducing a direct utility for the platform’s products is likely to add further realism
to the model and bring more light to the pricing strategies in media markets.25. Another interesting
extension would consist in introducing richer forms of heterogeneity in the outside options, in line
with those examined in Jullien (2000) and Rochet and Stole (2002).

Online Advertising. Several online outlets (such as web portals and online newspapers and
magazines) offer different subscription plans with different ratios of advertising and content. The
content provided for free is often accompanied by a large amount of advertising. In turn, paying
subscribers have access to more content and face a smaller exposure to advertising. These stylized

25See also Kaiser and Song (2009) and Weyl (2010) for a discussion of how readers’ preferences for content might be
correlated with their tolerance for advertising.
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facts are similar to those discussed above for in-print advertising.
More generally, online advertising companies have recently improved their ability to offer targeted

advertising, thereby exploring the heterogeneity in interests among web browsers and advertisers.
While our model of horizontal differentiation offers a few insights in this direction, we derived our
results under the (currently, unrealistic) assumption that browsers can use payments to adjust the
level of advertising they are willing to endure. Extending the analysis to accommodate the possibility
that platforms may face constraints on their ability to use prices on one of the two sides of the market
is likely to introduce effects that can be relevant for this application.

Online Dating. Online dating websites typically offer menus of subscription plans that include
a “join for free” option, along with (paid) plans providing a wider set of searching and interaction pos-
sibilities. These websites often suggest matches based on users’ preference profiles and on geographic
locations. Those users who subscribe to premium packages receive more suggestions for potential
partners. Such features appear to be broadly in line with the predictions of our model with both
vertical and horizontal differentiation. In particular, our prediction that, under supermodular utility
functions, the thresholds increase with distance and decrease with price appears to be consistent with
the practice of proposing matches whose profiles are more distant from the ideal one only if either
the seeker or the proposed mate has subscribed to the premium service.

Credit Cards. Starting with Rochet and Tirole (2003), a vast literature has modeled the market
for credit card payments as one where both users and merchants have linear network externalities for
quantity (as in Example 1 above). The results from Propositions 1 and 2 suggest that credit card
companies could reap higher profits by offering credit cards that differ in the access that they provide
to merchants. To the best of our knowledge, this differentiation is not yet practiced. All major credit
card companies offer cards that differ in their credit limits, mileage plans, and premium services.
However, each of these cards is accepted by the same network of merchants. The presence of large
quasi-fixed costs (the costs of including an agent in the network) discussed in the previous section,
along with the pressure exerted by competition (which is missing in the model) might offer a partial
explanation for this lack of discrimination.

The Group Design Problem. Consider now the problem of how to assign agents to different
“teams” in the presence of peer effects, which is central to the theory of organizations and to personnel
economics. As anticipated in the introduction, such a one-sided matching problem is a special case of
the two-sided matching problems studied in this paper. To see this, note that the problem of designing
nonexclusive groups in a one-sided matching setting is mathematically equivalent to the problem of
designing an optimal matching rule in a two-sided matching setting where (i) the preferences and
type distributions of the two sides coincide, and (ii) the matching rule is required to be symmetric
across sides, i.e., sA(θ) = sB(θ) for all θ ∈ ΘA = ΘB.

First, consider the case of purely vertically differentiated preferences. Under the new constraint
that matching rules have to be symmetric across the two sides, maximizing (10) is equivalent to
maximizing twice the objective function associated with the one-sided matching problem. As it
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turns out, the symmetry constraint is never binding in a two-sided matching market in which the
two sides are symmetric (in which case ψh

l (·) = ψh
k (·)). This is immediate when 2h

k(vk, vl) ≥ 0,
that is, when a single network is optimal. When, instead, 2h

k(vk, vl) < 0, the characterization
from Proposition 2 reveals that, at any point where the threshold rule thk(·) is strictly decreasing,
thk(v) =

(
ψh

l

)−1 (
−ψh

k (v)
)

=
(
ψh

k

)−1 (
−ψh

l (v)
)

= thl (v). It is also easy to see that the symmetry
condition is satisfied when the optimal rule entails bunching at the top.

Next, consider the case of preferences that are both vertically and horizontally differentiated.
Again, from the analysis in Section 3 one can easily see that the h-optimal matching rules are
naturally symmetric when the primitives on the two sides are symmetric, as one can verify from
Proposition 5. All our results thus apply also to the group design problem.

6 Concluding Remarks

This paper has studied many-to-many matching in markets with both vertically and horizontally
differentiated preferences. The analysis delivered two main results. First, under fairly reasonable
assumptions, the optimal matching rules induce negative assortative matching at the margin. In
the case of purely vertically differentiated preferences, this implies that, as matching sets expand,
the marginal agents added to the matching sets are the ones with the lowest values for matching.
Depending on whether values are positively or negatively correlated with salience, these marginal
agents are, respectively, either the least or the most attractive ones. Similarly, when attractiveness
is in the eyes of the beholders, as in the version of the model with both vertically and horizontally
differentiated preferences, we find that, as the matching sets expand, the marginal agents from each
location are always those with the lowest value for matching. The composition of the pool of marginal
agents, however, naturally respects horizontal differences in preferences, with most of the marginal
agents coming from “locations” close to the ones of the agents under consideration. We believe that
this particular form of negative assortativeness at the margin is a general property of markets for
many-to-many matching.

Second, the optimal matching sets are specified by a simple Euler condition that equalizes the
marginal gains in welfare (or, alternatively, in profits) with the cross-subsidization losses in welfare (or,
alternatively, in profits) that the platform must incur on the other side of the market. This condition
can be used to construct the matching plans and to derive the price schedules that implement the
optimal matching rules. Importantly, the Lerner-Wilson formulas that determine the marginal prices
can be expressed in terms of observable market variables.

The above analysis assumed that the utility/profit that each agent derives from any given matching
set is independent of who else from the same side has access to the same set. This was a reasonable
starting point but is definitely inappropriate for certain markets. In advertising, for example, reaching
a certain set of consumers is more profitable when competitors are blocked from reaching the same
set. Extending the analysis to accommodate for congestion effects and other "same-side externalities"
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is nontrivial but worthwhile exploring.
Matching markets are often populated by competing platforms. Understanding to what extent

the distortions identified in the present paper are affected by the degree of market competition,
and studying policy interventions aimed at inducing platforms “to get more agents on board” (for
example, through subsidies, and in some cases the imposition of universal service obligations) are
other important directions for future research.26

7 Appendix

Proof of Proposition 1. If ϕh
k(vk) ≥ 0 for k = A, B, then it is immediate from (7) that h-optimality

requires that each agent from each side be matched to all agents from the other side, in which case
sh
k(θk) = Θl for all θk ∈ Θk. This rule trivially satisfies the threshold structure described in (8).

Thus consider the situation where ϕh
k(vk) < 0 for some k ∈ {A, B}. Define Θh+

k ≡ {θk =

(σk, vk) : ϕh
k(vk) ≥ 0} the set of types θk whose ϕh

k-value for matching is non-negative, and Θh−
k ≡

{θk = (σk, vk) : ϕh
k(vk) < 0} the set of types with strictly negative ϕh

k-values.
Let s′k(·) be any implementable matching rule. We will show that when Condition TP holds,

starting from s′k(·), one can construct another implementable matching rule ŝk(·) that satisfies the
threshold structure described in (8) and that weakly improves upon the original one in terms of the
platform’s objective Ωh(M).

The proof proceeds as follows. First, it establishes a couple of lemmas that will be used throughout
the rest of the proof. It then considers separately the two sets of primitive conditions covered by
Condition TP.

Lemma 1 A mechanism M is incentive compatible only if, with the exception of a countable subset
of Vk, |sk(σk, vk)|l = |sk(σ′k, vk)|l for all σk, σ′k ∈ Σk, k = A, B.

Proof of Lemma 1. To see this, note that incentive compatibility requires that |sk(σk, vk)|l ≥
|sk(σ′k, v

′
k)|l for any (σk, vk) and (σ′k, v

′
k) such that vk ≥ v′k. This in turn implies that E[|sk(σ̃k, vk)|k]

must be nondecreasing in vk, where the expectation is with respect to σ̃k given vk. Now at any
point vk ∈ Vk at which |sk(σk, vk)|l depends on σk, the expectation E[|sk(σ̃k, vk)|l] is necessarily
discontinuous in vk. Because monotone functions can be discontinuous at most over a countable set
of points, this means that the salience of the matching set may vary with σk only over a countable
subset of Vk. Q.E.D.

The next lemma introduces a property for arbitrary random variables that will turn useful to
establish the results.

26Damiano and Li (2008) consider a model in which two matchmakers compete through entry fees on two sides.
However, they restrict the analysis to one-to-one matching, thus abstracting from many of the effects identified in the
present paper.
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Definition 3 [monotone concave/convex order] Let F be a probability measure on the interval
[a, b] and z1, z2 : [a, b] → R be two random variables defined over [a, b]. We say that z2 is smaller
than z1 in the monotone concave order if E [g (z2(ω̃))] ≤ E [g (z1(ω̃))] for any weakly increasing and
weakly concave function g : R → R. We say that z2 is smaller than z1 in the monotone convex order
if E [g (z2(ω̃))] ≤ E [g (z1(ω̃))] for any weakly increasing and weakly convex function g : R → R.

Lemma 2 Part (i). Suppose that z1, z2 : [a, b] → R+ are nondecreasing and that z2 is smaller than
z1 in the monotone concave order. Then for any weakly increasing and weakly concave function g :

R → R and any weakly increasing and weakly negative function h : [a, b] → R−, E [h(ω̃) · g (z1(ω̃))] ≤
E [h(ω̃) · g (z2(ω̃))].

Part (ii). Suppose that z1, z2 : [a, b] → R+ are nondecreasing and that z2 is smaller than z1 in
the monotone convex order. Then for any weakly increasing and weakly convex function g : R →
R and any weakly increasing and weakly positive function h : [a, b] → R+, E [h(ω̃) · g (z1(ω̃))] ≥
E [h(ω̃) · g (z2(ω̃))].

Proof of Lemma 2. Consider first the case where z2 is smaller than z1 in the monotone concave
order, g is weakly increasing and weakly concave and h is weakly increasing and weakly negative. Let
(hn)n∈N be the family of weakly increasing and weakly negative step functions hn : [a, b] → R, where
n is the number of steps. Because z2 is smaller than z1 in the monotone concave order, the inequality
in the lemma is obviously true for any one-step negative function h1. Induction then implies that it
is also true for any n-step negative function hn, any n ∈ N. Because the set of weakly increasing and
weakly negative step functions is dense (in the topology of uniform convergence) in the set of weakly
increasing and weakly negative functions, the result follows. Similar arguments establish part (ii) in
the lemma. Q.E.D.

The rest of the proof considers separately the two sets of primitive conditions covered by Condition
TP.

Case 1 Consider markets in which the following primitive conditions jointly hold for k = A, B : (1a)
the functions gk(·) are weakly concave; (1b) the random variables σ̃k and ṽk are weakly positively
affiliated.

Let s′k(·) be the original rule and for any θk ∈ Θh+
k , let t̂k(vk) be the threshold defined as follows:

1. If |s′k(θk)|l ≥
∣∣∣Θh+

l

∣∣∣
l
, then let t̂k(vk) be such that

|Σl × [t̂k(vk), v̄l]|l =
∣∣s′k(θk)

∣∣
l
.

2. If |s′k(θk)|l ≤
∣∣∣Θh+

l

∣∣∣
l
= |Θl|l, then t̂k(vk) = vl.

3. If 0 < |s′k(θk)|l ≤
∣∣∣Θh+

l

∣∣∣
l
< |Θl|l, then let t̂k(vk) = rh

l (note that in this case rh
l ∈ (vl, v̄l)).
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Now apply the construction above to k = A, B and consider the matching rule ŝk(·) such that

ŝk(θk) =

{
Σl × [t̂k(vk), v̄l] ⇔ θk ∈ Θh+

k

{(σl, vl) ∈ Θ+
l : t̂l(vl) ≤ vk} ⇔ θk ∈ Θh−

k .

By construction, ŝk(·)k is implementable. Moreover, gk (|̂sk(θk)|l) ≥ gk (|s′k(θk)|l) for all θk ∈ Θh+
k ,

implying that for k = A, B,
ˆ

Θh+
k

ϕh
k(vk) · gk (|̂sk(σk, vk)|l) dFk(σk, vk) ≥

ˆ

Θh+
k

ϕh
k(vk) · gk

(∣∣s′k(σk, vk)
∣∣
l

)
dFk(σk, vk). (27)

Below, we show that the matching rule ŝk(·) also reduces the costs of cross-subsidization, relative to
the original matching rule s′k(·). That is,

ˆ

Θh−
k

ϕh
k(vk) · gk

(∣∣s′k(σk, vk)
∣∣
l

)
dFk(σk, vk) ≤

ˆ

Θh−
k

ϕh
k(vk) · gk (|̂sk(σk, vk)|l) dFk(σk, vk). (28)

We start with the following result.

Lemma 3 Consider the two random variables z1, z2 : [vk, r
h
k ] → R+ given by z1(vk) ≡ Eσ̃k [|s′k(σ̃k, vk)|l |vk]

and z2(vk) ≡ Eσ̃k [|̂sk(σ̃k, vk)|l |vk], where the distribution over [vk, r
h
k ] is given by F v

k (vk)/F v
k (rh

k ).

Then z2 is smaller than z1 in the monotone concave order.

Proof of Lemma 3. From (i) the construction of ŝk(·), (ii) the assumption of positive affiliation
between values and salience, (iii) the fact that the measure F v

k (vk) is absolute continuous with respect
to the Lebesgue measure and (iv) Lemma 1, we have that for all x ∈ [vk, r

h
k ],

ˆ x

vk

ˆ

Σk

∣∣s′k(σk, vk)
∣∣
l
dFk(σk, vk) ≥

ˆ x

vk

ˆ

Σk

|̂sk(σk, vk)|l dFk(σk, vk),

or, equivalently,
ˆ x

vk

z1(vk)dF v
k (vk) ≥

ˆ x

vk

z2(vk)dF v
k (vk). (29)

The result in the lemma clearly holds if for all vk ∈ [vk, r
h
k ], z1(vk) ≥ z2(vk). Thus consider the

case where z1(vk) < z2(vk) for some vk ∈ [vk, r
h
k ], and denote by [v̇1

k, v̇
2
k], [v̇3

k, v̇
4
k],[v̇

5
k, v̇

6
k], ... the

collection of T (where T ∈ N ∪ {∞}) subintervals of [vk, r
h
k ] in which z1(vk) < z2(vk). Because

´ rh
k

vk
z1(vk)dF v

k (vk) ≥
´ rh

k
vk

z2(vk)dF v
k (vk), it is clear that T ≡ ∪T−1

t=0 [v̇2t+1
k , v̇2t+2

k ] is a proper subset of
[vk, r

h
k ]. Now construct ż2(·) on the domain [vk, r

h
k ] so that:

1. ż2(vk) = z1(vk) < z2(vk) for all vk ∈ T ;

2. z2(vk) ≤ ż2(vk) = αz1(vk) + (1− α)z2(vk) ≤ z1(vk), where α ∈ [0, 1], for all vk ∈ [vk, r
h
k ]\T ;

3.
´

[vk,rh
k ]\T {ż2(vk)− z2(vk)} dF v

k (vk) =
´

T {z2(vk)− z1(vk)} dF v
k (vk).
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Because
´ rh

k
vk

z1(vk)dF v
k (vk) ≥

´ rh
k

vk
z2(vk)dF v

k (vk), there always exists some α ∈ [0, 1] such that 2 and
3 hold. From the construction above, ż2(·) is weakly increasing and

ˆ rh
k

vk

ż2(vk)dF v
k (vk)/F v

k (rh
k ) =

ˆ rh
k

vk

z2(vk)dF v
k (vk)/F v

k (rh
k ). (30)

This implies that for all weakly concave and weakly increasing functions g : R → R,
ˆ rh

k

vk

g (z2(vk)) dF v
k (vk)/F v

k (rh
k ) ≤

ˆ rh
k

vk

g (ż2(vk)) dF v
k (vk)/F v

k (rh
k ) ≤

ˆ rh
k

vk

g (z1(vk)) dF v
k (vk)/F v

k (rh
k ),

where the first inequality follows from the weak concavity of g(·) along with (30), while the second
inequality follows from the fact that ż2(vk) ≤ z1(vk) for all vk ∈ [vk, r

h
k ] and g(·) is weakly increasing.

Q.E.D.
We are now ready to prove inequality (28). The results above imply that
ˆ

Θh−
k

ϕh
k(vk) · gk

(∣∣s′k(σk, vk)
∣∣
l

)
dFk(σk, vk) =

ˆ rh
k

vk

ϕh
k(vk) · Eσ̃k

[
gk

(∣∣s′k(σ̃k, vk)
∣∣
l

)
|vk

]
dF v

k (vk)

=
ˆ rh

k

vk

ϕh
k(vk) · gk (z1(vk)) dF v

k (vk)

= F v
k (rh

k ) · E
[
ϕh

k(vk) · gk (z1(vk)) |vk ≤ rh
k

]

≤ F v
k (rh

k ) · E
[
ϕh

k(vk) · gk (z2(vk)) |vk ≤ rh
k

]

=
ˆ rh

k

vk

ϕh
k(vk) · gk (Eσ̃k [|̂sk(σ̃k, vk)|l |vk]) dF v

k (vk)

=
ˆ

Θh−
k

ϕh
k(vk) · gk (|̂sk(σk, vk)|l) dFk(σk, vk).

The first equality follows from changing the order of integration. The second equality follows from
the fact that, since s′k(·) is implementable, gk (|s′k(σk, vk)|l) is invariant in σk except over a countable
subset of [vk, r

h
k ], as shown in Lemma 1. The first inequality follows from part (i) of Lemma 2. The

equality in the fifth line follows again from the fact that, by construction, ŝk(·) is implementable,
and hence invariant in σk except over a countable subset of [vk, r

h
k ]. The series of equalities and

inequalities above establishes (28), as we wanted to show.
Combining (27) with (28) establishes the result that the threshold rule ŝk(·) improves upon the

original rule s′k(·) in terms of the platform’s objective, thus proving the result in the proposition for
the case of markets that satisfy conditions (1a) and (1b) in Condition TP.

Next, consider markets satisfying conditions (2a) and (2b) in Condition TP.

Case 2 Consider markets in which the following primitive conditions jointly hold for k = A, B :

(2a) the functions gk(·) are weakly convex; (2b) the random variables σ̃k and ṽk are weakly negatively
affiliated.

Again, let s′k(·) be an arbitrary (implementable) rule and for any θk ∈ Θh−
k , let t̂k(vk) be the

threshold defined as follows:
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1. If |Θl|l > |s′k(θk)|l ≥
∣∣∣Θh+

l

∣∣∣
l
> 0, then let t̂k(vk) = rh

l (note that in this case rh
l ∈ (vl, v̄l));

2. If |s′k(θk)|l ≥
∣∣∣Θh+

l

∣∣∣
l
= 0, then let t̂k(vk) = v̄l;

3. If |s′k(θk)|l =
∣∣∣Θh+

l

∣∣∣
l
= |Θl|l, then t̂k(vk) = vl;

4. If 0 ≤ |s′k(θk)|l <
∣∣∣Θh+

l

∣∣∣
l
, then let t̂k(vk) be such that

|Σl × [t̂k(vk), v̄l]|l =
∣∣s′k(θk)

∣∣
l
.

Now apply the construction above to k = A, B and consider the matching rule ŝk(·) such that

ŝk(θk) =

{
Θh+

l ∪ {(σl, vl) ∈ Θh−
l : t̂l(vl) ≤ vk} ⇔ θk ∈ Θh+

k

Σl × [t̂k(vk), v̄l] ⇔ θk ∈ Θh−
k .

By construction, ŝk(·)k is monotone and invariant in sk and hence implementable. Moreover, we have
that |̂sk(θk)|l ≤ |s′k(θk)|l for all θk ∈ Θh−

k . This implies that, for k = A, B,
ˆ

Θh−
k

ϕh
k(vk) · |̂sk(σk, vk)|l dFk(σk, vk) ≥

ˆ

Θh−
k

ϕh
k(vk) ·

∣∣s′k(σk, vk)
∣∣
l
dFk(σk, vk). (31)

The arguments below show that the new matching rule ŝk(·), relative to s′k(·), also increases the
surplus from the positive ϕh

k(vk)-agents, k = A, B (recall that, by assumption, there exists at least
one side k ∈ {A, B} for which ϕh

k(vk) > 0 for vk high enough, h = P,W ). That is, for any side
k ∈ {A, B} for which Θh+

k &= ∅,
ˆ

Θh+
k

ϕh
k(vk) · |̂sk(σk, vk)|l dFk(σk, vk) ≥

ˆ

Θh+
k

ϕh
k(vk) ·

∣∣s′k(σk, vk)
∣∣
l
dFk(σk, vk) (32)

We start with the following result.

Lemma 4 Consider the two random variables z1, z2 : [rh
k , v̄k] → R+ given by z1(vk) ≡ Eσ̃k [|̂sk(σ̃k, vk)|l |vk]

and z2(vk) ≡ Eσ̃k

[
|s′k(σ̃k, vk)|l |vk

]
, where the distribution over [rh

k , v̄k] is given by F v
k (vk)−F v

k (rh
k )

1−F v
k (rh

k )
. Then

z2 is smaller than z1 in the monotone convex order.

Proof of Lemma 4. From (i) the construction of ŝk(·), (ii) the assumption of negative affiliation
between values and salience, (iii) the fact that the measure F v

k (vk) is absolute continuous with respect
to the Lebesgue measure and (iv) Lemma 1, we have that for all x ∈ [rh

k , v̄k],
ˆ v̄k

x

ˆ

Σk

|̂sk(σk, vk)|l dFk(σk, vk) ≥
ˆ v̄k

x

ˆ

Σk

∣∣s′k(σk, vk)
∣∣
l
dFk(σk, vk),

or, equivalently,
ˆ v̄k

x
z1(vk)dF v

k (vk) ≥
ˆ v̄k

x
z2(vk)dF v

k (vk).

The result in the lemma clearly holds if for all vk ∈ [rh
k , v̄k], z1(vk) ≥ z2(vk). Thus consider the case

where z1(vk) < z2(vk) for some vk ∈ [rh
k , v̄k] and denote by [v̇1

k, v̇
2
k], [v̇3

k, v̇
4
k],[v̇

5
k, v̇

6
k], ... the collection of
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T (where T ∈ N∪{∞}) subintervals of [rh
k , v̄k] in which z1(vk) < z2(vk). Because

´ v̄k

rh
k

z1(vk)dF v
k (vk) ≥

´ v̄k

rh
k

z2(vk)dF v
k (vk), it is clear that T ≡ ∪T−1

t=0 [v̇2t+1
k , v̇2t+2

k ] is a proper subset of [rh
k , v̄k]. Now construct

ż2(·) on [rh
k , v̄k] so that:

1. ż2(vk) = αz1(vk) + (1− α)z2(vk) < z1(vk) for all vk ∈ [rh
k , v̄k]\T ;

2. ż2(vk) = z2(vk), for all vk ∈ T ;

3.
´

[rh
k ,v̄k]\T {ż2(vk)− z2(vk)} dF v

k (vk) =
´

T {z2(vk)− z1(vk)} dF v
k (vk).

Because
´ v̄k

rh
k

z1(vk)dF v
k (vk) ≥

´ v̄k

rh
k

z2(vk)dF v
k (vk), there always exists some α ∈ [0, 1] such that 2 and

3 hold. From the construction above, ż2(·) is weakly increasing and
ˆ v̄k

rh
k

ż2(vk)dF v
k (vk) =

ˆ v̄k

rh
k

z1(vk)dF v
k (vk).

This implies that for all weakly increasing and weakly convex functions g : R → R
ˆ v̄k

vk

g (z2(vk)) dF v
k (vk) ≤

ˆ v̄k

vk

g (ż2(vk)) dF v
k (vk) ≤

ˆ v̄k

vk

g (z1(vk)) dF v
k (vk),

where the first inequality follows the fact that z2(vk) ≤ ż2(vk) for all vk ∈ [rh
k , v̄k] and g(·) is weakly

increasing, while the second inequality follows from the construction of ż2(vk) and the weak convexity
of g(·). Q.E.D.

We are now ready to prove inequality (32). The results above imply that
ˆ

Θh+
k

ϕh
k(vk) · gk

(∣∣s′k(σk, vk)
∣∣
l

)
dFk(σk, vk) =

ˆ v̄k

rh
k

ϕh
k(vk) · Eσ̃k

[
gk

(∣∣s′k(σ̃k, vk)
∣∣
l

)
|vk

]
dF v

k (vk)

=
ˆ v̄k

rh
k

ϕh
k(vk) · gk (z2(vk)) dF v

k (vk)

=
(
1− F v

k (rh
k )

)
· E

[
ϕh

k(ṽk) · gk (z2(ṽk)) |vk ≥ rh
k

]

≤
(
1− F v

k (rh
k )

)
· E

[
ϕh

k(vk) · gk (z1(vk)) |vk ≥ rh
k

]

=
ˆ v̄k

rh
k

ϕh
k(vk) · gk (z1(vk)) dF v

k (vk)

=
ˆ v̄k

rh
k

ϕh
k(vk) · gk (Eσ̃k [|̂sk(σ̃k, vk)|l |vk]) dF v

k (vk)

=
ˆ v̄k

rh
k

ϕh
k(vk) · gk (|̂sk(σk, vk)|l) dFk(σk, vk).

The first equality follows from changing the order of integration. The second equality follows from
the fact that, since s′k(·) is implementable, gk (|s′k(σk, vk)|l) is invariant in σk except over a countable
subset of [rh

k , v̄k], as shown in Lemma 1. The first inequality follows from part (ii) of Lemma 2. The
equality in the last line follows again from the fact that, by construction, ŝk(·) is implementable,
and hence invariant over σk, except over a countable subset of [rh

k , v̄k]. The series of equalities and
inequalities above establishes (32), as we wanted to show.
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Combining (31) with (32) establishes that the threshold rule ŝk(·) improves upon the original
rule s′k(·) in terms of the platform’s objective, thus proving the result in the proposition under the
conditions in part 2 of Condition TP. Q.E.D.

Proof of Proposition 2. We start with the following lemma, which establishes the first part of
the proposition.

Lemma 5 Assume Conditions TP and MR hold. For h = W, P, the h-optimal matching rule is such
that thk(vk) = vl for all vk ∈ Vk if 2h

k(vk, vl) ≥ 0 and entails separation otherwise.

Proof of Lemma 5. The proof considers separately the following three different cases.

• First, consider the case where ϕh
k(vk) ≥ 0 for k = A, B, implying that 2h

k(vk, vl) ≥ 0. Because
values (virtual values) are all nonnegative, welfare (profits) is (are) maximized by matching
each agent from each side to all agents from the other side, meaning that the optimal matching
rule employs a single complete network.

• Next, consider the case where ϕh
k(vk) < 0 for k = A, B, so that 2h

k(vk, vl) < 0. We then show
that, starting from any non-separating rule, the platform can strictly increase its payoff by
switching to a separating one. To this purpose, let ω̂h

k denote the threshold type corresponding
to the non-separating rule so that agents from side k are excluded if vk < ω̂h

k and are otherwise
matched to all agents from side l whose value is above ω̂h

l otherwise.

First, suppose that, for some k ∈ {A, B}, ω̂h
k > rh

k , where recall that rh
k ≡ inf{vk ∈ Vk :

ϕh
k(vk) ≥ 0}. The platform could then increase its payoff by switching to a separating rule that

assigns to each agent from side k with value vk ≥ ω̂h
k the same matching set as the original

matching rule while it assigns to each agent with value vk ∈ [rh
k , ω̂h

k ] the matching set [v̂#
l , vl],

where v̂#
l ≡ max{rh

l , ω̂h
l }.

Next, suppose that ω̂h
k < rh

k for both k = A, B. Starting from this non-separating rule, the
platform could then increase its payoff by switching to a separating rule s♦k (·) such that, for
some k ∈ {A, B}27

s♦k (vk) =






[ω̂h
l , vl] ⇔ vk ∈ [rh

k , vk]

[rh
l , vl] ⇔ vk ∈ [ω̂h

k , rh
k ]

. ⇔ vk ∈ [vk, ω̂
h
k ]

.

The new matching rule improves upon the original one because it eliminates all matches between
agents whose values (virtual values) are both negative.

Finally, suppose that ω̂h
k = rh

k for some k ∈ {A, B} whereas ω̂h
l ≤ rh

l for l &= k. The platform
27The behavior of the rule on side l is then pinned down by reciprocity.
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could then do better by switching to the following separating rule:

s#
k (vk) =






[ω̂h
l , vl] ⇔ vk ∈ [rh

k , vk]

[rh
l , vl] ⇔ vk ∈ [ω̂#

k , rh
k ]

. ⇔ vk ∈ [vk, ω̂
#
k ]

.

By setting the new exclusion threshold ω̂#
k sufficiently close to (but strictly below) rh

k the
platform increases its payoff. In fact, the marginal benefit of increasing the quality of the
matching sets of those agents from side l whose ϕh

l -value is positive more than offsets the
marginal cost of getting on board a few more agents from side k whose ϕh

k-value is negative,
but sufficiently small.28 Note that for this network expansion to be profitable, it is essential
that the new agents from side k that are brought “on board” be matched only to those agents
from side l whose ϕh

l -value is positive, which requires employing a separating rule.

• Finally, suppose that ϕh
l (vl) < 0 ≤ ϕh

k(vk). First, suppose that 2h
k(vk, vl) ≥ 0 and that the

matching rule is different from a single complete network (i.e., thk(vk) > vl for some vk ∈ Vk.
Take an arbitrary point vk ∈ [vk, v̄k] at which the function thk(·) is strictly decreasing in a right
neighborhood of vk. Consider the effect of a marginal reduction in the threshold thk(vk) around
the point vl = thk(vk). This is given by 2h

k(vk, vl). Next note that, given any interval [v′k, v
′′
k ]

over which the function thk(·) is constant and equal to vl, the marginal effect of decreasing
the threshold below vl for any type vk ∈ [v′k, v

′′
k ] is given by

´ v′′k
v′k

[∆h
k(vk, vl)]dvk. Lastly note

that sign{∆h
k(vk, vl)} = sign{ψh

k (vk) + ψh
l (vl)}. Under the MR condition, this means that

2h
k(vk, vl) > 0 for all (vk, vl). The results above then imply that the platform can increase its

objective by decreasing the threshold for any type for which thk(vk) > vl, proving that a single
complete network is optimal.

Next, suppose that 2h
k(vk, vl) < 0 and that the platform employes a non-separating rule. First

suppose that such rule entails full participation (that is, ω̂h
l = vl or, equivalently, thk(vk) = vl).

The fact that 2h
k(vk, vl) < 0 implies that the marginal effect of raising the threshold thk(vk) for

the lowest type on side k, while leaving the threshold untouched for all other types is positive.
By continuity of the marginal effects, the platform can then improve its objective by switching
to a separating rule that is obtained by increasing thk(·) in a right neighborhood of vk while
leaving thk(·) untouched elsewhere.

Next consider the case where the original rule excludes some agents (but assigns the same
matching set to each agent whose value is above ω̂h

k ). From the same arguments as above, for
such rule to be optimal, it must be that ω̂h

l < rh
l and ω̂h

k = vk, with ω̂h
l satisfying the following

first-order condition

ĝl(vk) · ϕh
l (ω̂h

l )− ĝ′k(ω̂
h
l ) ·
ˆ vk

vk

ϕh
k(vk)dF v

k (vk) = 0.

28To see this, note that, starting from ω̂#
k = rh

k , the marginal benefit of decreasing the threshold ω̂#
k is

−ĝ′l(r
h
k )
´ vl

rh
l

ϕh
l (vl)dF v

l (vl) > 0, whereas the marginal cost is given by −ĝk(rh
l ) · ϕh

k(rh
k )fv

k (rh
k ) = 0 since ϕh

k(rh
k ) = 0.
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This condition requires that the total effect of a marginal increase of the size of the network
on side l (obtained by reducing the threshold thk(vk) below ω̂h

l for all types vk) be zero. This
rewrites as

´ vk

vk
[∆h

k(vk, ω̂h
l )]dvk = 0. Because sign{∆h

k(vk, ω̂h
l )} = sign{ψh

k (vk)+ψh
l (ω̂h

l )}, under
Condition MR this means that there exists a v#

k ∈ (vk, v̄k) such that
´ vk

v#
k

∆h
k(vk, ω̂h

l )dvk > 0.

This means that there exists a ω#
l < ω̂h

l such that the platform could increase its payoff by
switching to the following separating rule:

sh
k(vk) =

{
[ω#

l , vl] ⇔ vk ∈ [v#
k , vk]

[ω̂h
l , vl] ⇔ vk ∈ [vk, v

#
k ],

We conclude that a separating rule is optimal when 2h
k(vk, vl) < 0. Q.E.D.

The rest of the proof shows that when, in addition to Conditions TP and MR, 2h
k(vk, vl) < 0 then

the optimal separating rule satisfies properties (i)-(iv) in the proposition.
To see this, note that the h-optimal matching rule solves the following program, which we call

the Full Program (PF ) :

PF : max
{ωk,tk(·)}k=A,B

∑

k=A,B

ˆ vk

ωk

ĝk(tk(vk)) · ϕh
k(vk) · dF v

k (vk) (33)

subject to the following constraints for k, l ∈ {A, B}, l &= k

tk(vk) = inf{vl : tl(vl) ≤ vk}, (34)

tk(·) weakly decreasing, (35)

and tk(·) : [ωk, vk] → [ωl, vl] (36)

with ωk ∈ [vk, v̄k] and ωl ∈ [vl, v̄l]. Constraint (34) is the reciprocity condition, rewritten using
the result in Proposition 1. Constraint (35) is the monotonicity constraint required by incentive
compatibility. Finally, constraint (36) is a domain-codomain restriction which requires the function
tk(·) to map each type on side k that is included in the network into the set of types on side l that
is also included in the network.

Because 2h
k(vk, vl) < 0, it must be that rh

k > vk for some k ∈ {A, B}. Furthermore, from the
arguments in the proof of Lemma 5 above, at the optimum, ωh

k ∈ [vk, r
h
k ]. In addition, whenever

rh
l > vl, ωh

l ∈ [vl, r
h
l ] and thk(rh

k ) = rh
l . Hereafter, we will assume that rh

l > vl. When this is not the
case, then ωh

l = vl and thk(vk) = vl for all vk ≥ rh
k , while the optimal ωh

k and thk(vk) for vk < rh
k are

obtained from the solution to program PF
k below by replacing rh

l with vl).
Thus assume ϕh

k(vk) < 0 for k = A, B. Program PF can then be decomposed into the following
two independent programs PF

k , k = A, B:

PF
k : max

ωk,tk(·),tl(·)

ˆ rh
k

ωk

ĝk(tk(vk)) · ϕh
k(vk) · dF v

k (vk) +
ˆ vl

rh
l

ĝl(tl(vl)) · ϕh
l (vl) · dF v

l (vl) (37)
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subject to tk(·) and tl(·) satisfying the reciprocity and monotonicity constraints (34) and (35), along
with the following constraints:

tk(·) : [ωk, r
h
k ] → [rh

l , vl], tl(·) : [rh
l , vl] → [ωk, r

h
k ]. (38)

Program PF
k is not a standard calculus of variations problem. As an intermediate step, we will

thus consider the following Auxiliary Program (PAu
k ), which strengthens constraint (35) and fixes

ωk = vk and ωl = vl:

PAu
k : max

tk(·),tl(·)

ˆ rh
k

vk

ĝk(tk(vk)) · ϕh
k(vk) · dF v

k (vk) +
ˆ vl

rh
l

ĝl(tl(vl)) · ϕh
l (vl) · dF v

l (vl) (39)

subject to (34),
tk(·), tl(·) strictly decreasing, (40)

and tk(·) : [vk, r
h
k ] → [rh

l , vl], tl(·) : [rh
l , vl] → [vk, r

h
k ] are bijections. (41)

By virtue of (40), (34) can be rewritten as tk(vk) = t−1
l (vk). Plugging this into the objective

function (39) yields

ˆ rh
k

vk

ĝk(tk(vk)) · ϕh
k(vk) · fv

k (vk)dvk +
ˆ vl

rh
l

ĝl(t−1
k (vl)) · ϕh

l (vl) · fv
l (vl)dvl. (42)

Changing the variable of integration in the second integral in (42) to ṽl ≡ t−1
k (vl), using the fact

that tk(·) is strictly decreasing and hence differentiable almost everywhere, and using the fact that
t−1
k (rh

l ) = rh
k and t−1

k (vl) = vk, the auxiliary program can be rewritten as follows:

PAu
k : max

tk(·)

ˆ rh
k

vk

{
ĝk(tk(vk)) · ϕh

k(vk) · fv
k (vk)− ĝl(vk) · ϕh

l (tk(vk)) · fv
l (tk(vk)) · t

′
k(vk)

}
dvk

(43)
subject to tk(·) being continuous, strictly decreasing, and satisfying the boundary conditions

tk(vk) = vl and tk(rh
k ) = rh

l . (44)

Consider now the Relaxed Auxiliary Program (PR
k ) that is obtained from PAu

k by dispensing with
the condition that tk(·) be continuous and strictly decreasing and instead allowing for any measurable
control tk(·) : [vk, r

h
k ] → [rh

l , vl] with bounded subdifferential that satisfies the boundary condition
(44).

Lemma 6 PR
k admits a piece-wise absolutely continuous maximizer t̃k(·).

Proof of Lemma 6. Program PR
k is equivalent to the following optimal control problem PR

k :

PR
k : max

y(·)

ˆ rh
k

vk

{
ĝk(x(vk)) · ϕh

k(vk) · fv
k (vk)− ĝl(vk) · ϕh

l (x(vk)) · fv
l (x(vk)) · y(vk)

}
dvk
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subject to

x′(vk) = y(vk) a.e., x(vk) = vl, x(rh
k ) = rh

l y(vk) ∈ [−K, +K] and x(vk) ∈ [rh
l , vl],

where K is a large number. Program PR
k satisfies all the conditions of the Filipov-Cesari Theorem

(see Cesari (1983)). By that theorem, we know that there exists a measurable function y(·) that
solves PR

k . By the equivalence of PR
k and PR

k , it then follows that PR
k admits a piece-wise absolutely

continuous maximizer t̃k(·). Q.E.D.

Lemma 7 Consider the function η(·) implicitly defined by

∆h
k(vk, η(vk)) = 0. (45)

Let ṽk ≡ inf{vk ∈ [vk, r
h
k ] :(45) admits a solution}. The solution to PR

k is given by

t̃k(vk) =

{
v̄l if vk ∈ [vk, ṽk]

η(vk) if vk ∈ (ṽk, rh
k ].

(46)

Proof of Lemma 7. From Lemma 6, we know that PR
k admits a piece-wise absolutely continuous

solution. Standard results from calculus of variations then imply that such solution t̃k(·) must satisfy
the Euler equation at any interval I ⊂ [vk, r

h
k ] where its image t̃k(vk) ∈ (rh

l , vl). The Euler equation
associated with program PR

k is given by (45). Condition MR ensures that (i) there exists a ṽk ∈ [vk, r
h
k )

such that (45) admits a solution if and only if vk ∈ [ṽk, rh
k ], (ii) that at any point vk ∈ [ṽk, rh

k ] such
solution is unique and given by η(vk) =

(
ψh

l

)−1 (
−ψh

k (vk)
)
, and (iii) that η(·) is continuous and

strictly decreasing over [ṽk, rh
k ].

When ṽk > vk, (45) admits no solution at any point vk ∈ [vk, ṽk], in which case t̃k(vk) ∈ {rh
l , vl}.

Because ϕh
k(vk) < 0 for all vk ∈ [vk, ṽk] and because ĝk(·) is decreasing, it is then immediate from

inspecting the objective (43) that t̃k(vk) = v̄l for all vk ∈ [vk, ṽk].
It remains to show that t̃k(vk) = η(vk) for all vk ∈ [ṽk, rh

k ]. Because the objective function in
PR

k is not concave in (tk, t′k) for all vk, we cannot appeal to standard sufficiency arguments. Instead,
using the fact that the Euler equation is a necessary optimality condition for interior points, we will
prove that t̃k(vk) = η(vk) by arguing that there is no function t̂k(·) that improves upon t̃k(·) and such
that t̂k(·) coincides with t̃k(·) except on an interval (v1

k, v
2
k) ⊆ [ṽk, rh

k ] over which t̂hk(vk) ∈ {rh
l , vl}.

To see that this is true, fix an arbitrary (v1
k, v

2
k) ⊆ [ṽk, rh

k ] and consider the problem that consists
in choosing optimally a step function t̂k(·) : (v1

k, v
2
k) → {rh

l , vl}. Because step functions are such that
t̂′k(vk) = 0 at all points of continuity and because ϕh

k(vk) < 0 for all vk ∈ (v1
k, v

2
k), it follows that

the optimal step function is given by t̂k(vk) = vl for all vk ∈ (v1
k, v

2
k). Notice that the value attained

by the objective (43) over the interval (v1
k, v

2
k) under such step function is zero. Instead, an interior

control tk(·) : (v1
k, v

2
k) → (rh

l , vl) over the same interval with derivative

t′k(vk) <
ĝk(tk(vk)) · ϕh

k(vk) · fv
k (vk)

ĝl(vk) · ϕh
l (tk(vk)) · fv

l (tk(vk))
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for all vk ∈ (v1
k, v

2
k) yields a strictly positive value. This proves that the solution to PR

k must indeed
satisfy the Euler equation (45) for all vk ∈ [ṽk, rh

k ]. Together with the property established above
that t̃k(vk) = v̄l for all vk ∈ [vk, ṽk], this establishes that the unique piece-wise absolutely continuous
function that solves PR

k is the control t̃k(·) that satisfies (46). Q.E.D.

Denote by max{PR
k } the value of program PR

k (i.e., the value of the objective (43) evaluated under
the control t̃hk(·) defined in Lemma 7). Then denote by sup{PAu

k } and sup{PF
k } the supremum of

programs PAu
k and PF

k , respectively. Note that we write sup rather than max as, a priori, a solution
to these problems might not exist.

Lemma 8 sup{PF
k } = sup{PAu

k } = max{PR
k }.

Proof of Lemma 8. Clearly, sup{PF
k } ≥ sup{PAu

k }, for PAu
k is more constrained than PF

k .
Next note that sup{PF

k } = sup{P̂F
k } where P̂F

k coincides with PF
k except that ωk is constrained to

be equal to vk and tk(vk) is constrained to be equal to v̄l. This follows from the fact that excluding
types below a threshold ω′k gives the same value as setting tk(vk) = v̄l for all vk ∈ [vk, ω

′
k). That

sup{P̂F
k } = sup{PAu

k } then follows from the fact any pair of measurable functions tk(·), tl(·) satisfying
conditions (34), (35) and (38), with ωk = vk and tk(vk) = v̄l can be approximated arbitrarily well
in the L2-norm by a pair of functions satisfying conditions (34), (40) and (41). That max{PR

k } ≥
sup{PAu

k } follows from the fact that PR
k is a relaxed version of PAu

k . That max{PR
k } = sup{PAu

k } in
turn follows from the fact that the solution t̃hk(·) to PR

k can be approximated arbitrarily well in the
L2-norm by a function tk(·) that is continuous and strictly decreasing. Q.E.D.

From the results above, we are now in a position to exhibit the solution to P k
F . Let ωh

k = ṽk, where
ṽk is the threshold defined in Lemma 7. Next for any vk ∈ [ṽk, rh

k ], let thk(vk) = t̃k(vk) where t̃k(·) is
the function defined in Lemma 7. Finally, given thk(·) : [ωh

k , rh
k ] → [rh

l , vl], let tkl (·) : [rh
l , vl] → [ωh

k , rh
k ]

be the unique function that satisfies (34). It is clear that the tripe ωh
k , thk(·), thl (·) constructed this

way satisfies conditions (34), (35) and (38), and is therefore a feasible candidate for program PF
k . It

is also immediate that the value of the objective (37) in PF
k evaluated at ωh

k , thk(·), thl (·) is the same
as max{PR

k }. From Lemma 8, we then conclude that ωh
k , thk(·), thl (·) is a solution to PF

k .
Applying the construction above to k = A, B and combining the solution to program PF

A with
the solution to program PF

B then gives the solution
{
ωh

k , thk(·)
}

k∈{A,B} to program PF .
By inspection, it is easy to see that the corresponding rule is maximally separating. Furthermore,

from the arguments in Lemma 7, one can easily verify that there is exclusion at the bottom on side k

(and no bunching at the top on side l) if ṽk > vk and bunching at the top on side l (and no exclusion
at the bottom on side k) if ṽk = vk. By the definition of ṽk, in the first case, there exists a v′k > vk

such that ∆h
k(v′k, v̄l) = 0, or equivalently ψh

k (v′k) + ψh
l (v̄l) = 0. Condition MR along with the fact

that sign{∆h
k(vk, vl)} = sign{ψh

k (vk)+ψh
l (vl)} then implies that 2h

k(vk, v̄l) = 2h
l (v̄l, vk) < 0. Hence,

whenever 2h
k(vk, v̄l) = 2h

l (v̄l, vk) < 0, there is exclusion at the bottom on side k and no bunching at
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the top on side l. Symmetrically, 2h
l (vl, v̄k) = 2h

k(v̄k, vl) < 0 implies that there is exclusion at the
bottom on side l and no bunching at the top on of side k, as stated in the proposition.

Next, consider the case where ṽk = vk. In this case there exists a η(vk) ∈ [rh
l , vl] such that

2h
k(vk, η(vk)) = 0, or equivalently ψh

k (vk)+ψh
l (η(vk)) = 0. Assume first that η(vk) < vl. By Condition

MR, it then follows that ψh
k (vk)+ψh

l (v̄l) > 0 or, equivalently, that2h
k(vk, v̄l) = 2h

l (v̄l, vk) > 0. Hence,
whenever 2h

k(vk, v̄l) = 2h
l (v̄l, vk) > 0, there is no exclusion at the bottom on side k and bunching at

the top on side l. Symmetrically, 2h
l (vl, v̄k) = 2h

k(v̄k, vl) > 0 implies that there is bunching at the
top on side k and no exclusion at the bottom on side l, as stated in the proposition.

Next, consider the case where η(vk) = vl. In this case ωh
k = vk and thk(vk) = v̄l. This is the

knife-edge case where 2h
k(vk, v̄l) = 2h

l (v̄l, vk) = 0 in which there is neither bunching at the top on
side l nor exclusion at the bottom on side k. Q.E.D.

Proof of Proposition 3. Let yh
k (vk) ≡

∣∣sh
k(vk)

∣∣
l
denote the size of the matching set that each

agent with value vk obtains under the mechanism Mh. Using (6), for any qk ∈ yh
k (Vk), i.e., for any

qk induced by Mh,

ρh
k(qk) =

(
yh

k

)−1
(qk) · gk(qk)−

ˆ (yh
k)−1

(qk)

vk

gk(yh
k (v))dv,

where
(
yh

k

)−1 (qk) ≡ inf{vk : yh
k (vk) = qk} is the generalized inverse of yh

k (·). It follows from Proposi-
tion 2 that

(
yh

k

)−1 (qk) is strictly increasing and differentiable at any qk in the image of the separating
range, i.e., for any qk ∈ [

∣∣sh
k(ωh

k )
∣∣
l
,
∣∣sh

k(thl (ωh
l ))

∣∣
l
]. Therefore, from the integral formula above, we get

that the optimal price schedules ρh
k(·) are differentiable at any quantity qk in the image of the sepa-

rating range, and
dρh

k

dqk
(qk) =

(
yh

k

)−1
(qk) · g′k(qk) = vk · g′k

(∣∣∣sh
k(vk)

∣∣∣
l

)
, (47)

where |sh
k(vk)|l = qk. Substituting the elasticity formula (16) and the marginal price formula (47)

into the Lerner-Wilson formula (17) and using the same formulas for side l and recognizing that

(
yh

l

)−1
(

Dk

(
qk,

dρh
k

dqk
(qk)

))
=

(
yh

l

)−1
(

1− F v
k

((
yh

k

)−1
(qk)

))
= thk(

(
yh

k

)−1
(qk)) = thk(vk)

for vk such that |sh
k(vk)|l = qk, then leads to the Euler equation (13). Q.E.D.

Proof of Proposition 4. Hereafter, we use the notation "ˆ"for all variables in the mechanism
M̂P corresponding to the new distribution F̂ σ

k (·|·) and continue to denote the variables in the mech-
anism MP corresponding to the original distribution F σ

k (·|·) without annotation. By definition, we
have that ψ̂P

k (vk) ≥ ψP
k (vk) for all vk ≤ rP

k while ψ̂P
k (vk) ≤ ψP

k (vk) for all vk ≥ rP
k . Recall, from

the arguments in the proof of Proposition 2, that for any vk < ωP
k , ∆P

k (vk, v̄l) < 0 or, equivalently,
ψP

k (vk) + ψP
l (v̄l) < 0, whereas for any vk ∈ (ωk, rP

k ], tPk (vk) satisfies ψP
k (vk) + ψP

l (tPk (vk)) = 0. The
ranking between ψ̂P

k (·) and ψP
k ·), along with the strict monotonicity of these functions then implies

that ω̂P
k ≤ ωP

k and, for any vk ∈ [ωP
k , rP

k ], t̂Pk (vk) ≤ tPk (vk). Symmetrically, because ψ̂P
k (vk)+ψP

l (vl) <
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ψP
k (vk) + ψP

l (vl) for all vk > rP
k , all vl, we have that t̂Pk (vk) ≥ tPk (vk) for all vk > rP

k . This completes
the proof of part (1) in the proposition.

Next consider part (2). Note that, because Fl is unchanged, the result in part 1 implies that
|̂sk(vk)|l ≥ |sk(vk)|l if and only if vk ≤ rP

k . Using (6), note that for all types θk with value vk ≤ rP
k

Πk(θk; M̂P ) =
ˆ vk

vk

|̂sk(ṽk)|l dṽk ≥ Πk(θk;MP ) =
ˆ vk

vk

|sk(ṽk)|l dṽk.

Furthermore, since |̂sk(vk)|l ≤ |sk(vk)|l for all vk ≥ rP
k , there exists a threshold type ν̂k > rP

k (possibly
equal to v̄k) such that Πk(θk; M̂P ) ≥ Πk(θk;MP ) if and only if vk ≤ ν̂k, which establishes part 2 in
the proposition. Q.E.D.

Proof of Corollary 2. Let yk(vk) ≡
∣∣sP

k (vk)
∣∣
l
denote the quality of the matching set that each

agent with value vk obtains under the original mechanism, and ŷk(vk) ≡
∣∣̂sP

k (vk)
∣∣
l
the corresponding

quantity under the new mechanism. Using (6), for any q ∈ yk(Vk) ∩ ŷk(Vk), i.e., for any q offered
both under MP and M̂P ,

ρP
k (q) = y−1

k (q)q −
ˆ y−1

k (q)

vk

yk(v)dv and

ρ̂P
k (q) = ŷ−1

k (q)q −
ˆ ŷ−1

k (q)

vk

ŷk(v)dv,

where y−1
k (q) ≡ inf{vk : yk(vk) = q} is the generalized inverse of yk(·) and ŷ−1

k (q) = inf{vk : ŷk(vk) =

q} the corresponding inverse for ŷk(·). We thus have that

ρP
k (q)− ρ̂P

k (q) =
ˆ y−1

k (q)

vk

[ŷk(v)− yk(v)]dv +
ˆ ŷ−1

k (q)

y−1
k (q)

[ŷk(v)− q]dv.

From the results in Proposition 4, we know that [yk(vk) − ŷk(vk)][vk − rP
k ] ≥ 0 with yk(rP

k ) =

ŷk(rP
k ). Therefore, for all q ∈ yk(Vk) ∩ ŷk(Vk), with q ≤ yk(rP

k ) = ŷk(rP
k ),

ρP
k (q)− ρ̂P

k (q) =
ˆ y−1

k (q)

vk

[ŷk(v)− yk(v)]dv −
ˆ y−1

k (q)

ŷ−1
k (q)

[ŷk(v)− q]dv

=
ˆ ŷ−1

k (q)

vk

[ŷk(v)− yk(v)]dv +
ˆ y−1

k (q)

ŷ−1
k (q)

[q − yk(v)]dv

≥ 0,

52



whereas for q ≥ yk(rP
k ) = ŷk(rP

k ),

ρP
k (q)− ρ̂P

k (q) =
ˆ rP

k

vk

[ŷk(v)− yk(v)]dv +
ˆ y−1

k (q)

rP
k

[ŷk(v)− yk(v)]dv +
ˆ ŷ−1

k (q)

y−1
k (q)

[ŷk(v)− q]dv

= ρP
k (yk(rP

k ))− ρ̂P
k (yk(rP

k )) +
ˆ y−1

k (q)

rP
k

[ŷk(v)− yk(v)]dv +
ˆ ŷ−1

k (q)

y−1
k (q)

[ŷk(v)− q]dv

= ρP
k (yk(rP

k ))− ρ̂P
k (yk(rP

k )) +

(
ˆ ŷ−1

k (q)

rP
k

ŷk(v)dv − ŷ−1
k (q)q

)

−
(
ˆ y−1

k (q)

rP
k

yk(v)dv − y−1
k (q)q

)
.

Integrating by parts, using the fact that yk(rP
k ) = ŷk(rP

k ), and changing variables we have that
(
ˆ ŷ−1

k (q)

rP
k

ŷk(v)dv − ŷ−1
k (q)q

)
−

(
ˆ y−1

k (q)

rP
k

yk(v)dv − y−1
k (q)q

)

=

(
rP
k ŷk(rP

k )−
ˆ ŷ−1

k (q)

rP
k

v
dŷk(v)

dv
dv

)
−

(
rP
k yk(rP

k )−
ˆ y−1

k (q)

rP
k

v
dyk(v)

dv
dv

)

= −
ˆ q

yk(rP
k )

(ŷ−1
k (z)− y−1

k (z))dz.

Because ŷ−1
k (z) ≥ y−1

k (z) for z > yk(rP
k ), we then conclude that the price differential ρP

k (q)− ρ̂P
k (q),

which is positive at q = yk(rP
k ) = ŷk(rP

k ), declines as q grows above yk(rP
k ). Going back to the original

notation, it follows that there exists q̂k >
∣∣sP

k (rP
k )

∣∣
l

=
∣∣̂sP

k (rP
k )

∣∣
l

(possibly equal to
∣∣̂sP

k (v̄k)
∣∣
l
) such

that ρ̂P
k (q) ≤ ρP

k (q) if and only if q ≤ q̂k. This establishes the result. Q.E.D.

Proof of Proposition 5. By familiar envelope arguments, a necessary condition for each type
θk = (xk, vk) ∈ Θk, k = A, B, to prefer to report truthfully rather than reporting the true location
xk but a different value vk is that payments satisfy

pk(θk) =
ˆ

sk(θk)
uk (vk, |xk − xl|) dFl(θl)−

ˆ vk

vk

ˆ

sk(xk,y)

∂uk

∂v
(y, |xk − xl|) dFl(xl, vl)dy−Π(xk, vk|Mh)

(48)
Plugging the formula above into ΩP (M) leads to

ΩP (M) =
∑

k=A,B

ˆ

Θk






´

sk(θk)

(
uk (vk, |xk − xl|)−

1−F v
k (vk|xk)

fv
k (vk|xk) · ∂uk

∂v (vk, |xk − xl|)
)

dFl(θl)

−Π(xk, vk|Mh)




 dFk(θk)

Using the indicator function 1h and letting Π(xk, vk|Mh) = 0 for all xk ∈ Xk, k = A, B, we can then
conveniently combine welfare and profit maximization into the following objective function:

Ωh(M) =
∑

k=A,B

ˆ

Θk

{
ˆ

sk(θk)
ϕh

k (vk, |xk − xl|) dFl(θl)

}
dFk(θk)

where
ϕh

k (vk, |xk − xl|) ≡ uk (vk, |xk − xl|)− 1h ·
1− F v

k (vk|xk)
fv

k (vk|xk)
· ∂uk

∂v
(vk, |xk − xl|) .
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It is convenient to define the indicator function mk(θk, θl) ∈ {0, 1} that equals one if and only if
θl ∈ sk(θk). Now define the following measure on the Borel sigma-algebra over Θk ×Θl:

νk(E) ≡
ˆ

E
mk(θk, θl)dFk(xk, vk)dFl(xl, vl). (49)

Reciprocity implies that mk(θk, θl) = ml(θl, θk). As a consequence, the measures νk and νl satisfy
dνk(θk, θl) = dνl(θl, θk). Therefore,

Ωh(M) =
∑

k=A,B

ˆ

Θk×Θl

ϕh
k (vk, |xk − xl|) dνk(θk, θl)

=
ˆ

Θk×Θl

2h
k(θk, θl)mk(θk, θl)dFk(xk, vk)dFl(xl, vl).

By point-wise maximization of the integral above, it is then clear that the matching rule that maxi-
mizes Ωh(M) is such that mk(θk, θl) = ml(θl, θk) = 1 if and only if

2h
k(θk, θl) ≥ 0.

Notice that the function
ϕh

k (vk, |xk − xl|)

is strictly increasing in vk by Condition LR. Therefore, fixing θk, for any xl ∈ Xl, there exists a
threshold thk(xl|θk) such that 2h

k(θk, θl) ≥ 0 if and only if vl ≥ thk(xl|θk). Condition LR also implies
that the threshold thk(xl|θk) is decreasing in vk. Moreover, because uk weakly decreases in |xk − xl|,
the threshold tWk (xl|θk) is weakly increasing in the distance |xk − xl|. The same is true for tPk (xl|θk)

under Condition MS.
That the threshold rule that maximizes Ωh(M), h = W, P, satisfies conditions (1)-(3) in the

proposition then follows directly from the properties above.
Below, we complete the proof by showing that under any of the three scenarios described below,

the mechanism Mh where the matching rule is given by the threshold rule in the proposition and
where the payment rule is the one in (48) is incentive compatible (that the mechanism is individually
rational follows directly from (48)):

(a) Locations are public on both sides;
(b) Locations are private on side k and public on side l &= k and, in addition, Condition Sl and Ik

hold;
(c) Locations are private on both sides and Conditions Sk holds, k = A, B.

Definition 4 (nested matching) A matching rule sk(·) is said to be nested if for any θk = (xk, vk)

and θ̂k = (x̂k, v̂k) such that xk = x̂k, either sk(θk) ⊆ sk(θ̂k) or sk(θk) ⊇ sk(θ̂k) is true. A mechanism
that employs a nested matching rule is said to be nested.

Definition 5 (ICV) A mechanism M satisfies incentive compatibility along the v dimension (ICV)
if for any θk = (xk, vk) and θ̂k = (x̂k, v̂k) such that xk = x̂k, Πk(θk;M) ≥ Π̂k(θk, θ̂k;M).
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It is straight-forward to prove the following result.

Lemma 9 (ICV) A nested mechanism M satisfies ICV if and only if the following conditions jointly
hold:

1. for any θk = (xk, vk) and θ̂k = (x̂k, v̂k) such that xk = x̂k and vk > v̂k, sk(θk) ⊇ sk(θ̂k),

2. the envelope formula (48) holds.

It is clear that the mechanism associated with the threshold function thk is nested and satisfies the
monotonicity condition 1 from the lemma above. Because the envelope formula holds by construction,
it follows that this mechanism satisfies ICV.

It is then immediate that, under scenario (a), i.e., when locations are public on both sides, the
mechanism Mh is incentive compatible.

Now consider scenario (b). Incentive compatibility on side l (which coincides with ICV) follows
from the fact that the threshold function thk is nested and satisfies the monotonicity condition 1 from
the lemma above. In turn, incentive compatibility on side k requires that

Πk(xk, vk;M) ≥ Π̂k((xk, vk), (x̂k, v̂k);M),

or equivalently,
ˆ vk

vk

ˆ

sk(xk,y)

∂uk

∂v
(y, |xk − xl|) dFl(xl, vl)dy ≥

ˆ v̂k

vk

ˆ

sk(x̂k,y)

∂uk

∂v
(y, |x̂k − xl|) dFl(xl, vl)dy (50)

+
ˆ

sk(x̂k,v̂k)
[uk (vk, |xk − xl|)− uk (v̂k, |x̂k − xl|)]dFl(xl, vl).

It is easy to see that, for any vk, v ∈ Vk, any xk ∈ Xk

ˆ

sk(xk,vk)

∂uk

∂v
(v, |xk − xl|) dFl(xl, vl) =

ˆ

d∈[0,1/2]

∂uk

∂v
(v, d) dW (d;xk, vk), (51)

where W (d;xk, vk) is the measure of agents whose distance from xk is d included in the matching
set of type (xk, vk) under the mechanism Mh. It is also easy to see that, under Conditions Ik and Sl,
l &= k, the expression in (51) is invariant in xk. That is, W (d;xk, vk) = W (d;x′k, vk) for any d ∈ [0, 1/2]

any xk, x′k ∈ Xk, any vk ∈ Vk. This means that
ˆ v̂k

vk

ˆ

sk(x̂k,y)

∂uk

∂v
(y, |x̂k − xl|) dFl(xl, vl)dy =

ˆ v̂k

vk

ˆ

sk(xk,y)

∂uk

∂v
(y, |xk − xl|) dFl(xl, vl)dy.

By the same arguments,
ˆ

sk(x̂k,v̂k)
uk (v̂k, |x̂k − xl|)]dFl(xl, vl) =

ˆ

sk(xk,v̂k)
uk (v̂k, |xk − xl|)]dFl(xl, vl),

and
ˆ

sk(x̂k,v̂k)
[uk (vk, |xk − xl|) dFl(xl, vl) <

ˆ

sk(xk,v̂k)
[uk (vk, |xk − xl|) dFl(xl, vl).
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It follows that the right hand side of (50) is smaller than
ˆ v̂k

vk

ˆ

sk(xk,y)

∂uk

∂v
(y, |xk − xl|) dFl(xl, vl)dy

+
ˆ

sk(xk,v̂k)
[uk (vk, |xk − xl|)− uk (v̂k, |xk − xl|)]dFl(xl, vl),

which is the payoff that type (xk, vk) obtains by announcing (xk, v̂k). That the inequality in (50)
holds then follows from the fact that the mechanism satisfies ICV.

Finally, consider scenario (c). Under conditions condition Sk and condition Sl, that the proposed
mechanism is incentive compatible follows from the same arguments above applied to side l as well.
Q.E.D.

Proof of Proposition 6. Let qh
k (xl|θk) denote the measure of xl-agents included in the matching

set of any agent from side k reporting a type θk, under the h-optimal matching rule sh
k(·). From

Proposition 5, qh
k (xl|θk) is weakly increasing in vk (strictly increasing whenever qh

k (xl|θk) ∈ (0, 1)).
Now define the marginal price for the qk-th unit of xl-agents by those agent from side k located at
xk by

dρh
k

dq
(qk, xl|xk) ≡ uk

((
qh
k |xl, xk

)−1
(qk), |xk − xl|

)
,

where
(
qh
k |xl, xk

)−1 (qk) ≡ inf{vk : qh
k (xl|(xk, vk)) = qk}. Now define the price schedule ρh

k(·, xl|xk)

as follows

ρh
k(qk, xl|xk) ≡

(
1− F v

l (thk(xl|(xk, vk))|xl)
)
· uk (vk, |xk − xl|) +

ˆ qk

0

dρh
k

dq
(q, xl|xk)dq.

From the integral formula above, we get that the optimal price schedules ρh
k(·) are differentiable at

any quantity qk ∈ (0, 1).
Finally, substituting the elasticity formula (24) and the marginal price formula (23) into the

Lerner-Wilson formula (25) and using the same formulas for side-l agents and recognizing that
(
qh
l |xk, xl

)−1
(

Dk

(
qk,

dρh
k

dq
(qk, xl|xk), xl|xk

))
=

(
qh
l |xk, xl

)−1
(qh

l (qk, xk|xl)) = thk(xl|(xk, vk))

for θk = (xk, vk) such that qh
k (xl|θk) = qk, then leads to the Euler equation (20). Q.E.D.
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