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Abstract

This paper constructs a type space that contains all types with a finite depth of
reasoning, as well as all types with an infinite depth of reasoning — in particular those
types for whom finite-depth types are conceivable, or think that finite-depth types are
conceivable in the mind of other players, etcetera. We prove that this type space is uni-
versal with respect to the class of type spaces that include types with a finite or infinite
depth of reasoning. In particular, we show that it contains the standard universal type
space of Mertens and Zamir (1985) as a belief-closed subspace, and that this subspace
is characterized by common belief of infinite-depth reasoning. This framework allows us
to study the robustness of classical results to small deviations from perfect rationality.
As an example, we demonstrate that in the global games of [Carlsson and van Damme
(1993), a small ‘grain of naiveté’ suffices to overturn the classical uniqueness results in

that literature.
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1 Introduction

Ever since the conceptual breakthrough of Harsanyi (1967-1968), type spaces are custom-
arily used for analyzing economic applications with incomplete information. Each type has
preferences and beliefs about the state of nature and others’ types, and hence, implicitly, also
about the others’ beliefs about nature, about the others’ beliefs about their peers’ beliefs
about nature, and so on, ad infinitum. Mertens and Zamir| (1985)) showed that the space of
all such belief hierarchies can be used to construct a type space which is universal in the sense
that any other type space can be mapped into it using a unique belief-preserving mapping/1]

In recent years, however, this seemingly all-embracing approach to modeling incomplete
information has been challenged by an important literature in experimental economics and
behavioral game theory. People do not think ad infinitum, so goes the claim. Often they
barely think at all. Somewhat less often they think about what others think. Even more
rarely do they contemplate the thoughts of others about somebody else, and seldom, if at
all, do they form an infinite hierarchy of mutual beliefs in their mind. Indeed, assuming that
subjects can be characterized by cognitive types with a finite depth of reasoning is consistent
with experimental data on beauty contests, certain auctions, and other classes of gamesE]
Strzalecki (2009) showed how to construct a universal type space for cognitive types with a
finite depth.

The Mertens-Zamir universal space for Harsanyi types and the Strzalecki universal space
for finite-depth types are completely disjoint. This might suggest that the two approaches
to incomplete information are conceptually divorced. But are they really diametrically op-
posed? Consider, for instance, comments of some players in beauty-contest experiments
(Bosch-Domenech et al.l 2002, Appendix A), who are aware of the fact that infinite depth of
reasoning would entail the dominance-solvable outcome of the game, but at the same time
acknowledge that ‘many different people participate in this game and not everybody will ap-
ply [this] reasoning process’. Such players are, on one hand, completely sophisticated in the
sense of Harsanyi, but at the same time they admit that others might not be, and act upon
this belief.

In this paper we show how to account for such types of players, as well as many others,
such as a type who believes that everybody else is fully sophisticated like she is, but who
also believes that others may yet entertain suspicions that their rivals are not; and so forth.

We marry the two seemingly disparate approaches by constructing one universal space that

IThis is true under suitable topological assumptions; also see [Brandenburger and Dekel (1993), Heifetz

(1993), and Mertens et al.| (1994)).
“See, e.g., Nagel| (1995)), [Stahl and Wilson| (1995) Ho et al.| (1998), |[Costa-Gomes et al. (2001)), |Camerer

et al.| (2004)), and (Crawford and Iriberri (2007). See |Crawford et al.| (2012) for a survey.



contains all such types. In particular, it includes both the universal space of Mertens and
Zamir| (1985) and Strzalecki| (2009) as belief-closed subspaces. This demonstrates how the
route recently taken in the behavioral economics literature may be viewed as part and parcel
of the generalization proposed here to the classical Harsanyi framework, not a conceptual
antithesis to it F]

This general framework allows to analyze the robustness of classical results in the literature
on games with incomplete information to the presence of various kinds of cognitive types, or
even just to the presence of mutual suspicions by fully sophisticated types about the presence
of cognitively limited types. We focus on global games, introduced by |Carlsson and van
Damme| (1993)). This class of games is of particular interest, because the assumption that
players can form beliefs at arbitrarily high orders has stark implications in this class of games/[]
We show that the slightest ‘grain of naiveté’ suffices to overturn the classical result that there
is a unique rationalizable action in these games. This result is stronger than a similar result
of [Strzalecki (2009), who shows that there can be multiple equilibria in the electronic mail
game of Rubinstein| (1989) when players have a finite depth of reasoning: it suffices that
types only think that others think...that other players may have a finite depth of reasoning
for both actions of the coordination game to survive as rationalizable. Our framework, which
allows for such infinite-depth types with a grain of naiveté is thus essential for formulating
and proving this result.

The framework we propose here complements that developed by Kets| (2010, [2012), who
introduces type spaces in which players can have a finite depth of reasoning. Unlike in our
model, players can have nontrivial higher-order beliefs in her framework, even if they have a
finite depth of reasoning. Intuitively, types with a finite depth of reasoning can have beliefs
about events of higher order if these higher-order events are generated by events of sufficiently
low order. In particular, players with a finite depth of reasoning can have common knowledge
of nontrivial events in the framework of |Kets|, something which is not possible in the framework
presented here. The framework we present here is thus less general, but has the advantage

that it is closer to the models developed in the experimental literature and that it is easy

3A number of authors have constructed universal type spaces for situations where players do not have
unlimited reasoning abilities. In addition to |Strzalecki (2009), who constructs a universal type space for
type spaces in which all types have a finite depth of reasoning, |Heinsalu| (2011)) and |[Pintér and Udvari (2011)
construct universal type spaces for types with a finite and infinite depth of reasoning that also allow for various
forms of unawareness. The present framework encompasses precisely the cognitive types models developed in
the experimental literature, and has the advantage that it separates the issue of bounded reasoning from the
conceptually distinct issue of unawareness. Our results do not follow from nor entail those in [Heinsalu| and

Pintér and Udvari.
“See [Heinemann et al.| (2004) [Heinemann et al.| (2009)), Cabrales et al.| (2007), among others, for experi-

mental studies of games with strategic complementarities, with a focus on the behavior of cognitive types.



to work with. In addition, we define and handle explicitly strategies and solution concepts,
which allows us to investigate the implications of introducing a grain of naiveté in games with
incomplete information.

The paper is organized as follows. After discussing some preliminaries in Section [2], Section
constructs the space of all belief hierarchies and introduces our generalized notion of a type
space. Section [4] shows that there is a universal type space that generates all finite and
infinite belief hierarchies, and that this space contains the universal space of Mertens and
Zamir| (1985)) for the Harsanyi case. Section |5 introduce games with incomplete information

in our setting, and Section [6] presents the analysis of global games.

2 Preliminaries

The Cartesian product of a collection of topological spaces (X;);e; (where [ is an arbitrary
index set) is denoted X. Given i € I, we write X_; for Hjel\{i} X, with typical elements z
and x_;, respectively. The product of a collection of topological spaces is endowed with the
product topology. Given a collection of functions f; : X; — Y;, we define the induced functions
[ X = Yand foi: Xy = Yo by f(zx) = (fi(wi))ien and foi(z—i) = (f;(2;))jengy- If
(Xi)ier is a family of topological spaces (possibly made disjoint by replacing some X; with a
homeomorphic copy), then J,.; X; is endowed with the sum topology. Note that the sum of
a countable collection of Polish spaces is Polish (Kechris, 1995, Prop. 3.3).

With some abuse of notation, we view every topological space X as a measurable space
(X, B(X)), where B(X) is the Borel o-algebra on X. Hence, a function said to be measurable
is a Borel-measurable function. Given a Polish space X, denote by A(X) the set of probability
measures on the Borel o-algebra B(X) in X. We endow A (X) with the Borel o-algebra of
the topology of weak convergence. The support of a probability measure p € A(X) is a closed
set in X, denoted supp p, such that u(X \ suppp) = 0; and for any U C X, we have that
w(U N supp ) > 0 whenever U is open in X and U Nsuppp # (. Any Borel probability
measure on a Polish space has a support, and the support is unique (e.g., |Aliprantis and
Border} 2005, Thm. 12.14).

We extend the definition of a marginal probability measure to a union of measurable
spaces. Let V =X UY, Q C X x Z and W = Q UY, where all spaces are assumed to
be topological spaces; see Figure 2.1 Then for y € A(W) denote by marg|yp € A(V) the
probability measure defined by

marg|yu(E) = p({(z,2) € Q :w € E}) + n(ENY)

for every measurable set £ C V.



X Y

Figure 2.1: The space W (shaded gray) is the union of @ C X x Z and of Y. The space V is
the union of X and Y.

3 Belief hierarchies and types

This section defines the class of type spaces that allow for a finite depth of reasoning.
Because each type generates a hierarchy of beliefs, we first construct the space of all belief

hierarchies for our setting. Section then introduces the type spaces that we consider.

3.1 Coherent belief hierarchies

This section constructs the space of all coherent belief hierarchies. There is a fixed, finite
set of players N, and a common domain of uncertainty S. A belief hierarchy specifies a
player’s belief about .S, his beliefs about his opponents’ beliefs about S, and so on, up to a
certain order. That is, each hierarchy is associated with a depth of reasoning; a hierarchy’s
depth can either be finite or infinite.

Formally, assume that S is a Polish space. For a player i € N, let T := {t?} and
TO := {°}. The interpretation is that 0 is an extremely ‘naive’ type who has no beliefs; 0 is

a notational “seed” on which the hierarchies of more sophisticated types will be built. Let

O =5 x [T (700!
i

Q? =5 x HT]Q
i
and

T! =T x A (),

(2

7t a (@),

2

These are the first-order beliefs for the types that reason beyond the first order or stop

reasoning at the first order, respectively. Suppose, inductively, that we have already defined



Tf and T}Z for each player j € N and all ¢ < k. Define

Tigk =T U U?:o ig’ Qf == 5 x T—Sz‘ka

T U TL O s RIS

7 —17

and let

T = () ) € TE A (OF) < marg g = it

T i (o) ) € TE A () s margajif™ = )

The interpretation is that i’“ is the set of hierarchies that stop reasoning at order k, while
the set TF contains the hierarchies that also reason at higher orders. We say that a hierarchy
th e Tf has depth k. The condition on the marginals is a standard coherency condition. It is
easy to see that the sets i’“ are nonempty and Polish for each k.

In the limit, define

Tfo = {(ud, pi,. ) (ug,...,,uf) c T} for all k >0},

ie., ﬁoo is the inverse limit space of the sequence (TF¥)gso endowed with the projection op-

k ~
erators (W;;_l)kzl. The belief hierarchies in 77° are those that “reason up to infinity.” The

next result states that ioo is well-defined:
Proposition 3.1. The inverse limit space Tf" 15 nonempty and Polish.

The set i-oo contains the hierarchies with infinite depth, i.e., a hierarchy in i»oo has well-
defined beliefs at each order.

For future reference, it will be convenient to define

T; = i‘x’ U U ff
=0
to be the set of all belief hierarchies. Thus, 7T; is nonempty and Polish.

Before we turn to the definition of type spaces that allow for finite-order reasoning, let us
comment on the present construction of the space of belief hierarchies. First, one might think
that the space T; of finite and infinite belief hierarchies can also be obtained by adding finite
belief hierarchies (modeled in some appropriate way) to the space of infinite belief hierarchies
of Mertens and Zamir| (1985)). This does not work, however: it would give a space of belief
hierarchies that is strictly smaller than the one constructed here. The reason is that T;
not only contains the infinite belief hierarchies constructed by |Mertens and Zamir, but also

belief hierarchies of infinite depth that assign a positive probability to finite-depth types of



the other player of every given order (for instance, assigning probability 1/2* to a particular
belief hierarchy of depth k, for k € N), or assign positive probability to the other player having
such beliefs, and so on. It is not clear how these belief hierarchies, which are not present in
the space of Mertens and Zamir, can be added ex post without a transfinite construction.
Second, what is crucial in the above construction is that each order k£ < oo, the set of
belief hierarchies for a player ¢ contains both the belief hierarchies that end at that order
(viz., T¥) as well as the belief hierarchies that continue to “grow” (viz., TF). If the set of
belief hierarchies would consist solely of the belief hierarchies that stop at that order, as in
Strzalecki (2009), we would not be able to construct a space that contains all belief hierarchies,

including the infinite ones[]

3.2 Type spaces

The previous section provided an explicit description of players’” hierarchies of beliefs. Be-
lief hierarchies can also be described implicitly, using the concept of a type space (cf. Harsanyi,
1967-1968). Here we define type spaces that allow for finite-order reasoning. Formally, given

a Polish space S, an S-based type space (that allows for finite-order reasoning) is a tuple

Q:= <(Qi)i€N’ (ﬂf)ieN,keKiQ>’

where for each ¢ € N, Q; = Qvfo U U @f is the type space of player 7, assumed to be
nonempty and Polish, and K% is the set of indices k € {0,1,...} U {oo} such that Q¥ is

nonempty. Moreover,

(a) the function 8% maps Q° into the singleton {#} whenever Q? is nonempty, i.e., 3%(¢;) =
19 for all ¢; € @9;

(b) the function 8* is measurable and maps Q* into A (S X @ff_l) where Q5F = Ulzf:o Q!

whenever @f is nonempty, where k =1,2,..;
(c) the function 5 is measurable and maps @fo into A(S x @Q_;) whenever @fo is nonempty;

(d) if there is ¢; € @f for some ¢ € N and finite & > 0, then for all j # 4, there is k; < k
such that @fj is nonempty.

For ¢; € @f (k=0,1,...,00) we denote

Bi(a:) = BF (a) -

5Again, one could add infinite belief hierarchies to this space of finite belief hierarchies ex post, but then

the expanded space would still not contain the belief hierarchies that assign positive probability to types of

both finite and infinite depth, and so on.



Thus, each type in @? is associated with the ‘naive’ type. Types in @“ are mapped into a
belief over nature and the types of lower depths, while types in @;’O have a belief about nature
and types of all depths. Condition (d) requires that if there is some player who reasons up
to a finite order, then there is a type for each of the other players that has a lower depth of
reasoning. Without such a requirement, a type’s belief may not be well-defined, given that
types of a finite depth can reason only about types of lower depth.

Intuitively, it is clear that type spaces generate hierarchies of beliefs. Each type (except
the level-zero type) defines a belief about the state of nature and about the other players’
types, so it implicitly specifies a belief about the other players’ beliefs about the state of
nature, and so on. However, as with the type spaces introduced by Harsanyi (1967-1968),
this intuition needs to be made precise. Also, one could ask whether these type spaces can
generate all belief hierarchies. We investigate these issues in the next section, by constructing

a universal type space.

4 The universal space

This section constructs a type space that embeds all type spaces, in the sense that any type
from any type space can be mapped into this type space in a way that preserves beliefs. We
first define a class of belief-preserving mappings and then use these mappings to demonstrate
that the space of belief hierarchies defines a universal type space, i.e., a type space that
contains all type spaces. Thus, every type generates a well-defined belief hierarchy, and there
is a type space, viz., the universal type space, that generates all possible belief hierarchies.
We also show that the universal type space for the class of Harsanyi type spaces can be viewed

as a (proper) subspace of the universal type space constructed here.

4.1 Belief-preserving mappings

Let Q = ((Qi)ien, (ﬁf)z‘eMkeK?) and R = ((R;)ien, ()\f)ieN7keKiR> be type spaces on S
that allow for finite-order reasoning, where we recall that

K2 :={ke{0,1,..}U{oc}: QF£0}

is the set of indices k£ such that the set of types for i of depth k is nonempty, and where
KZ is similarly defined. We define maps, called type morphisms, from players’ type sets in
the space Q to the corresponding type sets in R, in such a way that higher-order beliefs are
preserved.

To define the concept of a type morphism, some preliminary notation will be useful.

Suppose KB D K@, For each player i € N and k € K2, let ! be a measurable function from

8



Q* to RF. Define ¢; = (gof)keKiQ, and let ¢ := (@;)ien. Also, if Q¥ is nonempty for some
player ¢« € N and finite k, then define

<k . A<k—1 S<k—1
0> Q7 — R

by
03 ((Qj ]>j7fi) = (903‘ ](qj J))#i
where q;nj € @;n” , 7 # 1. Note that by condition (d) above and the assumption that K jR ) KJ(?2

for all j € N, the induced function ¢=<F is well-defined.
The induced function ¢ is a type morphism from Q to R if for each player ¢ € N,

(i) for each k =1,2,..., type ¢; € Qvf, and E € B(S X Eéf_1>,
i (i (a0) (B) = Bf(a:) ((1ds, ¢=7)7(B)) ; (4.1)
(i) for g € Q°, E € B(S x R_;),

A (07°(a0) (B) = B7°(q:) ((Ids, %) (E)) (4.2)
where Idg is the identity function on S.

If KiQ D KE, then ¢ is a type isomorphism if the inverse of ; is measurable for each
i € N, and satisfies (i)—(ii).

Conditions (i) and (7) are the analogues of the standard condition that a type morphism
preserves beliefs, but take into account that a type may have finite depth. In particular, if a
type space only consists of types of infinite depth, the current definition of a type morphism
reduces to the standard one. Lemmal[A.7]in the appendix shows that type morphisms preserve
belief hierarchies, as do standard type morphisms (Heifetz and Samet|, 1998, Prop. 5.1).

Using the concept of a type morphism, we next show that modeling belief hierarchies by
types is without loss of generality in the sense that every (coherent) belief hierarchy can be

modeled in this way.

4.2 Universality

This section shows that we do not “miss” any belief hierarchies by modeling them by
types. This follows from Proposition [£.4] below, which shows that there is a type space that
allows for finite-order reasoning that generates all coherent belief hierarchies.

We construct this type space using the space of belief hierarchies constructed in Section (3.1}
Specifically, we take the set of types for each player to be the set of belief hierarchies, and
define a belief for each type over the state of nature and the types of the other players.

9



The first step is to show that a belief hierarchy can be associated with a belief over the
set of belief hierarchies for the other players. That is, each belief hierarchy specifies a belief
about the full hierarchy of other players, not just about the individual levels of the hierarchy:

Proposition 4.1. (a) For each belief hierarchy (ud,u},...) € i"o there exists a unique
Borel probability measure p; on S x T_; such that

marg|qe- i = i
for all ¢ € N.

or eac > and every oelief hierarcny (b, th, ..., 1, 1) € N-, ere exists a
b) F hk >0 and belief hierarchy (pl, p! KL k) € TF, th t

unique Borel probability measure p; on S X f_%kfl such that

L
marg|QZze1,ui = M

foralll=1,...k—1, and

_ ~k
marg|ge-1pl; = fi -

Thus, each belief hierarchy of player i can be associated with a belief over the basic space
of uncertainty S and the other player’s belief hierarchies, in such a way that i’s belief over his
(th-order space of uncertainty coincides with his ¢th-order belief as specified by his hierarchy
of beliefs. That is, the construction is canonical in the sense of Brandenburger and Dekel
(1993). The result implies that the beliefs of a player at each order he can reason about
determine his beliefs about the other players’ belief hierarchies. Hence, specifying a player’s
beliefs about the relevant higher-order spaces of uncertainty fully specifies his beliefs.

Proposition [4.1] implicitly defines a function from the space of belief hierarchies to the
spaces of Borel probability measures on nature and the other players’ hierarchies. The inverse
of this function assigns to each belief yi; over his uncertainty domain a belief hierarchy (possibly
finite) by taking the marginal of y; at each order. It turns out that the functions in Proposition

and their inverses are continuous, so that we have a homeomorphism for each k:

Proposition 4.2. There s a homeomorphism 3° : ’_]N?O — A(S x T_;). Moreover, for each
k € N, there is a homeomorphism ¥ : i’“ — A((S % Tff_l))

If we define 10 : TO — {#%} by setting ¢0(#?) := 2, and extend the range of the functions
YF k< 0o, to A(S x T;) in the usual way, then we have the following corollary:

Corollary 4.3. There is an embedding v; from T; to A(S x T_;), which coincides with ¥ on
’va for k=0,1,..., and with ¥° on ﬁ-"o.

10



Corollary says that each t; € T; for a player i € N is associated with a belief ;(t;)
on S x T_; and vice versa, and that these mappings are continuous (and therefore Borel
measurable). This justifies using the term type to refer to an element ¢; of T}, and to 7T; as the
type set for player i. We can thus write T := ((T})ien (¥F)ien ke{o.1,.Ju{oo}) for the resulting
type space.

We next show that 7 is universal. A type space R is universal if for any type space Q,
there is a unique type morphism from Q to R (Mertens and Zamir} |1985} |Heifetz and Samet,
1998).

Proposition 4.4. The type space T is universal, and the universal space is unique (up to

type isomorphism,).

Thus, the type space T “contains” all the type spaces that allow for finite-order reasoning.

The next result shows that every type space that satisfies a nonredundancy condition
can be seen as a belief-closed subset of the universal space, and, conversely, any belief-closed
subset corresponds to a type space. To state the result, say that a subset T of the set of type
profiles T is a belief-closed subset if for all i € N and t; € T} \ YN’iO,

Yi(t)(S x T;) = 1.

Note that J], i-o is trivially a belief-closed subset. A type structure Q is nonredundant if
the hierarchy map h?’k is injective for all players j € N and all k € {0,1,...}U{oc}, whenever
h?’k is defined.

Proposition 4.5. Suppose Q is a type space, and suppose @ is a type morphism from Q to
the universal type space T. If Q is nonredundant, then, for alli € N and q; € Q; \ @?,

W ((p?((h)(qi)) (S X H{tj el t;= s0;(%)(%) for some q; € Q]}> =1,
J#i

where k(qy) = k for £ € N and q; € @f Conversely, if T! CT;, i € N, is such that
%‘(%’)(S X Tii) =1

for alli € N, then there is a type structure Q and a type morphism o from Q to T such that
for all i,

T ={t: € Ti -t = & (q:) for some q; € Q;}.

Thus, the type space T is universal and contains all nonredundant type spaces as belief-
closed subsets. We next turn to the question of how the universal space T relates to the

universal space constructed for the standard case by [Mertens and Zamir| (1985) and others.

11



4.3 Common belief in infinite depth of reasoning

Here we show that the universal Harsanyi space, constructed by Mertens and Zamir| (1985)
and others, is a belief-closed subset of the universal space constructed in the previous sec-
tion, and is characterized by the event that players have an infinite depth of reasoning, and
commonly believe that all players have an infinite depth of reasoning.

Formally, given a Polish space S, an S-based Harsanyi type space is a tuple <(QZ)Z€ N (Bl)le N)
where Qz is a Polish space for each player i € N, and the measurable function Bz maps Qz
into the set of Borel probability measures A(S x Q_Z) on the set of states of nature and other
players’ types.

The universal Harsanyi type space can be constructed in a similar way as the universal
type space 7 (that allows for finite-order reasoning). Let Z? := {2} be an arbitrary singleton,
and define

Q=5 x2°,
and

Z = 7% x A(QY).

Again, assume, inductively, that we have already defined Zf for each player j € N and all
{ < k. Define
Qf =9 x 2k

—1

and let
Zkt = {((,u?, ) it € ZFx A (Qf) : margquufﬂ = ,uf} .

The inverse limit space Z; for player i is the set of all (10, ul, .. .) such that (u9, ut ..., uk) e Z*
for all k. It can be shown that the analogue of Propositions holds. Moreover, the analogue
of Proposition holds for this case: there is a homeomorphism y; from Z; to the set of Borel
probability measures A(S x Z_;) for each i € N (cf. Heifetz, 1993). This means that we can
view Z = ((Z)ZE N, (Xi)ien) as a Harsanyi type space. The Harsanyi type space Z is universal
with respect to the class of Harsanyi type spaces, in the sense that every Harsanyi type space
can be embedded into Z via a unique type morphism for Harsanyi type spaces.

We show that the universal Harsanyi type space Z can be viewed as a belief-closed subset
of the universal type space T, characterized by the event that players have an infinite depth
of reasoning, and there is common belief that players have an infinite depth of reasoning. To
see this, note that zZ corresponds to a type space Z with the type set for player : € N given
by Z; = ZOOUU?:O Z¥, where Z® := Z;, and ZF = () for k < oo, and the belief map v := ¥s.

It follows from Proposition that Z can be embedded in the universal type space T

via a unique type morphism. The converse clearly does not hold, as T contains types that
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have a finite depth of reasoning, types that assign a positive probability to types with a finite
depth of reasoning, types that assign a positive probability to types that assign a positive
probability to types with a finite depth of reasoning, and so on.

Moreover, because the space Z is nonredundant by construction, the type space Z derived
from the universal Harsanyi type space z corresponds to a belief-closed subspace of the
universal type space 7 (by Proposition .

Can we characterize this subspace of T in terms of players’ higher-order beliefs? Propo-
sition [£.7 below establishes that the space Z is characterized by the event that players have
an infinite depth of reasoning, and that there is common belief in the event that players have
an infinite depth of reasoning.

To state the result, we define the event that a player i € N believes an event E € B(S X Q).
To that aim, let £ € B(S x @), 1 € N, and ¢; € ;. Then,

qu‘ = {(SaQ—i) €5 X Q—i : (SaQiy(J—i) S E}

is the set of tuples (s, ¢_;) that are consistent with £ and the event that player i has type g;.
The set of states where i believes E (with probability 1) is then

By(E) = {(s,4,0-0) € 8 x (Qi\ @) x Qi = 57" (@)(B,) = 1},
where k(g;) = k if ¢ € QF.
Lemma 4.6. For eachi € N and E € B(S x Q), we have that B;(E) € B(S x Q).

Then, for E € B(S x Q),
B(E) = () Bi(E)

iEN

is the event that all players believe F, and we say that E is common belief at a state (s, q) if

¢
(s,9) € CB(E) == [|[B] (B),
teN
where [B]'(E) := B(FE), and [B|*(E) := Bo [B]*"Y{(E) for £ > 1. It is immediate from
Lemma that B(E) and CB(F) are events whenever F is an event. Finally, let E> :=
S X [Lien T2 be the event that players have an infinite depth of reasoningﬁ We then have:

Proposition 4.7. Let ¢ be the unique type morphism from Z to the universal type space T .
Then,
Sx [[#°(2:) = E*nCBIE™).

1EN

6The set E* is indeed an event. To see this, note that T} is endowed with the sum topology and the Borel
o-algebra. Moreover, B(S x [[, T;) = B(S) ® @, B(T;) (Aliprantis and Border, 2005, Thm. 4.44).
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5 Games with incomplete information

This section defines a class of games with incomplete information for our setting, and
introduces a suitable solution concept. Formally, given a set of players N and set S of states
of nature, a (generalized) Bayesian game is a tuple ((A;)ien, (4;)ien, Q), where for each player
1 € N, A; is i’s action set, assumed to be measurable, u; : S x A — R is her utility function,

and
Q= <(Qi)i€]\[7 (6f)i€N,k€KiQ>7

is a type space that allows for finite-order reasoning. The action set A; may be the set of
mixtures over some space of pure actions. It will be convenient to define ; to be the function
from Q; to A(S x Q_;) which coincides with 8% on Q* for each k such that Q¥ is nonempty.

It is straightforward to extend the notion of interim correlated rationalizability (Dekel
et al., 2007). In standard Bayesian games this solution concept embodies common belief of
rationality; and it allows a type to believe that her opponents’ actions are correlated even
conditional on them having a particular profile of types and given that a particular state
of nature obtains (see also (Chen et al.| (2010) and Battigalli et al.| (2011))). For each player
1€ N, let

R} (q:) == A

and, for £ > 1, define inductively

a; € A; : there exists a measurable p: S x Q_; = A(A_;) s.t.
RF (q) = w((s,q-4)) € A (H#i Rf_l (Qj>) Vg_; € Q_;,s € S; and
a; € arg maXa;EAi fSXQ_i dﬂz (qz) fA—i Uj (Sa Cl;, ) dﬂ (Sa q—z)

The interim correlated rationalizable actions of type q; for player i € N are
R* (¢:) = () Bf (4:)-
k=0

Remark. At first sight, it may seem that our solution concept is not entirely consistent with
the idea that players can have a finite depth of reasoning. Specifically, the conjecture p in
the definition of R¥(g;) is defined for every type profile ¢_; € Q_; of i’s opponents for every
g, y compris type profiles ¢_; that correspond to a depth of reasoning that is greater than
that of ¢;. But since such type profiles ¢_; are outside the support of the belief 5; (¢;) for
type ¢;, the beliefs 1 (¢_;) do not affect the definition of R¥ (¢;). In other words, at the cost
of additional notation we could have restricted the domain of x in the definition of R¥ (¢;) to

the type profiles which ¢; “conceives” without altering the surviving set of actions for type

q;. <
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In the next section, we study the set of rationalizable actions in a game with strategic com-
plements, and show that introducing a ‘grain of naiveté’” can change the set of rationalizable

outcomes.

6 A game with a grain of naiveté

To exemplify the insights the framework can yield, we consider the following game, taken
from |Carlsson and van Damme]| (1993)) and Morris and Shin (2003). Two players, indexed by
i = 1,2, decide simultaneously whether to invest (/) or not to invest (V). The payoff matrix
is

1 N
I |1—-s51—-5s]|—s,0
N 0,—s 0,0

The state of the world s is drawn uniformly from the interval [—1, 2][] Thus when s < 0
investing (/) is strongly dominant for each player. At the other end, when s > 1 not investing
(N) is strongly dominant for each player. In the middle range, when s € [0, 1], investment
is strictly preferable if and only if the player believes that the other player invests with
probability greater than s. Thus, if the game were played with complete information, both
actions would be rationalizable.

Prior to playing, however, for each realized state of nature s, the two players get uniform
i.i.d. signals from the interval [s — €, s + ¢], where £ > 0 is small (¢ < %, say). With the signal
x;, player i’s posterior on the state of nature is uniform in [z; — €, z; + €] N [—1, 2] (by Bayes’
rule). Moreover, conditional on each such conceivable state of nature s € [x; — e, x; +&] N
[—1,2], the player believes that the other player’s signal x_; is itself uniformly distributed
in the interval [s — e, s +€]. In particular, upon receiving a signal z; € [-1+¢,2 — ¢], the

posterior probability that ¢ assigns to the other player having received a signal x_; less than

z+e€ 4 d d 1
¥\ ds

If all types have an infinite depth of reasoning, then investing is the only rationalizable

action for a player who received a signal less than %, and not investing is the unique ratio-

nalizable action for a player who received a signal greater than % (Carlsson and van Damme},

z € [x;—e,x] is

1993)). Thus, even as signals become arbitrarily accurate (¢ — 0), so that the game, in a
sense, converges to one with complete information, each player has a unique rationalizable

action for every possible signal (except for the knife-edge signal %) This is in contrast with

"With respect to the notation in Morris and Shin| (2003), we use the change of variable s = 1 — 6.
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the complete-information case, where both actions are rationalizable whenever s € (0,1). In
this sense the concept of interim correlated rationalizability suffers from a particular kind of
discontinuity.

We show that this discontinuity need not occur as long as there is even a slight ‘grain
of naiveté’, i.e., when a finite depth of reasoning is conceivable, though perhaps only after
an arbitrarily long, or even transfinitely long, chain of mutual beliefs, and with a vanishing
probability.

Consider the universal space ((T})i=1,2, (VF)i=1.2.ke{0,1,.. }u{oo} ) from Sectionwith the set of
states of nature S = [—1,2]. Restrict attention to its maximal belief-closed subspace (G;),_, ,
pertinent to the above information structure, i.e., the union of all belief-closed subspaces in
which to each type t;, i = 1,2, there corresponds some signal x; € [—1 — €, 2 + €| such that ¢;’s
first order belief on S (if it has any) is uniform in the interval [z; — €, x; + ¢]N[—1, 2], its second
order belief (if it has any) is such that conditional on each such s € [z; —¢,z; +¢] N [—1, 2]
the other player’s signal z_; is uniformly distributed in the interval [s — &, s + €.

Within this subspace (Gi)i:L2 of the universal space, consider, first, for i = 1,2, the

sequence of subsets of finite-depth types
GrCT'nG;, n=0,1,2,...,

where GY = Tio N G; and, inductively, G? are the types in TZ” N G; who assign probability 1
to the types G™;' of the other player. That is, G? are i’s types of depth n who are certain
that the other player has a type of depth n — 1 who is certain that his opponent is of depth
n — 2, etc. Thus, types in G? are as optimistic as possible, given their depth n of reasoning,
about the (mutual beliefs about) the other’s depth of reasoning.

The unique 0-depth type in GY ‘behaves erratically’ (‘it doesn’t think’)—by definition
both actions are rationalizable for it. Types in G} only reason about the state of nature
(and not about the other player’s belief and corresponding choice), so investing is the unique
rationalizable action for them if and only if they assign probability greater than % to the
negative states s < 0. This is the case if and only if z; < 0.

Consider now a type in G2. For such a type who received the signal z;, investing is the
only rationalizable action if and only if it assigns probability greater than % to the negative
states (which is the case if z; < 0), or otherwise it assigns probability greater than x;—the
expected value of the state of nature s according to the player’s posterior—to the event that
the other player is in G, and has received a signal x_; < 0 (so that the other player’s only
rationalizable action is to invest). A type with signal z; assigns probability greater than z;

to the event that the other player has received a signal x_; < 0 if and only if z; > 0 and
f (valag) > I,
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Figure 6.1: The function v(z;¢) for ¢ = 0.5 (solid line) and ¢ = 0.1 (dashed line) around
the 45-degree line (thick solid line). The thick zigzag staircase traces on the vertical axis the

values of v (0;0.5), v*(0;0.5) and v (0;0.5); the thin zigzag staircase traces on the vertical
axis the values of v (0;0.1), v (0;0.1) and v3 (0;0.1).

where we recall that f (z;x;,¢) is the posterior probability that ¢ assigns to the other player

having received a signal z_; less than z. In general, we have that x; > 2z and
[z @5,6) >

if and only if z; is less than

v(zie) 1= (2426 +4e?) — 2e1/2 (2 + 2 + 2¢2),

where the right-hand side is the smaller of the two roots of the quadratic equation f (z;z;,€) =
z;. Hence, for a type in G2 who has received the signal z;, the unique rationalizable action is
I if and only if

z; <v(0;¢).

By the same logic, for a type in G who received the signal z; investing is the only rational-
izable action if and only if
z; < v?(0;¢) == v (v(0;¢);¢)

Inductively, for a type in G¥™ who received the signal z; the only rationalizable action is to
invest if and only if
z; < V" (0;¢) == v (V"1 (0;¢) ;)

The function v(z;¢) is depicted in Figure for various values of €. The graph demon-

strates how v* (0; ) = $ even when ¢ is small (¢ = 0.1 in the graph). At the same time,
—00

the graph also demonstrates how for any fixed k it is the case that v* (0;¢) J 0 (the graph
e—
demonstrates this for k = 1,2,3). These properties hold in general:

Lemma 6.1. Investing is the unique rationalizable action for a type in G} if and only if its

signal x; is less than 0. Moreover, there is a sequence of thresholds v* (0;e) > 0 such that
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investing is the unique rationalizable action for a type in G¥*' if and only if its signal x; is
less than v* (0;€). For a fived € > 0, we have

1
k(0. 2
e 2y

while for every fixed k we have

v* (0;6) — 0.
e—0

A symmetric argument implies:

Lemma 6.2. Not investing is the unique rationalizable action for a type in G} if and only if
its signal x; is greater than 1. Moreover, there is a sequence of thresholds w* (1;¢) < 1 such
that not investing is the unique rationalizable action for a type in G’f“ if and only if its signal
x; is greater than w® (1;€). For any fived € > 0, we have

w” (L;e) — %,

k—o0

while for every fixved k, we have

w (1;€) — 1.
e—0

Together, Lemmas [6.1] and [6.2] immediately imply:

Proposition 6.3. For every k and for every state of nature s € (0,1), there exists e (s) > 0
such that if the accuracy of the signals is high enough, i.e., € < g (s), both investing and not

investing are rationalizable for types in G¥ that have a signal x; € [s — ¢, 5 + €].

Thus, when s € (0,1), for all types in G¥, the set of rationalizable actions eventually
contains both actions as € — 0, as in the limit game with complete information. This means

that the rationalizability correspondence is continuous in this respect.

Remark. In fact, lemmas and imply a somewhat stronger result, namely that the
same threshold ¢ (s) applies to an interval of states of nature, not only to a unique state s
(and the same holds true for propositions and below). For example, lemma
implies that for every k and for every state of nature s € (0, %), there exists gy (s) > 0 such
that if ¢ < &y, (s), both investing and not investing are rationalizable for types in G¥ that have

asignal x; € [ —e,5' +¢] for every s’ € [s,3 —ex (s)] - q

Consider now a type t; € G; of infinite depth of player i that for a given p € (0, 1) assigns
probability p* (1 — p) to the set of types G*; of the other player, for k =0,1,2,.... Asp — 1
this infinite-depth type t; assigns larger weights to types of large finite depth. Proposition

nevertheless implies:
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Proposition 6.4. For every p < 1 and state of nature s € (0,1), there exists a small enough
gp (s) > 0 such that if the accuracy of the signals is high enough, i.e., € < €, (s), both investing
and not investing are rationalizable for the types t; € G; with signals x; € [s —€,s + €] that
have infinite depth and that assign probability p* (1 — p) to the set of types G*, of the other
player, for k=10,1,2,....

Next, consider a sequence of types t,, _; € G_;, m = 0,1,2,... of player —i that assign
probability p* (1 — p,,) to the event that the other player i is in G¥, k = 1,2,..., where
pm 1. Then, consider also a type t; € G; for the other player ¢ that has an infinite depth
and assigns probability 7™(1 — r) to t,, ;. By a similar argument to that in the proof of
Proposition [6.4], one can show:

Proposition 6.5. For every r < 1 and state of nature s € (0,1), there exists a small enough
er (8) > 0 such that if the accuracy of the signals is good enough, i.e., € < €, (s), both investing
and not investing are rationalizable for the types t; € G; with signals x; € [s —€,s + €] that

have infinite depth and that assign probability r™ (1 —r) to the type t,, —;, m =0,1,2,....

Notice that the types t; € G; to which Proposition [6.5|applies not only have infinite depth,
but on top of that they assign probability 1 to the event that the other player —i is one of
tm—i , m = 0,1,2,...and thus also has infinite depth. That these types ¢; have multiple
rationalizable actions is the result of the ‘grain of naiveté’ in their belief: these types believe
that even though the other player —i has an infinite depth of reasoning , that other player
—i believes that player i herself has a finite-depth of reasoning (though most probably a very
large finite depth).

Repeating the same logic again and again, we can make this ‘grain of naiveté’ as small as

we like, and still have that both actions are rationalizable:

Proposition 6.6. For every state of nature s € (0,1) and for every £ > 1 there exists a type
tie € Gi with a signal x; € [s — ¢, s + €] that has infinite depth, is certain that the other player
has infinite depth, and is certain that ... (¢ times)...that the other player has infinite depth
of reasoning, and nevertheless there exists a small enough € (s;t;¢) > 0 such that when the
accuracy of the signals is good enough, i.e., € < € (s;t;4), both investing and not investing are

rationalizable for t; .

To sum up, the classical result in the literature on global games, by which as ¢ vanishes
a unique rationalizable action survives, is known to hold for the Mertens-Zamir types in Gj,
for whom there is common belief in infinite reasoning among the players. But these Mertens-
Zamir types form only one particular subspace of (G;),_, ,, and in other parts of (G;),_;,

both actions may remain rationalizable even as the noise level ¢ tends to zero.
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A Proofs

A.1 Proof of Proposition 3.1

The proof follows from a number of lemmas:
Lemma A.1. Forie N and k € N, QF, QF, T% and TF are Polish.

Proof. The proof is by induction. Clearly, T® and T are Polish for each i € N, so that

Q0 Q9 and T} and T} are also Polish. Suppose Y, Qf, T/+! and T/ are Polish spaces for
each i € N and £ < k — 1. It follows immediately that QF and QF are Polish, so that it
remains to show that 7" and 7" are Polish spaces. First note that A(QF) and A(QF) are
Polish. We thus need to establish that 7™ and Tf“ are a closed subset of T x A(2F) and

TF x A(QF), respectively. We prove the claim for TF': the proof for TF*! is similar. Let

)

Rt = (U9, ) € TF x A(QF) and suppose there is a sequence (¢7

Mpen in TP where

= (" 2" ™) such that ¢ — t;. It is sufficient to show that t; € TF. If we show
that

marg| sy " — marg| et (A1)

and
B s (A2)

the proof is complete: Because ¢} € Tf“ for all n, it follows that

k+1 _  k
marg|oe-1ply = H

so that t; € Tf“. But using that T} x A(QF) is endowed with the product topology, (A.1))
and (A.2) follow immediately from the assumption that #?* — tF1, O

Lemma A.2. (Heifetz, 1993, Thm. 6) For any (12,...,u*) € TF, there emists ™' €
A(QF) such that (19, ..., ulf, ubtty e TF.

Proof. Let i € N, and fix (p?,...,u¥) € TF. It suffices to show that there is a continuous
mapping £4: A(S x TH1) = A(S x T%,) such that (a0, i, fE(ub)) € T
To show this, we construct a continuous mapping FF : S x Tf;l — SxT* fork=1,2,...,
SXTZ,
such that 7T5fo;1
SxT; ! :=S. To construct such a function FF for all k, fix s* € S and define F : S — SxT9,
by

Tk . . . . . .
* o FF¥ is the identity function on Qf_l, where, with some abuse of notation,

FP(s) = (s, (05 ) jen\iip)

0
for s € S. Clearly, F? is continuous, and ng_l o F? is the identity function on ;.
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Suppose, by induction, that we have defined FF for i € N and £ < k. Then let fF¥ :
A(S x TF 1) — S x T*, be defined by:

FEE) = pfo (FF)

. . . . . SxTk.
for p¥ € A(S x T*7'). Then f* is continuous, and, by the induction hypothesis, 7 SiTF_l o FF

is the identity function on S x T*7'. Tt follows that
SxTk,
marg|or f(1F) = f (1) 0 (”sm.l) = u;.
It remains to define F{™'. For (s, (112, ..., u5)jemiy) € S x TF, let
Fik+1(87 (M?a s ;U?)]GN\{z}) = (37 (NJ27 cee nu?? f]k(uf))jGN\{l})

k+1

. . . xTZ . . . .
Again, F*! is continuous, and 7 " o F/*! is the identity function on S x TF. O

k

By Lemma |A.2) TF is nonempty. Also, the projection W;ka_l is surjective. It follows that

the inverse limit space ﬁoo is nonempty, where T; C [[, 7 is endowed with the relative
product topology (e.g., Hocking and Young, (1988, Lemma 2.84). Since fi"o is a closed subset
of the Polish space [], . T¥, it is Polish (Hocking and Young, 1938). O

A.2 Proof of Lemma [A.5

We start with some preliminary results.

Lemma A.3. Let X = |J,,co X™ be a countable union of topological spaces, endowed with
the sum topology. Let B € B(X) and ¢ € A. Then BN X' e B(X").

Proof. Suppose not. Then there is a o-algebra A’ on X* that contains the open sets in X*
such that BN X* ¢ A’. Tt is sufficient to show that there is a o-algebra A on X that contains
the open sets in X such that B ¢ A.

To show this, let A be the o-algebra on X generated by the open sets in X™, where
m € A, m # £, and by the sets in A*. We claim that A contains the open sets in X. To
see this, suppose that U is open in X. As X is endowed with the sum topology, it follows
that U N X™ is open in X™ for all m € A. Since A’ contains the open sets, it follows that
UNX™e Aforall mée A As U is a countable union of the sets U N X™, m € A, in A, and
since A is a o-algebra, it follows that U € A.

We claim that B € A. To see this, note that if B € A, it follows that B N X* € A. But
then BN X! e A%, a contradiction. O
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Lemma A.4. Let X = J,,cp X™ be a union of topological spaces, endowed with the sum
topology. Let B € B(X*) for some { € A. Then B € B(X).

Proof. Let A be the o-algebra on X generated by the open sets in X* and the sets X™,
m € A. Then B(X) D A. It is therefore sufficient to show that B € A. But this follows
directly from the definitions. O

We are now ready to prove Lemma [A.5l The proof is by induction. As noted above, the
functions A" h?’l’o, and 2! are well-defined and measurable (as is h?’<1’0) for every
player i (whenever the respective domains are nonempty). Let k = 1,2,.... Suppose that

h?7k7£ h?7k7k

the functions and are well-defined and measurable whenever @f is nonempty. It

suffices to show that:
(i) The function h?’<k+1’f is well-defined and measurable for £ =0, 1,..., k.
(i) The function h%** is well-defined and measurable for £ =0,1,... &k + 1.

To prove (i), first note that @fk is nonempty whenever @f is nonempty. It follows directly
from the induction hypothesis that A2 <" and h®<*'* are well-defined for £ = 0,1,..., k—

1, i.e.,
h?’<k+u (@zgk) c Tfe, and hiQ,<k+1,k (@;k) C igk.

To show that A% <""* is measurable, let B € B(T="). Then,

(hiQ,<k+1,k)—1(B) _ {Qi c Q“ng : h?’<k+l’k(qi) c B}
k
= U{a @ n@™"(q) e BAT}.

m=0

Hence, it suffices to show that for all £ =0,...k,
{g: € QL 2 (q;) € BNT!} € B(QY). (A.3)

By Lemma , we have that BNTY € B(TY). It then follows from the measurability of A2
that

{a: € Q! h?*(q;) € BN Tf} € B(éf),
so that follows from Lemma . The proof that A2 <"1 is measurable for ¢ =
0,...,k — 1 is similar and thus omitted.

The proof of (ii) consists of two parts. We first show that A and A2 are well-
defined for ¢ = 0,1, ...,k whenever @f“ is nonempty. That is, suppose @f“ is nonempty.
Then,

h?,k+1,€ (@fﬂ) C Tz‘é and th,k—H,k—i-l (@f“) C ik-f-l
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Clearly, h?* ™ 0(QF1) C TP, Let ¢ = 1,...,k — 1, and suppose h@* 1 (QMH) C T/,
We will show that A" (@f*l) C Tf. From the induction hypothesis and (i) it follows
that h?~**1 is well-defined and measurable (recall condition (d) in the definition of a type

space). Hence, for all ¢; € QI
h?,k’-‘rl,ﬁ(qi) _ (hiQ,k—‘rl,E—l(qi),Bf—i-l(qi) o (Ids, h?;<k+1’€_1) ) c Tg % A(S % T<£ 1)

where we have used the induction hypothesis. If £ = 1, then we are done. So suppose
¢ =2.3,...,k. We need to show that a player’s higher-order beliefs are coherent, i.e., for
each ¢; € @f“,
marg|oe2 85+ (g:) o (Idg, A4 T = B (g) o (Tdg, G2
Fix E € B(Q.72). Then, using the extended definition of the marginal,
1y -1
marg|qe2 05+ (¢:) o (Ids, AN TH(E)
= ) (s B T (s, (0 S ) € (8 x T
(5, (200 n5) € ) o 500 o (1ds, et N CRICEY =)
= B (q) o (Ids, B 2) s (1%, 152 € S X T2
(s, (105 -, 152)) € EY) + 854 (q) o (Idg, AEFHTHE N (S x TS
5.%:—&-1( ) ( hQ7'<k+1,€—1)*1(E)
so that A (g) € T! for € = 2,3,... k. A similar argument shows that h2* ™1 (g) e
T,
Next, we show that h?””l’g is measurable, where ¢ = 0,1,...,k + 1. For £ = 0, this is
immediate. Solet £ =1,2,...,k+ 1, and suppose the claim is true for ¢ — 1. It then follows
directly from the induction hypothesw and (7) that the claim is true for ¢ (recall that the

image measure induced by a measurable function from a metrizable space into a metrizable

space is measurable). O

A.3 Proof of Proposition

We first prove the first claim. By Proposition , the space S x TS‘; is a nonempty Polish
space. By a version of the Kolmogorov consistency theorem, for any t2° = (uf, u,...) € YN}"O,

there exists a unique Borel probability measure ;5° on S x T_; such that

_ k1
marg|orp;” = p;

, the mapping is canonical (Parthasarathy, 1978, Prop. 27.4). The last claim follows
1mmed1ately by associating the belief jif to the finite hierarchy t¥ = (i, ..., u*=* ik) € TF.
O
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A.4 Proof of Proposition [4.2

First consider the infinite hierarchies. Proposition shows that each infinite belief
hierarchy ° = (u?,ul,...) € i"o corresponds to a unique Borel probability measure on
S x T_;, and the mapping is canonical. Denote the function that maps Tf" to A(S x T_;) in
this way by ¢°. Conversely, let r2° : A(S x T_;) — i.oo be the mapping that assigns to each
pi € A(S x T;) the hierarchy (marg|sp;, marg|gop;, marg|gips, . ..) € A(S) x [[zo A(QF).

0.
7

The function ¢ is continuous if and only if t* — #; in T7° implies ¥2°(t") — ¥2°(t;) in

The function r° is the inverse of 17°; it remains to show that ¢ and r° are continuous.
A(S x T_;). But the cylinders form a convergence-determining class in S x 7, (Billingsley,
1999, Thm. 2.4), and the value of ¥°(t;) for t; = (u?, u},...) on the cylinders is given by the
u¥’s. Finally, it follows from the continuity of the marginal operator that r$° is continuous.
For the case of finite hierarchies, simply set ¥F(tF) := ¥ for each t* = (i, ..., ut=t k) €
TF. Continuity of the mapping ¥ is immediate. O

A.5 Proof of Proposition 4.4

Let Q@ = ((Qi)ien, (/821“)iE Noke @) be a type space that allows for finite-order reasoning. To
construct a type morphism from ghe types in Q to the types in the space T, we first construct
a collection of functions that maps each type into the associated hierarchy of beliefs (Step 1).
Step 2 establishes that these mappings define a type morphism from Q to 7. Step 3 then

shows that this type morphism is unique.

Step 1: From types to belief hierarchies
Each type induces a belief hierarchy of the kind discussed in Section [3.1, as we show now.
The mapping from types to belief hierarchies is standardﬁ except that we need to take into
account that hierarchies may be finite.

We define a collection of mappings. Lemma below shows that these functions are
well-defined. For i € N, if Q¥ # 0, let h?*" : Q9 — T be the trivial mapping that assigns to
cach ¢; € Q° the ‘naive’ type 20, i.e., h®"%(g;) = #2. Clearly, h%%°(Q?) C T°. Also, h®"? is
measurable.

@LO Ol — TO to be the trivial mapping whenever Q! is nonempty.

Similarly, define h
Again, it is easy to see that h2"*(Q) C T°, and that h?"" is measurable. If Q¥ is nonempty,

define the function h®<"" @? — ﬁo by

h@<(q) = h2"(q;).

8See, for example, [Mertens and Zamir| (1985), and Heifetz and Samet| (1998).
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Again, h%<0(Q%) C TP, and h9<"" is measurable. Finally, define the function A2 : QF —
T} by

B @) = (2@, i (@) 0 (1ds, hET0) T,
where Idg is the identity function on S. It is easy to verify that h?ll(ézl) C ’_ﬁ»l. Using that

an image measure induced by a measurable function from a metrizable space into a metrizable

Q7171
i

space is measurableﬂ it follows directly that A is measurable.

Fix £k = 1,2,..., and let £ = 0,...,k — 1. Suppose, inductively, that the mappings
h?’m’g have been defined for m = 0,1..., kwhenever the relevant domain is nonempty. If
Q=F = UZZO Q™ (), then define

h?,<k+1,£ : Q’gk _, st

(2 (2

- hQ,’m,Z ; f > E
VYm=0,1,....k ¢ €Q": h?’<k+1’z(qi) = { t (g:) it m ’

hE™™ (g if m < 4
Also, for k > 0, let
hZQ,<k+1,k : @lgk N ﬁgk

be defined by
vm = 07 17 et k? qZ E ézn : th7<k+1’k(q’L) = hZQ’m’m(ql)

Then, if Q¥ #£ 0, let h@*0 . QM1 5 70 be the trivial mapping, as before, and for
—=1,...,k, define h@*FTH0 . Q81 5 T by

hQ’kH’Z(qi) — <hQ,k+1,z—1<qi) 5“1(%‘) ° (Ids th<k+1,e—1>—1)

where Idg is the identity function on S. Finally, define ARZFTHFHL . QF+1 _y ThHL 1y
hQ,k+1,k+1(qi) — (hQ,k+l,k<qi) ﬁ{chl(qi) ° (Ids hQ,‘<k+1,k)—1> .

The next lemma states that these functions are well-defined:

Lemma A.5. Leti € N and k=0,1,....

(a) If @f # 0, then h?’k’g is well-defined and measurable for £ =0,1,... k.

(b) If Qvfk # 0, then h?’<k+1’£ is well-defined and measurable for £ =0,1,... k.

?Given a measurable function f : X — Y, the image measure f : A(X) — A(Y) induced by f is defined
by f(u) :=po f~* for all p € A(X). If Z is Polish, then the Borel g-algebra on A(Z) is generated by sets of
the form {u € A(Z) : u(E) > p}, where E € B(Z) and p € [0, 1].
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For 2 € N and k£ < oo such that @f is nonempty, define hiQ’k : @“ — i’“ by:

he*(q;) = (h?vk,O(Qi)> BF(q;) o (Ids, h?fk’o)il, BF(q;) o (Ids, h?fk’l)*l, .
Bf(Qz) o (Ids’ h?fk,k,l)_l)’

i.e., h*(q;) is the belief hierarchy (of depth k) induced by g;. It follows directly from the
above that A% is well-defined and measurable.

We next define a collection of functions that will be used to obtain the belief hierarchies of
infinite depth. For i € N, if Q% # 0, let h®>" : Q> — T? again be the trivial mapping. For
¢ =1,2,..., assume that h2**"' . Q> — T/! has been defined and is measurable. Define
PEE Qr UL, @ = T by

RO () i m > 00— 1;
R (g) i m < 0 —1;

Vm =00,0,1,...,¢ € Qv;” ; p=eot () = {
Also, define h@>: Q= — T! by
n2 g = (K@), B (@) 0 (145, hEZ ) ).
Again, these functions are well-defined:
Lemma A.6. Leti € N.
(a) If Qvfo # (), then h?’oo’é is well-defined and measurable for £ =0,1,. ...

(b) The function hiQ’SOO’E is well-defined and measurable for £ =0,1,....

The proof is similar to that of Lemma , and thus omitted. Define hiQ’oo : @f" — ioo
by:

B () = (h2™(a), 5°(as) o (1ds, 2550) ™), 52 (gs) o (1ds, ) 7).
That is, h?’oo(qi) is the belief hierarchy (of infinite depth) induced by ¢;. By the above, hiQ’Oo
is well-defined and measurable. Thus, each type generates a well-defined belief hierarchy.

We next define a type morphism from an arbitrary type space Q to T, using the mappings
defined in Step 1.

Step 2: Constructing a type morphism
Recall that K€ is the set of indices k € {0,1,...} U {oo} such that Q* is nonempty. For
i € N, define ¢; := (¢f), g0 as follows. If k € K€ is finite, then define ¥ : QF — TF by:

eF(q) = h¥*(q,).
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If @Q3° is nonempty, then define ¢ : Q7 — T by:

We show that ¢ = (¢;)ien is a type morphism. By Lemmas and the functions ¥,
i € N, k € K¢, are well-defined and measurable. It remains to show that the mappings

7 )

preserve higher-order beliefs.
To show this, let ¢ € N and suppose there is k& < oo such that @f # (). We need to show
that for each ¢; € Q% and E € B(S x T<F1),

-1
0F (k@) (B) = (@) (145, 07) 7' (B)).
Let q; € @f Using that the belief mappings in 7 are canonical, it follows that

UE(6h@) (B) = wb(n2A0(g). 8 o (145, KO, B o (145 741 ) (1)
= Bfa)((ds, hETHHTH(E)).
Next suppose that @f" # (0, and let ¢; € Q°. We need to show that for each £ € B(S x T_;),
o0 oo o oo -1
U (o7 (a) (B) = 52(a0) (1ds,97) ' (B))
Let ¢; € Q°. Again using that the belief maps in 7 are canonical, we have
U (@) (B) = o (h2™a), B o (1, REZ0) . ) (B)
= 57(a) ((1ds, h%) 7N (E)).
It follows that ¢ is a type morphism.

Step 3: There is a unique type morphism from any type space to T

We show that for any type space Q, there is a unique type morphism from Q to 7. The proof
uses the following lemmas. Lemma [A.7]shows that type morphisms preserve belief hierarchies
(cf. Heifetz and Samet, |1998| Prop. 5.1):

Lemma A.7. Fiz arbitrary type spaces Q and R, and let ¢ be a type morphism from Q to
R. Then, for each i € N,

(a) if Q¥ # 0 for k < oo, then h**(pl(q:)) = h2*(q:);

(b) if Q% #0, then h"<(o%(q:)) = h®™(a:)-
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Proof. Here we show (a); the proof that (b) holds is similar. The claim clearly holds for
k = 0 for every player i such that Q% # 0, as T? is a singleton. Let k = 1,2, ..., and suppose
the claim is true for all ¢ € N and m = 0,1,...,k — 1 such that Qv:” is nonempty. Again,
for each i € N such that Q¥ # (), it is easy to see that h™*(ok(g,)) = h¥*(g;) for every
¢ € QF, where h*** is defined analogously to h®*" (recall that K7 D K@, so that A" is

well-defined). Let £ =1,..., k and suppose that

hIERT (0F () = hEH™(q;)

k

()

for every ¢; € @f and m < ¢ — 1. Denoting the belief maps for player ¢ in R by \?, where

k € K[ we can use condition (4.1)) to obtain

N (@) o (1ds, A5 = g o (1ds, =) ™ o (ds, A5
B (qs) o (1ds, A5~ o p<h) !

—1

B5(q) o (1dg, K171

where the last line uses the induction hypothesis. Again using the induction hypothesis, this

gives
R (@) = (W (04 (a), M (eh (@) o (Tdg, R T
= (W@, B (@) o (1ds, RGN T
= th,k’Z(Qi)v
for every ¢; € @f O

Lemma A.8. Lett € N and k = 0,1,... or k = oco. Then h?’k ; ﬁk — TF is the identity

)

function.

The proof of Lemma follows directly from Propositions [4.1] and [4.2]
To show that ¢ is the unique type morphism from Q to 7T, suppose that ¢ is a type
morphism from Q to 7. Then, it follows from Lemma that for every i € N and k € K .Q,

hi " (28 @) = h* (0)-

But by Lemma [A§]
it (25 (@) = &1 (@),
so that @F(q;) = h¥"*(¢;). The result then follows by noting that ¢ = h¥.
To summarize: Step 2 shows that for any type space Q, there is a type morphism from Q

to T, using the functions defined in Step 1. Step 3 shows that this type morphism is unique.
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Hence, 7T is universal. It remains to show that there is at most one universal space, up to
type isomorphism (cf. |Heifetz and Samet| 1998, Prop. 3.5).

To see this, suppose that 7 and 77 are universal. Then, there is a type morphism ¢ from
T to T' and a type morphism ¢’ from 77 to 7. Hence, ¢’ o ¢ is a type morphism from 7 to
T. But the tuple Idy := (Ids) e k7, where Idz is the identity mapping on ﬁ-’“, is also a type
morphism from 7 to 7. By luniqueness of theltype morphisms, it follows that ¢’ o ¢ = Idy.

Similarly, ¢ o ¢/ = Idy». Hence, ¢ is an isomorphism. O

A.6 Proof of Proposition 4.5

Let Q be a type structure that allows for finite-order reasoning. We first prove the first
claim. If h? is injective, then it is trivially countably uncountable, i.e., the set {t; € T} :
(h?’k)_l(tj) is uncountable} is countable (as it is empty) for every k. It then follows from
Purves’ theorem that h?’k is bimeasurable (Purves, |1966), i.e., for all B € B(@f), h?’k(B) €
B(T}). In particular,

{t; € Ty t; = &) (qy) for some q; € Q;} = | £H(@F) € B(Ty).
keK?
Hence, S x [[;,{t; €T} : t; = gpg”('”)(qj) for some ¢; € Q;} is indeed an event in B(S x T_;).

The result now follows directly from the definition of a type morphism.
The second claim follows directly by setting Q; := T} and 8F := oF for all i € N and

7

ke KQ. O

A.7 Proof of Lemma

The result follows immediately by noting that the Borel o-algebra on A(S x Q_;) is
generated by sets of the form

EeB(SxQ_),pel01]: {peA(SxQ_;): u(E)>pt.O

A.8 Proof of Proposition 4.7

Let ¢ be the type morphism from Z to 7. Clearly, ¢°(z;) € T for alli € N and z; € Z;.
Hence,
S x H{t]‘ €T t;= @;(Zj)(zj') for some z; € Z;} C E>.
jEN
The type structure Z is nonredundant by construction. Hence, by Proposition [4.5]
Vi (07°(21)) (S X H{tj eT;:t;= go;(zj)(zj) for some z; € Z]-}> =1

JEN
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for each ¢ € N and z; € Z;, so that
S x H{tj €T t; = QO;(Zj)<Zj) for some z; € Z;} C CB(E™).
JEN

To prove the reverse inclusion, it is sufficient to show that for each i € N, there is

Y,>° C Z7* such that
P (V) = mp T (B N CB(EX)).

To show this, we construct a map f from E* N CB(E*) to S x Z. First note that E® N
CB(E®) C S xT>. Fori e N and (10, ul,...) € E® N CB(E®), let fo(u0) := 29. For
k =1,2,..., suppose ff‘l : WiZ_Tl(EOO NCB(E®)) — Zf‘l has been defined for all j € N.
Fori € N and (uf,u},...) € E*N CB(E®™), define

PR, iy = (Ml i), il o (Tds, £57) 7).
It is easy to check that ff is well-defined, given that the beliefs specified by the belief hi-
erarchies in £~ N CB(E>) are coherent. Then, for each (s,t) € E* N CB(E*>), with
ti = (ud, put,...) for i € N, define
f(S, t) = (57 (ﬁo(ﬂ?)ylhl © (Id57 Agi)_l’ - ')i€N>'
Again, it is easy to verify that f(E*°NCB(E™)) C Sx Z, so that the set ﬂé%Z(EOODCB(EOO))
corresponds to a subset Y;* of Z>°. Given that there is a unique type morphism ¢ from Z to

T, it must be the case that ¢°(Y;>*°) = ’/T%XT(EOO N CB(E*)), and the result follows. O

2

A.9 Proof of Lemma [6.1]

Since Y
0 2
A C < (0,1)
0z V22 42+ 2
and v (%, 5) = %, it follows that v (0;¢) < % and that

1
On the other hand,

v (0;¢) = (26 +4e?) — 2e/2 (26 + 22) — 0.
e—0
Inductively, if we have already shown that
V"1 (0;6) — 0
e—0

then it follows that

v (056) = v (V71 (058) 52) = (V571 (05) + 28 + 4e?) — 2e4/2 (V1 (0;¢) + 26 +222) — 0

e—0

as well. H
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A.10 Proof of Proposition [6.4

Fix p < 1, and let t; be a type for player ¢ that has an infinite depth of reasoning and
k

assigns probability p*(1 — p) to the event that the other player —i’s type is in G*,, where
k=0,1,2,.... There is k* such that ¢; assigns probability less than min {i, %} to types in
Uk>kz* Gﬂiz :

Given any €4+ (s) as defined in Proposition let €, (s) := min {ep- (s),%,452}. Then,

k

if ¢ < ¢, (s), both investing and not investing are rationalizable for types in J, ... G%,.

Since ¢, (s) < min {i, %}, both players’ signals are confined to the interval [s -1 s+ %}

Therefore, both players assign probability 1 to the event that the state of nature is in the inter-
k

val [s — 5,8+ %} But given that the probability that ¢; assigns to the types in [ J, - Gk,
(who may have a unique rationalizable action) is less than min {i, %}, both actions are

rationalizable for t;. |

A.11 Proof of Proposition [6.5

The proof is analogous to the proof of Proposition[6.4l Fix r < 1, and let ¢; be the type of
player i that assigns probability r*(1 —r) to the event that the other player —i’s type is t,, _,
where m = 0,1,2,.... There is m* such that ¢; assigns probability less than min {i, %} to
types in (J,,~ e {m,—i}-

Given any €,+ (s) as defined in Proposition , let €, (s) := min {e,- (s), 2,52}, Then,
if ¢ < e, (s), both investing and not investing are rationalizable for types in |J, ., . {tm —i}-
Since &, (s) < min {i, %}, both players’ signals are confined to the interval [s —_i, s+ %}
Therefore, both players assign probability 1 to the event that the state of nature is in
the interval [5 — 2,5+ %} But given that the probability that ¢; assigns to the types

s 1—s

in J,,=n {tm—i} (who may have a unique rationalizable action) is less than min {2,125},

both actions are rationalizable for ¢;. O
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