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Abstract

This paper constructs a type space that contains all types with a finite depth of

reasoning, as well as all types with an infinite depth of reasoning – in particular those

types for whom finite-depth types are conceivable, or think that finite-depth types are

conceivable in the mind of other players, etcetera. We prove that this type space is uni-

versal with respect to the class of type spaces that include types with a finite or infinite

depth of reasoning. In particular, we show that it contains the standard universal type

space of Mertens and Zamir (1985) as a belief-closed subspace, and that this subspace

is characterized by common belief of infinite-depth reasoning. This framework allows us

to study the robustness of classical results to small deviations from perfect rationality.

As an example, we demonstrate that in the global games of Carlsson and van Damme

(1993), a small ‘grain of naiveté’ suffices to overturn the classical uniqueness results in

that literature.
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1 Introduction

Ever since the conceptual breakthrough of Harsanyi (1967–1968), type spaces are custom-

arily used for analyzing economic applications with incomplete information. Each type has

preferences and beliefs about the state of nature and others’ types, and hence, implicitly, also

about the others’ beliefs about nature, about the others’ beliefs about their peers’ beliefs

about nature, and so on, ad infinitum. Mertens and Zamir (1985) showed that the space of

all such belief hierarchies can be used to construct a type space which is universal in the sense

that any other type space can be mapped into it using a unique belief-preserving mapping.1

In recent years, however, this seemingly all-embracing approach to modeling incomplete

information has been challenged by an important literature in experimental economics and

behavioral game theory. People do not think ad infinitum, so goes the claim. Often they

barely think at all. Somewhat less often they think about what others think. Even more

rarely do they contemplate the thoughts of others about somebody else, and seldom, if at

all, do they form an infinite hierarchy of mutual beliefs in their mind. Indeed, assuming that

subjects can be characterized by cognitive types with a finite depth of reasoning is consistent

with experimental data on beauty contests, certain auctions, and other classes of games.2

Strzalecki (2009) showed how to construct a universal type space for cognitive types with a

finite depth.

The Mertens-Zamir universal space for Harsanyi types and the Strzalecki universal space

for finite-depth types are completely disjoint. This might suggest that the two approaches

to incomplete information are conceptually divorced. But are they really diametrically op-

posed? Consider, for instance, comments of some players in beauty-contest experiments

(Bosch-Domenech et al., 2002, Appendix A), who are aware of the fact that infinite depth of

reasoning would entail the dominance-solvable outcome of the game, but at the same time

acknowledge that ‘many different people participate in this game and not everybody will ap-

ply [this] reasoning process’. Such players are, on one hand, completely sophisticated in the

sense of Harsanyi, but at the same time they admit that others might not be, and act upon

this belief.

In this paper we show how to account for such types of players, as well as many others,

such as a type who believes that everybody else is fully sophisticated like she is, but who

also believes that others may yet entertain suspicions that their rivals are not; and so forth.

We marry the two seemingly disparate approaches by constructing one universal space that

1This is true under suitable topological assumptions; also see Brandenburger and Dekel (1993), Heifetz

(1993), and Mertens et al. (1994).
2See, e.g., Nagel (1995), Stahl and Wilson (1995) Ho et al. (1998), Costa-Gomes et al. (2001), Camerer

et al. (2004), and Crawford and Iriberri (2007). See Crawford et al. (2012) for a survey.
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contains all such types. In particular, it includes both the universal space of Mertens and

Zamir (1985) and Strzalecki (2009) as belief-closed subspaces. This demonstrates how the

route recently taken in the behavioral economics literature may be viewed as part and parcel

of the generalization proposed here to the classical Harsanyi framework, not a conceptual

antithesis to it.3

This general framework allows to analyze the robustness of classical results in the literature

on games with incomplete information to the presence of various kinds of cognitive types, or

even just to the presence of mutual suspicions by fully sophisticated types about the presence

of cognitively limited types. We focus on global games, introduced by Carlsson and van

Damme (1993). This class of games is of particular interest, because the assumption that

players can form beliefs at arbitrarily high orders has stark implications in this class of games.4

We show that the slightest ‘grain of naiveté’ suffices to overturn the classical result that there

is a unique rationalizable action in these games. This result is stronger than a similar result

of Strzalecki (2009), who shows that there can be multiple equilibria in the electronic mail

game of Rubinstein (1989) when players have a finite depth of reasoning: it suffices that

types only think that others think. . . that other players may have a finite depth of reasoning

for both actions of the coordination game to survive as rationalizable. Our framework, which

allows for such infinite-depth types with a grain of naiveté is thus essential for formulating

and proving this result.

The framework we propose here complements that developed by Kets (2010, 2012), who

introduces type spaces in which players can have a finite depth of reasoning. Unlike in our

model, players can have nontrivial higher-order beliefs in her framework, even if they have a

finite depth of reasoning. Intuitively, types with a finite depth of reasoning can have beliefs

about events of higher order if these higher-order events are generated by events of sufficiently

low order. In particular, players with a finite depth of reasoning can have common knowledge

of nontrivial events in the framework of Kets, something which is not possible in the framework

presented here. The framework we present here is thus less general, but has the advantage

that it is closer to the models developed in the experimental literature and that it is easy

3A number of authors have constructed universal type spaces for situations where players do not have

unlimited reasoning abilities. In addition to Strzalecki (2009), who constructs a universal type space for

type spaces in which all types have a finite depth of reasoning, Heinsalu (2011) and Pintér and Udvari (2011)

construct universal type spaces for types with a finite and infinite depth of reasoning that also allow for various

forms of unawareness. The present framework encompasses precisely the cognitive types models developed in

the experimental literature, and has the advantage that it separates the issue of bounded reasoning from the

conceptually distinct issue of unawareness. Our results do not follow from nor entail those in Heinsalu and

Pintér and Udvari.
4See Heinemann et al. (2004),Heinemann et al. (2009), Cabrales et al. (2007), among others, for experi-

mental studies of games with strategic complementarities, with a focus on the behavior of cognitive types.
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to work with. In addition, we define and handle explicitly strategies and solution concepts,

which allows us to investigate the implications of introducing a grain of naiveté in games with

incomplete information.

The paper is organized as follows. After discussing some preliminaries in Section 2, Section

3 constructs the space of all belief hierarchies and introduces our generalized notion of a type

space. Section 4 shows that there is a universal type space that generates all finite and

infinite belief hierarchies, and that this space contains the universal space of Mertens and

Zamir (1985) for the Harsanyi case. Section 5 introduce games with incomplete information

in our setting, and Section 6 presents the analysis of global games.

2 Preliminaries

The Cartesian product of a collection of topological spaces (Xi)i∈I (where I is an arbitrary

index set) is denoted X. Given i ∈ I, we write X−i for
∏

j∈I\{i}Xj, with typical elements x

and x−i, respectively. The product of a collection of topological spaces is endowed with the

product topology. Given a collection of functions fi : Xi → Yi, we define the induced functions

f : X → Y and f−i : X−i → Y−i by f(x) := (fi(xi))i∈N and f−i(x−i) := (fj(xj))j∈I\{i}. If

(Xi)i∈I is a family of topological spaces (possibly made disjoint by replacing some Xj with a

homeomorphic copy), then
⋃
i∈I Xi is endowed with the sum topology. Note that the sum of

a countable collection of Polish spaces is Polish (Kechris, 1995, Prop. 3.3).

With some abuse of notation, we view every topological space X as a measurable space

(X,B(X)), where B(X) is the Borel σ-algebra on X. Hence, a function said to be measurable

is a Borel-measurable function. Given a Polish space X, denote by ∆(X) the set of probability

measures on the Borel σ-algebra B(X) in X. We endow ∆ (X) with the Borel σ-algebra of

the topology of weak convergence. The support of a probability measure µ ∈ ∆(X) is a closed

set in X, denoted suppµ, such that µ(X \ suppµ) = 0; and for any U ⊆ X, we have that

µ(U ∩ suppµ) > 0 whenever U is open in X and U ∩ suppµ 6= ∅. Any Borel probability

measure on a Polish space has a support, and the support is unique (e.g., Aliprantis and

Border, 2005, Thm. 12.14).

We extend the definition of a marginal probability measure to a union of measurable

spaces. Let V = X ∪ Y , Q ⊆ X × Z and W = Q ∪ Y , where all spaces are assumed to

be topological spaces; see Figure 2.1. Then for µ ∈ ∆(W ) denote by marg|V µ ∈ ∆(V ) the

probability measure defined by

marg|V µ(E) = µ({(x, z) ∈ Q : x ∈ E}) + µ(E ∩ Y )

for every measurable set E ⊆ V .
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Figure 2.1: The space W (shaded gray) is the union of Q ⊆ X ×Z and of Y . The space V is

the union of X and Y .

3 Belief hierarchies and types

This section defines the class of type spaces that allow for a finite depth of reasoning.

Because each type generates a hierarchy of beliefs, we first construct the space of all belief

hierarchies for our setting. Section 3.2 then introduces the type spaces that we consider.

3.1 Coherent belief hierarchies

This section constructs the space of all coherent belief hierarchies. There is a fixed, finite

set of players N , and a common domain of uncertainty S. A belief hierarchy specifies a

player’s belief about S, his beliefs about his opponents’ beliefs about S, and so on, up to a

certain order. That is, each hierarchy is associated with a depth of reasoning; a hierarchy’s

depth can either be finite or infinite.

Formally, assume that S is a Polish space. For a player i ∈ N , let T 0
i := {t0i } and

T̃ 0
i := {t̃0i }. The interpretation is that t̃0i is an extremely ‘naive’ type who has no beliefs; t0i is

a notational “seed” on which the hierarchies of more sophisticated types will be built. Let

Ω0
i := S ×

∏
j 6=i

(
T 0
j ∪ T̃ 0

j

)
Ω̃0
i := S ×

∏
j 6=i

T̃ 0
j

and

T 1
i := T 0

i ×∆
(
Ω0
i

)
,

T̃ 1
i := T 0

i ×∆
(

Ω̃0
i

)
.

These are the first-order beliefs for the types that reason beyond the first order or stop

reasoning at the first order, respectively. Suppose, inductively, that we have already defined
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T `j and T̃ `j for each player j ∈ N and all ` ≤ k. Define

T≤ki := T ki ∪
⋃k
`=0 T̃

`
i , Ωk

i := S × T≤k−i ,

T̃≤ki :=
⋃k
`=0 T̃

`
i , Ω̃k

i := S × T̃≤k−i ,

and let

T k+1
i :=

{((
µ0
i , . . . , µ

k
i

)
, µk+1

i

)
∈ T ki ×∆

(
Ωk
i

)
: marg|Ωk−1

i
µk+1
i = µki

}
,

T̃ k+1
i :=

{((
µ0
i , . . . , µ

k
i

)
, µ̃k+1

i

)
∈ T ki ×∆

(
Ω̃k
i

)
: marg|Ωk−1

i
µ̃k+1
i = µki

}
.

The interpretation is that T̃ ki is the set of hierarchies that stop reasoning at order k, while

the set T ki contains the hierarchies that also reason at higher orders. We say that a hierarchy

t̃ki ∈ T̃ ki has depth k. The condition on the marginals is a standard coherency condition. It is

easy to see that the sets T̃ ki are nonempty and Polish for each k.

In the limit, define

T̃∞i :=
{(
µ0
i , µ

1
i , . . .

)
:
(
µ0
i , . . . , µ

k
i

)
∈ T ki for all k ≥ 0

}
,

i.e., T̃∞i is the inverse limit space of the sequence (T ki )k≥0 endowed with the projection op-

erators (π
Tk
i

Tk−1
i

)k≥1. The belief hierarchies in T̃∞i are those that “reason up to infinity.” The

next result states that T̃∞i is well-defined:

Proposition 3.1. The inverse limit space T̃∞i is nonempty and Polish.

The set T̃∞i contains the hierarchies with infinite depth, i.e., a hierarchy in T̃∞i has well-

defined beliefs at each order.

For future reference, it will be convenient to define

Ti := T̃∞i ∪
∞⋃
`=0

T̃ `i

to be the set of all belief hierarchies. Thus, Ti is nonempty and Polish.

Before we turn to the definition of type spaces that allow for finite-order reasoning, let us

comment on the present construction of the space of belief hierarchies. First, one might think

that the space Ti of finite and infinite belief hierarchies can also be obtained by adding finite

belief hierarchies (modeled in some appropriate way) to the space of infinite belief hierarchies

of Mertens and Zamir (1985). This does not work, however: it would give a space of belief

hierarchies that is strictly smaller than the one constructed here. The reason is that Ti

not only contains the infinite belief hierarchies constructed by Mertens and Zamir, but also

belief hierarchies of infinite depth that assign a positive probability to finite-depth types of
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the other player of every given order (for instance, assigning probability 1/2k to a particular

belief hierarchy of depth k, for k ∈ N), or assign positive probability to the other player having

such beliefs, and so on. It is not clear how these belief hierarchies, which are not present in

the space of Mertens and Zamir, can be added ex post without a transfinite construction.

Second, what is crucial in the above construction is that each order k < ∞, the set of

belief hierarchies for a player i contains both the belief hierarchies that end at that order

(viz., T̃ ki ) as well as the belief hierarchies that continue to “grow” (viz., T ki ). If the set of

belief hierarchies would consist solely of the belief hierarchies that stop at that order, as in

Strzalecki (2009), we would not be able to construct a space that contains all belief hierarchies,

including the infinite ones.5

3.2 Type spaces

The previous section provided an explicit description of players’ hierarchies of beliefs. Be-

lief hierarchies can also be described implicitly, using the concept of a type space (cf. Harsanyi,

1967–1968). Here we define type spaces that allow for finite-order reasoning. Formally, given

a Polish space S, an S-based type space (that allows for finite-order reasoning) is a tuple

Q :=
〈(
Qi

)
i∈N ,

(
βki
)
i∈N,k∈KQ

i

〉
,

where for each i ∈ N , Qi = Q̃∞i ∪
⋃∞
`=0 Q̃

`
i is the type space of player i, assumed to be

nonempty and Polish, and KQ
i is the set of indices k ∈ {0, 1, . . .} ∪ {∞} such that Q̃k

i is

nonempty. Moreover,

(a) the function β0
i maps Q̃0

i into the singleton {t̃0i } whenever Q̃0
i is nonempty, i.e., β0

i (qi) =

t̃0i for all qi ∈ Q̃0
i ;

(b) the function βki is measurable and maps Q̃k
i into ∆

(
S × Q̃≤k−1

−i

)
where Q̃≤ki :=

⋃k
`=0 Q̃

`
i

whenever Q̃k
i is nonempty, where k = 1, 2, . . .;

(c) the function β∞i is measurable and maps Q̃∞i into ∆(S×Q−i) whenever Q̃∞i is nonempty;

(d) if there is qi ∈ Q̃k
i for some i ∈ N and finite k > 0, then for all j 6= i, there is kj < k

such that Q̃
kj
j is nonempty.

For qi ∈ Q̃k
i (k = 0, 1, . . . ,∞) we denote

βi (qi) = βki (qi) .

5Again, one could add infinite belief hierarchies to this space of finite belief hierarchies ex post, but then

the expanded space would still not contain the belief hierarchies that assign positive probability to types of

both finite and infinite depth, and so on.
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Thus, each type in Q̃0
i is associated with the ‘naive’ type. Types in Q̃k

i are mapped into a

belief over nature and the types of lower depths, while types in Q̃∞i have a belief about nature

and types of all depths. Condition (d) requires that if there is some player who reasons up

to a finite order, then there is a type for each of the other players that has a lower depth of

reasoning. Without such a requirement, a type’s belief may not be well-defined, given that

types of a finite depth can reason only about types of lower depth.

Intuitively, it is clear that type spaces generate hierarchies of beliefs. Each type (except

the level-zero type) defines a belief about the state of nature and about the other players’

types, so it implicitly specifies a belief about the other players’ beliefs about the state of

nature, and so on. However, as with the type spaces introduced by Harsanyi (1967–1968),

this intuition needs to be made precise. Also, one could ask whether these type spaces can

generate all belief hierarchies. We investigate these issues in the next section, by constructing

a universal type space.

4 The universal space

This section constructs a type space that embeds all type spaces, in the sense that any type

from any type space can be mapped into this type space in a way that preserves beliefs. We

first define a class of belief-preserving mappings and then use these mappings to demonstrate

that the space of belief hierarchies defines a universal type space, i.e., a type space that

contains all type spaces. Thus, every type generates a well-defined belief hierarchy, and there

is a type space, viz., the universal type space, that generates all possible belief hierarchies.

We also show that the universal type space for the class of Harsanyi type spaces can be viewed

as a (proper) subspace of the universal type space constructed here.

4.1 Belief-preserving mappings

Let Q := 〈(Qi)i∈N , (β
k
i )i∈N,k∈KQ

i
〉 and R := 〈(Ri)i∈N , (λ

k
i )i∈N,k∈KR

i
〉 be type spaces on S

that allow for finite-order reasoning, where we recall that

KQ
i := {k ∈ {0, 1, . . .} ∪ {∞} : Q̃k

i 6= ∅}

is the set of indices k such that the set of types for i of depth k is nonempty, and where

KR
i is similarly defined. We define maps, called type morphisms, from players’ type sets in

the space Q to the corresponding type sets in R, in such a way that higher-order beliefs are

preserved.

To define the concept of a type morphism, some preliminary notation will be useful.

Suppose KR
i ⊇ KQ

i . For each player i ∈ N and k ∈ KQ
i , let ϕki be a measurable function from

8



Q̃k
i to R̃k

i . Define ϕi := (ϕki )k∈KQ
i

, and let ϕ := (ϕi)i∈N . Also, if Q̃k
i is nonempty for some

player i ∈ N and finite k, then define

ϕ<k−i : Q̃≤k−1
−i → R̃≤k−1

−i

by

ϕ<k−i
(
(q
mj

j )j 6=i
)

:=
(
ϕ
mj

j (q
mj

j )
)
j 6=i

where q
mj

j ∈ Q̃
mj

j , j 6= i. Note that by condition (d) above and the assumption that KR
j ⊇ KQ

j

for all j ∈ N , the induced function ϕ<k−i is well-defined.

The induced function ϕ is a type morphism from Q to R if for each player i ∈ N ,

(i) for each k = 1, 2, . . ., type qi ∈ Q̃k
i , and E ∈ B

(
S × R̃≤k−1

−i

)
,

λki
(
ϕki (qi)

)
(E) = βki (qi)

(
(IdS, ϕ

<k
−i )
−1(E)

)
; (4.1)

(ii) for qi ∈ Q̃∞i , E ∈ B(S ×R−i),

λ∞i (ϕ∞i (qi)) (E) = β∞i (qi)
(
(IdS, ϕ

∞
−i)
−1(E)

)
, (4.2)

where IdS is the identity function on S.

If KQ
i ⊇ KR

i , then ϕ is a type isomorphism if the inverse of ϕi is measurable for each

i ∈ N , and satisfies (i)–(ii).

Conditions (i) and (ii) are the analogues of the standard condition that a type morphism

preserves beliefs, but take into account that a type may have finite depth. In particular, if a

type space only consists of types of infinite depth, the current definition of a type morphism

reduces to the standard one. Lemma A.7 in the appendix shows that type morphisms preserve

belief hierarchies, as do standard type morphisms (Heifetz and Samet, 1998, Prop. 5.1).

Using the concept of a type morphism, we next show that modeling belief hierarchies by

types is without loss of generality in the sense that every (coherent) belief hierarchy can be

modeled in this way.

4.2 Universality

This section shows that we do not “miss” any belief hierarchies by modeling them by

types. This follows from Proposition 4.4 below, which shows that there is a type space that

allows for finite-order reasoning that generates all coherent belief hierarchies.

We construct this type space using the space of belief hierarchies constructed in Section 3.1.

Specifically, we take the set of types for each player to be the set of belief hierarchies, and

define a belief for each type over the state of nature and the types of the other players.

9



The first step is to show that a belief hierarchy can be associated with a belief over the

set of belief hierarchies for the other players. That is, each belief hierarchy specifies a belief

about the full hierarchy of other players, not just about the individual levels of the hierarchy:

Proposition 4.1. (a) For each belief hierarchy (µ0
i , µ

1
i , . . .) ∈ T̃∞i there exists a unique

Borel probability measure µi on S × T−i such that

marg|Ω`−1
i
µi = µ`i

for all ` ∈ N.

(b) For each k > 0 and every belief hierarchy (µ0
i , µ

1
i , . . . , µ

k−1
i , µ̃ki ) ∈ T̃ ki , there exists a

unique Borel probability measure µi on S × T̃≤k−1
−i such that

marg|Ω`−1
i
µi = µ`i

for all ` = 1, . . . , k − 1, and

marg|Ωk−1
i
µi = µ̃ki .

Thus, each belief hierarchy of player i can be associated with a belief over the basic space

of uncertainty S and the other player’s belief hierarchies, in such a way that i’s belief over his

`th-order space of uncertainty coincides with his `th-order belief as specified by his hierarchy

of beliefs. That is, the construction is canonical in the sense of Brandenburger and Dekel

(1993). The result implies that the beliefs of a player at each order he can reason about

determine his beliefs about the other players’ belief hierarchies. Hence, specifying a player’s

beliefs about the relevant higher-order spaces of uncertainty fully specifies his beliefs.

Proposition 4.1 implicitly defines a function from the space of belief hierarchies to the

spaces of Borel probability measures on nature and the other players’ hierarchies. The inverse

of this function assigns to each belief µi over his uncertainty domain a belief hierarchy (possibly

finite) by taking the marginal of µi at each order. It turns out that the functions in Proposition

4.1 and their inverses are continuous, so that we have a homeomorphism for each k:

Proposition 4.2. There is a homeomorphism ψ∞i : T̃∞i → ∆(S × T−i). Moreover, for each

k ∈ N, there is a homeomorphism ψki : T̃ ki → ∆
(
(S × T̃≤k−1

−i )
)
.

If we define ψ0
i : T̃ 0

i → {t̃0i } by setting ψ0
i (t̃

0
i ) := t̃0i , and extend the range of the functions

ψki , k <∞, to ∆(S × T−i) in the usual way, then we have the following corollary:

Corollary 4.3. There is an embedding ψi from Ti to ∆(S×T−i), which coincides with ψki on

T̃ ki for k = 0, 1, . . ., and with ψ∞i on T̃∞i .
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Corollary 4.3 says that each ti ∈ Ti for a player i ∈ N is associated with a belief ψi(ti)

on S × T−i and vice versa, and that these mappings are continuous (and therefore Borel

measurable). This justifies using the term type to refer to an element ti of Ti, and to Ti as the

type set for player i. We can thus write T := 〈(Ti)i∈N , (ψki )i∈N,k∈{0,1,...}∪{∞}〉 for the resulting

type space.

We next show that T is universal. A type space R is universal if for any type space Q,

there is a unique type morphism from Q to R (Mertens and Zamir, 1985; Heifetz and Samet,

1998).

Proposition 4.4. The type space T is universal, and the universal space is unique (up to

type isomorphism).

Thus, the type space T “contains” all the type spaces that allow for finite-order reasoning.

The next result shows that every type space that satisfies a nonredundancy condition

can be seen as a belief-closed subset of the universal space, and, conversely, any belief-closed

subset corresponds to a type space. To state the result, say that a subset T ′ of the set of type

profiles T is a belief-closed subset if for all i ∈ N and ti ∈ T ′i \ T̃ 0
i ,

ψi(ti)(S × T ′−i) = 1.

Note that
∏

i∈N T̃
0
i is trivially a belief-closed subset. A type structure Q is nonredundant if

the hierarchy map hQ,kj is injective for all players j ∈ N and all k ∈ {0, 1, . . .}∪{∞}, whenever

hQ,kj is defined.

Proposition 4.5. Suppose Q is a type space, and suppose ϕ is a type morphism from Q to

the universal type space T . If Q is nonredundant, then, for all i ∈ N and qi ∈ Qi \ Q̃0
i ,

ψi
(
ϕ
κ(qi)
i (qi)

)(
S ×

∏
j 6=i

{
tj ∈ Tj : tj = ϕ

κ(qj)
j (qj) for some qj ∈ Qj

})
= 1,

where κ(q`) = k for ` ∈ N and q` ∈ Q̃k
` . Conversely, if T ′i ⊆ Ti, i ∈ N , is such that

ψi(qi)
(
S × T ′−i

)
= 1

for all i ∈ N , then there is a type structure Q and a type morphism ϕ from Q to T such that

for all i,

T ′i = {ti ∈ Ti : ti = ϕ
κ(qi)
i (qi) for some qi ∈ Qi}.

Thus, the type space T is universal and contains all nonredundant type spaces as belief-

closed subsets. We next turn to the question of how the universal space T relates to the

universal space constructed for the standard case by Mertens and Zamir (1985) and others.

11



4.3 Common belief in infinite depth of reasoning

Here we show that the universal Harsanyi space, constructed by Mertens and Zamir (1985)

and others, is a belief-closed subset of the universal space constructed in the previous sec-

tion, and is characterized by the event that players have an infinite depth of reasoning, and

commonly believe that all players have an infinite depth of reasoning.

Formally, given a Polish space S, an S-based Harsanyi type space is a tuple 〈(Q̂i)i∈N , (β̂i)i∈N〉,
where Q̂i is a Polish space for each player i ∈ N , and the measurable function β̂i maps Q̂i

into the set of Borel probability measures ∆(S× Q̂−i) on the set of states of nature and other

players’ types.

The universal Harsanyi type space can be constructed in a similar way as the universal

type space T (that allows for finite-order reasoning). Let Ẑ0
i := {ẑ0

i } be an arbitrary singleton,

and define

Ω̂0
i := S × Ẑ0

−i,

and

Ẑ1
i := Ẑ0

i ×∆(Ω̂0
i ).

Again, assume, inductively, that we have already defined Ẑ`
j for each player j ∈ N and all

` ≤ k. Define

Ω̂k
i := S × Ẑk

−i,

and let

Ẑk+1
i :=

{((
µ0
i , . . . , µ

k
i

)
, µk+1

i

)
∈ Ẑk

i ×∆
(

Ω̂k
i

)
: marg|Ω̂k−1

i
µk+1
i = µki

}
.

The inverse limit space Ẑi for player i is the set of all (µ0
i , µ

1
i , . . .) such that (µ0

i , µ
1
i . . . , µ

k
i ) ∈ Ẑk

i

for all k. It can be shown that the analogue of Propositions 3.1 holds. Moreover, the analogue

of Proposition 4.2 holds for this case: there is a homeomorphism χ̂i from Ẑi to the set of Borel

probability measures ∆(S × Ẑ−i) for each i ∈ N (cf. Heifetz, 1993). This means that we can

view Ẑ := 〈(Ẑi)i∈N , (χ̂i)i∈N〉 as a Harsanyi type space. The Harsanyi type space Ẑ is universal

with respect to the class of Harsanyi type spaces, in the sense that every Harsanyi type space

can be embedded into Ẑ via a unique type morphism for Harsanyi type spaces.

We show that the universal Harsanyi type space Ẑ can be viewed as a belief-closed subset

of the universal type space T , characterized by the event that players have an infinite depth

of reasoning, and there is common belief that players have an infinite depth of reasoning. To

see this, note that Ẑ corresponds to a type space Z with the type set for player i ∈ N given

by Zi = Z̃∞i ∪
⋃∞
k=0 Z̃

k
i , where Z̃∞i := Ẑi, and Z̃k

i = ∅ for k <∞, and the belief map χ∞i := χ̂i.

It follows from Proposition 4.4 that Z can be embedded in the universal type space T
via a unique type morphism. The converse clearly does not hold, as T contains types that

12



have a finite depth of reasoning, types that assign a positive probability to types with a finite

depth of reasoning, types that assign a positive probability to types that assign a positive

probability to types with a finite depth of reasoning, and so on.

Moreover, because the space Z is nonredundant by construction, the type space Z derived

from the universal Harsanyi type space Ẑ corresponds to a belief-closed subspace of the

universal type space T (by Proposition 4.5).

Can we characterize this subspace of T in terms of players’ higher-order beliefs? Propo-

sition 4.7 below establishes that the space Z is characterized by the event that players have

an infinite depth of reasoning, and that there is common belief in the event that players have

an infinite depth of reasoning.

To state the result, we define the event that a player i ∈ N believes an event E ∈ B(S×Q).

To that aim, let E ∈ B(S ×Q), i ∈ N , and qi ∈ Qi. Then,

Eqi :=
{

(s, q−i) ∈ S ×Q−i : (s, qi, q−i) ∈ E
}

is the set of tuples (s, q−i) that are consistent with E and the event that player i has type qi.

The set of states where i believes E (with probability 1) is then

Bi(E) :=
{

(s, qi, q−i) ∈ S × (Qi \ Q̃0
i )×Q−i : β

κ(qi)
i (qi)(Eqi) = 1

}
,

where κ(qi) = k if qi ∈ Q̃k
i .

Lemma 4.6. For each i ∈ N and E ∈ B(S ×Q), we have that Bi(E) ∈ B(S ×Q).

Then, for E ∈ B(S ×Q),

B(E) :=
⋂
i∈N

Bi(E)

is the event that all players believe E, and we say that E is common belief at a state (s, q) if

(s, q) ∈ CB(E) :=
⋂
`∈N

[
B
]`

(E),

where [B]1(E) := B(E), and [B]`(E) := B ◦ [B]`−1(E) for ` > 1. It is immediate from

Lemma 4.6 that B(E) and CB(E) are events whenever E is an event. Finally, let E∞ :=

S ×
∏

i∈N T̃
∞
i be the event that players have an infinite depth of reasoning.6 We then have:

Proposition 4.7. Let ϕ be the unique type morphism from Z to the universal type space T .

Then,

S ×
∏
i∈N

ϕ∞i (Zi) = E∞ ∩ CB[E∞].

6The set E∞ is indeed an event. To see this, note that Ti is endowed with the sum topology and the Borel

σ-algebra. Moreover, B(S ×
∏

i Ti) = B(S)⊗
⊗

i B(Ti) (Aliprantis and Border, 2005, Thm. 4.44).
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5 Games with incomplete information

This section defines a class of games with incomplete information for our setting, and

introduces a suitable solution concept. Formally, given a set of players N and set S of states

of nature, a (generalized) Bayesian game is a tuple ((Ai)i∈N , (ui)i∈N ,Q), where for each player

i ∈ N , Ai is i’s action set, assumed to be measurable, ui : S × A→ R is her utility function,

and

Q :=
〈(
Qi

)
i∈N ,

(
βki
)
i∈N,k∈KQ

i

〉
,

is a type space that allows for finite-order reasoning. The action set Ai may be the set of

mixtures over some space of pure actions. It will be convenient to define βi to be the function

from Qi to ∆(S ×Q−i) which coincides with βki on Q̃k
i for each k such that Q̃k

i is nonempty.

It is straightforward to extend the notion of interim correlated rationalizability (Dekel

et al., 2007). In standard Bayesian games this solution concept embodies common belief of

rationality; and it allows a type to believe that her opponents’ actions are correlated even

conditional on them having a particular profile of types and given that a particular state

of nature obtains (see also Chen et al. (2010) and Battigalli et al. (2011)). For each player

i ∈ N , let

R0
i (qi) := Ai

and, for k > 1, define inductively

Rk
i (qi) :=


ai ∈ Ai : there exists a measurable µ : S ×Q−i → ∆ (A−i) s.t.

µ ((s, q−i)) ∈ ∆
(∏

j 6=iR
k−1
j (qj)

)
∀q−i ∈ Q−i, s ∈ S; and

ai ∈ arg maxa′i∈Ai

∫
S×Q−i

dβi (qi)
∫
A−i

ui (s, a
′
i, ·) dµ (s, q−i)

 .

The interim correlated rationalizable actions of type qi for player i ∈ N are

R∞i (qi) =
∞⋂
k=0

Rk
i (qi) .

Remark. At first sight, it may seem that our solution concept is not entirely consistent with

the idea that players can have a finite depth of reasoning. Specifically, the conjecture µ in

the definition of Rk
i (qi) is defined for every type profile q−i ∈ Q−i of i’s opponents for every

qi, y compris type profiles q̆−i that correspond to a depth of reasoning that is greater than

that of qi. But since such type profiles q̆−i are outside the support of the belief βi (qi) for

type qi, the beliefs µ (q̆−i) do not affect the definition of Rk
i (qi). In other words, at the cost

of additional notation we could have restricted the domain of µ in the definition of Rk
i (qi) to

the type profiles which qi “conceives” without altering the surviving set of actions for type

qi. /
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In the next section, we study the set of rationalizable actions in a game with strategic com-

plements, and show that introducing a ‘grain of naiveté’ can change the set of rationalizable

outcomes.

6 A game with a grain of naiveté

To exemplify the insights the framework can yield, we consider the following game, taken

from Carlsson and van Damme (1993) and Morris and Shin (2003). Two players, indexed by

i = 1, 2, decide simultaneously whether to invest (I) or not to invest (N). The payoff matrix

is
I N

I 1− s, 1− s −s, 0
N 0,−s 0, 0

The state of the world s is drawn uniformly from the interval [−1, 2].7 Thus when s < 0

investing (I) is strongly dominant for each player. At the other end, when s > 1 not investing

(N) is strongly dominant for each player. In the middle range, when s ∈ [0, 1], investment

is strictly preferable if and only if the player believes that the other player invests with

probability greater than s. Thus, if the game were played with complete information, both

actions would be rationalizable.

Prior to playing, however, for each realized state of nature s, the two players get uniform

i.i.d. signals from the interval [s− ε, s+ ε], where ε > 0 is small (ε ≤ 1
2
, say). With the signal

xi, player i’s posterior on the state of nature is uniform in [xi − ε, xi + ε]∩ [−1, 2] (by Bayes’

rule). Moreover, conditional on each such conceivable state of nature s ∈ [xi − ε, xi + ε] ∩
[−1, 2], the player believes that the other player’s signal x−i is itself uniformly distributed

in the interval [s− ε, s+ ε]. In particular, upon receiving a signal xi ∈ [−1 + ε, 2− ε], the

posterior probability that i assigns to the other player having received a signal x−i less than

z ∈ [xi − ε, xi] is

f (z;xi, ε) :=

∫ z+ε

x−ε

(∫ z

s−ε

dy

2ε

)
ds

2ε
=

1

8ε2
(z − xi + 2ε)2 .

If all types have an infinite depth of reasoning, then investing is the only rationalizable

action for a player who received a signal less than 1
2
, and not investing is the unique ratio-

nalizable action for a player who received a signal greater than 1
2

(Carlsson and van Damme,

1993). Thus, even as signals become arbitrarily accurate (ε → 0), so that the game, in a

sense, converges to one with complete information, each player has a unique rationalizable

action for every possible signal (except for the knife-edge signal 1
2
). This is in contrast with

7With respect to the notation in Morris and Shin (2003), we use the change of variable s = 1− θ.
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the complete-information case, where both actions are rationalizable whenever s ∈ (0, 1). In

this sense the concept of interim correlated rationalizability suffers from a particular kind of

discontinuity.

We show that this discontinuity need not occur as long as there is even a slight ‘grain

of naiveté’, i.e., when a finite depth of reasoning is conceivable, though perhaps only after

an arbitrarily long, or even transfinitely long, chain of mutual beliefs, and with a vanishing

probability.

Consider the universal space 〈(Ti)i=1,2, (ψ
k
i )i=1,2,k∈{0,1,...}∪{∞}〉 from Section 4 with the set of

states of nature S = [−1, 2]. Restrict attention to its maximal belief-closed subspace (Gi)i=1,2

pertinent to the above information structure, i.e., the union of all belief-closed subspaces in

which to each type ti, i = 1, 2, there corresponds some signal xi ∈ [−1− ε, 2 + ε] such that ti’s

first order belief on S (if it has any) is uniform in the interval [xi − ε, xi + ε]∩[−1, 2] , its second

order belief (if it has any) is such that conditional on each such s ∈ [xi − ε, xi + ε] ∩ [−1, 2]

the other player’s signal x−i is uniformly distributed in the interval [s− ε, s+ ε].

Within this subspace (Gi)i=1,2 of the universal space, consider, first, for i = 1, 2, the

sequence of subsets of finite-depth types

Ḡn
i ⊆ T̃ ni ∩Gi, n = 0, 1, 2, . . . ,

where Ḡ0
i = T̃ 0

i ∩ Gi and, inductively, Ḡn
i are the types in T̃ ni ∩ Gi who assign probability 1

to the types Ḡn−1
−i of the other player. That is, Ḡn

i are i’s types of depth n who are certain

that the other player has a type of depth n− 1 who is certain that his opponent is of depth

n− 2, etc. Thus, types in Ḡn
i are as optimistic as possible, given their depth n of reasoning,

about the (mutual beliefs about) the other’s depth of reasoning.

The unique 0-depth type in Ḡ0
i ‘behaves erratically’ (‘it doesn’t think’)—by definition

both actions are rationalizable for it. Types in Ḡ1
i only reason about the state of nature

(and not about the other player’s belief and corresponding choice), so investing is the unique

rationalizable action for them if and only if they assign probability greater than 1
2

to the

negative states s < 0. This is the case if and only if xi < 0.

Consider now a type in Ḡ2
i . For such a type who received the signal xi, investing is the

only rationalizable action if and only if it assigns probability greater than 1
2

to the negative

states (which is the case if xi < 0), or otherwise it assigns probability greater than xi—the

expected value of the state of nature s according to the player’s posterior—to the event that

the other player is in Ḡ1
−i and has received a signal x−i < 0 (so that the other player’s only

rationalizable action is to invest). A type with signal xi assigns probability greater than xi

to the event that the other player has received a signal x−i < 0 if and only if xi > 0 and

f (0;xi, ε) > xi,
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Figure 6.1: The function v(z; ε) for ε = 0.5 (solid line) and ε = 0.1 (dashed line) around

the 45-degree line (thick solid line). The thick zigzag staircase traces on the vertical axis the

values of v (0; 0.5) , v2 (0; 0.5) and v3 (0; 0.5); the thin zigzag staircase traces on the vertical

axis the values of v (0; 0.1) , v2 (0; 0.1) and v3 (0; 0.1) .

where we recall that f (z;xi, ε) is the posterior probability that i assigns to the other player

having received a signal x−i less than z. In general, we have that xi > z and

f (z;xi, ε) > xi

if and only if xi is less than

v (z; ε) :=
(
z + 2ε+ 4ε2

)
− 2ε

√
2 (z + 2ε+ 2ε2),

where the right-hand side is the smaller of the two roots of the quadratic equation f (z;xi, ε) =

xi. Hence, for a type in Ḡ2
i who has received the signal xi, the unique rationalizable action is

I if and only if

xi < v (0; ε) .

By the same logic, for a type in Ḡ3
i who received the signal xi investing is the only rational-

izable action if and only if

xi < v2 (0; ε) := v (v (0; ε) ; ε)

Inductively, for a type in Ḡk+1
i who received the signal xi the only rationalizable action is to

invest if and only if

xi < vk (0; ε) := v
(
vk−1 (0; ε) ; ε

)
The function v(z; ε) is depicted in Figure 6.1 for various values of ε. The graph demon-

strates how vk (0; ε) −→
k→∞

1
2

even when ε is small (ε = 0.1 in the graph). At the same time,

the graph also demonstrates how for any fixed k it is the case that vk (0; ε) −→
ε→0

0 (the graph

demonstrates this for k = 1, 2, 3). These properties hold in general:

Lemma 6.1. Investing is the unique rationalizable action for a type in Ḡ1
i if and only if its

signal xi is less than 0. Moreover, there is a sequence of thresholds vk (0; ε) > 0 such that
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investing is the unique rationalizable action for a type in Ḡk+1
i if and only if its signal xi is

less than vk (0; ε). For a fixed ε > 0, we have

vk (0; ε) −→
k→∞

1

2
,

while for every fixed k we have

vk (0; ε) −→
ε→0

0.

A symmetric argument implies:

Lemma 6.2. Not investing is the unique rationalizable action for a type in Ḡ1
i if and only if

its signal xi is greater than 1. Moreover, there is a sequence of thresholds wk (1; ε) < 1 such

that not investing is the unique rationalizable action for a type in Ḡk+1
i if and only if its signal

xi is greater than wk (1; ε). For any fixed ε > 0, we have

wk (1; ε) −→
k→∞

1
2
,

while for every fixed k, we have

wk (1; ε) −→
ε→0

1.

Together, Lemmas 6.1 and 6.2 immediately imply:

Proposition 6.3. For every k and for every state of nature s ∈ (0, 1), there exists εk (s) > 0

such that if the accuracy of the signals is high enough, i.e., ε < εk (s), both investing and not

investing are rationalizable for types in Ḡk
i that have a signal xi ∈ [s− ε, s+ ε].

Thus, when s ∈ (0, 1), for all types in Ḡk
i , the set of rationalizable actions eventually

contains both actions as ε→ 0, as in the limit game with complete information. This means

that the rationalizability correspondence is continuous in this respect.

Remark. In fact, lemmas 6.1 and 6.2 imply a somewhat stronger result, namely that the

same threshold εk (s) applies to an interval of states of nature, not only to a unique state s

(and the same holds true for propositions 6.4, 6.5 and 6.6 below). For example, lemma 6.1

implies that for every k and for every state of nature s ∈
(
0, 1

2

)
, there exists εk (s) > 0 such

that if ε < εk (s), both investing and not investing are rationalizable for types in Ḡk
i that have

a signal xi ∈ [s′ − ε, s′ + ε] for every s′ ∈
[
s, 1

2
− εk (s)

]
. /

Consider now a type ti ∈ Gi of infinite depth of player i that for a given p ∈ (0, 1) assigns

probability pk (1− p) to the set of types Ḡk
−i of the other player, for k = 0, 1, 2, . . . . As p→ 1

this infinite-depth type ti assigns larger weights to types of large finite depth. Proposition 6.3

nevertheless implies:
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Proposition 6.4. For every p < 1 and state of nature s ∈ (0, 1), there exists a small enough

εp (s) > 0 such that if the accuracy of the signals is high enough, i.e., ε < εp (s), both investing

and not investing are rationalizable for the types ti ∈ Gi with signals xi ∈ [s− ε, s+ ε] that

have infinite depth and that assign probability pk (1− p) to the set of types Ḡk
−i of the other

player, for k = 0, 1, 2, . . . .

Next, consider a sequence of types tm,−i ∈ G−i, m = 0, 1, 2, . . . of player −i that assign

probability pkm(1 − pm) to the event that the other player i is in Ḡk
i , k = 1, 2, . . ., where

pm ↗ 1. Then, consider also a type ti ∈ Gi for the other player i that has an infinite depth

and assigns probability rm(1 − r) to tm,−i. By a similar argument to that in the proof of

Proposition 6.4, one can show:

Proposition 6.5. For every r < 1 and state of nature s ∈ (0, 1), there exists a small enough

εr (s) > 0 such that if the accuracy of the signals is good enough, i.e., ε < εr (s), both investing

and not investing are rationalizable for the types ti ∈ Gi with signals xi ∈ [s− ε, s+ ε] that

have infinite depth and that assign probability rm (1− r) to the type tm,−i, m = 0, 1, 2, . . . .

Notice that the types ti ∈ Gi to which Proposition 6.5 applies not only have infinite depth,

but on top of that they assign probability 1 to the event that the other player −i is one of

tm,−i , m = 0, 1, 2, . . .and thus also has infinite depth. That these types ti have multiple

rationalizable actions is the result of the ‘grain of naiveté’ in their belief: these types believe

that even though the other player −i has an infinite depth of reasoning , that other player

−i believes that player i herself has a finite-depth of reasoning (though most probably a very

large finite depth).

Repeating the same logic again and again, we can make this ‘grain of naiveté’ as small as

we like, and still have that both actions are rationalizable:

Proposition 6.6. For every state of nature s ∈ (0, 1) and for every ` ≥ 1 there exists a type

ti,` ∈ Gi with a signal xi ∈ [s− ε, s+ ε] that has infinite depth, is certain that the other player

has infinite depth, and is certain that . . . (` times). . . that the other player has infinite depth

of reasoning, and nevertheless there exists a small enough ε (s; ti,`) > 0 such that when the

accuracy of the signals is good enough, i.e., ε < ε (s; ti,`), both investing and not investing are

rationalizable for ti,`.

To sum up, the classical result in the literature on global games, by which as ε vanishes

a unique rationalizable action survives, is known to hold for the Mertens-Zamir types in Gi,

for whom there is common belief in infinite reasoning among the players. But these Mertens-

Zamir types form only one particular subspace of (Gi)i=1,2, and in other parts of (Gi)i=1,2

both actions may remain rationalizable even as the noise level ε tends to zero.
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A Proofs

A.1 Proof of Proposition 3.1

The proof follows from a number of lemmas:

Lemma A.1. For i ∈ N and k ∈ N, Ωk
i , Ω̃k

i , T
k
i and T̃ ki are Polish.

Proof. The proof is by induction. Clearly, T 0
i and T̃ 0

i are Polish for each i ∈ N, so that

Ω0
i , Ω̃0

i and T 1
i and T̃ 1

i are also Polish. Suppose Ω`
i , Ω̃`

i , T
`+1
i and T̃ `+1

i are Polish spaces for

each i ∈ N and ` ≤ k − 1. It follows immediately that Ωk
i and Ω̃k

i are Polish, so that it

remains to show that T k+1
i and T̃ k+1

i are Polish spaces. First note that ∆(Ωk
i ) and ∆(Ω̃k

i ) are

Polish. We thus need to establish that T k+1
i and T̃ k+1

i are a closed subset of T ki ×∆(Ωk
i ) and

T ki × ∆(Ω̃k
i ), respectively. We prove the claim for T k+1

i ; the proof for T̃ k+1
i is similar. Let

tk+1
i = (µ0

i , . . . , µ
k+1
i ) ∈ T ki ×∆(Ωk

i ) and suppose there is a sequence (tni )n∈N in T k+1
i , where

tni = (µ0,n
i , µ2,n

i , . . . , µk+1,n
i ), such that tni → ti. It is sufficient to show that ti ∈ T ki . If we show

that

marg|Ωk−1
i
µk+1,n
i → marg|Ωk−1

i
µk+1
i , (A.1)

and

µk,ni → µki , (A.2)

the proof is complete: Because tni ∈ T k+1
i for all n, it follows that

marg|Ωk−1
i
µk+1
i = µki

so that ti ∈ T k+1
i . But using that T ki ×∆(Ωk

i ) is endowed with the product topology, (A.1)

and (A.2) follow immediately from the assumption that tni → tk+1
i . �

Lemma A.2. (Heifetz, 1993, Thm. 6) For any (µ0
i , . . . , µ

k
i ) ∈ T ki , there exists µk+1

i ∈
∆(Ωk

i ) such that (µ0
i , . . . , µ

k
i , µ

k+1
i ) ∈ T k+1

i .

Proof. Let i ∈ N , and fix (µ0
i , . . . , µ

k
i ) ∈ T ki . It suffices to show that there is a continuous

mapping fki : ∆(S × T k−1
−i )→ ∆(S × T k−i) such that (µ0

i , . . . , µ
k
i , f

k
i (µki )) ∈ T k+1

i .

To show this, we construct a continuous mapping F k
i : S×T k−1

−i → S×T k−i for k = 1, 2, . . .,

such that π
S×Tk

−i

S×Tk−1
−i

◦ F k
i is the identity function on Ωk−1

i , where, with some abuse of notation,

S×T−1
i := S. To construct such a function F k

i for all k, fix s∗ ∈ S and define F 0
i : S → S×T 0

−i

by

F 0
i (s) = (s, (δs∗)j∈N\{i})

for s ∈ S. Clearly, F 0
i is continuous, and π

Ω0
i

Ω−1
i

◦ F 0
i is the identity function on Ω−1

i .
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Suppose, by induction, that we have defined F k
i for i ∈ N and ` ≤ k. Then let fki :

∆(S × T k−1
−i )→ S × T k−i be defined by:

fki (µki ) = µki ◦ (F k
i )−1

for µki ∈ ∆(S×T k−1
−i ). Then fki is continuous, and, by the induction hypothesis, π

S×Tk
−i

S×Tk−1
−i

◦F k
i

is the identity function on S × T k−1
−i . It follows that

marg|Ωk−1
i
fki (µki ) = fki (µki ) ◦

(
π
S×Tk

−i

S×Tk−1
−i

)
= µki .

It remains to define F k+1
i . For (s, (µ0

j , . . . , µ
k
j )j∈N\{i}) ∈ S × T ki , let

F k+1
i (s, (µ0

j , . . . , µ
k
j )j∈N\{i}) = (s, (µ0

j , . . . , µ
k
j , f

k
j (µkj ))j∈N\{i}).

Again, F k+1
i is continuous, and π

S×Tk+1
−i

S×Tk
−i
◦ F k+1

i is the identity function on S × T ki . �

By Lemma A.2, T ki is nonempty. Also, the projection π
Tk
i

Tk−1
i

is surjective. It follows that

the inverse limit space T̃∞i is nonempty, where Ti ⊆
∏

k∈N T
k
i is endowed with the relative

product topology (e.g., Hocking and Young, 1988, Lemma 2.84). Since T̃∞i is a closed subset

of the Polish space
∏

k∈N T
k
i , it is Polish (Hocking and Young, 1988). �

A.2 Proof of Lemma A.5

We start with some preliminary results.

Lemma A.3. Let X =
⋃
m∈ΛX

m be a countable union of topological spaces, endowed with

the sum topology. Let B ∈ B(X) and ` ∈ Λ. Then B ∩X` ∈ B(X`).

Proof. Suppose not. Then there is a σ-algebra A` on X` that contains the open sets in X`

such that B∩X` 6∈ A`. It is sufficient to show that there is a σ-algebra A on X that contains

the open sets in X such that B 6∈ A.

To show this, let A be the σ-algebra on X generated by the open sets in Xm, where

m ∈ Λ, m 6= `, and by the sets in A`. We claim that A contains the open sets in X. To

see this, suppose that U is open in X. As X is endowed with the sum topology, it follows

that U ∩ Xm is open in Xm for all m ∈ Λ. Since A` contains the open sets, it follows that

U ∩Xm ∈ A for all m ∈ Λ. As U is a countable union of the sets U ∩Xm, m ∈ Λ, in A, and

since A is a σ-algebra, it follows that U ∈ A.

We claim that B 6∈ A. To see this, note that if B ∈ A, it follows that B ∩X` ∈ A. But

then B ∩X` ∈ A`, a contradiction. �
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Lemma A.4. Let X =
⋃
m∈ΛX

m be a union of topological spaces, endowed with the sum

topology. Let B ∈ B(X`) for some ` ∈ Λ. Then B ∈ B(X).

Proof. Let A be the σ-algebra on X generated by the open sets in X` and the sets Xm,

m ∈ Λ. Then B(X) ⊇ A. It is therefore sufficient to show that B ∈ A. But this follows

directly from the definitions. �

We are now ready to prove Lemma A.5. The proof is by induction. As noted above, the

functions hQ,0,0i , hQ,1,0i , and hQ,1,1i are well-defined and measurable (as is hQ,<1,0
i ) for every

player i (whenever the respective domains are nonempty). Let k = 1, 2, . . .. Suppose that

the functions hQ,k,`i and hQ,k,ki are well-defined and measurable whenever Q̃k
i is nonempty. It

suffices to show that:

(i) The function hQ,<k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k.

(ii) The function hQ,k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k + 1.

To prove (i), first note that Q̃≤ki is nonempty whenever Q̃k
i is nonempty. It follows directly

from the induction hypothesis that hQ,<k+1,`
i and hQ,<k+1,k

i are well-defined for ` = 0, 1, . . . , k−
1, i.e.,

hQ,<k+1,`
i

(
Q̃≤ki

)
⊆ T≤`i , and hQ,<k+1,k

i

(
Q̃≤ki

)
⊆ T̃≤ki .

To show that hQ,<k+1,k
i is measurable, let B ∈ B(T̃≤ki ). Then,(
hQ,<k+1,k
i

)−1
(B) =

{
qi ∈ Q̃≤ki : hQ,<k+1,k

i (qi) ∈ B
}

=
k⋃

m=0

{
qi ∈ Q̃m

i : hQ,m,mi (qi) ∈ B ∩ T̃mi
}
.

Hence, it suffices to show that for all ` = 0, . . . k,{
qi ∈ Q̃`

i : hQ,`,`i (qi) ∈ B ∩ T̃ `i
}
∈ B

(
Q̃≤ki

)
. (A.3)

By Lemma A.3, we have that B ∩ T̃ `i ∈ B(T̃ `i ). It then follows from the measurability of hQ,`,`i

that {
qi ∈ Q̃`

i : hQ,`,`i (qi) ∈ B ∩ T̃ `i
}
∈ B

(
Q̃`
i

)
,

so that (A.3) follows from Lemma A.4. The proof that hQ,<k+1,`
i is measurable for ` =

0, . . . , k − 1 is similar and thus omitted.

The proof of (ii) consists of two parts. We first show that hQ,k+1,`
i and hQ,k+1,k+1

i are well-

defined for ` = 0, 1, . . . , k whenever Q̃k+1
i is nonempty. That is, suppose Q̃k+1

i is nonempty.

Then,

hQ,k+1,`
i

(
Q̃k+1
i

)
⊆ T `i and hQ,k+1,k+1

i

(
Q̃k+1
i

)
⊆ T̃ k+1

i
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Clearly, hQ,k+1,0
i (Q̃k+1

i ) ⊆ T 0
i . Let ` = 1, . . . , k − 1, and suppose hQ,k+1,`−1

i

(
Q̃k+1
i

)
⊆ T `−1

i .

We will show that hQ,k+1,`
i

(
Q̃k+1
i

)
⊆ T `i . From the induction hypothesis and (i) it follows

that hQ,<k+1,`−1
−i is well-defined and measurable (recall condition (d) in the definition of a type

space). Hence, for all qi ∈ Q̃k+1
i ,

hQ,k+1,`
i (qi) =

(
hQ,k+1,`−1
i (qi), β

k+1
i (qi) ◦

(
IdS, h

Q,<k+1,`−1
−i

)−1) ∈ T `i ×∆(S × T≤`−1
−i )

where we have used the induction hypothesis. If ` = 1, then we are done. So suppose

` = 2, 3, . . . , k. We need to show that a player’s higher-order beliefs are coherent, i.e., for

each qi ∈ Q̃k+1
i ,

marg|Ω`−2
i
βk+1
i (qi) ◦

(
IdS, h

Q,<k+1,`−1
−i

)−1
= βk+1

i (qi) ◦
(
IdS, h

Q,<k+1,`−2
−i

)−1
.

Fix E ∈ B(Ω`−2
i ). Then, using the extended definition of the marginal,

marg|Ω`−2
i
βk+1
i (qi) ◦

(
IdS, h

Q,<k+1,`−1
−i

)−1
(E)

= βk+1
i (qi) ◦

(
IdS, h

Q,<k+1,`−1
−i

)−1({
(s, (µ0

−i, . . . , µ
`−2
−i , µ

`−1
−i )) ∈ (S × T≤`−1

−i ) :

(s, (µ0
−i, . . . , µ

`−2
−i )) ∈ E

})
+ βk+1

i (qi) ◦
(
IdS, h

Q,<k+1,`−1
−i

)−1(
E ∩ (S × T̃≤`−2

−i )
)

= βk+1
i (qi) ◦

(
IdS, h

Q,<k+1,`−2
−i

)−1({
(s, (µ0

−i, . . . , µ
`−2
−i )) ∈ S × T `−2

−i :

(s, (µ0
−i, . . . , µ

`−2
−i )) ∈ E

})
+ βk+1

i (qi) ◦
(
IdS, h

Q,<k+1,`−2
−i

)−1(
E ∩ (S × T̃≤`−2

−i )
)

= βk+1
i (qi) ◦

(
IdS, h

Q,<k+1,`−1
−i

)−1
(E),

so that hQ,k+1,`
i (qi) ∈ T `i for ` = 2, 3, . . . , k. A similar argument shows that hQ,k+1,k+1

i (qi) ∈
T̃ k+1
i .

Next, we show that hQ,k+1,`
i is measurable, where ` = 0, 1, . . . , k + 1. For ` = 0, this is

immediate. So let ` = 1, 2, . . . , k + 1, and suppose the claim is true for `− 1. It then follows

directly from the induction hypothesis and (i) that the claim is true for ` (recall that the

image measure induced by a measurable function from a metrizable space into a metrizable

space is measurable). �

A.3 Proof of Proposition 4.1

We first prove the first claim. By Proposition 3.1, the space S× T̃∞−i is a nonempty Polish

space. By a version of the Kolmogorov consistency theorem, for any t∞i = (µ0
i , µ

1
i , . . .) ∈ T̃∞i ,

there exists a unique Borel probability measure µ∞i on S × T−i such that

marg|Ωk
i
µ∞i = µk+1

i ,

i.e., the mapping is canonical (Parthasarathy, 1978, Prop. 27.4). The last claim follows

immediately by associating the belief µ̃ki to the finite hierarchy tki = (µ0
i , . . . , µ

k−1
i , µ̃ki ) ∈ T ki .

�
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A.4 Proof of Proposition 4.2

First consider the infinite hierarchies. Proposition 4.1 shows that each infinite belief

hierarchy t∞i = (µ0
i , µ

1
i , . . .) ∈ T̃∞i corresponds to a unique Borel probability measure on

S × T−i, and the mapping is canonical. Denote the function that maps T̃∞i to ∆(S × T−i) in

this way by ψ∞i . Conversely, let r∞i : ∆(S × T−i)→ T̃∞i be the mapping that assigns to each

µi ∈ ∆(S × T−i) the hierarchy (marg|Sµi,marg|Ω0
i
µi,marg|Ω1

i
µi, . . .) ∈ ∆(S) ×

∏
k≥0 ∆(Ωk

i ).

The function r∞i is the inverse of ψ∞i ; it remains to show that ψ∞i and r∞i are continuous.

The function ψ∞i is continuous if and only if tni → ti in T̃∞i implies ψ∞i (tni ) → ψ∞i (ti) in

∆(S × T−i). But the cylinders form a convergence-determining class in S × T−i (Billingsley,

1999, Thm. 2.4), and the value of ψ∞i (ti) for ti = (µ0
i , µ

1
i , . . .) on the cylinders is given by the

µki ’s. Finally, it follows from the continuity of the marginal operator that r∞i is continuous.

For the case of finite hierarchies, simply set ψki (tki ) := µ̃ki for each tki = (µ0
i , . . . , µ

k−1
i , µ̃ki ) ∈

T ki . Continuity of the mapping ψki is immediate. �

A.5 Proof of Proposition 4.4

Let Q = 〈(Qi)i∈N , (β
k
i )i∈N,k∈KQ

i
〉 be a type space that allows for finite-order reasoning. To

construct a type morphism from the types in Q to the types in the space T , we first construct

a collection of functions that maps each type into the associated hierarchy of beliefs (Step 1).

Step 2 establishes that these mappings define a type morphism from Q to T . Step 3 then

shows that this type morphism is unique.

Step 1: From types to belief hierarchies

Each type induces a belief hierarchy of the kind discussed in Section 3.1, as we show now.

The mapping from types to belief hierarchies is standard,8 except that we need to take into

account that hierarchies may be finite.

We define a collection of mappings. Lemma A.5 below shows that these functions are

well-defined. For i ∈ N , if Q̃0
i 6= ∅, let hQ,0,0i : Q̃0

i → T̃ 0
i be the trivial mapping that assigns to

each qi ∈ Q̃0
i the ‘naive’ type t̃0i , i.e., hQ,0,0i (qi) = t̃0i . Clearly, hQ,0,0i (Q̃0

i ) ⊆ T̃ 0
i . Also, hQ,0,0i is

measurable.

Similarly, define hQ,1,0i : Q̃1
i → T 0

i to be the trivial mapping whenever Q̃1
i is nonempty.

Again, it is easy to see that hQ,1,0i (Q̃1
i ) ⊆ T 0

i , and that hQ,1,0i is measurable. If Q̃0
i is nonempty,

define the function hQ,<1,0
i : Q̃0

i → T̃ 0
i by

hQ,<1,0
i (qi) := hQ,0,0i (qi).

8See, for example, Mertens and Zamir (1985), and Heifetz and Samet (1998).
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Again, hQ,<1,0
i (Q̃0

i ) ⊆ T̃ 0
i , and hQ,<1,0

i is measurable. Finally, define the function hQ,1,1i : Q̃1
i →

T̃ 1
i by

hQ,1,1i (qi) :=
(
hQ,1,0i (qi), β

1
i (qi) ◦

(
IdS, h

Q,<1,0
−i

)−1)
,

where IdS is the identity function on S. It is easy to verify that hQ,1,1i (Q̃1
i ) ⊆ T̃ 1

i . Using that

an image measure induced by a measurable function from a metrizable space into a metrizable

space is measurable,9 it follows directly that hQ,1,1i is measurable.

Fix k = 1, 2, . . ., and let ` = 0, . . . , k − 1. Suppose, inductively, that the mappings

hQ,m,`i have been defined for m = 0, 1 . . . , kwhenever the relevant domain is nonempty. If

Q̃≤ki =
⋃k
m=0 Q̃

m
i 6= ∅, then define

hQ,<k+1,`
i : Q̃≤ki → T≤`i

by

∀m = 0, 1, . . . , k, qi ∈ Q̃m
i : hQ,<k+1,`

i (qi) :=

{
hQ,m,`i (qi) if m > `;

hQ,m,mi (qi) if m ≤ `;

Also, for k > 0, let

hQ,<k+1,k
i : Q̃≤ki → T̃≤ki

be defined by

∀m = 0, 1, . . . , k, qi ∈ Q̃m
i : hQ,<k+1,k

i (qi) := hQ,m,mi (qi)

Then, if Q̃k+1
i 6= ∅, let hQ,k+1,0

i : Q̃k+1
i → T 0

i be the trivial mapping, as before, and for

` = 1, . . . , k, define hQ,k+1,`
i : Q̃k+1

i → T `i by

hQ,k+1,`
i (qi) :=

(
hQ,k+1,`−1
i (qi), β

k+1
i (qi) ◦

(
IdS, h

Q,<k+1,`−1
−i

)−1
)
,

where IdS is the identity function on S. Finally, define hQ,k+1,k+1
i : Q̃k+1

i → T̃ k+1
i by

hQ,k+1,k+1
i (qi) :=

(
hQ,k+1,k
i (qi), β

k+1
i (qi) ◦

(
IdS, h

Q,<k+1,k
−i

)−1
)
.

The next lemma states that these functions are well-defined:

Lemma A.5. Let i ∈ N and k = 0, 1, . . ..

(a) If Q̃k
i 6= ∅, then hQ,k,`i is well-defined and measurable for ` = 0, 1, . . . , k.

(b) If Q̃≤ki 6= ∅, then hQ,<k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k.

9Given a measurable function f : X → Y , the image measure f : ∆(X) → ∆(Y ) induced by f is defined

by f(µ) := µ ◦ f−1 for all µ ∈ ∆(X). If Z is Polish, then the Borel σ-algebra on ∆(Z) is generated by sets of

the form {µ ∈ ∆(Z) : µ(E) ≥ p}, where E ∈ B(Z) and p ∈ [0, 1].
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For i ∈ N and k <∞ such that Q̃k
i is nonempty, define hQ,ki : Q̃k

i → T̃ ki by:

hQ,ki (qi) :=
(
hQ,k,0i (qi), β

k
i (qi) ◦

(
IdS, h

Q,<k,0
−i

)−1
, βki (qi) ◦

(
IdS, h

Q,<k,1
−i

)−1
, . . . ,

βki (qi) ◦
(
IdS, h

Q,<k,k−1
−i

)−1
)
,

i.e., hQ,ki (qi) is the belief hierarchy (of depth k) induced by qi. It follows directly from the

above that hQ,ki is well-defined and measurable.

We next define a collection of functions that will be used to obtain the belief hierarchies of

infinite depth. For i ∈ N , if Q̃∞i 6= ∅, let hQ,∞,0i : Q∞i → T 0
i again be the trivial mapping. For

` = 1, 2, . . ., assume that hQ,∞,`−1
i : Q∞i → T `−1

i has been defined and is measurable. Define

hQ,≤∞,`−1
i : Q̃∞i ∪

⋃∞
m=0 Q̃

m
i → T≤`−1

i by

∀m =∞, 0, 1, . . . , qi ∈ Q̃m
i : hQ,≤∞,`−1

i (qi) =

{
hQ,m,`−1
i (qi) if m > `− 1;

hQ,m,mi (qi) if m ≤ `− 1;

Also, define hQ,∞,`i : Q̃∞i → T `i by

hQ,∞,`i (qi) :=
(
hQ,∞,`−1
i (qi), β

∞
i (qi) ◦

(
IdS, h

Q,≤∞,`−1
−i

)−1
)
.

Again, these functions are well-defined:

Lemma A.6. Let i ∈ N .

(a) If Q̃∞i 6= ∅, then hQ,∞,`i is well-defined and measurable for ` = 0, 1, . . ..

(b) The function hQ,≤∞,`i is well-defined and measurable for ` = 0, 1, . . ..

The proof is similar to that of Lemma A.5, and thus omitted. Define hQ,∞i : Q̃∞i → T̃∞i
by:

hQ,∞i (qi) :=
(
hQ,∞,0i (qi), β

∞
i (qi) ◦

(
IdS, h

Q,≤∞,0
−i

)−1
, β∞i (qi) ◦

(
IdS, h

Q,≤∞,1
−i

)−1
, . . .

)
.

That is, hQ,∞i (qi) is the belief hierarchy (of infinite depth) induced by qi. By the above, hQ,∞i
is well-defined and measurable. Thus, each type generates a well-defined belief hierarchy.

We next define a type morphism from an arbitrary type space Q to T , using the mappings

defined in Step 1.

Step 2: Constructing a type morphism

Recall that KQ
i is the set of indices k ∈ {0, 1, . . .} ∪ {∞} such that Q̃k

i is nonempty. For

i ∈ N , define ϕi := (ϕki )k∈KQ
i

as follows. If k ∈ KQ
i is finite, then define ϕki : Q̃k

i → T̃ ki by:

ϕki (qi) := hQ,ki (qi).
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If Q∞i is nonempty, then define ϕ∞i : Q∞i → T̃∞i by:

ϕ∞i (qi) := hQ,∞i (qi).

We show that ϕ = (ϕi)i∈N is a type morphism. By Lemmas A.5 and A.6, the functions ϕki ,

i ∈ N , k ∈ KQ
i , are well-defined and measurable. It remains to show that the mappings

preserve higher-order beliefs.

To show this, let i ∈ N and suppose there is k <∞ such that Q̃k
i 6= ∅. We need to show

that for each qi ∈ Q̃k
i and E ∈ B(S × T̃≤k−1

−i ),

ψki
(
ϕki (qi)

)
(E) = βki (qi)

((
IdS, ϕ

<k
i

)−1
(E)
)
.

Let qi ∈ Q̃k
i . Using that the belief mappings in T are canonical, it follows that

ψki
(
ϕki (qi)

)
(E) = ψki

(
hQ,k,0i (qi), β

k
i ◦ (IdS, h

Q,<k,0
−i )−1, . . . , βki ◦ (IdS, h

Q,<k,k−1
−i )−1

)
(E)

= βki (qi)
(
(IdS, h

Q,<k,k−1
−i )−1)(E)

)
.

Next suppose that Q̃∞i 6= ∅, and let qi ∈ Q∞i . We need to show that for each E ∈ B(S×T−i),

ψ∞i (ϕ∞i (qi)) (E) = β∞i (qi)
((

IdS, ϕ
∞
i

)−1
(E)
)
.

Let qi ∈ Q∞i . Again using that the belief maps in T are canonical, we have

ψ∞i (ϕ∞i (qi)) (E) = ψ∞i

(
hQ,∞,0i (qi), β

∞
i ◦ (IdS, h

Q,≤∞,0
−i )−1, . . .

)
(E)

= β∞i (qi)
(
(IdS, h

Q,∞
−i )−1(E)

)
.

It follows that ϕ is a type morphism.

Step 3: There is a unique type morphism from any type space to T
We show that for any type space Q, there is a unique type morphism from Q to T . The proof

uses the following lemmas. Lemma A.7 shows that type morphisms preserve belief hierarchies

(cf. Heifetz and Samet, 1998, Prop. 5.1):

Lemma A.7. Fix arbitrary type spaces Q and R, and let ϕ be a type morphism from Q to

R. Then, for each i ∈ N ,

(a) if Q̃k
i 6= ∅ for k <∞, then hR,ki (ϕki (qi)) = hQ,ki (qi);

(b) if Q̃∞i 6= ∅, then hR,∞i (ϕ∞i (qi)) = hQ,∞i (qi).
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Proof. Here we show (a); the proof that (b) holds is similar. The claim clearly holds for

k = 0 for every player i such that Q̃0
i 6= ∅, as T̃ 0

i is a singleton. Let k = 1, 2, . . ., and suppose

the claim is true for all i ∈ N and m = 0, 1, . . . , k − 1 such that Q̃m
i is nonempty. Again,

for each i ∈ N such that Q̃k
i 6= ∅, it is easy to see that hR,k,0i (ϕki (qi)) = hQ,k,0i (qi) for every

qi ∈ Q̃k
i , where hR,k,0i is defined analogously to hQ,k,0i (recall that KR

i ⊇ KQ
i , so that hR,k,0i is

well-defined). Let ` = 1, . . . , k and suppose that

hR,k,mi

(
ϕki (qi)

)
= hQ,k,mi (qi)

for every qi ∈ Q̃k
i and m ≤ ` − 1. Denoting the belief maps for player i in R by λki , where

k ∈ KR
i , we can use condition (4.1) to obtain

λki
(
ϕki (qi)

)
◦
(
IdS, h

R,<k,`−1
−i

)−1
= βki (qi) ◦

(
IdS, ϕ

<k
−i
)−1 ◦

(
IdS, h

R,<k,`−1
−i

)−1

= βki (qi) ◦
(
IdS, h

R,<k,`−1
−i ◦ ϕ<k−i

)−1

= βki (qi) ◦
(
IdS, h

Q,<k,`−1
−i

)−1
,

where the last line uses the induction hypothesis. Again using the induction hypothesis, this

gives

hR,k,`i

(
ϕki (qi)

)
=

(
hR,k−1,`
i

(
ϕki (qi)

)
, λki
(
ϕki (qi)

)
◦
(
IdS, h

R,<k,`−1
−i

)−1)
=

(
hQ,k,`−1
i (qi), β

k
i (qi) ◦

(
IdS, h

Q,<k,`−1
−i

)−1)
= hQ,k,`i (qi),

for every qi ∈ Q̃k
i . �

Lemma A.8. Let i ∈ N and k = 0, 1, . . . or k = ∞. Then hT,ki : T̃ ki → T̃ ki is the identity

function.

The proof of Lemma A.8 follows directly from Propositions 4.1 and 4.2.

To show that ϕ is the unique type morphism from Q to T , suppose that ϕ̃ is a type

morphism from Q to T . Then, it follows from Lemma A.7 that for every i ∈ N and k ∈ KQ
i ,

hT,ki
(
ϕ̃ki (qi)

)
= hQ,ki (qi).

But by Lemma A.8,

hT,ki
(
ϕ̃ki (qi)

)
= ϕ̃ki (qi),

so that ϕ̃ki (qi) = hQ,ki (qi). The result then follows by noting that ϕki = hki .

To summarize: Step 2 shows that for any type space Q, there is a type morphism from Q
to T , using the functions defined in Step 1. Step 3 shows that this type morphism is unique.
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Hence, T is universal. It remains to show that there is at most one universal space, up to

type isomorphism (cf. Heifetz and Samet, 1998, Prop. 3.5).

To see this, suppose that T and T ′ are universal. Then, there is a type morphism ϕ from

T to T ′ and a type morphism ϕ′ from T ′ to T . Hence, ϕ′ ◦ ϕ is a type morphism from T to

T . But the tuple IdT := (IdT̃k
i
)k∈KT

i
, where IdT̃k

i
is the identity mapping on T̃ ki , is also a type

morphism from T to T . By uniqueness of the type morphisms, it follows that ϕ′ ◦ ϕ = IdT .

Similarly, ϕ ◦ ϕ′ = IdT ′ . Hence, ϕ is an isomorphism. �

A.6 Proof of Proposition 4.5

Let Q be a type structure that allows for finite-order reasoning. We first prove the first

claim. If hQj is injective, then it is trivially countably uncountable, i.e., the set {tj ∈ Tj :

(hQ,kj )−1(tj) is uncountable} is countable (as it is empty) for every k. It then follows from

Purves’ theorem that hQ,kj is bimeasurable (Purves, 1966), i.e., for all B ∈ B(Q̃k
j ), h

Q,k
j (B) ∈

B(T̃ kj ). In particular,

{tj ∈ Tj : tj = ϕ
κ(qj)
j (qj) for some qj ∈ Qj} =

⋃
k∈KQ

j

ϕkj (Q̃
k
j ) ∈ B(Tj).

Hence, S ×
∏

j 6=i{tj ∈ Tj : tj = ϕ
κ(qj)
j (qj) for some qj ∈ Qj} is indeed an event in B(S × T−i).

The result now follows directly from the definition of a type morphism.

The second claim follows directly by setting Qi := T ′i and βki := ψki for all i ∈ N and

k ∈ KQ
i . �

A.7 Proof of Lemma 4.6

The result follows immediately by noting that the Borel σ-algebra on ∆(S × Q−i) is

generated by sets of the form

E ∈ B(S ×Q−i), p ∈ [0, 1] : {µ ∈ ∆(S ×Q−i) : µ(E) ≥ p}.�

A.8 Proof of Proposition 4.7

Let ϕ be the type morphism from Z to T . Clearly, ϕ∞i (zi) ∈ T̃∞i for all i ∈ N and zi ∈ Zi.
Hence,

S ×
∏
j∈N

{
tj ∈ Tj : tj = ϕ

κ(zj)
j (zj) for some zj ∈ Zj

}
⊆ E∞.

The type structure Z is nonredundant by construction. Hence, by Proposition 4.5,

ψi
(
ϕ∞i (zi)

)(
S ×

∏
j∈N

{
tj ∈ Tj : tj = ϕ

κ(zj)
j (zj) for some zj ∈ Zj

})
= 1
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for each i ∈ N and zi ∈ Zi, so that

S ×
∏
j∈N

{
tj ∈ Tj : tj = ϕ

κ(zj)
j (zj) for some zj ∈ Zj

}
⊆ CB(E∞).

To prove the reverse inclusion, it is sufficient to show that for each i ∈ N , there is

Y ∞i ⊆ Z∞i such that

ϕ∞i (Y ∞i ) = πS×TTi

(
E∞ ∩ CB(E∞)

)
.

To show this, we construct a map f̂ from E∞ ∩ CB(E∞) to S × Ẑ. First note that E∞ ∩
CB(E∞) ⊆ S × T̃∞. For i ∈ N and (µ0

i , µ
1
i , . . .) ∈ E∞ ∩ CB(E∞), let f̂ 0

i (µ0
i ) := z0

i . For

k = 1, 2, . . ., suppose fk−1
j : πS×T

Tk−1
j

(E∞ ∩ CB(E∞)) → Ẑk−1
j has been defined for all j ∈ N .

For i ∈ N and (µ0
i , µ

1
i , . . .) ∈ E∞ ∩ CB(E∞), define

f̂ki (µ0
i , . . . , µ

k
i ) :=

(
f̂k−1
i (µ0

i , . . . , µ
k−1
i ), µki ◦

(
IdS, f̂

k−1
−i
)−1)

.

It is easy to check that f̂ki is well-defined, given that the beliefs specified by the belief hi-

erarchies in E∞ ∩ CB(E∞) are coherent. Then, for each (s, t) ∈ E∞ ∩ CB(E∞), with

ti = (µ0
i , µ

1
i , . . .) for i ∈ N , define

f̂(s, t) := (s, (f̂ 0
i (µ0

i ), µ
1
i ◦ (IdS, f̂

0
−i)
−1, . . .)i∈N).

Again, it is easy to verify that f̂(E∞∩CB(E∞)) ⊆ S×Ẑ, so that the set πS×Ẑ
Ẑi

(E∞∩CB(E∞))

corresponds to a subset Y ∞i of Z∞i . Given that there is a unique type morphism ϕ from Z to

T , it must be the case that ϕ∞i (Y ∞i ) = πS×TTi
(E∞ ∩ CB(E∞)), and the result follows. �

A.9 Proof of Lemma 6.1

Since
∂v

∂z
= 1−

√
2ε√

2ε2 + 2ε+ z
∈ (0, 1)

and v
(

1
2
; ε
)

= 1
2
, it follows that v (0; ε) < 1

2
and that

vk (0; ε)↗k→∞
1

2
.

On the other hand,

v (0; ε) =
(
2ε+ 4ε2

)
− 2ε

√
2 (2ε+ 2ε2) −→

ε→0
0.

Inductively, if we have already shown that

vk−1 (0; ε) −→
ε→0

0

then it follows that

vk (0; ε) = v
(
vk−1 (0; ε) ; ε

)
=
(
vk−1 (0; ε) + 2ε+ 4ε2

)
− 2ε

√
2 (vk−1 (0; ε) + 2ε+ 2ε2) −→

ε→0
0

as well. �
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A.10 Proof of Proposition 6.4

Fix p < 1, and let ti be a type for player i that has an infinite depth of reasoning and

assigns probability pk(1 − p) to the event that the other player −i’s type is in Ḡk
−i, where

k = 0, 1, 2, . . .. There is k∗ such that ti assigns probability less than min
{
s
4
, 1−s

4

}
to types in⋃

k>k∗ Ḡ
k
−i .

Given any εk∗ (s) as defined in Proposition 6.3, let εp (s) := min
{
εk∗ (s) , s

4
, 1−s

4

}
. Then,

if ε < εp (s), both investing and not investing are rationalizable for types in
⋃
k≤k∗ Ḡ

k
−i.

Since εp (s) ≤ min
{
s
4
, 1−s

4

}
, both players’ signals are confined to the interval

[
s− s

4
, s+ 1−s

4

]
.

Therefore, both players assign probability 1 to the event that the state of nature is in the inter-

val
[
s− s

2
, s+ 1−s

2

]
. But given that the probability that ti assigns to the types in

⋃
k>k∗ Ḡ

k
−i

(who may have a unique rationalizable action) is less than min
{
s
4
, 1−s

4

}
, both actions are

rationalizable for ti. �

A.11 Proof of Proposition 6.5

The proof is analogous to the proof of Proposition 6.4. Fix r < 1, and let ti be the type of

player i that assigns probability rk(1− r) to the event that the other player −i’s type is tm,−i,

where m = 0, 1, 2, . . .. There is m∗ such that ti assigns probability less than min
{
s
4
, 1−s

4

}
to

types in
⋃
m>m∗ {tm,−i}.

Given any εp∗ (s) as defined in Proposition 6.4, let εr (s) := min
{
εp∗ (s) , s

4
, 1−s

4

}
. Then,

if ε < εr (s), both investing and not investing are rationalizable for types in
⋃
m≤m∗ {tm,−i}.

Since εr (s) ≤ min
{
s
4
, 1−s

4

}
, both players’ signals are confined to the interval

[
s− s

4
, s+ 1−s

4

]
.

Therefore, both players assign probability 1 to the event that the state of nature is in

the interval
[
s− s

2
, s+ 1−s

2

]
. But given that the probability that ti assigns to the types

in
⋃
m>m∗ {tm,−i} (who may have a unique rationalizable action) is less than min

{
s
4
, 1−s

4

}
,

both actions are rationalizable for ti. �
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