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Abstract

Where is the most likely position for the last success in n events, if each event has
the same probability Pr(A)? What is the probability for the last success? This
situation assumes returning successes which is different to the stop waiting problem
(see [1], [5]) where a single best event is assumed. We set F. Thomas Bruss’s theory
into a simple probability framework and develop a decision rule for the last success.
The results are applied to the Apple share prices.

1 When does the Last Success Come Up?

This question often appears in situations where repeating successes come up and a de-
cision should be moved to the last success within a fixed period, for example for selling
assets with a high price to finance an investment.
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Example 1.1
A 6 is defined as a success on a die. All positions between the second last and the last
success must be counted. For w = 1 the last success is on k = 8, but between the first
and eighth position no success occurs, so the positions from 1 to 8 are possible to obtain
the last success. For w = 10 no last success appears.

w= 1 w= 2 w= 3 w= 4 w= 5 w= 6 w= 7 w= 8 w= 9 w= 10

k= 1 3 3 2 2 6 1 6 4 4 1

k= 2 2 1 3 4 2 1 6 3 5 5

k= 3 5 3 4 6 3 1 5 5 2 2

k= 4 4 4 2 2 6 3 4 5 5 4

k= 5 2 1 4 3 3 6 1 2 4 4

k= 6 5 6 6 3 2 2 1 4 2 2

k= 7 2 1 1 6 4 5 2 3 3 4

k= 8 6 2 4 6 2 3 1 6 2 3

k= 9 5 2 4 3 6 1 6 5 5 2

k= 10 4 4 5 5 1 6 2 6 2 3

k= 1 k= 2 k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 k= 9 k= 10

0.3 0.3 0.4 0.4 0.5 0.6 0.4 0.5 0.4 0.2

Counting out on which position the last success most likely occurs, we see in this small
simulation that this happens on position k = 6.

2 The Probability for Pr(Ak)

The event A denotes a success and the event Ak denotes the last success on position k.
We develop the probability for Pr(Ak) in 2 steps and assume that Pr(A) is constant.

1. First we look on Ajk which describes the last success in k, if after the jth event the
last success appears with j< k. We fix k and let j go reversely from k− 1 to i (see
fig. 1).

Aj k

1 −−−→ 2 −−−→ 3 −−−→ . . . −−−→ 6 −−−→ 7 −−−→ . . . −−−→ 10

i j k n

Figure 1: Last success Pr(Aj k)

Example 2.1
We use a die and define A = 6, so that the Pr(A) = 1

6 and set n = 10. If we set

k= 7 and j= 6 (see fig. 1) the probability is Pr(A67) =
1
6 , because the chance that
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after the 6th throw on k = 7 a 6 appears is Pr(A). If we set j = 5 the situation
is the following: A 6 on k = 7 and no 6 on j = 6 or a 6 on j = 6 and no 6 on
k = 7. Both situations will show up a 6 after j = 5. The probability for no 6 is
Pr(¬A) = 5

6 and therefore the probability for Pr(A57) =
1
6
5
6 +

5
6
1
6 = 0.278. Let us

look on j = 4 and k = 7. Now a 6 can appears on position 5 or 6. So all possible
combinations are: +−− or −+− or −−+, where + stands for a 6 and − for

no 6. The probability is Pr(A47) =
1
6

(

5
6

)2
+ 1

6

(

5
6

)2
+ 1

6

(

5
6

)2
= 0.347. In total we

have

k= 1 k= 2 k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 k= 9 k= 10

j= 0 0.167 0.278 0.347 0.386 0.402 0.402 0.391 0.372 0.349 0.323

j= 1 NA 0.167 0.278 0.347 0.386 0.402 0.402 0.391 0.372 0.349

j= 2 NA NA 0.167 0.278 0.347 0.386 0.402 0.402 0.391 0.372

j= 3 NA NA NA 0.167 0.278 0.347 0.386 0.402 0.402 0.391

j= 4 NA NA NA NA 0.167 0.278 0.347 0.386 0.402 0.402

j= 5 NA NA NA NA NA 0.167 0.278 0.347 0.386 0.402

j= 6 NA NA NA NA NA NA 0.167 0.278 0.347 0.386

j= 7 NA NA NA NA NA NA NA 0.167 0.278 0.347

j= 8 NA NA NA NA NA NA NA NA 0.167 0.278

j= 9 NA NA NA NA NA NA NA NA NA 0.167

The table shows that it is not necessary to use j, because on all diagonals the same
probabilities appears. So it is sufficient to calculate the probability only for each
k = n, . . . ,1.

2. Pr(Ak=1) is now the probability of the former Pr(A0,10), which denotes that in
the first throw a 6 appears and 9 following throws without a success: Pr(A1) =

10× Pr(A)
(

1− Pr(A)
)9

= 0.323. Pr(A10) is hence the situation where the last

success occurs one throw later:
(

j = 0,k = 1
)

,
(

j = 1,k = 2
)

,. . . ,
(

j = 9,k = 10
)

with Pr(A10) = 1× Pr(A)
(

1− Pr(A)
)0

= 0.167.

In general we receive with a constant Pr(A) the formula

Pr(Ak) =
n

∑
j=k

Pr(A)
(

1− Pr(A)
)n−k

for k = 1, . . . ,n

The sum is not dependent on index j, so

Pr(Ak) = (n− k+ 1) Pr(A)
(

1− Pr(A)
)n−k

(1)

Example 2.2 (cont.)
The most likely position for the last success in this example is k= 6 (looking from
n to 1).
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k= 1 k= 2 k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 k= 9 k= 10

0.323 0.349 0.372 0.391 0.402 0.402 0.386 0.347 0.278 0.167

Remark: If we assume that the probability Pr(A) is not constant the prob-
ability Pr(Ak) is dependent on j: Pr(Ajk). The above table (see page 3) has
then different probabilities on each diagonal.

Pr(Ajk) =
k

∑
i=j+1









Pr(Ai)
k

∏
h=j+1
h 6=i

(

1− Pr(Ah)
)









for j < k = 1, . . . ,n

3 Decision Rule

We set Pr(A) constant. A heuristic approach is that the chance for a success must
be greater than for k fails. This leads to the condition where Pr(Ak) is the last time

greater than
(

1− Pr(A)
)n−k

. The largest k which fulfils the following inequality leads
to supPr(Ak) (see fig.2 orange line).

sup
k=1,...,n

{

k : Pr(Ak) ≥
(

1− Pr(A)
)n−k+1

}

⇔ sup
k=1,...,n

{

k : (n− k+ 1) Pr(A) ≥
(

1− Pr(A)
)}

A more mathematically approach is to find the roots of the derivation of Pr(Ak).

∂Pr(Ak)

∂k
= −Pr(A)

(

1− Pr(A)
)n−k

− (n− k+ 1) Pr(A)
(

1− Pr(A)
)n−k

. . .

× ln
(

1− Pr(A)
) !
= 0

(2)

Solving eq. (2) for k leads to ksup.

ksup = n+ 1+
1

ln
(

1− Pr(A)
) (3)

Because we have a discrete function we round ksup to the nearest integer: ⌊ksup + 0.5⌋.
Rewriting the necessary condition (2) shows the above heuristic condition.

−
Pr(A)

1− Pr(A)

(

1− Pr(A)
)n−k+1

= Pr(Ak) ln
(

1− Pr(A)
)

For small Pr(A) (less than 0.2) − Pr(A)
1−Pr(A)

≈ ln
(

1− Pr(A)
)

, so for ksup

(

1− Pr(A)
)n−k+1

≈ Pr(Ak)
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holds.
(

1−Pr(A)
)n−k+1

is for k= 0 . . . ,n a monotonic increasing function and for k≤ ksup

less than Pr(Ak) so the maximum for Pr(Ak) is found for that k where
(

1−Pr(A)
)n−k+1

is the last time smaller or equal Pr(Ak) (see fig. 2).

The relative position of ksup – with a constant Pr(A) – is always 1+ 1

ln
(

1−Pr(A)
) below

n.

Example 3.1 (cont.)
For Pr(A) = 1

6 the number of ksup − n is

⌊

1+ 1
ln(1− 1

6)
+ 0.5

⌋

≈ ⌊−4.48 + 0.5⌋ = −4.

Rounding to the next integer the supremum of Pr(Ak) is on the fifth last position of n.
For n = 10 the position of supPr(Ak) = 0.402 is ksup = 6. If n increases to 100, ksup
moves to 96. The position will stay on the fifth last position of n as long as Pr(A) is
unchanged.

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

k

P
r(

A
k)

eq. 9
eq. 10
eq. 11

Figure 2: Decision Rule for supPr(Ak)

4 Simulation and Convergence of supPr(Ak)

In our simulation we use again 1000 repeats each with n= 100 values. One simulation is
with Pr(A) = 1

6 which is a die. The other simulation assumes a probability for a success

of Pr(A) = 1
60 . Both simulations confirm the theoretical calculation (see fig. 3, left).

With decreasing probabilities for Pr(A) the probabilities of the last success Pr(Ak) con-
verges to 1

e (see fig. 3, right). But if only n increases with a constant Pr(A) the probability
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of Pr(Ak) remains unchanged and only the position of k change.

With ksup = n+ 1+ 1

ln
(

1−Pr(A)
) the maximum probability of Pr(Ak) is

supPr(Ak) = −
1

ln
(

1− Pr(A)
) Pr(A)

(

1− Pr(A)
)

−



1+ 1

ln

(

1−Pr(A)

)





We let Pr(A) → 0. For small Pr(A) the expression ln
(

1− Pr(A)
)

≈ − Pr(A)
1−Pr(A)

. So we

can write for supPr(Ak)

lim
Pr(A)→0

supPr(Ak) = lim
Pr(A)→0

1− Pr(A)

Pr(A)
Pr(A)

(

1− Pr(A)
)

1−Pr(A)
Pr(A)

−1

= lim
Pr(A)→0

(

1− Pr(A)
)

1−Pr(A)
Pr(A) = lim

Pr(A)→0

(

1− Pr(A)
)

1
Pr(A)

1− Pr(A)
=

1

e

(4)
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Figure 3: Probabilities of Pr(Ak) and Distribution of supPr(Ak)

5 Application

For our application to Apple share prices we have to define what a success and what
the probability for a success is. The probability for a success is computed from 1000
simulated share prices. For the simulation of share prices all log returns ≶ ±0.011 are
removed to avoid a strong drift. The resampled log returns are used to simulate the
share prices (see fig. 4, right). The estimation for Pr(A) is 0.136. A success for selling

6



is defined, if the price is above x̄ + s = 344.245. Average and standard deviation are
computed from the simulated prices.

For the historical Apple data (n = 755) the last success is indicated at k = 749 (see eq.
3). In fig. 4 (left) we see that this point is connected with a success (the share price is
above x̄+ s). The probability for the last success is computed with Pr(Ak) = 0.396 (see
eq. 1).
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Figure 4: Last Success of Apple Share Prices

To see how the theory of last success performs we use the 1000 simulated share prices
(n= 407) and use eq. (3) to determine ksup and eq. (1) to compute Pr(Ak). Pr(A) is used
from the above simulation. The result is at k = 401 the last success should appear with
Pr(Ak) = 0.396 (= supPr(Ak)). Pr(Ak) has the same value, because Pr(A) is unchanged
and therefore the difference n− k is equal.

We compare this result with counting out the frequency at which k the last result appears.
The table below shows, that for k = n the last success is most likely (Pr(Ak) = 0.228)
and at k= 401 the probability is really low. Why does the theory not hold? One possible
explanation is, that the drift of the share prices is very much influencing the outcome.
Experiments show that for a pure random process the simulations are in line with the
theoretical results.

k= 398 k= 399 k= 400 k= 401 k= 402 k= 403 k= 404 k= 405 k= 406 k= 407

0.009 0.011 0.008 0.008 0.006 0.007 0.011 0.005 0.010 0.228
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6 Conclusion

The probability theory for the last success has a simple decision rule to find in a series
of random events the position with the most likely last success. The probability for the
last success with a constant success probability Pr(A) is as well easy to compute and
converges to 1

e . The application of the theory shows that the above results can be very
much influenced by real effects like drifts.
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