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Abstract

We investigate default probabilities and default correlations of Merton-type credit portfolio
models in stress scenarios where a common risk factor is truncated. The analysis is performed
in the class of elliptical distributions, a family of light-tailed to heavy-tailed distributions
encompassing many distributions commonly found in financial modelling. It turns out that the
asymptotic limit of default probabilities and default correlations depend on the max-domain
of the elliptical distribution's mixing variable. In case the mixing variable is regularly varying,
default probabilities are strictly smaller than 1 and default correlations are in (0; 1). Both can
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dependence function and discuss implications for credit portfolio modelling.
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1 Introduction

In the aftermath of the subprime crisis and the European sovereign debt crisis, stress testing of
bank portfolios has become an integral part of financial risk management and banking supervi-
sion (Turner, 2009; Larosiere and others, 2009; Brunnermeier et al., 2009; BIS, 2009). Stress
tests for credit portfolios are of particular importance, since in a typical bank risk capital for
credit risk far outweighs capital requirements for any other risk class.

In this paper, we analyse the behaviour of credit portfolio models under stress depending
on the joint distribution of the stochastic variables of the model. Although widely questioned,
the industry standard is still to employ multivariate normally distributed random variables. In
order to cover a wide range of light-tailed to heavy-tailed distributions we use the family of
elliptical distributions, which contains the normal distribution as a special case. More formally,
let Z = (Zy,...,Z4)" be a random vector on the probability space (Q,.27,P). We assume that Z

follows an elliptical distribution with representation
zZGau, )

where G > 0 is a scalar random variable, the so-called mixing variable, A is a deterministic
(d+1) x (d+1) matrix with AA” := X, which in turnis a (d + 1) x (d + 1) nonnegative definite
symmetric matrix of rank d + 1, and U is a (d + 1)-dimensional random vector uniformly
distributed on the unit sphere .7 | := {z € R¥*!: 7Tz =1}, and U is independent of G. Recent
papers study the asymptotic properties of value-at-risk in a similar setup, e.g. Embrechts et al.
(2009); Mainik and Embrechts (2013).

In the next section, we provide a short survey of structural credit portfolio models. In
this setting, Zy will be interpreted as a risk factor of the model and Zj,...,Z; as asset re-
turn variables of d firms. The default of the i-th firm is represented by {Z; < D;} for a
given default threshold D; € R and the corresponding default probability (PD) is defined by
pi:=P(Z; < D;) = E(1yz<p,}). The default correlations are defined as the correlations of the
default indicators 1;7,<p,1 and 1 {z;<p;}- To simplify the exposition, we assume throughout that

Frankfurt School of Finance & Management
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the correlations of Zy,Z;,...,Z; are in (0, 1).

The objective of this paper is to analyse the impact of stress on default probabilities and
default correlations. Stress scenarios are specified by truncating the risk factor Zy, i.e., by
conditioning on {Zy < C} with stress level C € R. Using techniques from Extreme Value
Theory (EVT), we derive the limit of conditional default probabilities and default correlations
as C — —oo. The limit depends on whether the mixing variable G is in the max-domain of the
Fréchet or the Gumbel distribution, or more generally, on whether the tail distribution function
P(G > ) is regularly varying or rapidly varying. For stressed default probabilities, we show
that for any D; € R

lim P(Z,‘ < Di|Z() < C) = 1,

C——oo
if P(G > -) is rapidly varying. In contrast, if P(G > -) is regularly varying with tail index —a,

then
vo+1p
V1—p?

where t, denotes the Student ¢ distribution function with parameter v and p denotes the correla-

Jdim P(Z; < Di|Zy <€) = 1oy ( ) e [1/2,1),
—> —o0

tion of Zy and Z;. These results imply that the limiting default probability under stress is strictly
smaller in the heavy-tailed case than in the light-tailed case. Essentially, in the heavy-tailed
case, extreme outcomes are driven by the joint mixing variable, implying a strictly positive

probability for a conditional extreme positive outcome of Z;.

It is interesting to note that this behaviour of limiting default probabilities is fundamentally
different to tail dependence, which is positive for heavy-tailed G, and converges to O as the tail
index of G tends to infinity, that is, to the light-tailed case, see (Schmidt, 2002; Kliippelberg et
al., 2008; Hult and Lindskog, 2002). Limiting default correlations, on the other hand, behave
like tail dependence: we show that Corr(1z<p,},1{z;<p,}|Zo < C) converges to 0 in the light-

tailed case and to a positive number in the heavy-tailed case.

The paper is structured as follows: in Section 2, we define stress tests in structural credit
portfolio models. The results on asymptotic stressed default probabilities are derived in section

3. Section 4 focuses on stressed default correlations. In section 5, implications for credit

Frankfurt School of Finance & Management
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portfolio modelling are discussed.

2 Preliminaries

2.1 Structural credit portfolio models

Depending on their formulation, credit portfolio models can be divided into reduced-form mod-
els and structural (or firm-value) models. The progenitor of all structural models is the model of
Merton (Merton, 1974), which links the default of a firm to the relationship between its assets
and the liabilities at the end of a given time period [0,7]. More precisely, in a structural credit
portfolio model the i-th counterparty defaults if its asset return (or ability-to-pay) variable Z;
falls below a default threshold D;: the default event at time 7 is defined as {Z; < D;} C Q,
where Z; is a real-valued random variable on the probability space (Q,.o7,P) and D; € R. The

portfolio loss variable is defined by

d
L:=Y I 1iz.<p; (2)
i=1

where d denotes the number of counterparties and /; is the loss-at-default of the i-th counter-
party. In order to reflect risk concentrations, each Z; is decomposed into a sum of systematic

factors X, ...,X,,, which are often identified with geographic regions or industries, and a firm-

m
Zl'Z\/RiZZWinj—}—\/l—RiZS,‘. 3)
J=1

The impact of the risk factors on Z; is determined by R,2 € [0, 1] and the factor weights w;; € R.

specific factor g, that is,

In order to quantify portfolio risk, measures of risk are applied to the portfolio loss distri-
bution (2). The expected loss of the credit portfolio is used for specifying credit reserves. It is

defined as the mean of L:

d
]E(L) - Z li * Diy
=1

where p; = P(Z; < D;) = E(1yz<p,}) denotes the default probability of the i-th counterparty.

Frankfurt School of Finance & Management
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Capital requirements for covering unexpected losses are typically derived from the value-at-
risk VaR (L) for a predefined probability o € (0, 1), where VaRy (L) is simply defined as the
a-quantile of L. Obviously, the default probabilities and risk concentrations specified by the
dependence structure of the default variables 1,7 < p.1 determine the value-at-risk of the credit

portfolio. Default correlations

P(Z; < D;,Z; <Dj) — pip;
Vpi(l=pi)p;(1—pj)

Corr(lyz<py,1{z,<p;}) =

are used as a measure of dependence by portfolio management to identify risk concentrations

on counterparty level.

2.2 Distribution of model variables

The standard approach in credit risk management is to model the risk factors and ability-to-pay
variables through a joint multi-variate Gaussian distribution. Since the purpose of this paper
is to analyze the impact of stress scenarios under different distribution assumptions we use a
more general framework and consider elliptical distributions instead.

Elliptical distributions cover a variety of light-tailed to heavy-tailed distributions depending
on the tail behaviour of the mixing variable G, i.e., whether G is rapidly varying or regularly
varying. A special role is played by normal variance mixture (NVM) distributions (see, for
instance, McNeil et al. (2005); Bingham and Kiesel (2002)). First, NVM distributions en-
compass a number of distributions commonly used in financial modelling, most prominently
normal distributions, z-distributions and symmetric generalised hyperbolic distributions. Sec-
ond, all elliptical distributions of interest in the credit portfolio context can be represented as
NVM distributions: any elliptical distribution whose so-called characteristic generator does not
depend on the dimension d can be represented as an NVM distribution, see Theorem 2.21 of
Fang et al. (1990), or Theorem 3.25 of McNeil et al. (2005). For details on elliptical distribu-
tions, we refer to (Fang et al., 1990; Cambanis et al., 1981) and for their application in finance

and risk management we refer to (McNeil et al., 2005).

Frankfurt School of Finance & Management
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2.3 Stress testing in credit portfolio models

In a stress test, credit portfolios are typically evaluated under the assumption of adverse eco-
nomic conditions. A natural way for implementing stress tests in portfolio models is to translate
the stress scenario into constraints on risk factors. In our setup, the constraints are formalised
by truncating risk factor variables X, ...,X,, that is, by conditioning on the range of values
that a risk factor may attain. This is a commonly used stress testing technique for credit risk
management and capital management of financial institutions, see e.g. (Bonti et al., 2006; Du-
ellmann and Erdelmeier, 2009; Kalkbrener and Packham, 2013). More precisely, let us consider
the situation when the risk factor Zy € {Xj,...,X,,} is truncated by C € R, that is, Zy < C and
write

PC(A)=P(A|Zy<C), Acd,

for the corresponding conditional distribution. In this setting, C is interpreted as the level of
stress applied to the risk factor Zy. The objective of this paper is to calculate the limit of
default probabilities, joint default probabilities and corresponding default correlations under

PC as C — —oo,

3 Default probabilities under stress

Let / be a positive, Lebesgue-measurable function on (0,0). We write h € RV, if h is regularly

varying with index o € R, i.e.,

h
fim %) _ o
X—>o0 h(x)

t>0,

and h € RV_, if h is rapidly varying with index —oo, 1.€.,

0, t>1,
fim 0% _
Ly

o, O<r<l.

Frankfurt School of Finance & Management
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For details on regularly varying functions, we refer to Bingham ez al. (1987).

Let Z = GAU denote an elliptical random vector as in Equation (1). We assume that all
variables are standardised so that ¥ = AAT is the correlation matrix of (Zp,...,Z;)7. The
correlation of Z; and Z; is denoted by p;j, i, j =0, 1,...,d. We assume that the correlations with

respect to the risk factor are positive, i.e., po; > 0. The case py; < 0 can be treated analogously.

In the following, denote by A;. the i-th row of A and let Fy; denote the uniform distribution

on .7y 1.

It is well-known that P(G > -) € RV_q implies P(Z; > -) € RV_q, i =0,...,d, see e.g.
Theorem 7.35 of McNeil et al. (2005). For many distributions of interest in RV_.., such as
the normal distribution and the generalised hyperbolic distributions, we know that the mixing

variable is in RV_.., see e.g. Section 7.3 of McNeil et al. (2005).

Theorem 1. (i) IfP(G >-) € RV_, then

lim PS(Z, < Dy,...,Z; < D,)
C——oo

_ (Ao.u)® dFy () ( / (Agu)° dFU(u)) o

M€<5ﬂd+1,A().M>O,.,.7Ad.u>0 €e5’d+1,Ao.u>O

(ii) IfP(G > -) € RV_o, then

lim PS(Z, < Dy,...,Z;<Dy)=1.

C——oo

Proof. We first give a proof for the special case D; =0 fori=1,...,d.

Since the elliptical random vector is symmetric and continuous we can write

P(Z)>C,Z1 >0,....7
lim PC(Z, <0,....2, <0) = lim A0 >C21>0...., 24 >0)

4
C——oo C—oo P(Zy>C) X

Frankfurt School of Finance & Management
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For the numerator

C
P(Z() >C,Zl > 0,...,Zd >O) - P(G> W,AO.U >O,...,Ad.U >O)
0-

C
= / P (G > —) Fy(du).  (5)
UES 1, AL u>0,i=0,....d Ao.u

For (i), it follows from P(G > -) € RV_,, that

i P(G>C/(Aow))

— (Apu)®,  for Ag.u > 0.
% P(G>C) (Aou)”,  for Ao.u >

Potter’s bounds (de Haan and Ferreira, 2006, Proposition B.1.9) state that for arbitrary € > 0

and & > 0 there exists Cy such that for all C > Cy, C/(A¢.u) > Co,

P(G > C/(Ao‘u))
P(G>C)

< (1+€)(Agu)* max ((Ao.u)5, (Ao.u)"s) :

and since the right-hand side is integrable, we obtain by Dominated Convergence that

. P(G > C/(Aou))
lim
C—oJue 741 Aiu>0,i=0,..d  P(G>C)

Fy (du) = / (Ao.1)® Fyy (du).
M€<yd+1 Aiu>0,i=0,....d

Applying the same method to the denominator of Equation (4) completes the proof of (i).

For (ii), it suffices to consider the case d = 1, i.e., lim¢_,. P(Z; > 0|Zy > C) = 1, since the

general case follows from

QU

P(Zl>0,...,Zd>0|ZQ>C)Zl— (1—P<Zl'>0|Z()>C)).
=1

Equality (5) implies

P(Z >0[Zy>C) =

C C -
= P(G>— ) Fy(du / P(G>—>F du) .
ue. A;u>0,i=0,1 < A().Ll) U( ) ( ue.S,Ag.u>0 A().I/l U( )

Frankfurt School of Finance & Management
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Write u € S, in polar coordinates as u = (cos0,sin0), 6 € [—m, 7], and let A be the Cholesky
decomposition of the correlation matrix, i.e., Ag. = (1,0)7 = (p, \/1—7 with p := po;
the correlation of Zy,Z;. Hence, Ag.u =cos0 > 0if 6 € (—x/2,7/2) and Aj.u = pcos 6 +
v/1—pZsin® = sin(0 4 arcsinp) > 0if 6 € (—arcsinp, T —arcsinp). It follows that

C /2 C
/ P(G>-— FU(du):/ P(G> de
ue S A;.u>0,i=0,1 AO.M —arcsinp 0
2

/2 C n/ C
- / P(G> do — / P(G> d6
—m/2 cos 0 arcsin p cos 0

and

C /2 C
/ PIG>— FU(du):/ PG> de.
ue. Ag.u>0 AO.M —m/2 cos @

Since p > 0, we have cos 6 < cos(arcsinp) = /1 — p? for 6 € (arcsinp,7/2). Hence, by

definition of rapidly varying functions and by Dominated Convergence,

2
P <G > 1=p )
/2 /1 2 cosf
lim P 46 = 0.

C—eo Jarcsinp P (G> C )
1-p2

On the other hand, for 6 € (—arcsinp,arcsinp),

C 1—p?
P<G> i p? o0 )

Chm = o,
A (G > € )
1-p2

so that, putting everything together, we obtain

lim P(Zl > O|Z() > C) =1.
C—oo

It remains to show that

lim P¢(Z; <0,...,Z;<0)= lim P°(Z, <Dy,...,Z; <Dy), (6)
C——oo C——oo
Frankfurt School of Finance & Management
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for arbitrary Dy, ...,Dy4. Leti € {1,...,d} and a > 0. Note that for C < —|D;|/a,
PC(Z; —aZy < 0) <PC(Z; < aC) < P (Z; < D;) < PC(Z; < —aC) < PC(Z;+aZy <0).
Hence,

lim PC(Z, —aZy<0,2,<0,...,Z2;<0) < lim P°(Z,<D,2,<0,...,Z4 <0)

C——o C——oo

< lim P(Z14aZy<0,2,<0,...,Z; <0).

C——oo

Since Equation (5) is continuous in Aj., it follows that lim¢_, o PC(21 +aZy < 0,7, <

0,...,Z4 <0) is a continuous function in a € R, hence

lim PS(Z; <D,Z,<0,...,Z;<0)= lim PY(Z; <0,2,<0,...,Z; <0).
C——oo C——o0

and therefore (6) is obtained by reiterating this argument. [
Remarks
(i) Default thresholds D;,...,D; determine the unconditional default probabilities P(Z; <

D;). Note, however, that lim¢_, PC (Zy < Dy,...,Z; < Dg) does not depend on the D;,
1.e., in the limit, stressed default probabilities do not depend on the unconditional default

probabilities, but only on the dependence structure of the Z;.

(i1)) Theorem 1 implies in particular that the limiting default probability under stress is strictly
smaller than 1 in the heavy-tailed case, provided that the variables are not perfectly cor-
related. This result can be attributed to the special structure of elliptical distributions,
where a stress event may be caused by a large mixing variable and a uniform random
vector on the sphere .%;; with components close to zero, whose signs may well differ,
thus overall leading to potentially very large positive or negative realisations of the asset
returns. In the light-tailed case, the tail behaviour of the mixing variable is too moderate

to produce extreme overall behaviour of opposite signs.

Frankfurt School of Finance & Management
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(i1i1)) Even without further making the limiting distribution of part (i) concrete, it can be numer-
ically determined efficiently using Monte Carlo simulation. An efficient method to sim-
ulate uniform random variates on the unit sphere . 1, is to draw (d + 1)-dimensional
independent normally distributed random variables ¥ = (Y, ..., Yd)T, and transform them
according to Y/ ||Y||, which produces the desired random variates, see e.g. Corollary 3.23
of McNeil et al. (2005) or Section 3.4.1.E. of Knuth (1998). Simulation has proven to be

significantly faster than the numerical calculation of integrals in Proposition 3 below.

In the following two propositions, we express the integral in Theorem 1(i) in terms of beta

functions: the incomplete beta function B(z;a,b) is defined by

Z arcsin(4/z)
B(z;a,b) ::/O u“—l(l—u)”—lduzzfo (sin0)%*~!(cos 0)% 1 dt, (7)

where the last equation follows from substituting u = (sin 8)2. The regularized incomplete beta

function is defined as
B(x;a,b)

Ii(a,b) = “Blab)

8)

where B(a,b) := B(1,a,b). Note that there exists the following relationship between an incom-
plete beta function and the distribution function ¢, of the Student-z distribution with parameter
V:

1 v 1
51 x2 975 ) )CSO,
o (x) = 2v/(x*+v) (2 2) 9)

% [1 +Ix2/(x2+v) (%,%)} , x>0.
Proposition 2 covers the case d = 1, which corresponds to stressed default probabilities,

whereas Proposition 3 deals with stressed bivariate default probabilities.

Proposition 2. Let P(G > -) € RV_g. Then,

1 1 1 a+1 vo+1p
Ty ) Tl | T

lim P(Z <Di|Z0<C) =~ +=-1
Jm P2 <DifZo <€) =5+ 5 1 J1-p2

) e[1/2,1), (10)

where p := pg1 denotes the correlation of Zy and Z.

Frankfurt School of Finance & Management
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Proof. By Theorem 1(1),

lim P¢(Z, <D;) =

~1
/ (Ao.u)“dFU(u)) .
C——oo ue.,Ap.u>0,A1.u>0

(Ao.u)® dFy (u) ( /

€5 ,A0.u>0

Write u € .% in polar coordinates as u = (cos 0,sin 0), 6 € [—x, x|. As in the proof of Theorem

1(i1) we obtain

/2 /2 -1
Clim PC(Z; < D) :/ (cos0)*do </ (cos 9)“d6) :
—>» —00

—arcsinp —n/2

Using Equalities (7) and (8) yields

/2 1 a+1
0)*d0 =B -, —~ ),
/ﬂ/z(“’s ) (2 2 )

/2 arcsin p
/ (cos0)*d6 :/ (cos0)*do +
0

IB<1 OH—l)
—arcsinp 2 27 2
1 (51 a+1\ 1
:—B - — —
2 (p’z’ 2 )+2

1
p(lott
20 2

, 11 1 a+1
lim P¢(Z, <Dp) =5+ (— —>

and therefore

Cr—oo 2 27 2
The claim follows by observing that this expression corresponds to the respective Student ¢-

distribution function, see Equation (9). [

We shall also assume in the following proposition that pj» > po1po2, Which expresses that
the specific components of Z; and Z, are correlated in a non-negative way. The sole reason for

this assumption is to avoid awkward case differentiations, and it can easily be lifted.

Frankfurt School of Finance & Management
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Proposition 3. Let P(G > -) € RV_g. Then,

lim P(Zl <D1,Zz<D2|Z0<C __tOH—l ( >
C—r—eo V1-12

570 (g ] cosoran ((3557))
—— cos - —
—arcsinf ot q) 2 2
—arcsinz 1 a+1 -1
+ ¢ cos — )
w(\ o)) ortee (23557
2 2
V1—Pn—ai P12 — Po1P02

where q3(@Q) = and q1 = =5 and = pop A —22—

P02 €08 @ + g1 sin @ /1 P N

(11)

Proof. Write u € . in polar coordinates as u = (sin 6 cos @,sin@sin@,cos )7, with 6 €

0,7], ¢ € [-7,7]. Let A be given by Ag. = (1,0,0)”, Ay. = (po1,1/1 —pg;,0)" and A;. =
_ P12 — Po1Po2

(P02,q1,92)" with ¢ = === and g = 4/ —pgz —q%. We have Ag.u = sin@cos¢@ >
V1 —Pg
0if ¢ € (—7/2,7/2) and 6 € (0,x). For Aj.u = porsin@cos@ + /1 —p3 sinOsing =
Po1 sin O sin(¢ + arcsinpg;) > 0 we obtain ¢ € (—arcsinpyg;, T —arcsinpg;) on 6 € (0, 7). Fi-
nally, for Ay.u = sin 0 (pgycos @ + g1 sin @) + grcos 6 > 0 we need to distinguish four cases:
First, if g4(@) := poacos@ +g1sing > 0 and 6 € (0,7/2), then Ap.u > 0 if tan @ > —q»/q4,
which is fulfilled for all 8 € (0,7). Second, if g4 > 0 and 6 € (7/2,7), then Ay.u > 0
q3

\/1+43

q3(0) := ¢2/qa. Third, for g4 < 0 and 6 € (0,7/2), we have Ap.u > 0 if tan6 < —qa/qs =
|43

1+43

if tan@ < —g»/qa, which implies 6 < m — arctan(qz/q4) = ® — arcsin , Where

q2/|q4], so that 8 < arctan(g>/|q4|) = arcsin( ). Fourth, if g4 < 0 and 6 € (7/2, ),

(m/2,m), since tan6 < 0.
Finally, we have g4 = pgacos @ + gy sing > 0 for ¢ € (—x/2,7/2) if tanp > —po2/q1, resp.

Frankfurt School of Finance & Management
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¢ > arctan(—poz/q1) = arcsin(—po2/4/q3 + p3,)- Putting everything together, we obtain

-1

/2 rm
hm P(Z, <D\, Z, <D|Zy <C) = (/ / / (sinG)aH(COS(p)O‘de(p)
—oo /2

/2 rm/2 n/2 pr—arcsin(gs/+/1+43)
l/ / (sinG)““(COS(p)“de(p—l—/ / ’ *(5in0)** (cos ) ¥ dB dg
t 0 t

t /arcsm (a3/\/1+43)

—arcsinpg; 40

+ (sin@)aH(COS(p)“de(p] ,

with 7 := — arcsin(min(po1, Po2/1/ 42 + P3))-

First,

n/2 m a+2 1 1 a+1
- ayat !
/—77:/2/0 (sinB)*" (cos 0)*dOdo = B< 5 ,2)3(2, 5 )

Second,

/2 rm/2
/ / (sin0)%"!(cos )*dO dg
t 0

1 (a+2 1 1 a+1 5 P, 1 a+l
=-B(—=,=)|B|5,—— | +B A P,
#5725 i g

and

+4q3
(sin8)%"!(cos )*dO dg

() () e

/ﬂ/2 /ﬂarcsin(qs(fp)/\/l 3(9)?)
/2

and

t arcsin(qz (@) /+/ 1+q3(
/ / : 3 (sine)““(cosq))aded(p
— arcsin pgy
! 1 73(p) a+2 1 o
= —B , do.
*arCSianz (1+Q3(§0) 2 2 (COSQ) ¢
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Figure 1: Asymptotic univariate PD’s (left) and bivariate PD’s (right) as a function of the tail

index. Correlations are pg; = pp2 = p and p1r = pz. The choice of pj; implies that the asset
returns are correlated only via the risk factor.

Putting everything together yields

1 1 a+1
lim P(Z] SD],ZQSDQlZgSC):— 1+1 2 (—,—)
Come 4 P %ZAq%ngz > 2
1 [m/2 a+2 1 1 a+1\\"
+§/ [1 1 402 (Tai>] (cosp)*de (B <§7T>)
! 1+43(0)?
f

1 oa+2 1 1 a+1\\"'
+= I —— =) (cosp)*do | B| =,—— ,
2 J— aresinpy, 11312";;2;2( 2 2>( ?) <p( (2 5 ))

and replacing the incomplete beta functions by the Student-¢ distributions, cf. Equation (9),

yields the claim. [

Figure 1 shows examples of asymptotic univariate and bivariate PD’s for varying tail index

o. This demonstrates how PD’s depend on both the tail index and the correlations.

4 Default correlations under stress

In the case where P(G > -) € RV_, default correlations can be explicitly calculated using
the results from Propositions 2 and 3. For the case where G is rapidly varying, we have the

following result.
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Proposition 4. Let P(G > -) € RV_... Then,

. C
Cl_1>n_1wC0rr (Liz,<p1ys Yizy<py}) = 0,

where Corr© denotes the correlation under PC.

Proof. It is easily seen that for any probability measure P,

P(Z) > Dy,Z2 > D7) — (1 —E(1yz,<p,})) (1 = E(1yz,<p,})) '
\/E(l{zlgm}) (1-E(liz,<p;y)) \/E(l{zngz}) (1-E(1yz,<p,}))

Corr(l{zlgpl}, l{zngz}) =

(12)
Using Theorem 1, this simplifies in the case of P(G > ) € RV_ to
. . P(Zy > Dy,Z, > D1|Zy <C
lim COI‘I‘C(I{Zlng},l{ZngZ}) = lim ( | )
C—s—oo Co—w\/P(Z) > D1|Zy < C)\/P(Z, > D1|Zy < C)
P(Z, <D\,Z, <D, Z
—_ Lm (Z1 £D1,Z, <Dy,Zy > C) (13)

C—e \/P(Z) <D1,Zy > C)\/P(Za < D2,Z9 > C)’

where the second equality follows from the symmetry of the Z;.

Suppose first that pg; # poz; wlog. let pga > po1. As before, we first prove the claim for

Dy =D, =0.

We write (13) in the form

< < <
mP(Zl_O,ZZ_O,Zo>C)\/P(ZZ_O,ZO>C) (14

. c
lim Corr (1z,<0y, 1{z,<0}) P(Z; <0,Zy>C)

=1
C——oo Coe P(Z350,Z9>C)

The first term is bounded by 1. For C > 0, write the second term in the form

C
P(Z,<0,Z20>C)=P (G > ﬁ,Ao.U >0,A,.U < O)
0-

C

P{G>— | Fy(du
uEfz,Ao.u>0,Ai.u<0 ( A()Ll) U( )

— arcsin po; C
= PG> de.
—r/2 cos 0
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Since poz > po1, we have — arcsinpp, < — arcsinpg;, and

sup cos 0 = cos(—arcsinpgp) =1/ 1 — pg,.

0e(—m/2,—arcsin py;]

Hence, using that G is rapidly varying and via Dominated Convergence,

I —aresinpe - P(G > C/cos )
im
CeJ-n/2 P(G>C/y\/1-pE)

doe =0,

whereas

P(G>C 0
lim (G>C/cosb) =oo, for O € (—arcsinpg,, — arcsin po1 |,

PG> C/\[1-pd)

which implies that
P(Z,<0,Zy > C)

li —0 15
CowP(Z1 < 0,2 > C) (15)

and therefore Equation (14) is 0.

To complete the proof for pp; > po; it remains to show that

CErEMCorrC (Lz,<p1s Lizy<y)) = an_lchrrC(l{z, <op1{z,<03) =0
for arbitrary Dy,D, € R. Fora > 0 and C > |D,|/a,

P(Zy +aZy <0,Zy>C) <P(Z, <Dy,Zy >C) <P(Zy —aZy < 0,Zy > C).

For sufficiently small a we obtain from (15)

. P +aZy<0,Zy > C) . P(Z, <Dy,Zy>C)
0= lim < lim
C—eo  P(Z1<0,Zp>C) C—eo P(Z1 <0,Zy > C)
P(Z, —aZy <0,Zy > C)

I —0
e P(2,<0,Z>C)

IN
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and therefore
im P(Z, < D,,Zy > C)
C—e P(Z1 <0,Zp > C)

Applying the same argument to the numerator yields

lim P(Zz < Dz,ZO > C)
C—>00P(Zl <Di,Zy >C>

P(Z] <Dy,Z, < D2|Z() > C)

P(Z, < 2|20 > O) is bounded by 1. Hence, by Equality (14),

Obviously,

. C
Jim Con™(Liz,<p,y, 1{z,<py}) = 0.

It remains to show that the claim also holds for pg; = pgz2. Wlog. assume that Dy < D,. We

now provide a proof for the case Dy < 0. The case D, > 0 is shown analogously.

It follows from (13) that

. P(2<0,2,<0,Z)>C)
C > )
Cm_Com™ (<o Mmep)) < i =507 1 720> 0)

The numerator can be written in the form

C
P(Z, SO,ZQSO,Z()>C):/ P(G>—) Fy(du).
Ao.u>0,A;u<0,i=1,2 Ao.u

Express u € .%3 in polar coordinates by u = (sin 8 cos ¢,sin8sin,cos8)” with 8 € [0, 7],
¢ € [—m,m|. Observe that the conditions Ag.u = sin@cos¢ > 0 and Aj.u = po; sin 6 sin(¢ +

arcsinpg) < 0 imply 6 € (0,7) and ¢ € (—m/2,—arcsinpy; ). Hence,

x = sup Ao.u
Ag.u>0,A1.u<0
= sup sin @ cos @
0€(0,m),pe(—m/2,—arcsinpy; )
= sin(m/2) cos(—arcsinpy;)

= cos(—arcsinpgr) = /1 —p3;.
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At 0 =1 /2, ¢ = — arcsin py1, the condition A».u < 0 is not satisfied: since A;.u = sin 6 (pp cos ¢ +
q1sin @) + g2 cos B, where g and g, are as in Proposition 3, resp. the proof of Proposition 3 it

follows from py, = pop; that

)
Ajp.u = po1 cos(— arcsin Py ) _ P17 Po 01 = L(l —p12) >0.

Y . \/l—pélp V1= P

This implies that

yi= sup Ag.u < x.
Ap.u>0,A1.u<0,A2.u<0

Hence, by the property that G is rapidly varying and via Dominated Convergence,

- P(G>C/(Au))
C—oo Jue 5 Apu>0.A1.u<0A,u<0  P(G>C/y)

Fy(du) =0. (16)

For the denominator we have

IDy| C
P(Zi <D, Zy>C :/ P(G>max( ,—— Fy(du
( ! a0 ) ue.S3,A0.u>0,A1.u<0 |A1.u| Ao.u U( )

T (g 6.0).—< ) ) sin6dpde
_/0 /_n/z ( >max(f( ’(p)’sinQCOS(p)) sinodedo,

(17)
where
D1
0,0):= .
7(6,9) |po1 sin 6 sin(¢ + arcsin po; )|
Obviously, the maximum in the integrand of (17) is given by f(6, @) if
sin O cos @ B cos @ S C
|po1 sin B sin( +arcsinpg;)|  |por sin(@ +arcsinpg;)| ~ |Dq|’
Hence, f(6,¢) is the maximum in a neighbourhood of ¢ = —arcsinpg;. On the other hand,

for every ¢ € (—m/2,—arcsinpg; ) the maximum is given by C/(Ag.u) for C sufficiently large.
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Hence, we choose C large enough so that

D C C
D1 ) and Ag.u=sinfcosQ >y

max : : - ) =
(|p01 sin @ sin(¢@ + arcsinpgy )|’ Ag.u Ao.u
for (6, ¢) € M, where M C (0,7) x (—m/2,—arcsin pg; ) is a set of positive Lebesgue measure.

Hence, by the property that G is rapidly varying and via Dominated Convergence, we obtain

from (17) that

< .
bm P(Z, <Dy,Zy > C) > lim/ P(G > C/(sinBcos@)) in0dgd6 — oo,
Coe  P(G>CJy) C—eo M P(G>Cly)

Together with (16), this proves the claim. ]

That default correlations under stress converge to zero in light-tailed models can be ex-
plained as follows: In regression analysis, correlation — expressed as R> — measures the degree
of the linear relationship between two random variables. In the case of default correlations,
there are only four possible scenarios: both variables are zero, both variables are one, and ex-
actly one variable is one and the other is zero (and vice versa). In the light-tailed case, since,
asymptotically, default is a sure event, only the event that both variables take value one remains.
However, for any large stress level, the probability that both variables are zero vanishes most
quickly and probability mass is pushed into the remaining three cases. No line will succeed in
adequately describing the relationship of those variables and in particular will not capture the

variance in the centralized variables.

S Implications for credit portfolio modelling

The main results of this paper are formulae for asymptotic stressed default probabilities in
credit portfolio models with elliptically distributed risk factors and asset variables Z Z Gau.

We have shown that for any D; € R

lim P(Zl' S Dl'|Z() S C) = 1,

C——oo
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if P(G > -) is rapidly varying and, if P(G > -) is regularly varying,

lim P(Zi < D,'|Z() < C) =Ta+1

C——oo

vo+1p
Vi=p?

This behaviour of limiting default probabilities is fundamentally different to tail dependence,

) e[1/2,1).

which is a popular measure in finance to assess the ability of a bivariate distribution to generate
joint extreme events: For two random variables Y7 and ¥, with distribution functions F; and F3,

the coefficient of (lower) tail dependence of Y| and Y5 is

ALY, Yn) = lim P(Y, < F ™ (q)|11 < F{ (q)), (18)

qg—0t

where F~ denotes the inverse of the df F;. The tail dependence coefficient depends only on
the copula rather than the bivariate distribution function, see e.g. Joe (1997); Nelsen (1999);
McNeil et al. (2005). For heavy-tailed elliptical distributions, i.e., the mixing variable G is in

RV_q, the tail dependence is given by

/2
MY, Y) = fn/z_minp(cose)ade =2tg+1 | — (e+ {1 =p)
7 On/z(cos 0)*do o I+p 7

where p := Corr(Y1,Y>), see Hult and Lindskog (2002); Schmidt (2002); McNeil et al. (2005).
Hence, A;(Y;,Y2) > 0 for p > —1. In contrast, the tail dependence is zero for a normal distri-
bution, which is the most frequently used distribution in structural credit portfolio models, e.g.
normal distributions are used in Moody’s KMV model (Crosbie and Bohn (2002)). Due to zero
tail dependence, normally distributed models are usually considered less sensitive to extreme
stress than heavy-tailed models. The results in this paper show that this is not necessarily the
case: in the limit, the impact of stress on default probabilities is higher in light-tailed models

than in heavy-tailed models.

To analyze the precise difference between tail dependence and asymptotic stressed PD’s,
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Figure 2: Tail dependence coefficient and asymptotic PD under stress as a function of the tail
index «. Left: correlation parameter 0.4; right: correlation parameter 0.7.

we write the tail dependence of Zy and Z; in the form
AI(ZQ,Zl) :Clil’n P(Zl §C|ZO SC), (19)
—» —00

which is equivalent to definition (18) since Zy and Z; are identically distributed. Hence, for cal-
culating tail dependence the conditional probability P (Z; < C) has to be evaluated whereas the
stressed default probability P¢(Z; < D) is evaluated at a constant D. For light-tailed elliptical
distributions, the variable Z; only attains limit values in the range

lim PY(C<Z <D)=1

C——oo

for any D € R, whereas extreme events outside this range have positive probability in the heavy-

tailed case:

lim P¢(Z, <C)>0, lim P°(Z >D)>0.

C——oo C——oo

The resulting difference between tails dependence and asymptotic stressed PD’s as a function

of the tail index « is shown in Figure 2.

Turning now to stressed default correlations, we observe a behaviour similar to tail depen-
dence: we have shown that stressed default correlations converge to 0 in the light-tailed case
and to a positive number in the heavy-tailed case. Hence, in light-tailed models extreme stress

scenarios tend to heavily increase the expected loss whereas tail risk measures, which are driven
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Figure 3: PD’s under stress as a function of the stress probability p := F(C), with F the distribu-
tion function of the respective model and C the stress level. Models considered are the normal
distribution and the 7-distribution with parameter 3. Correlations are 0.4. Left: unconditional
PDis 0.1 (i.e., D = F(=1)(0.1)); right: unconditional PD is 0.01.

by the dependence of default events, are less affected.

It is important to note, however, that the asymptotic behaviour analysed in this paper is not
necessarily representative for typical stress scenarios in credit risk management. To gain further
insight and provide a heuristic answer, we consider PD’s under stress for various stress levels
and compare them in light- and heavy-tailed models. Figure 3 shows PD’s under stress for both
normally distributed and ¢-distributed (v = 3) models as a function of the stress probability
p := F(C), where F is the distribution function of the respective model and C is the stress
level. The correlation is chosen to be 0.4. Despite converging to a value smaller than 1, PD’s
under stress in the 7-distributed model dominate the normally distributed case unless the stress
probability is very small: If the unconditional PD is 10%, then for stress probabilities greater
than 107°, the PD under stress in the ¢-distributed model is greater than the respective PD in

the normal model. If the unconditional PD is 1%, then the threshold lies beyond 1013,

Hence, aside from providing useful information for stress testing, our results indicate that
gauging the suitability of a distribution family for credit portfolio modelling solely on asymp-

totic behaviour may be misleading.
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