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Abstract 
 
We study innovation contests with asymmetric information and identical contestants, where 
contestants’ efforts and innate abilities generate inventions of varying qualities. The designer 
offers a reward to the contestant achieving the highest quality and receives the revenue 
generated by the innovation. We characterize the equilibrium behavior, outcomes and payoffs 
for both nondiscriminatory and discriminatory (where the reward is contestant-dependent) 
contests. We derive conditions under which the designer obtains a larger payoff when using a 
discriminatory contest and describe settings where these conditions are satisfied. 
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1 Introduction

Innovative activity has traditionally been rewarded mainly through the patent system.

An alternate approach to generating and rewarding innovations is to design contests

that solicit proposals to solve targeted objectives (see, for instance, Scotchmer, 2004).

A sponsor interested in technological improvement can launch a contest where agents

compete by submitting prototypes, the best of which will be adopted by the sponsor. Such

contests have been held to obtain innovations in various fields including mathematics, food

preservation and maritime navigation.1

Today, contests are frequently used by organizations such as the Institute for Advanced

Architecture of Catalonia and HP “to promote discussion and research . . . that can help

us to envisage how the city and the habitat of the 21st century will turn out.” Similarly,

the U.S.-based Knight Foundation has set innovation contests to elicit digital news ex-

periments that inform and engage communities. Contests have also been suggested as

a future means to address a variety of issues. For example, Newell and Wilson (2005)

and Newell (2008) proposed that the U.S. Department of Energy should hold contests to

resolve specific technical and scientific challenges related to greenhouse gases mitigation.

In this paper, we introduce a new model of contests with asymmetric information to

study innovation contests. The environment described is general enough to encompass a

range of economic activities and provides a tractable analytical setting to consider, among

others, procurement decisions, government contracts, research budgets and promotions.

For expositional purposes, we choose the particular setting of innovation contests to de-

scribe the model.

Our framework is the following. A designer wishes to obtain an innovation that can be

produced by n ≥ 2 agents. The quality of the innovation achieved by an agent depends on
his ability and the effort devoted to the task. The agents’ abilities are independently drawn

from the same distribution function and once an agent observes his ability he decides on

his effort. Both ability and effort are an agent’s private information. Furthermore, the

quality of an innovation is not verifiable. However, an independent party can determine

the best-quality innovation. The designer sets up a contest whereby the highest-quality

1Taylor (1995) analyzed the optimal contest in an environment with symmetric information where the

quality of the innovation obtained by a firm is a random variable. More recently, the design of optimal

contests in an R&D environment has been studied by Che and Gale (2003).
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innovation receives a prize.2 A contest is called nondiscriminatory if the prize does not

depend on the winner’s identity, otherwise it is called discriminatory.

We characterize the equilibrium behavior in a nondiscriminatory contest with n agents

for arbitrary distributions of abilities and determine the regions where the equilibrium

involves positive effort levels for all agents and those where the agents exert zero effort.

The boundaries of the regions depend on the distribution function of the ability parameter

and the prize.

We then consider discriminatory contests where the reward depends on the identity

of the winner. We restrict attention in this part of the analysis to the case where n = 2.3

The introduction of discrimination leads to qualitatively different equilibrium behavior, as

compared to agents’ behavior in nondiscriminatory contests. The two agents’ equilibrium

behavior in discriminatory contests again involves regions with zero and positive effort

levels. The main new feature is the discontinuity in the behavior of the agent assigned the

larger reward, who moves discretely from zero to a positive effort level. We provide a full

characterization of the equilibrium for large classes of distribution functions, in particular

for either convex or concave distribution functions.

We then study the designer’s payoff in both discriminatory and nondiscriminatory con-

tests with two agents and find conditions under which the use of a discriminatory contest

increases the payoff. That is, in our environment, where the only feasible mechanisms are

contests, the optimal mechanism may lead to discrimination. Discrimination dominates

nondiscrimination in some set ups because it leads to an increase in the expected efforts of

the agents, thereby resulting in larger expected revenues. In particular, we show a class of

simple examples where discrimination increases the designer’s payoff. We also prove that

a discriminatory contest is better if the distribution of the ability parameter is a convex

function, with very low density at zero, and the designer has a high enough valuation of

the quality of the innovation.

Contests in symmetric information environments have been extensively analyzed. Baye

2Contests like those that we analyze, due to their simplicity and popularity, are also prevalent in many

situations were quality is verifiable.
3The case of n > 2 agents presents several technical difficulties because the conditions characterizing

the equilibrium behavior do not to lead to closed form solutions for general distribution functions. The

case where n = 2 allows to highlight the effect discrimination might have and, in particular, the possibility

that it might increase the designer’s profits.
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et al. (1996) studied the contestants’ equilibrium behavior in standard all-pay auctions

with symmetric information where agents bid for an object, all bids are paid and the

highest bidder receives the object. Kaplan et al. (2003) investigated all-pay auctions

where the size of the reward depends on the effort. In particular, they applied this

framework to an analysis of R&D races. Che and Gale (2003) derived the equilibrium

behavior and characterized the optimal research contest in an environment where each

contestant submits a quality-price pair. The cost of producing the quality is sunk. The

contestant offering the largest surplus, defined as the difference between quality and price,

is paid the price. Casas-Arce andMartinez-Jerez (2011) and Siegel (forthcoming) analyzed

all-pay auctions with heterogeneous agents which differ in their ability. The former studied

the relationship between ability and bids, and used their results to derive equilibrium

behavior in two-stage all-pay auctions. The latter studies both single-prize and multiple-

prize contests and allows for a wide range of asymmetries among any number of players.

Jönsson and Schmutzler (2013) considered all-pay auctions and analyzed the relationship

between the prize structure (a specification of effort-dependent rewards) and the efforts

expended by the contestants. Siegel (2009) and (2010) introduced a general framework

encompassing a very large class of all-pay auctions and provided a general method of

solving and calculating equilibrium payoffs. Konrad (2009) provided an excellent survey

of equilibrium and optimal design in contests. In more specialized settings, Konrad (2002)

and (2004), studies two-player contests where the contestants take decisions (investment

to increase the output or to obtain and release information) before engaging in the actual

contest.

In scenarios where agents’ valuations are private information, Amann and Leininger

(1996) characterized the equilibrium bids for all-pay auctions where valuations are inde-

pendently drawn from a common distribution function. Kirkegaard (2012a) considered

a similar setup where bids are converted into scores, with several agents that differ in

their cost of bidding, and analyzed the effect of handicaps, where the bid of an agent

is translated into a lesser score. Seel (2012) studied a two-player all-pay auction where

one bidder has an initial advantage whose size is private information. Krishna and Mor-

gan (1997) analyzed the case in which the bidders’ information regarding valuations is

affiliated. Moldovanu and Sela (2001), on the other hand, considered the case where

the agents’ cost of bidding is private information. The uncertainty was introduced via
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a constant multiplying a basic cost function common to all agents. In their model, the

designer’s goal is to maximize the sum of agents’ efforts, by deciding upon the allocation

of a fixed budget among one or more prizes. Finally, Siegel (2012) provides a constructive

characterization of the unique equilibrium of asymmetric two-player all-pay auctions when

there are a finite number of signals for each player, an asymmetric signal distribution and

interdependent valuations, and a non-restricted reserve prize.

Our model differs with respect to the literature discussed above in several ways. For

one thing, the designer chooses the size of the reward and may discriminate among the

contestants. Moreover, the private information, regarding the agents’ cost, is introduced

in a novel and tractable way with ability and effort being perfect substitutes. In this sense,

the model is suitable for the analysis of common day scenarios of competition where both

innate ability and effort generate the final outcome.

Singh and Wittman (2001) also analyzed a model where quality is a function of both

agents’ effort and type. They provided properties of the agents’ equilibrium behavior

and, applying the revelation principle, characterized the structure of an optimal nondis-

criminatory reward structure. While the environment considered by Singh and Wittman

(2001) and their results are quite general, their assumptions exclude the simpler model

studied in our paper. Furthermore, their mechanism design analysis is appropriate for

environments where quality is verifiable, as the quality variable features prominently in

the rules of the mechanism. In contrast, quality is not verifiable in our environment,

except for the requirement that an independent party can determine the best-quality in-

novation. This informational structure leaves little scope for the application of mechanism

design techniques as the designer can only specify a reward for the winner, independent

of the quality offered. Our simple model allows the derivation of explicit solutions for the

agents’ behavior. These solutions are then used to study discriminatory contests as well

and analyze the desirability of discrimination from the designer’s point of view.

Measures to increase or decrease the discrepancy between contestants have indeed

attracted considerable attention in the literature. Several studies have shown that it

is, in general, beneficial to handicap a stronger contestant so as to level the field when

starting from an asymmetric contest (Baye et al., 1993, Clark and Riis, 2000, Che and

Gale, 2003). Our finding that discriminating, by offering contestant specific prizes, can

increase the designer’s payoff runs contrary to those studies and is in line with some of the
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findings in Fu et al. (2012) for symmetric information settings and Kirkegaard (2012b)

for asymmetric information environments.

Fu et al. (2012) considered R&D races and analyzed the optimal allocation of a fixed

budget between a prize to the winning firm and subsidies to the competing firms with

the goal of maximizing the (expected) quality of the winning innovation. In their setting,

similar to a Tullock contest, they have addressed both issues of which contestant (strong

or weak) should be favored and whether it pays to offer contestant specific prizes rather

than a single uniform prize. They have shown that favoring the “weaker” contestant

is optimal when R&D effort is quite effective, whereas it pays to favor the “stronger”

contestant when the R&D effort is quite ineffective. As regards the prize schedule, they

have shown it is actually optimal to offer a uniform prize.

Kirkegaard (2012b), allowing both handicaps and head starts, analyzed their use in

environments with private valuations where the designer is interested in maximizing total

expenditures. While demonstrating several settings where it pays to strengthen the weaker

contestant, he also showed that there are cases where the weaker contestant should be

handicapped and instances where one of two symmetric contestants should be given a

small head start.

Discriminating among identical agents has also been shown to be optimal in models

very different from ours. In particular, Levitt (1995) and Winter (2004) found that

discriminating is optimal in environments where a principal wants to provide several

identical agents with incentives to carry out a task.4

The rest of the paper proceeds as follows. In Section 2, we introduce the model.

Section 3 analyzes agents’ equilibrium behavior in nondiscriminatory contests and agents’

behavior in discriminatory contests is analyzed in Section 4. Section 5 calculates the

designer’s payoff as a function of the rewards and shows conditions under which it is

optimal to discriminate. Section 6 concludes and proposes directions for further research.

4Kräkel (2012) considers contests to elicit effort where the contestants have different, known abilities.

Effort and ability are perfect substitutes, prizes are given and the designer’s decision is whether to

hold “fair” contests among identical or “unfair” among non-identical contestants. He shows that unfair

contests may be optimal when a weak agent has a higher perceived winner prize when beating a stronger

opponent.
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2 The model

We consider the problem facing an organization that wishes to procure an innovation.

The benefits derived from this innovation depend on its quality q and are given by I(q),

with I 0(q) > 0, I 00(q) < 0.

There is a set N of n ≥ 2 identical risk-neutral agents who can realize the desired

innovation. The quality of the innovation produced by an agent depends on his type and

his choice of nonnegative effort. The agents’ types represent their proficiency to develop

the particular innovation. Both the types and choices of effort are private information.

Denoting the type of agent i by θi and his effort by ei, the quality of the innovation

realized by agent i is given by qi(θi, ei) = θi + ei.

Agents’ types are independently distributed according to the same differentiable and

atomless distribution function F (.) on [0, 1], with F 0(.) > 0 for all θ ∈ [0, 1]. Types are
revealed to the agents prior to their choice of effort. The quality of the innovation, while

observed by the designer, cannot be verified. However, an independent authority can

verify which innovation is best.

To procure the innovation, the organization holds a contest among the agents. Hence-

forth, we refer to the organization as the designer of the contest. The winner of the

contest is the agent who offers the innovation of the highest quality, with ties broken by

having each agent submitting the highest quality win with equal probability. In a nondis-

criminatory contest, the designer offers a prize R to the winning agent. The contest is

discriminatory when the designer offers different prizes depending on the identity of the

winner. In a discriminatory contest, the prize offered to agent i ∈ N , were he to win the

contest, is Ri and Rj 6= Rj0 for some j, j0 ∈ N .

Given a contest, agents simultaneously choose their effort. In a nondiscriminatory

contest, the payoff of any agent when he chooses effort e is R − e in case he wins the

contest and −e otherwise. The payoff to the designer is I(qW ) − R, where W is the

identity of the agent winning the contest. In a discriminatory contest, the payoffs to the

winning agent and to the designer are RW − e and I(qW )−RW , respectively.

The agents’ strategies are denoted by the functions (qi(θ))i∈N , with qi(θ) ≥ θ, where

qi(θ) indicates the choice of quality by agent i when his type is θ. We consider regular

strategies. A strategy is regular if it is strictly increasing for all θ and differentiable

whenever q(θ) > θ. Given the agents’ strategies, the efforts exerted by agent i of type θi
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are ei(θi) = qi(θi)− θi.

3 Agents’ equilibrium strategies in nondiscriminatory

contests

In this section, we provide the agents’ strategies in any symmetric equilibrium q∗(θ) when

they compete in a nondiscriminatory contest with reward R.

To formulate agent i’s maximization problem, for i ∈ N , we let agent j’s strategy be

q∗(θ) for every j ∈ N\i. Then, agent i’s expected profits when he is of type θ and offers
quality q ≥ θ are given by his probability of winning times the prize minus the effort; that

is,5

Pr
(θj)j∈N\i

µ
q ≥ max

j∈N\i
q∗(θj)

¶
R− (q − θ).

When q ∈ [q∗(0), q∗(1)], and q ≥ θ, agent i’s expected profits can be written as¡
F
¡
q∗−1 (q)

¢¢n−1
R− (q − θ).

If the level of quality q that maximizes agent A’s expected profits is interior, that is, q > θ,

the following first-order condition (FOC) must hold:

q∗0
¡
q∗−1 (q)

¢
= (n− 1)F 0 ¡q∗−1 (q)¢ ¡F ¡q∗−1 (q)¢¢n−2R, (1)

that is, the optimal q(θ) satisfies

q∗0
¡
q∗−1 (q(θ))

¢
= (n− 1)F 0 ¡q∗−1 (q(θ))¢ ¡F ¡q∗−1 (q(θ))¢¢n−2R.

In the symmetric equilibrium, q(θ) = q∗(θ). Therefore, the FOC yields the following

differential equation that q∗(θ) must satisfy in an interior solution:

q∗0 (θ) = (n− 1)F 0 (θ) (F (θ))n−2R. (2)

The solution of this equation is given by:

q∗(θ) = F (θ)n−1R+ η (3)

for some η ∈ R.
5Since q∗(θ) is strictly increasing, we ignore the possibility of ties as they occur with probability zero.

8



Equation (3) describes the equilibrium strategies over the range of θ’s that lead to

an interior solution, where efforts chosen by agents are strictly positive. However, there

may be regions of parameters where agents choose corner solutions and provide zero

effort, q∗(θ) = θ. Theorem 1 states the explicit agents’ equilibrium strategies for any

differentiable and atomless distribution function F (.). Prior to presenting the theorem, we

outline below an intuitive explanation regarding the nature of the symmetric equilibrium

strategies, which are necessarily continuous.

There are two types of regions for the parameter θ. We let Region I be the region

where agents choose positive levels of effort, thus the equilibrium is characterized by

equation (3).6 We let Region C be the one where agents choose zero effort, q∗(θ) = θ.

To derive the conditions that an equilibrium must satisfy, we consider the case where

agents’ strategies lie in Region I for θ ∈ [θ1, θ2) and in Region C for θ ∈ [θ2, θ3]. First,
the continuity of the equilibrium strategies implies that F (θ2)

n−1R + η = θ2; hence,

η = θ2 − F (θ2)
n−1R. Second, for any θ ∈ [θ2, θ3], for q∗(θ) = θ to be the optimal choice,

an agent’s profits for this choice cannot be lower than his profits for any q ∈ (θ, θ3], i.e.,
F (θ)n−1R ≥ F (q)n−1R− (q − θ), or

F (q)n−1R− q ≤ F (θ)n−1R− θ for any θ ∈ [θ2, θ3] , q ∈ (θ, θ3] . (4)

Finally, the non-negativity of effort implies that F (θ)n−1R+ η ≥ θ for any θ in [θ1, θ2], or

F (θ2)
n−1R− θ2 ≤ F (θ)n−1R− θ for any θ ∈ [θ1, θ2] . (5)

Equation (4) must be satisfied for any interval of parameters where the equilibrium

lies in Region C, thereby implying that the function F (θ)n−1R − θ is nonincreasing in

such an interval. Equation (5) must be satisfied for any interval of parameters where

the equilibrium lies in Region I. This equation requires that the value of the function

F (θ)n−1R − θ at the upper bound of the interval cannot be higher than the value at

any other θ in the interval. These conditions are shown to describe an equilibrium in

Theorem 1, where the boundaries of the regions are characterized as well.7 The theorem

is stated for the case where the function F (θ)n−1R − θ is decreasing at θ = 0, that is,

(n − 1)F (0)n−2F 0(0)R − 1 < 0, which always holds when n > 2. After the theorem,

6Region I can be the union of several intervals. If this is the case, the parameter η changes from one

interval to another.
7All proofs are relegated to the appendix.
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we indicate the small necessary changes to state the results for all other cases with two

agents.

Theorem 1 Consider a nondiscriminatory contest with a reward R. Assume that F (θ)n−1R−
θ has a finite set of local minima.8 Also, assume that F (θ)n−1R−θ is decreasing at θ = 0.
We define a finite sequence of parameters β0 < α1 < β1 < α2 < ... that starts with β0 = 0.

The other parameters of the sequence are defined recursively as follows:

(i) given that βm−1 < 1 has been defined, αm, for m ≥ 1, is equal to 1 if F (θ)n−1R− θ

is decreasing in
£
βm−1, 1

¤
; otherwise, αm is the first parameter θ larger than βm−1 that is

a strict local minimum of F (θ)n−1R− θ.

(ii) given that αm < 1 has been defined, βm, for m ≥ 1, is equal to 1 if αm is a global

minimum; otherwise, βm is the first parameter θ larger than αm for which F (βm)
n−1R−

βm = F (αm)
n−1R− αm that is not a local minimum of the function F (θ)n−1R− θ.

Then, the unique symmetric equilibrium is:

q∗(θ) = F (θ)n−1R+ αm − F (αm)
n−1R for θ ∈ [αm, βm] ,m ≥ 1 (Region I)

q∗(θ) = θ for θ ∈
£
βm−1, αm

¤
,m ≥ 1 (Region C).

Figure 1 represents for the case n = 2 the equilibrium effort levels e(θ) and the function

F (θ)R− θ if F 0(0)R− 1 < 0.9 10

When F (θ)n−1R− θ is increasing, Theorem 1 still holds, and the recursive definition

of the sequences (αm)m and (βm)m is similar, except that we start with α1 = 0 and β0

does not exist. Similarly, if the derivative of F (θ)n−1R− θ at θ = 0 is zero, the sequences

will be the same as in Theorem 1 unless F (θ)n−1R − θ > 0 for some interval (0,bθ) withbθ > 0, in which case the definition of the sequences starts with α1 = 0.

8This is a very mild requirement that is satisfied by any polynomial and any commonly used distrib-

ution function.
9We note that, for n = 2, the proposed strategies constitute the unique equilibrium in monotonic

strategies if the set {θ ∈ [0, 1] /F 0(θ) = 1/R} has zero measure (see Pérez-Castrillo and Wettstein, 2012).
10The equilibrium construction bears some similarities to the construction in Seel (2012), where the

informed player’s bid can also be zero for an interval of types (in his case, the type corresponds to the

size of the player’s initial advantage).
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F(θ)R-θ 

 α2 β1  α1  η0 β2=1 

e(θ) 

  Region C   Region I 
  Region C   Region I 

 θ 

Figure 1: Equilibrium effort in a nondiscriminatory contest for two agents.

4 Agents’ equilibrium strategies in discriminatory con-

tests

We now analyze agents’ strategies in discriminatory contests when n = 2. We denote

N = {A,B} and assume that RA > RB. Formulating the agents’ maximization problems

in the same manner as in the nondiscriminatory case, we obtain the following FOCs for

agents A and B, when they exert positive efforts:

q0B
¡
q−1B (q)

¢
= F 0 ¡q−1B (q)

¢
RA. (6)

q0A
¡
q−1A (q)

¢
= F 0 ¡q−1A (q)

¢
RB. (7)

The solution of the system of differential equations is given by

qA(θ) = F (θ)RB + ηA, (8)

qB(θ) = F (θ)RA + ηB, (9)

for some ηA, ηB ∈ R 11.

As we found in our analysis of the agents’ equilibrium strategies in nondiscriminatory

contests, there are also regions where one or both agents put in zero effort. Furthermore,

in discriminatory contests, discontinuities in an agent’s strategy cannot be ruled out.

11When there are n > 2 agents there exist several possibilities for discrimination, each leading to a

different set of conditions and equations. Furthermore, the solution of the resulting systems of differential

equations equations cannot be obtained in a closed form.
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Region Iγ 

q  θB 
θA  

Region C 

q θB 
θA 

Figure 2: Choice of quality by the two agents in an interval of Region C and in an interval

of Region Iγ.

Therefore, there may exist a quality interval that is never reached by an agent even

though he offers qualities below and above that interval.

As we show in the Appendix (Lemmas 1 and 2), only three strategy configurations

can emerge in equilibrium. We call Region I the set of quality levels q that are reached

when both agents play according to the interior solution; that is, q ∈ I if q−1A (q) < q

and q−1B (q) < q. Also, we call Region C the set of qualities reached when both agents

put in zero effort; that is, q ∈ C if q−1A (q) = q−1B (q) = q. The remaining region, which

does not exist in nondiscriminatory contests, corresponds to quality levels reached by B

through zero effort, but never offered by agent A. More precisely, Region J is given by

the set of qualities q such that q−1A (q) does not exist and q−1B (q) = q. Moreover, Region

J always appears before Region I. Therefore, the range of qualities in equilibrium can

be split into two types of intervals, each of which belong to either Region C or Region

Iγ, where Region Iγ is given by an interval of (lower) qualities that is never reached by

agent A and an interval of (higher) qualities that is reached by both agents contributing a

positive effort. We note that in discriminatory contests, Region Iγ plays a similar role to

Region I in nondiscriminatory contests. Figure 2 depicts the choice of quality (represented

by the middle vertical axis) for both agents as a function of the parameters θA and θB

(represented by the vertical axes on both sides) in two quality intervals, one belonging to

region C and another to region Iγ.12

12The interval in region Iγ depicted in Figure 2 corresponds to an interval whose upper bounds (in

terms of θ) are θA = θB = 1. If this interval were followed by an interval in region C , the transition to

the C interval would be continuous, that is the top arrows would be horizontal.
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At equilibrium, for any θ, agent A’s effort is greater than or equal to agent B’s effort,

that is, eA(θ)− eB(θ) ≥ 0. Efforts are the same in Region C and the inequality is strict

for the values of θ in the lower part of Region Iγ (we called that Region J previously):

agent B provides zero effort whereas agent A chooses a positive effort level. In the upper

part of Region Iγ, eA(θ) − eB(θ) = qA(θ) − qB(θ) = ηA − ηB − F (θ) (RA −RB). If we

denote by θ the upper bound (in terms of θ) of the interval which is in Region Iγ, then

at equilibrium qA
¡
θ
¢
= qB

¡
θ
¢
, which implies ηA − ηB = F

¡
θ
¢
(RA −RB). Therefore, in

this part of Region Iγ, eA(θ)− eB(θ) =
¡
F
¡
θ
¢
− F (θ)

¢
(RA −RB) > 0 for all θ < θ. The

distance in effort decreases as θ increases and it vanishes at θ = θ.

So far we have highlighted several properties of equilibrium strategies in discriminatory

contests for general distribution functions. We proceed to analyze particular classes of

distribution functions for which equilibrium strategies can be fully described in a simple

manner.

First, we discuss the possibility of a corner solution. It is intuitive that such a solution

would emerge if the prizes allocated in the contest are very small. Proposition 1 goes a

step forward and provides a necessary and sufficient condition for Region C to constitute

the only equilibrium in the contest. In such an equilibrium, both agents choose zero effort

for every θ ∈ [0, 1], a strategy profile that we denote by
¡
qCA , q

C
B

¢
:

qCA(θ) = qCB(θ) = θ for all θ ∈ [0, 1] .

Proposition 1 The strategy profile
¡
qCA , q

C
B

¢
constitutes an equilibrium of the contest

(RA, RB) if and only if the function F (θ)RA − θ is non-increasing in θ for all θ ∈ [0, 1].
Moreover, if the set {θ ∈ [0, 1] |F 0(θ) = 1/RA} has zero measure, then no other equilibrium
exists.

Second, if the function F (θ)RA−θ is nondecreasing for all θ ∈ [0, 1] (which implies RA

is high enough), then, in equilibrium, the qualities offered always lie in Region Iγ. That

13



is, agents follow the strategy profile
³
q
Iγ
A , q

Iγ
B

´
,13 defined by

q
Iγ
A (θ) = F (θ)RB + γ for all θ ∈ [0, 1]

q
Iγ
B (θ) =

⎧⎨⎩ θ for all θ ∈ [0, γ)
F (θ)RA + γ − F (γ)RA for all θ ∈ [γ, 1]

where γ solves RB = [1− F (γ)]RA; hence, γ = F−1
³
1-RB

RA

´
.

The whole class of distribution functions and rewards for which the strategy profile³
q
Iγ
A , q

Iγ
B

´
is an equilibrium is provided in Proposition 2.

Proposition 2 The strategy profile
³
q
Iγ
A , q

Iγ
B

´
constitutes an equilibrium of the contest

(RA, RB) if and only if the following two conditions hold:

F (θ)RA − θ ≤ F (γ)RA − γ for all θ ≤ γ (10)

F (θ)RA − θ ≥ F (γ)RA − γ for all θ ≥ γ. (11)

In particular,
³
q
Iγ
A , q

Iγ
B

´
is an equilibrium if F (θ)RA − θ is nondecreasing in θ for all

θ ∈ [0, 1]. Furthermore, the equilibrium is unique if inequalities (10) and (11) are strict.

When the function F (θ)RA− θ is increasing in some intervals of θ’s and decreasing in

others, then the equilibriumwill include intervals of quality that lie in Region Iγ and, often,

others that lie in Region C. While a full characterization of the equilibrium strategies is

cumbersome for general distribution functions, there are large families of functions that

allow for quite simple characterizations. Their analysis will also provide robust intuitions

on the agents’ equilibrium behavior. Next, we consider two such families, namely strictly

convex or concave distribution functions.

The following theorem characterizes the structure of equilibrium strategies when the

function F (.) is convex. We note that for a convex F (.), it is always the case that

F 0(0) < 1 < F 0(1). To simplify the presentation of the theorem, we define the strategy

13The qualities chosen by the agents as well as the cut-off γ in the profile
³
q
Iγ
A , q

Iγ
B

´
depend on the

particular function F (.) and the rewards RA and RB. We do not express this dependence on
³
q
Iγ
A , q

Iγ
B

´
to keep the notation simple.
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profile
³
q
CIγ
A , q

CIγ
B

´
:

q
CIγ
A (θ) =

⎧⎨⎩ θ for all θ ∈ [0, α)
F (θ)RB + γ − F (α)RB for all θ ∈ [α, 1]

q
CIγ
B (θ) =

⎧⎨⎩ θ for all θ ∈ [0, γ)
F (θ)RA + γ − F (γ)RA for all θ ∈ [γ, 1]

where α and γ solve

[1− F (α)]RB = [1− F (γ)]RA (12)

F (α)RA − α = F (γ)RA − γ. (13)

Under the strategy profile
³
q
CIγ
A , q

CIγ
B

´
, both agents exert zero effort up to a threshold

value of θ and choose positive effort levels for higher values. Agent A’s threshold is lower

than agent B’s, (α < γ) due to the higher reward he obtains if he wins the contest.

Finally, while agent B’s strategy is continuous in the parameter θ, agent A’s strategy

entails a discrete jump from α to γ at his threshold.

Theorem 2 Let F (.) be convex.

(a) If RA ≤ 1
F 0(1) , then an equilibrium is given by

¡
qCA , q

C
B

¢
.

(b) If either RA ∈
³

1
F 0(1) , 1

´
or both RA ∈

h
1, 1

F 0(0)

´
and F (RA −RB)RA− (RA −RB) <

0, then an equilibrium is given by
³
q
CIγ
A , q

CIγ
B

´
.

(c) If either RA ≥ 1
F 0(0) or both RA ∈

h
1, 1

F 0(0)

´
and F (RA −RB)RA − (RA −RB) ≥ 0,

then an equilibrium is given by
³
q
Iγ
A , q

Iγ
B

´
.

Furthermore, these are the unique equilibrium configurations.

We point out that whenRA ∈
h
1, 1

F 0(0)

´
, the condition F (RA −RB)RA−(RA −RB) ≥

0 is equivalent toRA−RB ≥ p (RA), where we denote by p (RA) the unique strictly positive

p that satisfies F (p)RA − p = 0. Thus, when RA ∈
h
1, 1

F 0(0)

´
, we are in case (c) if RB is

not “close” to RA.

Figure 3 depicts the equilibrium configuration as a function of the prizes RA andRB for

the class of convex distribution functions. WhenRA is small enough, the whole equilibrium

is in Region C, and when RA is large enough, the equilibrium is in Region Iγ where agent

A puts in a positive effort at θ = 0 and agent B starts to exert a positive effort only for
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Figure 3: Equilibrium configuration when F (.) is convex.

large enough θ’s. The same occurs when RA is intermediate but substantially larger than

RB. The intuition for these two cases is similar to that provided after Propositions 1 and

2, namely agents do not have incentives to exert any effort if the reward is low whereas

competition in efforts arises if the reward is high.

When RA is intermediate and, depending on RA, not too much higher than RB, the

equilibrium entails a corner solution for low values of θ and an interior solution for high

values (the Region CIγ). The reason for a positive effort being exerted at higher values

of θ can be traced back to the larger density at higher values of θ due to the convexity of

the distribution function F (θ). If the density is high, increasing the effort implies a large

increase in the probability of winning the contest hence, a larger payoff.

Figure 4 illustrates the quality choices by the agents in an example where F (θ) = θ3,

RA = 1 and RB = 0.666, which implies that the solution lies in region (b) in Theorem

2. Both agents choose corner solution as long as θ < α = 0.416 at which point agent A

jumps to qA = γ = 0.725 and chooses a positive effort hereafter. On the other hand, agent

B continues with zero effort up to θ = 0.725 and selects a positive effort for higher θ’s.

As this figure suggests, qA(θ) (or eA(θ)) is always higher than qB(θ) (or eB(θ)) whenever

we are in region Iγ, and it is strictly higher except at the top of the interval.
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Figure 4: Quality choices qA (green diamonds) and qB (red dots) if F (θ) = θ3, RA = 1

and RB = 0, 666.

We now characterize the equilibrium strategies when the function F (.) is concave, in

which case F 0(1) < 1 < F 0(0). We define the strategy profile
³
q
IγC
A , q

IγC
B

´
as follows:

q
IγC
A (θ) =

⎧⎨⎩ F (θ)RB + γ for all θ ∈ [0, β)
θ for all θ ∈ [β, 1]

q
IγC
B (θ) =

⎧⎨⎩ θ for all θ ∈ [0, γ) ∪ [β, 1]
F (θ)RA + γ − F (γ)RA for all θ ∈ [γ, β)

where γ and β solve

γ = β − F (β)RB (14)

F (γ)RA − γ = F (β)RA − β. (15)

When agents follow the strategy profile
³
q
IγC
A , q

IγC
B

´
, they exert zero effort above the

same threshold value of θ. For low values of θ, they follow an interior solution where agent

A has an incentive to exert a strictly positive effort even when θA = 0, whereas agent B

only exerts a positive effort above a certain threshold of θB.

Theorem 3 Let F (.) be concave.

(a) If RA ≤ 1
F 0(0) , then an equilibrium is given by

¡
qCA , q

C
B

¢
.

(b) If either RA ∈
³

1
F 0(0) , 1

´
or both RA ∈

h
1, 1

F 0(1)

´
and F (1−RB)RA−(1−RB) > RA−1,
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then an equilibrium is given by
³
q
IγC
A , q

IγC
B

´
.

(c) If either RA ≥ 1
F 0(1) or both RA ∈

h
1, 1

F 0(1)

´
and F (1−RB)RA − (1−RB) ≤ RA − 1,

then an equilibrium is given by
³
q
Iγ
A , q

Iγ
B

´
.

Furthermore, these are the unique equilibrium configurations.

Note that when RA ∈
h
1, 1

F 0(1)

´
, the condition F (1−RB)RA − (1−RB) > RA − 1 is

equivalent to z(RA) < 1− RB, where we denote by z (RA) the unique strictly positive z

that satisfies F (z)RA− z = RA− 1. Thus, when RA ∈
h
1, 1

F 0(0)

´
, we are in case (b) if RB

is “small enough” or not too close to RA.

When rewards are quite low or quite high, the agents’ behavior is similar to that for

the convex case. For intermediate values of reward, they play according to the interior

strategy profile for low levels of θ and exert zero effort for high values of θ. Notice that

the corner strategy profile emerges now for high values of θ because of the low density of

θ due to the concavity of the distribution function.

We remark that the propositions and theorems derived in the current section also apply

to nondiscriminatory contests. However, if RA = RB the systems (12)-(13) and (14)-(15)

do not have a unique solution. The equilibrium behavior in a nondiscriminatory contest

when the distribution function is convex is the solution of (12)-(13) that satisfies γ = α

and F 0(α)R = 1 in the strategy profile
³
q
CIγ
A , q

CIγ
B

´
. When the distribution function is

concave, the equilibrium is the solution of (14)-(15) that satisfies γ = 0 and β given by

the unique positive value for which F (β)R − β = 0 in the strategy profile
³
q
IγC
A , q

IγC
B

´
.

Naturally, these two equilibria coincide with the contestants’ equilibrium behavior in the

nondiscriminatory contest identified in Theorem 1.

5 Designer’s payoff and discrimination

In this section, we address the desirability of discrimination when n = 2. The designer’s

benefit I(q) depends on the best quality obtained in the contest. We can determine the

expected designer’s payoff as a function of the agents’ strategies, which allows us to discuss

the change in the designer’s payoff due to discrimination separately for the four possible

equilibrium strategy profiles that we identified in Section 4.

The discussion of one of the profiles is trivial. In any contest for which the agents’

equilibrium strategy profile is
¡
qCA , q

C
B

¢
, the designer’s revenue is the same, whereas the
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cost increases with the rewards. Therefore, any contest with positive rewards is dominated

by the nondiscriminatory contest with R = 0 in the sense that the designer’s profits are

higher if R = 0. This implies that discrimination can only decrease the designer’s payoff.

Proposition 3 addresses the other three cases.

Proposition 3 Consider a nondiscriminatory contest RA = RB = R for which an equi-

librium is given by the strategy profile (qA, qB) . Consider a marginal change in (RA, RB)

that increases RA by ε > 0 and decreases RB by ε.

(a) If (qA, qB) =
¡
qIA, q

I
B

¢
and the equilibrium following the change is given by

³
q
Iγ
A , q

Iγ
B

´
,

then the contest is dominated by a discriminatory contest if R < 2
F 0(0) .

(b) If (qA, qB) =
¡
qCIA , qCIB

¢
and the equilibrium following the change is given by

³
q
CIγ
A , q

CIγ
B

´
,

then the contest is dominated by a discriminatory contest.

(c) If (qA, qB) =
¡
qICA , qICB

¢
and the equilibrium following the change is given by

³
q
IγC
A , q

IγC
B

´
,

then the contest is dominated by a discriminatory contest if R < 2
F 0(0) .

Discrimination in the cases addressed in Proposition 3 is desirable because it elicits

higher efforts on the part of the agents. A marginal change in the rewards that leads

to a discriminatory contest has a second-order effect on the designer’s expected cost

because the infinitesimal change in the rewards is multiplied by infinitesimal changes in

the probability of A winning (which go up) and B winning (which go down). However,

the marginal change in the rewards has a first-order effect (which, in principle, can be

positive or negative) on the expected quality of the innovation, hence, on the designer’s

expected revenue.

Consider a shift from a nondiscriminatory contest R to a discriminatory contest (RA =

R+ε,RB = R−ε) when the initial equilibrium is
¡
qIA, q

I
B

¢
(case (a)), which requires that

F 0(0)R ≥ 1. The increase in RA (and the decrease in RB) makes player Amore aggressive:

it gives him incentives to provide a strictly positive level of quality (γ) even if his type

were the lowest. Player B becomes less aggressive and prefers not to provide any effort if

his type is low (lower than γ). While the initial increase in the effort by player A is γ for

all the low types, the initial loss of effort by player B depends on the effort that he was

exerting in the equilibrium
¡
qIA, q

I
B

¢
, which follows the function F (θ)R − θ. If the initial

effort was very low, i.e., if F 0(0)R is close to 1, then the increase in qA is larger than

the decrease in qB. Moreover, this change in qualities offered by low levels of θ moves
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up the equilibrium qualities for the whole interval [0, 1]. This leads to the condition that

discrimination is optimal if F 0(0)R < 2 whereas it is not otherwise. Moreover, the same

intuition explains the condition in case (c), where the equilibrium in the nondiscriminatory

contest is
¡
qICA , qICB

¢
, because the region for low values of types under discrimination is

also an Iγ Region.

If we look at the changes induced by discrimination when agents’ equilibrium behavior

under a nondiscriminatory contest is
¡
qCIA , qCIB

¢
(case (b)), the positive effect that we have

identified in the other two cases also exists. Moreover, a new effect appears: the stronger

incentives for agent A to provide a higher effort translate to a decrease in the cut-off

value α from which on he provides a positive effort. Therefore, the interior region I

(which becomes Iγ) expands. This additional positive effect makes discrimination always

beneficial.

While Proposition 3 shows when it is beneficial to discriminate for a given strategy

profile, it fails to provide actual conditions under which a discriminatory contest dom-

inates a nondiscriminatory one. To show that such an equilibrium profile arises in an

optimal nondiscriminatory contest, we present first an illustrative example and then pro-

vide sufficient conditions in the case of a convex distribution function.

Example 1. Consider the case where the designer wants to achieve a minimum level

of quality q. That is, any lower quality innovation yields zero revenues for the designer

whereas innovations of quality q or higher yield a revenue of I > 0: I(q) = 0 for q ∈ [0, q)
and I(q) = I for q ≥ q.14 We analyze the case where q ≤ 1. Furthermore, we assume that
an agent’s type is uniformly distributed, that is, F (θ) = θ.

In a nondiscriminatory contest R, the equilibrium is
¡
qCA , q

C
B

¢
if R ≤ 1 and

¡
qIA, q

I
B

¢
if R > 1. Therefore, the designer’s payoff increases under discrimination if the optimal

nondiscriminatory contest implies a reward R∗ ∈ (1, 2).
ForR > 1, easy calculations show that the designer’s payoff is U (R) = I− q2

R2
I−R. The

optimal R∗ (if it is higher than 1) is R∗ = 2
1
3

¡
q2I
¢ 1
3 . Therefore, discrimination dominates

nondiscrimination if two conditions are met: U
³
2
1
3

¡
q2I
¢ 1
3

´
> U (0) =

¡
1− q2

¢
I (which

implies that R∗ > 1) and 2
1
3

¡
q2I
¢ 1
3 < 2, that is, q2I ∈

³
3
3
2

2
, 4
´
, which is satisfied, for

example, if q = 1 and I = 3.

14We note that in this simple, illustrative example, the designer’s benefit function does not satisfy the

assumptions I 0(q) > 0 and I 00(q) < 0.
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For illustration, we can compute the optimal discriminatory contest in this numerical

example, which is RA = 1.8393 and RB = 1.6639. The discriminatory contest yields

a payoff of U (1.8393, 1.6639) = 0.28228, improving the payoff obtained in the optimal

nondiscriminatory contest, which is U
³
6
1
3

´
= 0.27432.

A more general class of environments where discrimination increases the designer’s

payoff is given by the following proposition.

Proposition 4 If F (θ) is a convex function with F 0(0) = 0, and I(q) = vi(q), with v > 0

and i(q) a bounded and strictly increasing function of q, then discrimination increases the

designer’s payoff if v is large enough.

Proposition 4 shows that when the distribution of types puts more weight on the

higher types, then the designer has an incentive to discriminate if the innovation is very

profitable.

Finally, let us note that the advantages of discrimination do not rely on the hypothesis

that the designer only cares about the best quality offered in the contest. Consider an

organization that benefits from the inputs provided by all the contestants. For example,

in a promotion contest, the efforts of all the contestants benefit the firm; in a sport or

a talent contest, the designer (the spectators) benefit from the performance of all the

participants; in a sales contest, the firm benefits from the outcomes realized by all the

sales people. The revenues of such an organization (again restricting attention to n = 2)

are captured by a function I (qA, qB) , increasing in both qualities qA and qB offered by

agents A and B. Then, Propositions 3 and 4 (considering I(qA, qB) = vi(qA, qB)) easily

extend to this environment.15

6 Conclusion

We provided a new setting of contests with asymmetric information where innate abili-

ties and effort combine to generate innovations of various qualities. Both the ability and

effort of an agent are his private information. The designer, whose revenue depends on

15The results also extend to environments where entering a contest entails a fixed cost independent of

the effort exerted in the contest itself. The formal proofs of these results are available from the authors

upon request.
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the quality of the bid, specifies a contest where the innovation of the highest quality is

rewarded. We first analyzed strategic behavior in a nondiscriminatory contest, where the

reward does not depend on the identity of the winner. We allowed for arbitrary distribu-

tion functions and determined the structure of equilibrium strategies and outcomes. The

equilibrium agents’ strategies consisted of two types of quality intervals: regions where

all agents put in a positive effort and those where all agents put in zero effort.

We then analyzed strategic behavior in discriminatory contests where rewards de-

pend on the identity of the winner. Here equilibrium strategies were more complex. We

provided a qualitative analysis of the structure of the equilibrium strategies for general

distribution functions and a full characterization of equilibrium behavior for several classes

of functions, in particular if the distribution function is either convex or concave.

We then used the equilibrium analysis to evaluate the designer’s payoff. This gener-

ated conditions under which the designer prefers a discriminatory to a nondiscriminatory

contest. To show that the conditions are not vacuous, we provided parameterized classes

of environments where discrimination is beneficial. Our result that discrimination is de-

sirable in a symmetric setting goes against the intuition that when agents are asymmetric,

some restrictions imposed on the stronger contestant may increase the designer’s payoff.

Our model can handle many familiar scenarios in addition to innovation. It can

be used, for example, to analyze, lobbying activity, procurement settings, promotion

competitions and even the design of sporting events. It can also be used to study contest

design in the presence of asymmetric contestants and shed further light on the imposition

of handicaps or favoritism.

The model can be extended in several dimensions. A dynamic version would consider

two-stage contests where the winners of the first round are paired against each other in

the second round. The designer’s objective function may also be expanded to include

explicit dependence on the agent’s innate ability. Moreover, since the analysis was carried

out only from the point of view of a single designer, a challenging task for further research

would be to consider environments with several competing designers.
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7 Appendix

Proof of Theorem 1. q∗(θ) is differentiable whenever q∗(θ) > θ by construction. We

now show through a series of claims that q∗(θ) is indeed a symmetric equilibrium strategy.

Claim 1. The equilibrium quality is well defined, that is, q∗(θ) ≥ θ for any θ ∈ [αm, βm]

for any m.

By construction, αm is a local minimum of the function F (θ)n−1R − θ. βm is the

first instance for which F (θ)n−1R − θ also reaches this minimum for θ > αm and, if this

minimum is never reached again, βm = 1. Hence, q∗(θ) = F (θ)n−1R − (F (αm)
n−1R −

αm) ≥ θ for any θ ∈ [αm, βm].

Claim 2. The equilibrium quality q∗(θ) is continuous. It is also strictly increasing in θ

and hence q∗(θ) is a regular strategy.

By definition, q∗(θ) = θ over all intervals in C, and q∗(θ) = F (θ)n−1R + η over all

intervals in I (where η is different for different intervals). Hence, q∗(θ) is continuous

over any interval. Moreover, for any interval [αm, βm] in I, q∗(αm) = F (αm)
n−1R+ αm−

F (αm)
n−1R = αm and q∗(βm) = F (βm)

n−1R+αm−F (αm)
n−1R = βm. Therefore, q

∗(θ) is

continuous everywhere. Finally, given that F (θ) is strictly increasing, q∗(θ) is also strictly

increasing over any interval. Hence, q∗(θ) is strictly increasing.

Claim 3. The profits of any agent of type θ as a function of his choice of q are constant

in any interval in Region I; that is, for any q ∈ [αm, βm] with q ≥ θ.

For any q ∈ [αm, βm] with q ≥ θ, the agent’s profits areµ
F

µ
F−1

µ
1

R
1

n−1

¡
q − αm + F (αm)

n−1R
¢ 1
n−1

¶¶¶n−1
R−(q − θ) = F (αm)

n−1R−(αm − θ) .

These profits are independent of q.

Claim 4. The profits of any agent of type θ, as a function of his choice of q are decreasing

in any interval in Region C, that is; for any q ∈
£
βm−1, αm

¤
with q ≥ θ.

For q ∈
£
βm−1, αm

¤
with q ≥ θ, the agent’s profits are F (q)n−1R− (q − θ). They are

decreasing in q since F (q)n−1R− q is decreasing in q by construction of βm−1 and αm.

Claim 5. The profits of any agent of type θ are non-increasing in his choice of q.

This follows from continuity and claims 3 and 4.

Claim 6. q∗(θ) is a best response for an agent of type θ.

If q∗(θ) = θ, then the only possible change in the strategy is to increase q which results,

according to Claim 5, in a lower payoff. If q∗(θ) > θ, increasing q is also non-profitable.

23



Moreover, any decrease in q for which the effort is still non-negative implies that the agent

stays within the same region (recall that effort is zero in the left boundary of the region).

Hence, according to Claim 3, profits remain the same.

Claims 1 to 6 imply that q∗(θ) is an equilibrium of the nondiscriminatory contest.

We now prove that q∗(θ) is the unique symmetric equilibrium. We again proceed

through a series of claims. Consider any symmetric equilibrium q(θ). By arguments

similar to those used in auction theory, q(θ) is necessarily continuous.

Claim 7. If q (θo) = θo and q (θoo) = θoo for θoo ≥ θo then F (θo)n−1R−θo ≥ F (θoo)n−1R−
θoo.

The expected payoff of an agent of type θo when he chooses q (θo) = θo is equal to

F (θo)n−1R, which must not be less than F (θoo)n−1R − (θoo − θo), his expected payoff if

he offers quality θoo. Therefore, the claim holds.

Claim 8. Consider a maximal interval [θo, θoo] where q(θ) is an interior solution. Then,

q(θ) = F (θ)n−1R+η for all θ ∈ [θo, θoo] with η = θo−F (θo)n−1R. Moreover, either θoo = 1
or θoo is the first parameter larger than θo for which F (θoo)n−1R− θoo = F (θo)n−1R− θo

that is not a local minimum of the function F (θ)n−1R− θ.

The property that q(θ) = F (θ)n−1R + η follows from the FOCs characterizing an

interior equilibrium. To show that η = θo−F (θo)n−1R we distinguish between two cases.
(1) If θo > 0, then there exists an interval in Region C just to the left of θo. By

continuity of q(θ), it must be the case that q(θ0) = θ0 which implies that η = θo −
F (θo)n−1R.

(2) If θo = 0, the probability of winning is zero because the quality offered is strictly

increasing in θ. Hence, it cannot be that in equilibrium both agents choose q(0) > 0,

since it would lead to a negative payoff. Therefore, F (0)n−1R + η = 0, i.e., η = 0 and

η = θo − F (θo)n−1R holds in this case as well.

Also, by continuity, if θoo < 1, it must be the case that F (θoo)n−1R + η = θoo; that

is, θo − F (θo)n−1R = θoo − F (θoo)n−1R. Finally, suppose by way of contradiction, that

θoo > bθ, where bθ is the first parameter which is not a local minimum of the function

F (θ)n−1R− θ that satisfies θo − F (θo)n−1R = bθ − F
³bθ´n−1R. Then, q(θ) is an interior

solution in an interval
∙bθ,bbθ¸ where F (θ)n−1R−θ is a decreasing function. However, this is

not possible because for θ ∈
µbθ,bbθ¸, q(θ) = F (θ)n−1R+η = F (θ)n−1R+θo−F (θo)n−1R =
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F (θ)n−1R+ bθ − F
³bθ´n−1R < θ, since F (θ)n−1R− θ is decreasing in this interval.

Claim 9. In a maximal interval [θo, θoo] where q(θ) = θ, either θoo = 1 or θoo is the first

parameter such that the function F (θ)n−1R− θ is increasing on an interval
³
θoo,bθi.

Suppose, by way of contradiction, that θoo is such that the function F (θ)n−1R − θ is

not increasing in an interval
³
θoo,bθi for some bθ > θoo. Recall that by maximality of the

interval [θo, θoo] it must be the case that q(θ) > θ for θ ∈
³
θoo,eθi with eθ < bθ. Hence,

q(θ) = F (θ)n−1R + η = F (θ)n−1R + θoo − F (θoo)n−1R > θ for θ ∈
³
θoo,eθi. But this

cannot happen if F (θ)n−1R − θ is not increasing. Furthermore, by Claim 7, θoo must be

the first parameter where this happens after θo.

Therefore, q∗(θ) is the unique symmetric equilibrium, given that it is the only candidate

compatible with claims 8 to 9. Indeed, given that F (θ)n−1R − θ is decreasing for θ = 0,

Claim 8 implies that the first interval (at equilibrium) can not be in Region I because

otherwise q(θ) < θ for θ close to 0. Once we have identified the first interval, the sequential

application of claims 9 and 8 characterized the upper bounds of the following equilibrium

intervals in regions C and I. Finally, the sequence of intervals is finite because the function

F (θ)n−1R− θ has a finite set of local minima.

Before we proceed to the proof of Propositions 1 and 2, and Theorems 2 and 3, we

state and prove two lemmas. Lemma 1 rules out many possible strategy configurations in

equilibrium. Lemma 2 states the three strategic equilibrium configurations and the order

in which they can appear.

Lemma 1 Assume the sets {θ ∈ [0, 1] |F 0(θ) = 1/RA} and {θ ∈ [0, 1] |F 0(θ) = 1/RB} have
zero measure. Equilibrium strategies in a contest (RA, RB) cannot give rise to a nonempty

interval of qualities (q1, q2) ⊆ [min {qA(0), qB(0)} , qA(1)] such that one of the following
holds:

(a) q−1A (q) < q and q−1B (q) does not exist, for all q ∈ (q1, q2),
(b) q−1A (q) does not exist and q

−1
B (q) < q, for all q ∈ (q1, q2),

(c) both q−1A (q) and q
−1
B (q) do not exist, for all q ∈ (q1, q2),

(d) q−1A (q) < q and q−1B (q) = q, for all q ∈ (q1, q2),
(e) q−1A (q) = q and q−1B (q) < q, for all q ∈ (q1, q2),
(f) q−1A (q) = q and q−1B (q) does not exist, for all q ∈ (q1, q2).

Proof of Lemma 1. We prove the six properties by way of contradiction.
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(a) If such an interval (q1, q2) exists, then agent A of type θ ∈ (q−1A (q1), q
−1
A (q2))

can increase his payoff by lowering the quality offered to another q0 < q(θ) such q0 ≥
max {q1, θ}. This change reduces the cost and does not affect his probability of winning
the contest.

(b) The proof is similar to the proof of (a).

(c) If such an interval (q1, q2) exists, let q3 = {inf q | q > q2 and q = qi(θ) for some

i = A,B and θ ∈ [0, 1]}. If it is the case that q3 is offered, that is, qA(θ) = q3 for some

θ ∈ [0, 1] (we take agent A to be the one offering q3 without loss of generality), then θ < q3

(it is certainly true if q2 > 1, and if q2 ≤ 1 it is true since the equilibrium strategies are

monotonic) and agent A of type θ can increase his payoff by lowering the quality offered to

another q0 > θ in the interval (q1, q2) because this change does not affect his probability of

winning the contest. By continuity, a similar argument goes through if q3 is not reached.

(d) Suppose, by contradiction, that such an interval exists. For any type θ ∈
¡
q−1A (q1) , q

−1
A (q2)

¢
,

q(θ) maximizes firm A’s profits F (q)RA − (q − θ). Therefore, the following FOC is nec-

essarily satisfied: F 0(qA(θ))RA − 1 = 0. However, this is not possible for an interval¡
q−1A (q1) , q

−1
A (q2)

¢
provided the set {θ ∈ [0, 1] /F 0(θ) = 1/RA} has zero measure.

(e) The proof is similar to the proof of (d).

(f) Consider the maximal last interval (q1, q2) of this type.16 Since qB(θ) ≥ q2 for every

θ ∈ (q1, q2) and there cannot be a mass point, it must be the case that q2 < 1. Moreover,
we claim that agent B must be offering quality levels arbitrarily close to q2. Indeed, if

this were not the case, the maximality of (q1, q2) implies that agent A is either reaching

qualities just above q2 by putting in positive effort or he is not reaching these qualities.

The first possibility is ruled out by part (a) while the second is ruled out by part (c) of the

lemma. Note that these qualities arbitrarily close to q2 must be offered through positive

effort levels by agent B since they are offered by types θ < q2.

Given parts (b) and (e), it is necessarily the case that if B puts in positive effort to

reach a certain interval (q2, q3), A also puts in positive effort to reach this interval.

Consider now the largest such q3, we show that θA3 ≡ q−1A (q3) > q−1B (q3) ≡ θB3. Notice

first that q2 = q−1A (q2) > q−1B (q2) ≡ θB2 (we assume for convenience that both q2 and q3

are reached, otherwise we can make a limiting argument). Given that the qualities offered

16We say that (q1, q2) is a maximal interval in a region if there does not exist an interval (q01, q
0
2) in

that region with q01 ≤ q1, q02 ≥ q2 where one of the two inequalities is strict.
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in an interior equilibrium are given by qA(θ) = F (θ)RB + ηA and qB(θ) = F (θ)RA + ηB,

q3 = F (θA3)RB + ηA = F (θB3)RA + ηB and q2 = F (q2)RB + ηA = F (θB2)RA + ηB.

Therefore, q3 − q2 = [F (θA3)− F (q2)]RB = [F (θB3)− F (θB2)]RA, which implies that

F (θA3) > F (θB3) − F (θB2) + F (q2) > F (θB3), i.e., θA3 > θB3 as we wanted to show.

Therefore, there still exists another interval (q3, q4) above (q2, q3) where agents bid. Given

that agent B is putting in positive effort to reach q3, he cannot, since there are no atoms,

switch to a region of qualities that are reached by him through zero effort. Therefore, in

the new interval it is again the case that B does not offer any quality in it while A puts in

zero effort. This is the type of region we started with, in contradiction to the assumption

that it is the last region of this kind. Hence, such a region cannot exist in equilibrium.

Lemma 2 (a) Consider an equilibrium (qA(θ), qB(θ)) of the contest (RA, RB) and as-

sume the sets {θ ∈ [0, 1] |F 0(θ) = 1/RA} and {θ ∈ [0, 1] |F 0(θ) = 1/RB} have zero mea-
sure. Then the range of qualities offered in equilibrium [qA(0), qA(1)] can be split into

intervals, each of which belongs to either Region I, C, or J.

(b) Consider an equilibrium where there exists a (maximal) interval (q1, q2) in Region

J. Then, it must be followed by another interval (q2, q3) in Region I.

(c) Consider an equilibrium where there exists a (maximal) interval (q1, q2) in Region

I. Then, it must be preceded by another interval (q3, q1) in Region J.

Proof of Lemma 2. (a) It follows from Lemma 1.

(b) Consider the maximal interval (q1, q2) in Region J . We notice that q−1A (q2) ≤ q1 <

1. Therefore, there are types of agent A (higher than q1) that offer qualities above Region

J . In this new interval just above J , agent A puts in strictly positive effort. Thus, it

must be the case (according to Lemma 1) that agent B also puts in positive effort; that

is, this new interval belongs to Region I.

(c) Consider the maximal interval (q1, q2) in Region I. We prove this part if we show

that the interval can not be preceded by an interval in Region C and that it can not be the

initial interval. Suppose by contradiction that either q1 = 0 or that (q1, q2) is preceded by a

interval in Region C. In both cases, qA(q1) = qB(q1) = q1. Given the equilibrium strategies

in an interior region, qA(θ) = F (θ)RB+q1−F (q1)RB and qB(θ) = F (θ)RA+q1−F (q1)RA

for any θ ∈ (q1, q2). Therefore, qA(θ) < qB(θ) for any θ ∈ (q1, q2) , which implies that
q−1B (q2) < q−1A (q2) (or that limq→q2 q

−1
B (q) < limq→q2 q

−1
A (q)). In particular, there must be
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an interval of qualities reached above q2 and q−1B (q2) < q2. Therefore, in the interval of

qualities just above q2, agent B exerts positive effort, which must be matched by agent A

also offering positive effort, contradicting the maximality of (q1, q2) in Region I.

Proof of Proposition 1. We first prove a claim that will be used in the current

proof as well as in several proofs in Section 5.

Claim 10. Suppose that agent i, for i = A,B, chooses qi(θ) = θ for all θ ∈ (θo, θoo) and
that the function F (θ)Rj − θ, for j 6= i, is non-increasing in θ for θ ∈ (θo, θoo). Then, the
payoff of agent j of type θj is non-increasing in the quality q, for q ∈ (θo, θoo) with q ≥ θj.

The proof of Claim 10 follows from the fact that F (q)Rj−(q−θj) ≤ F (q0)Rj−(q0−θj)
when q ≥ q0 if the function F (θ)Rj − θ is non-increasing between q and q0.

We now prove Proposition 1. If F (θ)RA−θ is non-increasing in θ for all θ ∈ [0, 1], then
the function F (θ)RB − θ is also non-increasing in θ for all θ ∈ [0, 1] because RB < RA.

Therefore, if agent i chooses qi(θ) = θ for all θ ∈ [0, 1], then agent j 6= i maximizes his

payoff by choosing qj(θ) = θ as well, according to Claim 10. It follows that there is an

equilibrium where the agents’ strategies lie in Region C for all θ ∈ [0, 1].
Moreover, if agents’ equilibrium strategies lie in Region C for all θ ∈ [0, 1], then it is

necessarily the case that F (θ)RA − θ ≥ F (q)RA − q for any θ ∈ [0, 1] and for any q ≥ θ.

Therefore, the function F (θ)RA − θ is non-increasing in θ for all θ ∈ [0, 1].
Finally, suppose by contradiction that there exists another equilibrium. It must either

start with an interval in Region Iγ or with an interval in Region C followed by an interval

in Region Iγ. Therefore, there is a jump, that is, there exist two values q1 and q2 (where

q1 is possibly 0) with q1 < q2 such that F (q1)RA− q1 ≤ F (q2)RA− q2. If the inequality is

strict, then this contradicts the fact that the function F (θ)RA − θ is non-increasing in θ.

If this an equality, then F (θ)RA − θ is constant for all θ ∈ [q1, q2] , which contradicts the
property that the set {θ ∈ [0, 1] |F 0(θ) = 1/RA} has zero measure.
Proof of Proposition 2. We show first that

³
q
Iγ
A , q

Iγ
B

´
is well defined. (i) qIγB (θ) ≥ θ

for all θ ∈ [0, 1] because qIγB (θ) = θ for all θ ∈ [0, γ) and qIγB (θ) = F (θ)RA+γ−F (γ)RA ≥ θ

for all θ ≥ γ according to (11). (ii) qIγA (θ) ≥ θ for all θ ∈ [0, 1] because qIγA (θ) ≥ q
Iγ
B (θ)

due to the properties that qIγA (1) = q
Iγ
B (1) and q

Iγ 0
A (θ) = RB < RA = q

Iγ 0
B (θ).

Second, we prove a claim that will be useful at several proofs:

Claim 11. Suppose that agent i, for i = A,B, chooses qi(θ) = F (θ)Rj + η for all

θ ∈ (θo, θoo), with j 6= i. Then, the payoff of agent j of type θj is constant and equal to
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θj − η when he offers any quality q ∈ (F (θo)Rj + η, F (θoo)Rj + η) with q ≥ θj.

Given qi(θ), the payoff of agent j of type θj when he offers q ∈ (F (θo)Rj + η, F (θoo)Rj + η)

with q ≥ θj is

Rj Pr
θ
(F (θ)Rj + η ≤ q)− (q − θj) = Rj

µ
q − η

Rj

¶
− q + θj = θj − η.

Third, from Claim 11 and given agent B’s strategy, the payoff of agent A of type θ

when he offers any quality q ∈ [γ, qB(1)] with q ≥ θ is θ − γ + F (γ)RA. Similarly, the

payoff of agent B of type θ when he offers quality q ∈ [γ, qB(1)] with q ≥ θ is θ − γ, also

independent of q. In particular, the strategies suggested are best responses one to the

other for agents of type θ ∈ [γ, 1].
Agent B’s payoff when offering quality q(θ) = θ for θ ∈ [0, γ] is zero. His payoff would

be negative if he were to offer any q ∈ (θ, γ] since he still has a probability zero of winning
and it would be θ − γ < 0 if he were to offer any q ∈ (γ, qB(1)]. Therefore, agent B’s
strategy is a best response for all θ ∈ [0, γ) as well.
Agent A’s payoff when following the strategy suggested for θ ∈ [0, γ) is θ−γ+F (γ)RA.

As shown above, his payoff is the same for any q ≥ γ. If he offers q ∈ [θ, γ), then his
payoff is F (q)RA − (q − θ). Hence, agent A’s proposed strategy is his best response if

F (q)RA − (q − θ) ≤ θ − γ + F (γ)RA for all q ≤ γ, that is, F (q)RA − q ≤ F (γ)RA − γ,

which is implied by (10).

We also prove that conditions (10) and (11) are necessary for
³
q
Iγ
A , q

Iγ
B

´
to be an

equilibrium. If F (θ)RA − θ < F (γ)RA − γ for some θ > γ, then
³
q
Iγ
A , q

Iγ
B

´
cannot

be an equilibrium because qIγB (θ) would not be well defined (q
Iγ
B (θ) < θ). Moreover, if

F (θ)RA − θ > F (γ)RA− γ for some θ < γ, then
³
q
Iγ
A , q

Iγ
B

´
also cannot be an equilibrium

because agent A of type θ would strictly prefer θ to q
Iγ
A (θ) (because his benefits under

q
Iγ
A (θ) are the same as under γ), contradicting the optimality of q

Iγ
A .

Finally, we show that the equilibrium
³
q
Iγ
A , q

Iγ
B

´
is unique if the inequalities are strict.

We start by proving two claims:

Claim 12. Consider a maximal interval [θ1, θ2] in Region Iγ and denote by γ the cut-off

corresponding to this interval. Then, γ is increasing in both θ1 and θ2.

Indeed, the parameters ηA, ηB and γ in the interval [θ1, θ2] are characterized by

qA (θ1) = γ, that is, ηA = γ − F (θ1)RB; qB (γ) = γ, that is, ηB = γ − F (γ)RA;

and qA (θ2) = qB (θ2), that is, F (θ2)RB + γ − F (θ1)RB = F (θ2)RA + γ − F (γ)RA.

29



Therefore, γ is characterized by F (γ)RA = F (θ2) (RA −RB) + F (θ1)RB, which implies

that γ is increasing in θ1 and θ2.

Claim 13. If F (θ)RA − θ is increasing in θ for all θ ∈ [θ1, θ2], then, at equilibrium, the
interval [θ1, θ2] is in the region Iγ.

Otherwise, there must exist an interval [θo, θoo] ⊆ [θ1, θ2], with θoo > θo, such that

qA(θ) = qB(θ) = θ for all θ ∈ [θo, θoo]. However, we claim that, for example, q = θo is not

a best response for player A if his type is θo. Indeed, this player’s expected profit if he

chooses q ∈ [θo, θoo] is F (q)RA−q+θo, which is increasing in q if F (θ)RA−θ is increasing
in θ. Therefore, his expected profit is higher with, say, q = θoo than with q = θo.

To prove that the equilibrium is unique, we denote by γ∗ the cut-off in the profile³
q
Iγ
A , q

Iγ
B

´
, that is, γ∗ ≡ F−1

³
1-RB

RA

´
. We note that γ∗ is in the increasing part of the

function F (θ)RA−θ, according to the equations (10) and (11). Assume by way of contra-
diction there exists another equilibrium denoted byE, different from

³
q
Iγ
A , q

Iγ
B

´
. According

to Claim 13, in this equilibrium γ∗ must still be in an interval in the Region Iγ, we denote

by Ω such an interval. It cannot be that Ω = [0, 1] since then the two equilibria would co-

incide, thus, there must be an interval in Region C either before or after γ∗. Consider first

the case where there exists an interval [θo, θoo] in Region C before γ∗. If there are several

such intervals, we take the one adjacent to Ω on the left, that is, θoo is the lower bound

of Ω. There is then a γ (not necessarily γ∗) in Ω such that player B chooses qB(θ) = θ

for θ ∈ [θoo, γ] and player A’s profits, if of type θoo, are F (θoo)RA = F (γ)RA − γ + θoo.

Since θoo < γ∗, inequality (10) implies that F (γ)RA − γ < F (γ∗)RA − γ∗ and inequality

(11) implies that γ < γ∗.

If Ω = [θoo, 1], then by Claim 12, it must be that γ > γ∗, hence, Ω 6= [θoo, 1] and there
must exist another interval in Region C with values of θ higher than γ. This, however,

implies that E cannot be an equilibrium. Take a particular value θooo in that interval. The

profit of player A of type θoo in equilibrium E (following qA (θoo) = γ) is F (γ)RA−γ+θoo.
If he were to choose θooo his profit would increase to F (θooo)RA−θooo+θoo, in contradiction
to E being an equilibrium. Profit increases since, γ < γ∗ < θooo implies (if inequalities

(10) and (11) are strict) that F (γ)RA − γ < F (θooo)RA − θooo.

Second, if there is an interval [θo, θoo] in Region C after γ∗ but there does not exist

an interval in Region C before γ∗ then, by Claim 12, it must be that γ < γ∗. Player A’s

profit in equilibrium E, if of type θ = 0, is F (γ)RA−γ whereas it would be F (θo)RA− θo
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if it would choose q = θo. However, F (γ)RA−γ < F (θo)RA− θo because γ < γ∗ < θo and

strict inequalities (10) and (11), in contradiction to qA(0) = γ being a best response.

Proof of Theorem 2. (a) Given the convexity of F (.), F 0(1)RA ≤ 1 is a neces-
sary and sufficient condition for F (θ)RA − θ to be non-increasing in θ for all θ ∈ [0, 1].
Therefore, this part follows from Proposition 1.

(b) First, we show that α and γ are well defined in this region and that γ > α.

Equation (12) defines a function γ1 (α) which is increasing and such that γ1 (1) = 1 and

γ1 (α) > α for α ∈ [0, 1) (because RA > RB). Equation (13), together with the condition

that γ ≥ α defines another function γ2 (α) . γ2 (α) is defined only for values of α where

the function F (θ)RA− θ is non-increasing, but not necessarily for all of them. Note that

γ2 (α) is defined for all such values when RA ≥ 1; furthermore, it is certainly defined

for values of α close enough to the minimum of the function F (θ)RA − θ, which we

denote θmin. Also note that γ2 (α) always lies in the increasing part of F (θ)RA− θ. The

function γ2 (α) is strictly decreasing and converges to θmin when α converges to θmin. We

distinguish between two cases.

When RA ∈
³

1
F 0(1) , 1

´
, then F (1)RA − 1 < 0 Therefore, there is some αo for which

γ2 (αo) = 1, from which on the function is strictly decreasing until it reaches θmin, where

γ2 (θmin) = θmin. Given that γ1 (α) is strictly increasing, γ1 (1) = 1 and γ1 (α) > α for

α ∈ [0, 1), then a solution to the system of equations always exists.

When RA ∈
h
1, 1

F 0(0)

´
, then the function γ2 (α) is defined for α ∈ [0, θmin) and it takes

values always lower than 1. In this case, given that γ2 (α) is decreasing and γ1 (α) is

increasing, a solution exists if and only if γ2 (0) ≥ γ1 (0), that is γ2 (0) ≥ F−1
³
RA−RB

RA

´
,

which we write as, F (γ2 (0))RA ≥ RA−RB, or, γ2 (0) ≥ RA−RB. Given that γ2 (0) is the

increasing part of F (θ)RA−θ, the previous inequality is equivalent to F (RA −RB)RA−
(RA −RB) ≤ 0, which we assume in Region (b).
Second, we show that agents’ strategies are well defined, that is, the functions φA(θ) ≡

q
CIγ
A (θ)− θ and φB(θ) ≡ q

CIγ
B (θ)− θ are non-negative for all θ ∈ [0, 1]. This trivially holds

for all regions where players choose zero effort.

For θ ∈ [γ, 1] we have q
CIγ
B (θ) = F (θ)RA + γ − F (γ)RA. Given that γ lies in the

increasing part of F (θ)RA − θ, we have φB(θ) = F (θ)RA + γ − F (γ)RA − θ ≥ 0 for

θ ∈ [γ, 1]. For θ ∈ [α, γ), the convexity of φA(θ) = F (θ)RB+γ−F (α)RB− θ implies that

φA(θ) ≥ φA(α)+φ0A(α)(θ−α) = γ−α+(F 0(α)RB−1)(θ−α) ≥ γ−α− (θ−α) ≥ 0. For
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θ ∈ [γ, 1], we note that both φA(θ) and φB(θ) are convex functions. Furthermore, φA(γ) >
φB(γ) = 0, φA(1) = φB(1) (since RA − F (γ)RA = RB − F (α)RB) and φ0A(θ) < φ0B(θ)

which implies that φA(θ) ≥ φB(θ) for all θ ∈ [γ, 1] and thus φA(θ) ≥ 0 for all θ ∈ [γ, 1] as
well.

Third, we prove that each agent’s strategy is best response to each other.

Given agent B’s strategy, the payoff of agent A of type θ when he offers quality

q ∈ [γ, qB(1)] with q ≥ θ is (see Claim 11) θ − γ + F (γ)RA, which is independent of q.

Similarly, the payoff of agent B of type θ when offering quality q ∈ [γ, qB(1)] with q ≥ θ

is θ − γ + F (α)RB, also independent of q. This implies, in particular, that the strategies

suggested are best responses one to the other for agents of type θ ∈ [γ, 1].
The payoff of agent B of type θ ∈ (α, γ) is decreasing in q for q ∈ (θ, γ), because no

type of agent A chooses qualities in (α, γ) and the payoff is constant for q ∈ [γ, qB(1)].
Therefore, qCIγB (θ) = θ is a best response for all θ ∈ (α, γ). The payoff of agent B of type

θ ∈ [0, α) is decreasing in q for q ∈ [θ, α) because the interval [θ, α) is in the decreasing
part of the function F (θ)RA− θ (see Claim 10). Therefore, qCIγB (θ) = θ is a best response

because it is first decreasing and then constant for q ∈ [α, qB(1)].
AgentA of type θ that chooses q ∈ [0, γ) , with q ≥ θ, obtains a payoff of F (q)RA−q+θ.

The function F (q)RA − q is decreasing until α, then it further decreases, then increases

until it recovers the same value F (α)RA−α at γ (see (13)). As we saw above, A’s payoff

is constant for q ∈ [γ, qB(1)]. Therefore, qCIγA (θ) = θ is a best response for all θ ∈ [0, α)
and q

CIγ
A (θ) = F (θ)RB + γ − F (α)RB is a best response for all θ ∈ [α, γ).

To show this is the unique equilibrium note that for this range of RA, the function

F (θ)RA − θ is first decreasing and then increasing. Also, if there is an interval in Region

C in the decreasing part of F (θ)RA − θ (such an interval cannot exist in the increasing

part, according to Claim 13), then it cannot be preceded by another interval in Region Iγ.

Suppose otherwise. Let [θo, θoo] be a maximal interval where the equilibrium lies in Region

Iγ and [θoo, θooo] be an interval where it lies in Region C, both in the decreasing part of

F (θ)RA−θ. The strategies in [θo, θoo] are qA(θ) = F (θ)RB+ηA and qB(θ) = F (θ)RA+ηB,

with ηB = θoo−F (θoo)RA. Also, there must exist some γ ∈ (θo, θoo) such that F (γ)RA+

ηB = γ, that is, ηB = γ − F (γ)RA. Therefore, θoo − F (θoo)RA = γ − F (γ)RA, which is

not possible because γ < θoo and F (θ)RA − θ is decreasing between the two values.

Therefore, there are only two candidate equilibria:
³
q
Iγ
A , q

Iγ
B

´
and

³
q
CIγ
A , q

CIγ
B

´
. By
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Proposition 2,
³
q
Iγ
A , q

Iγ
B

´
can be an equilibrium only if the inequalities of Proposition 2

are satisfied for γ defined by F (γ) = 1− RB

RA
. This implies, since F (θ)RA − θ equals 0 at

θ = 0, and is first decreasing and then increasing, that F (γ)RA − γ ≥ 0 or RA −RB ≥ γ

or finally, F (RA −RB) ≥ F (γ) = 1− RB

RA
. Each of the two conditions in this part implies

this inequality is violated. F (RA − RB)RA − (RA − RB) < 0 implies it directly. Also if

RA < 1, then F (γ)RA − γ < 0 since F (γ) < γ by convexity of F . Thus, the equilibrium

must be of the form CIγ, the parameters of which are uniquely determined.

(c) Given the convexity of F (θ), the function F (θ)RA − θ is always increasing when

RA ≥ 1
F 0(0) . Moreover, given the definition of γ, when RA ∈

h
1, 1

F 0(0)

´
the condition

F (RA −RB)RA − (RA −RB) ≥ 0 is equivalent to F (RA −RB)RA − F (γ)RA ≥ 0, or
RA − RB ≥ γ, which is equivalent to F (γ)RA − γ ≥ 0. Given that, in this region,

F (θ)RA − θ is first decreasing and then decreasing, if F (γ)RA − γ > 0, then inequalities

(10) and (11) are strictly satisfied. Therefore, by Proposition 2 part (c) holds and the

equilibrium is unique. If F (γ)RA − γ = 0, then inequalities (10) and (11) are strictly

satisfied for any θ > 0. Similar arguments to those in the proof of Proposition 2 imply

that
³
q
Iγ
A , q

Iγ
B

´
is the unique equilibrium in this case as well.

Proof of Theorem 3. (a) This part follows from Proposition 1 because F 0(0)RA ≤ 1
and the concavity of F imply that F (θ)RA − θ is non-increasing in θ for all θ ∈ [0, 1].
(b) We first show that γ and β are well defined in this region and that β > γ. Similar

to its behavior in Theorem 2, equation (15) defines a function β2 (γ) for those values of γ

where F (θ)RA− θ is non-decreasing, but not necessarily for all of them. β2 (γ) is defined

for all such values when RA ≤ 1; furthermore it is certainly defined for values of γ close
enough to the maximum of the function F (θ)RA − θ, which we denote θmax. Also note

that, β2 (γ) always lies in the decreasing part of F (θ)RA − θ. The function β2 (γ) is

strictly decreasing (in the interval of γ where it is defined) and converges to θmax when γ

converges to θmax.

Equation (14) defines a function γ1 (β). The function is increasing at least for β ≥ θmax

because F (θ)RA−θ is decreasing for θ ≥ θmax and RA > RB. Moreover, γ1 (1) = 1−RB.

We distinguish between two cases. When β2 (0) is well defined, that is, when RA − 1 ≤ 0
then, since RB < RA, γ

1 (1) = 1 − RB is positive. Therefore, the functions γ1 (β) and

β2 (γ) intersect and a solution to equations (14) and (15) exists. When RA ∈
h
1, 1

F 0(1)

i
,

then F (1)RA − 1 ≤ 0, therefore there is some γ for which β2 (γ) = 1. We denote this
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value by z(RA). The necessary and sufficient condition for (14) and (15) to intersect is

that z(RA) < 1−RB or, equivalently, F (1−RB)RA − (1−RB) > RA − 1.
Second, we show that the functions δA(θ) ≡ q

IγC
A (θ)− θ and δB(θ) ≡ q

IγC
B (θ)− θ are

non-negative for all θ ∈ [0, 1]. This trivially holds if players choose zero effort.
For θ ∈ [γ, β), we have F (θ)RA − θ ≥ F (γ)RA − γ because γ lies in the increasing

part of F (θ)RA − θ and the function takes the same value for γ and β. Hence, δB(θ) =

F (θ)RA + γ −F (γ)RA− θ ≥ 0 for θ ∈ [γ, β). For θ ∈ [0, β), δA(θ) = F (θ)RB + γ − θ > 0

because it is a concave function of θ, δ(0) = γ > 0 and δ (β) = 0 by equation (14).

Third, we prove that each agent’s strategy is best response to each other.

Given agent B’s strategy, the payoff of agent A of type θ ∈ [β, 1] is decreasing in q for
q > θ because the function F (q)RA − q is decreasing (see Claim 10); thus qIγCA (θ) = θ is

agent A’s best response. For θ ∈ [0, β), the payoff of agent A is equal to θ + F (γ)RA − γ

for any q ∈ [γ, β] with q ≥ θ (by Claim 11) and it is decreasing for q ∈ [β, 1] (by Claim
10). If agent A offers quality q ∈ [0, γ] with q ≥ θ his payoff is F (q)RA − (q − θ), which

is smaller than θ + F (γ)RA − γ because the function RAF (θ) − θ is increasing in that

interval. Therefore, qIγCA (θ) is an agent A’s best response.

Given agent A’s strategy, the payoff of agent B of type θ ∈ [β, 1] when offering

q
IγC
B (θ) = θ is F (θ)RB, which is higher than his payoff for any q > θ because we are in

the decreasing part of F (θ)RA− θ. The payoff of agent B of type θ ∈ [γ, β] when offering
q
IγC
B (θ) is θ − γ, which is higher than his payoff if he offers quality q ∈ [β, 1] because
F (θ)RB − θ is decreasing in θ for θ ≥ β. Finally, the payoff of agent B of type θ ∈ [0, γ]
when offering quality θ is zero. It would be negative for any q ∈ [0, γ] with q > θ and,

as shown above, the payoff would be first constant and then decreasing as q is higher.

Therefore, qIγCB (θ) constitutes a best response to agent A’s strategy.

To show that this is a unique equilibrium note that, for this range of RA, the function

F (θ)RA−θ is first increasing and then decreasing. Hence, an equilibrium must start with
an interval in Iγ, according to Claim 13. Moreover, if there is an interval in Region C

in the decreasing part of F (θ)RA − θ, then it cannot be followed by another interval in

Region Iγ. Suppose otherwise. Let [θo, θoo] be a maximal interval where the equilibrium

lies in Region C and [θoo, θooo] be an interval where it lies in Region Iγ. Player A’s profits

must the same at θoo and at some γ > θoo, that is (taking into account that B plays

qB(θ) = θ for all θ ∈ [θo, γ]), F (θoo)RA− θoo = F (γ)RA−γ, which is not possible because
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F (θ)RA − θ is decreasing between the two values.

Therefore, there are only two candidate equilibria:
³
q
Iγ
A , q

Iγ
B

´
and

³
q
IγC
A , q

IγC
B

´
.
³
q
Iγ
A , q

Iγ
B

´
can be an equilibrium only if the inequalities of Proposition 2 are satisfied for γ such that:

F (γ) = 1 − RB

RA
, and. This is equivalent, since F (θ)RA − θ equals 0 at θ = 0, and is

first increasing and then decreasing, to F (γ)RA − γ ≤ RA − 1 or 1 − RB ≤ γ or finally,

F (1−RB) ≤ F (γ) = 1−RB

RA
. Each of the two conditions in this part implies this inequality

is violated. F (1−RB)RA − (1−RB) > RA − 1 implies it directly. Also if RA < 1, then

since RAF (γ)− γ > 0, the inequality is violated as well. Thus, the equilibrium must be

of the form IγC, the parameters of which are uniquely determined.

(c) We use Proposition 2, which we can apply directly if RA ≥ 1
F 0(1) because the

function F (θ)RA − θ is always increasing. If RA ∈
h
1, 1

F 0(1)

´
, then conditions (10) and

(11) hold if and only if F (γ)RA− γ ≤ F (1)RA− 1, that is, F (1−RB)RA− (1−RB) ≤
RA−1, which is the condition appearing in (c). If the inequality is strict,

³
q
Iγ
A , q

Iγ
B

´
is the

unique equilibrium according to Proposition 2. Arguments similar to those in the proof of

Proposition 2 imply that the equilibrium is unique also when F (1−RB)RA− (1−RB) =

RA − 1, in which case (10) and (11) are strict except for θ = 1.
Before we proceed to the proof of Proposition 3 we state and prove a lemma describing

the designer’s payoff as a function of the agents’ strategies.

Lemma 3 The designer’s payoff U (RA, RB), for RA ≥ RB, as a function of the agents’

strategies, is the following:

(a) If agents follow the strategy profile
³
q
Iγ
A , q

Iγ
B

´
, then

U (RA, RB) =
1

RARB

Z RB+γ

γ

I(q) [2 (q − γ) +RA −RB] dq −RA +
1

2
RB

µ
1− RB

RA

¶
.

(b) If agents follow the strategy profile
³
q
CIγ
A , q

CIγ
B

´
, then

U (RA, RB) = 2

Z α

0

I(q)F (q)F 0(q)dq +

Z γ

α

I(q)F (α)F 0(q)dq+

1

RARB

Z [1−F (γ)]RA+γ

γ

I(q) [2 (q − γ + F (γ)RA)− (RA −RB)] dq−

1

2

∙
RA +RB + (1− F (α))2 (RA −RB)

µ
1− RB

RA

¶¸
.
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(c) If agents follow the strategy profile
³
q
IγC
A , q

IγC
B

´
, then

U (RA, RB) =
1

RARB

Z β

γ

I(q) [2 (q − γ) + F (γ)RA] dq+

2

Z 1

β

I(q)F (q)F 0(q)dq − 1
2
[RA +RB + F (γ)F (β) (RA −RB)] .

Proof of Lemma 3. (a) If agents follow
³
q
Iγ
A , q

Iγ
B

´
, the interval of qualities q that

may be offered is [γ,RB + γ], according to the distribution function

F ∗(q) =
1

RB
(q − γ)

1

RA
[(q − γ) +RA −RB] ,

dF ∗(q) =
1

RARB
[2 (q − γ) +RA −RB] dq.

Therefore, the designer’s expected income is the first part of the expression U (RA, RB).

The expected cost depends on the probability that either agent wins the contest. An

agent A of type θ wins the contest with probability

Pr
θB
(F (θB)RA + γ − (RA −RB) ≤ F (θ)RB + γ) =

1

RA
[F (θ)RB +RA −RB] .

It follows that the probability that agent A wins the contest isZ 1

0

1

RA
[F (θ)RB +RA −RB]F

0(θ)dθ =
RB

RA

1

2

£
F (θ)2

¤1
0
+
(RA −RB)

RA
[F (θ)]10 = 1−

1

2

RB

RA

while the probability that B wins the contest is 1
2
RB

RA
. Therefore, the designer’s expected

cost is RA

³
1− 1

2
RB

RA

´
+RB

1
2
RB

RA
, from which the second part of the expression U (RA, RB)

is obtained.

(b) If agents follow
³
q
CIγ
A , q

CIγ
B

´
, the set of qualities that is reached is [0, (1− F (γ))RA + γ] .

For q ∈ [0, α), dF ∗(q) = 2F (q)F 0(q)dq. For q ∈ [α, γ), F ∗(q) = F (α)F (q) and

dF ∗(q) = F (α)F 0(q)dq.

Finally, for q ∈ [γ, (1− F (γ))RA + γ] ,

F ∗(q) =
1

RB
(q − γ + F (α)RB)

1

RA
[q − γ + F (γ)RA] ,

dF ∗(q) =
1

RARB
[2 (q − γ) + F (α)RB + F (γ)RA] dq =

1

RARB
[2 (q − γ + F (γ)RA)− (RA −RB)] dq
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and the expression for the designer’s income follows. Concerning the probability that

either agent wins the contest, agent A of type θ ∈ [0, α) wins with probability F (θ)

whereas, if his type is θ ∈ [α, 1] , he wins with probability

Pr
θB
(F (θB)RA + γ − F (γ)RA ≤ F (θ)RB + γ − F (α)RB) =

1

RA
[F (θ)RB − F (α)RB + F (γ)RA] =

1

RA
[F (θ)RB +RA −RB] .

Therefore, the probability that A wins the contest isZ α

0

F (θ)F 0(θ)dθ +

Z 1

α

1

RA
[F (θ)RB +RA −RB]F

0(θ)dθ =

1

2

£
F (θ)2

¤α
0
+

RB

RA

1

2

£
F (θ)2

¤1
α
+
(RA −RB)

RA
[F (θ)]1α =

1− 1
2

RB

RA
+
1

2

µ
1− RB

RA

¶
F (α)2 −

µ
1− RB

RA

¶
F (α) =

1

2
+
1

2
[1− F (α)]2

µ
1− RB

RA

¶
and the designer’s expected cost is

RA

∙
1

2
+
1

2

µ
1− RB

RA

¶
(1− F (α))2

¸
+RB

∙
1

2
− 1
2

µ
1− RB

RA

¶
(1− F (α))2

¸
=

1

2

∙
RA +RB + (1− F (α))2 (RA −RB)

µ
1− RB

RA

¶¸
,

which corresponds to the last term of U (RA, RB) in part (b) of the lemma.

(c) If agents follow the strategy profile
³
q
IγC
A , q

IγC
B

´
, the space of qualities that is

reached is [γ, 1] . For q ∈ [γ, β),

F ∗(q) =
1

RB
(q − γ)

1

RA
[q − γ + F (γ)RA] ,

dF ∗(q) =
1

RARB
[2 (q − γ) + F (γ)RA] dq.

For q ∈ [β, 1], dF ∗(q) = 2F (q)F 0(q)dq. Therefore, the expression for the designer’s income

follows. We compute now the probability that agent A wins the contest. If his type is

θ ∈ [0, β), he wins with probability

Pr
θB
(F (θB)RA + γ − F (γ)RA ≤ F (θ)RB + γ) =

1

RA
[F (θ)RB + F (γ)RA] .

Moreover, agent A with type θ ∈ [β, 1] wins with probability F (θ). Therefore, the proba-
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bility that A wins the contest isZ β

0

1

RA
[F (θ)RB + F (γ)RA]F

0(θ)dθ +

Z 1

β

F (θ)F 0(θ)dθ =

RB

RA

1

2

£
F (θ)2

¤β
0
+F (γ) [F (θ)]β0 +

1

2

£
F (θ)2

¤1
β
=

RB

RA

1

2
F (β)2+F (γ)F (β) +

1

2
− 1
2
F (β)2 =

1

2
+

1

2RA
[F (β)RB + 2F (γ)RA − F (β)RA]F (β) =

1

2
+
1

2
F (γ)F (β)

(where the last equality is derived from the two equations that define γ and β) and the

designer’s expected costs are

1

2
[RA +RB + F (γ)F (β) (RA −RB)] ,

which corresponds to the expression for the cost in part (c) of the lemma.

Proof of Proposition 3. (a) Consider a marginal change from a nondiscriminatory

contest where agents play
¡
qIA, q

I
B

¢
in equilibrium to a discriminatory contest where the

new equilibrium is
³
q
Iγ
A , q

Iγ
B

´
. To evaluate the optimality of such a change, we take the

partial derivatives of the designer’s payoff function U (RA, RB) obtained in part (a) of

Lemma 3 with respect to RA and RB.

∂U

∂RA
(RA, RB) = −

1

R2ARB

Z RB+γ

γ

I(q) [2 (q − γ) +RA −RB] dq+

1

RARB

Z RB+γ

γ

I(q)

∙
−2 ∂γ

∂RA
+ 1

¸
dq +

1

RARB
I(RB + γ) [RA +RB]

∂γ

∂RA
−

1

RARB
I(γ) [RA −RB]

∂γ

∂RA
− 1 + 1

2

R2B
R2A
.

In particular, when RA = RB = R, then γ = 0 and

∂U

∂RA
(RA = R,RB = R) = − 2

R3

Z R

0

I(q)qdq+
1

R2

∙
1− 2 ∂γ

∂RA

¸Z R

0

I(q)dq+
2

R2
I(R)R

∂γ

∂RA
−1
2
.

Similarly,

∂U

∂RB
(RA, RB) = −

1

RAR2B

Z RB+γ

γ

I(q) [2 (q − γ) +RA −RB] dq+

1

RARB

Z RB+γ

γ

I(q)

∙
−2 ∂γ

∂RB
− 1
¸
dq +

1

RARB
I(RB + γ) [RA +RB]

∙
1 +

∂γ

∂RB

¸
−

1

RARB
I(γ) [RA −RB]

∂γ

∂RB
+
1

2
− RB

RA
.
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Therefore,

∂U

∂RB
(RA = R,RB = R) = − 2

R3

Z R

0

I(q)qdq +
1

R2

∙
−2 ∂γ

∂RB
− 1
¸ Z R

0

I(q)dq+

2

R2
I(R)R

∙
1 +

∂γ

∂RB

¸
− 1
2
.

Consider now a nondiscriminatory contest R. If we marginally increase RA and simulta-

neously marginally decrease RB, then the total effect is∙
∂U

∂RA
− ∂U

∂RB

¸
(RA = R,RB = R) =

2

R2

∙
1− ∂γ

∂RA
+

∂γ

∂RB

¸ Z R

0

I(q)dq−

2

R2
I(R)R

∙
1− ∂γ

∂RA
+

∂γ

∂RB

¸
=
2

R2

∙
1− ∂γ

∂RA
+

∂γ

∂RB

¸ ∙Z R

0

I(q)dq − I(R)R

¸
.

The integral
R R
0
I(q)dq − I(R)R < 0 because I(q) is an increasing function. Therefore,h

∂U
∂RA
− ∂U

∂RB

i
(RA = R,RB = R) > 0, that is, discriminating marginally increases the de-

signer’s payoff if and only if 1− ∂γ
∂RA

+ ∂γ
∂RB

< 0. From γ = F−1
³
1− RB

RA

´
we have

∂γ

∂RA
(RA, RB) =

RB

R2A

1

F 0(γ)
and

∂γ

∂RB
(RA, RB) = −

1

RA

1

F 0(γ)
.

When we evaluate these derivatives at RA = RB = R, we obtain

1− ∂γ

∂RA
+

∂γ

∂RB
= 1− 1

R

1

F 0(0)
− 1

R

1

F 0(0)
= 1− 2

RF 0 (0)

and the result follows.

(b) We proceed as in part (a).

∂U

∂RA
(RA, RB) = 2I(α)F (α)F

0(α)
∂α

∂RA
+

Z γ

α

I(q)F 0(α)F 0(q)
∂α

∂RA
dq+

I(γ)F (α)F 0(γ)
∂γ

∂RA
− I(α)F (α)F 0(α)

∂α

∂RA
−

1

R2ARB

Z [1−F (γ)]RA+γ

γ

I(q) [2 (q − γ + F (γ)RA)− (RA −RB)] dq+

1

RARB

Z [1−F (γ)]RA+γ

γ

I(q)

∙
2 (−1 + F 0 (γ)RA)

∂γ

∂RA
+ [2F (γ)− 1]

¸
dq+

1

RARB
I ([1− F (γ)]RA + γ) (RA +RB)

∙
1− F (γ) + (1− F 0(γ)RA)

∂γ

∂RA

¸
−

1

RARB
I (γ) (2F (γ)RA − (RA −RB))

∂γ

∂RA
−

1

2

∙
1 +

µ
1− R2B

R2A

¶
(1− F (α))2 − 2

µ
RA − 2RB +

R2B
RA

¶
(1− F (α))F 0 (α)

∂α

∂RA

¸
.
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When RA = RB = R, then γ = α and α satisfies F 0(α)R = 1. Therefore,

∂U

∂RA
(RA = R,RB = R) =

1

R
I(α)F (α)

∂α

∂RA
− 1

R
I(α)F (α)

∂γ

∂RA
−

2

R3

Z [1−F (α)]R+α

α

I(q) [q − α+ F (α)R] dq +
1

R2

Z [1−F (α)]R+α

α

I(q) [2F (α)− 1] dq+

2

R
I
³h
1− F (bθ)iR+ α

´
[1− F (α)]− 1

2
.

The derivative of the designer’s payoff with respect to RB is

∂U

∂RB
(RA, RB) = 2I(α)F (α)F

0(α)
∂α

∂RB
+

Z γ

α

I(q)F 0(α)F 0(q)
∂α

∂RB
dq+

I(γ)F (α)F 0(γ)
∂γ

∂RB
− I(α)F (α)F 0(α)

∂α

∂RB
−

1

RAR2B

Z [1−F (γ)]RA+γ

γ

I(q) [2 (q − γ + F (γ)RA)− (RA −RB)] dq+

1

RARB

Z [1−F (γ)]RA+γ

γ

I(q)

∙
2 (−1 + F 0 (γ)RA)

∂γ

∂RB
+ 1

¸
dq+

1

RARB
(1− F 0(γ)RA)

∂γ

∂RB
I ([1− F (γ)]RA + γ) (RA +RB)−

1

RARB

∂γ

∂RB
I (γ) (2F (γ)RA − (RA −RB))−

1

2

∙
1 +

µ
−2 + 2RB

RA

¶
(1− F (α))2 − 2

µ
RA − 2RB +

R2B
RA

¶
(1− F (α))F 0 (α)

∂α

∂RB

¸
,

which implies

∂U

∂RB
(RA = R,RB = R) =

1

R
I(α)F (α)

∂α

∂RB
− 1

R
I(α)F (α)

∂γ

∂RB
−

2

R3

Z [1−F (α)]R+α

α

I(q) (q − α+ F (α)R) dq +
1

R2

Z [1−F (α)]R+α

α

I(q)dq − 1
2
.

A marginal increase in RA and a simultaneous marginal decrease in RB from a nondis-

criminatory contest R lead to∙
∂U

∂RA
− ∂U

∂RB

¸
(RA = R,RB = R) =

1

R
I(α)F (α)

∙
∂α

∂RA
− ∂γ

∂RA
− ∂α

∂RB
+

∂γ

∂RB

¸
−

2

R2

Z [1−F (α)]R+α

α

I(q) [1− F (α)] dq +
2

R
I ([1− F (α)]R+ α) [1− F (α)] .
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To compute the partial derivatives of α and γ, we use equations (12) and (13) that

implicitly define these variables. Then,⎛⎝ −F 0 (α)RB F 0 (γ)RA

F 0 (α)RA − 1 −F 0 (γ)RA + 1

⎞⎠⎛⎝ dα

dγ

⎞⎠ =

⎛⎝ 1− F (γ) −1 + F (α)

F (γ)− F (α) 0

⎞⎠⎛⎝ dRA

dRB

⎞⎠
from which,⎛⎝ dα

dγ

⎞⎠ =
1

∆

⎛⎝ −F 0 (γ)RA + 1 −F 0 (γ)RA

−F 0 (α)RA + 1 −F 0 (α)RB

⎞⎠⎛⎝ 1− F (γ) −1 + F (α)

F (γ)− F (α) 0

⎞⎠⎛⎝ dRA

dRB

⎞⎠
where

∆ = F 0 (α)RB [F
0 (γ)RA − 1] + F 0 (γ)RA [1− F 0 (α)RA] .

We notice that ∆ > 0 because α is in the decreasing part, while γ is in the increasing

part, of F (θ)RA − θ, that is, F 0 (α)RA − 1 < 0 and F 0 (γ)RA − 1 > 0. Therefore,
∂α
∂RA
− ∂γ

∂RA
− ∂α

∂RB
+ ∂γ

∂RB
= Ω

∆
, where

Ω = [−F 0 (γ)RA + 1] [1− F (γ)]− F 0 (γ)RA

h
F (γ)− F

³bθA´i−
[−F 0 (α)RA + 1] [1− F (γ)] + F 0 (α)RB [F (γ)− F (α)]−

[−F 0 (γ)RA + 1] [−1 + F (α)] + [−F 0 (α)RA + 1] [−1 + F (α)] =

− F 0 (γ)RA + F 0 (γ)F (α)RA + F 0 (α) [1− F (γ)]RA+

F 0 (α) [F (γ)− F (α)]RB + F 0 (γ) [−1 + F (α)]RA − F 0 (α) [−1 + F (α)]RA =

− 2F 0 (γ) [1− F (α)]RA +F 0 (α) [2RA − F (γ)RA + F (γ)RB − F (α)RB − F (α)RA] .

Both ∆ and Ω depend on (RA, RB) and we need to compute Ω
∆
at (RA = R,RB = R) .

We note that Ω (RA = R,RB = R) = 0 and ∆ (RA = R,RB = R) = 0. We use that

limRB−→RA

Ω
∆
(RA, RB) =

limRB−→RA
∂Ω
∂RB

limRB−→RA
∂∆
∂RB

(RA, RB) .

∂Ω

∂RB
= −2F 00 (γ) [1− F (α)]RA

∂γ

∂RB
+ 2F 0 (γ)F 0 (α)RA

∂α

∂RB
+

F 00 (α) [2RA − F (γ)RA + F (γ)RB − F (α)RB − F (α)RA]
∂α

∂RB
+

F 0 (α)

∙
F (γ)− F 0 (γ) (RA −RB)

∂γ

∂RB
− F (α)− F 0 (α) (RB +RA)

∂α

∂RB

¸
,
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which, taking into account that γ = α and F 0 (α) = 1
R
when RA = RB = R, implies

∂Ω

∂RB
(RA = R,RB = R) = 2F 00 (α) [1− F (α)]R

∙
∂α

∂RB
− ∂γ

∂RB

¸
.

Similarly,

∂∆

∂RB
= F 0 (α) [F 0 (γ)RA − 1] + F 00 (α)RB [F

0 (γ)RA − 1]
∂α

∂RB
+

F 0 (α)RBF
00 (γ)RA

∂γ

∂RB
+ F 00 (γ)RA [1− F 0 (α)RA]

∂γ

∂RB
− F 0 (γ)RAF

00 (α)RA
∂α

∂RB
,

hence,
∂∆

∂RB
(RA = R,RB = R) = F 00 (α)R

∙
∂γ

∂RB
− ∂α

∂RB

¸
.

We notice that γ > α as soon as RA > RB, which implies that
∂γ
∂RB
− ∂α

∂RB
> 0 at

RA = RB = R. Therefore,

Ω

∆
=
2F 00 (α)R [1− F (α)]

h
∂α
∂RB
− ∂γ

∂RB

i
F 00 (α)R

h
∂γ
∂RB
− ∂α

∂RB

i = −2 [1− F (α)] .

We substitute ∂α
∂RA
− ∂γ

∂RA
− ∂α

∂RB
+ ∂γ

∂RB
in the derivative

h
∂U
∂RA
− ∂U

∂RB

i
(RA = R,RB = R)

to obtain∙
∂U

∂RA
− ∂U

∂RB

¸
(RA = R,RB = R) = −2 1

R
I(α)F (α) [1− F (α)]−

2

R2

Z [1−F (α)]R+α

α

I(q) [1− F (α)] dq +
2

R
[1− F (α)] I ([1− F (α)]R+ α) =

2

R2
[1− F (α)]

"
I ([1− F (α)]R+ α)R− I(α)F (α)R−

Z [1−F (α)]R+α

α

I(q)dq

#
>

2

R2
[1− F (α)]

"
(I ([1− F (α)]R+ α)− I(α))R−

Z [1−F (α)]R+α

α

I(q)dq

#
>

2

R2
[1− F (α)]

"
(I ([1− F (α)]R+ α)− I(α)) [1− F (α)]R−

Z [1−F (α)]R+α

α

I(q)dq

#
> 0

given that I(q) is increasing. Therefore, discriminating marginally always increases the

designer’s payoff.

(c) As in the previous cases, the marginal change in costs due to marginal discrimi-

nation is zero. Therefore, it is enough to examine the change in revenues. Rather than
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proceeding directly through the designer’s revenue function, we examine the effect on

qualities of a marginal shift from
¡
qICA , qICB

¢
to
³
q
IγC
A , q

IγC
B

´
, which leads at ε = 0 to the

following derivatives:

dq
IγC
A (θ)

dε
= −F (θ) + ∂γ

∂ε
for all θ ∈ [0, β]

dq
IγC
B (θ)

dε
= F (θ) +

∂γ

∂ε
− F 0(γ)R

∂γ

∂ε
for all θ ∈ [0, β] .

Differentiating equations (14) and (15) with respect to ε, at ε = 0, yields⎛⎝ 1 −1 + F 0 (β)R

1−RF 0 (β) −1 + F 0 (β)R

⎞⎠⎛⎝ dγ

dβ

⎞⎠ =

⎛⎝ F (β)

0

⎞⎠ dε

hence,
dγ

dε
=

F (β)

F 0 (β)R
> 0.

Summing up the effect of ε on both qualities, we obtain

dq
IγC
A (θ)

dε
+

dq
IγC
B

dε
= [2− F 0(β)R]

∂γ

∂ε
for all θ ∈ [0, β]

whereas the effect is null for θ ∈ [β, 1], and the result follows.
Proof of Proposition 4. By Proposition 3 (b), discriminating is optimal if the

equilibrium strategy profile in the nondiscriminatory contest is
¡
qCIA , qCIB

¢
and if marginal

changes in (RA, RB) lead to
³
q
CIγ
A , q

CIγ
B

´
. Given that F (θ) is convex and F 0(0) = 0, the

equilibrium profile is
¡
qCIA , qCIB

¢
if the optimal R satisfies R > 1

F 0(1) . To show that this is

the case if v is large enough, we compare the profits that the designer obtains by choosing

an R > 1
F 0(1) with those obtained for R = 0 (R = 0 is the optimal choice among all the

rewards that lead to the equilibrium profile of
¡
qCA , q

C
B

¢
). This difference in profits is equal

to vh(R) − R, where h(R) is the difference in the designer’s expected income when she

derives benefits i(q) from an innovation, between the case where the contestants adopt

the strategy profile
³
q
CIγ
A , q

CIγ
B

´
(for R > 1

F 0(1)) and the case where the contestants adopt

the strategy
¡
qCA , q

C
B

¢
. It is immediate that h(R) > 0 if i(q) is increasing in q. Therefore,

vh(R)−R > 0 if v is large enough and the optimal contest necessarily implies R > 1
F 0(1) .

Finally, the proposition is proved if we show that marginal changes from a nondis-

criminatory contest RA = RB = R > 1
F 0(1) lead to

³
q
CIγ
A , q

CIγ
B

´
. According to Theorem

2, this property certainly holds if RAF (RA −RB)− (RA −RB) < 0. Taking RA = R+ ε

and RB = R − ε, the inequality is equivalent to (R+ ε)F (2ε)− 2ε < 0. The inequality
holds for ε small enough because F 0(0) = 0.
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