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Abstract 

We investigate default probabilities and default correlations of Merton-type credit portfolio 

models in stress scenarios where a common risk factor is truncated. The analysis is performed 

in the class of elliptical distributions, a family of light-tailed to heavy-tailed distributions 

encompassing many distributions commonly found in financial modelling. It turns out that the 

asymptotic limit of default probabilities and default correlations depend on the max-domain 

of the elliptical distribution's mixing variable. In case the mixing variable is regularly varying, 

default probabilities are strictly smaller than 1 and default correlations are in (0; 1). Both can 

be expressed in terms of the Student t-distribution function. In the rapidly varying case, 

default probabilities are 1 and default correlations are 0. We compare our results to the tail 

dependence function and discuss implications for credit portfolio modelling. 
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Default probabilities and default correlations under stress

1 Introduction

In the aftermath of the subprime crisis and the European sovereign debt crisis, stress testing of

bank portfolios has become an integral part of financial risk management and banking supervi-

sion (Turner, 2009; Larosière and others, 2009; Brunnermeier et al., 2009; BIS, 2009). Stress

tests for credit portfolios are of particular importance, since in a typical bank risk capital for

credit risk far outweighs capital requirements for any other risk class.

In this paper, we analyse the behaviour of credit portfolio models under stress depending

on the joint distribution of the stochastic variables of the model. Although widely questioned,

the industry standard is still to employ multivariate normally distributed random variables. In

order to cover a wide range of light-tailed to heavy-tailed distributions we use the family of

elliptical distributions, which contains the normal distribution as a special case. More formally,

let Z = (Z0, . . . ,Zd)
T be a random vector on the probability space (W,A ,P). We assume that Z

follows an elliptical distribution with representation

Z L
= GAU, (1)

where G > 0 is a scalar random variable, the so-called mixing variable, A is a deterministic

(d+1)⇥(d+1) matrix with AAT := S, which in turn is a (d+1)⇥(d+1) nonnegative definite

symmetric matrix of rank d + 1, and U is a (d + 1)-dimensional random vector uniformly

distributed on the unit sphere Sd+1 := {z2Rd+1 : zT z= 1}, and U is independent of G. Recent

papers study the asymptotic properties of value-at-risk in a similar setup, e.g. Embrechts et al.

(2009); Mainik and Embrechts (2013).

In the next section, we provide a short survey of structural credit portfolio models. In

this setting, Z0 will be interpreted as a risk factor of the model and Z1, . . . ,Zd as asset re-

turn variables of d firms. The default of the i-th firm is represented by {Zi  Di} for a

given default threshold Di 2 R and the corresponding default probability (PD) is defined by

pi := P(Zi  Di) = E(1{ZiDi}). The default correlations are defined as the correlations of the

default indicators 1{ZiDi} and 1{Z jD j}. To simplify the exposition, we assume throughout that

4 Frankfurt School of Finance & Management
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the correlations of Z0,Z1, . . . ,Zd are in (0,1).

The objective of this paper is to analyse the impact of stress on default probabilities and

default correlations. Stress scenarios are specified by truncating the risk factor Z0, i.e., by

conditioning on {Z0  C} with stress level C 2 R. Using techniques from Extreme Value

Theory (EVT), we derive the limit of conditional default probabilities and default correlations

as C !�•. The limit depends on whether the mixing variable G is in the max-domain of the

Fréchet or the Gumbel distribution, or more generally, on whether the tail distribution function

P(G > ·) is regularly varying or rapidly varying. For stressed default probabilities, we show

that for any Di 2 R

lim
C!�•

P(Zi  Di|Z0 C) = 1,

if P(G > ·) is rapidly varying. In contrast, if P(G > ·) is regularly varying with tail index �a ,

then

lim
C!�•

P(Zi  Di|Z0 C) = ta+1

 p
a +1rp
1�r2

!
2 [1/2,1),

where tn denotes the Student t distribution function with parameter n and r denotes the correla-

tion of Z0 and Zi. These results imply that the limiting default probability under stress is strictly

smaller in the heavy-tailed case than in the light-tailed case. Essentially, in the heavy-tailed

case, extreme outcomes are driven by the joint mixing variable, implying a strictly positive

probability for a conditional extreme positive outcome of Zi.

It is interesting to note that this behaviour of limiting default probabilities is fundamentally

different to tail dependence, which is positive for heavy-tailed G, and converges to 0 as the tail

index of G tends to infinity, that is, to the light-tailed case, see (Schmidt, 2002; Klüppelberg et

al., 2008; Hult and Lindskog, 2002). Limiting default correlations, on the other hand, behave

like tail dependence: we show that Corr(1{ZiDi},1{Z jD j}|Z0 C) converges to 0 in the light-

tailed case and to a positive number in the heavy-tailed case.

The paper is structured as follows: in Section 2, we define stress tests in structural credit

portfolio models. The results on asymptotic stressed default probabilities are derived in section

3. Section 4 focuses on stressed default correlations. In section 5, implications for credit

Frankfurt School of Finance & Management 5
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portfolio modelling are discussed.

2 Preliminaries

2.1 Structural credit portfolio models

Depending on their formulation, credit portfolio models can be divided into reduced-form mod-

els and structural (or firm-value) models. The progenitor of all structural models is the model of

Merton (Merton, 1974), which links the default of a firm to the relationship between its assets

and the liabilities at the end of a given time period [0,T ]. More precisely, in a structural credit

portfolio model the i-th counterparty defaults if its asset return (or ability-to-pay) variable Zi

falls below a default threshold Di: the default event at time T is defined as {Zi  Di} ✓ W,

where Zi is a real-valued random variable on the probability space (W,A ,P) and Di 2 R. The

portfolio loss variable is defined by

L :=
d

Â
i=1

li ·1{ZiDi}, (2)

where d denotes the number of counterparties and li is the loss-at-default of the i-th counter-

party. In order to reflect risk concentrations, each Zi is decomposed into a sum of systematic

factors X1, . . . ,Xm, which are often identified with geographic regions or industries, and a firm-

specific factor ei, that is,

Zi =
q

R2
i

m

Â
j=1

wi jXj +
q

1�R2
i ei. (3)

The impact of the risk factors on Zi is determined by R2
i 2 [0,1] and the factor weights wi j 2R.

In order to quantify portfolio risk, measures of risk are applied to the portfolio loss distri-

bution (2). The expected loss of the credit portfolio is used for specifying credit reserves. It is

defined as the mean of L:

E(L) =
d

Â
i=1

li · pi,

where pi = P(Zi  Di) = E(1{ZiDi}) denotes the default probability of the i-th counterparty.

6 Frankfurt School of Finance & Management
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Capital requirements for covering unexpected losses are typically derived from the value-at-

risk VaRa(L) for a predefined probability a 2 (0,1), where VaRa(L) is simply defined as the

a-quantile of L. Obviously, the default probabilities and risk concentrations specified by the

dependence structure of the default variables 1{ZiDi} determine the value-at-risk of the credit

portfolio. Default correlations

Corr(1{ZiDi},1{Z jD j}) =
P(Zi  Di,Z j  D j)� pi p jp

pi(1� pi)p j(1� p j)

are used as a measure of dependence by portfolio management to identify risk concentrations

on counterparty level.

2.2 Distribution of model variables

The standard approach in credit risk management is to model the risk factors and ability-to-pay

variables through a joint multi-variate Gaussian distribution. Since the purpose of this paper

is to analyze the impact of stress scenarios under different distribution assumptions we use a

more general framework and consider elliptical distributions instead.

Elliptical distributions cover a variety of light-tailed to heavy-tailed distributions depending

on the tail behaviour of the mixing variable G, i.e., whether G is rapidly varying or regularly

varying. A special role is played by normal variance mixture (NVM) distributions (see, for

instance, McNeil et al. (2005); Bingham and Kiesel (2002)). First, NVM distributions en-

compass a number of distributions commonly used in financial modelling, most prominently

normal distributions, t-distributions and symmetric generalised hyperbolic distributions. Sec-

ond, all elliptical distributions of interest in the credit portfolio context can be represented as

NVM distributions: any elliptical distribution whose so-called characteristic generator does not

depend on the dimension d can be represented as an NVM distribution, see Theorem 2.21 of

Fang et al. (1990), or Theorem 3.25 of McNeil et al. (2005). For details on elliptical distribu-

tions, we refer to (Fang et al., 1990; Cambanis et al., 1981) and for their application in finance

and risk management we refer to (McNeil et al., 2005).

Frankfurt School of Finance & Management 7
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2.3 Stress testing in credit portfolio models

In a stress test, credit portfolios are typically evaluated under the assumption of adverse eco-

nomic conditions. A natural way for implementing stress tests in portfolio models is to translate

the stress scenario into constraints on risk factors. In our setup, the constraints are formalised

by truncating risk factor variables X1, . . . ,Xm, that is, by conditioning on the range of values

that a risk factor may attain. This is a commonly used stress testing technique for credit risk

management and capital management of financial institutions, see e.g. (Bonti et al., 2006; Du-

ellmann and Erdelmeier, 2009; Kalkbrener and Packham, 2013). More precisely, let us consider

the situation when the risk factor Z0 2 {X1, . . . ,Xm} is truncated by C 2 R, that is, Z0 C and

write

P

C(A) = P(A|Z0 C), A 2 A ,

for the corresponding conditional distribution. In this setting, C is interpreted as the level of

stress applied to the risk factor Z0. The objective of this paper is to calculate the limit of

default probabilities, joint default probabilities and corresponding default correlations under

P

C as C !�•.

3 Default probabilities under stress

Let h be a positive, Lebesgue-measurable function on (0,•). We write h 2 RVa if h is regularly

varying with index a 2 R, i.e.,

lim
x!•

h(tx)
h(x)

= ta , t > 0,

and h 2 RV�• if h is rapidly varying with index �•, i.e.,

lim
x!•

h(tx)
h(x)

=

8
>><

>>:

0, t > 1,

•, 0 < t < 1.

8 Frankfurt School of Finance & Management
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For details on regularly varying functions, we refer to Bingham et al. (1987).

Let Z = GAU denote an elliptical random vector as in Equation (1). We assume that all

variables are standardised so that S = AAT is the correlation matrix of (Z0, . . . ,Zd)
T . The

correlation of Zi and Z j is denoted by ri j, i, j = 0,1, . . . ,d. We assume that the correlations with

respect to the risk factor are positive, i.e., r0i > 0. The case r0i  0 can be treated analogously.

In the following, denote by Ai· the i-th row of A and let FU denote the uniform distribution

on Sd+1.

It is well-known that P(G > ·) 2 RV�a implies P(Zi > ·) 2 RV�a , i = 0, . . . ,d, see e.g.

Theorem 7.35 of McNeil et al. (2005). For many distributions of interest in RV�•, such as

the normal distribution and the generalised hyperbolic distributions, we know that the mixing

variable is in RV�•, see e.g. Section 7.3 of McNeil et al. (2005).

Theorem 1. (i) If P(G > ·) 2 RV�a , then

lim
C!�•

P

C(Z1  D1, . . . ,Zd  Dd)

=
Z

u2Sd+1,A0·u>0,...,Ad·u>0
(A0·u)a dFU(u)

✓Z

u2Sd+1,A0·u>0
(A0·u)a dFU(u)

◆�1
.

(ii) If P(G > ·) 2 RV�•, then

lim
C!�•

P

C(Z1  D1, . . . ,Zd  Dd) = 1.

Proof. We first give a proof for the special case Di = 0 for i = 1, . . . ,d.

Since the elliptical random vector is symmetric and continuous we can write

lim
C!�•

P

C(Z1  0, . . . ,Zd  0) = lim
C!•

P(Z0 >C,Z1 > 0, . . . ,Zd > 0)
P(Z0 >C)

. (4)

Frankfurt School of Finance & Management 9
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For the numerator

P(Z0 >C,Z1 > 0, . . . ,Zd > 0) = P(G >
C

A0·U
,A0·U > 0, . . . ,Ad·U > 0)

=
Z

u2Sd+1,Ai·u>0,i=0,...,d
P

✓
G >

C
A0·u

◆
FU(du). (5)

For (i), it follows from P(G > ·) 2 RV�a that

lim
C!•

P(G >C/(A0·u))
P(G >C)

= (A0·u)a , for A0·u > 0.

Potter’s bounds (de Haan and Ferreira, 2006, Proposition B.1.9) state that for arbitrary e > 0

and d > 0 there exists C0 such that for all C �C0, C/(A0·u)�C0,

P(G >C/(A0·u))
P(G >C)

< (1+ e)(A0·u)a max
⇣
(A0·u)d ,(A0·u)�d

⌘
,

and since the right-hand side is integrable, we obtain by Dominated Convergence that

lim
C!•

Z

u2Sd+1,Ai·u>0,i=0,...,d

P(G >C/(A0·u))
P(G >C)

FU(du) =
Z

u2Sd+1,Ai·u>0,i=0,...,d
(A0·u)a FU(du).

Applying the same method to the denominator of Equation (4) completes the proof of (i).

For (ii), it suffices to consider the case d = 1, i.e., limC!• P(Z1 > 0|Z0 >C) = 1, since the

general case follows from

P(Z1 > 0, . . . ,Zd > 0|Z0 >C)� 1�
d

Â
i=1

(1�P(Zi > 0|Z0 >C)).

Equality (5) implies

P(Z1 > 0|Z0 >C) =

=
Z

u2S2,Ai·u>0,i=0,1
P

✓
G >

C
A0·u

◆
FU(du)

✓Z

u2S2,A0·u>0
P

✓
G >

C
A0·u

◆
FU(du)

◆�1
.

10 Frankfurt School of Finance & Management
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Write u 2 S2 in polar coordinates as u = (cosq ,sinq), q 2 [�p,p], and let A be the Cholesky

decomposition of the correlation matrix, i.e., A0· = (1,0)T , A1· = (r,
p

1�r2) with r := r01

the correlation of Z0,Z1. Hence, A0·u = cosq > 0 if q 2 (�p/2,p/2) and A1·u = r cosq +
p

1�r2 sinq = sin(q + arcsinr)> 0 if q 2 (�arcsinr,p � arcsinr). It follows that

Z

u2S2,Ai·u>0,i=0,1
P

✓
G >

C
A0·u

◆
FU(du) =

Z p/2

�arcsinr
P

✓
G >

C
cosq

◆
dq

=
Z p/2

�p/2
P

✓
G >

C
cosq

◆
dq �

Z p/2

arcsinr
P

✓
G >

C
cosq

◆
dq

and
Z

u2S2,A0·u>0
P

✓
G >

C
A0·u

◆
FU(du) =

Z p/2

�p/2
P

✓
G >

C
cosq

◆
dq .

Since r > 0, we have cosq < cos(arcsinr) =
p

1�r2 for q 2 (arcsinr,p/2). Hence, by

definition of rapidly varying functions and by Dominated Convergence,

lim
C!•

Z p/2

arcsinr

P

✓
G > Cp

1�r2

p
1�r2

cosq

◆

P

✓
G > Cp

1�r2

◆ dq = 0.

On the other hand, for q 2 (�arcsinr,arcsinr),

lim
C!•

P

✓
G > Cp

1�r2

p
1�r2

cosq

◆

P

✓
G > Cp

1�r2

◆ = •,

so that, putting everything together, we obtain

lim
C!•

P(Z1 > 0|Z0 >C) = 1.

It remains to show that

lim
C!�•

P

C(Z1  0, . . . ,Zd  0) = lim
C!�•

P

C(Z1  D1, . . . ,Zd  Dd), (6)

Frankfurt School of Finance & Management 11
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for arbitrary D1, . . . ,Dd . Let i 2 {1, . . . ,d} and a > 0. Note that for C <�|Di|/a,

P

C(Zi �aZ0  0) P

C(Zi  aC)< P

C(Zi  Di)< P

C(Zi �aC) P

C(Zi +aZ0  0).

Hence,

lim
C!�•

P

C(Z1 �aZ0  0,Z2  0, . . . ,Zd  0) lim
C!�•

P

C(Z1  D1,Z2  0, . . . ,Zd  0)

 lim
C!�•

P

C(Z1 +aZ0  0,Z2  0, . . . ,Zd  0).

Since Equation (5) is continuous in A1·, it follows that limC!�• P

C(Z1 + aZ0  0,Z2 

0, . . . ,Zd  0) is a continuous function in a 2 R, hence

lim
C!�•

P

C(Z1  D1,Z2  0, . . . ,Zd  0) = lim
C!�•

P

C(Z1  0,Z2  0, . . . ,Zd  0).

and therefore (6) is obtained by reiterating this argument.

Remarks

(i) Default thresholds D1, . . . ,Dd determine the unconditional default probabilities P(Zi 

Di). Note, however, that limC!�• P

C(Z1  D1, . . . ,Zd  Dd) does not depend on the Di,

i.e., in the limit, stressed default probabilities do not depend on the unconditional default

probabilities, but only on the dependence structure of the Zi.

(ii) Theorem 1 implies in particular that the limiting default probability under stress is strictly

smaller than 1 in the heavy-tailed case, provided that the variables are not perfectly cor-

related. This result can be attributed to the special structure of elliptical distributions,

where a stress event may be caused by a large mixing variable and a uniform random

vector on the sphere Sd+1 with components close to zero, whose signs may well differ,

thus overall leading to potentially very large positive or negative realisations of the asset

returns. In the light-tailed case, the tail behaviour of the mixing variable is too moderate

to produce extreme overall behaviour of opposite signs.

12 Frankfurt School of Finance & Management
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(iii) Even without further making the limiting distribution of part (i) concrete, it can be numer-

ically determined efficiently using Monte Carlo simulation. An efficient method to sim-

ulate uniform random variates on the unit sphere Sd+1, is to draw (d + 1)-dimensional

independent normally distributed random variables Y =(Y0, . . . ,Yd)
T , and transform them

according to Y/kYk, which produces the desired random variates, see e.g. Corollary 3.23

of McNeil et al. (2005) or Section 3.4.1.E. of Knuth (1998). Simulation has proven to be

significantly faster than the numerical calculation of integrals in Proposition 3 below.

In the following two propositions, we express the integral in Theorem 1(i) in terms of beta

functions: the incomplete beta function B(z;a,b) is defined by

B(z;a,b) :=
Z z

0
ua�1(1�u)b�1 du = 2

Z arcsin(
p

z)

0
(sinq)2a�1(cosq)2b�1 dt, (7)

where the last equation follows from substituting u = (sinq)2. The regularized incomplete beta

function is defined as

Ix(a,b) =
B(x;a,b)
B(a,b)

, (8)

where B(a,b) := B(1,a,b). Note that there exists the following relationship between an incom-

plete beta function and the distribution function tn of the Student-t distribution with parameter

n :

tn(x) =

8
>><

>>:

1
2 In/(x2+n)

�n
2 ,

1
2
�
, x  0,

1
2

h
1+ Ix2/(x2+n)

�1
2 ,

n
2
�i

, x > 0.
(9)

Proposition 2 covers the case d = 1, which corresponds to stressed default probabilities,

whereas Proposition 3 deals with stressed bivariate default probabilities.

Proposition 2. Let P(G > ·) 2 RV�a . Then,

lim
C!�•

P(Z1  D1|Z0 C) =
1
2
+

1
2

Ir2

✓
1
2
,
a +1

2

◆
= ta+1

 p
a +1rp
1�r2

!
2 [1/2,1), (10)

where r := r01 denotes the correlation of Z0 and Z1.

Frankfurt School of Finance & Management 13
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Proof. By Theorem 1(i),

lim
C!�•

P

C(Z1  D1) =
Z

u2S2,A0·u>0,A1·u>0
(A0·u)a dFU(u)

✓Z

u2S2,A0·u>0
(A0·u)a dFU(u)

◆�1
.

Write u2S2 in polar coordinates as u= (cosq ,sinq), q 2 [�p,p]. As in the proof of Theorem

1(ii) we obtain

lim
C!�•

P

C(Z1  D1) =
Z p/2

�arcsinr
(cosq)a dq

✓Z p/2

�p/2
(cosq)a dq

◆�1

.

Using Equalities (7) and (8) yields

Z p/2

�p/2
(cosq)a dq = B

✓
1
2
,
a +1

2

◆
,

Z p/2

�arcsinr
(cosq)a dq =

Z arcsinr

0
(cosq)a dq +

1
2

B
✓

1
2
,
a +1

2

◆

=
1
2

B
✓

r2;
1
2
,
a +1

2

◆
+

1
2

B
✓

1
2
,
a +1

2

◆

and therefore

lim
C!�•

P

C(Z1  D1) =
1
2
+

1
2

Ir2

✓
1
2
,
a +1

2

◆
.

The claim follows by observing that this expression corresponds to the respective Student t-

distribution function, see Equation (9).

We shall also assume in the following proposition that r12 � r01r02, which expresses that

the specific components of Z1 and Z2 are correlated in a non-negative way. The sole reason for

this assumption is to avoid awkward case differentiations, and it can easily be lifted.

14 Frankfurt School of Finance & Management
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Proposition 3. Let P(G > ·) 2 RV�a . Then,

lim
C!�•

P(Z1  D1,Z2  D2|Z0 C) =
1
2

ta+1

 p
(a +1) tp

1� t2

!

+
Z p/2

�arcsin t


1
2
� ta+2

✓
�
����

p
a +2

q3(j)

����

◆�
(cosj)a dj

✓
B
✓

1
2
,
a +1

2

◆◆�1

+
Z �arcsin t

�arcsinr01
ta+2

✓
�
����

p
a +2

q3(j)

����

◆
(cosj)a dj

✓
B
✓

1
2
,
a +1

2

◆◆�1
,

(11)

where q3(j) =

q
1�r2

02 �q2
1

r02 cosj +q1 sinj
and q1 =

r12 �r01r02q
1�r2

01

and t := r01 ^ r02p
q2

1+r2
02

.

Proof. Write u 2 S3 in polar coordinates as u = (sinq cosj,sinq sinj,cosq)T , with q 2

[0,p], j 2 [�p,p]. Let A be given by A0· = (1,0,0)T , A1· = (r01,
q

1�r2
01,0)

T and A2· =

(r02,q1,q2)T with q1 =
r12 �r01r02q

1�r2
01

and q2 =
q

1�r2
02 �q2

1. We have A0·u = sinq cosj >

0 if j 2 (�p/2,p/2) and q 2 (0,p). For A1·u = r01 sinq cosj +
q

1�r2
01 sinq sinj =

r01 sinq sin(j + arcsinr01)> 0 we obtain j 2 (�arcsinr01,p � arcsinr01) on q 2 (0,p). Fi-

nally, for A2·u = sinq(r02 cosj + q1 sinj)+ q2 cosq > 0 we need to distinguish four cases:

First, if q4(j) := r02 cosj + q1 sinj > 0 and q 2 (0,p/2), then A2·u > 0 if tanq > �q2/q4,

which is fulfilled for all q 2 (0,p). Second, if q4 > 0 and q 2 (p/2,p), then A2·u > 0

if tanq < �q2/q4, which implies q < p � arctan(q2/q4) = p � arcsin

0

@ q3q
1+q2

3

1

A, where

q3(q) := q2/q4. Third, for q4 < 0 and q 2 (0,p/2), we have A2·u > 0 if tanq < �q2/q4 =

q2/|q4|, so that q < arctan(q2/|q4|) = arcsin(
|q3|q
1+q2

3

). Fourth, if q4 < 0 and q 2 (p/2,p),

then A2·u > 0 if tanq > q2/|q4|, but this is not fulfilled for any q 2 (p/2,p), since tanq < 0.

Finally, we have q4 = r02 cosj + q1 sinj > 0 for j 2 (�p/2,p/2) if tanj > �r02/q1, resp.

Frankfurt School of Finance & Management 15
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j > arctan(�r02/q1) = arcsin(�r02/
q

q2
1 +r2

02). Putting everything together, we obtain

lim
C!�•

P(Z1  D1,Z2  D2|Z0 C) =

✓Z p/2

�p/2

Z p

0
(sinq)a+1(cosj)a dq dj

◆�1

"Z p/2

t

Z p/2

0
(sinq)a+1(cosj)a dq dj +

Z p/2

t

Z p�arcsin(q3/
p

1+q2
3)

p/2
(sinq)a+1(cosj)a dq dj

+
Z t

�arcsinr01

Z arcsin(q3/
p

1+q2
3)

0
(sinq)a+1(cosj)a dq dj

#
,

with t :=�arcsin(min(r01,r02/
q

q2
1 +r2

02)).

First,

Z p/2

�p/2

Z p

0
(sinq)a+1(cosj)a dq dj = B

✓
a +2

2
,
1
2

◆
B
✓

1
2
,
a +1

2

◆
.

Second,

Z p/2

t

Z p/2

0
(sinq)a+1(cosj)a dq dj

=
1
4

B
✓

a +2
2

,
1
2

◆
B
✓

1
2
,
a +1

2

◆
+B

✓
r2

01 ^
r2

02
q2

1 +r2
02

;
1
2
,
a +1

2

◆�

and

Z p/2

t

Z p�arcsin(q3(j)/
p

1+q3(j)2)

p/2
(sinq)a+1(cosj)a dq dj

=
Z p/2

t

1
2


B
✓

a +2
2

,
1
2

◆
�B

✓
q3(j)2

1+q3(j)2 ;
a +2

2
,
1
2

◆�
(cosj)a dj

and

Z t

�arcsinr01

Z arcsin(q3(j)/
p

1+q3(j)2)

0
(sinq)a+1(cosj)a dq dj

=
Z t

�arcsinr01

1
2

B
✓

q3(j)2

1+q3(j)2 ;
a +2

2
,
1
2

◆
(cosj)a dj.
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Figure 1: Asymptotic univariate PD’s (left) and bivariate PD’s (right) as a function of the tail
index. Correlations are r01 = r02 = r and r12 = r2. The choice of r12 implies that the asset
returns are correlated only via the risk factor.

Putting everything together yields

lim
C!�•

P(Z1  D1,Z2  D2|Z0 C) =
1
4

2

41+ I
r2

12^
r2

02
q2
1+r2

02

✓
1
2
,
a +1

2

◆3

5

+
1
2

Z p/2

t

"
1� I q3(j)2

1+q3(j)2

✓
a +2

2
,
1
2

◆#
(cosj)a dj

✓
B
✓

1
2
,
a +1

2

◆◆�1

+
1
2

Z t

�arcsinr01
I q3(j)2

1+q3(j)2

✓
a +2

2
,
1
2

◆
(cosj)a dj

✓
B
✓

1
2
,
a +1

2

◆◆�1
,

and replacing the incomplete beta functions by the Student-t distributions, cf. Equation (9),

yields the claim.

Figure 1 shows examples of asymptotic univariate and bivariate PD’s for varying tail index

a . This demonstrates how PD’s depend on both the tail index and the correlations.

4 Default correlations under stress

In the case where P(G > ·) 2 RV�a , default correlations can be explicitly calculated using

the results from Propositions 2 and 3. For the case where G is rapidly varying, we have the

following result.

Frankfurt School of Finance & Management 17
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Proposition 4. Let P(G > ·) 2 RV�•. Then,

lim
C!�•

CorrC(1{Z1D1},1{Z2D2}) = 0,

where CorrC denotes the correlation under P

C.

Proof. It is easily seen that for any probability measure P,

Corr(1{Z1D1},1{Z2D2})=
P(Z1 > D1,Z2 > D2)� (1�E(1{Z1D1}))(1�E(1{Z2D2}))q
E(1{Z1D1})(1�E(1{Z1D1}))

q
E(1{Z2D2})(1�E(1{Z2D2}))

.

(12)

Using Theorem 1, this simplifies in the case of P(G > ·) 2 RV�• to

lim
C!�•

CorrC(1{Z1D1},1{Z2D2}) = lim
C!�•

P(Z1 > D1,Z2 > D2|Z0 C)p
P(Z1 > D1|Z0 C)

p
P(Z2 > D2|Z0 C)

= lim
C!•

P(Z1  D1,Z2  D2,Z0 >C)p
P(Z1  D1,Z0 >C)

p
P(Z2  D2,Z0 >C)

, (13)

where the second equality follows from the symmetry of the Zi.

Suppose first that r01 6= r02; wlog. let r02 > r01. As before, we first prove the claim for

D1 = D2 = 0.

We write (13) in the form

lim
C!�•

CorrC(1{Z10},1{Z20}) = lim
C!•

P(Z1  0,Z2  0,Z0 >C)

P(Z2  0,Z0 >C)

s
P(Z2  0,Z0 >C)

P(Z1  0,Z0 >C)
. (14)

The first term is bounded by 1. For C > 0, write the second term in the form

P(Zi  0,Z0 >C) = P

✓
G >

C
A0·U

,A0·U > 0,Ai·U < 0
◆

=
Z

u2S2,A0·u>0,Ai·u<0
P

✓
G >

C
A0·u

◆
FU(du)

=
Z �arcsinr0i

�p/2
P

✓
G >

C
cosq

◆
dq .
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Since r02 > r01, we have �arcsinr02 <�arcsinr01, and

sup
q2(�p/2,�arcsinr02]

cosq = cos(�arcsinr02) =
q

1�r2
02.

Hence, using that G is rapidly varying and via Dominated Convergence,

lim
C!•

Z �arcsinr02

�p/2

P(G >C/cosq)

P(G >C/
q

1�r2
02)

dq = 0,

whereas

lim
C!•

P(G >C/cosq)

P(G >C/
q

1�r2
02)

= •, for q 2 (�arcsinr02,�arcsinr01],

which implies that

lim
C!•

P(Z2  0,Z0 >C)

P(Z1  0,Z0 >C)
= 0 (15)

and therefore Equation (14) is 0.

To complete the proof for r02 > r01 it remains to show that

lim
C!�•

CorrC(1{Z1D1},1{Z2D2}) = lim
C!�•

CorrC(1{Z10},1{Z20}) = 0

for arbitrary D1,D2 2 R. For a > 0 and C > |D2|/a,

P(Z2 +aZ0  0,Z0 >C) P(Z2  D2,Z0 >C) P(Z2 �aZ0  0,Z0 >C).

For sufficiently small a we obtain from (15)

0 = lim
C!•

P(Z2 +aZ0  0,Z0 >C)

P(Z1  0,Z0 >C)
 lim

C!•

P(Z2  D2,Z0 >C)

P(Z1  0,Z0 >C)

 lim
C!•

P(Z2 �aZ0  0,Z0 >C)

P(Z1  0,Z0 >C)
= 0
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and therefore

lim
C!•

P(Z2  D2,Z0 >C)

P(Z1  0,Z0 >C)
= 0.

Applying the same argument to the numerator yields

lim
C!•

P(Z2  D2,Z0 >C)

P(Z1  D1,Z0 >C)
= 0.

Obviously,
P(Z1  D1,Z2  D2|Z0 >C)

P(Z2  D2|Z0 >C)
is bounded by 1. Hence, by Equality (14),

lim
C!�•

CorrC(1{Z1D1},1{Z2D2}) = 0.

It remains to show that the claim also holds for r01 = r02. Wlog. assume that D1  D2. We

now provide a proof for the case D2  0. The case D2 > 0 is shown analogously.

It follows from (13) that

lim
C!�•

CorrC(1{Z1D1},1{Z2D2}) lim
C!•

P(Z1  0,Z2  0,Z0 >C)

P(Z1  D1,Z0 >C)
.

The numerator can be written in the form

P(Z1  0,Z2  0,Z0 >C) =
Z

A0·u>0,Ai·u<0,i=1,2
P

✓
G >

C
A0·u

◆
FU(du).

Express u 2 S3 in polar coordinates by u = (sinq cosj,sinq sinj,cosq)T with q 2 [0,p],

j 2 [�p,p]. Observe that the conditions A0·u = sinq cosj > 0 and A1·u = r01 sinq sin(j +

arcsinr01)< 0 imply q 2 (0,p) and j 2 (�p/2,�arcsinr01). Hence,

x := sup
A0·u>0,A1·u<0

A0·u

= sup
q2(0,p),j2(�p/2,�arcsinr01)

sinq cosj

= sin(p/2) cos(�arcsinr01)

= cos(�arcsinr01) =
q

1�r2
01.
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At q = p/2,j =�arcsinr01, the condition A2·u< 0 is not satisfied: since A2·u= sinq(r02 cosj+

q1 sinj)+q2 cosq , where q1 and q2 are as in Proposition 3, resp. the proof of Proposition 3 it

follows from r02 = r01 that

A2·u = r01 cos(�arcsinr01)| {z }
=
p

1�r2
01

�
r12 �r2

01q
1�r2

01

r01 =
r01q

1�r2
01

(1�r12)� 0.

This implies that

y := sup
A0·u>0,A1·u<0,A2·u<0

A0·u < x.

Hence, by the property that G is rapidly varying and via Dominated Convergence,

lim
C!•

Z

u2S3,A0·u>0,A1·u<0,A2·u<0

P(G >C/(A1·u))
P(G >C/y)

FU(du) = 0. (16)

For the denominator we have

P(Z1  D1,Z0 >C) =
Z

u2S3,A0·u>0,A1·u<0
P

✓
G > max

✓
|D1|
|A1·u|

,
C

A0·u

◆◆
FU(du)

=
Z p

0

Z �arcsinr01

�p/2
P

✓
G > max

✓
f (q ,j), C

sinq cosj

◆◆
sinq dj dq ,

(17)

where

f (q ,j) :=
|D1|

|r01 sinq sin(j + arcsinr01)|
.

Obviously, the maximum in the integrand of (17) is given by f (q ,j) if

sinq cosj
|r01 sinq sin(j + arcsinr01)|

=
cosj

|r01 sin(j + arcsinr01)|
� C

|D1|
.

Hence, f (q ,j) is the maximum in a neighbourhood of j = �arcsinr01. On the other hand,

for every j 2 (�p/2,�arcsinr01) the maximum is given by C/(A0·u) for C sufficiently large.
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Hence, we choose C large enough so that

max
✓

|D1|
|r01 sinq sin(j + arcsinr01)|

,
C

A0·u

◆
=

C
A0·u

and A0·u = sinq cosj > y

for (q ,j)2 M, where M ⇢ (0,p)⇥(�p/2,�arcsinr01) is a set of positive Lebesgue measure.

Hence, by the property that G is rapidly varying and via Dominated Convergence, we obtain

from (17) that

lim
C!•

P(Z1  D1,Z0 >C)

P(G >C/y)
� lim

C!•

Z

M

P(G >C/(sinq cosj))
P(G >C/y)

sinq dj dq = •.

Together with (16), this proves the claim.

That default correlations under stress converge to zero in light-tailed models can be ex-

plained as follows: In regression analysis, correlation – expressed as R2 – measures the degree

of the linear relationship between two random variables. In the case of default correlations,

there are only four possible scenarios: both variables are zero, both variables are one, and ex-

actly one variable is one and the other is zero (and vice versa). In the light-tailed case, since,

asymptotically, default is a sure event, only the event that both variables take value one remains.

However, for any large stress level, the probability that both variables are zero vanishes most

quickly and probability mass is pushed into the remaining three cases. No line will succeed in

adequately describing the relationship of those variables and in particular will not capture the

variance in the centralized variables.

5 Implications for credit portfolio modelling

The main results of this paper are formulae for asymptotic stressed default probabilities in

credit portfolio models with elliptically distributed risk factors and asset variables Z L
= GAU .

We have shown that for any Di 2 R

lim
C!�•

P(Zi  Di|Z0 C) = 1,
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if P(G > ·) is rapidly varying and, if P(G > ·) is regularly varying,

lim
C!�•

P(Zi  Di|Z0 C) = ta+1

 p
a +1rp
1�r2

!
2 [1/2,1).

This behaviour of limiting default probabilities is fundamentally different to tail dependence,

which is a popular measure in finance to assess the ability of a bivariate distribution to generate

joint extreme events: For two random variables Y1 and Y2 with distribution functions F1 and F2,

the coefficient of (lower) tail dependence of Y1 and Y2 is

ll(Y1,Y2) := lim
q!0+

P(Y2  F 2 (q)|Y1  F 1 (q)), (18)

where F i denotes the inverse of the df Fi. The tail dependence coefficient depends only on

the copula rather than the bivariate distribution function, see e.g. Joe (1997); Nelsen (1999);

McNeil et al. (2005). For heavy-tailed elliptical distributions, i.e., the mixing variable G is in

RV�a , the tail dependence is given by

ll(Y1,Y2) =

R p/2
p/2�arcsinr(cosq)a dq
R p/2

0 (cosq)a dq
= 2ta+1

 
�

s
(a +1)(1�r)

1+r

!
,

where r := Corr(Y1,Y2), see Hult and Lindskog (2002); Schmidt (2002); McNeil et al. (2005).

Hence, ll(Y1,Y2) > 0 for r > �1. In contrast, the tail dependence is zero for a normal distri-

bution, which is the most frequently used distribution in structural credit portfolio models, e.g.

normal distributions are used in Moody’s KMV model (Crosbie and Bohn (2002)). Due to zero

tail dependence, normally distributed models are usually considered less sensitive to extreme

stress than heavy-tailed models. The results in this paper show that this is not necessarily the

case: in the limit, the impact of stress on default probabilities is higher in light-tailed models

than in heavy-tailed models.

To analyze the precise difference between tail dependence and asymptotic stressed PD’s,
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Figure 2: Tail dependence coefficient and asymptotic PD under stress as a function of the tail
index a . Left: correlation parameter 0.4; right: correlation parameter 0.7.

we write the tail dependence of Z0 and Z1 in the form

ll(Z0,Z1) = lim
C!�•

P(Z1 C|Z0 C), (19)

which is equivalent to definition (18) since Z0 and Z1 are identically distributed. Hence, for cal-

culating tail dependence the conditional probability P

C(Z1 C) has to be evaluated whereas the

stressed default probability P

C(Z1  D) is evaluated at a constant D. For light-tailed elliptical

distributions, the variable Z1 only attains limit values in the range

lim
C!�•

P

C(C  Z1  D) = 1

for any D2R, whereas extreme events outside this range have positive probability in the heavy-

tailed case:

lim
C!�•

P

C(Z1 C)> 0, lim
C!�•

P

C(Z1 > D)> 0.

The resulting difference between tails dependence and asymptotic stressed PD’s as a function

of the tail index a is shown in Figure 2.

Turning now to stressed default correlations, we observe a behaviour similar to tail depen-

dence: we have shown that stressed default correlations converge to 0 in the light-tailed case

and to a positive number in the heavy-tailed case. Hence, in light-tailed models extreme stress

scenarios tend to heavily increase the expected loss whereas tail risk measures, which are driven
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Figure 3: PD’s under stress as a function of the stress probability p :=F(C), with F the distribu-
tion function of the respective model and C the stress level. Models considered are the normal
distribution and the t-distribution with parameter 3. Correlations are 0.4. Left: unconditional
PD is 0.1 (i.e., D = F(�1)(0.1)); right: unconditional PD is 0.01.

by the dependence of default events, are less affected.

It is important to note, however, that the asymptotic behaviour analysed in this paper is not

necessarily representative for typical stress scenarios in credit risk management. To gain further

insight and provide a heuristic answer, we consider PD’s under stress for various stress levels

and compare them in light- and heavy-tailed models. Figure 3 shows PD’s under stress for both

normally distributed and t-distributed (n = 3) models as a function of the stress probability

p := F(C), where F is the distribution function of the respective model and C is the stress

level. The correlation is chosen to be 0.4. Despite converging to a value smaller than 1, PD’s

under stress in the t-distributed model dominate the normally distributed case unless the stress

probability is very small: If the unconditional PD is 10%, then for stress probabilities greater

than 10�6, the PD under stress in the t-distributed model is greater than the respective PD in

the normal model. If the unconditional PD is 1%, then the threshold lies beyond 10�13.

Hence, aside from providing useful information for stress testing, our results indicate that

gauging the suitability of a distribution family for credit portfolio modelling solely on asymp-

totic behaviour may be misleading.
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