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Abstract

This paper estimates the effect of graduating from college on lifetime earnings. Motivated by
the fact that nearly half of all college students fail to earn a bachelor’s degree, we study a
model of risky college completion. The central idea is that students drop out of college mainly
because they fail to complete the requirements for earning a degree. This introduces two
levels of ability selection that reinforce each other. (i) In college, low ability students typically
do not succeed academically and drop out. (ii) At the college entry stage, their poor
graduation prospects deter low ability students from even attempting college. Taken together,
the two levels of selection generate a large ability gap between college graduates and high
school graduates. We calibrate the model to data for men born around 1960 and find that
ability selection accounts for nearly half of the college lifetime earnings premium.
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1 Introduction

A large literature has investigated the causal effect of schooling on earnings.! In U.S. data,
college graduates earn substantially more than high school graduates. However, part of
this differential may be due to selection as students with superior abilities or preparation
are more likely to graduate from college. While various approaches have been proposed to

control for selection, no consensus has been reached about its importance.

In this paper, we offer a new approach which emphasizes the importance of college comple-
tion risk. The idea is that not all students are able to complete the coursework required
for graduation, so that college completion is uncertain. Selection therefore occurs at two
levels: (i) Recognizing that they are unlikely to graduate, students of lower abilities are
less likely to attempt college. (ii) Those low ability students who attempt college likely fail
to graduate. We show that the interaction between these two levels of selection generates
large ability gaps between high school graduates and college graduates and accounts for our
main finding: roughly half of the lifetime earnings gap between college graduates and high

school graduates is due to selection.

Our emphasis on college completion risk is motivated by the following observations.?

1. Over their lifetimes, college graduates earn about $400,000 more than high school

graduates, suggesting that the return to completing college may be large.

2. College dropouts earn only about $70,000 more than high school graduates, suggesting

that the return to college accrues mainly to those who attain a degree.?

3. Even so, nearly half of those who start college fail to attain a degree, suggesting that
dropout risk may be important for understanding the incentives for attending college
(Bound, Lovenheim, and Turner, 2010).

4. College graduates have substantially higher cognitive test scores than do high school
graduates, suggesting that ability differences may be important for college completion

and for the college earnings premium.

! For a recent survey, see Oreopoulos and Petronijevic (2013).
2 The observations are derived from NSLY79 data that are described in Section 3 and Appendix B. All
dollar figures are in year 2000 prices.

3 For evidence on sheepskin effects, see Jaeger and Page (1996).



We interpret dropping out of college as resulting mainly from a student’s inability to com-
plete the course work required for graduation. Based on High School & Beyond (HS&B)
transcript data, we show that college dropouts earn one-third fewer credits in each year
of college compared with college graduates (see Section 3). After four years in college,
dropouts are still far from having completed the roughly 120 credits required for gradu-
ation. College dropouts also earn substantially poorer grades than do college graduates.
How rapidly a student accumulates college credits plays a central role for dropout decisions

in our model.

Our interpretation of dropping out as a failure is supported by other evidence. Pryor,
Hurtado, Saenz, and Santos (2007) report that 98% of all freshmen entering colleges or
universities plan to earn at least a bachelor’s degree. Of course, far fewer attain this
goal. Stinebrickner and Stinebrickner (2003) emphasize the importance of college grades
for dropout decisions. Bound and Turner (2011) emphasize the role of college preparation

for college completion.

Our notion of college completion risk differs from that of Keane and Wolpin (1997) and
others following their approach.* In these models, all students can attain college degrees
in a reasonable amount of time. Some students are exposed to shocks, such as wage offers,
as they progress through college and therefore choose to forego the college wage premium.
In our model, dropping out of college is largely the result of poor “grades” which signal low
abilities and convince the students that completing college would be prohibitively expensive.
This induces a stronger correlation between dropout behavior and abilities than in Keane

and Wolpin style models.

Approach: Our paper unfolds as follows. In Section 2, we propose a model of college
choice with ability heterogeneity and dropout risk. At high school graduation, agents are
endowed with abilities that affect their chances of attaining college degrees and also their
labor earnings. Following Manski and Wise (1983) and Manski (1989), we assume that
students only observe noisy signals of their abilities. While in college, students take courses
which add to their human capital. The probability of successfully completing a course de-
pends on the student’s ability (as in Garriga and Keightley 2007). As they progress through

college, students gradually learn their abilities. Low ability students realize that graduat-

4 Examples include Belzil and Hansen (2002), Keane and Wolpin (2001), Stange (2012) and Arcidiacono,
Aucejo, Maurel, and Ransom (2012).



ing from college would take a long time and choose to drop out. After completing their
education, individuals work until retirement. Their earnings depend on their educational

attainment and ability.

In Section 3, we calibrate the model for men born around 1960. Our main data sources are
the NLSY79, which provides us with schooling, cognitive test scores, and partial earnings

histories, and High School & Beyond, from which we take transcript and financial variables.

Findings: We report our findings in Section 4. Our model implies that ability selection is
important. We measure its contribution as the fraction of the lifetime earnings gap between
college graduates and high school graduates that would remain, if both groups worked as

high school graduates. In the main specification, this fraction is 48%.

To understand the intuition behind this result, it helps to contrast our model with the Roy
model commonly used in the literature (e.g., Heckman, Lochner, and Taber 1998; Cunha,
Heckman, and Navarro 2005). In the Roy model, students of any ability can graduate
from college with certainty. In the simplest specification, the percentage wage gain from
attending college is the same for all persons. The reason why high ability students are
more likely to attend college is then that the absolute gain in lifetime earnings is increasing
in ability. Therefore, any fixed costs associated with attending college (tuition or psychic

costs) are less important for high ability students.

This type of selection is present in our model. However, with dropout risk, selection occurs
at two additional levels. At college entry, low ability students are deterred by their bleak
graduation prospects. While in college, low ability students fail to accumulate the number
of credits needed to graduate and are forced to drop out. This implies a large ability gap
between college graduates and high school graduates and therefore a large contribution of

selection to the college premium.

We highlight a number of additional findings:

1. College graduation prospects and the earnings gains associated with entering college
vary strongly with ability. The probability of graduating from college varies from 20%
in the lowest ability decile to 89% in the highest. The inability to attain a degree is

the main friction that prevents low ability students from entering college.

2. As a result, low ability students mainly view college as a consumption good. Their

college entry decisions are quite sensitive to the direct costs of college. This feature al-



lows our model to account for the large effects of tuition changes on college enrollment

estimated in the literature (see Section 5.1).

3. By contrast, high ability students view college mainly as an investment. Since they
expect to graduate, their college entry decisions respond strongly to the wages earned

by college graduates, but not to tuition changes.

4. Even though few students in our model, and in NLSY79 data, are close to their
borrowing limits, relaxing these limits has important effects on college enrollment
(Section 5.2). The reason is the option value of entering college. Some students lack
the financial resources required for graduating from college. Since a large part of the
return to college depends on graduation, these students either do not attempt college,
or they enter college planning to drop out after a few semesters. Increased borrowing
opportunities allow these students to attend college for several years without suffering
very low consumption. If they earn fewer college credits than expected, they update
their beliefs about their graduation prospects and drop out, incurring at most a small

financial loss.

5. Dual enrollment programs allow high school students to take college level courses in
order to provide them with better information about their college aptitudes. Our

model implies that such programs have little effect on college entry decisions.

1.1 Related Literature

This paper relates to a vast literature that estimates returns to schooling. One strand of
this literature uses econometric approaches, such as instrumental variables, to control for
selection bias in wage regressions.” These efforts abstract from degrees and treat schooling
as a continuous variable and are therefore silent about the college premium and completion

risk.

A more recent literature has developed structural discrete choice models of schooling deci-

sions. A large share of this is based on Roy models which abstract from college completion

® A seminal contribution is Willis and Rosen (1979). Card (1999) surveys this literature and discusses how

its findings may be interpreted.



risk.%

Models with college completion risk have, for the most part, abstracted from heterogeneity
in abilities that directly affect earnings. Examples include Altonji (1993), Caucutt and
Kumar (2003), Akyol and Athreya (2005), Garriga and Keightley (2007), Chatterjee and
Tonescu (2010), and Stange (2012).” These models cannot address the question how ability

selection affects measured college wage premiums.

A number of recent papers feature both ability heterogeneity and college completion risk.
As discussed earlier, we depart from models that build on Keane and Wolpin (1997) in the
way we model academic achievement in college. We follow Garriga and Keightley (2007)
in assuming that students need to earn college credits in order to graduate. A similar
approach is taken by Eckstein and Wolpin (1999) who study high school dropouts, and
by Trachter (2012) who studies the role of 2-year colleges as stepping stones towards a
bachelor’s degree. Relative to Trachter’s study, our model features a richer specification
of unobserved heterogeneity, which is important for estimating ability selection. We also
calibrate our model using a richer set of empirical observations, in particular regarding
the relationship between measured abilities, college outcomes, and earnings. In work in
progress, Heckman and Urzua (2008) study a model of risky college completion where

students learn about their abilities and schooling preferences.

2 The Model

2.1 Model Outline

We study a partial equilibrium model of school choice. We follow a single cohort, starting at
the date of high school graduation (¢t = 1), through college (if chosen), work, and retirement.
When entering the model, each high school graduate goes through the following steps:

1. He draws a type j € {1, ..., J} which determines his initial assets k; = l%j, his ability

signal m = 7, and a net price of attending college g = ¢;.

6 Examples include Heckman, Lochner, and Taber (1998), Cunha, Heckman, and Navarro (2005), and
Navarro (2008).
" It is possible to interpret some of the psychic costs in Stange’s model as variation in returns to college.

However, his model cannot quantify the contribution of ability selection to measured wage premiums.



2. He draws an ability a that is not observed until the agent starts working. More able
agents are more likely to graduate from college and earn higher wages in the labor

market.
3. The student commits to a consumption level ¢; ; that remains fixed throughout college.

4. The student chooses between attempting college or working as a high school graduate
(s=HS).

An agent who studies in period ¢ faces the following choices:

1. He consumes ¢; ;, pays the college cost ¢;, and saves (or borrows) ki1 = Rk —c¢; j— ;.

2. He attempts n. college credits and succeeds in a random subset, which yields 7.

More able students accumulate credits faster, as in Garriga and Keightley (2007).

3. Based on the information contained in the number of credits earned, the student

updates his beliefs about a.

4. If the student has earned enough credits for graduation (1,11 > ngrqq), he must work
in £+ 1 as a college graduate (s = CG). If the student has exhausted the maximum
number of years of study (¢t = T.), he must work in ¢+1 as a college dropout (s = CD).
Otherwise, he chooses between staying in college and working in ¢ 4+ 1 as a college

dropout.

An agent who enters the labor market in period ¢ learns his ability a. He then chooses a
consumption path to maximize lifetime utility, subject to a lifetime budget constraint that
equates the present value of income to the present value of consumption spending. Agents

are not allowed to return to school after they start working.

The details are described next. We motivate our assumptions in Section 2.6.

2.2 Endowments

Agents enter the model at high school graduation (age ¢t = 1) and live until age 7. At age

1, a person is endowed with

1. ny = 0 completed college credits;



2. learning ability a € {ay, ..., ay, } with a; = 0 and a;; > aj;
3. type j €{1,...,J}.

a determines the person’s productivity in school and at work. Normalizing the lowest ability
level to zero simplifies the notation without loss of generality. Abilities are not observed by

the agents until they start working. A person of type j is endowed with the following:

1. A noisy signal 7 of the individual’s true ability level a.

2. A net price of attending college ¢;. We think of this as capturing tuition, scholarships,

grants, and other costs or payoffs associated with attending college.

3. Initial assets l%j > 0. We think of these as capturing financial assets and parental

transfers that are received regardless of whether the person attends college.

The distribution of endowments is specified in Section 3.

2.3 Work

We now describe the solution of the household problem, starting with the last phase of
the household’s life, work. Consider a person who starts working at age 7 with assets k.,
ability a, n, college credits, and schooling level s € {HS,CD,CG}. The worker chooses a

consumption path {¢;} for the remaining periods of his life (¢t = 7,...,T) to solve

V(k;,n,,a,s,7) = max =Ty 1
( o 2/3 )

subject to the budget constraint

T
exp (¢psa + pn, +ys) + Rk, = Z R (2)

t=1

Workers derive period utility w(¢;) = In(¢;) from consumption, discounted at § > 0. U,
captures the utility derived from job characteristics associated with school level s that is
common to all agents. The budget constraint equates the present value of consumption
spending to lifetime earnings, exp (¢sa + un, + ys), plus the value of assets owned at age

7. R is the gross interest rate. y, and ¢ > 0 are schooling-specific constants.



Lifetime earnings are a function of ability a, schooling s and accumulated credits n,. A
worker with ability a = a; = 0 and no completed college credits earns exp (ys). Each
completed college credit increases lifetime earnings by i > 0 log points. This may reflect
human capital accumulation. We impose yop = ygs and ¢cp = ¢gs to ensure that
attending college for a single period without earning credits does not increase earnings

simply by placing a “college” label on the worker.

Our formulation allows for the effect of ability on lifetime earnings (¢s) to depend on
schooling. If ¢cg > ¢png, ability and schooling are complements: A high ability person
gains more from obtaining a college degree than a low ability person. One possible reason
is that high ability persons accumulate more human capital in college or on the job, as
suggested by Ben-Porath (1967).%

Even though y, does not depend on 7, staying in school longer reduces the present value
of lifetime earnings by delaying entry into the labor market. Note that all high school
graduates share 7 = 1 and n, = 0, but there is variation in both 7 and n, among college

dropouts and college graduates.

Before the start of work, individuals are uncertain about their abilities. Expected utility is
then given by

Na

VW(kT7 nT)j? S, T) = Z Pr(&i|n77ja T)V(km Nr, dia S, 7—)‘ (3)

=1

Our model of credit accumulation implies that the vector (n,,j,7) is a sufficient statistic
for the worker’s beliefs about his ability, Pr(a;|n., j, 7), which implies that (k,,n,,j, s, 7) is

the correct state vector.

2.4 College

Consider an individual of type 7 who has decided to study in period ¢. He enters the period
with assets k; and n; college credits. In each period, the student attempts n. credits and
completes each with probability Pr. (a) given by the logistic function

Ymaz — VYmin
i —— (4)

P c = "Ymin .
' (Cl) '7 t ]_—l—fyle_’YQa

8 High ability students also tend to favor more lucrative majors while in college (Arcidiacono, 2004).



We assume 7,0, = 0.98 > v, and 1,72 > 0, so that the probability of earning credits
increases with the student’s ability. Based on the number of completed credits, n;.1, the
student updates his beliefs about a. Since n; is drawn from the Binomial distribution, it is
a sufficient statistic for the student’s entire history of course outcomes. It follows that his

beliefs about a at the end of period ¢ are completely determined by n; and j.

We assume that students commit to a constant consumption level for their entire college
careers. We postpone the discussion of consumption choice for now and take consumption

as fixed at ¢; ;. While in college, assets evolve according to the budget constraint
kt—i—l = Rk, — Cij — ij' (5)

The student earns gross interest R on his assets (or debts), pays tuition ¢; and consumes
¢; ;. Since all students of type (7, j) have the same initial assets lch and expenditures ¢; ; +¢;,
they also share the same asset levels in subsequent periods, which we denote by k; ;;. The

flow utility of consumption is given by wu(c; ;).

The value of being in college at age t is then given by
VC(n7i7jat)_ CZ,] +BZPT |n .]7 VEC(”,Z,],t“—l) (6)

where Pr (n/|n, j, t) denotes the probability of having earned n’ credits at the end of period
t. This is computed using Bayes’ rule from the students’ beliefs about a. Since assets
(or debts) are a function of (7,j,t), they are not state variables. Vgc denotes the value
of entering period t before the decision whether to work or study has been made. It is

determined by the discrete choice problem
VEC’ (nv i?j) t) = maXx {VC (na i?j) t) + TPe, VW (ki7j,ta n, j) S (TL) 7t) + 7pr} - 7T’77 (7)

where p. and p,, are independent draws from standard type I extreme value distributions
with scale parameter m > 0. 74 is the Euler-Mascheroni constant, which is the mean of
the standard type I extreme value distribution. Subtracting 77 effectively sets the means
of p. and p,, to —7, which simplifies the value functions. s(n) denotes the schooling level

associated with n college credits (CG if n > ng,qq and CD otherwise).

The implied choice probabilities are given by

exp (Ve (n,1,7,t) /) (8)

Pr(stud 1. 1) =
rstudyln. i3 1) = o Ve (37, 0) /) + exp (Vi (hogas 1725 (1) D) /)

10



and the associated value function is?

Vec(n,i,j,t) = mln (exp (Vo (n, 4, 4, t) /7) + exp (Vv (ki ji,n, j, s (n),t) /7)) . 9)

In evaluating Vge three cases can arise:

1. If n > ngreq, then s (n) = CG and Vo = —oo: the agent graduates from college with

continuation value Viy (k; j+,n, j, CG,t).

2. Ift = T, and n < ngraqg, then s(n) = CD and Vo = —oo: the student has ex-
hausted the permitted time in college and must drop out with continuation value
Vv (ki,j,ta n,j,CD,t).

3. Otherwise the agent chooses between working as a college dropout with s (n) = CD

and studying next period.

2.5 Choices at High School Graduation

At high school graduation (¢ = 1), each student makes 2 choices: (i) whether to attempt

college or work as a high school graduate and (ii) how much to consume in college.

Consumption choice. Before deciding whether to enter college, the student commits to
a consumption level that remains fixed throughout college. Consumption is chosen from a
discrete set of values ¢; ; that are indexed by ¢ = 1, ..., N, and vary by type j. Consumption
choice maximizes lifetime utility subject to N. independent preference shocks p;, drawn

from a standard type I extreme value distribution with scale parameter 7. > 0:
i = argmax {Ve (0,0,5,1) +m(p; = 9)} (10)

Subtracting 7 effectively sets the means of the preference shocks to —%, which simplifies

the value functions. The implied choice probabilities are given by
€xp (VC(07 ia j? 1)/7TC)
SN exp (Ve(0,4,,1)/m.)

The main purpose of the preference shocks is to ensure that the objective function minimized

Pr (ilj) = (11)

by the calibration algorithm is smooth in the parameter values. The assumption that

9 See Rust (1987) and Arcidiacono and Ellickson (2011).
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consumption remains fixed while a student attends college drastically simplifies the model

computation.!”

In the calibration, we set N, = T, and fix ¢;; such that a type (i, )
student exactly exhausts his borrowing limits after ¢ periods in college. The motivation is
that marginal utility is discontinuous at these points, so that students would choose these

consumption levels with positive probability, even if consumption were continuous.

College entry decision. The college/work decision is made after consumption has been

chosen. The agent solves
max {VC'(()a i)ja 1) + TPe, VWU%ja Oaja HS7 1) + pr} - W;)@ (12)

where p. and p, are two independent draws from a standard type I extreme value dis-

tribution with scale parameter m > 0. The probability of starting college is then given

by
eXp(VC(O> ia j? 1)/7T>

exp(Vo(0,4,5,1)/7) + exp (Vi (1,0, j, HS, 1) /7).

Pr (collegeli, j) = (13)

2.6 Discussion of Model Assumptions

Our model assumptions attempt to capture key features that may be important for the

main issues we wish to investigate: ability selection and the risk of dropping out of college.

We model dropping out of college as a choice. Similar to Garriga and Keightley (2007),
students drop out if they receive poor “grades,” which imply that graduating from college
would take longer than previously expected. While we do not model this explicitly, we
can think of the probability of completing a credit as a function of study effort, which is
maximized out in the specification of Pr.(a). Relative to the simpler alternative where
dropping out is a shock (as in Caucutt and Kumar 2003 or Akyol and Athreya 2005), our
approach has the benefit that we can use data on the characteristics and the timing of
dropouts to help identify the frictions that prevent students from earning a degree, such
as borrowing constraints or uncertainty about students’ learning abilities. Relative to the
literature that treats dropping out as an ex ante decision, we capture how the risk of failure

affects the ex ante rate of return of college for students of various characteristics.

10Tf consumption were chosen in each period, the household problem would gain a state variable (k;). Due
to the borrowing constraints, the marginal value of k;y; is not continuous, so that first-order conditions

could not be used to find the optimal consumption level.

12



Manski (1989) argues that learning about ability may explain why many students drop out
of college. Stinebrickner and Stinebrickner (2012) present survey evidence suggesting that
learning about ability is important for college dropout decisions at Berea College. The
evidence presented by Arcidiacono, Bayer, and Hizmo (2008) suggests that college histories
reveal individual abilities to the labor market. We wish to investigate the quantitative
importance of this explanation. We therefore allow for the possibility that students observe

only a noisy signal of their abilities.

We incorporate heterogeneity in financial assets and in the net cost of attending college
to capture the role of borrowing constraints for college selection. Whether borrowing con-
straints are important remains controversial in the literature (see Cameron and Taber 2004,
Belley and Lochner 2007, among others). In our model, the vast majority of students have
access to sufficient funds to pay for college tuition. However, some are subject to soft

borrowing constraints which limit the amount of consumption they can afford in college.

The work-study decisions of model agents are subject to preference shocks which are similar
to the “psychic costs” commonly found in models of school choice (see Heckman, Lochner,
and Todd 2006 for a discussion). The main purpose of the preference shock affecting the
college entry decision is to regulate the association between agents’ types and school choices.
Without preference shocks, school sorting would be perfect in the sense that all agents of
a given type j would make the same college entry decision. This would bias our results
in favor of large ability selection (see Hendricks and Schoellman 2011). The preference
shocks affecting the college dropout decision mainly improve the model’s ability to account
for the timing of dropout decisions and for the dropout rates of high ability students. In
Appendix D we show that our main result is robust against variation in the dispersion of

the preference shocks.

3 Calibration

We calibrate the model parameters to data match moments for men born around 1960. The

model period is one year. Our main data sources are the National Longitudinal Surveys
(NLSY79) and High School & Beyond (HS&B).

The NLSY79 is a representative, ongoing sample of persons born between 1957 and 1964
(Bureau of Labor Statistics; US Department of Labor, 2002). We collect education, earnings

13



and cognitive test scores for all men. We include members of the supplemental samples,
but use weights to offset the oversampling of minorities. We use data from the Current
Population Surveys (King, Ruggles, Alexander, Flood, Genadek, Schroeder, Trampe, and
Vick, 2010) to impute the earnings of older workers. Appendices A and B provide additional
details.

HS&B is published by the National Center for Educational Statistics (NCES). It covers
1980 high school sophomores. Participants were interviewed bi-annually until 1986. In
1992, postsecondary transcripts from all institutions attended since high school graduation
were collected. We retain all men who report sufficient information to determine when
they attended college and whether a degree was earned. HS&B also contains information
on college tuition, financial resources, parental transfers, and student debt. Appendix C

provides additional details.

3.1 Distributional Assumptions

Our distributional assumptions allow us to model substantial heterogeneity in assets, ability
signals, and college costs in a parsimonious way. We set the number of types to J = 120.
Each type has mass 1/J. We assume that the <1n (l%) G mj> endowments of the J
types are drawn from a joint Normal distribution. The marginal distributions are: l;:j ~
N (pg,038), G; ~ N (,uq,og), and m ~ N(0,1). The log-Normal distribution of l%j enables
the model to capture the fact that its empirical counterpart features a decreasing density

with a large mass near zero.

We implement this by drawing three independent standard Normal random vectors of length

J: €k, €¢, and €,,. Next, we set k; = py, + opep j, where €y ; is the 5t element of &;,. We set

A Qg k€E.itEG. 7 . ~ « e E€q.itEmM. i
4j = g + 0= 5%0 - Finally, we set my; = —2t—matipd  The o parameters govern
ag g+l (O‘gn,k"'a%n,q"'l)

the correlations of the endowments. The numerators scale the distributions to match the

desired standard deviations.

The ability grid a; approximates a Normal distribution with mean a and variance 1. We
set the number of grid points to N, = 9. Each grid point has the same probability,
Pr(a;) = 1/N,. We think of grid point i as containing all continuous abilities in the set
Q, = {a : % <P(a—a)< NLQ} where @ is the standard Normal cdf. We therefore set
a; = E{ala € Q;}. We model the joint distribution of abilities and signals as a discrete
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approximation of a joint Normal distribution given by

Qg mM + &,

a=a ,
(a2, +1)"”

(14)
where ¢, ~ N(0,1). The denominator ensures that the unconditional distribution of a has
a unit variance. We set Pr(a;|j) = Pr(a € €;|m =m;). For notational convenience, we
normalize a such that a; = 0. For computational efficiency, we draw all Normal random

variables using Halton quasi random numbers.

3.2 Mapping of Model and Data Objects

We discuss how we conceptually map model objects into data objects. Variables with-
out observable counterparts include abilities, ability signals, consumption, and preference
shocks. We use the Consumer Price Index (all wage earners, all items, U.S. city average)

reported by the Bureau of Labor Statistics to convert dollar figures into year 2000 prices.

Schooling. We count a student as attending college if he attempts at least 9 non-
vocational credits in a given year.!! In NELS:88 data, 70% of community college entrants
intend to attain a 4-year college degree (Bound, Lovenheim, and Turner, 2010). We there-
fore classify persons who ever attended college without attaining a 4-year degree as college
dropouts. In our HS&B data, only 10% of these students earn a training certificate or an

associate’s degree.

College credits. We measure n; as the number of completed college credits by the start
of college year t divided by the number of credits taken, assuming a full course load, which
is defined as the number of credits attempted by students who eventually graduate from
college. In the data, college dropouts attempt fewer credits than college graduates. Since
our model abstracts from variation in course loads, we treat taking less than a full course
load as failing the courses that were not taken. This captures the fact that taking fewer

courses slows a student’s progress towards graduation, which is a key element of our model.

HStudents attending vocational schools (e.g., police or beauty academies) are classified as high school

graduates.
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Test scores. For calibration purposes, it is helpful to utilize test scores to proxy for

unobserved abilities. In the calibration, we divide agents into test score quartiles.

In NLSY data, we use the 1989 Armed Forces Qualification Test (AFQT) percentile rank.
The AFQT aggregates a battery of aptitude test scores into a scalar measure. The tests
cover numerical operations, word knowledge, paragraph comprehension, and arithmetic
reasoning (see NLS User Services 1992 for details). We remove age effects by regressing
AFQT scores on the age at which the test was administered (in 1980). We transform the

residual so that it has a standard Normal distribution.!?

Since HS&B lacks AFQT scores, we treat high school GPA quartiles as equivalent to AFQT
quartiles. Borghans, Golsteyn, Heckman, and Humphries (2011) show that high school
GPAs and AFQT scores are highly correlated. Sidestepping the question what cognitive
test scores measure (see Flynn 2009), we use the term “test scores” in the text and the

symbol I in mathematical expressions.

In mapping test scores to the model, we assume that test scores are noisy measures of the
ability signals observed by the agents. This implies that the agents know more about their

abilities than we do. Specifically, we model test scores as signal plus Gaussian noise:

arQmm + €I1Q
(&%Q,m + 1)1/2

with ;g ~ N (0, 1). If m were continuous, the distribution of test scores would be standard

1Q =

(15)

Normal. Since m is restricted to take on values on the grid 72;, only the conditional

distribution /Q|m is Normal.

Financial variables. We interpret college costs ¢ as collecting all college related pay-
ments that are conditional on attending college. In HS&B data, we measure tuition and
fees net of scholarships, grants, and labor earnings.'® We set ¢ equal to the average of

these values over the first two years in college plus $987 for other college expenditures, such

12Some persons take the AFQT after graduating from high school. This raises the concern that the AFQT
partly measures skills learned in college. To address this concern, we experimented with removing age
effects using a separate regression for each school group. This makes little difference.

B Appendix C.2 describes the financial data in detail.
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4

as books, supplies, and transportation.'* ¢ does not include room and board, which are

included in consumption.

We interpret k; as collecting financial resources the student receives regardless of college
attendance. In the data, we measure k; as the student’s financial assets at high school
graduation and any transfers received from his parents in the six years that follow. In
the model we assume that k; is paid out as a lump sum at high school graduation.!> As

students move through college, k; may fall below zero, which we interpret as student debt.

3.3 Fixed Parameters

Table 1 summarizes the values of parameters that are fixed a priori.

1. The discount factor is 5 = 0.98.
2. Based on McGrattan and Prescott (2000), the gross interest rate is set to R = 1.04.

3. The scale of the preference shock that governs consumption choice is set to m. = 0.2.
This value is low enough that most students choose their preferred consumption level,
but high enough that the objective function minimized by the calibration algorithm

is smooth in the parameters.

4. Motivated by the fact that in our HS&B sample 95% of college graduates finish college
by their 6th year (Bowen, Chingos, and McPherson 2009 report a similar finding),
we set the maximum duration of college to T, = 6. The number of credits needed to
graduate is set to ng. = 20. In each year, students attempt n. = 5 credits. This
number is set so that students who pass most of their courses graduate in 4 or 5 years,

which accords with the data.'6

14 Since HS&B lacks information on these expenditures, we compute them as the average cost for 1992-93
undergraduate full-time students in the National Postsecondary Student Aid Study, conducted by the
U.S. Department of Education. These costs are defined as the amount student reported spending on
expenses directly related to attending classes, measured in year 2000 prices.

I5Tf k; is paid out over time, the household problem gains a state variable, which is computationally costly.

16In the data, students typically complete around 130 credits by the time of college graduation. Increasing
the number of model credits would increase the number of ability signals a student receives in each period,

which may affect the rate of learning. It is, however, computationally costly.
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Table 1: Fixed Model Parameters

Parameter Description Value
Preferences

I5; Discount factor 0.98
e Scale of preference shocks at consumption choice 0.20
College

T, Maximum duration of college 6
Ngrad Number of credits required to graduate 20
Ne Number of credits attempted each year )
Emin Borrowing limit -$19,750
Other

R Gross interest rate 1.04

5. Borrowing limits are set to approximate Stafford loans, which are the predominant
form of college debt for the NLSY79 cohorts (see Johnson 2010). Until 1986, students
could borrow $2,500 in each year of college up to a total of $12,500 ($19,750 in
year 2000 prices). We ignore the restriction that loan amounts cannot exceed college

related expenditures and set k., = —$19, 750.

3.4 Calibrated Parameters

The remaining model parameters are jointly calibrated to match the target data moments
summarized in Table 2. We show the data moments in Section 3.5 where we compare our
model with the calibration targets. Appendix D discusses the identification of key model

parameters.

For each candidate set of parameters, the calibration algorithm simulates the life histories of
100, 000 individuals. It constructs model counterparts of the target moments and searches
for the parameter vector that minimizes a weighted sum of squared deviations between

model and data moments.

Table 3 shows the values of the 20 calibrated parameters. We highlight parameters that

are important for our findings.
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Table 2: Calibration Targets

Target Value
Fraction in population, by (test score quartile, schooling) Figure 1
Lifetime earnings, by (test score quartile, schooling) Figure 2
Dropout rate, by (test score quartile, year in college) Figure 3

Fraction of credits passed, by graduation status and year  Table 6

Mean and standard deviation of k; (HS and college) Table 7
Mean and standard deviation of ¢ (college) Table 7
Fraction of students in debt, by year in college Table 8
Mean student debt, by year in college Table 8
Average time to BA degree (years) 4.4

Notes: Schooling and lifetime earnings targets are taken from NLSY79 data. The

remaining targets are taken from HS&B data.

The first section of the table reports parameters governing the joint distribution of initial
endowments. Table 4 shows the implied endowment correlations. Abilities and signals
are highly correlated. Still, high school graduates face substantial uncertainty about their
~1/2

= 0.32,

compared with an unconditional standard deviation of 1. This feature helps the model

abilities. From (14), the standard deviation of a conditional on m is (a2, + 1)

account for the timing of college dropouts (see Appendix D).

High ability students not only enjoy larger wage gains from attending college, they also
have more assets and face lower college costs. This allows the model to capture the empir-
ical findings that average college costs among college students are very close to zero and
negatively correlated with high school GPAs (see Table 7).17

The middle section of Table 3 reports the parameters that govern lifetime earnings. The
effective dispersion of abilities is governed by ¢,. A one standard deviation increase in ability
raises lifetime earnings by 0.15 for high school graduates and by 0.19 college graduates.
These values are similar to the ones estimated by Hendricks and Schoellman (2011). The

sensitivity analysis in Appendix D shows that larger values of ¢, are associated with a

17This is consistent with Bowen, Chingos, and McPherson (2009) who report that average tuition payments

for public 4-year colleges roughly equal average scholarships and grants.

19



Table 3: Calibrated Parameters

Parameter Description Value
Endowments

ks O Marginal distribution of In(k;) 0.41,1.17
fqs O Marginal distribution of ¢ 3.01,5.81

Am ky OUm gy Ag ks Vams XIQ,m

Endowment correlations

0.23,—0.11, —0.44,2.97, 1.78

Lifetime earnings

OHS, Poa Effect of ability on lifetime earnings 0.153,0.194
YHS, Yoo Lifetime earnings factors 3.90,3.91
W Earnings gain for each college credit 0.014
Other parameters

s Scale of preference shocks 0.767
Ucp,Uca Preference for job type s —1.11,—-2.98
Y15 Y25 Ymin Probability of passing a course 0.68,7.89,0.42

Table 4: Correlation of Endowments

1Q) a m q
1¢Q  1.00
a 0.77 1.00
m  0.78 0.90 1.00
q -0.14 -0.16 -0.12 1.00
K 0.15 0.17 0.19 -0.34
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larger contribution of ability selection to the measured college premium.

A college degree makes two contributions to lifetime earnings. (i) Students complete college
credits. Completing 20 credits, which is required for graduating from college, increases
lifetime earnings by 28 log points. (ii) Students enjoy ability-dependent “sheepskin effects”
which increase log lifetime earnings by yoe — yus + (¢cq — ¢us)a. Since pcg > ¢dpus, high
ability students enjoy larger returns to college. Since we set a; = 0, the fact that yog is

close to ygs implies that sheepskin effects are very small for students of the lowest abilities.

3.5 Model Fit

This Section assesses how closely the model attains each set of calibration targets.

Schooling and lifetime earnings. Table 5 shows that the model closely fits the observed
fraction of persons attaining each school level and their mean log lifetime earnings. Key
features of the data are: (i) 46% of those attempting college fail to attain a bachelor’s
degree. (ii) College graduates earn 45 log points more than high school graduates over their

lifetimes. For college dropouts, the premium is only 8 log points.

Figure 1 breaks down the schooling outcomes by test score quartiles. The model replicates
the patterns observed in the data. Test scores are strong predictors of college entry and
college completion. More than 80% of students in the top test score quartile attempt
college and more than 60% earn college degrees. In the lowest test score quartile, only
20% of students enter college and fewer than 5% earn degrees.'® One question our model

answers is why these students attempt college, even though their graduation prospects are
bleak.

Figure 2 shows mean log lifetime earnings by school group and test score quartile. Each
panel displays one school group. The model broadly matches the data cells with large
numbers of observations. The largest discrepancy occurs for college graduates in the lowest

test score quartile, which are quite rare (22 observations).

Dropout rates. Figure 3 compares dropout rates between the model and High School

& Beyond data. Dropout rates are defined as the number of persons dropping out at the

8Bound, Lovenheim, and Turner (2010)’s Figure 2 documents similar patterns in NLS72 and NELS:88
data.
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Figure 1: Schooling and Test Scores
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Notes: For each test score quartile, the figure shows the fraction of persons who attain

each schooling level.
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Figure 2: Lifetime Earnings

(a) High school graduates (b) College dropouts
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Notes: The figure shows the exponential of mean log lifetime earnings, discounted to
model age 1 and expressed in thousands of year 2000 dollars, for each school group and

test score quartile. Dashed lines show two standard error bands.
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Table 5: Schooling and Lifetime Earnings

School group

HS CD CG
Fraction
Data 46.9 24.3 28.8
Model 471 244 28.5
Gap (pct) 04 04 -1.0
Lifetime earnings
Data 600 643 944
Model 596 643 934
Gap (pct) -0.7 -0.0 -1.0

Note: The table shows the fraction of persons that chooses each school level and the
exponential of their mean log lifetime earnings, discounted to age 1, in thousands of year

2000 dollars. “Gap” denotes the percentage gap between model and data values.

end of each year divided by the number of college entrants in year 1. Dropout rates decline

strongly with test scores and with time spent in college.

College credits. Table 6 shows the credit passing rate for each year in college. In the
model, the credit passing rate is defined as n;.1/ (tn.). In the data, it is defined as the
number of completed credits divided by a full course load (see Section 3.2). Students are
divided into two groups: those who eventually drop out and those who eventually earn a

college degree.

While college graduates pass around 95% of the credits they attempt, college dropouts pass
only around two-thirds. The gap in passing rates is roughly the same across years. It
follows that college dropout freshmen would have to expect their passing rate to improve
dramatically over time, if they wanted to graduate within five years. The model implies

passing rates that are close to the data in all years.

Financial resources. Table 7 reveals that the model effectively matches the means and

standard deviations of initial assets (k;) for high school graduates and for college entrants.
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Figure 3: Dropout Rates
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Notes: The figure shows the fraction of persons initially enrolled in college who drop out

at the end of each year in college.
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Table 6: Credit Passing Rates

College dropouts College graduates

Year Model Data Model Data
1 66.7 67.7 95.9 98.7
2 67.9 71.8 95.8 96.3
3 64.7 66.9 95.8 95.7
4 57.7 63.8 95.8 94.9

Notes: The credit passing rate is the number of college credits completed at the end of

each year divided by a full course load.

The distribution of college costs (g) is only observed for college students, where the mean of
q is slightly negative. Even though, in the population, higher ability (test score) students
face lower college costs, the correlation is reversed among college students. This results

from selection. Low ability students only enter college, if it is very cheap.

Table 8 shows student debt levels at the end of the first 4 years in college. The model
roughly matches mean debt levels, conditional on being in debt. However, it understates
the fraction of persons in debt early on, but overstates it in later years. One reason is
that, in the model, all parental transfers are received at age 1 while, in the data, transfers
are received in each year. The model therefore overstates measured assets during the early
years in college. As a result, the fraction of students in debt is too small. At the same
time, asset levels decline too fast over time because no new transfers are received, which

leads the model to overstate the fraction of indebted students in year 4.

4 Results

4.1 Ability Selection

This section presents our main finding. Part of the lifetime earnings gap between college
graduates and high school graduates represents ability differences between the two groups

rather than returns to schooling. We use our calibrated model to measure this part.

In the model, the mean log lifetime earnings of school group s, discounted to age 1, are
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Table 7: Financial Moments

(a) Entire population

Model  Data
Distribution of &y, HS
mean 16,770 16,630
standard deviation 22,867 23,266
Distribution of &y, college
mean 38,011 37,390
standard deviation 37,329 38,475
Distribution of ¢, college
mean -740 -584
standard deviation 4,928 5,787

(b) Test score quartiles

Mean q Standard deviation
Test score quartile Model Data Model Data N
1 -2934 -2,266 (678) 5,075 5,253 60
2 -1,362  -1,741 (454) 4,896 6,121 182
3 -560  -509 (308) 4,924 5,692 341
4 -173 -20 (253) 4,764 5,704 510

Notes: Panel (a) shows the means and standard deviations of k; among high school
graduates and college students. College costs ¢ are only observed for college students.
Panel (b) breaks down the college costs by test score quartile. Estimated standard
deviations of mean ¢ are shown in parentheses. N is the number of observations in each

test score quartile. In HS&B data, test scores are high school GPAs.
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Table 8: Student Debt

Mean debt Fraction with debt

Year Model Data Model Data
1 5,827 3,549 15.3 27.7
2 6,740 6,060 27.6 36.0
3 7,907 8,045 49.8 42.5
4 11,000 9,740 72.1 48.0

Notes: The table shows the fraction of students with college debt (k < 0) at the end of

each year in college. Mean debt is conditional on being in debt.

given by
El¢sa + pn; + ys + In(R77)]s], (16)

where 7 = 1 and n, = 0 for high school graduates. The mean log lifetime earnings gap

between school group s and high school graduates may then be decomposed into four terms:

1. prices: ys — yus + (¢s — dus)E (a|s);
2. credits: E (un,|s);
3. delayed labor market entry: E{ln R"|s} —In R™' = E {ln R'""|s};

4. ability selection: ¢ps[E(als) — E(a|HS)].

For a student of given ability, earning a college degree has three effects on lifetime earnings.
(i) It changes the skill prices earned in the labor market. (ii) It requires a certain number
of earned college credits. (iii) Earning these credits delays entry into the labor market,
which reduces lifetime earnings. Taken together, these three effects represent the return
to college graduation. As in much of the recent related literature, the (ex post) return to
schooling varies across individuals (see Card 2001). The remaining gap between the mean

log earnings of college graduates and high school graduates represents ability selection.

Table 9 shows the decomposition implied by the model. College graduates earn 45 log
points more than high school graduates. Since postponing entry into the labor force re-
duces lifetime earnings by 18 log points, it follows that completing college increases lifetime

earnings, discounted to age 7, by 63 log points. Of this increase, 30 log points are due to
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Table 9: Ability Selection

Gap relative to HS College dropouts College graduates
(in log points) Gap  Fraction Gap Fraction
Total gap 8 — 45 —
Delayed labor market entry -9 -124  -18 -39
Prices: y; and ¢; 0 0 11 24
Credits 11 143 30 67
Ability selection 6 81 22 48

Notes: Row 1 shows mean log lifetime earnings of college dropouts and college graduates
relative to high school graduates. The remaining rows decompose these lifetime earnings
gaps into the contributions of various factors defined in the text. “Fraction” denotes the

fraction of the lifetime earnings gap due to each factor.

credit accumulation, 11 log points are due to prices (y; and ¢g), and the remaining 22 log

points (48% of the college lifetime earnings premium) are due to ability selection.

For college dropouts, the mean log earnings gap relative to high school graduates is much
smaller (8 log points). By assumption, the effect of prices is zero. The effect of earned
credits is only marginally larger than the cost of delayed labor market entry, implying that

most of the earnings gap relative to high school graduates is due to ability selection.

The finding that ability selection accounts for roughly half of the college earnings premium
is quite robust, as we show in Appendix E. One reason why ability sorting is strong is that it
occurs at two levels: Selection at college entry accounts for 67% of the ability gap between
college graduates and high school graduates.!® Selection at college completion accounts for

the remaining 33%.

Figure 4 illustrates both levels of selection. Panel (a) shows school outcomes for students
in each signal decile. College entry is strongly related to ability signals. While only 22% of
students in the lowest decile attempt college, 89% of students in the highest signal decile do.
Panel (b) shows the same information, sorting students by ability level rather than signal.
Since abilities and signals are strongly correlated, the two figures are similar. College entry

rates range from 20% among low ability students to 89% among high ability students.

YE {a|CD V OG} — E {a|HS} = 0.67 (E {a|CG} — E {a|HS}).
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The second level of selection, college graduation, also depends strongly on abilities. The
fraction of college entrants that graduates varies from near zero for the lowest ability level
to 84% for the highest. Taken together the two levels of selection imply that the ability
distributions for high school graduates and college graduates are strongly separated. Low
ability students rarely attempt college and almost never graduate. High ability students

typically attempt college and rarely drop out.?

One contribution of our analysis is to highlight how the two levels of selection interact. At
college entry, low ability students recognize that their graduation prospects are poor. This
deters them from attempting college. This interaction is absent in models that abstract
from college completion risk. To quantify this interaction, we compute a version of the
model where all agents face the same probability of passing courses. We set Pr.(a) to
the constant level that keeps the college entry rate the same as in the benchmark model.
This modification cuts ability selection roughly in half. Even though the experiment affects

college graduation prospects, most of the changes in selection occur at college entry.

4.2 Understanding College Entry

Figure 5 summarizes the two key considerations that determine an individual’s college entry

decision: lifetime earnings and graduation probabilities.

Panel (a) shows mean log lifetime earnings by school outcome and ability.?! It summarizes
the financial stakes that motivate entry and dropout decisions. Only high ability students
can expect large gains from earning a college degree. The earnings gains from completing
college increase from 16 log points for students of median abilities to 27 log points for
students with the highest ability level. There are two reasons for this: (i) higher ability

students graduate earlier, and (ii) the complementarity implied by ¢ca > dns.

The gains from attending college without earning a degree are much smaller. For students

of low abilities, dropping out of college reduces lifetime earnings as the costs of delayed

20School outcomes are also correlated with financial endowments. Students who face lower college costs or
who have more assets are more likely to enter college and more likely to graduate, conditional on entry.
These correlations are, in part, due to the correlation between abilities and financial endowments. To
conserve space, we do not show the details.

21Gince the probability of graduating from college is very small for students with the lowest abilities, the

model does not generate a lifetime earnings number for this group.

30



Figure 4: Schooling and Endowments
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Notes: Each bar shows the fraction of persons attaining each school level (HS, CD, CG).

Panel (a) sorts students into ability signal deciles. Panel (b) shows the outcomes for each

of the N, = 9 ability levels.
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Figure 5: Abilities and Outcomes
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Notes: Panel (a) shows the exponential of mean log lifetime earnings of students who
attain each school level in thousands of year 2000 dollars. Panel (b) shows the probability

of earning at least ng.qq credits in 7;. periods.

labor market entry outweigh the benefits of earning college credits. These small earnings
gains could explain why college students spend little time studying while at the same time

working for modest wages (Babcock and Marks, 2010).

In contrast to the commonly used Roy model, the large earnings gains that accrue to college
graduates are not available to all agents. Only high ability students can expect to graduate
from college. To illustrate this point, panel (b) shows the probability that a person of a
given ability earns enough credits to graduate from college, if he remains in college for the

maximum permitted number of periods.

The chances of graduating from college depend strongly on ability. Low ability students
have essentially no chance of graduating. High ability students are virtually guaranteed to
graduate. This is a robust feature of our model because the number of completed courses
is drawn from a Binomial distribution. The probability of passing more than ng..; = 20

out of n.T,. = 30 courses increases sharply in the probability of passing a single course.

This is a key feature of our model, which generates ability separation between college

graduates and high school graduates. It implies that the payoff from attempting college
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increases far more sharply with ability than lifetime earnings differences would suggest.

This is important for understanding dropout behavior (see Section 4.3).

4.2.1 College entry incentives and ability signals

Since students do not observe their abilities, college entry depends on how earnings and

graduation rates vary with the ability signal. This is summarized in Figure 6.

Panel (a) shows that college entry is strongly related to the ability signal and the associ-
ated chance of graduating from college (earning n,,.q credits in 7, periods). The majority
of students with graduation probabilities above 0.6 attempt college. However, the frac-
tion of students that actually graduate is substantially lower than the fraction that could
have earned the required number of credits. The gap is especially large for students with

intermediate signals.

Panel (b) shows mean log lifetime earnings, discounted to age 1, received for each school
outcome.?? For all signal levels, completing college increases lifetime earnings by at least
$100,000.23 However, dropping out of college yields much smaller, or even negative, earnings
gains. One reason is that dropouts accumulate fewer credits per year in college. A second

reason is that dropouts do not enjoy the price effects associated with graduation (ys and
Ps)-

The expected lifetime earnings gains due to attempting college increase sharply with the
ability signal. Since students with low signals typically fail to graduate, attempting college
reduces their lifetime earnings slightly. Since students with high signals typically graduate,
they can expect to gain more than $200,000 by attempting college.

One puzzling observation in NLSY data is that a sizeable fraction of students with low
test scores and graduation rates attempts college (see Figure 1). Our model offers an
explanation for this puzzle. As an example, consider students with ability signals in the
median decile. Even though their gradation rate is only 22%, 43% of the students in this

group attempt college. One reason is that the earnings losses from dropping out are quite

2210g lifetime earnings are averaged across simulated households in a given signal decile who choose a
particular schooling level.

ZThe large earnings gains for low signal students are consistent with the small earnings gains for low ability
students shown in Figure 5. The reason is selection. Conditional on graduating from college, even low

signal students have high abilities.
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small, while the gains from graduating are quite large. The asymmetry arises because the
option of dropping out in response to poor academic performance limits the potential losses.
A student can try college for one year, observe his credit passing rate, update his beliefs
about his graduation prospects, and drop out if the news is bad. At least for students
with low college costs, this option is almost costless because dropping out has little effect
on expected lifetime earnings. In addition, some students with poor graduation prospects

enter college because they receive large subsidies (g is negative).

An important implication of the model is that low and high ability students respond to
different incentives when deciding whether or not to enter college. High ability students
typically attempt college in order to graduate and increase their lifetime earnings. Since
college costs represent only a small fraction of lifetime earnings, these students are not
sensitive to tuition changes. Low ability students, on the other hand, understand that their
graduation prospects are poor. They only enter college if it is sufficiently cheap, and their
entry decisions are highly sensitive to tuition costs. We return to this insight when we

perform comparative statics experiments in Section 5.

4.3 Understanding College Dropouts

This section examines why nearly half of all students drop out of college. Our model offers

three main reasons: money, luck, and preference shocks.

Some students in our model choose ex ante to drop out of college. They choose a con-
sumption level that is so high that they run out of assets before it is feasible to graduate.?*
Panel (a) of Figure 7 shows the fraction of college students in each signal quintile who
choose such high consumption levels. Among students with low ability signals, 40% make
this choice. These students believe that they are of low ability, which renders college fi-
nancially unattractive. Panel (b) reveals why these students attend college: their college
costs are negative and their consumption in college is high (relative to that of higher signal

dropouts).

Among students in the top signal quintile, more than 15% plan to drop out. These students
would enjoy high earnings gains upon graduation. However, since either their college costs

are high or their assets are low, these students would have to choose very low consumption

24Given that a student can earn at most n,. credits per year, it is not possible to graduate in fewer than 4

years.
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Figure 6: Signals and Outcomes

(a) Signals and graduation probabilities
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Notes: For students in each ability signal decile, panel (a) shows the fraction of high

school graduates that attempt college, the fraction of college entrants that graduates, and

the probability of earning at least ny.q4 credits in 7, years. Panel (b) shows the

exponential of mean log lifetime earnings for each school outcome and conditional on

attempting college.
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Figure 7: Understanding College Dropouts
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Notes: Panel (a) shows the fraction of college entrants who choose consumption so high
that they have insufficient assets to graduate. Panel (b) shows mean college costs and

college consumption among dropouts in thousands of year 2000 dollars.

levels, if they wanted to stay in college for a long time. We show in Section 5.2 that these

students respond strongly to increased borrowing opportunities.

The second reason for dropping out is bad luck. Consistent with the data, our model implies
that college dropouts have low credit completion rates (see Table 6). In response, these

students update their beliefs about their graduation prospects and some drop out.

For students in each signal decile, Figure 8 shows the probability of graduating from college
conditional on staying in college for T, periods. The dashed line shows the students’ beliefs
before starting college. The solid line shows their beliefs at the time of dropping out.
Dropouts of intermediate signals receive bad news during their college careers that lead to
a substantial downward revision in their graduation probabilities. This model implication
is consistent with the evidence of Stinebrickner and Stinebrickner (2012) who find that

academic performance is strongly related to dropout decisions.

The last reason for dropping out is preference shocks. To isolate their effects, we recompute

the model setting the realizations of preference shocks during college to zero. Students
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Figure 8: Graduation Probabilities Among Dropouts
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follow the same decision rules as in the baseline model, so that their college entry decisions
are not affected. This reduces the fraction of college entrants who drop out from 46% in the
baseline model to 40%. Preference shocks mainly increase dropout rates among students

of higher abilities.

5 Counterfactual Experiments

This section studies a number of counterfactual experiments. One objective is to learn more
about how model agents respond to changed incentives. A second objective is to study the

model’s implications for policy questions.

5.1 Tuition Subsidies

The first pair of experiments illustrates a key feature of our model: High ability agents
mainly view college as an investment, while low ability agents mainly view it as a consump-

tion good. The two groups therefore respond very differently to changes in college costs

37



Table 10: Changing College Costs and Payoffs

School group

HS CD CG
Fraction
Baseline 047 024 0.29
Low tuition 0.44 0.25 0.30
High return 0.44 021 0.35
Mean log ability
Baseline -0.51 -0.10 0.91
Low tuition -0.53 -0.16 0.90
High return -0.57 -0.29 0.88

and returns.

To illustrate this point, we study two experiments. The low tuition experiment reduces
the mean of ¢ by $1,000. This amount is chosen so that the model’s implications can be
compared with empirical estimates. The high return experiment increases yog by 4 log
points. This amount is chosen to yield roughly the same change in college enrollment as
the low tuition experiment. For each case, we simulate individual life histories, holding
all other parameters constant. Table 10 summarizes the changes in school attainment and

E {a|s} for both experiments.

Consider first the low tuition experiment. College enrollment rises by 2.7 percentage points.
The model’s implications can be compared with a sizable empirical literature which esti-
mates the effects of reducing tuition on college attendance. Dynarski (2003) summarizes
this literature as well as her own estimates as follows: a $1,000 reduction in the cost of
attending college (in year 2000 prices) leads to a 3 to 4 percentage point increase in atten-

dance. The model’s implication is near the lower range of these estimates.

Figure 9 breaks down the change in college attendance by ability. Students of all abilities
respond to tuition changes, with the largest responses occurring for median abilities. As a
result, the fraction of college graduates rises by only 1.8 percentage points. Many of the

new college entrants drop out.

The implications of the high return experiment are very different. Overall college enrollment

rises by a very similar amount, 2.6 percentage points, but the fraction of college graduates
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Figure 9: Changing College Costs and Payoffs
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rises by 6.5 percentage points. The students that respond most to higher returns to college
are drawn from the upper tail of the ability distribution (Figure 9). Most of these students

graduate from college, so that the dropout rate declines.

From the perspective of the commonly used Roy model, it would seem surprising that
college attendance responds so much to a change in tuition that represents a small fraction
of lifetime earnings. On a per dollar basis, changing tuition has a much larger effect on
college enrollment than changing lifetime earnings. A 4% increase in lifetime earnings of
the average college graduate is worth about $40,000. Yet the implied changes in enrollment
are similar to those implied by a $1,000 change in tuition, which is worth less than $5,000
for the typical college graduate who stays in college for less than 5 years. Dropout risk is
key for understanding this result. While the tuition change affects the incentives for all
students, the college premium is mainly relevant for high ability students who expect to

graduate from college.

5.2 Relaxing Borrowing Limits

A large literature investigates whether borrowing constraints prevent a sizable number of
students from attempting college. To address this question in our model, we recompute
individual school choices when borrowing limits are increased 2-fold. All other model param-

eters remain unchanged. We find that, even though most college students never approach
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Table 11: Increased Borrowing Limits

School group
HS CD CG

Fraction

Baseline 0.47 024 0.29
Double borrowing limits  0.40 0.24 0.35
Mean log ability

Baseline -0.51 -0.10 091
Double borrowing limits -0.64 -0.22 0.88

their borrowing limits (see Table 8), relaxing borrowing constraints has substantial effects

on college entry and graduation rates.

Table 11 summarizes the resulting changes in schooling and abilities. The fraction of high
school graduates who attempt college rises from 53% to 60%. Conditional on entering
college, the graduation rate improves. Increased schooling reduces the mean log abilities of
all school groups, but less so among college graduates, leading to a modest increase in the

college lifetime earnings premium.

Figure 10 studies these changes in more detail. It shows that college entry rates increase
mostly among median to high ability students. Borrowing constraints are less important for
low ability students, who expect to drop out of college regardless of their financial assets.
These students enter college only if college costs are low, in which case consumption can

be financed without large debts.

The vast majority of the additional low ability students that attempt college fails to gradu-
ate. By contrast, graduation rates, conditional on college entry, increase among high ability
students. The reason is that relaxed borrowing constraints allow students to stay in col-
lege longer, which reduces dropout rates during the early college years. This enables more
high ability students to earn enough credits to graduate. Eventually, though, low ability

students fail to earn enough credits, which forces them to drop out.
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Figure 10: Increased Borrowing Limits
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Notes: The figure shows the change in the fraction of persons who attempt college and
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5.3 Dual Enrollment Programs

Our model suggests that the efficiency of school selection could be increased by providing
students with information about their college aptitudes. In practice, this idea is imple-
mented in the form of dual enrollment programs where high school students take courses at
colleges or universities and receive both high school and college credit. In the 2010-11 school
year, more than one million U.S. students participated in such programs (Stephanie Marken,
Lewis, and Ralph, 2013).

We study the effect of such programs in our model by allowing each high school graduate
to take 2 college courses before deciding whether to enter college. This amounts to 40% of

an annual course load.

Figure 11 shows that the effects of such a program are small. Panel (a) shows the probability
that a person of given ability enters college. The probability declines slightly for low ability
students and rises slightly for high ability students, reflecting the higher precision of the
students’ beliefs at the time the college entry decision is made. The net effect on college
enrollment is very small. Panel (b) shows that the fraction of students who earn a college

degree increases slightly.
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Figure 11: Dual Enrollment Program
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Figure 12 reveals why the changes are so small. It shows how uncertainty about student
abilities evolves as students work their way through college. Each line represents a signal
quintile. Each point shows the standard deviation of abilities, given the students’ informa-
tion sets (n, j,t). This is averaged over students, using the mass of students in college by

(n,j,t) as weights.

Two main observations stand out. (i) At college entry, students face considerable uncer-
tainty about their abilities. The standard deviation of abilities is above 0.3 for all signal
quintiles, compared with an unconditional standard deviation of 1. (ii) For most students,
the rate of learning is slow. At the start of the second year in college, the standard deviation
is still above 0.25 for all but one of the quintiles. The rate of learning is particularly slow
for students with very high abilities who pass nearly all of their courses. The additional
information provided by 40% of one year’s course load therefore has a small effect on most

students’ beliefs.

Another reason why this information does not alter college entry and exit decisions much is
that these decisions often do not depend on the exact ability level. Students in the highest
ability quartile know that they will graduate with near certainty, if they stay in college
for T, periods. Students in the lowest ability quartile, on the other hand, know that they

will almost surely not graduate (see Figure 5). For these students, information about their
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Figure 12: Evolution of Ability Uncertainty
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Notes: The figure shows the standard deviation of abilities conditional on the student’s

information set (n, j,t). Each line represents an ability signal quintile.

abilities may have little value.

6 Conclusion

We conclude by considering potential avenues for future research. A key challenge is the
identification of school sorting by ability and of human capital production in college. Mod-
eling two additional decisions that can be observed for college students could help with this

identification problem.

The first decision is the allocation of time between study effort, work, and leisure. In the
data, college students spend little time attending classes and studying, while at the same
time working for low wages (Babcock and Marks, 2010). This suggests a low marginal
value of study effort and could be used to help identify human capital production in college,

modeled here as the contribution of earned credits on lifetime earnings.

The second decision is the quality and cost of the college attended. Admission to better
colleges may account for part of the higher returns to college enjoyed by high ability students
(Dale and Krueger, 2002; Hoekstra, 2009). Observing how wages vary with test scores and
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college qualities may help disentangle the effects of ability selection and human capital
production. Allowing students to choose work hours and college costs could also soften the

financial constraints that prevent some students in our model from earning a college degree.

Additional progress towards identification could be made by modeling the work phase in
more detail. How wage dispersion changes with age contains information about the joint
distribution of abilities and human capital endowments (see Huggett, Ventura, and Yaron
2006, 2011). This idea is pursued in Hendricks (2013) in the context of a stochastic Ben-

Porath model that abstracts from college completion risk.
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Online Appendix

A CPS Data

A.1 Sample

In our main source of wage data, the NLSY79, persons are observed only up to around age
45. We use data from the March Current Population Survey (King, Ruggles, Alexander,
Flood, Genadek, Schroeder, Trampe, and Vick, 2010) to extend the NLSY79 wage profiles
to older ages. Our sample contains men between the ages of 18 and 75 observed in the
1964 — 2010 waves of the CPS. We drop persons who live in group quarters or who fail to

report wage income.

A.2 Schooling Variables

Schooling is inconsistently coded across surveys. Prior to 1992, we have information about
completed years of schooling (variable higrade). During this period, we define high school
graduates as those completing 12 years of schooling (higrade=150), college dropouts as those
with less than four years of college (151,...,181), and college graduates as those with 16+
years of schooling (190 and above). Beginning in 1992, the CPS reports education according
to the highest degree attained (educ99). For this period, we define high school graduates as
those with a high school diploma or GED (educ99=10), college dropouts as those with "some

nn nn

college no degree," "associate degree/occupational program," "associate degree/academic
program" (11,12,13). College graduates are those with a bachelors, masters, professional,

or doctorate degree (14,...,17).

A.3 Age Earnings Profiles

Our goal is to estimate the age profile of mean log earnings for each school group. This
profile is used to fill in missing earnings observations in the NLSY79 sample and to estimate

individual lifetime earnings.

First, we compute the fraction of persons earning more than $2,000 in year 2000 prices for

each age t within school group s, f(t|s). This is calculated by simple averaging across all
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years. For the cohorts covered by the NLSY79, the fractions are similar to their NLSY79

counterparts.

Next, we estimate the age profile of mean log earnings for those earnings more than $2, 000
per year, which we assume to be the same for all cohorts, except for its intercept. To do
so, we compute mean log earnings above $2,000 for every |age, school group, year| cell.
We then regress, separately for each school group, mean log earnings in each cell on age
dummies, birth year dummies, and on the unemployment rate, which absorbs year effects.
We retain the birth cohorts 1935 — 1980. We use weighted least squares to account for the

different number of observations in each cell.

Finally, we estimate the mean earnings at age t for the 1960 birth cohort as:
gops(tls) = exp (1960 cohort dummy + age dummy(t) 4 year effect(1960 + t)) f(t|s) (17)

For years after 2010, we impose the average year effect. Figure 13 shows the fitted age
profiles together with the actual age profiles for the 1960 birth cohorts calculated from the
CPS and the NLSY79. We find substantially faster earnings growth in the NLSY79 data
compared with the CPS data. The discrepancies are modest until around age 30 (year
1990), which is consistent with the validation study by MaCurdy, Mroz, and Gritz (1998).

The reason for the discrepancies is not known to us.

B NLSY79 Data

The NSLY79 sample covers men born between 1957 and 1964 who earned at least a high
school diploma. We use the 1979 — 2006 waves. We drop persons who were not interviewed
in 1988 or 1989 when retrospective schooling information was collected. We also drop
persons who did not participate in the AFQT (about 6% of the sample). Table 12 shows

summary statistics for this sample.

B.1 Schooling Variables

For each person, we record all degrees and the dates they were earned. At each interview,
persons report their school enrollments since the last interview. We use this information to

determine whether a person attended school in each year and which grade was attended. For
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Figure 13: Age-earnings Profiles
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Notes: The figures show the exponential of mean log earnings by schooling and age in
thousands of year 2000 dollars. Earnings are adjusted for the fraction of persons working

at each age as described in the text.
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Table 12: Summary Statistics for the NLSY79 Sample

HSG CD CG All

Fraction 46.6 25.3 28.1 100.0
Avg. schooling 12.1 14.1 17.0 14.0
Range 9-13 13-20 12-20 9-20
AFQT percentile  34.3 51.3 75.0  50.0
N 1,447 800 675 2,922

Notes: For each school group, the table shows the fraction of persons achieving each
school level, average years of schooling and the range of years of schooling, the mean

AFQT percentile, and the number of observations.

persons who were not interviewed in consecutive years, it may not be possible to determine

their enrollment status in certain years.

Visual inspection of individual enrollment histories suggests that the enrollment reports
contain a significant number of errors. It is not uncommon for persons to report that the
highest degree ever attended declined over time. A significant number of persons reports
high school diplomas with only 9 or 10 years of schooling. We address these issues in a
number of ways. We ignore the monthly enrollment histories, which appear very noisy. We
drop single year enrollments observed after a person’s last degree. We also correct a number
of implausible reports where a person’s enrollment history contains obvious outliers, such
as single year jumps in the highest grade attained. We treat all reported degrees as valid,

even if years of schooling appear low.

Many persons report schooling late in life after long spells without enrollment. Since our
model does not permit individuals to return to school after starting to work, we ignore late
school enrollments in the data. We define the start of work as the first 5-year spell without
school enrollment. For persons who report their last of schooling before 1978, we treat
1978 as the first year of work. We assign each person the highest degree earned and the
highest grade attended at the time he starts working. Persons who attended at least grade
13 but report no bachelor’s degree are counted as college dropouts. Persons who report
13 years of schooling but fewer than 10 credit hours are counted as high school graduates.

The resulting school fractions are close to those obtained from the High School & Beyond
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sample.

B.2 Lifetime Earnings

Lifetime earnings are defined as the present value of earnings up to age 70, discounted
to age 19. Our measure of labor earnings consists of wage and salary income and 2/3 of
business income. We assume that earnings are zero before age 19 for high school graduates,

before age 21 for college dropouts, and before age 23 for college graduates.

Since we observe persons at most until age 48, we need to impute earnings later in life. For
this purpose, we use the age earnings profiles we estimate from the CPS (see Appendix A).
The present value of lifetime earnings for the average CPS person is given by Yops(s) =

2219 gops(t|s)RY¥~t. The fraction of lifetime earnings typically earned at age t is given
by gops(t|s) R /Yops(s).

For each person in the NLSY79 we compute the present value of earnings received at all
ages with valid earnings observations. We impute lifetime earnings by dividing this present
value by the fraction of lifetime earnings earned at the observed ages according to the CPS

age profile, gops(t|s)R¥~"/Yops(s).

An example may help the reader understand this approach. Suppose we observe a high
school graduate with complete earnings observations between the ages of 19 and 40. We
compute the present value of these earnings reports, including years with zero earnings, X.
According to our CPS estimates, 60% of lifetime earnings are received by age 40. Hence we

impute lifetime earnings of X/0.6.

In order to limit measurement error, we drop individuals who report zero earnings for
more than 30% of the observed years. We also drop persons with fewer than 5 earnings
observations after age 35 or whose reported earnings account for less than 30% of lifetime
earnings according to the CPS profile. Table 13 shows summary statistics for the persons
for which we can estimate lifetime earnings. One concern is that the NLSY79 earnings
histories are truncated around age 45, which leaves 20 to 30 years of earnings to be imputed.
Fortunately, the fitted CPS age profiles imply that around 70% of lifetime earnings are

earned before age 45.
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Table 13: Lifetime Earnings

HSG CD CG

exp(mean log) 600,061 643,153 944,269
Standard deviation (log) 0.51 0.55 0.50
N 278 343 319

Notes: The table show exp(mean log lifetime earnings), the standard deviation of log

lifetime earnings, and the number of observations in each school group.

C NELS Data

We obtain data on the academic performance of college students and on their incomes and
expenditures from data collected by the National Education Longitudinal Studies (NELS)
program of the National Center for Education Statistics (NCES). The High School & Be-
yond (HS&B) survey covers the 1980 senior and sophomore classes (see United States
Department of Education. National Center for Education Statistics 1988). Both cohorts
were surveyed every two years through 1986. The 1980 sophomore class was also surveyed
in 1992, at which point postsecondary transcripts from all institutions attended since high
school graduation were collected under the initiative of the Postsecondary Education Tran-
script Study (PETS).?® We restrict attention to white male sophomores surveyed at least
through 1986, which leaves us with 14,825 student records and 17,363 transcripts collected

from 4,079 institutions.

C.1 Enrollment and Dropout Statistics

The sample contains 3,671 students who graduated from high school in 1982. We split these
students into quartiles according to their high school GPA, which is available for 92% of
our sample. For the remaining 8%, we impute high school GPA quartile with the quartile
of their cognitive test score. This test was conducted in their senior year and was designed

to measure quantitative and verbal abilities.

ZPETS data files were obtained through a restricted license granted by the National Center for Education
Statistics.
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Table 14: School Attainment of College Entrants

Quartile of HS GPA 1 2 3 4 Al N
Fraction graduating 0.13 0.31 0.58 0.76 0.55 840
Fraction dropping out, year 1 0.40 0.25 0.13 0.07 0.16 200
year 2 0.24 0.21 0.16 0.07 0.14 191
year 3 0.15 0.11 0.06 0.05 0.08 108
year 4 0.06 0.08 0.04 0.03 0.05 52

year 5 0.02 0.01 0.03 0.01 0.02 30
Notes: The table shows the fraction of college entrants in each high school GPA quartile

that drops out of college at the end of each year. N is the number of observations.

Using PETS transcript data, we count the number of credits each student attempts and
completes in each year in college. Credits are defined as follows. We count withdrawals that
appear on transcripts as attempted but unearned credits. We drop transfer credits to avoid
double counting. We drop credits earned at vocational schools, such as police academies or

health occupation schools.

We truncate each student’s college history when he earns his first bachelor’s degree or
within 5 years of his first year without college enrollment. We count a student as entering
college if he attempts at least 9 credits in a given academic year. Using this definition, 53%
of the cohort enters college immediately upon high school graduation. Another 3% of the
cohort enter in the following year. 55% of immediate entrants obtain a bachelor’s degree.
Students that earn bachelor’s degrees later than 5 years after their first break in enrollment

are dropped from the sample.

For each high school GPA quartile, Table 14 shows the fraction of college entrants who
graduate from college and who drop out at the end of each year. These statistics are
computed from 1,436 college entrants with complete transcript histories. We refer to a
college entrant as a year x dropout if he/she enrolled continuously in years 1 through z,
attempted fewer than 7 credits in year x + 1, and failed to obtain a bachelor degree within 5

years. 86% of the college graduates in our sample are enrolled continuously until graduation.

o6



Table 15: Financial Resources

year 1 year 2 year 3 year 4

q -870  -1,168 833 2,422

Tuition 4,428 9,276 16,897 24,632

Grants 1,308 2,619 4,119 5,682

Parental transfers 6,179 12463 19,137 26,428
Earnings 5,013 9,505 15,132 20,247

Loans 983 2,184 3,416 4,670

Fraction in debt 0.28 0.36 0.42 0.48

N 1436 1236 1045 934
Notes: Dollar amounts are cumulative and in year 2000 prices. Average amounts include

ZEeros.
C.2 Financial Variables

In the second and third follow-up interviews (1984 and 1986), all students reported their
education expenses, various sources of financial support, and their earnings. Table 15 shows

the means of all financial variables for students who are enrolled in college in a given year.

We construct total parental transfers as the sum of school-related and direct transfers to the
student. The school-related transfer refers to “payments on [the student’s| behalf for tuition,
fees, transportation, room and board, living expenses and other school-related expenses.” It
is available only for the first two academic years after high school graduation. For academic
years 84 /85 and 85/86, we proxy it with the 83/84 value, adjusted by the change in tuition

net of grants and scholarships.

Direct transfers include in-kind support, such as room and board, use of car, medical
expenses and insurance, clothing, and any other cash or gifts. We set the transfer values
to the midpoints of the intervals they are reported in. For the highest interval, more than
$3,000 in current prices, we assign a value of $4,000. We assume that half of the transfer is

paid out in each semester of the calendar year for which the transfer is reported.

Tuition and fees and the value of grants are available for each academic year. Grants refer
to the total dollar value of the amount received from scholarships, fellowships, grants, or

other benefits (not loans) during the academic year.

Student earnings are available at calendar year frequencies. To convert these into academic
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years for college students, we assume that the relative fractions of year j earnings that are
earned in academic years 77 and jk are inversely related to the relative number of credits
taken in years ij and jk. This implies that the proportion of year j earnings attributed to
academic year ij is given by credits;/(credits;; + credits;;). We attribute half of the 1982

earnings to the 82/83 academic year.

D Identification

This section investigates the identification of selected model parameters. Since our model
is computationally efficient, we are able to compute how the model fit changes as each
parameter’s value varies over a grid. For each grid point, we recalibrate all other model

parameters.

We focus on parameters that we expect to be important for ability selection: the dispersion
of abilities ¢ g, the precision of ability signals governed by « ,,,, the effect of college credits
on earnings 4, and the scale of preference shocks 7. To conserve space, we summarize the

results without presenting the details for each case.

Ability dispersion. The value of ¢yg is mainly identified by the relationship between
lifetime earnings and test scores. Increasing ¢ g strengthens this relationship (the model
implies too steep lines in Figure 2). The intuition is similar to Hendricks and Schoellman
(2011): For given test score precision (aq,m and ayg.,), a higher values of ¢y implies that a
one standard deviation increase in test scores is associated with a larger increase in abilities
and thus lifetime earnings. Fixing ¢gg below its calibrated value also implies a model
college premium that is smaller than the calibration target. The difference between ¢cq
and ¢gg allows the model to better match how lifetime earnings vary with test scores for

all school groups.

Higher values of ¢y increase the role of ability selection for the college premium. The
reason is purely mechanical: for given school sorting, abilities account for a larger share in

earnings variation across individuals.

Signal noise. The precision of the ability signal (o ) is mainly identified by the timing

of college dropouts. Since the ability signal in the baseline model is quite high, we focus
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on the implications of lower precision (more signal noise). The model then implies that too
few students drop out of college, especially during the early years. The intuition is that the
option of staying in college becomes more valuable. Students who perform poorly in their

first year of college still have a chance to graduate and are less likely to drop out.

With large signal noise, the model also has trouble matching credit passing rates. The credit
passing rates of dropouts and graduates are too similar at the start of college, but diverge
too much later on. The reason is that large signal noise increases the role of luck for college
completion. This reduces the gap in credit passing rates between graduates and dropouts
early on. During later years in college, the gap opens up as students with persistently poor
academic records update their beliefs about their graduation prospects and drop out. By
contrast, in the data, the gap in the credit passing rates of college graduates and dropouts
is roughly constant across years. With precise signals, the model replicates this fact. With

imprecise signals it does not.

Since more signal noise prevents effective school sorting by abilities, it reduces the role of

ability selection for the college premium.

Effect of credits on earnings. The value of y is mainly identified by the relationship

between lifetime earnings and test scores and by the timing of dropouts.

Holding other parameters constant, higher values of p increase the relative earnings of
college dropouts and college graduates. The calibration offsets this by reducing ability
dispersion (6;). The alternative would be to reduce Yo, but this does not lower the college
dropout premium. It would also violate the constraint Yoq > Yys = Yeop and imply
that graduating from college reduces earnings for low ability students. The lower ability
dispersion flattens the relationship between test scores and lifetime earnings (Figure 2). It

also reduces the contribution of selection to the college premium.

Higher values of i increase the incentives to stay in college longer, even for students who
expect not to graduate. This leads college dropouts to stay in college longer than in the

data (Figure 3).

Preference shocks. When preference shocks are smaller than in the baseline case, the
model fails to account for the timing of dropout decisions. Too many low ability students

stay in college until 7. The intuition is that students with low ¢ and high k; have no reason
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to drop out. They know from the outset that they will not graduate. For these students,
college is mainly a consumption good. However, their dropout decisions are sensitive to
shocks because the financial stakes are so small. Preference shocks prevent these students

from staying in college too long.

Larger preference shocks weaken the association between college costs and college atten-
dance. As a result, the model greatly overstates the rise in debt as students go through
college. The baseline model avoids this because college students select more strongly on

college costs. The scale of preference shocks is not important for ability selection.

E Robustness

This section investigates the robustness of our main finding. Table 16 shows how the

importance of ability selection varies with the value of selected parameters.

To illustrate how to read the Table, consider the first row. It varies ¢gg over a grid of
values that range from 0.1 to 0.25, compared with a baseline value of 0.15. The model is
recalibrated, fixing ¢y g at each grid point. The “selection” column reports the smallest and
the largest fraction of the mean log lifetime earnings gap between college graduates and
high school graduates that is due to ability selection. This is defined as in Section 4.1. The

remaining rows of Table 16 vary the values of j, a4, and 7 in similar ways.¢

Across all parameter values covered in Table 16, we find that ability selection accounts for
more than one-third of the college lifetime earnings premium. We have also experimented
with alternative ways of constructing the calibration targets and with restricted or extended
models. For example, we shut down the non-pecuniary schooling costs U(s), and we allowed
for a direct consumption utility of being in college. In all cases, we found our main result

to be highly robust.

26We tried wider ranges for some of the parameters, but found that the model fit deteriorates dramatically.
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Table 16: Robustness

Variable Base value Range Selection
bus 0.153  0.10-0.25 37.1-92.8
1 0.014 0.005-0.020 66.4-36.6
Qgm 2.971 1.00-3.00 51.0-50.4
T 0.767 0.40-2.00 56.6-49.0

Notes: Each row varies one parameter over a grid of values. “Variable” indicates which
parameter is varied. “Base value” shows the parameter’s value in the baseline model.
“Range” shows the range over which the parameter is varied. “Selection” shows the

fraction of the mean log lifetime earnings gap between college graduates and high school

graduates that is due to ability selection.
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