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Abstract

We offer a theory of polarization as an optimal response to ambi-

guity. Suppose individual A’s beliefs first-order stochastically dominate

individual B’s. They observe a common signal. They exhibit polariza-

tion if A’s posterior dominates her prior and B’s prior dominates her

posterior. Given agreement on conditional signal likelihoods, we show

that polarization is impossible under Bayesian updating or after observ-

ing extreme signals. However, we also show that polarization can arise

after intermediate signals as ambiguity averse individuals implement

their optimal prediction strategies. We explore when this polarization

will occur and the logic underlying it.
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1 Introduction

A number of voters are in a television studio before a U.S. Presidential debate.

They are asked the likelihood that the Democratic candidate will cut the

budget deficit, as he claims. Some think it is likely and others unlikely. The

voters are asked the same question again after the debate. They become even

more convinced that their initial inclination is correct. A similar phenomenon

can arise in financial markets. “Bulls” and “bears” have different beliefs.

On seeing the same macroeconomic forecasts, they become more bullish and

bearish respectively. Individuals observe the same evidence, and yet their

beliefs move in opposite directions and end up further apart.

Similar polarization of beliefs has been documented in experiments. For

example, Darley and Gross (1983) randomize subjects into different groups.

They show one group evidence suggesting a child is from a high socioeconomic

background; another that she is from a low socioeconomic background. The

former predict the child’s reading abilities are higher than the latter. The

groups then watch a film of the child taking an oral test on which she answers

some questions correctly and others incorrectly. Those who received the infor-

mation that the child came from a high socioeconomic background, rate her

abilities higher than before; those who received the information indicating she

came from a low socioeconomic background rate her lower than before. Thus,

the common evidence - the film - leads beliefs to polarize.

We follow Dixit and Weibull (2007) in defining polarization as follows: Sup-

pose that, prior to observing a common signal, two individuals have different

beliefs and individual A’s belief first-order stochastically dominates individual

B’s. Their beliefs exhibit polarization if, after observing the common signal,

individual A’s posterior dominates his prior and individual B’s prior dominates

his posterior.

Consider two individuals who agree on the probability of each signal condi-

tional on an underlying parameter and use Bayes’ rule to update their beliefs.

We show polarization cannot occur. As individuals share the same theory con-

necting parameters to signals, a given signal increases one individual’s belief

2



if and only if it increases the other’s (Theorem 2.1).

In contrast, we show that polarization can occur as an optimal response

to ambiguity aversion (i.e., aversion to subjective uncertainty about proba-

bilities). We do this within a simple prediction model: An individual must

predict the value of a parameter that determines the distribution of a random

variable. The individual views the parameter as ambiguous and is ambiguity

averse. He observes a number of conditionally independent signals that can

inform his predictions. His payoff is decreasing in the squared difference be-

tween his prediction and the parameter. This is a standard model apart from

ambiguity aversion.

How does ambiguity aversion affect behavior? An individual is exposed to

ambiguity when the expected payoff to his strategy varies with probabilities

over which he is uncertain. Different strategies may involve different exposure

to ambiguity. Suppose there are just two possible parameter values, 0 and

1. If the individual predicts 1
2
, then the difference between the prediction

and the parameter is the same no matter what the parameter value. Thus,

this prediction strategy completely hedges, i.e., removes any exposure to the

ambiguity about the parameter. However, if the individual predicts 1, the

squared difference is much higher when the parameter is 0 than when it is

1, exposing the individual to ambiguity. An ambiguity averse individual will

tend to favor strategies that reduce exposure. Reducing exposure is not the

only concern of such an individual – for example, the more weight his beliefs

place on the parameter equaling 1, the higher his optimal prediction.

Simple strategies such as “predict 1
2
” or “predict 1” are generally not op-

timal when signals are forthcoming, as these strategies fail to condition on

anticipated information. An optimal contingent strategy will make the predic-

tion an increasing function of the observed signal likelihood ratio. We focus

on individuals who form an ex-ante optimal contingent strategy (i.e., optimal

assuming full commitment to that strategy once chosen) and who are indeed

willing to carry it out after each possible contingency. Such an individual is

said to be dynamically consistent.1 Dynamic consistency is assumed in almost

1See e.g., Hanany and Klibanoff (2007, 2009) for such an approach to modeling ambiguity
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all standard economic analysis. Any theory of updating that is not dynami-

cally consistent will lead to worse outcomes as evaluated by ex-ante welfare.

Also, studying the dynamically consistent case identifies the key effects leading

to polarization that apply even when substantial dynamic inconsistency may

be present (see the Concluding Remarks).

Suppose the individual concludes that “predict 3
4

if the signal is high, 1
2

if the signal is medium, and 1
4

if the signal is low” is his optimal strategy.

This strategy leaves him partially exposed to the ambiguity about the param-

eter. Notice, however, that this exposure varies with the signal received. He

is not exposed to ambiguity after a medium signal but is exposed after a high

or low signal. Under ambiguity aversion, the greater exposure to ambiguity

after seeing a high or low signal may lead to an increased desire to hedge

against this ambiguity, while the lack of exposure after seeing a medium signal

may diminish the value of hedging. These changed hedging motives, ceteris

paribus, could lead the individual to want to depart from the ex-ante optimal

strategy. We call this the hedging effect. There is also a more standard effect

having nothing to do with ambiguity attitude. After a signal is realized, the

likelihoods of this signal are no longer relevant for optimality going forward –

only likelihoods of future signals matter at that point. We call this the like-

lihood effect. Because of this effect, after seeing the signal, if beliefs were not

updated to incorporate that signal’s likelihoods, the individual might want to

depart from the ex-ante optimal strategy. Dynamically consistent updating

must neutralize both the hedging and the likelihood effects of the signal on

the incentives of an ambiguity averse individual. Bayesian updating counter-

balances only the likelihood effect. The presence of the hedging effect leads

dynamically consistent updating to necessarily depart from Bayes’ rule under

ambiguity aversion.2 Of particular interest, the hedging effect may alter the

direction of updating. Moreover, the hedging effect (but not the likelihood

effect) depends on the ex-ante optimal strategy which, in turn, is influenced

averse individuals and for discussion and references to alternative approaches.
2In contrast, for an expected utility maximizer, dynamic consistency requires that sub-

jective beliefs are updated using Bayes’ rule, thus ruling out polarization.
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by the individual’s beliefs before observing the signal. Through this chain of

reasoning, beliefs can influence the direction of updating. This allows for the

possibility of polarization. We study when polarization does and does not

occur.

Even under ambiguity aversion, we show that polarization does not occur

after observing the highest or the lowest signals (Theorem 3.1). Thus, polar-

ization is a possibility only at signals with an intermediate likelihood ratio.

We can offer a particularly clean result if the intermediate signal is neutral

(i.e., has equal probability under both parameter values). Then the hedging

effect is the only reason to update beliefs – there is no likelihood effect. We

show that individuals with sufficiently extreme and opposite beliefs display

polarization after observing a common neutral intermediate signal (Theorem

3.2). When there are exactly three possible signals and there is constant rel-

ative ambiguity aversion, we provide necessary and sufficient conditions for

polarization (Theorem 3.3) that apply even when the intermediate signal is

not neutral.

All of the above results apply whether or not the two individuals have the

same degree of ambiguity aversion as long as initial beliefs differ. Finally, even

if individuals have the same beliefs, if they observe different private signals

before observing a common signal, they can have different beliefs by the time

they see the common signal and, at that point, our above results apply (The-

orem 3.4). We now turn to our model. Related literature is discussed at the

end of the paper.

2 The Model and Benchmark Result

Consider an individual who is concerned with the value of a parameter θ ∈
Θ ⊂ R. His beliefs are given by a full-support prior µ. To help inform the

individual about θ, conditionally independent observations from a random

variable X given θ may be available. This random variable has distribution πθ

and takes values in a finite set X such that each x ∈ X has πθ(x) > 0 for some

θ ∈ Θ. For example, θ might indicate a child’s reading ability, while πθ might
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be the distribution of scores on a reading test for a child with that ability.

We assume that Θ is finite and, without loss of generality, index Θ so that

θ1 < θ2 < ... < θ|Θ|. A distribution η̂ (first-order) stochastically dominates η̌ if

k∑
i=1

η̌ (θi) ≥
k∑
i=1

η̂ (θi) for all k ∈ {1, 2, ..., |Θ|}.

The dominance is strict if at least one of these inequalities is strict. We adopt

the following definition of polarization due to Dixit and Weibull (2007):

Definition 2.1. Fix two individuals with beliefs η̌ and η̂ over Θ and with com-

mon support such that η̂ stochastically dominates η̌. After they both observe

a signal x ∈ X whose likelihood given θ ∈ Θ is πθ (x), we say that polarization

occurs if and only if the resulting posterior beliefs, ν̌ and ν̂ respectively, lie

further apart, i.e., η̌ stochastically dominates ν̌ and ν̂ stochastically dominates

η̂ with at least one dominance strict.

Starting from two beliefs, one higher than the other, polarization occurs

when the observation of a common signal leads the higher belief to move higher

and the lower belief to move lower. The requirement that one initial belief be

higher than the other is essential to rule out the possibility that posteriors

move in opposite directions but toward each other. If initial beliefs were not

ranked, one were updated upward and the other downward, it would not be

clear whether beliefs had moved toward or away from one another. Even if the

requirement that initial beliefs be ranked were somehow relaxed, the results of

this paper would continue to hold. Our benchmark impossibility result (The-

orem 2.1) does not rely on the initial beliefs being ranked. Additionally, in

the setting we use in the next section to show polarization under ambiguity

aversion, beliefs can always be ranked by dominance. In more complex set-

tings, this aspect of defining polarization may matter. We favor Definition 2.1

because whenever it identifies polarization, there is no doubt that beliefs are

moving away from one another.

The following result shows that, in this setting, under Bayesian updating,

irrespective of any non-belief aspect of preference, polarization cannot occur.
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The theorem and proof formalize the intuitive statement that, as long as their

priors share the same support, if two individuals who use Bayes’ rule see the

same observation and agree on the probability of each observation conditional

on the parameter, it is impossible for them to update in opposite directions in

the sense of first-order stochastic dominance. All proofs are in the Appendix.

Theorem 2.1. Fix two individuals as in Definition 2.1. Polarization cannot

occur if they use Bayesian updating.

3 Polarization and Ambiguity

For the remainder of the paper, suppose the individual’s goal is to predict the

value of the parameter θ. For tractability, we assume Θ = {0, 1} so there are

just two possible parameter values. Accordingly, throughout this section let µ

denote µ(θ = 1). For example, θ = 1 might indicate a child has high reading

ability and the prediction α ∈ [0, 1] might be interpreted as a probability that

the child has high reading ability. We make the standard assumption that the

payoff to a prediction α is given by quadratic loss; i.e., −(α − θ)2. To avoid

tedious corner cases, we assume πθ has full support for each θ. The individ-

ual is allowed to condition his prediction on n ≥ 0 observations and hence

his strategy is a function α : X n → R. We use uppercase X and lowercase

x to distinguish between a random variable and its realization, respectively.3

We assume the individual views θ as ambiguous, is risk neutral and evaluates

prediction strategies according to ambiguity averse smooth ambiguity prefer-

ences (Klibanoff, Marinacci and Mukerji (2005)). Specifically, any prediction

strategy is evaluated according to the concave objective function

E(µ,1−µ)φ
[
Eπθ...πθ(−(α (X1, ..., Xn)− θ)2)

]
,

where φ is increasing, concave and continuously differentiable, E is the ex-

pectation operator (with respect to the subscripted distribution), (µ, 1 − µ)

3For example, α (x1, ..., x`, X`+1, ..., Xn) is the random (since the last n− ` observations
are yet-to-be-realized) prediction given that the first ` observations are x1, ..., x`.
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is the belief about θ and πθ...πθ is the n-fold product measure generated by

πθ. Observe that if φ is linear (i.e., ambiguity neutrality), the objective func-

tion reduces to expected quadratic loss. The concavity of φ reflects ambiguity

aversion. We will sometimes additionally assume constant relative ambiguity

aversion γ ≥ 0, in which case φ(u) = − (−u)1+γ

1+γ
for u ≤ 0.

The optimal strategy α∗ (x1, ..., xn) is the unique solution to the first-order

conditions:

α∗ (x1, ..., xn)

1− α∗ (x1, ..., xn)

φ′[Eπ0...π0(−(α∗ (X1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (X1, ..., Xn))2)]

n∏
i=1

π0(xi)

π1(xi)
=

µ

1− µ
(3.1)

for each (x1, ..., xn) ∈ X n.

The difference from the usual prediction problem with ambiguity neutrality

is the presence of the term
φ′[Eπ0...π0 (−(α∗(X1,...,Xn))2)]

φ′[Eπ1...π1 (−(1−α∗(X1,...,Xn))2)]
on the left-hand side of

(3.1). Under ambiguity aversion, φ is concave, and this term reflects the

desire to hedge or reduce the variation in expected payoffs as a function of

the ambiguous parameter θ. Ambiguity aversion ensures that when expected

payoffs across the θ’s differ, the φ′ ratio pushes the optimal prediction strategy

in the direction of equalizing them by moving the predictions toward the θ

with the lower expected payoff. This is the manifestation of the value that

ambiguity averse individuals place on hedging against ambiguity. For this

reason, we call this φ′ ratio the hedging motive. It compares the marginal

value of an extra unit of expected utility when θ = 0 to the marginal value

when θ = 1. When these expected payoffs are equal (i.e., a perfect hedge)

the hedging motive equals one. Values above (below) one reflect a stronger

(weaker) desire to shift expected payoff from θ = 1 to θ = 0, i.e., to hedge by

adjusting the prediction strategy α∗ downward.

We have the following useful implication of (3.1) that is true independent

of ambiguity attitude: for any (x1, ..., xn) , (y1, ..., yn) ∈ X n,

α∗ (x1, ..., xn)

1− α∗ (x1, ..., xn)

n∏
i=1

π0(xi)

π1(xi)
=

α∗ (y1, ..., yn)

1− α∗ (y1, ..., yn)

n∏
i=1

π0(yi)

π1(yi)
. (3.2)
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The intuition for this equality is the standard one concerning equating marginal

rates of substitution across signal realizations.

In a prediction problem, updating maps beliefs about θ and new observa-

tions to posterior beliefs about θ. Dynamically consistent updating is updating

that preserves the optimality of the contingent strategy α∗ (x1, ..., xn) as ob-

servations are realized (i.e., ex-ante optimal updating).4 Let ν` denote the

posterior probability of θ = 1 after observing x1, ..., x` in a prediction prob-

lem with n ≥ ` observations available. Dynamically consistent updating is

equivalent to these posteriors ν` satisfying

α∗ (x1, ..., xn)

1− α∗ (x1, ..., xn)

φ′[Eπ0...π0(−(α∗ (x1, ..., x`, X`+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., x`, X`+1, ..., Xn))2)]

n∏
i=`+1

π0(xi)

π1(xi)
=

ν`
1− ν`

(3.3)

for all 0 ≤ ` ≤ n and all (x1, ..., xn) ∈ X n. Note that (3.3) is simply the

first-order condition of the continuation prediction problem, evaluated at the

ex-ante optimal strategy α∗ (x1, ..., xn), after x1, ..., x` have been realized and

assuming beliefs at that point are ν`. It therefore guarantees that α∗ (x1, ..., xn)

remains optimal as observations accumulate. After the next result, we describe

the difference, under ambiguity aversion, between dynamically consistent up-

dating and Bayesian updating and show how the former allows polarization.

First we show that several natural properties that hold under ambiguity neu-

trality continue to hold under ambiguity aversion:

Proposition 3.1. (i) For all n ≥ 0, with n observations available, for each

possible realization (x1, ..., xn) ∈ X n of these observations, the optimal pre-

diction α∗ (x1, ..., xn) is an increasing function of µ (the prior probability of

θ = 1) and of the likelihood ratio
∏n

i=1
π1(xi)
π0(xi)

;

(ii) The posterior probability of θ = 1 after observing x1, ..., xn in the pre-

diction problem with n ≥ 0 observations available is above/equal to/below the

posterior probability of θ = 1 after observing y1, ..., ym in the prediction prob-

lem with m ≥ 0 observations available if and only if the optimal predictions

4For a thorough discussion and analysis of dynamically consistent updating under ambi-
guity aversion see Hanany and Klibanoff (2009).
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in the respective continuation prediction problems are similarly ordered. Un-

der dynamically consistent updating, the same is true of the ex-ante optimal

contingent predictions (i.e., α∗ (x1, ..., xn) R α∗ (y1, ..., ym)).

Proposition 3.1 implies that polarization as defined in terms of beliefs is

equivalent to polarization in actions (here, predictions). A common signal

moves optimal actions further apart and in opposite directions exactly when

that signal moves beliefs further apart and in opposite directions. To see this,

observe from the first part of the proposition that prior beliefs have the same

order as the respective optimal predictions with no observations available.

From the second part of the proposition with m = 0, posterior beliefs after a

common signal compare to the prior beliefs in the same way as the optimal

predictions after a common signal compare to the optimal predictions with no

observations available. Combining these yields the equivalence.

Suppose signals x1, ..., x` are observed. Dynamic consistency requires that

the optimal prediction strategy after these observations also be the optimal

prediction strategy ex ante contingent on observing x1, ..., x`. As emphasized

above, under ambiguity aversion, the optimal prediction strategy is partly

driven by the desire to hedge. Before signals are realized, the hedging motive

is as in (3.1). However, after observing x1, ..., x`, the interim hedging motive

is as in (3.3). If the individual is ambiguity averse, these hedging motives are

typically not equal. As we highlighted in the Introduction, the individual’s

hedging motive changes since he no longer needs to account for variation in his

expected payoffs induced by the first ` realizations. To carry out the optimal

prediction strategy, dynamically consistent updating departs from Bayesian

updating in a way that exactly offsets this hedging effect. We use this to offer

a characterization of the direction of dynamically consistent updating:

Proposition 3.2. With n ≥ 1 observations and dynamically consistent up-

dating, for 0 ≤ k < m ≤ n, the posterior probability of θ = 1 after observing

x1, ..., xm is above/equal to/below the posterior probability of θ = 1 after ob-
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serving x1, ..., xk if and only if

φ′[Eπ0...π0(−(α∗ (x1, ..., xm, Xm+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xm, Xm+1, ..., Xn))2)]

m∏
i=k+1

π1(xi)

π0(xi)
(3.4)

R
φ′[Eπ0...π0(−(α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]
.

Notice that in addition to the hedging motive terms, (3.4) includes the

likelihood ratios for the new observations the individual has observed. This

term reflects the likelihood effect referred to in the Introduction. Thus (3.4)

formalizes the statement that dynamically consistent updating offsets both

the hedging and likelihood effects (while Bayesian updating offsets only the

likelihood effect). The condition in (3.4) is not always easy to apply, as it in-

volves the endogenously determined optimal strategy α∗. Nevertheless, we can

prove some general properties of updating directly from this inequality: Ob-

serving a signal xH with the highest likelihood ratio (i.e., xH ∈ arg max
x∈X

π1(x)
π0(x)

)

always leads to updating upwards and observing the signal with the lowest

likelihood ratio always leads to updating downwards. One implication is that

polarization cannot occur after “extreme” common signals.

Theorem 3.1. With n ≥ 1 observations, for 0 ≤ k < m ≤ n, after observing

x1, ..., xk, x
H , ..., xH︸ ︷︷ ︸
m−k times

(resp. x1, ..., xk, x
L, ..., xL︸ ︷︷ ︸
m−k times

) the posterior probability of θ =

1 after the m observations is above (resp. below) the posterior probability

(denoted by νk) of θ = 1 after observing x1, ..., xk . It is also above (resp.

below) the Bayesian update of νk given xH , ..., xH︸ ︷︷ ︸
m−k times

(resp. xL, ..., xL︸ ︷︷ ︸
m−k times

).

Remark 3.1. If signals are informative, so that π1(xH)
π0(xH)

> 1 > π1(xL)
π0(xL)

, then

above (resp. below) in the statement of the corollary may be replaced by strictly

above (resp. strictly below).

We turn to our main positive results.5 Suppose there are two individuals

with beliefs η̂ > η̌ (we continue our abuse of notation and denote η̂(θ = 1) and

5For the purposes of this section, it is sufficient to consider only polarization that occurs
following the last observation before a prediction is to be made.
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η̌(θ = 1) by η̂ and η̌ respectively). These beliefs could be the individuals’ priors

or their posteriors after observing some sequence of signals. (For simplicity,

we suppress the notation for the history of signals in the discussion below.)

In all other respects, the individuals are equivalent. If they are ambiguity

neutral, we know that polarization is impossible, from Theorem 2.1. If they

both observe a sequence of extreme signals, we know they will update in the

same direction, from Theorem 3.1. So assume the individuals are ambiguity

averse and there are at least three signals with distinct likelihood ratios. Thus,

there is at least one intermediate (i.e., non-extreme) signal and these are the

only signals after which individuals’ beliefs can possibly exhibit polarization.

When and why can polarization occur?

Suppose an individual observes a signal, xM , with intermediate likelihood

ratio. Specializing to the case of one observation and substituting for predic-

tions α∗ (x) , x 6= xM using (3.2), inequality (3.4) becomes:

φ′[−(α∗
(
xM
)
)2]

φ′[−(1− α∗ (xM))2]

π1(xM)

π0(xM)
(3.5)

R

φ′[−(α∗
(
xM
)
)2
∑

y∈X π0(y)(
π1(y)
π0(y)

α∗(xM )
π1(y)
π0(y)

+(1−α∗(xM ))
π1(xM )

π0(xM )

)2]

φ′[−(1− α∗ (xM))2
∑

y∈X π1(y)(
π1(xM )

π0(xM )

α∗(xM )
π1(y)
π0(y)

+(1−α∗(xM ))
π1(xM )

π0(xM )

)2]

The direction of this inequality determines the direction of updating. The

connection between α∗
(
xM
)

(and thus beliefs, since α∗
(
xM
)

is increasing in

beliefs by Proposition 3.1) and the direction of this inequality may be quite

complex. It is simpler in the case where the signal is not only intermediate but

also neutral (i.e., π0(x) = π1(x)). In the theorem below, we show that when

α∗
(
xM
)

(and thus belief) for one individual is close to 0 and for another is

close to 1, polarization occurs after they commonly observe a neutral signal.

Theorem 3.2. Polarization and Ambiguity: Assume there is a neutral signal,

at least one informative signal and twice continuously differentiable φ with

φ′′ < 0 < φ′. Polarization occurs after commonly observing a neutral signal if

belief η̂ is sufficiently close to 1 and belief η̌ is sufficiently close to 0.
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Sketch of proof (for the full proof see the Appendix): When α∗
(
xM
)

is

close to 0, if θ = 0 then predictions will be close to perfect, both interim and

ex-ante. Since payoffs are relatively insensitive to small changes in predictions

in the neighborhood of perfection, any differences in the interim and ex-ante

expected payoffs when θ = 0 (i.e., any differences in the arguments of φ′

in the numerators on each side of (3.5)) will be very small and will have

minimal influence on updating (since −φ′′

φ′
is finite).6 In contrast, if θ = 1,

predictions close to 0 will be very costly and small improvements in those

predictions would be valuable. Therefore, (since −φ′′

φ′
is non-zero) it is the

differences in interim and ex-ante expected payoffs when θ = 1 that drive the

comparison of hedging motives when predictions are close to 0. Differentiating

the arguments of the φ′ terms in the denominators with respect to α∗
(
xM
)

and evaluating at α∗
(
xM
)

= 0, yields that the ex-ante expected payoff when

θ = 1 is higher than the interim payoff when θ = 1 if and only if the expected

likelihood,
∑

y∈X π1(y)π1(y)
π0(y)

, is higher than the realized likelihood, π1(xM )
π0(xM )

. This

comparison reflects the fact that the predictions α∗(y) optimally move toward

1 by an amount proportional to the likelihood π1(y)
π0(y)

so the expected or realized

likelihoods reflect the expected or realized improvements in the prediction

when θ = 1. Notice that this expected likelihood is always larger than 1

because of the complementarity between the π1 terms, so that if xM is a

neutral signal this condition will be satisfied.

As a result, when the signal likelihood π1(xM )
π0(xM )

is below
∑

y∈X π1(y)π1(y)
π0(y)

,

for all sufficiently low beliefs η (so that α∗
(
xM
)

is sufficiently close to 0), the

hedging motive is bigger ex-ante than after seeing the signal and so updating

will be shaded downward compared to Bayesian updating. Similar reasoning

for α∗
(
xM
)

close to 1 shows that when π1(xM )
π0(xM )

lies above 1∑
y∈X π0(y)

π0(y)
π1(y)

, for

sufficiently high η, updating will be shaded upward compared to Bayesian

updating. When the signal is neutral, Bayesian updating is flat, so these

arguments imply updating will be downward when belief is sufficiently low

6The role of assuming φ′′ < 0 < φ′ is to ensure that both the hedging motive, φ′[−α2]
φ′[−(1−α)2] ,

and ambiguity aversion (as measured by−φ
′′

φ′ , the coefficient of (absolute) ambiguity aversion

(see Klibanoff, Marinacci and Mukerji (2005))), are bounded away from zero and infinity.
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and upward when belief is sufficiently high, generating polarization.

Remark 3.2. In this argument, the important aspect of quadratic loss is that

the marginal payoff to improving a prediction is diminishing in the quality (i.e.,

closeness to the truth) of the prediction and vanishes at perfection. Any payoff

function of the form ψ(|α− θ|) where ψ : [0, 1] → R is a twice continuously

differentiable function satisfying ψ′(0) = 0 and ψ′′ < 0 will yield a similar

result.

3.1 Threshold Rules for Updating

To further investigate when polarization occurs, we turn to a particularly clean

structure for determining the direction of updating. Given an observation x,

say that updating follows a threshold rule if there is a threshold τ ∈ [0, 1] such

that all beliefs above the threshold are updated upward and those below the

threshold are updated downward. Under ambiguity neutrality, the threshold

is always degenerate – a given observation x either leads all priors to be up-

dated upward or all priors to be updated downward depending on how the

likelihood ratio π1(x)
π0(x)

compares to 1. In contrast, under ambiguity aversion,

updating may follow a non-trivial threshold rule. In the Appendix, we pro-

vide a characterization of when updating follows a threshold rule (Proposition

A.2). To provide an explicit description, for the remainder of this section, we

specialize by assuming constant relative ambiguity aversion and that there are

exactly three distinct likelihood ratios associated with signals. Under these

conditions, we show that updating always follows a threshold rule and we can

explicitly derive the thresholds. By Theorem 3.1, all beliefs are updated in the

same direction after extreme signals. Hence, we study thresholds given the

intermediate signal.

Polarization is obviously impossible if two individuals have the same be-

liefs and have the same degree of ambiguity aversion. If, however, there is

heterogeneity on either dimension, individuals may exhibit polarization when

they observe a common signal. Theorem 3.3 and Proposition 3.3 characterize

the conditions for a signal to lead to polarization when there is heterogeneity
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across individuals in beliefs and/or ambiguity aversion.

Theorem 3.3. Assume constant relative ambiguity aversion and exactly three

distinct likelihood ratios. There exist τ̂ , τ̌ ∈ [0, 1] such that polarization occurs

after commonly observing a signal with the non-extreme likelihood ratio if and

only if belief η̂ ≥ τ̂ and belief η̌ ≤ τ̌ with at least one inequality strict.

Notice that whenever the thresholds satisfy τ̂ < 1 or τ̌ > 0, there exist

beliefs that generate polarization. The theorem relies on the following propo-

sition establishing that updating follows a threshold rule. The proposition is

proved by explicitly constructing the threshold.

Proposition 3.3. Assume constant relative ambiguity aversion γ > 0 and

exactly three distinct likelihood ratios. With n ≥ 1 observations, the posterior

probability of θ = 1 after x1, ..., xn−1, x
M is above/equal to/below the probability

of θ = 1 after x1, ..., xn−1 when the latter is above/equal to/below a threshold

τ(γ, π0, π1) that is independent of n and x1, ..., xn−1 and beliefs.

Theorem 3.3 and Proposition 3.3 specialize immediately for the cases where

heterogeneity is either only in beliefs or only in ambiguity aversion.

Corollary 3.1. Assume exactly three distinct likelihood ratios. Then,

(a) Polarization with Homogeneous Beliefs: Two individuals with beliefs η

and constant relative ambiguity aversions γ̂ and γ̌ exhibit polarization after

observing the intermediate signal if and only if

τ(γ̂, π0, π1) ≤ η ≤ τ(γ̌, π0, π1) (3.6)

with at least one inequality strict; and

(b) Polarization with Heterogeneous Beliefs: Two individuals with constant

relative ambiguity aversion γ and beliefs η̂ and η̌ exhibit polarization after

observing the intermediate signal if and only if

η̂ ≥ τ(γ, π0, π1) ≥ η̌ (3.7)

with at least one inequality strict.
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When the intermediate signal is a neutral signal, thresholds always lie

strictly between 0 and 1, and take a particularly simple form:

Corollary 3.2. Assume constant relative ambiguity aversion γ > 0 and ex-

actly three distinct likelihood ratios. If xM is a neutral signal, the threshold

is
1

1 +
(
π1(xH)
π0(xH)

π1(xL)
π0(xL)

)γ+ 1
2

∈ (0, 1).

Heterogeneous tastes or beliefs are the source of polarization under am-

biguity in Theorem 3.3. But this cannot explain the polarization observed

by Darley and Gross (1983), where the groups exhibiting polarization were

homogeneous. In their study, heterogeneity was induced across groups at the

interim stage by showing them different initial evidence. We next show that

our previous results imply that exactly this device can generate polarization

in an ex ante homogeneous prediction problem. For example, suppose there

are two individuals with a common coefficient of relative ambiguity aversion

γ > 0, a common prior µ = 1
2

and signals with three distinct likelihood ratios

and symmetric likelihoods (i.e., π0

(
xL
)

= π1

(
xH
)
, π0

(
xM
)

= π1

(
xM
)

and

π0

(
xH
)

= π1

(
xL
)
). The individuals are allowed to condition their prediction

on two observations. Suppose one individual observes the sequence {xL, xM},
while the other observes the sequence {xH , xM}. Applying Theorem 3.1, after

one observation the first individual will have updated beliefs η̌ < 1
2

and the

second individual will have updated beliefs η̂ > 1
2
. From Corollary 3.2 and

symmetry of the likelihoods, the threshold for updating upon observing xM

is τ(γ, π0, π1) = 1
2
. Since the beliefs η̌ and η̂ are on opposite sides of this

threshold, Theorem 3.3 implies that polarization will occur after the second

observation, xM .

More generally, as long as the threshold is interior and enough observations

are available, polarization is possible after an intermediate signal. This follows

since if one individual observes a long sequence of high signals and another

observes a long sequence of low signals, their posteriors will end up on different

sides of this threshold. If they then observe a common intermediate signal,

they will update in opposite directions and polarize:
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Theorem 3.4. Polarization in a Homogeneous Environment: Assume com-

mon constant relative ambiguity aversion γ > 0, common prior µ ∈ (0, 1) and

exactly three distinct likelihood ratios. If τ(γ, π0, π1) ∈ (0, 1) and the number

of observations n is sufficiently large, polarization occurs after observing the

intermediate signal xM if, up to that point, one individual observes xH , ..., xH︸ ︷︷ ︸
n−1 times

while the other observes xL, ..., xL︸ ︷︷ ︸
n−1 times

.

4 Related Literature and Concluding Remarks

4.1 Related Literature

Dixit and Weibull (2007) show that polarization cannot occur under Bayesian

updating in the standard linear-normal model where individuals’ (different)

priors and (common) noise are normally distributed. Signals in this model

satisfy the monotone likelihood ratio property (MLRP). They also argue via

example that polarization can occur if signals do not satisfy MLRP. On closer

inspection, however, their examples violating MLRP do not display polar-

ization. In fact, our Theorem 2.1 shows that polarization cannot occur under

Bayesian updating, whether MLRP or normality holds or not. Instead, in their

examples, while the means or the medians of two individuals’ beliefs move fur-

ther apart after observing a common signal, their beliefs are not further apart

according to stochastic dominance.

Acemoglu, Chernozhukov and Yildiz (2009) study asymptotic disagreement

in a model where individuals have different priors on parameters and also

different distributions on signals conditional on the parameter. They show

that posteriors on parameters can diverge. Kondor (forthcoming) shows that

polarization can be generated when individuals see different private signals

that are correlated with a common public signal. Andreoni and Mylovanov

(2012) provide a similar theory and test their model experimentally. Rabin

and Schrag (1999) study a model of confirmatory bias where agents ignore

signals that do not conform with their first impressions, and thus updating
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is simply assumed to be biased in the direction of current beliefs, directly

generating polarization. Notice that all four of these papers’ models can be

interpreted as ones where individuals sometimes disagree about the likelihood

of the observed signal conditional on the parameter. This is likely to be a

common, if unsurprising, source of polarization. In contrast, in our model,

conditional on the parameter, all individuals agree on the distribution over

signals and their independence, and yet an interesting theory of polarization

still emerges.

The only other paper we know of relating ambiguity to polarization is

Zimper and Ludwig (2009). They study particular forms of dynamically in-

consistent updating in a model where agents are Choquet expected utility

maximizers (Schmeidler (1989)), and polarization is defined as divergence of

“expected” signal probabilities as the number of observations goes to infinity.

This contrasts with our model, where updating is optimal in the sense of dy-

namic consistency, beliefs have the standard additive form and polarization is

defined after any signal realization rather than as a limit phenomenon.

4.2 Concluding Remarks

The arrival of information changes the hedging motive of ambiguity averse

individuals. Optimal (i.e., dynamically consistent) updating must counteract

this hedging effect in addition to the more familiar likelihood effect. We show

that this delivers a theory of polarization – describing when it can occur and

when it cannot.

The model and theory can be extended in several ways. First, we have as-

sumed the individual has perfect foresight of the number of observations that

will be available before he needs to take an action and that there is only one

action required in the problem. Suppose instead that foresight is limited and

the individual believes that they must take an action after fewer observations

than will, in reality, be available. This is a natural description of the approach

plausibly taken by subjects in the experiments of Darley and Gross (1983).

Suppose (1) the individual uses dynamically consistent updating in the part
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of the problem he foresees; and (2) when faced with the unforeseen continua-

tion problem, he applies dynamically consistent updating to the continuation

starting from the posterior beliefs inherited from the foreseen problem. Then,

the possibility of polarization and the logic behind it described in our analysis

continue to hold.

Second, our results are developed using the smooth ambiguity model of

Klibanoff, Marinacci and Mukerji (2005). One benefit of using this model

is that, like the standard Bayesian expected utility model, it allows us to

describe beliefs, and thus polarization, through a probability measure. It is

not obvious how to best define polarization for other models of ambiguity

averse preferences. Putting that aside, the fundamental connection between

ambiguity aversion and dynamically consistent updating that must counteract

a hedging effect is present in any complete preference model of ambiguity

aversion. Exactly when such a connection generates polarization is likely to

vary with choice of model and spelling out these conditions for different models

is left for future research. Such an investigation may require additional tools,

as the smooth ambiguity model allows us to characterize the unique solution

of our prediction problem using first-order conditions.

Finally, we have assumed fully dynamically consistent updating. As was

mentioned in the introduction, the effects we identify continue to generate

polarization even under substantially weaker assumptions. For example, after

observing a signal, suppose the individual maximizes a weighted sum of utility

under dynamically consistent updating and utility under Bayesian updating.7

As long as there is strictly positive weight on the former, all of our qualitative

results on polarization under ambiguity aversion are preserved.

7One foundation for such a model is the temptation and costly self-control representation
of Gul and Pesendorfer (2001) with the normative preference generated from dynamically
consistent updating and the temptation preference generated from Bayesian updating.
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A Appendix

This Appendix contains all proofs not included in the main text and some

further results on the direction of updating.

A.1 Proofs not in the Main Text

Proof. [Proof of Theorem 2.1] Bayesian updating is only well-defined follow-

ing positive probability signals. Therefore, assume
∑

i η̌ (θi) πθi (x) > 0 and∑
i η̂ (θi) πθi (x) > 0. We use proof by contradiction. Suppose two individuals

use Bayesian updating and that η̌ stochastically dominates ν̌ and ν̂ stochas-

tically dominates η̂ with at least one dominance strict (i.e., that polarization

occurs). Observe that η̌ stochastically dominates ν̌ implies η̌ (θ1) ≤ ν̌ (θ1) =
η̌(θ1)πθ1 (x)∑
i η̌(θi)πθi (x)

and η̌
(
θ|Θ|
)
≥ ν̌

(
θ|Θ|
)

=
η̌(θ|Θ|)πθ|Θ| (x)∑

i η̌(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≥
∑
i

η̌ (θi) πθi (x) ≥ πθ|Θ| (x) . (A.1)

Similarly, observe that ν̂ stochastically dominates η̂ implies η̂ (θ1) ≥ ν̂ (θ1) =
η̂(θ1)πθ1 (x)∑
i η̂(θi)πθi (x)

and η̂
(
θ|Θ|
)
≤ ν̂

(
θ|Θ|
)

=
η̂(θ|Θ|)πθ|Θ| (x)∑

i η̂(θi)πθi (x)
. Simplifying, this implies

πθ1 (x) ≤
∑
i

η̂ (θi) πθi (x) ≤ πθ|Θ| (x) . (A.2)

The only way for (A.1) and (A.2) to be satisfied simultaneously is when

πθ1 (x) =
∑
i

η̌ (θi) πθi (x) =
∑
i

η̂ (θi) πθi (x) = πθ|Θ| (x) . (A.3)

Notice that under (A.3) η̂ (θ1) = ν̂ (θ1), η̂
(
θ|Θ|
)

= ν̂
(
θ|Θ|
)
, η̌ (θ1) = ν̌ (θ1)

and η̌
(
θ|Θ|
)

= ν̌
(
θ|Θ|
)
. Given

∑
i η̌ (θi) πθi (x) =

∑
i η̂ (θi) πθi (x), consider the

induction hypothesis that, for some 1 ≤ n < |Θ|,

η̂ (θi) = ν̂ (θi) and η̌ (θi) = ν̌ (θi) for i = 1, ..., n.
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Under this hypothesis, η̌ stochastically dominates ν̌ implies η̌ (θn+1) ≤ ν̌ (θn+1) =
η̌(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

and ν̂ stochastically dominates η̂ implies η̂ (θn+1) ≥ ν̂ (θn+1) =
η̂(θn+1)πθn+1

(x)∑
i η̂(θi)πθi (x)

=
η̂(θn+1)πθn+1

(x)∑
i η̌(θi)πθi (x)

. Therefore,

η̂ (θn+1) = ν̂ (θn+1) and η̌ (θn+1) = ν̌ (θn+1) .

Since we showed above that the induction hypothesis holds for n = 1, we

conclude that η̌ stochastically dominates ν̌ and ν̂ stochastically dominates η̂

implies η̌ = ν̌ and η̂ = ν̂. This contradicts our supposition of polarization.

Proof. [Proof of Proposition 3.1] It is immediate from (3.1) that α∗ (x1, ..., xn) ∈
(0, 1) since µ ∈ (0, 1) and φ′ > 0. To prove (i), fix any n ≥ 0 and (x1, ..., xn) ∈
X n and, from (3.2), observe that for any (y1, ..., yn) ∈ X n, α∗ (y1, ..., yn) is a

strictly increasing function of α∗ (x1, ..., xn) in any solution of the system of

first-order conditions. This and the fact that φ is concave implies that the

left-hand side of the corresponding first-order condition is strictly increasing

in α∗ (x1, ..., xn) and decreasing in
∏n

i=1
π1(xi)
π0(xi)

. The right-hand side of (3.1) is

strictly increasing in µ and constant in α∗ (x1, ..., xn). Therefore, α∗ (x1, ..., xn)

is well-defined and strictly increasing in µ and
∏n

i=1
π1(xi)
π0(xi)

.

To prove (ii), let νn (resp. νm) denote the the posterior probability of θ = 1

after observing x1, ..., xn (resp. y1, ..., ym) in the prediction problem with n ≥ 0

(resp. m ≥ 0) observations available. Let β∗ (x1, ..., xn) (resp. β∗ (y1, ..., ym))

denote the optimal prediction in the continuation problem given that posterior.

By the first-order conditions for optimality, these predictions and posteriors

must satisfy

β∗ (x1, ..., xn)

1− β∗ (x1, ..., xn)

φ′[−(β∗ (x1, ..., xn))2]

φ′[−(1− β∗ (x1, ..., xn))2]
=

νn
1− νn

and
β∗ (y1, ..., ym)

1− β∗ (y1, ..., ym)

φ′[−(β∗ (y1, ..., ym))2]

φ′[−(1− β∗ (y1, ..., ym))2]
=

νm
1− νm

.

Therefore,

νn R νm
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if and only if

β∗ (x1, ..., xn)

1− β∗ (x1, ..., xn)

φ′[−(β∗ (x1, ..., xn))2]

φ′[−(1− β∗ (x1, ..., xn))2]
R

β∗ (y1, ..., ym)

1− β∗ (y1, ..., ym)

φ′[−(β∗ (y1, ..., ym))2]

φ′[−(1− β∗ (y1, ..., ym))2]
.

Since z
1−z

φ′[−(z)2]
φ′[−(1−z)2]

is strictly increasing in z on (0, 1), this is equivalent to

β∗ (x1, ..., xn) R β∗ (y1, ..., ym) .

Finally, under dynamically consistent updating, from (3.3), the posteriors

must satisfy

α∗ (x1, ..., xn)

1− α∗ (x1, ..., xn)

φ′[−(α∗ (x1, ..., xn))2]

φ′[−(1− α∗ (x1, ..., xn))2]
=

νn
1− νn

and
α∗ (y1, ..., ym)

1− α∗ (y1, ..., ym)

φ′[−(α∗ (y1, ..., ym))2]

φ′[−(1− α∗ (y1, ..., ym))2]
=

νm
1− νm

.

Therefore, α∗ (x1, ..., xn) = β∗ (x1, ..., xn) and α∗ (y1, ..., ym) = β∗ (y1, ..., ym),

so that the above argument yields

νn R νm

if and only if

α∗ (x1, ..., xn) R α∗ (y1, ..., ym) .

Proof. [Proof of Proposition 3.2] Let νm (resp. νk) denote the the posterior

probability of θ = 1 after observing x1, ..., xm (resp. x1, ..., xk) in the prediction

problem with n ≥ 1 observations available. Dynamically consistent updating

implies that (3.3) is satisfied for ` = m and ` = k. Therefore,

α∗ (x1, ..., xn)

1− α∗ (x1, ..., xn)

φ′[Eπ0...π0(−(α∗ (x1, ..., xm, Xm+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xm, Xm+1, ..., Xn))2)]

n∏
i=m+1

π0(xi)

π1(xi)
=

νm
1− νm
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and

α∗ (x1, ..., xn)

1− α∗ (x1, ..., xn)

φ′[Eπ0...π0(−(α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

n∏
i=k+1

π0(xi)

π1(xi)
=

νk
1− νk

.

Combining the above,

νm R νk

if and only if

φ′[Eπ0...π0(−(α∗ (x1, ..., xm, Xm+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xm, Xm+1, ..., Xn))2)]

R
φ′[Eπ0...π0(−(α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

m∏
i=k+1

π0(xi)

π1(xi)
.

Proof. [Proof of Theorem 3.1] Let νHm (resp. νLm) denote the the posterior prob-

ability of θ = 1 after observing x1, ..., xk, x
H , ..., xH︸ ︷︷ ︸
m−k times

(resp. x1, ..., xk, x
L, ..., xL︸ ︷︷ ︸
m−k times

)

in the prediction problem with n ≥ 1 observations available. By Proposition

3.2,

νHm ≥ νk

if and only if

φ′[Eπ0...π0(−(α∗
(
x1, ..., xk, x

H , ..., xH , Xm+1, ..., Xn

)
)2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, xH , ..., xH , Xm+1, ..., Xn))2)]
(A.4)

≥ φ′[Eπ0...π0(−(α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

m∏
i=k+1

π0(xH)

π1(xH)
.

For all (yk+1, ..., yn), since
∏m

i=k+1
π1(xH)
π0(xH)

≥
∏m

i=k+1
π1(yi)
π0(yi)

, it follows from (3.2)

that

α∗
(
x1, ..., xk, x

H , ..., xH , ym+1, ..., yn
)
≥ α∗ (x1, ..., xk, yk+1, ..., yn) .
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ThereforeEπ0...π0(α∗
(
x1, ..., xk, x

H , ..., xH , Xm+1, ..., Xn

)
)2 ≥ Eπ0...π0(α∗(x1, ..., xk, Xk+1, ..., Xn))2

and Eπ1...π1(1−α∗
(
x1, ..., xk, x

H , ..., xH , Xm+1, ..., Xn

)
)2 ≤ Eπ1...π1(1−α∗ (x1, ..., xk, Xk+1, ..., Xn))2.

As φ is concave, this implies

φ′[Eπ0...π0(−(α∗
(
x1, ..., xk, x

H , ..., xH , Xm+1, ..., Xn

)
)2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, xH , ..., xH , Xm+1, ..., Xn))2)]
(A.5)

≥ φ′[Eπ0...π0(−(α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]
.

Since π1(xH)
π0(xH)

≥ 1, (A.4) follows. Furthermore, (3.3) for ` = m and ` = k and

(A.5) imply

νHm
1− νHm

=
α∗
(
x1, ..., xk, x

H , ..., xH , xm+1, ..., xn
)

1− α∗ (x1, ..., xk, xH , ..., xH , xm+1, ..., xn)
×

φ′[Eπ0...π0(−(α∗
(
x1, ..., xk, x

H , ..., xH , Xm+1, ..., Xn

)
)2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, xH , ..., xH , Xm+1, ..., Xn))2)]

n∏
i=m+1

π0(xi)

π1(xi)

≥
α∗
(
x1, ..., xk, x

H , ..., xH , xm+1, ..., xn
)

1− α∗ (x1, ..., xk, xH , ..., xH , xm+1, ..., xn)
×

φ′[Eπ0...π0(−(α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

φ′[Eπ1...π1(−(1− α∗ (x1, ..., xk, Xk+1, ..., Xn))2)]

n∏
i=m+1

π0(xi)

π1(xi)

=
νk

1− νk

(
π1(xH)

π0(xH)

)m−(k+1)

.

Thus,

νHm
1− νHm

≥ νk
1− νk

(
π1(xH)

π0(xH)

)m−(k+1)

where the right-hand side is the posterior ratio generated by Bayesian updating

of νk after observing xH , ..., xH︸ ︷︷ ︸
m−k times

.
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An analogous argument shows νk ≥ νLm and

νLm
1− νLm

≤ νk
1− νk

(
π1(xL)

π0(xL)

)m−(k+1)

.

Proof. [Proof of Theorem 3.2] Recall that the optimal prediction α∗(x1, ..., xn−1, xn)

is continuous and increasing in the posterior probability of θ = 1 after ob-

serving x1, ..., xn−1. Denote this posterior probability by η. As the optimal

prediction is 0 if η = 0 and 1 if η = 1, considering η close enough to 0 or η

close enough to 1 is equivalent to considering α∗(x1, ..., xn−1, xn) close enough

to 0 or 1 respectively. The proof strategy for determining updating for suf-

ficiently extreme beliefs will be to consider updating for sufficiently extreme

predictions.

Observe, by applying (3.3), that updating η after seeing xn will be shaded

upward/equal to/shaded downward compared to Bayesian updating if and

only if

φ′[−(α∗ (x1, ..., xn−1, xn))2]φ′[−
∑
y∈X

π1(y)(1− α∗ (x1, ..., xn−1, y))2] (A.6)

R φ′[−(1− α∗ (x1, ..., xn−1, xn))2]φ′[−
∑
y∈X

π0(y)(α∗ (x1, ..., xn−1, y))2].

From (3.2), α∗ (x1, ..., xn−1, y) = βπ1,π0(α∗ (x1, ..., xn−1, xn) ; y) where βπ1,π0 :

[0, 1]×X → [0, 1] is defined by βπ1,π0(z; y) =
z
π1(y)
π0(y)

z
π1(y)
π0(y)

+(1−z)π1(xn)
π0(xn)

for all z ∈ [0, 1]

and y ∈ X . Define the function f : [0, 1]→ R such that

f(z) =
φ′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]

φ′[−(1− z)2]
−
φ′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

φ′(−z2)
.

Under our assumptions, f is continuous and differentiable. By comparing f

with (A.6), observe that when z = α∗ (x1, ..., xn−1, xn) ∈ (0, 1), the direction in

which updating is shaded relative to Bayesian updating is determined by the

sign of f . Therefore we want to determine the sign of f(z) when z is close 0
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and when it is close to 1. By the assumptions in the statement of the theorem,

0 < φ′(0) < φ′(−1) <∞ where the last inequality comes from the fact that φ′

is continuous on [−1, 0] and thus bounded. Then f(0) = f(1) = 0. Therefore,

the sign of f(z) when z is close 0 and when it is close to 1 is determined by

the sign of f ′(z) at 0 and 1 respectively. Differentiating f (and denoting the

derivative of βπ1,π0 with respect to z evaluated at (z; y) by β′π1,π0
(z; y)) yields,

f ′(z) =
2φ′′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]

∑
y∈X π1(y)(1− βπ1,π0(z; y))β′π1,π0

(z; y)

φ′[−(1− z)2]

−
2φ′[−

∑
y∈X π1(y)(1− βπ1,π0(z; y))2]φ′′[−(1− z)2](1− z)

(φ′[−(1− z)2])2

+
2φ′′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

∑
y∈X π0(y)(βπ1,π0(z; y))β′π1,π0

(z; y)

φ′(−z2)

−
2φ′′(−z2)(z)φ′[−

∑
y∈X π0(y)(βπ1,π0(z; y))2]

(φ′(−z2))2 .

Thus,

f ′(0) = 2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(0; y)

]
+(0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(0; y)

]

and

f ′(1) = (0)

(
−φ

′′(0)

φ′(0)

)[
1−

∑
y∈X

π1(y)β′π1,π0
(1; y)

]
+2

(
−φ

′′(−1)

φ′(−1)

)[
1−

∑
y∈X

π0(y)β′π1,π0
(1; y)

]
.

Since φ′′ is negative and finite (since φ′′ is continuous on a bounded inter-

val), the coefficient of ambiguity aversion, −φ′′

φ′
, is everywhere positive and

finite. This allows us to conclude that the sign of f ′(0) is the same as

the sign of 1 −
∑

y∈X π1(y)β′π1,π0
(0; y), while the sign of f ′(1) is the sign of

1−
∑

y∈X π0(y)β′π1,π0
(1; y). Differentiating βπ1,π0(z; y) shows that β′π1,π0

(0; y) =
π1(y)
π0(y)

/π1(xn)
π0(xn)

and β′π1,π0
(1; y) = π1(xn)

π0(xn)
/π1(y)
π0(y)

. Thus f ′(0) < 0 and f ′(1) < 0 if and

26



only if
1∑

y∈X π0(y)π0(y)
π1(y)

<
π1(xn)

π0(xn)
<
∑
y∈X

π1(y)
π1(y)

π0(y)
. (A.7)

Summarizing, we have shown that f is negative for values sufficiently close

to 0 and positive for values sufficiently close to 1 if and only if (A.7) is satisfied.

Therefore, it is exactly under these conditions that updating will be shaded

downward compared to Bayesian updating for beliefs sufficiently close to 0 and

shaded upward compared to Bayesian updating for beliefs sufficiently close to

1.

We now show that a neutral signal necessarily satisfies (A.7). Note that∑
y∈X π1(y)π1(y)

π0(y)
≥ 1 and

∑
y∈X π0(y)π0(y)

π1(y)
≥ 1 because the strictly convex

constrained minimization problem minw1,...,w|X|

∑|X |
i=1

w2
i

vi
subject to

∑|X |
i=1wi =

1, assuming
∑|X |

i=1 vi = 1 and vi > 0 for i = 1, ..., |X |, has first order conditions

equivalent to wi
vi

constant in i, thus the minimum is achieved at 1∑|X|
i=1 vi

= 1

with wi = vi∑|X|
i=1 vi

= vi. Moreover, since there exists at least one informative

signal, i.e., y ∈ X such that π1(y)
π0(y)

6= 1, the unique minimum is not attained

and so
∑

y∈X π1(y)π1(y)
π0(y)

> 1 and
∑

y∈X π0(y)π0(y)
π1(y)

> 1. Thus, (A.7) is always

satisfied if π1(xn)
π0(xn)

= 1 (i.e., if xn is a neutral signal).

Finally, observe that if xn is a neutral signal, then, since Bayesian updating

would be flat, updating shaded downward implies updating is downward and

updating shaded upward implies updating is upward, generating polarization.

Remark A.1. The theorem remains true if φ′(0) = 0 and the requirements of

the theorem are otherwise satisfied. This case requires an argument based on

second-order comparisons. Intuitively, second-order differences that were pre-

viously masked may now become important in the limit because the zero cre-

ates unboundedly large ambiguity aversion (as measured by −φ′′

φ′
) near perfect

predictions. Specifically, one can show that, for beliefs close to θ, a second-

order comparison yields that the payoff following a neutral signal is larger than

the expected payoff before seeing the signal. This drives the comparison of ex-

ante versus interim hedging effects and generates the polarization. Moreover,
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in this case, the polarization result may be extended beyond neutral signals

to all signals having a likelihood ratio lying in an interval containing 1.

Proof. [Proof of Proposition 3.3] From Lemma A.1, νn R νn−1 after observing

xM if and only if

∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

[α∗(x1, ..., xn−1, xM)π1(y)
π0(y)

+ (1− α∗(x1, ..., xn−1, xM))π1(xM )
π0(xM )

]2
R 0.

(A.8)

We consider the following exhaustive list of possibilities:

(i)
(
π1(xM )
π0(xM )

) 1
γ

+2

≥ π1(xH)
π0(xH)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the

left-hand side of (A.8) is strictly positive, and therefore updating is always

upward, so set τ(γ, π0, π1) = 0. Note that a necessary condition for this case

is that π1(xM )
π0(xM )

> 1.

(ii)
(
π1(xM )
π0(xM )

) 1
γ

+2

≤ π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

< π1(xH)
π0(xH)

, the

left-hand side of (A.8) is strictly negative, and therefore updating is always

downward, so set τ(γ, π0, π1) = 1. Note that a necessary condition for this

case is that π1(xM )
π0(xM )

< 1.

(iii) π1(xH)
π0(xH)

>
(
π1(xM )
π0(xM )

) 1
γ

+2

> π1(xL)
π0(xL)

. In this case, using π1(xL)
π0(xL)

< π1(xM )
π0(xM )

<

π1(xH)
π0(xH)

, in the left-hand side of (A.8), the term for y = xL is positive and has a

denominator strictly decreasing in α∗(x1, ..., xn−1, x
M), the term for y = xM is

constant in α∗(x1, ..., xn−1, x
M), and the term for y = xH is negative and has

a denominator strictly increasing in α∗(x1, ..., xn−1, x
M). Therefore the whole

sum is strictly increasing in α∗(x1, ..., xn−1, x
M) and thus can change signs at

most once. Three sub-cases are relevant:

(iii)(a) the left-hand side of (A.8) is non-negative when 0 is plugged in for

α∗(x1, ..., xn−1, x
M). In this case, updating is always upward, so set τ(γ, π0, π1) =

0.

(iii)(b) the left-hand side of (A.8) is non-positive when 1 is plugged in for

α∗(x1, ..., xn−1, x
M). In this case, updating is always downward, so set τ(γ, π0, π1) =

1.
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(iii)(c) otherwise. In this case, continuity and strict increasingness of the left-

hand side of (A.8) in α∗(x1, ..., xn−1, x
M) implies there exists a unique solution

for a in (0, 1) to

∑
y∈X

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(aπ1(y)
π0(y)

+ (1− a)π1(xM )
π0(xM )

)2
= 0. (A.9)

Since (A.10) holds with equality when z = a, using constant relative ambiguity

aversion (φ′(z) = (−z)γ) and given the monotonicity of α∗(x1, ..., xn−1, x
M) in

νn−1, the associated threshold for νn−1 may be found by substituting z = a

into (A.10) with equality and solving for νn−1 = τ(γ, π0, π1). Doing this yields

τ(γ, π0, π1)

1− τ(γ, π0, π1)
=

(
a

1− a

)2γ+1

.

Therefore

τ(γ, π0, π1) =
a2γ+1

a2γ+1 + (1− a)2γ+1 .

Collecting these results into an overall expression, the threshold is defined by:

τ(γ, π0, π1) =
b2γ+1

b2γ+1 + (1− b)2γ+1 ,

where

b ≡


0 if S(0) ≥ 0

a if S(a) = 0 and a ∈ (0, 1)

1 if S(1) ≤ 0

and

S(λ) ≡
∑

y∈{xL,xM ,xH}

π1 (y)

(
π1(xM )
π0(xM )

) 1
γ

+2

− π1(y)
π0(y)

(λπ1(y)
π0(y)

+ (1− λ)π1(xM )
π0(xM )

)2
.

Proof. [Proof of Theorem 3.3 ] Polarization is equivalent to ν̂ ≥ η̂ and ν̌ ≤
η̌ with at least one inequality strict. If γ = 0, updating is Bayesian and
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polarization is impossible by Theorem 2.1, so set τ̂ = 1 and τ̌ = 0. By

Proposition 3.3, if γ > 0 then polarization occurs if and only if η̂ ≥ τ(γ̂, π0, π1)

and η̌ ≤ τ(γ̌, π0, π1) with at least one inequality strict, where the τ function is

the one defined in that result.

Proof. [Proof of Corollary 3.1] From Proposition 3.3, τ̂ = τ(γ̂, π0, π1) and

τ̌ = τ(γ̌, π0, π1). The rest is immediate from Theorem 3.3.

Proof. [Proof of Corollary 3.2] From Proposition 3.3, such a threshold exists.

Since π0(xM) = π1(xM) implies π0(xL) − π1(xL) = π1(xH) − π0(xH) > 0,

calculation shows that the relevant case in the proof of Proposition 3.3 is case

(iii)(c). Thus τ(γ, π0, π1) = a2γ+1

a2γ+1+(1−a)2γ+1 = 1

1+( 1−a
a )

2γ+1 where a ∈ (0, 1) is

the unique solution of S(a) = 0. Simplifying yields

1− a
a

=

√
π1 (xH)

π0 (xH)

π1 (xL)

π0 (xL)
.

Proof. [Proof of Theorem 3.4] Under dynamically consistent updating starting

from any prior µ ∈ (0, 1), observing a sufficiently long string of xL’s (resp.

xH ’s) results in a posterior close enough to 0 (resp. 1) so as to be on opposite

sides of the threshold τ(γ, π0, π1). Bayesian updating displays this property.

By Theorem 3.1, dynamically consistent updating is above (resp. below) the

Bayesian update given n−1 observations of xH (resp. xL) and must also display

this property. By Theorem 3.3, after such strings of extreme observations, a

common observation of xn = xM will result in polarization – the smaller

posterior will become even smaller, while the larger posterior will increase.

Key to this is that τ(γ, π0, π1) was shown to be independent of n and the

history x1, ..., xn−1 (Proposition 3.3).

A.2 Further Results on the Direction of Updating

The next result combines Proposition 3.2 and equations (3.2) and (3.3) to

show a general form relating fundamentals to the direction of updating.
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Proposition A.1. In the prediction problem with n ≥ 1 observations and

dynamically consistent updating, for 0 ≤ m < n, the posterior probability of

π1 after x1, ..., xn (denoted by νn) is above/equal to/below the posterior prob-

ability of π1 after x1, ..., xm (denoted by νm) if and only if the fundamentals

(νm, φ, π1, π0) are such that

z

1− z
φ′[−z2]

φ′[−(1− z)2]
R

νm
1− νm

, (A.10)

for the unique z ∈ (0, 1) solving

z

1− z

φ′

[
−z2

∑
(ym+1,...,yn)∈Xn−m

∏n
i=m+1π0(yi)

(
π1(yi)

π0(yi)

)2

(
z
∏n

i=m+1
π1(yi)

π0(yi)
+(1−z)

∏n
i=m+1

π1(xi)

π0(xi)

)2

]

φ′

[
−(1− z)2

∑
(ym+1,...,yn)∈Xn−m

∏n
i=m+1π1(yi)

(
π1(xi)

π0(xi)

)2

(
z
∏n

i=m+1
π1(yi)

π0(yi)
+(1−z)

∏n
i=m+1

π1(xi)

π0(xi)

)2

]
(A.11)

=
νm

1− νm

n∏
i=m+1

π1(xi)

π0(xi)
.

Proof. Substituting (3.3) into (3.4) and rearranging yields

α∗(x1, ..., xn)

1− α∗(x1, ..., xn)

φ′[−α∗(x1, ..., xn)2]

φ′[−(1− α∗(x1, ..., xn))2]
R

νm
1− νm

.

From (3.2), we obtain for all (ym+1, ..., yn) ∈ X n−m,

α∗(x1, ..., xm, ym+1, ..., yn)

=
α∗(x1, ..., xn)

∏n
i=m+1

π1(yi)
π0(yi)

α∗(x1, ..., xn)
∏n

i=m+1
π1(yi)
π0(yi)

+ (1− α∗(x1, ..., xn))
∏n

i=m+1
π1(xi)
π0(xi)

.
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Using this together with (3.3), α∗ (x1, ..., xn) is the unique solution to

α∗ (x1, ..., xn)

1− α∗ (x1, ..., xn)
×

φ′

[
−
∑

(ym+1,...,yn)∈Xn−m
α∗(x1,...,xn)2

∏n
i=m+1π0(yi)

(
π1(yi)

π0(yi)

)2

(
α∗(x1,...,xn)

∏n
i=m+1

π1(yi)

π0(yi)
+(1−α∗(x1,...,xn))

∏n
i=m+1

π1(xi)

π0(xi)

)2

]

φ′

[
−
∑

(ym+1,...,yn)∈Xn−m
(1−α∗(x1,...,xn))2

∏n
i=m+1π1(yi)

(
π1(xi)

π0(xi)

)2

(
α∗(x1,...,xn)

∏n
i=m+1

π1(yi)

π0(yi)
+(1−α∗(x1,...,xn))

∏n
i=m+1

π1(xi)

π0(xi)

)2

]

=
νm

1− νm

n∏
i=m+1

π1(xi)

π0(xi)
.

In interpreting inequality (A.10), it is important to realize that z is an

increasing function of beliefs νm (as follows from the argument used in proving

part (i) of Proposition 3.1 with z playing the role of α∗ (x1, ..., xn) and νm

playing the role of µ). In fact, (A.11) combines the first-order conditions (3.2)

and (3.3). This implies that z = α∗(x1, ..., xn), the optimal prediction given

the observations. From (A.11), in the case of ambiguity neutrality (φ affine)
z

1−z is simply a multiple of νm
1−νm so that updating is either always upward (if∏n

i=m+1
π1(xi)
π0(xi)

≥ 1) or always downward (if
∏n

i=m+1
π1(xi)
π0(xi)

≤ 1). Similarly, we

see that under ambiguity aversion, z
1−z is generally a non-linear function of

νm
1−νm (reflecting the balancing of the desire to hedge with the likelihood based

motivation from the ambiguity neutral case) which creates the possibility that

inequality (A.10) may change direction as beliefs νm change. In general, the

regions where it goes one way and where it goes the other may be very complex.

We now offer a characterization of when updating follows a threshold rule so

that A.10 changes direction at most once.

Proposition A.2. There is a threshold rule for updating νm after observing
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xm+1, ..., xn if and only if

φ′[−z2]

φ′[−(1− z)2]

n∏
i=m+1

π1(xi)

π0(xi)
(A.12)

−
φ′

[
−z2

∑
(ym+1,...,yn)∈Xn−m

∏n
i=m+1π0(yi)

(
π1(yi)

π0(yi)

)2

(
z
∏n

i=m+1
π1(yi)

π0(yi)
+(1−z)

∏n
i=m+1

π1(xi)

π0(xi)

)2

]

φ′

[
−(1− z)2

∑
(ym+1,...,yn)∈Xn−m

∏n
i=m+1π1(yi)

(
π1(xi)

π0(xi)

)2

(
z
∏n

i=m+1
π1(yi)

π0(yi)
+(1−z)

∏n
i=m+1

π1(xi)

π0(xi)

)2

]

as a function of z has at most one zero in (0, 1) and, if a zero exists, (A.12)

is increasing at that zero.

Proof. The result follows by combining the definition of a threshold updating

rule with the characterization of the direction of updating given by Proposition

A.1.

Finally, we present a lemma showing how inequality (3.4) which identifies

the direction of updating after observing a signal simplifies under the assump-

tion of constant relative ambiguity aversion. In proving Theorem 3.3, we use

this inequality to help establish and calculate the threshold rule.

Lemma A.1. In the prediction problem with n ≥ 1 observations, dynami-

cally consistent updating and constant relative ambiguity aversion γ > 0, the

posterior probability of π1 after x1, ..., xn is above/equal to/below the posterior

probability of π1 after x1, ..., xn−1 if and only if

∑
y∈X

π1 (y)

(
π1(xn)
π0(xn)

) 1
γ

+2

− π1(y)
π0(y)(

α∗(x1, ..., xn)π1(y)
π0(y)

+ (1− α∗(x1, ..., xn))π1(xn)
π0(xn)

)2 R 0. (A.13)

Proof. Let νn (resp. νn−1) denote the posterior probability of π1 after observing

x1, ..., xn (resp. x1, ..., xn−1) in the prediction problem with n ≥ 1 observations

available. From inequality (A.10) and equation (A.11), νn R νn−1 if and only
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if

φ′[−(α∗ (x1, ..., xn))2]

φ′[−(1− α∗ (x1, ..., xn))2]

π1(xn)

π0(xn)
(A.14)

R

φ′

[
−α∗(x1, ..., xn)2

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π0(y)
π0(y)

π1(xn)
π0(xn)

)2

]

φ′

[
−(1− α∗(x1, ..., xn))2

∑
y∈X

π1(y)
(
π1(xn)
π0(xn)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π1(xn)
π0(xn)

)2

] .

Under constant relative ambiguity aversion, φ′(z) = (−z)γ and therefore

(A.14) is equivalent to

(
π1(xn)

π0(xn)

) 1
γ

R

∑
y∈X

π0(y)
(
π1(y)
π0(y)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π1(xn)
π0(xn)

)2

∑
y∈X

π1(y)
(
π1(xn)
π0(xn)

)2

(
α∗(x1,...,xn)

π1(y)
π0(y)

+(1−α∗(x1,...,xn))
π1(xn)
π0(xn)

)2

.

Simplifying yields inequality (A.13).
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