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Abstract

The transformation of the European energy system requires substantial in-
vestment in transmission capacity to facilitate cross-border trade and to effi-
ciently integrate renewable energy sources. However, network planning in the
EU is still mainly a national prerogative. In contrast to other studies aiming
to identify the pan-European (continental) welfare-optimal transmission expan-
sion, we investigate the impact of zonal planners deciding on network investment
strategically, with the aim of maximizing the sum of consumer surplus, generator
profits and congestion rents in their jurisdiction. This reflects the inadequacy
of current mechanisms to compensate for welfare re-allocations across national
boundaries arising from network upgrades.

We propose a three-stage equilibrium model to describe the Nash game be-
tween zonal planners (i.e., national governments, regulators, or system opera-
tors), each taking into account the impact of network expansion on the elec-
tricity spot market and the resulting welfare effects on the constituents within
her jurisdiction. Using a four-node sample network, we identify several Nash
equilibria of the game between the zonal planners, and illustrate the failure to
reach the first-best welfare expansion in the absence of an effective compensation
mechanism.

Keywords: electricity transmission, network expansion, Generalized Nash equilibrium (GNE),
mixed-integer equilibrium problem under equilibrium constraints (MI-EPEC)
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1 Introduction

The creation of a well-integrated Internal Energy Market (IEM, EC, 2012) and the de-
carbonisation of the European electricity sector require both a paradigm shift within the
generation portfolio as well as a significant expansion of the (cross-border) power transmis-
sion system. The switch to renewable power generation is fundamental to meeting European
climate goals (EU Road Map 2050, EC, 2011); however, wind and solar are inherently volatile
and the most effective sites are often not located close to cities and industrial regions. As
a consequence, the transmission system must be strengthened to ensure the effective and
efficient integration of these energy sources. Due to the national scope of planning electric-
ity systems for most of the 20th century, additional cross-border transmission capacity is
required in particular to achieve these goals.

There are several recent applied studies that aim to determine the optimal network
investment plans to support such a decarbonisation of the electricity sector (e.g. Egerer et al.,
2013a; Tröster et al., 2011). These models take a long-term view (i.e., until the year 2050),
and they typically use a pan-European welfare maximization approach, where all investment
decisions are taken by a benevolent central planner. In contrast, the European Ten-Year
Network Development Plan (TYNDP, ENTSO-E, 2013) only covers investments over the
following decade. In contrast to the other studies mentioned, the TYNDP is not derived
from an explicit welfare-maximization rationale. Instead, it lists transmission expansion
projects as planned by the individual transmission system operators (TSO) and agreed within
the European Network of Transmission System Operators for Electricity (ENTSO-E), the
TSO’s trade association, following a public stakeholder process. Some key projects for trans-
European energy infrastructure are labelled as projects of common interest by the European
Commission and therefore have access to additional financial support (EC, 2013). However,
all these studies and political documents neglect that transmission investments may have
a strong impact on welfare distribution both across national borders and among different
stakeholders: generators, consumers, and TSOs.

Network expansion is still a national prerogative in Europe, both regarding planning
and financing. Grid investments are highly capital-intensive and, once built, constitute a
“lock-in” regarding the grid topology for many decades to come. Funding for grid upgrades
is usually guaranteed by the national regulator, who allows the TSO to levy network usage
fees to recover expansion costs. If the income earned by the TSO from usage tariffs and
congestion rents exceeds the approved funding base, the surplus must be used to either
maintain and guarantee availability of the existing grid, invest in transmission capacity
upgrades, or to lower usage fees (EC, 2009).

Due to the nature of electricity flows in an integrated network, beneficiaries of trans-
mission investment may be located in a different jurisdiction than those bearing the costs.
National governments, regulators and/or the TSOs may then be reluctant to invest if the
benefits accrue elsewhere, unless an appropriate compensation mechanism is in place. Fur-
thermore, any analysis of the power market is particularly complicated due to the specific
characteristics of electricity transmission: if one line between two zones is expanded, the
changes in power flow patterns may adversely affect other TSOs due to an increase of loop
flows or a reduction of effectively available transmission capacity along other lines.

Egerer et al. (2013b) discuss the welfare implications for different topologies of the North
and Baltic Seas offshore connectors. They show a significant re-allocation of rents, both
across jurisdictions, as well as between the different stakeholder groups. This indicates that
the cost allocation of network investment is of paramount importance (cf. Buijs et al., 2010).
In principle, the beneficiaries of any network upgrade should bear the costs. With this in
mind, the EU has introduced the Inter-TSO compensation mechanism (ITC, EC, 2010),
intended to remunerate TSOs for transit flows and grid upgrades of regional importance.

Theoretically, an appropriate allocation of benefits and costs through side payments
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would result in a grand coalition and yield a welfare-optimal expansion on the European
level. There is a string of scientific literature examining various allocation methods based on
cooperative game theory (Nylund, 2013; Gately, 1974). However, quantifying re-allocation
of welfare might prove impossible due to issues of measurement; for instance, one may debate
whether the no-investment welfare allocation should serve as a reference (i.e., the status quo),
or a hypothetical case of unilateral investment. We believe that this difficulty is one of the
reasons why the ITC is still mainly used for compensation of transit flows (where a reference
can be more easily established and the monetary transfers involved are fairly small), rather
than for compensation of actual network upgrades (cf. Buijs et al., 2010). The current annual
budget dispensed through the ITC is around 100 millione (Rüster et al., 2012, p. 25ff); the
investment volume planned according to the TYNDP is more than 100 billione (ENTSO-E,
2013) over the next decade.1

So far, we have argued specifically with the European situation in mind; nevertheless,
Buijs et al. (2010) point out that while the institutional setting in the US power markets
differs from Europe in many aspects, the same underlying conundrum is present in renewables
support and network upgrades between different states as well as between regional system
operators such as the Pennsylvania-Maryland-New Jersey Interconnection (PJM) and the
Midwest ISO (MISO).

Following this train of thought, we ask whether zonal planners would alter their trans-
mission capacity investment if they were only concerned with national welfare, rather than
the welfare of the entire region. We use the term “national-strategic” to differentiate our
work from other studies that treat generators as strategic players (e.g., Zerrahn and Hupp-
mann, 2014; Pozo et al., 2013; Schröder et al., 2013; Neuhoff et al., 2005), as well as from the
literature that treats one TSO responsible for the entire network area as the strategic player
(e.g., Rosellón and Weigt, 2011; Léautier and Thelen, 2009). In contrast to these articles,
we assume that the strategic players in the game are zonal planners such as national govern-
ments, regulators, or TSOs in charge of a certain network area: they anticipate the effects
of network expansion within their jurisdiction on the welfare allocation. They may thus
have an incentive to withhold line upgrades or over-invest compared to the welfare-optimal
expansion plan in order to induce a shift of rents towards stakeholders in their zone. This
distortion of investment may impede the effective integration of the European power market
and the efficient shift to a power system based on renewable energy sources.

The next section will briefly present the theory of network formation and discuss two
previous models similar to our research question. Section 3 describes the three-stage model
depicting the national-strategic investment game, while Section 4 provides the mathematical
formulation. This part also extensively discusses the problems of solving multi-level games
and illustrates how our approach deals with them. Section 5 provides a numerical example
of the three-stage model to illustrate the impact of strategic network planning; Section 6
concludes and suggests potential avenues for further research.

2 Network formation and strategic zonal planners

The question of how networks are formed when some players act strategically and have to
agree whether or not to build a link between them is not new in the economics and game
theory literature. However, to date no canonical approach exists to solve such games (cf.
Bloch and Jackson, 2007, 2006). To further complicate the research question which we
tackle in this work, the size of the link in electricity networks (i.e, capacity of the power
line) is of paramount importance for resulting flows and nodal prices. We therefore opt
for the most straightforward game structure: zonal planners strategically decide only on the

1Of course, only a fraction of the investment costs need to be financed through a pan-European fund;
most line upgrades are viable from a national perspective alone. Nevertheless, the discrepancy is significant.
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upgrades of lines within their jurisdiction. Cross-border lines are decided by a supra-national
planer. This allows us to sidestep, for the time being, the question of how to properly model
negotiation on links between zones, while we are still able to focus on the impact of strategic
zonal planners. We formulate a methodology to identify Nash equilibria and quantify the
welfare “loss” due to strategic behaviour on the network planning level.2

A similar research question was tackled by Daxhelet and Smeers (2007), albeit their fo-
cus lies on network usage tariffs: the authors compare several proposals discussed within the
Florence Regulatory Forum and discuss the different implementations of supra-national co-
ordination. They propose a two-stage model in which national regulators set network usage
tariffs for generators (G-component) and consumers (or load, hence L-component) in their
jurisdiction, aiming to maximize welfare (defined as consumer surplus, generator profits and
congestion rent) in their zone. In their model, the regulators play a Nash game, which forms
the upper level of the model, while the spot market forms the lower level and takes the net-
work usage tariffs in each zone as given. Mathematically, each regulator faces a mathematical
program under equilibrium constraints (MPEC); the equilibrium constraints represent the
lower-level optimization problem. Since several regulators interact simultaneously, the entire
problem is an equilibrium problem under equilibrium constraints (EPEC), in particular a
multi-leader-single-follower game (cf. Kulkarni and Shanbhag, 2013). The network in this
work is treated as exogenously given.

In contrast, Buijs and Belmans (2011) focus on network upgrades; they compare the
supra-national welfare-optimal investment to two other approaches: first, a setup where the
planner responsible for one zone decides on investment in the entire network seeking to
maximize domestic welfare comprising consumer surplus, generator profits and congestion
rents less investment costs. Similar to the work by Daxhelet and Smeers, the zonal planner
takes into account the impact of her decisions on the spot market, which forms the lower
level; it is agnostic with respect to the welfare effects in other zones.

As a second model, Buijs and Belmans introduce a variation of the supra-national planner
model, which they refer to as Pareto planner ; they add explicit constraints that the aggregate
welfare in each zone must not be reduced due to investment relative to the status quo. Both
the zonal planner and the Pareto planner solve an MPEC; however, Buijs and Belmans do
not actually compute Nash equilibria between the zonal planners. Their results only serve
as upper bounds: how much could a zone benefit at most if all transmission investment
was carried out in the most beneficial way for this particular zone. Similarly, their Pareto
planner approach exhibits an inconsistency: it is only constrained relative to the status quo.
As already pointed out, this may not be adequate if a zonal planner can unilaterally improve
domestic welfare, for instance by expanding a line which is entirely within her jurisdiction.

Buijs and Belmans (2011) use genetic algorithms to solve each MPEC; it is not straightfor-
ward how this could be generalized to obtain a Nash equilibrium between the zonal planners.
Two approaches to solve such EPEC-type problems are most commonly used in the liter-
ature: enumeration discretizes the strategy space for each strategic player; the lower-level
optimization problem is then solved for each possible strategy of the upper-level game, and
the pay-offs as well as deviation incentives for each player are determined ex-post. Such
an approach is used by Egerer and Nylund (2014). The problem when implementing this
approach in practice comes from the difficulty of determining a suitable discretization, and
a general issue of scalability to solve large-scale problems.

In contrast to enumeration, diagonalization describes an iterative algorithm: each MPEC
is solved consecutively, holding the decisions variables of the rivals fixed. This approach is
sometimes referred to as a variant of the “Gauss-Seidel” algorithm. While it does work
in certain applications, convergence to a stable Nash equilibrium is not guaranteed. In
particular, several Nash equilibria may exist, and it is not clear whether diagonalization

2To be precise, it is not a welfare loss, but a failure to reap all welfare gains from network investment and
a more efficient and integrated spot market.
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would identify all solutions; more importantly, one can usually make no informed statement
whether other equilibria may exist; in particular, a Pareto improvement ay be possible (i.e.,
a new equilibrium where at least one player is strictly better off, and no player has a worse
payoff than in the previously found equilibrium). We discuss this in more detail below. In the
following section, we present a closed-form expression of the game between zonal planners,
as well as an iterative algorithm to determine a number of Nash equilibria ranked according
to a welfare metric.

3 A three-stage equilibrium problem

We propose a three-stage model to describe the Nash game between zonal planners; Table 1
illustrates the stages, players and decision variables of the game. We solve this game by back-
ward induction; therefore, we present the structure from the bottom stage to the top-level
player. We first only describe the model stages and players; the mathematical formulation
is presented in the subsequent section.

Stage Player Decision Variable

Supra-national planner
I seeks to maximize welfare in the entire region cross-border network investment

less investment cost
Nash game between Zonal planners

domestic network investment
(within her jurisdiction)

II seeks to maximize zonal welfare
less domestic investment cost

III
Competitive and integrated spot market generation, demand,

(represented by ISO) power flow, nodal prices

Table 1: Illustration of the three-stage game structure

Stage III: A competitive spot market

The third (bottom) level of the game is the competitive and integrated spot market, where
generators, consumers, and TSOs of each zone take the network capacity as given for deter-
mining short-term dispatch and demand. The characteristics of the power network are taken
into account using a loss-free direct-current load flow (DCLF) representation of Kirchhoff’s
laws, as is the current standard in this stream of modelling (e.g., Leuthold et al., 2012).3 This
approach explicitly accounts for the externalities occurring in meshed electricity systems.4

Mathematically, the problem of a competitive market between generators and demand is
equivalent to an Independent System Operator (ISO) optimizing welfare of the entire region
(with the network taken as given), so we will use the latter notion in the mathematical
derivation. Most importantly, in our subsequent formulation, congestion rents earned by
TSOs are based on actual flows rather than financial transmission rights to properly account
for these externalities.

3The term DCLF is actually a misnomer, as it is not based on the assumption of direct-current electricity
flows; instead, it is a linearization of the non-convex alternating-current (AC) power flow model.

4The current European market design for trading power across zone borders is based on auctions of
transmission capacity, which are capped by net transfer capacity (NTC). Because power does not actually
flow in such a way, the stated NTC values include security margins to ensure network feasibility in spite of
loop flows. Oggioni and Smeers (2013) and Oggioni et al. (2012) discuss the difficulty of combining zonal
pricing and trade based on net transfer capacities. The negative externalities arising out of NTC-based trade
increase in lock-step with market integration and cross-border trade; European TSOs are currently looking
into flow-based approaches to replace the NTC trading framework.
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Stage II: The zonal planners

The second (intermediate) stage is the Nash game between the zonal planners, each deciding
on network upgrades in her jurisdiction. Every zonal planner aims to maximize welfare in
her zone; congestion rents earned by the zonal TSO are explicitly included in the objective
function. Rents from cross-border transmission and the expansion costs for these lines are
shared equally between the adjacent zones.

The decision on cross-border line upgrades is not taken by the zonal planners, but by the
player at the first stage of the game. This is the simplest setup for our illustrative model;
we will return to potential modifications and more elaborate formulations of bargaining in
the concluding section, when we discuss further research.

Stage I: The supra-national coordination agency

The first (top) level of our model is a supra-national coordination agency; she can represent,
for example, the Agency for the Cooperation of Energy Regulators (ACER). While this
player cannot influence the decision by the zonal planners on their domestic line upgrades,
she can decide on the expansion of cross-border lines; because she anticipates the strategic
reaction of zonal planners, she can set the cross-border line investment in such a ways as to
induce them to end up in a second-best Nash equilibrium.5

Realizing that there may exist multiple equilibria in the game between the zonal planners
(stage II), the coordination agency can therefore also be interpreted as an equilibrium selec-
tion mechanism – it coordinates among the zonal planners to make sure a “good” equilibrium
is attained. The coordination agency has a central role in the mathematical implementation
and the solution approach, which we will discuss in the next section.

5The first-best solution would be the supra-national network investment plan without strategic consider-
ations by the zonal planners.

Sets
n ∈ N ... nodes
s ∈ S ... power plant unit, generation technology
r ∈ R ... regulatory zone (price, TSO)
n ∈ Nr ... nodes in regulatory zone r
l ∈ L ... power lines
l ∈ Lr ... power lines in the jurisdiction of regulator r
Variables
dn ... demand
gns ... generation
pn ... locational marginal price
el ... line expansion/investment
Parameters
gns ... generation capacity
cGns ... linear generation costs
cTl ... linear transmission investment costs
cRr ... fixed costs/guaranteed return for TSO
Bnk, Hlk ... line/node impedance matrices

Table 2: Selected notation

6



4 Mathematical formulation

We now turn to the mathematical formulation; Table 2 lists selected important notation used
in this work; the remaining sets, variables and parameters are introduced where necessary.
Our approach follows the methodology developed by Ruiz et al. (2012); we will discuss their
approach and the extensions we introduce below, when we discuss the difficulties posed by
multi-stage games.6

The Independent System Operator

The ISO optimizes the short-term dispatch of power plants, deciding on the generation level
gns at each node n and of technology s, demand dn, and the voltage angle δn.7 Consumer
welfare (utility from consuming electricity) is given by the function (an − 1

2bndn)dn, while
cGns are the per-unit (i.e., marginal) generation costs. From the point of view of the ISO, the
line expansion el is an exogenous parameter.

max
g,d,δ

∑
n∈N

[(
an − 1

2bndn
)
dn −

∑
s

cGnsgns

]
(1a)

s.t.
∑
s

gns −
∑
k

Bnkδk − dn = 0 (pn) (1b)

f l + el −
∑
k

Hlkδk ≥ 0 (µl) (1c)

f l + el +
∑
k

Hlkδk ≥ 0 (µ
l
) (1d)

gns − gns ≥ 0 (βns) (1e)

δn̂ = 0 (γ) (1f)

gns ≥ 0 (ψns) (1g)

dn ≥ 0 (φn) (1h)

Constraint (1b) is the energy balance constraint; the dual variable to this is the price of
energy at each node. Constraints (1c–1d) are the thermal line capacity limits (in positive and
negative power flow direction). The maximum available generation by node and technology
is given by Constraint (1e). Using voltage angles to determine power flows requires the
definition of a slack bus (n̂), at which the voltage angle is 0 by assumption (Constraint 1f).
The dual variables for all constraints are given in brackets.

The ISO problem forms the lower stage to the optimization problem of the zonal planners,
the subsequent game stage II; hence, the standard approach is to insert the ISO problem to

6A similar three-stage model is developed by Zerrahn and Huppmann (2014); the authors use similar
reformulations to the lowest-level equilibrium problem, derive Karush-Kuhn-Tucker (KKT) conditions of the
intermediate strategic players and use the top-level player as an equilibrium selection mechanism. In their
work, however, the intermediate (strategic) players are generators rather than zonal planners, seeking to
maximize profits by strategically withholding generation capacity or intentionally congesting the network.
The top-level player is the network planner facing a trade-off between investment costs and the welfare-
enhancing of additional line capacity; the welfare gains can be distinguished between efficiency gains (less
congestion) and a higher degree of competition between strategic generators.

7This approach using voltage angles is equivalent to another method frequently used when formulating
DCLF models, namely using power transmission distribution factors (PTDF).
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the upper-level problem as equilibrium constraints, specified below:8

cGns − pn + βns − ψns = 0 ⊥ gns (free) (2a)

−an + bndn + pn − φn = 0 ⊥ dn (free) (2b)∑
k

Bknpk +
∑
l

Hln

(
µl − µl

)
−
{
γ if n = n̂

0 else

}
= 0 ⊥ δn (free) (2c)∑

s

gns −
∑
k

Bnkδk − dn = 0 ⊥ pn (free) (2d)

f l + el −
∑
k

Hlkδk ≥ 0 ⊥ µl ≥ 0 (2e)

f l + el +
∑
k

Hlkδk ≥ 0 ⊥ µ
l
≥ 0 (2f)

gns − gns ≥ 0 ⊥ βns ≥ 0 (2g)

δn̂ = 0 ⊥ γ (free) (2h)

gns ≥ 0 ⊥ ψns ≥ 0 (2i)

dn ≥ 0 ⊥ φn ≥ 0 (2j)

Gabriel and Leuthold (2010), as one example, formulate such a model by taking first-order
KKT conditions of the ISO problem (1), and replace the complementarity (or slackness)
constraints using disjunctive constraints (Fortuny-Amat and McCarl, 1981). This yields
a mixed-integer problem; however, deriving stationarity conditions for the zonal planners
requires to take the derivative of the objective function. When binary variables are included
due to the disjunctive constraints formulation, this is not possible; hence, this method is
not suitable for our approach. Another possibility to replace complementarity conditions
was proposed by Siddiqui and Gabriel (2013), using Schur’s decomposition and so-called
SOS1-type variables. However, implementing this approach in a mathematically exact way
also requires binary variables, and thus suffers from the same caveat.

Therefore, we apply the aforementioned methodology by Ruiz et al. (2012) as an alter-
native: we use strong duality to replace the optimization problem by a set of constraints,
which can be included in the next stage’s optimization problems without the need for binary
variables.

All constraints of Problem (1) are linear and the objective function (1a) is concave (to
be maximized); therefore, strong duality holds (for any non-trivial set of parameters that
admits a feasible solution). The Lagrangian dual problem then reads as follows:

min
p,µ,µ,β,γ,φ

1
2

∑
n∈N

1

bn

(
(an)2 + (pn)2 + (φn)2 − 2anpn + 2anφn − 2pnφn

)
+
∑
l∈L

(µl + µ
l
)(f l + el) +

∑
n∈N,s∈S

βnsgns (3a)

s.t. cGns − pn + βns − ψns = 0 (gns) (3b)

−an + bndn + pn − φn = 0 (dn) (3c)∑
k

Bknpk +
∑
l

Hln

(
µl − µl

)
−
{
γ if n = n̂

0 else

}
= 0 (δn) (3d)

8The equilibrium model (2) could be simplified by combining equations (2a,2b) and equations (2i,2j);
however, we will require the more extensive version in the later reformulations.

8



Strong duality holds, hence the objective values at the optimal solution of Problems (1)
and (3) are identical. This can be stated formally in the following constraint:

− 1
2

∑
n∈N

1

bn

(
(an)2 + (pn)2 + (φn)2 − 2anpn + 2anφn − 2pnφn

)
−
∑
l∈L

(µl + µ
l
)(
(
f l + el

)
−

∑
n∈N,s∈S

βnsgns

+
∑
n∈N

[(
an − 1

2bndn
)
dn −

∑
s

cGnsgns

]
≥ 0 (4)

Strong duality entails that any vector (g, d, δ, p, µ, µ, β, γ, φ) satisfying the primal constraints
(1b–1h), the dual constraints (3b–3d) as well as the strong-duality constraint (4) is an optimal
solution to both the primal and the dual problem. We can now use this set of linear and
quadratic constraints to replace the ISO optimality conditions in the optimization problems
of the players at the higher stages of the game, without having to deal with complementarity
constraints or binary variables due to using disjunctive constraints.9

Normally when using strong duality, Constraint (4) would have to hold with equality;
we write it as an inequality such that the quadratic constraint remains convex (for a given
network, i.e., fixed el). Since the objective value of Problem (1) for any feasible solution is
always smaller than the objective value of Problem (3) for any feasible solution due to weak
duality, Constraint (4) can never hold with a strict inequality for a vector that is primal and
dual feasible.

The zonal planner

The zonal planner r aims to maximize the sum of generator profits, consumer surplus and
congestion rent earned by the zonal TSO at all nodes within her zone Nr ⊂ N by deciding
on network upgrades for all lines el within her jurisdiction; these are the lines in the set
Lr ⊂ L. For cross-border lines, the investment level is taken as given by the zonal planner;
both investment costs and congestions rents are shared equally between the two adjacent
zonal TSOs by assumption. The parameter shrlr denotes the share of costs and rents of line
l to be attributed to the TSO of zone r; it is 1 for domestic lines, 0.5 for cross-border lines,
and 0 otherwise.

9The constraints to the dual problem (3b–3d) are also the stationarity (KKT) conditions, if one would
solve this problem as an equilibrium problem (or mathematically, a mixed complementarity problem, MCP),
as given by Equations (2). The solution vector of the strong duality problem would also solve the MCP, and
vice versa.
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Mathematically, the optimization problem of the zonal planners reads as follows:

max
el∈Lr

∑
n∈Nr

[ (
an − 1

2bndnt − pn
)
dn +

∑
s

(
pngns − cGnsgns

) ]

−
∑
l∈Lr

[
shrlr

(∑
k

Hlkδk

)(∑
k

Ilkpk

)
−
∑
l∈Lr

cTl el

]
(5a)

s.t. cGns − pn + βns − ψns = 0 (ηRnsr) (5b)

−an + bndn + pn − φn = 0 (ρRnr) (5c)∑
k

Bknpk +
∑
l

Hln

(
µl − µl

)
−
{
γ if n = n̂

0 else

}
= 0 (νRnr) (5d)∑

s

gns −
∑
k

Bnkδk − dn = 0 (λRnr) (5e)

f l + el −
∑
k

Hlkδk ≥ 0 (µRlr) (5f)

f l + el +
∑
k

Hlkδk ≥ 0 (µR
lr

) (5g)

gns − gns ≥ 0 (βRnsr) (5h)

δn̂ = 0 (γRr ) (5i)

gns ≥ 0 (ψRnsr) (5j)

dn ≥ 0 (φRnr) (5k)

− 1
2

∑
n∈N

1

bn

(
(an)2 + (pn)2 + (φn)2 − 2anpn + 2anφn − 2pnφn

)
−
∑
l∈L

(µl + µ
l
)(
(
f l + el

)
−

∑
n∈N,s∈S

βnsgns

+
∑
n∈N

[(
an − 1

2bndn
)
dn −

∑
s

cGnsgns

]
≥ 0 (κRr ) (5l)

Constraints 5b–5l are the primal and dual constraints from the ISO (lower-level) problem
and the strong-duality constraint; they ensure optimality of the ISO lower-level problem
given the network investment decision variables.

The Nash game between zonal planners

The optimization problem faced by one zonal planner (Problem 5) is similar to the model
presented by Buijs and Belmans (2011); since the lower-level is an equilibrium problem, each
zonal planner faces an MPEC. Searching for Nash equilibria between several MPECs, we
obtain an EPEC. The constraints faced by each zonal planner are identical; nevertheless, the
valuation that the zonal planner accords to them (i.e., the dual variables marked with an R
superscript) may differ across the planners. Therefore, the problem at hand is a Generalized
Nash game (GNE). Harker (1991) proposes to assign identical duals to all shared constraints
by assumption; this facilitates the solution of such problems considerably, since the problem
then reduces to a Nash equilibrium (NE), which can be solved as a Variational Inequality (VI)
or Mixed Complementarity Problem (MCP) using standard methods. This assumption can
be interpreted as an implicit auction of the scarce resource or constraining factor in some
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cases; there exists a coordination mechanism between the players affected by the shared
constraint. However, since one of the main tenets of our work is that such a coordination
mechanism does not exist, we do not use this approach here. Instead, we will present a
reformulation based on disjunctive constraints below to circumvent this problem without
having to make a-priori assumptions.

We proceed by taking first-order (KKT) conditions of the zonal planner’s MPEC, stated
in the Appendix; however, both the objective function (5a) and the strong-duality constraint
(5l) are non-convex, because the line expansion is now a variable. As a consequence, the
KKT conditions are neither necessary nor sufficient for an equilibrium, and there may be a
multitude of KKT points. Let us first discuss the caveat that the KKT conditions are not
necessary: this means that there may exist equilibria of the game between zonal planners
that our approach does not capture. Mathematically, such equilibria are related to relaxed
definitions of the Nash equilibrium, such as a Nash Bouligand stationary point (or Nash
B-stationary point, Kulkarni and Shanbhag, 2013). In our defense, it is not clear whether
different approaches such as enumeration or diagonalization would be able to identify all
equilibria in applied problems.

The caveat that KKT conditions are not sufficient for an equilibrium is, in contrast,
easy to overcome. We treat each KKT point as a candidate equilibrium and check for each
zonal planner whether a profitable deviation exists, keeping all line capacities not within the
jurisdiction of the respective zonal planner fixed. The algorithm is explained in more detail
below, when we summarize the methodological advances of our approach. If no profitable
deviation exists for any zonal planner, we keep the KKT point as an equilibrium; otherwise,
we discard it. Our approach therefore only admits global Nash equilibria, in contrast to
other approaches that only focus on deviation incentives in the neighbourhood of equilibrium
candidates (local Nash equilibrium, Hu and Ralph, 2007).

In this way, we can use the KKT conditions as constraints to describe strong global Nash
equilibria; the decision which equilibrium to choose is taken by the top-level player in this
game, the supra-national planner.

The supra-national planner

The supra-national planner decides on cross-border network investment, anticipating the
optimal strategic reaction of the zonal planners. She seeks to maximize welfare in the entire
region, less the required investment costs:

max
g,d,δ

∑
n∈N

[(
an − 1

2bndn
)
dn −

∑
s

cGnsgns

]
−
∑
l∈L

cTl el (6a)

s.t. equilibrium between the zonal regulators (KKT conditions 9)

and optimal dispatch by the ISO

As already mentioned above, there may exist multiple Nash equilibria. We therefore
implement an iterative algorithm seeking to identify a range of possible outcomes. This
allows us to give a broader interpretation to the top-level player than Ruiz et al. (2012) have
done: rather than just presenting one Nash equilibrium, we can compare several equilibria.
We will return to this issue when discussing the numerical results.

Methodological advances

Our model extends the approach used by Ruiz et al. (2012) in three important aspects: firstly,
they assume a piece-wise constant willingness-to-pay function of consumers, while we use a
linear inverse demand curve. This allows to identify marginal benefits of network expansion.
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Secondly, Ruiz et al. hold the dual variable associated with lower-level complementarity (κR

in our formulation) fixed and test for different (exogenous) values.
The third contribution of our work relative to Ruiz et al. lies in the interpretation of

the top level player: they use this player merely as an equilibrium selection mechanism, but
do not discuss whether multiple Nash equilibria exist. We develop an iterative algorithm to
identify alternative equilibria, and thus provide more room for interpretation of the three-
stage nature of the model.

Reformulating the Generalized Nash game using disjunctive constraints

One general methodological novelty (not discussed by Ruiz et al.) concerns the nature of
the Generalized Nash Equilibrium (GNE) between the players at the intermediate model
stage. In particular, as we mentioned earlier, we decide against the common simplification
when solving GNE models of assuming identical multipliers for shared constraints (Harker,
1991) or a fixed, exogenously specified ratio between the multipliers (Oggioni et al., 2012).
Instead, we replace the complementarity constraints of the zonal planners’ and the ISO’s
KKT conditions by disjunctive constraints. This allows us to circumvent the problem of a
non-square MCP model: we illustrate the approach using the example of the nodal energy
balance faced by the ISO (constraint 1e).

gns − gns ≥ 0

For optimality, either this constraint is not binding, or the associated dual variable for the
ISO (βns) equals 0. However, each zonal planner must also consider this constraint in her
own optimization problem (Constraint 5h), with the associated dual variable (βRnsr). The
entire problem then reads as follows:

gns − gns ≥ 0 ⊥ βns
gns − gns ≥ 0 ⊥ βRnsr ∀ r ∈ R (7a)

It is not possible to solve such a model with shared constraints as an MCP, because it is
essentially a non-square system (more variables than unique equations). However, we can
replace the entire system using disjunctive constraints. We introduce one large scalar K and
a binary variable rns for each constraint.

gns − gns ≥ 0
gns − gns ≤ K rns

βns +
∑
r β

R
nsr ≤ K (1− rns)

(7b)

This reformulation allows to include shared constraints without the requirement to make
assumptions on the ratio of the dual variables of the shared constraints between the different
players. For shared equality constraints, the complementarity condition can be neglected
altogether. We reformulate all inequality constraints of the zonal planners’ KKT conditions
(stated in the Appendix) in this way. After the reformulation, we can also eliminate the
strong-duality constraint (5l): the primal and dual feasibility of the ISO problem is already
included in the zonal planners’ constraints, and complementarity of the ISO’s variables is
enforced by the disjunctive constraints reformulation. After this simplification, the resulting
problem is only bilinear in the dual variable to the strong duality constraint (κRr ).

Optimistic vs. pessimistic bilevel games

There is one general concern of modelling bilevel games that we still need to address: when
solving two-stage games, the most commonly applied approach uses first-order optimality
condition of the lower-level optimization problems and inserts those as constraints to the
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upper-level optimization problem. An important assumption is implicitly taken here: the
decision variables of the lower-level player are then, mathematically speaking, decision vari-
ables of the upper-level player, respecting optimality constraints. If the optimal response of
the lower-level player is unique for any given decision of the upper-level player, this need not
be a concern. However, there may be cases where uniqueness of the lower-level best response
is not given; the lower-level player is indifferent between several options.

In such cases, the upper-level player may then decide which of the options the lower-level
player “chooses”. This is commonly referred to as the optimistic approach; it is the best the
upper-level player can do given the bilevel game.

In contrast, one may consider a case where the lower-level player wants to do what is
worst for the upper-level player, given a situation where she is indifferent between several
options; this is the pessimistic approach. Such a situation may be plausible in cases where
the upper- and lower-level players are rivals, and the lower-level player wants to maximize
her profits – but also has an incentive to reduce the profits of the rival, if it does not have
a downside for her (by definition, own payoff is not affected, as she is indifferent between
two decisions). Mathematically, this leads to a min-max-problem, which is computationally
difficult to solve.

In the three-stage model (Problem 6), we implicitly use the optimistic approach, where
optimistic is to be seen from the supra-national planner’s point of view. We believe that this
makes sense: the supra-national planner and the ISO’s objective are well aligned. For the
zonal planners, we assume that they are only concerned with national welfare – but we do
not presume that they are malevolent towards other states/zones.

For the deviation-incentive checking algorithm (explained in the following section), we
solve the optimization model of the zonal planners (Problem 5); here, we also use the op-
timistic approach (now optimistic from the point of view of the respective zonal planner).
Again, this makes sense, because our question when solving this model is to check whether
the zonal planner has a deviation incentive from the equilibrium candidate solution identi-
fied by the three-stage model. If we do no find a deviation incentive under the optimistic
assumption, we can be confident that indeed there is none.10

An iterative solution algorithm to identify multiple equilibria

Let us now turn to the iterative algorithm to identify multiple equilibria, which we already
referred to earlier. The problem of our three-stage model is as follows: there may exist
multiple equilibria in the national-strategic game, and there may be KKT points which are
not stable in the Nash sense, because a zonal planner finds a profitable deviation – in this
case, the KKT conditions would hold because it is a local welfare minimum or saddle point
in one or more variables of a zonal planner. This section describes an iterative algorithm to
identify multiple equilibria, and to check for deviation incentives:

1 Solve the national-strategic model (Problem 6). The optimal line expansion is denoted
as e∗l (i), where i is the iteration counter; let the set I collect all iterations of this
algorithm.

2 Loop over zonal planners: Solve the zonal MPEC problem (Problem 5), with all line in-
vestments but the domestic ones fixed to the level determined in step 1, el = e∗l (i) ∀ l /∈
Lr. If at least one zonal planner has a profitable deviation, discard the KKT point as
an equilibrium candidate.

10We are aware that this assumption may exclude equilibria in the game between zonal planners, which are
not deviation-proof under the optimistic assumption, but are incentive-compatible if the ISO can credibly
commit to “retaliate” by following the pessimistic strategy. However, identifying whether such a case may
even exist is beyond the scope of this work.
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3 If the KKT point identified is an equilibrium candidate: check whether a previously
found equilibrium dominates the current candidate solution. Definition: a solution A
dominates another solution B if each zonal planner is (weakly) better off in solution
A than in B. If no dominating previous solution is found, keep this KKT point as an
equilibrium.

4 Add constraints to the national-strategic model (Problem 6) such that the solution
e∗l (i) is excluded from the feasible region. To this end, we introduce auxiliary binary
variables z+l (i), z−l (i); the parameter el is an suitable large upper bound on the line
expansion:

el > z+l (i) e∗l (i)
el < el − z−l (i) (el − e∗l (i))∑

l

z+l (i) + z−l (i) ≥ 1

 ∀ i ∈ I (8)

The logic is straightforward: at least one of the auxiliary binary variables must equal 1
for each previous iteration; hence, these constraints ensure the next KKT point found
in Problem (6) differs with regard to at least one line expansion variable from all
previously found KKT points. This must hold irrespective of whether a point was a
stable equilibrium or not.11

. . . Repeat at step 1; stop after n iterations

There is one important methodological and conceptual benefit of this iterative solution
to the more “hands-on” approach of solving such a game by diagonalization and attempting
to find different equilibria by using various starting points: using diagonalization, one can
make no informed statement whether “better” equilibria exist, in the sense that there is
a dominating equilibrium (Definition in Step 3 of the iterative algorithm). In contrast,
using our iterative algorithm, the first KKT point will be the candidate equilibrium with
the highest level of aggregate welfare – irrespective of whether this point is an equilibrium.
The second iteration will provide the KKT point with the second-highest overall welfare,
and so forth. As we stated earlier, there may exist equilibria which are not KKT points –
our approach cannot find these, so the above statement does not apply to such equilibria.
However, our approach is at least an improvement to the diagonalization approach.12

Solution strategy and two benchmark models

The three-stage model is, after the disjunctive constraints reformulation, a quadratic program
with mixed-integer non-convex constraints. We implement the problem in GAMS and use
the BARON solver (Tawarmalani and Sahinidis, 2005); this solver aims to solve non-convex
problems to global optimality.

In order to identify and quantify the impact of strategic zonal planners, we compute two
benchmark cases: first, a model without any investment at all, which is exactly the ISO
dispatch problem (Problem 1). As a second benchmark, we compute the optimal supra-
national investment problem without strategic consideration by zonal planners. This can be
computed by combining the objective function of the supra-national planner (6a) with the
operational constraints of the ISO problem (Constraints 1b–1h), allowing investments on all
lines. Both benchmark models are convex quadratic optimization problems (QP) and are
numerically solved using the CPLEX solver.

11Otherwise, the iterative algorithm would get stuck at this point. In the GAMS implementation, we use
an ε distance to replace the strict by a weak inequality.

12For further research, we intend to attempt reformulations such that the KKT conditions of the zonal
planners are necessary; in this case, our iterative approach would indeed identify all equilibria, ranked by
aggregate welfare. Of course, our statements only hold under the assumption that the BARON solver
identifies the correct global optimum of the non-convex problem.
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5 An illustrative example

We apply this model to a four-node, two-country example, which is motivated by the current
situation between Germany and Poland. We assume two countries with two nodes each;
the south of country A has a large industrial base, while the north of country A has only
low demand for electricity. Country B has intermediate demand at both nodes. The energy
system of both countries used to be based on autarky of each zone, with limited transmission
capacity between them.

Two shifts caused a significant imbalance in the power network: large installation of
generation capacity with low variable costs in the north of Country A (e.g., wind power in
the coastal region), and decommissioning of base-load generation capacity in the south of
Countries A and B (e.g., the nuclear phase-out in Germany, less power generation from coal
due to emission reduction efforts). We abstract from investment in power generation; we
assume that the shifts in the generation portfolio have already taken place, but not at the
locations where it would be optimal from the point of view of the entire system. This can
be interpreted as the effects caused by fixed feed-in tariffs or other subsidies for renewables;
in some cases, renewable support does not give sufficient consideration to locational aspects.
The decommissioning of nuclear power plants is also a political decision rather than based
on the short-run economics of power markets.

Figure 1 depicts the network, the installed generation capacity by type, the reference
demand at each node, the initial transmission capacity, and the equilibrium prices in the
absence of network expansion. All quantities, flows and capacities presented here are given
in Gigawatthours (GWh)13, all prices and costs are given in Euro per Megawatthour (MWh).
We assume three types of power plants: “renewables” with zero marginal generation costs,
“base” with 40e/MWh and “peak” with 70e/MWh. The parameters for the inverse demand
function are computed using a price of 70e/MWh and an elasticity of −0.25. The costs for
network expansion are assumed to be 2e/MWh.14 The impedance of all lines is assumed to
be identical.

Without substantial upgrades of the transmission grid, we observe a large price differential
between the two nodes of Country A. However, in order to transmit power to the node with
the highest willingness-to-pay, upgrades must also be made in the northern cross-border
line and the line within Country B due to the particular power flow characteristics in an
alternating-current (AC) power grid.

We first compute two benchmark cases: no investment and (supra-national) welfare-
optimal investment. In the initial (current) network, peak-load generators in both southern
nodes are the price-setting plants – there is idle capacity at node n1, but it cannot be
transported to the high-price nodes due to the constraints of the network. With welfare-
optimal investment in transmission capacity, prices in node n2 slightly decrease, as more
base-load generation can be shipped to that node. Prices in the northern nodes increase in
line with a general price convergence – the resulting price differential between the nodes is
exactly equal to the costs of building an additional marginal unit of line capacity.

Because the plant in node n4 is still the price-setting plant in the system even with
welfare-optimal line expansions, prices converge towards the high price at that node; this
may seem counter-intuitive at first given that network investment is generally expected
to exhibit a price-decreasing effect. Nevertheless, welfare is increased due to the network
expansion, because peak-load (i.e., high variable cost) generation can be replaced by the
base-load plant at node n1 which was idle in the no-investment benchmark case.

13Capacities are actually in Gigwatt (GW) rather than GWh (energy). By assuming one representative
hour, the two are equivalent.

14This value is derived from the following assumptions: a double-circuit 380 kV line costs 1.4 millione/km;
the distance between two nodes is 400 km; the line is used at full capacity in half of the hours every year;
the lifetime of the line is 40 years; and the interest rate is 4 % p.a.
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Benchmark: No investment

Line l2
Capacity 1

B A 

40 56 

70 70 

l1 

l2 

l3 

l4 

n1 

n2 

Line l3
Capacity .5

Node n1
Generation
Renewables 20 (20)
Base 22.21 (40)

Load 33.21 (30)

Node n3
Generation
Base 30 (30)

Load 21 (20)

Line l1
Capacity 10

Line l4
Capacity 10

Node n2
Generation
Base 30 (30)
Peak 11 (40)

Load 50 (50)

Node n4
Generation
Peak 9 (25)

Load 20 (20)

Benchmark: Welfare-optimal investment

Line l2
Capacity 1 + 6.23

B A 

66 68 

68 70 

l1 

l2 

l3 

l4 

n1 n3 

n2 n4 

Line l3
Capacity .5 + .98

Node n1
Generation
Renewable 20 (20)
Base 40 (40)

Load 30.43 (30)

Node n3
Generation
Base 30 (30)

Load 20.14 (20)

Line l1
Capacity 10 + 12.34

Line l4
Capacity 10 + 7.09

Node n2
Generation
Base 30 (30)
Peak 0 (40)

Load 50.36 (50)

Node n4
Generation
Peak 0.93 (25)

Load 20 (20)

Figure 1: Benchmark cases in the illustrative two-zone, four-node network; generation ca-
pacity and reference load in brackets; investment in bold; nodal prices given in the circles in
the figure
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Figure 2: Welfare gains relative to the No investment benchmark in 1000e

However, when analysing the welfare shifts due to the network expansion as illustrated in
Figure 2 and Table 3, one notices that all welfare gains accrue in Country A, while Country B
finds her welfare decreased relative to the status quo. This begs the question whether a zonal
planner would not find it in her best interest to restrict the network expansion within her
jurisdiction, since explicit transfers between the zones is not possible in the current setting.

To investigate this effect, we compute equilibria of the three-stage game; we use the
iterative algorithm presented in Section 4 to identify 46 KKT points of the game.15 Of
these 46 candidate solutions, 5 are not Nash equilibria (i.e., at least one of the zonal planner
identified a profitable deviation). Another 35 KKT points are Nash equilibria in the sense
that no zonal planner has a unilateral deviation incentive, but the equilibria are not Pareto
efficient (also referred to as Pareto optimal). A Pareto improvement exists; the solutions
are dominated by other equilibria.16 Three iterations experienced numerical difficulties and
where therefore excluded. This leaves three Nash equilibria found at iterations 1, 23 and 27;
they are presented in Figure 3.

In general, network expansion is lower than in the welfare-optimal benchmark. The
difference is most pronounced on line l4, where expansion is lower by one third relative to
the benchmark. This makes sense intuitively: the zonal planner of country B specifically
“withholds” line expansion; this has the effect to reduce prices at node n3 and thereby shifts
rents from generators at node n1 to the consumers at node n3. Equilibrium C is the only
solution where not all lines are fully congested; this is line l3, which is consequently not
expanded.

In the three national-strategic equilibria, aggregate welfare is 10 % lower compared to
the welfare-optimal benchmark (see Table 3). At the same time, by strategically reducing
line expansion on the domestic line, the zonal planner of country B is able to appropriate

15Due to the “holes” cut into the feasible region by the iterative algorithm to identify other KKT points, the
solver requires more time after each iteration. The 47th iteration was aborted after 24 hours of computation
time.

16A dominated equilibrium is one where another equilibrium was found which is a welfare improvement for
all zonal planners. Thus, agreeing to move to the dominating equilibrium is in every player’s best interest;
a joint deviation incentive for all players without transfers/compensation exists.
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Equilibrium A – Iteration 1

Line l2
Capacity 1 + 5.56

B A 

50.68 41.29 

60.43 70 

l1 

l2 

l3 

l4 

n1 n3 

n2 n4 

Line l3
Capacity .5 + 0.37

Node n1
Generation
Renewables 20 (20)
Base 40 (40)

Load 32.05 (30)

Node n3
Generation
Base 30 (30)

Load 22.05 (20)

Line l1
Capacity 10 + 11.39

Line l4
Capacity 10 + 4.51

Node n2
Generation
Base 30 (30)
Peak 0 (40)

Load 51.71 (50)

Node n4
Generation
Peak 5.81 (25)

Load 20 (20)

Equilibrium B – Iteration 23

Line l2
Capacity 1 + 5.53

B A 

50.22 40.33 

60.11 70 

l1 

l2 

l3 

l4 

n1 n3 

n2 n4 

Line l3
Capacity .5 + .47

Node n1
Generation
Renewable 20 (20)
Base 40 (40)

Load 32.12 (30)

Node n3
Generation
Base 30 (30)

Load 22.12 (20)

Line l1
Capacity 10 + 11.35

Line l4
Capacity 10 + 4.41

Node n2
Generation
Base 30 (30)
Peak 0 (40)

Load 51.77 (50)

Node n4
Generation
Peak 6 (25)

Load 20 (20)

Equilibrium C – Iteration 27

Line l2
Capacity 1 + 5.52

B A 

50 40 

60 70 

l1 

l2 

l3 

l4 

n1 n3 

n2 n4 

Line l3
Capacity .5 + 0

Node n1
Generation
Renewable 20 (20)
Base 40 (40)

Load 32.14 (30)

Node n3
Generation
Base 30 (30)

Load 22.14 (20)

Line l1
Capacity 10 + 11.34

Line l4
Capacity 10 + 4.38

Node n2
Generation
Base 30 (30)
Peak 0 (40)

Load 51.79 (50)

Node n4
Generation
Peak 6.07 (25)

Load 20 (20)

Figure 3: Three-stage game equilibria in the illustrative two-zone, four-node network; gen-
eration capacity and reference load in brackets; investment in bold; nodal prices given in the
circles in the figure
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more than 20 % of the welfare gains, rather than seeing her constituents worse off due to the
network expansion.

As a last remark, let us compare the three equilibria: it is clear that Equilibrium A is
the network expansion with the highest aggregate welfare. However, one may argue that
Equilibrium C is the more “equitable” outcome from the point of view of the supra-national
planner, as both zones benefit more evenly from the expansion. In any case, the difference
between the three equilibria is relatively small. We are not sure whether this is due to the
small scale of the sample network, an artefact arising from the numerical aspects of the
non-convex problem, or an inherent property of the game structure.

6 Conclusions and Outlook

In a meshed power network, line expansions may lead to significant re-allocations of profits
and rents across different stakeholder groups and national boundaries. Zonal (or national)
interests and the lack of an efficient compensation mechanism may prevent reaping all poten-
tial welfare gains from network investments, because the beneficiaries of network expansion
are located in different jurisdiction than those stakeholders bearing the costs. Zonal plan-
ners, such as governments, regulators, or national TSOs, may therefore have incentives to
over-invest or intentionally withhold power line upgrades in their jurisdiction to induce a
shift of rents towards their constituents. This may impede the efficient integration of the
European energy market and the transformation towards a low-carbon power sector.

We develop a three-stage model to represent the Generalized Nash game between zonal
planners, each taking into account how line capacity upgrades impacts the outcome in the
competitive spot market. The game is led by a supra-national planner, who decides on cross-
border line expansion. We make use of strong duality to replace the equilibrium constraints
of the lowest-level player, the ISO managing the competitive spot market, and take first-order
conditions of the zonal planners’ optimization problem. Adapting a disjunctive constraints
reformulation, we circumvent the common problem when solving Generalized Nash games,
and do not need to make a priori assumptions on the relative valuations of shared constraints.
Finally, we implement an iterative algorithm to determine multiple equilibria.

Our results based on a simple test case demonstrate that the national-strategic behaviour
yields significant welfare loss compared to the system-optimal investment. A zonal planner
has incentives to “under-invest” in her domestic line in order for her constituents to obtain a
share of the welfare gains, rather than seeing her domestic welfare decreased by the system-
optimal network upgrades.

For further research and future model extensions, we intend to develop the three-stage
approach in several directions: firstly, we want to relax the current simplification that all
cross-border network investment is decided by the supra-national planner. Instead, those
lines upgrades should be subject to a bargaining process between the adjacent zonal planners.
This will require the explicit modelling of a compensation mechanism, in the spirit of the
ITC and the “projects of common interest”. It will be interesting to see whether an explicit
transfer scheme can alleviate the failure to reach the first-best equilibrium.

As a second line of further research, we intend to focus on the welfare allocation between
the different stakeholder groups, and the shifts between them due to network upgrades. One
may imagine a situation where the regulator has a preference for the welfare of consumers,
rather than the equal weight of consumer welfare, generator profits, and TSO rents, which
we assumed so far. Furthermore, in such a setting, an explicit funding constraint of the TSO
has to be considered; network usage tariffs will be used to finance additional transmission
capacity. Thereby, we will be able to explicitly include the trade-off between the benefits
of additional transmission capacity and the consumer welfare loss due to the tariffs. This is
similar to the work by Daxhelet and Smeers (2007), but extends it for network investment.

19



C
o
n

su
m

er
su

rp
lu

s
G

en
er

a
to

r
p

ro
fi

t
C

o
n

g
es

ti
o
n

re
n
t

In
v
es

tm
en

t
co

st
s

W
el

fa
re

A
B

T
o
ta

l
A

B
T

o
ta

l
A

B
T

o
ta

l
A

B
T

o
ta

l
A

B
T

o
ta

l

B
e
n
c
h
m

a
r
k

c
a
se

s:
N
o
in
ve
st
m
en

t
1
2
1
4
8
.2

1
5
8
8
7

1
8
0
3
5
.2

1
1
7
0
0

4
8
0

2
1
8
0

3
0
8

1
4
8

4
5
6

1
4
1
5
6
.2

1
6
5
1
5

2
0
6
7
1
.2

1
W

el
fa
re
-o
p
ti
m
a
l
in
ve
st
m
en

t
1
1
4
2
1
.2

2
5
6
4
0
.1

4
1
7
0
6
1
.3

6
3
2
0
0

8
4
0

4
0
4
0

5
3
.8

9
4
3
.3

9
9
7
.2

9
3
1
.8

9
2
1
.3

9
5
3
.2

9
1
4
6
4
3
.2

1
6
5
0
2
.1

4
2
1
1
4
5
.3

6

N
a
ti
o
n
a
l-
st
r
a
te

g
ic

m
o
d
e
l:

E
qu

il
ib
ri
u
m

A
(I

te
ra

ti
o
n

1
)

1
2
2
8
0
.3

1
6
2
0
3
.5

3
1
8
4
8
3
.8

4
2
0
6
4
.7

5
3
8
.8

5
2
1
0
3
.6

0
1
7
1
.7

5
3
8
3
.5

9
5
5
5
.3

4
2
8
.7

1
1
4
.9

5
4
3
.6

6
1
4
4
8
8
.1

6
6
1
1
.0

2
2
1
0
9
9
.1

2
E
qu

il
ib
ri
u
m

B
(I

te
ra

ti
o
n

2
3
)

1
2
3
1
7
.4

0
6
2
2
4
.7

3
1
8
5
4
2
.1

3
2
0
1
6
.7

5
1
0
.0

5
2
0
2
6
.8

0
1
7
6
.8

1
3
9
3
.1

5
5
6
9
.9

6
2
8
.7

0
1
4
.8

1
4
3
.5

1
1
4
4
8
2
.2

6
6
6
1
3
.1

1
2
1
0
9
5
.3

7
E
qu

il
ib
ri
u
m

C
(I

te
ra

ti
o
n

2
7
)

1
2
3
3
0
.3

6
6
2
3
2
.1

4
1
8
5
6
2
.5

0
2
0
0
0

0
2
0
0
0

1
7
8
.5

7
3
9
6
.4

3
5
7
5

2
8
.2

0
1
4
.2

7
4
2
.4

6
1
4
4
8
0
.7

3
6
6
1
4
.3

0
2
1
0
9
5
.0

4

T
ab

le
3:

W
el

fa
re

re
su

lt
s

o
f

th
e

sa
m

p
le

n
et

w
o
rk

,
in

1
0
0
0
e

20



References

Francis Bloch and Matthew O. Jackson. Definitions of equilibrium in network formation
games. International Journal of Game Theory, 34(3):305–318, 2006.

Francis Bloch and Matthew O. Jackson. The formation of networks with transfers among
players. Journal of Economic Theory, 133(1):83–110, 2007.

Patrik Buijs and Ronnie Belmans. Transmission investments in a multilateral context. IEEE
Transactions on Power Systems, 27(1):475–483, 2011.

Patrik Buijs, David Bekaert, and Ronnie Belmans. Seams issues in European transmission
investments. The Electricity Journal, 23(10):18–26, 2010.

Olivier Daxhelet and Yves Smeers. The EU regulation on cross-border trade of electricity:
A two-stage equilibrium model. European Journal of Operational Research, 181(3):1396–
1412, 2007.

EC. Commission Regulation (EU) No 714/2009. European Commission, 2009.

EC. Commission Regulation (EU) No 838/2010. European Commission, 2010.

EC. Energy Roadmap 2050. Communication (2011) 885. European Commission, 2011.

EC. Making the internal energy market work. Communication (2012) 663 final . European
Commission, 2012.

EC. Commission Regulation (EU) No 347/2013. European Commission, 2013.

Jonas Egerer and Hans Nylund. Regional versus bilateral cost sharing in electricity trans-
mission expansion. http://pure.ltu.se/portal/files/78697853/Article.pdf, 2014.

Jonas Egerer, Clemens Gerbaulet, and Casimir Lorenz. European electricity grid infrastruc-
ture expansion in a 2050 context. DIW Discussion Paper 1299, 2013a.

Jonas Egerer, Friedrich Kunz, and Christian von Hirschhausen. Development scenarios for
the North and Baltic Seas Grid – A welfare economic analysis. Utilities Policy, 27:123–134,
2013b.

ENTSO-E. The Ten-Year Network Development Plan and Regional Investment Plans. Eu-
ropean Network Transmission System Operators – Electricity, 2013.
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Appendix

The KKT conditions of the national regulator

cTl − (µRlr + µR
lr

) + κRr (µl + µ
l
) ≥ 0 ⊥ el ≥ 0 if l ∈ Lr (9a)[

− pn + cGns

]
if n∈Nr

−λRnr + βRnsr − ψRrns + κRr c
G
ns = 0 ⊥ gns (free) (9b)[

− an + bndn + pn

]
if n∈Nr

−ρRnrbn + λRnr − φRnr − κRr (an − bndn) = 0 ⊥ dn (free) (9c)[ ∑
l∈Lr

shrlrHln

∑
k∈N

Ilkpk

]
if n∈Nr

+
∑
k∈N

Bknλ
R
kr +

∑
l∈L

Hln(µRlr − µRlr)−
{
γRr if n = n̂

0 else

}
= 0 ⊥ δn (free) (9d)[

dn −
∑
s∈S

gns +
∑
l∈Lr

shrlrIln
∑
k∈N

Hlkδk

]
if n∈Nr

+
∑
s∈S

ηRnsr − ρRnr −
∑
k∈N

νRkrBnk + κRr
1

bn
(pn − an − φn) = 0 ⊥ pn (free) (9e)

−
∑
n∈N

νRnrHln + κRr (f l + el) ≥ 0 ⊥ µl ≥ 0 (9f)∑
n∈N

νRnrHln + κRr (f l + el) ≥ 0 ⊥ µ
l
≥ 0 (9g)

−ηRnsr + κRr gns ≥ 0 ⊥ βns ≥ 0 (9h)

νRn̂r = 0 ⊥ γ (free) (9i)

ηRnsr ≥ 0 ⊥ ψns ≥ 0 (9j)

ρRnr + κRr
1

bn
(φn + an − pn) ≥ 0 ⊥ φn ≥ 0 (9k)

Equations (5b–(5l) in complementarity form

As explained in Section 4, the strong duality constraint is replaced by the ISO’s equilibrium
constraints (Equations 2). All complementarity conditions are replaced by the disjunctive
constraints reformulation. The constraints are bilinear (and non-convex) in the dual variable
to the strong-duality constraint (κRr ).
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