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During recent years increased attention has been given to second-generation wood-based 
bioenergy. The carbon stored in the forest is highest when there is little or no harvest from the 
forest. Increasing the harvest from a forest, in order to produce more bioenergy, may thus 
conflict with the direct benefit of the forest as a carbon sink. We analyze this conflict using a 
simple model where bioenergy and fossil energy are perfect substitutes. Our analysis shows 
how the social optimum will depend on the social cost of carbon, and how the social optimum 
may be obtained by suitable taxes and subsidies. 
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1 Introduction

Due to an increasing concern for future climate change, biofuel and other forms
of bioenergy have by many countries been considered as an important altern-
ative to fossil energy. However, concerns have been raised about the use of
bioenergy, at least of first-generation food-crop-based biofuels. The critique has
partly been due to the upward pressure such biofuel production has put on food
prices [2]. This type of biofuel has also been criticized for the greenhouse gas
emissions related to growing and processing. Obvious sources of emissions from
biofuel production include the use of fertilizer when growing energy crops [3], as
well as the use of fossil energy in the harvesting and processing of the crops [4].
Moreover, direct and indirect land use changes can lead to additional greenhouse
gas emissions, if the area of arable land is increased to accommodate increasing
use of biofuels [5]. Partly due to the critique of food-crop-based bioefuels, in-
creased attention has been given to second-generation, wood-based biofuels. In
particular, the possibility of producing liquid biofuel from cellulosic biomass may
be a promising alternative to using food crops [6]. However, biofuel and other
forms of bioenergy from forests are not unproblematic from a climatic point of
view. The carbon stored in the forest is highest when there is little or no harvest
from the forest. Hence, increasing the harvest from a forest in order to produce
more biofuel may conflict with the direct benefit of the forest as a sink of carbon.

Bioenergy is a broad product group ranging from burning wood in a fire-
place to biogas and second generation biofuel. The common denominator is that
there is an underlying biological process, which will remove carbon from the
atmosphere and store it in biological materials. To analyze the climatic effects
of wood-based bioenergy in more detail we present a simple but general model
of this biological process and the interactions between the gradual crop growth
inducing depletion of atmospheric carbon and the instantaneous emission from
energy consumption.

We present our model in section 2. In this model bioenergy and fossil
energy are assumed perfect substitutes. The cost of producing fossil energy is
assumed increasing in cumulative extraction, so that in the long run fossil energy
production will tend to zero. We derive the properties of the social optimum,
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in which there will exist a phase prior to the non-fossil era when bioenergy and
fossil energy will both be produced. Our analysis shows how the social optimum
will depend on the social cost of carbon. In particular, we show that the long-
run carbon stock contained in the forest is higher the higher is the social cost
of carbon. The long-run output level of bioenergy may be either increasing or
declining in the social cost of carbon, depending both on the size of this cost
and on the cost of producing bioenergy.

In section 3 we briefly describe the unregulated market economy, and show
how the equilibrium in such an economy differs from the social optimum. In
section 4 we show that the equilibrium of the market economy will coincide with
the social optimum if all carbon emissions to the atmosphere are taxed at a
rate equal to the social cost of carbon, and carbon sequestration through forest
growth is subsidized at the same rate. If policy is restricted to taxes on the two
types of fuels, the first-best may nevertheless be achieved in our simple model.
The tax rate on fossil fuel should in this case be equal to the social cost of carbon,
while the tax rate on bioenergy will generally differ from the fossil fuel tax rate.

2 The model

In this model only two different types of energy are explicitly included: energy
produced using fossil materials and energy produced with biological material,
denoted fossil energy and bioenergy, respectively. The two energy types are
perfect substitutes, but differ in production costs and environmental impact.
Fossil energy, Rt, is produced from a non-renewable stock, St ≥ 0, such that the
change in the resource stock is given by the gross production,

Ṡt = −Rt. (1)

As the fossil energy source gets depleted it is necessary to utilize less access-
ible sources, like deep water oil drilling, or use unconventional techniques as
extraction of oil from oil sand. The technology constraint is captured in the
stock dependent unit cost of production, increasing as the stock gets depleted:
c = c(St): c′(St) < 0 , c′′(St) > 0 and c(St) → ∞ as St → 0. The increasing
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production cost will be the binding constraint, and will reduce the production
rate to zero before the resource is completely exhausted.

Bioenergy production is modeled as harvest of available vegetation. We use
a generalized growth function, which is representing any type of growing crop,
for example sugar canes or corn, but more interesting are the slower growing
crops like boreal forest or palm trees. Alternative land use will not be included
in the model, but we assume that suitable areas for bioenergy production are
used, so that the climate effects from land conversions are negligible.

We will use a logistic growth model [7], which gives a suitable description
of the growth of both trees and plants. We will not constrain the model to
a specific function, but assume the following more general properties: f(Vt):
f ′(Vt) > 0 whenever V < VMSY , where VMSY is the maximum sustainable yield,
i.e. f ′(VMSY ) = 0 and f(VMSY ) = max(f(V )). For V > VMSY we assume
f ′(Vt) < 0. In both cases f ′′(Vt) < 0 for all Vt. In addition f(0) = f(V̄t) = 0,
which means that without harvest the crops volume will stabilize at the level V̄ ,
corresponding to the maximum volume. A simple sketch of a possible growth
function shown in figure 1. The change in the volume of the crops is given by:

V̇t = f(Vt)−Ht, (2)

where Ht represent the harvest of the crops at time t. The cost of harvesting
the crops is given by the cost function b = b(Ht) : b′(Ht) > 0, b′′(Ht) ≥ 0. Total
energy production and consumption is denoted Et = Rt + Ht, and will equal
the total emissions from energy consumption with appropriate adjustment of
the units. The net amount of carbon released into the atmosphere equals these
emissions minus the carbon which is removed from the atmosphere due to the
crop growth, f(Vt). Hence, at time t, Et − f(Vt) is released to the atmosphere.

We follow the recommendations by David Archer when modeling atmo-
spheric carbon and its decay. In his article "Fate of fossil fuel CO2 in geologic
time", he states that "A better approximation of the lifetime of fossil fuel CO2
for public discussion might be "300 years, plus 25% that lasts forever."" [8]. We
will capture this by dividing the atmospheric carbon into two repositories, A1

and A2, as done by Farzin and Tahvonen [9]. 75% of the emissions will go into
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Figure 1: Sketch of crop growth as a function of volume.

A1, which has a corresponding depletion rate α. The other 25% will end up in
reservoir A2, which has no intrinsic depletion rate. With total emissions given
by Et, the atmospheric carbon changes according to the equations below.

Ȧt = Ȧ1
t + Ȧ2

t where (3)

Ȧ1
t =

3

4
(Et − f(Vt))− αA1

t (4)

Ȧ2
t =

1

4
(Et − f(Vt)). (5)

The social benefit of energy consumption meets the standard conditions for util-
ity functions: B = B(Et) : B′(Et) > 0 and B′′(Et) < 0. The environmental dam-
age from atmospheric carbon is assumed to be strictly increasing: D = D(At) :
D′(At) > 0 and D′′(At) ≥ 0.
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2.1 The social planner problem

The net social welfare is given by the benefits from energy consumption1, sub-
tracted production costs and the damage of atmospheric carbon,

Ut = B(Et)− c(St)Rt − b(Ht)−D(At). (6)

The social planner is seeking to find the production of fossil energy and bioenergy
that maximizes the discounted social welfare across all time periods.

max
{Rt},{Ht}

∫ ∞
0

Ute
−ρtdt (7)

subject to (1), (2), (4) and (5).

Using standard optimal control theory, we construct the current value Hamilto-
nian and derive the corresponding first order conditions for an interior optimum:

Ht =B(Et)− c(St)Rt − b(Ht)−D(At) + κt[−Rt]+

ηt[f(Vt)−Ht] + υ1t [
3

4
(Rt +Ht − f(Vt))− αA1

t ] (8)

υ2t [
1

4
(Rt +Ht − f(Vt))],

∂H
∂Rt

=B′(Et)− c(St)− κt + υ1t
3

4
+ υ2t

1

4
= 0

∂H
∂Ht

=B′(Et)− b′(Ht)− ηt + υ1t
3

4
+ υ2t

1

4
= 0

The υjt -values will always be negative as they represent the value of adding more
carbon into the atmosphere. The negative, weighted sum of the two υjt terms
will represent the social cost of increasing the level of carbon in the atmosphere,
and thus the pigovian tax of atmospheric carbon. We will denote this tax τt =

1We can interpret B(E) as a reduced form function giving utility as a function of fossil en-
ergy plus bioenergy when other energy (nuclear and renewable) are optimally chosen, assuming
these are either imperfect substitutes to E or have increasing marginal costs of production.
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−(3
4
υ1t + 1

4
υ2t ), giving a more compact version of the first order conditions,

B′(Et) = c(St) + κt + τt (9)

B′(Et) = b′(Ht) + ηt + τt (10)

The first order conditions have a well known economic interpretation: The mar-
ginal benefit of increasing energy consumption must equal the marginal cost of
increasing production of any of the two energy types. The cost of fossil energy
depends on the real unit cost, c(St), the resource rent, κt, and the carbon tax τt .
The social cost of producing bioenergy depends on the real marginal cost, b′(Ht),
the shadow price of the standing crops, ηt, in addition to the cost of carbon. Since
the two energy types are perfect substitutes, their marginal benefits are equal.
To ensure efficiency, the volume consumed of each energy type must also be such
that the marginal costs are equal, described by c(St) + λt = b′(Ht) + ηt.

The time development of the system is governed by the equations of motion,
that is, the time development of the shadow prices:

κ̇t − ρκt = c′(St)Rt (11)

η̇t − (ρ− f ′(Vt))ηt = −τtf ′(Vt) (12)

υ̇1t − (ρ+ α)υ1t = D′(At) (13)

υ̇2t − ρυ2t = D′(At). (14)

The corresponding transversality conditions are necessary to ensure an internal
solution of the system,

lim
t→∞

e−ρtκt = 0

lim
t→∞

e−ρtηt = 0

lim
t→∞

e−ρtυjt = 0.
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Combining the equations above yields

τt = −(
3

4
υ1t +

1

4
υ2t ) =

∫ ∞
t

(1 + 3eα(t−t
′))

1

4
eρ(t−t

′)D′(A′t)dt
′ (15)

κt =−
∫ ∞
t

eρ(t−t
′)c′(St)Rtdt

′. (16)

The carbon tax (15) depends only on the marginal damage of carbon, which is
positive by assumption. This leads to the conclusion that all carbon emitted
into the atmosphere gives the same environmental costs, regardless of whether
the carbon source is fossil energy or bioenergy. The social cost of carbon reflects
the damage today, as well as all future damages, of adding one more unit of
carbon into the atmosphere. If one unit is emitted at time t, the direct damage
is given by D′(At). If no more carbon is emitted in the future, the part stored in
repository 2 will give a future discounted damage of 1

4
eρ(t−t

′)D′(At), for all future
times t′. In repository 1, there is also a depletion rate, so the future damage will
be 3

4
e(ρ+α)(t−t

′)D′(At). Summing up the combined damage over all times τ ≥ t

yields the expression in equation (15).
The resource rent κt is a reflection of the added cost of producing fossil

energy, due to the scarcity of the resource. The direct effect of extracting one
unit of fossil energy today is that the stock of fossil energy decreases. This
will lead to an increase in the unit cost of production and thus make all future
extractions more costly. The total effect of one unit extraction today is more
complex, as it depends on the entire extraction future path. The main effect is
still that the efficient marginal cost of extraction becomes higher than the real
marginal cost, when scarcity is taken into account.

It is not possible to obtain an analytical expression for ηt, as the effective
discount rate ρ − f ′(Vt) is not constant. But by studying (12) closer, it is still
possible to give this shadow price a meaningful interpretation. Keeping in mind
that ηt is the value of adding one more unit of standing crops, i.e. increasing Vt,
one can divide η̇t into three terms to easier be able to identify the different effects
in play. The first term, ρηt, represents the necessary adjustment in ηt to keep up
with peoples impatience or discounting. The second term, −f ′(Vt)ηt, takes into
account that when the growth rate changes due to present volume changes, this
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will influence the volume in the subsequent periods. The last term, −τtf ′(Vt),
includes the environmental impact, which arises due to changes in the efficient
depletion rate.

2.1.1 Steady state solution

In order to simplify the dynamics of the solution, we make the assumption that
D′′ = 0 and denote D′ by a. In other words, the damage of adding one more
unit of atmospheric carbon is independent of the current level of carbon in the
atmosphere. It immediately follows from (15) that the carbon tax takes the form

τ = D′(A)(
3

4

1

ρ+ α
+

1

4

1

ρ
) (17)

=
3

4

a

ρ+ α
+

1

4

a

ρ
, (18)

and is constant for all times t. The carbon tax depends on the social discount
rate ρ, the depletion rate α, and the damage of atmospheric carbon, a. The
first part a

ρ+α
accounts for the damage of adding one more unit of carbon into

repository 1, while a
ρ
embodies the cost of adding carbon to repository 2. The

cost of carbon in repository 2 is higher than the cost of carbon in repository 1,
because the depletion rate reduces the damage over time, having a similar effect
on the tax as the discount rate. The weighted sum of these costs reflects the fact
that when you increase emissions by one unit, 75% ends up in repository 1 and
25% ends up in repository 2, yielding a total cost of τ.

The steady state solution is characterized by Ṡt = V̇t = Ȧ1
t = Ȧ2

t = κ̇t =

η̇t = 0. This removes all time-dependence, and we get the long-run or steady
state values of the variables. The equation set describing the steady state is
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given by:

R∗ = 0 (19)

A1
∗ = 0 (20)

A2
∗ = A2

0 +
1

4
[(S0 − S∗) + (V0 − V∗)] (21)

A∗ = A2
∗ (22)

H∗ = f(V∗) (23)

B′(R∗ +H∗) = c(S∗) + κ∗ + τ (24)

B′(R∗ +H∗) = b′(H∗) + η∗ + τ (25)

ρκ∗ = −c′(S∗)R∗ (26)

(ρ− f ′(V∗))η∗ = f ′(V∗)τ, (27)

where "∗" indicates a steady state value and initial values are marked with "0".
The 9 equations (19)-(27) give the steady state solutions for the 9 endogenous
variables S∗, R∗, V∗, H∗, A1

∗, A
2
∗, A∗, κ∗ and η∗. These equations follow imme-

diately from our dynamic equations, with the exception of (21), which is derived
as follows:

A2
∗ = A2

0 +

∫ ∞
0

Ȧ2
tdt

= A2
0 +

1

4

∫ ∞
0

Et − f(Vt)dt

= A2
0 +

1

4

∫ ∞
0

Rt +Ht − (V̇t +Ht)dt

= A2
0 −

1

4

∫ ∞
0

(Ṡt + V̇t)dt

= A2
0 +

1

4
[(S0 − S∗) + (V0 − V∗)]

The interpretation of (21) is that in addition to the initial carbon in repository
2, 1/4 of the net emissions remain in the atmosphere for ever. Total emissions
from t = 0 to infinity are S0− S∗ from fossil energy extraction and V0− V∗ from
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the change in carbon contained in the biomass. If V0 − V∗ is less than zero, the
net "emissions" from the production and management of energy crops will be
negative. This implies that there has been planted more crops than has been
harvested, which means that the production (or lack of production) of bioenergy
in it self has reduced the amount of atmospheric carbon.

The production of fossil energy will necessarily tend to zero in the long run
caused by the continued increase in production costs, as the resource gradually
gets depleted. The resource rent will then decrease to zero (as seen from (26)),
as the remaining stock of the fossil resource no longer has any value. Hence,
the total energy production in the long run will solely be given by the bioenergy
production, when the production of fossil energy ceases. Equation (23) shows
that the steady state production of bioenergy will equal the long-term natural
growth of the crops. This means that for any positive volume V∗(less than Vmax),
it is possible to have a positive energy production in the long run.

Even though the production of fossil energy will tend asymptotically to-
wards zero, this is not the case for the stock of fossil energy, S. Standard
Hotelling models without increasing extraction costs will always yield complete
exhaustion of a scarce resource. However, when environmental damages and
increasing marginal costs of extraction are included, we have two strong effects
pulling towards zero extraction before the resource is depleted. We know that
the extraction costs tend to infinity, as the stock gets depleted (c(S) → ∞ as
S → 0). This imply that the steady state level S∗ must be strictly positive, even
without taking the environmental damage into account. Including the environ-
mental effects, represented by the cost of carbon, τ , will increase the amount of
unutilized fossil energy. The steady state level of the stock will also be linked to
the steady state bioenergy production, and thus the volume of standing crops.
By combining (23) - (25) we see that the remaining stock of the fossil energy
source will be given by c(S∗) = b′(H∗)+η∗ = b′(f(V∗))+η∗. That is, the marginal
cost of producing the last unit of fossil energy will equal the marginal cost of
the steady state production of bioenergy plus the shadow price of the standing
crops.

The steady state described by (19)-(27) will only be reached asymptotically.
To see this assume that the steady state is reached at some finite date T . The
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dynamics of the system imply that all variables remain constant from T and
onwards. Moreover, the same dynamics imply that all variables remain constant
also when we move backwards in time from T . But this can only be a solution to
our equations if S0 = S∗ and V0 = V∗, i.e. if we already are at the steady state
initially.

There are several different possibilities for the steady state solutions for
η∗ and V∗, depending on the underlying assumptions and the specific functions
involved. This will be discussed in the next subsections.

2.2 The dynamics toward the steady state

This section gives a more detailed picture of the properties of the steady state
and the dynamics toward the steady state. To be able to discuss the dynamic
properties, we have made some simplifications. When the system has reached
the steady state, fossil energy production will be zero, so only the bioenergy
production will affect the marginal benefit B′. However, when discussing the
saddle path, this will generally not be the case. To be able to clearly display the
interactions between the shadow price and the volume of crops, we will disregard
the interaction with fossil energy in the discussions below. The arguments will
still be valid for any constant level of fossil energy production. (In the end of
section 2.3 we briefly return to the consequences of a declining output of fossil
energy.)

To construct a phase diagrams we need to find the conditions ensuring
η̇ = 0 and V̇ = 0. The price equation can be found directly from the steady
state solution (27), while the steady state volume is characterized by the harvest
of the crops being equal to the growth rate of the crops (23). Combining this
with the first order conditions (25), we have both the η̇ = 0 and the V̇ = 0 loci:

η̇ = 0→ η =
τf ′(V )

ρ− f ′(V )
for f ′(V ) 6= ρ (28)

V̇ = 0→ η = B′(f(V ))− b′(f(V ))− τ. (29)

Consider first the curve for η̇ = 0, i.e. (28). As seen from this equation, η is
not defined for ρ = f ′(V ), and we will denote this limit volume V ρ. Looking at
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the derivative of the η̇ = 0 curve we find ∂
∂V

( τf ′(V )
ρ−f ′(V )

) = ( ρτ
(ρ−f ′)2 )f ′′(V ) < 0 since

f ′′(V ) < 0; hence the η̇ = 0 locus is a decreasing function of V . For V < V ρ we
have η < 0, since f ′(V ) > 0 for V < V ρ. For V ρ < V < VMSY we have η > 0,
since 0 < f ′(V ) < ρ for these values of V . Finally, for V > VMSY we have η < 0,
as f ′(V ) < 0 for V > VMSY . The curve giving η̇ = 0 is thus discontinuous in
V = V ρ, as the curve tends to +∞ when approaching V ρ from above and −∞
when approaching from below. Moreover, for V > V ρ this curve is is downward
sloping and cuts the horizontal axis at VMSY .

Rewriting equation (12) to: η̇ = ρη − f ′(V )(τ + η) makes it easier to
find the regions where η increases or declines. In the region V < V ρ we have:
f ′(V ) > ρ > 0, η < 0 and (η + τ) < 0 along the η̇ = 0 curve. Increasing V
marginally, while holding η constant then yields: ∂η̇

∂V
= −f ′′(V )(τ +η) < 0. This

implies that η is declining to the right of the η̇ = 0 curve, and increasing to the
left, for all volumes less than V ρ. For volumes between V ρ and VMSY we have:
0 < f ′(V ) < ρ and η < 0 along the η̇ = 0 curve. In this area −f ′′(V )(τ + η) > 0,
which means that η is increasing to the right of the η̇ = 0 locus. The last region
we need to examine is V > VMSY , where f ′(V ) < 0, η < 0 and consequently
(τ + η) > 0. From this we see that −f ′′(V )(τ + η) > 0, also in this region.

Next, consider the curve for V̇ = 0. The bioenergy cost function is by
assumption monotonically increasing in bioenergy production, that is, b′ > 0 for
all levels of H. The bioenergy production is uniquely determined by the steady
state volume, H = f(V ). Since b′′ ≥ 0 and B′′ ≤ 0, the slope ∂

∂V
(B′(f(V )) −

b′(f(V ))− τ) = (B′′ − b′′)f ′(V ) will always have the opposite sign of f ′(V ), and
the minimum value of η will coincide with the maximum of f(V ) at VMSY .

To find in what regions the volume grows and declines, it is useful to start
with the first order condition determining the bioenergy production, B′(H) =

b′(H) + η + τ . Rewriting the first order condition gives H = H(η + τ), where
H ′ < 0 due to B′′ < 0 and b′′ > 0. Using this equation in the growth equation
for the volume yields V̇ = f(V )−H(η+ τ). Starting from the V̇ = 0 curve and
increasing η marginally will lead to a decrease in the bioenergy production and
thus an increase in the growth rate of the crops. Thus V is increasing above the
V̇ = 0 locus, and decreasing below.

The above properties of the curve for η̇ = 0 and V̇ = 0 are used in the
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phase diagrams below.

2.3 Low-cost bioenergy

In this section we consider low-cost bioenergy. More precisely, we make the
following assumption:

B′(f(VMSY ))− b′(f(VMSY )) > 0 (30)

This means that in the absence of any fossil energy production and climate
costs, short-run maximization of U , implying B′(H)−b′(H) = 0, would given an
unsustainable value of H (i.e. H > f(VMSY )). Hence, in this case the biological
dynamics of the crops (given by (2)) is a restriction that reduces social welfare
in the absence of climate costs, since optimal fossil energy production must
approach zero in the long run. As explained above, the minimum value of η
in figures 2 and 3 is given by η = B′(f(VMSY )) − b′(f(VMSY )) − τ . Due to
assumption (30), this minimum value of η is positive if τ is sufficiently small
(figure 2), but may be negative if τ is sufficiently large (figure 3).

We will start by looking at the case where the carbon tax τ is "low", meaning
that B′ > b′ + τ for all volumes V (figure 2). In this case it will be optimal to
choose a steady state volume that ensures a high production volume of bioenergy.
The highest possible steady state bioenergy production is obtained when V =

VMSY , but due to discounting, the steady state volume will end up strictly less
than VMSY . If V0 < V∗ the value of standing crops starts at a higher level than
the marginal social profit (η0 > B′(f(V0)) − b′(f(V0)) − τ0). It will then be
optimal to harvest below the growth rate, as this will lead to an increase in both
the volume and the growth rate of the standing crops. Along the saddle path
η is decreasing, and the volume will continue to increase until the steady state
is reached. A similar argument can be used when V0 > V ∗, but then we have
the opposite movements in the variables. In both cases, the closer the minimum
point of the V̇ = 0 curve is to zero, the closer the steady state volume gets to
VMSY . Thus with a low carbon tax η∗ will be positive, as the η̇ = 0 locus is
above zero between V ρ and VMSY .

A special case of a low carbon tax is that τ = 0. This case of no climate
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externality is of particular interest, as the unregulated market outcome in the
absence of any externality will coincide with the social optimum. The curve for
V̇ = 0 will be as drawn in figure 2. When τ = 0 it is clear from (12) that η̇ = 0

only if η = 0 or f(V ) = 0 (i.e. V = V ρ). Hence, the downward sloping curve for
η̇ = 0 in figure 2 takes the limiting upside-down T-shaped form as illustrated in
figure 4. In this case the steady state value of V is V ρ.

Consider next the case for which the carbon tax is so high thatB′(f(VMSY ))−
b′(f(VMSY )) − τ < 0. In this case the minimum value of η is negative, as il-
lustrated in figure 32. The difference from the low-tax case is that the higher
environmental cost makes it less profitable to produce bioenergy, and the system
is then pushed towards a higher steady state volume than in the low tax case.
The steady state volume will now be to the right of VMSY , and the corresponding
η will be negative.3 To investigate how the steady state value of the volume of
the crop depends on the carbon tax, we differentiate (25) and (27) with respect
to τ (after inserting R∗ = 0 and H∗ = f(V∗)). This gives(

(B′′ − b′′)f ′ −1

−(η∗ + τ)f ′′ (ρ− f ′)

)(
dV∗
dτ
dη∗
dτ

)
=

(
1

f ′

)

implying

dV∗
dτ

=
ρ

C
(31)

dη∗
dτ

=
1

C

[
(B′′ − b′′)(f ′)2 + (η∗ + τ)f ′′

]
(32)

where
C = (B′′ − b′′)f ′(ρ− f ′)− (η∗ + τ)f ′′ (33)

In Appendix 1 we show that C > 0 for a saddle-point equilibrium of the
type illustrated in figures 2-4. Hence, the steady state value of V is increasing in
τ . Due to the property of the growth function f , this implies that as τ increases

2Assuming for now that there is only one equilibrium point in this case, even though it is
possible to get multiple equilibria if the V̇ = 0 curve cross the η̇ = 0 curve on the left hand
side of V ρ. More on multiple equilibria in section 2.4.1

3We disregard cases where τ is so large that the η̇ = 0 and V̇ = 0 do not intersect for an
interior value of V
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Figure 2: Phase diagram for low cost bioenergy with low carbon tax.

Figure 3: Phase diagram for low cost bioenergy with medium to high carbon
tax.
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Figure 4: Phase diagram for low cost bioenergy with no carbon tax.

from 0 to B′(f(VMSY ))−b′(f(VMSY )), the steady state bioenergy production H∗
increases. However, as τ increases further, f ′ becomes negative, so H∗ declines
with a rising τ . This implies that a higher carbon tax will only result in a
higher steady state level of bioenergy production, if the steady state volume is
sufficiently low, that is, below VMSY

For low-cost bioenergy we have B′ − b′ > 0 for any bioenergy production
H ≤ f(VMSY ) , and (29) then implies that τ+η∗ > 0. From this we can conclude
that the square bracket in (32) is negative for low-cost bioenergy, which then
tells us that the steady state shadow price η∗ declines as τ increases. The formal
analysis above was done assuming R = 0, which is unproblematic with regards
to the η̇ = 0 loci, as equation (28) is independent of the value of R. However,
the position of the curve for V̇ = 0, given by η = B′(f(V ) + R)− b′(f(V ))− τ ,
is lower the higher is R, since B′′ < 0. As R gradually declines as we approach
the steady state, this means that this curve is gradually moving upwards. This
will make the detailed dynamics of V and η slightly different than what we have
illustrated in figures 2-4. In particular, the approach of η towards its steady
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state value may no longer be monotonic. This may in turn have implications
for the detailed time path of the bioenergy production towards its steady state
value f(V∗).

2.4 High-cost bioenergy

Assume now that (30) doesn’t hold, that is, B′(f(VMSY )) − b′(f(VMSY )) ≤ 0.
This means that in the absence of any fossil energy production and climate costs,
short-run maximization of U , implying B′(H + R) − b′(H) = 0, would given a
sustainable value of H (i.e. H ≤ f(VMSY )). In this case the minimum value of
η is negative for all τ ≥ 0. Figure 3 is an example of this case for a τ > 0.

If cost of bioenergy production is sufficently high, we could have B′(0) −
b′(0) ≤ 0, in which case the U-shaped curve for V̇ = 0 is below the horizontal
axis for all V ∈ [0, V̄ ]. It is then optimal to have no bioenergy production even
if fossil energy production is zero, no matter what non-negative carbon tax we
have. Whenever B′(0) − b′(0) > 0 and τ > 0 the U-shaped curve for V̇ = 0

will intersect the η̇ = 0 locus for some V < V̄ . The long-run equilibrium will
then be characterized by VMSY < V∗ < V̄ and η∗ ≤ 0, for any strictly positive
value of τ . We will take a closer look at the limiting case of τ = 0 in section
3. Equations (31) and (32) are still valid in the present case, implying that V∗
is higher the higher is τ . However, H∗ will in this case be lower the higher V∗
is. This indicates that for high-cost bioenergy a high carbon tax will result in a
lower long-run bioenergy production.

2.4.1 Multiple steady states

In the previous cases we assumed that there was only one steady state solution
in each case. In this section we will take a closer look at some situations where
multiple equilibria can arise. Figure 5 displays a case with either a high carbon
tax or a low carbon tax coupled with high-cost bioenergy. Here one can see
that two new equilibria (Vlow and Vmed) is introduced, where one is unstable.
This means that there are two possible time paths that solve the maximization
problem 7. The low steady state volume, Vlow, will be realized if V0 < Vmed,
that is, the initial volume is less than the volume corresponding to the unstable
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Figure 5: Phase diagram with multiple equilibria for high cost bioenergy and/or
high carbon tax.

equilibrium. If V0 > Vmed the steady state volume will be Vhigh.
When there is no carbon tax, multiple equilibria can only arise if the cost of

producing bioenergy is high, i.e. B′(f(VMSY )) − b′(f(VMSY )) ≤ 0. This case is
shown in figure 6. The two cases are very similar, but the main difference is that
in the no tax case the steady state shadow price of the standing crops will never
be negative. Common for all stable, long term solutions is that the unregulated
market (no carbon tax) will always have a too low level of standing crops.

Two other multiple equilibria cases are displayed in appendix 2.

3 The market outcome

The market outcome maximizes consumer plus and producer surplus, in the
absence of externalities and regulations. This means that the market outcome
is identical to what the social optimum would be without any environmental
costs. The steady state properties of this outcome were illustrated by figure
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Figure 6: Phase diagram with multiple equilibria for high cost bioenergy with
no carbon tax.

3 for the case of low-cost bioenergy and by figure 4 for the case of high-cost
bioenergy. We have shown that for both cases the socially optimal steady state
volume of bioenergy crops is higher the higher is the carbon tax. It follows that
the steady state volume of bioenergy crops in an unregulated market is lower
than what is socially optimal in the presence of climate costs. For the case of
high-cost bioenergy (implying V∗ > VMSY for all τ and hence H∗ lower the higher
is V∗), this implies that the steady state bioenergy production in an unregulated
market is higher than what is socially optimal in the presence of climate costs.
For low-cost bioenergy the reverse is true, that is, the bioenergy production in
an unregulated market is too low compared to what is socially optimal.

Even if the socially optimal long-run bioenergy production could be lower
than the long-run bioenergy production in an unregulated market, the relation-
ship could be the opposite in the short run.This is illustrated in figure 7. The
time paths for the unregulated marked (zero carbon tax) and social optimum
(positive carbon tax) are denoted by UM and SO, respectively. Since the UM-



21

curve lies above the SO-curve in the long run, we must have V∗ > VMSY , as
illustrated in figure 3. Before oil is depleted, biofuel production is determined
by (10), i.e. B′(Rt + Ht) − b′(Ht) = ηt + τ . A socially optimal carbon tax will
reduce Rt in the short run compared with the case without a carbon tax. From
the equation above we therefore see that the direct effect of increasing τ is to
reduce Ht, but that the indirect effect through reduced Rt is to increase Ht.
If this indirect effect dominates the direct effect, bioenergy production will be
higher in the near term with a carbon tax than without, as illustrated in figure
7.4

This figure is drawn for R = 0, but is valid for any constant R. The curve
for η = 0 is independent of R, while the curve giving V̇ = 0 is higher the lower is
R. A lower constant value of R hence gives a higher (less negative) steady state
value of η, and therefore also a higher path of A socially optimal carbon tax will
reduce fossil energy use in the short run(t) toward the steady state.

A socially optimal carbon tax will reduce fossil energy use in the short
run, and the total energy produced will also be lower with a tax than without.
Although we have not given a formal analysis of the effect of changing the level
of the R(t)-path over some time interval when R(t) is not constant, it seems
plausible from the discussion above that a lower level of the R(t)-path should
tend to increase the time path of η(t) along this time interval. This would then
imply that bioenergy production is lower in the near term with a carbon tax
than without, as illustrated in figure 7.

A socially optimal carbon tax will reduce fossil energy use in the short run,
and the total energy produced will also be lower with a tax than without. The
lower is the production of fossil energy, the higher lies the curve giving V̇ = 0.
Moreover, the lower a constant value of R is the the higher will the path of η(t)

toward the steady state lie (in figures 1 and 2). Although we have not given
a formal analysis of the effect of changing the level of the R(t)-path over some
time interval when R(t) is not constant, it seems plausible that a lower level
of the R(t)-path should tend to increase the time path of η(t) along this time
interval. This would then imply that bioenergy production is lower in the near

4A complete analysis of this issue would have to take into consideration that the time path
of ηt would also be affected by τ .
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Figure 7: Sketch of possible time paths of bioenergy production with a carbon
tax (SO) and without a carbon tax (UM).

term with a carbon tax than without, as illustrated in figure 7.

4 Policy options

Tax on carbon emissions
As usual, the social optimum may be achieved by setting a Pigovian tax on
net carbon emissions to the atmosphere. This tax should be equal to the value
given by (15), and should be applied both to the emission from fossil energy use
and to net emissions from consumption (emission from use of bioenergy minus
growth of the bioenergy crops). With such a tax scheme the market outcome
will coincide with the solution to the problem described by (7), with a slightly
modified "utility function" given by:

Umarket
t = B(Ht +Rt)− c(St)Rt − b(Ht)Ht − τt(Rt − V̇t) (34)
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where τt is given by (15). It is straightforward to verify that the solution to this
problem is given by (9)-(12).

Differentiated tax on energy consumption
If the government lacks information about the crop growth, it will not be possible
to reach the first-best solution using only a tax on net carbon emission. Another
policy option can be to impose a tax or subsidy on the different energy types.
As shown below, this policy option will also reproduce the first-best solution.

The government’s problem can be constructed as a Stackelberg game, where
the government is the leader and announces the tax paths that it will commit to.
The producer is the follower, and will maximize profits taking the announced tax
plans as given. The idea behind this game is that the government can calculate
how the producer will respond to the different tax paths, and based on this,
choose the tax paths yielding the highest net social benefits. The government’s
control variables are the tax paths, while the producer’s control variables are the
production of fossil energy and bioenergy as before.

In the present model the solution to the government’s optimization problem
is in principle simple: The first-best social optimum is achieved if fossil energy
consumption is taxed the rate τt given by (15) and bioenergy consumption is
taxed at the rate τt + ηt, where ηt is given by the social optimum. With these
taxes the market outcome solves the following problem:

max
{Rt},{Ht}

∫ ∞
0

[B(Rt +Ht)− c(St)Rt − b(Ht)− τtRt − (τt + ηt)Ht] e
−ρtdt (35)

subject to (1) and (2).

The determination of Rt is given by the same equations as in the social optimum.
Moreover, at each t the value of Ht that maximizes the square brackets in (35)
is given by (10). We know that this time path of Ht satisfies the constraint
(2), which hence is redundent in the optimization problem above. The social
optimum therefore solves the optimization problem above. Under the assumption
that climate damages are linear with respect to the carbon in the atmosphere,
the optimal tax on fossil energy (τ) is constant. The optimal tax on bioenergy
(τ + ηt) will generally vary over time. The long-run value of this tax may be
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higher (figure 2; η∗ > 0) or lower (figure 3; η∗ < 0) than the tax on fossil energy.
As explained in the end of section 3, the time path of the difference between
these tax rates may be non-monotonic.

The motivation for using energy taxes instead of targeting carbon emission
and mitigation was information problems with regards to measuring the crop
growth. Unfortunately, the government will meet information problems when
using energy taxes as well. This analysis relied on the assumption that the gov-
ernment was informed about the market response functions, giveven implicitly
by (9) and (10). This is clearly a very strong assumption, and in real life there is
no reason to believe that the government would know the exact function forms
of the market response functions. One can therefore not expect the implemented
policies to fully replicate the social optimum.

The reason why we in principle can achieve the first-best social optimum
without directly observing the growth of the crops is that the growth of the crops
only depend on the bioenergy production in our model. In reality, farmers may
be able to influence net carbon emissions also via other channels, e.g. through
type of crop and in the way the crops are managed. A tax only on bioenergy
consumption will in this case generally not make the market outcome coincide
with the social optimum.

5 Conclusions

The analysis has derived properties of the socially optimal combination of fossil
energy and bioenergy, and demonstrated the optimal solution’s dependance on
production costs and the social cost of carbon. The social optimum may in
principle be obtained as a competitive equilibrium, provided that the taxes and
subsidies are designed correctly.

With no taxes or subsidies directed towards the use or production of bioen-
ergy, the long-term volume of bioenergy crops will be too low, regardless of the
production costs of bioenergy. However, this does not mean that the market
supply of bioenergy will be too low. Our analysis shows that without a tax on
carbon, the steady state production of bioenergy will in an unregulated market
economy be too high when the production costs of bioenergy are high. The
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converse is true for low-cost bioenergy. These results are a direct result of the
biological dynamics of the crops in combination with the atmospheric depletion
process.



26

6 Appendix 1

The steepeness of the curves for η̇ = 0 and V̇ = 0 follow from (28) and (29):(
∂η

∂V

)
η̇=0

=
ρτ

(ρ− f ′)2
f ′′(

∂η

∂V

)
V̇=0

= (B′′ − b′′)f ′

In a saddlepoint equilibrium the curve for V̇ = 0 must be steeper (including the
sign) than the curve for η̇ = 0. From the equations above this implies that

(B′′ − b′′)f ′ − ρτ

(ρ− f ′)2
f ′′ > 0 (36)

Inserting (36) into the expression (33) for C gives

C = (B′′ − b′′)f ′(ρ− f ′)− τρ

ρ− f ′(V∗)
f ′′

= (ρ− f ′)
[
(B′′ − b′′)f ′ − ρτ

(ρ− f ′)2
f ′′
]

From (36) we know that the term in square brackets is positive. Moreover, for
τ > 0 we have ρ− f ′(V∗) > 0. Hence, C > 0.
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7 Appendix 2

Figure 8: Phase diagram for high cost bioenergy and/or high carbon tax with
multiple equilibria.

Figure 9: Phase diagram for high cost bioenergy with no carbon taxt with
multiple equilibria.
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