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Abstract 
 
The relation between the hazard rate and its derivative at modal age at death, an equivalent to 
which has been featured by Pollard (1991), Canudas-Romo (2008), Thatcher et al. (2010), and 
Tuljapurkar and Edwards (2011), is presented as a handy tool in studying mortality 
compression in its period and cohort dimensions. Our analytical findings indicate birth 
cohorts to differ substantially from the period life tables with respect to the distribution of 
deaths around the mode. Empirical results support theoretical predictions and show that 
previously reported effect of compression of deaths above the mode might be a feature of 
period life tables and not of the cohort mortality schedules. Our results are also useful in 
computing the modal age at death and sensitivity analysis. 
 
 
Keywords 
 
Modal age, hazard rate, mortality compression, rectangularization, tempo effect, cohort 
mortality. 
 
 
Author 
 
Dalkhat M. Ediev is research scientist at the Vienna Institute of Demography (Austrian 
Academy of Sciences), Wittgenstein Centre for Demography and Global Human Capital.  
E-mail: dalkhat.ediev@oeaw.ac.at 
 
 
Acknowledgements 
 
The author is thankful to anonymous reviewers for their comments on an earlier draft 
submitted to Demographic Research. 
 



 2 

At Modal Age at Death, the Hazard Rate is Determined by its 
Derivative 

 
Dalkhat M. Ediev 

 
 
1. The Key Relationship 
 
Let � �xl  be the proportion surviving from birth to age x  (the survival function) and 
� � � �xlxd dx

d��  the density function of the distribution of individuals by age at death. Then, at 
the modal age at death 0�� Mx , when � �xd  has a (local) maximum, the value and 

derivative of the force of mortality � � � �
� �xl
xdx ��  are linked by a family of relations: 

� � � �xxdx
d ��� �

� �� �
�

2 1
1

1 , (1) 
where 2,1	�  is parameter determining a member from the family. (The relations do not 
apply to the trivial mode at 0�x .) 
 
 
2. The Proof 
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�
� . (2) 

At modal age 0�� Mx , where the life-table functions are differentiable, � � 0�xddx
d . Hence, 

the key relationship at 0�� . The general relation (1) is obtained by multiplying (2) by 
� �x�� �  and noting that � � � � � �xxx dx

d
dx
d �

�
� ��� �

�
� � 1

1
1 . 

 
 
3. Some Other Relationships That Are Closely Linked to, and Can Be 
Readily Derived from, the Key Relationship 
 
Two particular members of the family (1) were featured in the literature. Namely, at 0�� , 

� � � �xxdx
d 2�� � ; (3) 

and, at 1�� , 
� � � �xxdx

d �� �ln , (4) 
which limit is easy to obtain dividing (3) by � �x� . (See the next section for the history of 
these relations.) 
 

Although all members of the family (1) are formally equivalent, one particular choice 
for the parameter � , at which the left-hand side in (1) is approximately constant around the 
mode, provides some practical convenience in sensitivity analysis (concrete examples are 
given in the applications section below). To find general solution for �  fulfilling the choice, 
one can equate to zero the derivative of the expression in the left-hand side of Eq. (1): 

� �� � � � � �� � � � � � � �� � � � � �xxxxxxx
dx
d

dx
d

dx
d

dx
d

dx
d

dx
d �������� ����

� 2

2211
1

10 �����
� 
����  (5) 

at Mx � . Substituting (3), this leads to the solution: 
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� �
� �M
M

dx
d

3
* 2

2

�
��

�

�� . (6) 

One can also express this solution in terms of distributional characteristics of deaths rather 
than in terms of the hazard rate. We present the expression without derivation here: 

� � � �
� �Md

Md
Ml dx

d

3
2* 2

2

2
�� . (7) 

(One may come to the expression by deriving the second derivative from (2) and taking Eqs. 
(3), (6) into account.) 
 

Aside from the applications to sensitivity analysis presented below, parameter *�  is 
useful in describing the mortality pattern around the most typical age at adult death and, 
hence, in specifying the type of the adult mortality model consistent with data. The Gompetz 
‘law of mortality’ � � bxaex ��  yields, e.g., 1* ��  at any combination of its parameters. The 
normal distribution of the age at death (assumed in studies featuring the modal age at death), 

� �
� �

22

2

22
1~ �

��

Mx

exd
��

 suggests another value 43.022* ��� ��  at any combination of its 

parameters. Meanwhile, empirical mortality schedules (we used data for currently low-
mortality countries from the Human Mortality Database (2011)) disagree with both these 
models and yield *�  mainly distributed between 0.4 and 1. In period life tables, 75.0* ��  on 
average since 1950s without notable time trend; in cohort data, 83.0* ��  on average after 
1950s with tendency to increase after 1970s. As a rough estimate, we take 8.0* ��  for 
further calculations.  
 
 
4. History of the Discovery of the Relationship  
 
Relation in the form of Eq. (4) was first derived, in the context of the Gompertz law of 
mortality, by Pollard (1991). It was rediscovered later as a general relation by Canudas-Romo 
(2008; Schoen 2006 cites a similarly titled unpublished manuscript by Canudas-Romo from 
2005) and Thatcher et al. (2010; the authors cite their own conference submission from 2006). 
The derivative of the logarithm of the hazard rate in (4) is often referred to as the life table 
ageing rate (Carey and Liedo 1995). The ageing rate is particularly important a parameter in 
the Gompertz model of mortality, where it is age-independent. As Eq. (4) states, at the mode, 
the aging rate equals the hazard rate. More recently, Tuljapurkar and Edwards (2011) 
presented the relationship in form (3) in this journal.  
 

The motivation to study the modal age at death comes from two long-lasting lines of 
research which seem to have merged recently: one concerning the ‘normal’ distribution of 
deaths and the other concerning the mortality compression. The former tradition originates 
from Quetelet and Lexis and was more recently revived by Kannisto (for a review, see 
Cheung and Robine 2007). Lexis (1878) suggested that the modal age at (adult) death, M , 
represents a typical ‘natural’ duration of human life and that durations of life exceeding M  
follow the normal distribution (as opposed to the durations of life below M , where child and 
premature deaths top up the normally distributed ‘natural’ deaths). Based on modern data, 
Kannisto (2000, 2001) supported Lexis’s assumption of normality of the distribution of deaths 
above the mode and advocated usage of the mode as an indicator of human longevity, 
supplementary to ‘life expectancy at birth’. He also proposed to use the standard deviation of 
life durations above the mode as an indicator of mortality compression (Kannisto 2001) 
thereby linking the concepts of the mode and ‘natural’ deaths to another long-lasting concept 
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of mortality compression (Fries 1980; see Thatcher et al. 2010 for a recent review). It is 
worthwhile noting, in this context, that Wilmoth and Horiuchi (1999) also proposed an 
indicator of mortality compression, the Fastest Decline (FD), linked to the modal age (FD is 
the height of the deaths’ density function at the modal age, � �Md ). While indicating its better 
performance in terms of correlation to other alternative measures of mortality compression, 
they nonetheless opted for the Interquartile Range as a more convenient indicator. 
 
 
5. Possible Applications 
 
As a general analytical relation, Eq. (1) may have variety of applications when it comes to 
study the modal age at death. Here, we highlight three particular applications: to determining 
the mode and compression of deaths; analysing effects of small mortality change; and 
studying tempo effects at the mode. 
  
 
5.1. Determining the Typical Lifespan and Compression of Deaths above the Mode 
 
Although conceptually straightforward, finding the modal age at death may, in practice, be 
complicated by irregularities of the life table distribution of deaths � �xd  and need for 
computing the mode in fractions of year while using discreet life table. Kannisto (2001) 
discusses the problem and proposes a formula based on quadratic approximation to � �xd  to be 
applied after a not-‘excessive’ smoothing of the distribution. He warns against excessive 
smoothing of the curve, which may reduce the height of the mode and affect findings 
concerning compression of deaths. 
 

The key relationship, in any of its equivalent forms, provides an alternative approach. 
One may use, for example, the following discrete approximation to Eq. (4): 

0
2

lnln 11 ��
� �


x
xx MMM , (8) 

where the expression in the left-hand side may be smoothed and numerically resolved by any 
convenient procedure, which will not affect considerably the distribution of deaths, as the 
expression is a monotonic function of age (this is what we use in the following illustrations).  

 
Solution to Eq. (1) is also informative about compression of deaths above the mode. 

Assuming, in line with Lexis and Kannisto, that ‘natural’ deaths due to senescence are, 
roughly, normally distributed and there are no premature deaths above the mode, one can 
expect tight link between the mortality rate at the mode and the standard deviation of age at 
death above the mode. In the normal distribution, the root mean square deviation from the 
mode is 80.0

2
2 �
�

 times � �M�
1 . This ratio is close to the empirical ratio 0.74 (with sample 

standard deviation 0.02) that we obtain from distributions of deaths above the modal age in 
the Human Mortality Database (2011). The standard deviation from the mode of age at death 
above the mode may then be approximated as 

� � � �M
MSD

�
74.0

�
  (years). (9) 

 
Numerical illustrations are presented in Table 1 summarizing estimates of the mode 

and of the standard deviation of age at death above the mode in period life tables for currently 
low-mortality countries. The standard deviations are presented in two forms: estimated 
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directly from the period life table distributions and indirectly, using approximation (9). The 
table also features mean absolute and mean absolute percentage errors of Eq. (9) (about 0.3 
years and 5%, respectively). Good accordance between the direct estimates and the 
approximation indicates efficiency of the latter. The table illustrates well-reported 
phenomenon of mortality compression above the mode in period life tables accompanying 
increase in the mode itself (e.g., Kannisto 2000, 2001, Canudas-Romo 2008, Thatcher et al. 
2010). 

 
Hence, the key relation (1) and its equivalents tell the two most important stories about 

‘natural’ adult deaths. First, the age M  fulfilling the relation indicates the typical natural life 
duration. Second, the mortality level � �M�  balancing the equations indicates variability of 
natural age at death.  

 
Table 1. Modal age at death and standard deviation of age at death above the mode in period 
life tables averaged over currently low-mortality countries in selected periods, years. Numbers 
in the parentheses indicate inter-country standard deviation of an indicator. 

Period Before 
1900 1900-1945 1946-1979 1980 and 

later 
Females:     

Modal age at death 74.4 (2.7) 77.4 (2.0) 81.6 (2.0) 86.5 (2.0) 
SD(M+), direct estimate 8.5 (0.8) 7.9 (0.7) 7.1 (0.6) 6.1 (0.6) 
SD(M+), approximated from Eq. (9) 8.3 (1.0) 7.8 (0.9) 7.1 (0.7) 6.4 (0.6) 

Mean absolute error of Eq. (9) 0.4 0.3 0.2 0.3 
Mean absolute percentage error of 

Eq. (9) 
4.5% 3.9% 2.2% 5.7% 

Males:     
Modal age at death 73.2 (2.7) 75.9 (2.6) 77.2 (1.9) 81.5 (2.5) 
SD(M+), direct estimate 8.7 (0.9) 7.9 (0.8) 8.2 (0.7) 7.4 (0.7) 
SD(M+), approximated from Eq. (9) 8.5 (1.2) 7.9 (1.1) 8.2 (0.9) 7.5 (0.8) 

Mean absolute error of Eq. (9) 0.5 0.3 0.2 0.2 
Mean absolute percentage error of 

Eq. (9) 
5.3% 3.6% 2.5% 2.8% 

Data sources: Human Mortality Database (2011) period life tables for currently low-mortality 
countries/territories  (Australia, Austria, Belgium, Canada, Chile, Denmark, Finland, France, 
Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, 
Switzerland, Taiwan, USA, UK, West Germany) 

 
 

5.2. Application in the Sensitivity Analysis 
 
The relationships presented above are valuable in studying effects of gradual mortality change 
on the mode and compression of deaths above it.  

 
Consider, first, a simple, though unrealistic, scenario of proportionate change of the 

hazard function (in the text below, the cup sign denotes indicators of the new mortality 
regime; indicators without the cup are those of the regime before the mortality change): 
� � � �xex b�� ��ˆ , (10) 

where b  is a (small) parameter of mortality change; death rates decline at positive b  and 
increase at negative b . Substituting this into (1) at the new mode yields, at *�� �  (note 
usage of approximate constancy of the left-hand side in (1) at this value of � ): 
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� � � � � � � � ���� � �
�

�
�

�
� �

�
�
�

�
� �

�
� �

�
�
�

� �
�

�
�

� �
� ���� 2 1

1
12

1
2 1

1
12

1
2 1

1
1 ˆˆˆˆˆ MeMeMM dx

d
b

dx
d

b

dx
d  

� �Me
b
��

�
�
�

�
� 2

1

. (11) 
Applying (10) to the left-hand side in (11), expanding the first-order approximation and using 
(3): 

� � � � � � � � � �� � � � � � � �� �MMMMeMMMMeMeM b
dx
dbb ��
���
�� ��� ˆˆˆˆˆ 2����� � . (12) 

Equating this to the right-hand side in (11), resolving for M̂ , substituting 8.0* ����  and 
using (9), the change in the mode may, finally, be derived: 

� � � � � � bMSDM
M
bM

M
eMM

b

�
�
�
�


�
�


�
�

1.1
2

11ˆ
2

1

���

�
. (13) 

From (11) and (9), we may also infer the effect on the mortality compression above the mode: 

� � � � � � � � � �
�
�
�
�



�
�
�

�
�


�
�
 �
�

MSDbMSDbMSDeMDS
b

17.01
2
11ˆˆ 2

1

�
��

�

. (14) 

Hence, proportionate mortality decline increases the mode and results in mortality 
decompression above the mode; 1% proportionate mortality decline would be accompanied 
by 0.17% decompression and shift the mode by about 1.1% of � �
MSD . 

  
As readily seen from Table 1, however, proportionate decline of mortality does not 

describe well mortality change in period life tables, where mortality decline was accompanied 
by compression of deaths above the mode. Unlike in the simplistic model above, data show 
mortality decline varying with age, which may be described by a more realistic model where 
the small parameter b  of mortality change is age-specific: 

� � � � � �xex xb �� ��ˆ . (15) 
Typically, the speed of mortality change is higher at younger adult ages than at older ages, i.e. 

� �
dx

xdb  and � �xb  are of opposite sign around the mode. 

Using scenario (15), one may derive from (1), (9), at 8.0* ���� , the following first-
order approximations (detailed derivations may be found in the Appendix): 

� �
� �

� �
� � ��

�
�


�
M
M

M
MbMM dx

db

22
1

2
1ˆ

����
 

� � � � � � � �� �MMSDMbMSDM dx
db�
�

� 5.11.1 . (16) 

 

� � � � � � � �
� � ���

�



��
�

�
�



�
�



�

M
MMbMSDMDS dx

db

���
�

2
1

2
11ˆˆ  

� � � � � � � �� �MMSDMbMSD dx
db�



� 1.117.01 . (17) 

Given opposite signs of � �
dx

xdb  and � �xb , (16) will produce larger shifts of the modal age as 

compared to the proportionate mortality change case (13). The standard deviation (17) may 
also look very different from (14) showing decompression or compression of deaths 
depending on the balance between the summands of opposite sign in (17). Based on HMD 
data for low mortality countries since 1980, we estimate � � 016.0�Mb  with age derivative 

� � 00087.0��Mbdx
d  (averaged over the entire period and both sexes). Substituting these 

estimates into (16), (17) and assuming, roughly, � � 7�
MSD  years, yields the mode’s shift 
of 0.2 years per year and mortality compression by about 0.4% per year. This is fairly 



 7 

consistent with data showing 0.2 years per year increase of the mode and 0.7% annual 
compression of mortality above the mode.  

 
  

5.3. Modal Age at Death and Mortality Compression in Birth Cohorts 
 
A particularly important application of the relations presented is to study the mode and 
mortality compression above the mode in birth cohorts. Involving mortality rates over only a 
few years of life of the cohort around the mode, the relations do away with the main obstacle 
(incomplete observation of cohorts’ life history) which has so far prevented the study of 
recent developments of mortality compression in birth cohorts.  

 
Simultaneously, the above equations ascertain that cohort mortality schedules will 

demonstrate mortality compression effects different from the results reported for period life 
tables when the modal age changes over time. While the force of mortality � �x�  is similar 
from period and cohort perspectives, the left-hand side in (1) is different in period mortality 
schedules as compared to cohorts reaching the given age x  in the given period. This is 
because of the tempo effect: with increasing age at a certain mortality level, period life tables 
report shorter exposure durations to small ranges of the mortality rate around the given level 
(i.e. a steeper increase of the mortality rate and higher derivatives in the left-hand side of (1)); 
vice versa for decreasing age at the given mortality level (Ediev 2008, 2011). It therefore 
follows for the mortality decreasing with time:  

 
(i) the period modal age � �tM p  at a given period t  will be systematically higher than the 

cohort modal age � �� �tMtM pc �  for the cohort aged � �tM p  in the given period; 
(ii) with the modal age in the cohort � �tMt p�  being younger than � �tM p , Eq. (1) will 

balance at a lower mortality rate and deaths will be less compressed as compared to 
period t ; 

(iii)deaths will also be less compressed in the cohort, which will have the same modal age at 
death � �tM p  as in the period t , because Eq. (1), being fulfilled for the cohort at age 

� �tM p  at some moment tt ��  in the future, will balance at a lower (due to decreasing 
mortality) force of mortality. 

 
Numerical results in Table 2, produced in the same format as Table 1 above, illustrate 

these points. Before 1900, when mortality decline was rather small and the tempo-effect was 
minor, both cohorts and period life tables showed similar modes and compression indicators. 
In the period that followed, mortality decline gained momentum and the tempo effect became 
sizable. Period cross-sections indicated rapid increase of the modal age at death accompanied 
by the mortality compression above it, while birth cohorts showed systematically lower mode 
and less compression. For males, despite overall mortality decline since 1900, there was 
rather a de-compression of deaths above the mode.  
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Table 2. Modal age at death and standard deviation of age at death above the mode in cohort 
life tables averaged over currently low-mortality countries in selected periods, years. Numbers 
in the parentheses indicate inter-country standard deviation of an indicator. 

Period when the mode is reached Before 
1900 1900-1945 1946-1979 1980 and 

later 
Females:     

Modal age at death 74.3 (2.7) 77.1 (2.4) 80.7 (1.8) 84.3 (1.9) 
SD(M+), direct estimate 8.6 (0.8) 8.1 (0.9) 7.8 (0.7) n.a. 
SD(M+), approximated from Eq. (9) 8.4 (1.1) 8.0 (1.2) 7.9 (0.9) 7.3 (0.8) 

Mean absolute error of Eq. (9) 0.4 0.4 0.3  
Mean absolute percentage error of 

Eq. (9) 
4.9% 4.8% 3.5%  

Males:     
Modal age at death 73.1 (2.8) 75.6 (2.7) 76.8 (2.1) 77.7 (1.7) 
SD(M+), direct estimate 8.7 (0.9) 8.2 (0.9) 8.5 (0.9) n.a. 
SD(M+), approximated from Eq. (9) 8.7 (1.4) 8.1 (1.3) 8.5 (1.0) 9.1 (0.9) 

Mean absolute error of Eq. (9) 0.4 0.4 0.2  
Mean absolute percentage error of 

Eq. (9) 
4.8% 5.1% 2.8%  

Data source: Human Mortality Database (2011) cohort mortality rates for currently low-
mortality countries/territories  (Australia, Austria, Belgium, Canada, Denmark, Finland, 
France, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, 
Switzerland, Taiwan, USA, UK, West Germany) 
 

One can assess cohort-period differentials in mortality compression analytically. 
Differentiating the mortality rate at the period modal age by time and using (3) yields: 

� �� � � �� � � � � �� � � �� � � � � �� �� �ttMrtMttMttMtMttMttM ppdt
d

pxptpdt
d

pxpdt
d ,,,,, ��
� �

�
�
�

�
� ����  

� �� � � � � �� �� �ttMrtMttM ppdt
d

p ,,2 �� � , (18) 

where � �� � � �� �
� �� �ttM

ttM
ttMr

px

pt
def

p ,
,

,
�
�

�
�

�
�

��   is the tangent slope at time t of the contour line 

corresponding to the mortality level � �� �ttM p ,�� �  (the change rate of the age at which 
mortality level is fixed at � �� �ttM p ,�� � ); this particular rate determines the tempo effect in 
that the period life tables report exposures to small ranges of the mortality rate compressed by 

r�1
1  times as compared to the cohort exposures around the mode (Ediev 2008, 2011). 

Resolving (18) for � �� �ttMr p , , 

� �� � � � � �� �ttMtMttMr pdt
d

pdt
d

p ,, 1�
� �  (19) 
Hence, the cohort-wise derivative in (4) will be � �� ��� r1  times the period-wise derivative, and 
relation (1) will be balanced for cohorts at mortality rate by about  

� �
� � rrr
M
M

p

c 83.01
2

11 *
2 *

��
�

���� �

��
� �  (20) 

times the balancing rate for period life tables (mind the choice 8.0* �� , which makes the 
left-hand side in (1) approximately constant around the mode). Consequently, the cohort 
distribution of age at natural death shall be r83.01

1
�  times less compressed as compared to the 

period distribution. Since the magnitude of the difference in compression will vary depending 
on the speed of mortality decline, periods and cohorts may show different trends of the 
mortality compression.  
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As an empirical illustration, consider the mortality data for France in the years 1977, 
2007 and cohorts born in 1886 and 1916 (HMD 2010). For females, the period modal age at 
adult death has increased in the period of 30 years from about 84.7 to 90.4 years and the 
mortality rate at the mode (changed from about 110 to 125 per 1,000) indicates a mortality 
compression (also note, from Eq. (19), 15.030

110.0125.07.844.90 11 �� �� �
�r  years per year). The 
cohort modal age changed from about 82.3 to 89.0 and mortality rates at the cohort modal age 
at death (changed from about 99 to 114 per 1,000) were by about r83.01�  times lower than 
the period rates but also indicate a compression. For males, the period modal age increased 
from about 78.2 to 86.2 years and the mortality rate at the period mode (increased from 87 to 
112 per 1,000) indicates mortality compression ( 18.030

087.0112.02.782.86 11 �� �� �
�r  years per year). 
Males’ cohort modal age at death has also increased (77.0 to 82.2 years) but the mortality rate 
at the mode (90 per 1,000 in both cohorts) was about r83.01�  times lower than the 
corresponding period rate only in the more recent life table and indicated no considerable 
compression. (The tempo effect did not result in the difference between cohort and period 
rates for the earlier life tables, because the decline of males’ mortality rates around the mode 
started later.) 
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Appendix: Derivation of First-Order Approximations (16), (17) 

 
Substituting Eq. (15) into (1) at the new mode yields, at *�� � : 
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/expanding the Taylor series and parentheses and dropping second-order summands/ 
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Applying (15) and expanding the first-order approximation to the left-hand side in 

(A1) and using (3): 
� � � � � � � � � � � � � �� ����
�� �� MMMMeMeM dx

dMbMb ˆˆˆˆ ˆ ����  
� � � � � � � �� ����
� � MMMMe Mb ˆ2��  

� �� � � � � � � �� � � � � � � � � �� �MMMMbMMMMMMb ��
����
�� ˆ1ˆ1 2 ���� . (A2) 
 

Equating this expression to the right-hand side in (A1), resolving for M̂ , substituting 
8.0* ����  and using (9) yields Eq. (16).  

Eq. (17) follows directly from (A1) and (9). 
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