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Abstract 
 
An auction is externality-robust if unilateral deviations from equilibrium leave the other 
bidders’ payoffs unaffected. The equilibrium and its outcome will then persist if certain types 
of externalities arise between bidders. One example are externalities due to spiteful 
preferences, which have been used to explain overbidding in the second-price auction (SPA). 
Another example are cross-shareholdings between companies that compete in an auction. We 
derive an auction that coincides with the SPA in terms of efficiency and revenue but, in 
contrast to the SPA, is externality-robust. The externality-robust auction (ERA) is a first-price 
auction in which truthful bidding is encouraged by bonus payments. We test the robustness 
property experimentally by comparing SPA and ERA. We replicate the earlier finding of 
significant average overbidding in the SPA, but we find that bidders bid on average their 
value in the ERA. We conduct additional treatments where bidders play against the computer 
and we use controls for cognitive skills and joy of winning to further pin down the reasons 
behind the subjects’ bidding behavior. 
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1 Introduction

When Vickrey (1961) first described the second-price sealed-bid auction (SPA), his goal was to

devise a selling mechanism that achieves Pareto efficiency in private information environments,

without requiring too much strategic sophistication of the agents. Since truth-telling is a domi-

nant strategy in the SPA, every “bidder can confine his efforts and attention to an appraisal of

the value the article would have in his own hands, at a considerable saving in mental strain”

(Vickrey, 1961, p. 22). Hence a certain notion of robustness – with respect to knowledge and

beliefs, see Bergemann and Morris (2005) – is an important argument in favor of the SPA.

Experimental studies reveal, however, that the actual performance of the SPA can differ

substantially from the theoretical prediction (Kagel, 1995): overbidding is regularly observed,

such that Pareto efficiency of the outcome is not guaranteed. Explaining this finding is intricate.

Most behavioral models that predict overbidding in auction formats like the first-price sealed-bid

auction (FPA) fail to do so in the SPA, precisely because of its dominance property.1 Among

the candidates that can explain overbidding in the SPA, spiteful preferences have received much

attention (e.g. Morgan et al., 2003; Brandt et al., 2007). Spiteful bidders have an incentive to

overbid because the own bid can affect the price that a winning opponent has to pay in the SPA.

The experimental literature has presented evidence for the presence of a spite motive among

bidders in auctions (Andreoni et al., 2007; Cooper and Fang, 2008; Nishimura et al., 2011).2

Given these empirical findings, robustness with respect to interdependent preferences might not

be of lesser importance than robustness as captured by dominant strategies. The contribution

of this paper is, first, to formally derive such a robust auction format and, second, to test its

predicted properties in a laboratory experiment.

In a mechanism design framework with independent private values and quasilinear payoffs,

Bierbrauer and Netzer (2014) have introduced the concept of externality-robustness.3 Suppose

that the Bayes-Nash equilibrium of a mechanism satisfies that unilateral deviations (e.g. to

overbidding in an auction) leave the expected payoffs of all non-deviating agents unaffected. Such

1This holds for models of risk aversion (Cox et al., 1988), anticipated regret (Filiz-Ozbay and Ozbay, 2007),
level-k thinking (Crawford and Iriberri, 2007; Crawford et al., 2009), quantal response equilibrium (Goeree et al.,
2002), impulse balance equilibrium (Ockenfels and Selten, 2005), or interim rationalizability (Battigalli and
Siniscalchi, 2003).

2Cooper and Fang (2008) show that, in addition to spitefulness, both joy of winning (Roider and Schmitz,
2011) and imperfect learning help to explain their findings. Lange and Ratan (2010) propose a specific form of
loss aversion as a driver of overbidding and discuss resulting differences between lab experiments and the field.

3Bierbrauer and Netzer (2014) focus on intention-based social preferences, but their concept is applicable to
a wider range of externalities.
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an equilibrium will continue to exist for general preference interdependencies, because the bidders

cannot manipulate each others’ payoffs. In addition to spitefulness, the class of externalities for

which robustness is implied also contains motives such as inequality aversion (Fehr and Schmidt,

1999; Bolton and Ockenfels, 2000), intention-based social preferences (Rabin, 1993; Dufwenberg

and Kirchsteiger, 2004), or altruism (Andreoni, 1989). Bierbrauer and Netzer (2014) show that

externality-robustness is implied by an insurance property of the (incentive-compatible) social

choice function to be implemented, i.e., the agents’ payoffs have to be ex-ante insured against

the randomness in the other agents’ types. This property is similar to concepts of insurance in

auctions with risk-averse agents (e.g. Maskin and Riley, 1984) and with ambiguity-averse agents

(e.g. Bose et al., 2006), but it serves a different purpose here. Insurance is relevant with risk-

averse agents (albeit not generally optimal, see Matthews, 1983, and Maskin and Riley, 1984)

for the conventional reasons, and it is relevant with ambiguity-averse agents (and also optimal,

see Bose et al., 2006) because providing insurance on the worst-case prior allows the seller to

extract revenue from the agents. In the present context, insurance is relevant because it protects

an agent against other agents’ attempts to manipulate her payoffs, and hence it protects the

equilibrium against payoff externalities.4

Given the degrees of freedom in designing ex-post transfers of Bayesian incentive-compatible

mechanisms, it is possible to make any mechanism externality-robust without changing either

its allocation rule or its expected revenue. In the first part of this paper, we formally derive the

robust counterpart to the SPA, the externality-robust auction (ERA). We show that the ERA

corresponds to a first price auction which is augmented by bonus payments to elicit larger bids.

Specifically, every bidder obtains a bonus that is increasing in the own bid but independent

of the others’ bids and the event of winning or losing. The bonus schedule is designed so as

to induce truthful bidding. Unilateral deviations from truthful bidding then have no effect on

the other bidders’ payoffs, because (i) their bonus payment is unaffected and (ii) winning the

auction generates no additional rents that can be manipulated. We will discuss the relation of

the ERA to several previously described auction formats in Section 2.6.

The hypothesis that payoff externalities are the reason for overbidding in the SPA, together

with the externality-robustness of the ERA leads to several predictions about bidding behavior,

4See Bose et al. (2006, p. 424f) for a careful discussion of the different concepts of insurance in auctions.
Bellemare and Sebald (2011) apply a related invariance property to experimentally infer about belief-dependent
preferences. Esö and Futo (1999) have investigated the different problem of insuring the auctioneer against
randomness in the revenue (see also Börgers and Norman, 2009).
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which we test experimentally in the second part of the paper. First and foremost, we expect to

find overbidding in the SPA but not in the ERA, since spitefulness among experimental subjects

can manifest itself in overbidding in the SPA but not in the ERA. We conducted treatments

for both auction types, relying on a between subjects design. Participants are anonymously

and randomly rematched in groups of two bidders in each of 24 rounds. Their private values

are determined anew every round by an independent draw from a uniform distribution. The

results confirm our main hypothesis. In the SPA, bids are on average about 10 percent above

values. Average overbidding in the ERA, by contrast, is not different from zero. This difference

in average overbidding between SPA and ERA is highly significant.

To put the theoretical arguments to further testing, we conducted control treatments where

subjects interact with a computer instead of another subject. The important property of these

control treatments is that interaction with a computer directly eliminates the possibility that a

bidder can influence the payoff of another bidder.5 If payoff externalities are indeed the (only)

reason for overbidding in the SPA, we should not observe overbidding in the SPA against the

computer. For the ERA, in contrast, where no externality exists by design, we should observe

no change in bidding behavior when the human opponent is replaced by the computer. Our data

show that average overbidding is significantly reduced (to about 4 percent) in the SPA against

the computer. We also find that average overbidding remains indistinguishable from zero in

the ERA against the computer. Even though some overbidding persists in the SPA against

the computer, these results provide unambiguous evidence that a large part of the difference in

average bidding behavior between the SPA and the ERA is driven by the property of externality-

robustness of the ERA.

To capture further possible motives for bidding behavior in the different auction formats,

and also to understand individual heterogeneity, we administered a Raven Progressive Matrices

test (Raven et al., 2007), which measures cognitive skills. We also collected a measure of the

subjects’ joy of winning, using a procedure due to Sheremeta (2010) where money can be invested

to win a contest with no monetary prize. Joy of winning turns out to be positively correlated

with bidding in all four treatments, although significantly so only in two of the four treatments.

Cognitive skills have a significant impact on bidding only in the SPA, where better cognitive

5Replacing human opponents by a computer is a standard experimental technique to eliminate social contexts,
see e.g. Bohnet and Zeckhauser (2004) for a trust game and van den Bos et al. (2008) for a common value auction.
Note that the SPA against the computer bidder is a variant of the Becker-DeGroot-Marschak mechanism (Becker
et al., 1964), which is often used to elicit the willingness to pay of a single buyer.
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skills are associated with less overbidding. The distinguishing feature of the SPA from the

other three treatments is the existence of another bidder whose payoff can be manipulated. This

observation lends support to the possibility that cognitive skills serve as a proxy measure for less

spiteful preferences in our analysis, which is supported by existing evidence that has documented

a positive correlation between cognitive skills and pro-social behavior (e.g. Burks et al., 2009;

Millet and Dewitte, 2007).

The primary goal of this paper is to derive and test a behaviorally motivated auction format.

We do this by focussing on the externality of spitefulness that occurs naturally in the laboratory,

and we thus also contribute to the literature on overbidding and the spite motive in auctions.

An alternative approach for testing the externality-robustness of the ERA would be to induce

interdependencies in the laboratory. For example, in several real-world auctions, bidders are

firms who hold shares of their competitors (Ettinger, 2003; Dasgupta and Tsui, 2004; Chillemi,

2005; Ettinger, 2008). Such cross-shareholdings imply that firms take into account the effect of

their behavior on other bidders’ profits – yet another externality that is resolved by the ERA and

that could be induced and studied in an experimental setting. Importantly, cross-shareholdings

are predicted to lead to underbidding. While overbidding might not be perceived as a problem

by a seller whose interest is not efficiency but to maximize revenue, employing the ERA can be

very attractive even for such a seller if cross-shareholdings among bidders exist.

In a bilateral trade context, the recent study by Bierbrauer et al. (2014) compares theoret-

ically and experimentally a mechanism that is revenue-optimal and ex-post implementable if

there are no externalities between the agents, to one that is constrained optimal under the addi-

tional requirement of externality-robustness.6 In line with our findings, they report systematic

deviations from predicted behavior in the former but not in the latter mechanism.

2 Theoretical Analysis

2.1 Formal Framework

Framework and notation introduced below are a special case of the mechanism design approach

in Bierbrauer and Netzer (2014). The problem is to allocate one unit of an indivisible object

among risk-neutral bidders with private information about their willingness to pay. The set of

bidders is I = {1, . . . , n}, n ≥ 2. Bidder i’s valuation of the object is denoted by θi ∈ Θi.

6Netzer and Volk (2014) investigate ex-post implementation for the model of intention-based social preferences.
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Let θ = (θ1, . . . , θn) ∈ Θ = Θ1 × . . . × Θn denote the profile of valuations of all bidders. The

expression θ = (θi, θ−i) will be used when convenient. Bidder i’s valuation is drawn randomly

from the set Θi = {θ1, . . . , θm} ⊂ R, where m ≥ 2 and 0 ≤ θ1 < θ2 < . . . < θm. Valuations are

drawn independently and identically across bidders, according to strictly positive probabilities

p1, p2, . . . , pm. Cumulated probabilities are denoted by P k =
∑k

j=1
pj, k = 0, 1, . . . ,m, so that

P 0 = 0 and Pm = 1. Let Q = {(q1, . . . , qn) ∈ [0, 1]n|
∑n

i=1
qi = 1} be the set of possible outcome

decisions, where q = (q1, . . . , qn) ∈ Q are the winning probabilities for each bidder. Let T = R
n

be the set of all possible transfers, where t = (t1, . . . , tn) ∈ T prescribes the transfers paid to each

bidder (negative transfers amount to payments made by the corresponding bidder). Altogether,

A = Q × T is the set of possible allocations. Bidder i’s material payoff from an allocation is

given by πi(qi, ti, θi) = qiθi + ti.

In this environment, a social choice function (SCF) is a mapping f : Θ → A which assigns

an allocation f(θ) ∈ A to every profile θ ∈ Θ. The notation f = (qf
1
, . . . , qfn, t

f
1
, . . . , tfn) will

also be used, so that qfi (θ) is the winning probability and tfi (θ) is the transfer to bidder i under

the SCF f , given valuations θ. The SCF fSPA which is underlying the second-price sealed-bid

auction is described as follows. For any given profile of valuations θ, let W (θ) ⊆ I be the set of

bidders with maximal valuation in θ = (θ1, . . . , θn). Furthermore, let s(θ) be the second-largest

valuation in θ. Whenever |W (θ)| = 1, so that there is a single bidder with largest valuation, s(θ)

is strictly smaller than this largest valuation. Whenever |W (θ)| > 1, so several bidders have the

same largest valuation, s(θ) is identical to this largest valuation. Now define

q∗i (θ) =











1/|W (θ)| if i ∈ W (θ),

0 if i /∈ W (θ),
(1)

which implies that the object is allocated with equal probabilities among all bidders with largest

valuation. Transfers are defined by

tSPA
i (θ) =











−s(θ)/|W (θ)| if i ∈ W (θ),

0 if i /∈ W (θ),
(2)

which states that the winner has to pay the second-largest valuation (adjusted for randomly

broken ties). The direct mechanism for fSPA = (q∗1 , . . . , q
∗

n, t
SPA
1 , . . . , tSPA

n ), where each bidder

is asked for a bid from Θi and the outcome is determined by fSPA, is called the second-price
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sealed-bid auction, or the Vickrey auction (Vickrey, 1961). It is a special case from the class

of Vickrey-Clarke-Groves mechanisms (e.g. Mas-Colell et al., 1995, ch. 23), so that truthful

bidding (making bids equal to the true value) is a weakly dominant strategy for every bidder.7

2.2 Externality-Robustness

While the dominance of truthful bidding is an important advantage of the SPA, it has the

disadvantage of being vulnerable to externalities. This can be illustrated in a simple example.

Assume n = 2 and m = 2. Let Θi = {1, 2} be the set of possible valuations, and write p1 = p

and p2 = 1 − p, where 0 < p < 1. Assume also that bidder 2 in fact bids truthfully. It is an

easy exercise to derive the ex-ante expected payoff pairs that bidder 1 can induce for herself and

the opponent by varying her own strategy. Truthful bidding yields the maximal expected payoff

p(1 − p) for bidder 1. Deviations to always bidding low (underbidding) or always bidding high

(overbidding) reduce this expected payoff to p(1 − p)/2. The effect on bidder 2 is as follows.

Truthful bidding yields p(1−p) also for bidder 2. If bidder 1 deviates to underbidding, however,

the expected payoff of bidder 2 increases to (1 − p). Overbidding, on the other hand, reduces

bidder 2’s expected payoff to 0. Now suppose that bidder 1 is not selfish but maximizes a

weighted sum of the own and the opponent’s payoff, with weight α placed on the opponent.

Then underbidding will be preferable to truthful bidding whenever α > [p/(1 − p)]/2. This

could correspond to a case with a sufficiently large share α of holdings in the opponent firm

(Ettinger, 2003; Dasgupta and Tsui, 2004; Chillemi, 2005). Overbidding, on the other hand,

becomes more attractive than truth-telling whenever α < −1/2, which could correspond to a

case of sufficiently strong spitefulness (Morgan et al., 2003; Brandt et al., 2007).

The problem arises because bidder 1’s strategy choice affects the payoff of bidder 2. Suppose

that, in a different auction format, bidder 1 did not have the opportunity to manipulate the

payoff of bidder 2 through a unilateral deviation from truthful bidding, and suppose further that

truthful bidding was still a selfish best response for bidder 1. In such an auction, the incentive to

bid truthfully would not be destroyed by pro- or anti-social concerns.8 Following Bierbrauer and

Netzer (2014), we say that an SCF is externality-robust if it is (i) Bayesian incentive-compatible,

7Truthful bidding is, however, not the unique equilibrium. See Blume and Heidhues (2004) for a complete
characterization of the equilibrium structure. The focus on equilibrium existence but not uniqueness in mechanism
design theory is often justified by the argument that the mechanism designer can suggest a particular equilibrium
to the agents.

8This argument applies to a large class of interdependent preference models, including essentially all the
models commonly used in the literature. For a more detailed discussion see Bierbrauer and Netzer (2014) or
Bierbrauer et al. (2014), and the related arguments in Segal and Sobel (2007) and Dufwenberg et al. (2011).
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i.e., truth-telling is a Bayes-Nash equilibrium in the direct mechanism, and (ii) it satisfies that

unilateral deviations from this equilibrium have no impact on the expected payoffs of all other

agents. Bierbrauer and Netzer (2014, Proposition 2) show in an abstract framework that it is

possible to start from any Bayesian incentive-compatible SCF f and construct an externality-

robust SCF f̄ that coincides with f in terms of the decision rule (qf
1
, . . . , qfn), the expected

revenue, and the interim expected payoffs of all agents. In the next section, we apply this result

to our auction setup, where the construction of the new transfers (tf̄
1
, . . . , tf̄n) reduces to

tf̄i (θ) = Eθ−i

[

qfi (θi, θ−i) θi + tfi (θi, θ−i)
]

− qfi (θ) θi. (3)

Bose et al. (2006) and Bodoh-Creed (2012) apply an analogous construction in a model frame-

work where bidders have ambiguous beliefs about the other bidders’ values. The expectation

in (3) is then taken with respect to bidder i’s worst-case prior, which provides insurance to the

bidder and at the same time increases revenues to the seller.

2.3 The Externality-Robust Auction

We now apply the construction described in the previous section to f = fSPA to derive its

externality-robust counterpart f̄ = fERA. Since the efficient decision rule (q∗1, . . . , q
∗

n) is adopted

without modification, the following proposition describes only the modified transfers.

Proposition 1. In the externality-robust auction fERA, transfers are given by

tERA
i (θ) = B(θi) +











−θi/|W (θ)| if i ∈ W (θ),

0 if i /∈ W (θ),
(4)

where

B(θi) =

k−1
∑

j=1

(

P j
)n−1 (

θj+1 − θj
)

(5)

for k such that θi = θk.

Proof. See Appendix A.1.

Consider the simultaneous sealed-bid auction induced by the direct mechanism for fERA.

Without the additional term B(θi) in the transfers (4), it would correspond to an FPA where
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bidders are required to submit bids and the winner pays the own bid. In the simple FPA, bidders

would shade their bids (report less than their true valuation) with the goal of earning rents in

case of winning, but the bonus function B(θi) defined in (5) restores incentives to report the

valuation truthfully. The bonus takes a value of zero for the smallest possible bid, it is strictly

increasing, and it does not depend on the opponents’ bids or the event of winning or losing the

auction. Externality-robustness now holds because, first, the bonus B(θi) received by bidder i

cannot be influenced by any opponent, and, second, there are no additional rents that can be

manipulated by manipulating the identity of the winner, as the true valuation is paid by the

winner in equilibrium.

Three qualifications are appropriate. First, our approach relies on an idea of robustness,

not of optimal auction design. If the exact nature of externalities between bidders is known, an

auction tailored to the situation can achieve larger revenues. Our analysis applies to situations

where such information requirements are excessive, for instance due to unobserved heterogeneity

in bidders’ (anti-)social preferences or firm ownership structures that are hard to disentangle or

unobservable to the outsider.9 Second, a disadvantage of the ERA is that the optimal bonus

schedule depends on the prior distribution of values, and it no longer has dominant strategies.

This reflects the fact that there is a trade-off between the different notions of robustness of a

mechanism. In light of the discussion in the introduction, this trade-off might have to be resolved

differently from case to case.10 Third, the literature has investigated a large range of different

externalities in auctions (Jehiel and Moldovanu, 2006). Not all of them are captured by the

notion of externality-robustness considered here, which only eliminates externalities based on

overall payoffs.11

9See e.g. Chillemi (2005) and Loyola (2007) for optimal auctions with known cross-shareholdings, Lu (2012)
for financial externalities, and Tang and Sandholm (2012) for spiteful bidders. As an alternative to externality-
robustness, a multi-dimensional mechanism design problem could be considered if externalities are not observable.
These problems are often intractable, and they still require substantial knowledge of the class of externalities.

10Segal and Sobel (2007) propose a concept which speaks to both notions of robustness at once, by requiring the
opponent in a two-player game to be indifferent between the conventionally defined dominated and dominating
strategy for all own strategies. For the purpose of mechanism design, this concept appears overly demanding.
Bierbrauer et al. (2014) impose externality-robustness on top of ex-post implementability, which requires to
sacrifice revenues.

11Bidders still have the discretion to manipulate the identity of the winner, which can be relevant in other
applications (Jehiel et al., 1996). The same holds for externalities arising from types to the losers of an auction
(Jehiel and Moldovanu, 2000) and directly from prices (Engelbrecht-Wiggans, 1994; Maasland and Onderstal,
2007) as in knockout auctions (Graham and Marshall, 1987; McAfee and McMillan, 1992) or auctions that are
used to finance public goods (Goeree et al., 2005; Engers and McManus, 2007). Finally, externalities can arise
from toeholds in takeovers (Burkart, 1995; Singh, 1998; Bulow et al., 1999; Ettinger, 2008), which is also not
addressed by the ERA.
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2.4 Example

To get a better understanding of the properties of B(θi), suppose that Θi = {1, ...,m} and that

values are uniformly distributed. The bonus function can now be written as

B(k) =

k−1
∑

j=1

(

j

m

)n−1

,

which is a strictly convex function of the bid k. For m = 100, as in our following experiment,

it is depicted in Figure 1 for the three cases of n = 2, n = 4 and n = 20. With two competing

bidders, as in the experiment, a bid of 50, for instance, is rewarded by a bonus of 12.25, a bid of

80 is rewarded by a bonus of 31.6, and the maximal bid of 100 is rewarded by a bonus of 49.5.

Figure 1: Bonus Function

Returning to the example from Section 2.2 (n = m = 2, p1 = p, p2 = 1 − p), it follows

that B(1) = 0 and B(2) = p. Table 1 compares the SPA to the ERA for this case. Each row

in the table corresponds to one of the four possible profiles of values. The efficient decision

rule is identical for both auctions. The table then contains the transfers of the SPA and the

ERA, as well as their generated ex-post revenues. For the ERA, straightforward calculations

show that, conditional on bidder 2 bidding truthfully, bidder 1 still achieves the maximal own

expected payoff of p(1− p) by also bidding truthfully, while both over- and underbidding reduce

this payoff to p(1− p)/2. In contrast to the SPA, however, bidder 2 can always expect to obtain

p(1− p), irrespective of bidder 1’s behavior.
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Table 1: Comparison of SPA and ERA

θ1 θ2 q∗1 q∗2 tSPA
1 tSPA

2 Revenue tERA
1 tERA

2 Revenue

1 1 1/2 1/2 −1/2 −1/2 1 −1/2 −1/2 1
1 2 0 1 0 −1 1 0 p− 2 2− p
2 1 1 0 −1 0 1 p− 2 0 2− p
2 2 1/2 1/2 −1 −1 2 p− 1 p− 1 2(1 − p)

2.5 Ex-Post Revenues

The ERA generates the same expected revenue as the SPA with selfish bidders, but their ex-post

revenues differ. In particular, the ex-post revenue of the SPA is always non-negative. This is not

necessarily the case for the ERA where the auctioneer makes payments to the bidders, so that

ex-post deficits might become possible. It will be shown in the following that deficits remain

impossible in the case with uniformly distributed values, but cannot be ruled out in some more

general environments.

Recall that B(θi) is increasing in θi. To rule out deficits for all possible valuation profiles

θ ∈ Θ, it therefore suffices to check the cases where all bidders have the same valuation: θi = θk

for some k ∈ {1, . . . ,m} and all i ∈ I. These are worst-case scenarios for the auctioneer, because

overall bonus payments are maximal among all valuation profiles that yield a gross revenue of

θk. Hence it suffices to check whether or not

nB(θk) ≤ θk (6)

holds for all k ∈ {1, . . . ,m}, where the LHS captures the bonus sum and the RHS is gross

revenue collected. As a next step, it can be shown that condition (6) is most stringent for the

largest possible value θm, a consequence of convexity of the bonus function (see Appendix A.2).

Thus, the ERA never runs a deficit if and only if

nB(θm) ≤ θm. (7)

For the framework introduced in Section 2.4, condition (7) can be verified (see again Appendix

A.2), which shows that ex-post deficits are impossible with uniformly distributed (equidistant)

values. Deficits become possible in more general frameworks, however. For instance, assume

n = 2 and m = 3 within the previous framework, but deviate from the assumption of a uniform
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distribution. For concreteness, let p1 = 1 − ǫ, p2 = ǫ/2 and p3 = ǫ/2. It can be shown that

(7) is violated whenever ǫ < 1/3. If high valuations are unlikely, the bonus payments must be

especially large for high bids, to ensure incentive-compatibility. Otherwise, high-value bidders

would be tempted to underbid and still win with sufficiently large probability. If several bidders

simultaneously have such high valuations, this leads to a deficit.

2.6 Existing Auction Formats

To illustrate revenue equivalence beyond the usual class of auctions, Riley and Samuelson (1981)

describe, among other examples, a “Santa Claus auction.” It turns out that the ERA corresponds

to this auction format. However, Riley and Samuelson do not examine the Santa Claus auction

any further and, in particular, they do not describe its desirable properties in the presence of

externalities, which is the focus in our paper.12 Bose et al. (2006, p. 422) describe an analogous

auction with a bonus schedule that depends on the degree of ambiguity, and which converges

to the Santa Claus auction as ambiguity vanishes. Also related, Matthews (1983) describes an

auction where a bonus is paid to high bidders, while low bidders have to make payments to the

auctioneer.

The distinguishing feature of the ERA is that bonus payments are made to all bidders. In

this regard it is also related to several real-world auction formats in which the transfers to

non-winning bidders are different from zero.13 First, this also holds in all-pay auctions (Goeree

et al., 2005), albeit with opposite sign. There, non-winning bidders have to pay their bid, while

they receive a payment related to their bid in the ERA. Second, in some auctions a share of the

revenue is distributed back to the bidders (Graham and Marshall, 1987; McAfee and McMillan,

1992; Engelbrecht-Wiggans, 1994; Maasland and Onderstal, 2007). Engelbrecht-Wiggans (1994),

for instance, describes how the heirs bid for an estate and divide the winner’s payment among

themselves. In such auctions, however, the transfer to an unsuccessful bidder depends on the

winning bid instead of the own bid, which reinforces the opportunity to affect each others’

payoffs by over- or underbidding. Finally, the literature has investigated premium auctions such

as the different versions of the Amsterdam auction (Goeree and Offerman, 2004; Hu et al., 2011).

They are closely related to the ERA because they reward a premium to a non-winning bidder

12Technical differences are the reserve price and the continuous valuations in their paper. The bonus function
for n = 2 in Riley and Samuelson (1981, p. 387) is

∫
b

v∗
F (v)dv, where b is the bid, v∗ is the reserve price, and F

is the cdf of the valuations. Riley and Samuelson (1979) contains the generalization to n ≥ 2 bidders.
13The literature has also investigated bonus auctions in which an individual-specific bonus is awarded only to

the winner, in form of a discount on the price that has to be paid (Mares and Swinkels, 2011).
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with the goal of raising equilibrium bids. In the first-price Amsterdam auction, for instance, the

highest bidders wins and pays the own bid, while both winner and second-highest bidder receive

a premium that is increasing in the second-highest bid.14 There are two main differences to the

ERA. First, not all bidders obtain the premium, and, second, the size of the premium does not

depend on the own bid alone. Unilateral deviations from equilibrium behavior will therefore

again influence the payoffs of the other bidders.

3 Experimental Design

We conducted four different treatments, a second-price auction, an externality-robust auction,

and two corresponding auction formats in which subjects interacted with a computer instead of

interacting with another subject.

3.1 Second-Price Auction (SPA)

Treatment SPA is a standard second-price auction, repeated for 24 rounds. Subjects are anony-

mously and randomly rematched in two-person groups in each round.15 Each bidder first ob-

serves her private value but not the value of the matched bidder. Values are drawn independently

across bidders and rounds according to a uniform distribution from Θi = {1, . . . , 100}, which is

common knowledge. Both bidders in a group then simultaneously submit their bids, which can

be any value from Θi. The bidder who submits the higher bid wins the auction. She receives her

private value and pays the bid of the losing bidder. The payoff of the losing bidder is zero. Ties

are resolved randomly with equal probability. Feedback is given at the end of each round, where

each bidder is reminded of her own valuation, the own bid, the bid of the competing bidder, and

the resulting own payoff in the period. Then the next round begins.

3.2 Second-Price Auction against the Computer (SPA-C)

Subjects in treatment SPA-C face a single-agent decision problem. In contrast to treatment

SPA, bidders are not matched in two-person groups but interact with the computer that draws

random numbers from Θi = {1, . . . , 100}. Otherwise, the two treatments are identical. If the bid

14More precisely, an elimination stage takes place first, where the price increases until only two bidders are
left. An FPA is then conducted among these two bidders, where the premium depends linearly on the difference
between the second-highest bid and the price at which the first stage concluded. There also exists a second-price
version of the Amsterdam auction. See Goeree and Offerman (2004) for more details and a formal analysis.

15Since we had between 30 and 36 subjects per session, repeated game effects should be absent.
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of a subject exceeds the random number, the subject wins the auction. She receives her private

value and pays a price that equals the random number. The subject’s payoff is zero if her bid

falls short of the random number. Ties are resolved randomly with equal probability. Bidders

are informed in the beginning that the random numbers of the computer correspond to the bids

of subjects in a past auction that was identical except for the fact that two bidders competed

for winning. Indeed, we conducted one session of SPA-C for each session of SPA with the exact

same realization of own values and others’ bids. That is, for each subject in SPA-C there is a

subject in SPA who had the same sequence of values in the 24 rounds. Moreover, the subject

in SPA-C receives a sequence of random numbers from the computer that equals the sequence

of bids that the corresponding subject in SPA received from the respective other bidders.

3.3 Externality-Robust Auction (ERA)

Treatment ERA is an implementation of the externality-robust auction. As in SPA, the auction

is repeated with random rematching for 24 rounds, and values are drawn independently and

uniformly from Θi = {1, . . . , 100}. The only difference between SPA and ERA are the auction

rules that determine the payoffs. In ERA, the bidder with the highest bid wins and receives her

private value as in SPA, but now she pays her own bid and receives the bonus that corresponds

to her own bid as given in (5). The bidder with the lower bid also receives the bonus that

corresponds to her own bid.

3.4 Externality-Robust Auction against the Computer (ERA-C)

Subjects in treatment ERA-C again face a single-agent decision problem because they interact

with the computer. The treatments ERA and ERA-C are identical otherwise, so that the relation

between ERA and ERA-C is the same as the relation between SPA and SPA-C.

3.5 Additional Measurements

In each session we elicited two additional individual characteristics after the 24 rounds of the

respective auction format were completed. To measure a subject’s “joy of winning,” we conducted

a short treatment in which the subject could win a contest against the computer. Each subject

received an additional endowment of 20 points that could be spent to win the contest. After the

subject’s decision how many points to spend, the computer draws an integer from {0, . . . , 20}

according to a uniform distribution. The subject wins the contest if the number of points
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spent exceeds the randomly drawn integer. Ties are randomly resolved with equal probability.

Importantly, winning is merely symbolic, i.e., it does not carry a financial gain. A subject’s payoff

is thus given by 20 points minus the number of invested points, irrespective of the outcome of

the contest. We take the number of points spent to win as a measure of the subject’s joy of

winning. This approach of measuring joy of winning follows Sheremeta (2010).16

To measure the subjects’ “cognitive skills,” we administered a computerized 12-item Raven

Progressive Matrices test (Raven et al., 2007). The Raven test is a widely used IQ test, based

on problems the solutions to which neither depend on knowledge nor on verbal skills. Each

item presents a 3 × 3 matrix of abstract figures, where one figure is missing. Subjects have

to determine the missing figure out of eight given solution possibilities. Identifying the correct

solution requires reasoning about patterns across both rows and columns. The problems become

more difficult over the course of the 12 items. Before the subjects could start working on the

test, they first had to correctly solve two practice items to ensure the understanding of the test.

After a subject correctly solved the two test items, she had 12 minutes to complete the 12 main

items. Feedback for the main items was given only in the end. The performance in the Raven

test and the measure of joy of winning serve as control variables in our analysis of the subjects’

bidding behavior.

3.6 General Procedures

We conducted two sessions for each of the four treatments, with 272 subjects in total. 70

subjects participated in treatment SPA, 70 subjects participated in treatment ERA, and 64 and

68 subjects participated in the respective computer treatments. In each session we implemented

three matching groups of size 10 to 12, depending of the number of subjects in a session,

which varied due to no-shows between 30 and 36. The experiment was computerized with the

software z-Tree (Fischbacher, 2007) and took place at the decision laboratory of the Department

of Economics at the University of Zurich in 2013. Subjects were mainly students from the

University of Zurich and the Swiss Federal Institute of Technology in Zurich. Students majoring

in economics or psychology were not recruited. Each subject participated in only one session,

which lasted about 90 minutes.

16In Sheremeta (2010), two subjects compete with each other to win a contest with no monetary reward. We
implemented a contest against the computer to separate our measure of joy of winning from more complicated
motives, such as spiteful attempts to interfere with another subject’s joy of winning.

14



The instructions for the auctions were handed out to the subjects. They included com-

prehension questions that had to be answered correctly before the experiment could begin. A

summary of the instructions was read aloud to ensure common knowledge. The bonus function

of the externality-robust auction was presented to the subjects on a supplementary information

sheet, both in form of a table and as a diagram. An English translation of the original German

instructions for all four treatments can be found in Appendix A.3. The instructions for the two

measurement tasks were provided directly on the computer screens. Payoffs from the auctions,

denominated in “points,” were converted into money at the rate of 4 points to CHF 1 (about

$ 1.05). Four rounds were randomly selected for payment at the end of the experiment. In

the joy of winning task, points were converted into CHF at a rate of 10 to 1. We incentivized

the Raven test by paying CHF 1 for each correctly solved item, in order not to confound our

measure of cognitive skills with a subject’s intrinsic motivation to participate in the test. On

average, subjects earned CHF 33.30 in total, which includes a show-up fee of CHF 10.17

4 Hypotheses

If spiteful preferences are one (or the only) reason for overbidding in the SPA, we should observe

less (or no) overbidding in the ERA, which is designed such that bidders cannot influence each

others’ payoffs. Spiteful preferences should therefore not affect the subjects’ bidding behavior

in the ERA. This observation gives rise to our main hypothesis:

Hypothesis 1. There is less overbidding in ERA than in SPA.

To test for the role of spiteful preferences more directly, subjects face non-strategic decision-

making problems in our computer treatments. Spiteful preferences should not affect their be-

havior in these treatments because a competing player is absent. This gives rise to the following

two hypotheses:

Hypothesis 2. There is less overbidding in SPA-C than in SPA.

Hypothesis 3. There is no difference in bidding behavior between ERA-C and ERA.

Overbidding can also be explained by a joy of winning motive (Cooper and Fang, 2008;

Sheremeta, 2010). If subjects derive utility from the mere event of winning, then their optimal

bids should be increased irrespective of the specific treatment:

17One participant made an overall loss of CHF 2.50 and paid her dues at the end of the experiment.
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Hypothesis 4. Higher joy of winning is associated with larger bids in all treatments.

Better cognitive skills might be expected to lead to bidding behavior that is closer to optimal

(Cooper and Fang, 2008), but optimality is determined by the subjects’ preferences and the

direction of deviation from optimality due to lack of cognitive skills in the different auction

formats is not obvious. We thus have no ex-ante hypothesis about the effect of cognitive skills.

5 Experimental Results

5.1 Bidding Behavior

Figure 2 shows the average overbidding (bid − value in points) in our four treatments. The

leftmost bar indicates that we replicate the well-documented finding that subjects overbid in

second-price auctions (Kagel, 1995). On average, our subjects’ bids exceed their valuations by

5.1 points in SPA, which corresponds to about 10 percent given that the expected valuation is

50.5. In line with Hypothesis 1, Figure 2 also shows that there is no overbidding on average in

ERA. Indeed, on average subjects bid 0.4 points less than their valuation. A Wilcoxon rank-sum

test on matching group averages rejects the null hypothesis that overbidding is the same in SPA

and in ERA (p = 0.0043, one-sided).

Result 1. Average overbidding is significantly lower in ERA than in SPA. On average, there is

no overbidding in ERA, while bids are about 10 percent above valuations in SPA.

Result 1 confirms Hypothesis 1 and is consistent with the idea that spiteful preferences

are a reason for overbidding in the SPA. To test more directly for the contribution of spiteful

preferences to overbidding, we conducted the control treatment SPA-C. Figure 2 reveals that

overbidding amounts to only 1.9 points on average in SPA-C. A Wilcoxon rank-sum test compar-

ing matching group averages in SPA and individual averages in SPA-C rejects the null hypothesis

that overbidding is the same in SPA and in SPA-C (p = 0.0044, one-sided).18

Result 2. Average overbidding is significantly lower in SPA-C than in SPA. On average, bids

are only about 4 percent above valuations in SPA-C.

18Recall that for each bidder in SPA-C we have a bidder in SPA with an identical sequence of values and
opponent bids. We are thus able to group participants in SPA-C into the corresponding matching groups.
Assigning matching groups in SPA-C is artificial as there is no interaction between subjects, but it provides for
a conservative test. A Wilcoxon rank-sum test comparing matching group averages in SPA and SPA-C yields
p = 0.0076, one-sided.
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Figure 2: Average Overbidding
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Result 2 confirms Hypothesis 2 and corroborates the idea that spiteful preferences are a

reason for overbidding in the SPA. It also shows that some overbidding persists in SPA-C, even

though bidders do not interact with other bidders in this treatment. This reveals that spite

cannot be the only reason for overbidding. We also conducted the control treatment ERA-C. In

line with Hypothesis 3, Figure 2 shows that average bids in ERA-C are very similar to average

bids in ERA. Average overbidding amounts to 0.08 points in ERA-C. A Wilcoxon rank-sum

test comparing matching group averages in ERA and individual averages in ERA-C does not

reject the null hypothesis that overbidding is the same in ERA and in ERA-C (p = 0.9526,

two-sided).19

Result 3. Average overbidding does not differ between ERA-C and ERA.

While Figure 2 illustrates our main results in a clear way, it hides a considerable variance

in the subjects’ behavior. Figure 3 provides scatter plots showing all individual bids that were

submitted for given values in our four treatments. Dots on the 45-degree line indicate cases

where a bidder submitted a bid that equals her valuation. Dots above (below) the 45-degree

line indicate instances of overbidding (underbidding). In addition to the previously discussed

differences in average overbidding, the scatter plots also show that the variance in bidding

behavior differs between the four treatments. Bids are more dispersed in the externality-robust

19The same result prevails if we consider averages in the artificial matching groups in ERA-C and compare
them to the matching group averages in ERA (Wilcoxon rank-sum test, p = 0.9372, two-sided).
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Figure 3: Scatter Plots
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auctions than in the second-price auctions. This finding might be due to the trade-off between

the two different concepts of robustness – dominant strategies versus externality-robustness –

mentioned earlier. In a very general FPA setting, Battigalli and Siniscalchi (2003) apply the

concept of interim rationalizability, which rests on the assumption of common knowledge of

rationality but not of correct equilibrium beliefs. They show that, while only truthful bidding

is rationalizable in the SPA with independent private values and selfish bidders, bids both

above and below the Bayes-Nash equilibrium are rationalizable in the corresponding FPA. Hence

dispersion in bidding behavior should be expected in the FPA but not in the SPA when bidders

are rational but do not hold correct equilibrium beliefs. In conjunction with the spite motive, a
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similar reasoning might explain why average overbidding is smaller but the variance is larger in

the ERA than in the SPA.20

5.2 Efficiency and Revenue

We can also compare efficiency and revenue of the SPA and the ERA. The data reveal that the

allocation is ex-post efficient (i.e., the bidder with the highest valuation receives the good) in

89.3 percent of the cases (750 out of 840) in SPA and in 90.1 percent of the cases (757 out of 840)

in ERA. A Wilcoxon rank-sum test on matching group averages reveals that the null hypothesis

that the efficiency is the same in SPA and ERA cannot be rejected (p = 0.5745, two-sided).

With regard to the seller’s revenue, we find that a seller receives 38.04 on average in SPA

(average price paid by the winning bidder), while a seller receives only 34.04 in ERA (average

price paid by the winning bidder minus bonus payments to both bidders). A Wilcoxon rank-sum

test on matching group averages rejects the null hypothesis that the revenue is the same in SPA

and in ERA with marginal significance (p = 0.0547, two-sided). The higher revenue in SPA

than in ERA reflects the fact that subjects overbid on average in SPA but not in ERA.21

5.3 Individual Determinants of Bidding Behavior

In order to better understand the individual heterogeneity in bidding behavior, we rely on our

measures of joy of winning and cognitive skills. Figure 4 shows the distribution of these two

measures over all four treatments. The left panel shows the distribution of the Raven test scores.

On average subjects solved 7.9 puzzles, the modal value is 9. Very few subjects could solve all

twelve puzzles (5 out of 272 subjects). The right panel reveals that, while subjects spent about

8 points on average to win the contest against the computer, about 30 percent of the subjects

spent nothing. Almost 20 percent of the subjects spent 10 points and about 7 percent spent all

20 points. We cannot exclude that some of these decisions are due to a lack of understanding of

the contest. The two measures are in fact negatively correlated: subjects who score higher in the

cognitive skill task spend less money to win the contest against the computer. The correlation

is not very strong (ρ = −0.17) but highly significant (p = 0.005).

20The scatter plots also reveal a tendency of more overbidding for small values and more underbidding for
large values in treatment ERA and, to a lesser extent, also in ERA-C. We have no simple explanation for this
observation, but it would be interesting to see if it is consistent with or even predicted by rationalizability.
Deriving the rationalizable bidding strategies for the ERA is, however, beyond the scope of this paper.

21With externalities from cross-shareholdings rather than from spitefulness, revenues should instead be lower
in the SPA than in the ERA. An experimental test of this hypothesis could provide further evidence for the
impact of externalities on bidding behavior.
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Figure 4: Individual Characteristics
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We elicited a measure of joy of winning because it is one explanation for overbidding discussed

in the literature (e.g. Cooper and Fang, 2008). Regression (1) in Table 2 includes all observations

from SPA and SPA-C and reports a fully interacted random effects regression of overbidding on

period, joy of winning, and cognitive skills. We also control for value, value squared, value cubed,

and the respective interactions, because the deviation of a bid from value can depend on the

underlying value. The regression shows that our measure of joy of winning is indeed positively

associated with overbidding in SPA. While the size of the coefficient is large (a subject who

spends all 20 points in the joy of winning contest is predicted to overbid 4.72 points more than

a subject who spends no points), it is not significant. An F-test however rejects the hypothesis

that the sum of the coefficients “Joy” and “Joy x C” is zero, i.e., joy of winning has a significant

impact on overbidding in SPA-C (p = 0.0323). Model (4) provides the equivalent regression for

ERA and ERA-C. Again, both coefficients of the joy of winning measure are positive, but small

in ERA and large and significant only in ERA-C (F-test on the hypothesis that “Joy” plus “Joy

x C” equal zero, p = 0.0025). In sum, our data provide weak support for Hypothesis 4 according

to which joy of winning should be associated with higher bids.

Result 4. Joy of winning is positively correlated with overbidding in all four treatments, but the

effect is significant only in SPA-C and ERA-C.

In a common value auction experiment, van den Bos et al. (2008) find that overbidding

and the winner’s curse disappear when subjects play against the computer instead of human

bidders. They explain this finding with the hypothesis that subjects experience joy of winning

only when winning against human bidders. The results of our private value auction experiment
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are not consistent with this hypothesis. With joy of winning against humans but not against the

computer, we should expect to find a difference in overbidding between ERA and ERA-C, similar

to the difference that we find between SPA and SPA-C. Since this is not the case, the difference

in average overbidding between SPA and SPA-C cannot be explained by the hypothesis that joy

of winning depends on the existence of a human opponent, but is consistent with the hypothesis

of spiteful preferences.

Table 2: Regression Analysis

SP ER

(1) (2) (3) (4) (5) (6)
Over- Positive Negative Over- Positive Negative

Dep. Variable bidding deviation deviation bidding deviation deviation

Joy 0.236 0.207 -0.029 0.012 0.020 0.008
(0.182) (0.177) (0.046) (0.123) (0.058) (0.079)

Joy x C 0.018 0.087 0.070 0.363** 0.355*** -0.008
(0.217) (0.213) (0.070) (0.175) (0.098) (0.111)

Cog. Skills -1.683** -1.821** -0.138 0.083 0.023 -0.060
(0.748) (0.773) (0.137) (0.392) (0.221) (0.266)

Cog. Skills x C 1.405* 1.350* -0.055 0.066 -0.137 -0.203
(0.786) (0.817) (0.193) (0.559) (0.312) (0.379)

Period 0.021 -0.012 -0.034*** -0.037 -0.070*** -0.033
(0.025) (0.024) (0.008) (0.033) (0.027) (0.027)

Period x C 0.045 -0.019 -0.064* 0.090 0.067 -0.023
(0.053) (0.038) (0.035) (0.079) (0.056) (0.054)

Constant 19.347*** 20.537*** 1.216 12.151*** 13.257*** 1.099
(6.710) (7.064) (1.440) (4.497) (2.873) (2.702)

Constant x C -17.972** -16.464** 1.483 -3.106 -0.624 2.490
(7.512) (7.815) (2.091) (5.884) (3.935) (3.515)

Contr. for value yes yes yes yes yes yes
R-squared 0.21 0.23 0.04 0.17 0.26 0.10
No. Obs. 3216 3216 3216 3312 3312 3312
No. Clusters 70 70 70 74 74 74

Notes: The table reports random effects regressions, with subject random effect. Standard errors
in parentheses control for clustering at the matching group level in SPA and ERA (6 clusters
each) and at the subject level in SPA-C (64 clusters) and ERA-C (68 clusters). Recall that no
interaction between subjects occurs in the computer treatments. The omitted category is SPA
in regressions (1)-(3) and ERA in (4)-(6), and the interaction is with the respective computer
treatment. *, ** and *** denote significance at 10%, 5% and 1%.

Regressions (1) and (4) also control for a subject’s cognitive skills, because overbidding in

second-price auctions (and other auction formats) is often attributed to bounded rationality

(Kagel and Levin, 1993; Goeree et al., 2002; Cooper and Fang, 2008). Regression (1) confirms

that cognitive skills are a significant predictor of bidding behavior in SPA: subjects who score
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higher in the Raven test show less overbidding. The size of the effect is large. Each additionally

solved puzzle is associated with a reduction in overbidding by about 1.7 points. For SPA-C

we find that cognitive skills are much less associated with overbidding, which can be seen by

the positive and significant interaction term of cognitive skills and the computer treatment. An

F-test cannot reject the hypothesis that the sum of the coefficients “Cog. Skills” and “Cog. Skills

x C” is zero (p = 0.2500). The much smaller association of cognitive skills with overbidding is,

at first sight, a surprising finding, because there is no apparent reason why SPA-C should be

cognitively less demanding than SPA. Moreover, regression (4) shows that cognitive skills are

not significantly associated with overbidding in ERA and ERA-C either (an F-test cannot reject

that the sum of “Cog. Skills” and “Cog. Skills x C” equals zero, p = 0.7094). Again, there is no

apparent reason why these auction formats should be cognitively less demanding than SPA. In-

terestingly, prior research documented a relation between cognitive skills measured by the Raven

test and different forms of pro-social behavior. Burks et al. (2009) find a positive relationship

between Raven test scores and cooperative behavior in a sequential prisoners’ dilemma game.

Similarly, Millet and Dewitte (2007) find that cognitive skills measured by the Raven test are

positively correlated with altruistic behavior in public goods and dictator games.22 Our finding

that cognitive skills are significantly and negatively associated with overbidding in SPA (where

spiteful preferences predict overbidding) but not in SPA-C, ERA, and ERA-C (where spiteful

preferences do not predict overbidding), together with the existing empirical results linking low

cognitive skills to less pro-social behavior, suggests that low cognitive skills are not necessar-

ily the ultimate reason for overbidding in SPA. Rather, they might instead serve as a proxy

for spiteful preferences (which can be classified as non-cooperative and non-altruistic) in our

analysis.

Further support for this possibility is provided by regressions (2) and (3), were the depen-

dent variables are “positive deviation” and “negative deviation,” respectively. Positive deviation

equals overbidding if overbidding is positive, and is zero otherwise. Negative deviation equals

the absolute value of overbidding if overbidding is negative, and is zero otherwise. These regres-

22Using different measures of cognitive skills, James (2011) reports a positive relationship between cognitive
skills and charitable giving. Segal and Hershberger (1999) find that IQ is positively correlated with cooperation
among twins in the repeated prisoners’ dilemma. The meta study by Jones (2008) reveals that cooperation rates
in the repeated prisoners’ dilemma are higher at universities whose students score higher in standardized cognitive
tests. It should be noted that there is also evidence linking higher cognitive skills to less pro-social behavior. For
example, Ben-Ner et al. (2004) find a negative relationship between their measure of cognitive skills and dictator
game giving (but only for women). Brandstätter and Güth (2002), however, find no effect of cognitive skills on
behavior in dictator and ultimatum games.
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sions provide two interesting observations. First, cognitive skills are negatively and significantly

associated with positive deviations of bids from value but not with negative deviations in SPA.

This is consistent with the idea that cognitive skills are a proxy for spiteful preferences, while a

bounded rationality argument might predict that low cognitive skills are associated with both

positive and negative deviations of bids from value. Second, the significant negative coefficient

of “Period” reveals that negative deviations decline over time in SPA. This suggests that subjects

learn to some extent not to underbid. Positive deviations, in contrast, do not decline over time.

This is again consistent with a preference explanation for overbidding.23

6 Conclusions

The behavioral economics literature established a range of interesting behavioral phenomena over

the last decades. The implications of these phenomena for the design of economic institutions

have become the focus of the emerging field of behavioral mechanism design theory (e.g. Glazer

and Rubinstein, 1998; Eliaz, 2002; Cabrales and Serrano, 2011; Bierbrauer and Netzer, 2014;

de Clippel, 2012). We contribute to this literature by proposing and testing a selling mechanism,

the externality-robust auction, which removes payoff externalities arising from spitefulness, in-

equality aversion, or other types of interdependent preferences. Our concept of robustness also

covers non-behavioral interdependencies such as cross-shareholdings between competing firms.

The externality-robust auction can also be seen as an experimental tool. Since it eliminates

the channel through which spiteful preferences manifest themselves in equilibrium behavior,

a comparison of the second-price auction and its externality-robust counterpart helps disen-

tangling different behavioral motivations that might jointly determine bidding in experimental

auctions, such as spitefulness, joy of winning, and bounded rationality. In particular, our exper-

imental evidence corroborates the idea that spiteful preferences are an important determinant

of overbidding in the second-price auction.

23In SPA-C, the effect of period is qualitatively the same as in SPA, with a significant decrease of negative
deviations over time (F-test, p = 0.0049) but no significant effect on positive deviations (F-test, p = 0.3010).
Regressions (5) and (6) are the equivalent regressions for the externality-robust auction. Positive deviations of
bids from value decline significantly over time in ERA. The effect is not significant in ERA-C (F-test, p = 0.9502).
There is no significant effect of period on negative deviations in both treatments (F-test for ERA-C, p = 0.2347).

23



References

Andreoni, J. (1989). Giving with impure altruism: Applications to charity and ricardian equiv-
alence. Journal of Political Economy, 97(6):1447–1458.

Andreoni, J., Che, Y.-K., and Kim, J. (2007). Asymmetric information about rivals’ types in
standard auctions: an experiment. Games and Economic Behavior, 59(2):240–59.

Battigalli, P. and Siniscalchi, M. (2003). Rationalizable bidding in first-price auctions. Games
and Economic Behavior, 45:38–72.

Becker, G., DeGroot, M., and Marschak, J. (1964). Measuring utility by a single-response
sequential method. Behavioral Science, 9:226–232.

Bellemare, C. and Sebald, A. (2011). Learning about a class of belief-dependent preferences
without information on beliefs. CIRPEE Working Paper 11-25.

Ben-Ner, A., Kong, F., and Putterman, L. (2004). Share and share alike? gender-pairing,
personality, and cognitive ability as determinants of giving. Journal of Economic Psychology,
25:581–589.

Bergemann, D. and Morris, S. (2005). Robust mechanism design. Econometrica, 73:1771–1813.

Bierbrauer, F. and Netzer, N. (2014). Mechanism design and intentions. University of Zurich,
Department of Economics, Working Paper No. 66.

Bierbrauer, F., Ockenfels, A., Pollak, A., and Rückert, D. (2014). Robust mechanism design
and social preferences. Mimeo.

Blume, A. and Heidhues, P. (2004). All equilibria of the vickrey auction. Journal of Economic
Theory, 114:170–177.

Bodoh-Creed, A. (2012). Ambiguous beliefs and mechanism design. Games and Economic
Behavior, 75:518–537.

Bohnet, I. and Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior
& Organization, 55:467–484.

Bolton, G. and Ockenfels, A. (2000). Erc: A theory of equity, reciprocity, and competition.
American Economic Review, 90:166–193.

Bose, S., Ozdenoren, E., and Pape, A. (2006). Optimal auctions with ambiguity. Theoretical
Economics, 1:411–438.

Brandstätter, H. and Güth, W. (2002). Personality in dictator and ultimatum games. Central
European Journal of Operations Research, 10:191–215.

Brandt, F., Sandholm, T., and Shoham, Y. (2007). Spiteful bidding in sealed-bid auctions.
Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI), pages
1207–1214.

Börgers, T. and Norman, P. (2009). A note on budget balance under interim participation
constraints: The case of independent types. Economic Theory, 39:477–489.

Bulow, J., Huang, M., and Klemperer, P. (1999). Toeholds and takeovers. Journal of Political
Economy, pages 427–454.

24



Burkart, M. (1995). Initial shareholdings and overbidding in takeover contests. Journal of
Finance, pages 1491–1515.

Burks, S., Carpenter, J., Goette, L., and Rustichini, A. (2009). Cognitive skills affect economic
preferences, strategic behavior, and job attachment. Proceedings of the National Academy of
Sciences of the United States of America, 106(19):7745–50.

Cabrales, A. and Serrano, R. (2011). Implementation in adaptive better-response dynamics.
Games and Economic Behavior, 73:360–374.

Chillemi, O. (2005). Cross-owned firms competing in auctions. Games and Economic Behavior,
51:1–19.

Cooper, D. and Fang, H. (2008). Understanding overbidding in second price auctions: An
experimental study. Economic Journal, 118:1572–1595.

Cox, J., Smith, V., and Walker, J. (1988). Theory and individual behavior of first-price auctions.
Journal of Risk and Uncertainty, 1:61–99.

Crawford, V. and Iriberri, N. (2007). Level-k auctions: Can a nonequilibrium model of strategic
thinking explain the winner’s curse and overbidding in private-value auctions? Econometrica,
75:1721–1770.

Crawford, V., Kugler, T., Neeman, Z., and Pauzner, A. (2009). Behaviorally optimal auction
design: Examples and observations. Journal of the European Economic Association, 7:377–
387.

Dasgupta, S. and Tsui, K. (2004). Auctions with cross-shareholdings. Economic Theory, 24:163–
194.

de Clippel, G. (2012). Behavioral implementation. Mimeo.

Dufwenberg, M., Heidhues, P., Kirchsteiger, G., Riedel, F., and Sobel, J. (2011). Other-regarding
preferences in general equilibrium. Review of Economic Studies, 78:613–639.

Dufwenberg, M. and Kirchsteiger, G. (2004). A theory of sequential reciprocity. Games and
Economic Behavior, 47:268–298.

Eliaz, K. (2002). Fault tolerant implementation. Review of Economic Studies, 69:589–610.

Engelbrecht-Wiggans, R. (1994). Auctions with price-proportional benefits to bidders. Games
and Economic Behavior, 6:339–346.

Engers, M. and McManus, B. (2007). Charity auctions. International Economic Review, 48:953–
994.

Esö, P. and Futo, G. (1999). Auction design with a risk averse seller. Economics Letters,
65:71–74.

Ettinger, D. (2003). Efficiency in auctions with crossholdings. Economics Letters, 80:1–7.

Ettinger, D. (2008). Auctions and shareholdings. Annals of Economics and Statistics, 90:233–
257.

Fehr, E. and Schmidt, K. (1999). A theory of fairness, competition, and cooperation. Quarterly
Journal of Economics, 114:817–868.

Filiz-Ozbay, E. and Ozbay, E. (2007). Auctions with anticipated regret: Theory and experiment.
American Economic Review, 97:1407–1418.

25



Fischbacher, U. (2007). Z-tree: Zurich toolbox for ready-made economic experiments. Experi-
mental Economics, 10:171–178.

Glazer, A. and Rubinstein, A. (1998). Motives and implementation: On the design of mechanisms
to elicit opinions. Journal of Economic Theory, 79:157–173.

Goeree, J., Holt, C., and Palfrey, T. (2002). Quantal response equilibrium and overbidding in
private-value auctions. Journal of Economic Theory, 104:247–272.

Goeree, J., Maasland, E., Onderstal, S., and Turner, J. (2005). How (not) to raise money.
Journal of Political Economy, 113:897–918.

Goeree, J. and Offerman, T. (2004). The amsterdam auction. Econometrica, 72:281–294.

Graham, D. and Marshall, R. (1987). Collusive bidder behavior at single-object second-price
and english auctions. Journal of Political Economy, 95:1217–1239.

Hu, A., Offerman, T., and Onderstal, S. (2011). Fighting collusion in auctions: An experimental
investigation. International Journal of Industrial Organization, 29:84–96.

James, R. (2011). Charitable giving and cognitive ability. International Journal of Nonprofit
and Voluntary Sector Marketing, 16:70–83.

Jehiel, P. and Moldovanu, B. (2000). Auctions with downstream interaction among buyers.
RAND Journal of Economics, 31:768–791.

Jehiel, P. and Moldovanu, B. (2006). Allocative and informational externalities in auctions and
related mechanisms. In Blundell, R., Newey, W., and Persson, T., editors, Proceedings of the
9th World Congress of the Econometric Society.

Jehiel, P., Moldovanu, B., and Stachetti, E. (1996). How (not) to sell nuclear weapons. American
Economic Review, 86:814–829.

Jones, G. (2008). Are smarter groups more cooperative? evidence from prisoner’s dilemma
experiments, 1959–2003. Journal of Economic Behavior and Organization, 68:489–497.

Kagel, J. (1995). Auctions: A survey of experimental work. In Kagel, J. and Roth, A., editors,
Handbook of Experimental Economics. Princeton University Press, New Jersey.

Kagel, J. and Levin, D. (1993). Independent private value auctions: Bidder behaviour in first-,
second- and third-price auctions with varying numbers of bidders. The Economic Journal,
103:868–879.

Lange, A. and Ratan, A. (2010). Multi-dimensional reference-dependent preferences in sealed-
bid auctions - how (most) laboratory experiments differ from the field. Games and Economic
Behavior, 68:634–645.

Loyola, G. (2007). How to sell to buyers with crossholdings. Working Paper 07-50, Universidad
Carlos III de Madrid.

Lu, J. (2012). Optimal auctions with asymmetric financial externalities. Games and Economic
Behavior, 74:561–575.

Maasland, E. and Onderstal, S. (2007). Auctions with financial externalities. Economic Theory,
32:551–574.

Mares, V. and Swinkels, J. (2011). Near-optimality of second price mechanisms in a class of
asymmetric auctions. Games and Economic Behavior, 72:218–241.

26



Mas-Colell, A., Whinston, M., and Greene, J. (1995). Microeconomic Theory. Oxford University
Press, USA.

Maskin, E. and Riley, J. (1984). Optimal auctions with risk averse buyers. Econometrica,
52:1473–1518.

Matthews, S. (1983). Selling to risk averse buyers with unobservable tastes. Journal of Economic
Theory, 30:370–400.

McAfee, R. and McMillan, J. (1992). Bidding rings. American Economic Review, 82:579–599.

Millet, K. and Dewitte, S. (2007). Altruistic behavior as a costly signal of general intelligence.
Journal of Research in Personality, 41:316–326.

Morgan, J., Steiglitz, K., and Reis, G. (2003). The spite motive and equilibrium behavior in
auctions. Contributions to Economic Analysis & Policy, 2:1–25.

Netzer, N. and Volk, A. (2014). Intentions and ex-post implementation. Mimeo.

Nishimura, N., Cason, T., Saijo, T., and Ikeda, Y. (2011). Spite and reciprocity in auctions.
Games, 2:365–411.

Ockenfels, A. and Selten, R. (2005). Impulse balance equilibrium and feedback in first price
auctions. Games and Economic Behavior, 51:155–170.

Rabin, M. (1993). Incorporating fairness into game theory and economics. American Economic
Review, 83:1281–1302.

Raven, J., Raven, J., and Court, J. (2007). Manual for Raven’s Progressive Matrices and Vo-
cabulary Scales. Harcourt Assessment, San Antonio, TX.

Riley, J. and Samuelson, W. (1979). Optimal auctions. UCLA Discussion Paper No. 152.

Riley, J. and Samuelson, W. (1981). Optimal auctions. American Economic Review, 71:381–392.

Roider, A. and Schmitz, P. (2011). Auctions with anticipated emotions: Overbidding, under-
bidding, and optimal reserve prices. Mimeo.

Segal, N. and Hershberger, S. (1999). Cooperation and competition between twins: Findings
from a prisoner’s dilemma game. Evolution and Human Behavior, 20:29–51.

Segal, U. and Sobel, J. (2007). Tit for tat: Foundations of preferences for reciprocity in strategic
settings. Journal of Economic Theory, 136:197–216.

Sheremeta, R. (2010). Experimental comparison of multi-stage and one-stage contests. Games
and Economic Behavior, 68:731–747.

Singh, R. (1998). Takeover bidding with toeholds: The case of the owner’s curse. Review of
Financial Studies, 11:679–704.

Tang, P. and Sandholm, T. (2012). Optimal auctions for spiteful bidders. Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, pages 1457–1493.

van den Bos, W., Li, J., Lau, T., Maskin, E., Cohen, J., Montague, P., and McClure, S. (2008).
The value of victory: Social origins of the winner’s curse in common value auctions. Judgement
and Decision Making, 3:483–492.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of
Finance, 16:8–37.

27



A Appendix

A.1 Proof of Proposition 1

We prove the proposition in three steps, fixing a bidder i ∈ I with valuation θi = θk for some

k ∈ {1, . . . ,m} throughout. First, we derive an expression for V ∗

i (θi) := Eθ−i
[q∗i (θi, θ−i) θi],

followed by an analogous expression for T SPA
i (θi) := Eθ−i

[

tSPA
i (θi, θ−i)

]

. Finally, these results

will be combined to derive tERA
i (θ) = V ∗

i (θi) + T SPA
i (θi)− q∗i (θ) θi according to (3).

Step 1. Given θi = θk, the probability that exactly x other bidders also have valuation θk, while

all remaining bidders have a strictly smaller valuation, so that i ∈ W (θ) and |W (θ)| = x+ 1, is

(

n− 1

x

)

(

pk
)x (

P k−1
)n−1−x

for any 0 ≤ x ≤ n− 1.24 According to (1), q∗i (θ) is non-zero only when i ∈ W (θ), so that

V ∗

i (θi) =
n−1
∑

x=0

(

n− 1

x

)

(

pk
)x (

P k−1

)n−1−x
(

θk

x+ 1

)

. (8)

Step 2. Similarly, the transfers (2) for bidder i are non-zero only when i ∈ W (θ). In that case,

observe that s(θ) = θk when |W (θ)| > 1 and s(θ) < θk when |W (θ)| = 1. Thus

T SPA
i (θi) = −

(

P k−1
)n−1

Sk −
n−1
∑

x=1

(

n− 1

x

)

(

pk
)x (

P k−1
)n−1−x

(

θk

x+ 1

)

,

where Sk denotes the expected largest valuation among all n−1 other bidders, conditional on all

of them remaining strictly below θk. The first term captures the case where i is the unique bidder

with largest valuation, while the second term captures the possibility that x ∈ {1, . . . , n − 1}

other bidders might have the same largest valuation. An expression for Sk will be derived next.

Denote by P̂ j = P j/P k−1 the cumulated probabilities of the distribution truncated at θk−1, for

j ∈ {0, 1, . . . , k − 1}.25 Using standard results about order statistics, the probability that the

largest valuation among the n−1 other bidders is equal to θj, conditional on all their valuations

being strictly below θk, is given by

(

P̂ j
)n−1

−
(

P̂ j−1
)n−1

=

(

P j
)n−1

−
(

P j−1
)n−1

(P k−1)
n−1

.

24With the convention 00 = 1 this expression is also applicable to the case of x = n− 1 and k = 1.
25With the convention 0/0 = 0 this expression is also applicable to the case of k = 1.
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Hence it is possible to write

Sk =

k−1
∑

j=1

[

(

P j
)n−1

−
(

P j−1
)n−1

(P k−1)
n−1

]

θj.

Collecting results, we obtain

T SPA
i (θi) =

−

k−1
∑

j=1

[

(

P j
)n−1

−
(

P j−1
)n−1

]

θj −

n−1
∑

x=1

(

n− 1

x

)

(

pk
)x (

P k−1
)n−1−x

(

θk

x+ 1

)

. (9)

Step 3. Adding (8) and (9) yields

B(θi) := V ∗

i (θi) + T SPA
i (θi) =

(

P k−1

)n−1

θk −

k−1
∑

j=1

[

(

P j
)n−1

−
(

P j−1
)n−1

]

θj.

The function B(θi) can be simplified using a recursive formulation. When θi = θ1, so that k = 1,

it follows immediately that B(θ1) = 0. Furthermore, for any l ∈ {1, . . . ,m− 1} it follows after

some simplifications that

B(θl+1)−B(θl) =
(

P l
)n−1 (

θl+1 − θl
)

.

Thus, for θi = θk it is possible to write

B(θi) =

k−1
∑

j=1

(

P j
)n−1 (

θj+1 − θj
)

,

which is expression (5) in Proposition 1. It now follows that

tERA
i (θ) = V ∗

i (θi) + T SPA
i (θi)− q∗i (θ) θi = B(θi)− q∗i (θ) θi.

Using (1), this becomes expression (4) in the proposition.

A.2 Ex-Post Revenues in the ERA

Condition (6) is most stringent for θm. Consider revenue θk −nB(θk). Straightforward calcula-

tions reveal that an increase from k to k+1 changes this expression by [1−n(P k)n−1](θk+1−θk),

the sign of which is equal to the sign of [1 − n(P k)n−1]. This latter expression is strictly de-
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creasing in k, so whenever revenue has become smaller in response to an increased k, further

increases in k will continue to reduce the revenue. Now observe that (6) is satisfied for k = 1,

because B(θ1) = 0. Therefore, whenever a deficit occurs for some larger k – which requires that

revenue has eventually decreased – then a deficit also occurs for all k′ > k. To rule out deficits,

it is therefore enough to check condition (6) for the largest value θm.

Condition (7) holds in the framework of Section 2.4. In this case, (7) can be rearranged to

n
m−1
∑

j=1

(j)n−1 ≤ mn. (10)

Fix arbitrary values of n ≥ 2 and m ≥ 2 and assume that (10) is satisfied. Then it must also be

satisfied for all values m′ > m, holding n fixed. Indeed, increasing m by one increases the LHS

of the inequality by n (m)n−1 and the RHS by (m+1)n −mn. An immediate application of the

binomial theorem reveals that (m+1)n−mn = n (m)n−1+γ, where γ summarizes all remaining

terms and is positive. Hence increasing m slackens (10). For the smallest possible value m = 2,

(10) simplifies to n ≤ 2n, which is satisfied for all n ≥ 2.

A.3 Experimental Instructions

A.3.1 Instructions for SPA

General Instructions for Bidders: We are pleased to welcome you to this economic study.

If you read the following instructions carefully, you can earn money in addition to the 10 Swiss

francs that you receive as an initial endowment for participating. The exact amount depends

on your decisions and those of the other participants. It is thus very important that you read

these instructions carefully. If you have any questions, please contact us. During the study, we

will not speak of francs, but of points. Your entire income will thus first be calculated in points.

The points you earn during the study will be converted to Swiss francs at the end of the study.

The following conversion rate applies: 4 points = 1 Swiss franc. At the end of today’s study,

you will receive the number of points earned during the study plus the initial endowment of

10 Swiss francs in cash. We will explain the exact procedure of the study on the next pages.

For the sake of simplicity, we will always use male forms for participants; we obviously include

female participants in any case.
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The Study: This study lasts for 24 periods. All participants are in the roll of bidders. In each

period, two bidders are randomly assigned to a group of two. An auction takes place in each of

these groups of two; in the auction, one of the two bidders can purchase a commodity by paying

a price. No real commodities are purchased in this study. The “purchase of a commodity” means

that the winner of the auction receives a number of points corresponding to the value of the

commodity to him which is credited to his account. The price of the commodity will also be

determined in points and deducted from the winner’s account. The value of a commodity for

a bidder will be randomly determined in each period. The value can be any integer between 1

and 100, where every value is equally probable. The value of the commodity for the two bidders

in a group of two is thus typically variously large. Each bidder only knows the value that the

commodity has for him but not the value that the commodity has for the other bidder. The

procedure in a period:

1. First, each bidder learns the value that the commodity has for him in the current period

(but not the value of the commodity for the other bidder).

2. Each bidder then places his bid for the commodity. The placement of the bids takes place

simultaneously. A bidder thus does not know the other bidder’s bid for the time being.

3. The bidder in the group of two who makes the higher bid wins the auction and receives the

commodity. If both bidders make the same bid, random chance (with the same probability

for each bidder) determines who wins the auction.

4. The price that the winner of the auction must pay for the commodity corresponds to the

losing bidder’s bid.

5. At the end of a period, the payment of the bidder who won the auction is: Payment =

own value of commodity – the losing bidder’s bid. The payment of the bidder who did not

win the auction is: Payment = 0.

Examples: Bidders A and B form a group of two. The value of the commodity for bidder A in

a given period is 20 points. The value of the commodity for bidder B is 60 points in this period.

1. Assume that bidder A makes a bid of 20 points and bidder B makes a bid of 60 points.

Bidder B thus wins the auction, as his bid (60) is higher than that of bidder A (20). The

price that bidder B must pay is bidder A’s bid. The following payments in points thus
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result: Payment for bidder A = 0. Payment for bidder B = own value – price (bidder A’s

bid) = 60 – 20 = 40.

2. Now assume that bidder A makes a bid of 18 points and bidder B a bid of 12 points.

Bidder A thus wins the auction, as his bid (18) is higher than that of bidder B (12). The

price that bidder A must pay is bidder B’s bid. The following payments in points thus

result: Payment for bidder A = own value – price (bidder B’s bid) = 20 – 12 = 8. Payment

for bidder B = 0.

3. Now assume that bidder A makes a bid of 68 points and bidder B a bid of 45 points.

Bidder A thus wins the auction, as his bid (68) is higher than that of bidder B (45). The

price bidder A must pay is bidder B’s bid. The following payments in points thus result:

Payment for bidder A = own value – price (bidder B’s bid) = 20 – 45 = –25. Payment for

bidder B = 0.

Please note, as in example 3, that the payment of the bidder who wins the auction can also

be negative. Losses will be compensated with profits from other periods and with the initial

endowment.

Procedure on the Computer: A bidder is informed in each period about the value of the

commodity for him on the screen below. A bidder also places his bid on this screen:

The upper part of the screen shows the period you are in on the left; in this example, it is period

1 of 24. On the right you see the maximum amount of time you should take for entering your
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bid. This time limitation is not binding, however; a bid can also be placed after the time has

expired. The middle part of the screen shows the value that the commodity has for you in the

current period. Here on the example screen, “XX” is shown instead of a value. You enter your

bid in the field directly under the value of the commodity. Any integer between 1 and 100 can

be entered as a bid. In order to confirm a bid, you must click on the “confirm bid” button. You

can change your bid until you click on this button. After both bidders have entered their bids,

it will be determined who won the auction. Both bidders will be informed of the results of the

auction on a screen. Each bidder sees whether he or the other bidder won the auction on the

information screen. A bidder will again see the value of the commodity for him in the period

in question and his bid. He will also learn of the other bidder’s bid (but not of the value of the

commodity to the other bidder). Here is an example of the screen for the bidder who did not

win the auction:

The screen for the bidder who won the auctions is equivalent. The next period begins after

all participants have looked at their information screens. Again, two bidders will be randomly

assigned to each other in this period. Your payment at the end of the study is the sum of all

of your payments from four periods that the computer randomly selects. As you do not know

which periods will be randomly selected, you should consider your decisions in each of the 24

periods very carefully. Do you have any further questions? If yes, please raise your hand. We

will come to you at your workplace. Otherwise, we ask you to answer the control questions on

the next pages.
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Control Questions: The value of the commodity for bidder A amounts to 50 points in all

questions.

1. Bidder A places a bid of 50, and bidder B places a bid of 30. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?

2. Bidder A places a bid of 83, and bidder B places a bid of 18. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?

3. Bidder A places a bid of 100, and bidder B places a bid of 65. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?

4. Bidder A places a bid of 1, and bidder B places a bid of 28. How high is bidder A’s payment

in this period? How high is bidder B’s price in this period? (You can only determine the

price but not the payment for bidder B, as you do not know the value of the commodity

for bidder B.)

5. Bidder A places a bid of 50, and bidder B places a bid of 75. How high is bidder A’s

payment in this period? How high is bidder B’s price in this period?

6. Bidder A places a bid of 43, and bidder B places a bid of 24. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?

7. Bidder A places a bid of 72, and bidder B places a bid of 90. How high is bidder A’s

payment in this period? How high is bidder B’s price in this period?

Please raise your hand when you have completed the control questions. We will then come to

you at your workplace.

A.3.2 Instructions for SPA-C

General Instructions for Bidders: [As in SPA]

The Study: This study lasts for 24 periods. All participants are in the roll of bidders. An

auction takes place in each period; in this auction, you as bidder can purchase a commodity by

paying a price. No real commodities are purchased in this study. The “purchase of a commodity”

means that the winner of the auction receives a number of points corresponding to the value of

the commodity to him which is credited to his account. The price of the commodity will also

be determined in points and deducted from the winner’s account. The value of a commodity for
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a bidder will be randomly determined in each period. The value can be any integer between 1

and 100, where every value is equally probable. The procedure in a period:

1. You will first learn the value that the commodity has for you in the current period.

2. You then place a bid for the commodity. At the same time, a number between 1 and 100

will be assigned to you. You do not know this number for the time being. (The exact

distribution of the randomly assigned numbers corresponds to the bids that were made in

the past in an identical auction with two bidders.)

3. If your bid is higher than the randomly assigned number, you win the auction and receive

the commodity. If your bid exactly equals the assigned number, random choice (with a

probability of 50%) determines whether you win the auction.

4. The price that you must pay for the commodity if you win the auction corresponds to the

randomly assigned number.

5. If you win the auction, your payment at the end of the period is: Payment = value of

commodity to you – the randomly assigned number. If you do not win the auction, your

payment is: Payment = 0.

Examples: The value of a commodity for a bidder in a given period is 20 points.

1. Assume that the bidder makes a bid of 20 points and the randomly assigned number is

60. The bidder thus does not win the auction, as his bid (20) is less than the randomly

assigned number (60). The following payments in points thus results: Payment for the

bidder = 0.

2. Now assume that the bidder makes a bid of 18 points and the randomly assigned number is

12. The bidder thus wins the auction, as his bid (18) is higher than the randomly assigned

number (12). The price the bidder must pay is randomly assigned number. The following

payment in points thus results: Payment for the bidder = own value – price (randomly

assigned number) = 20 – 12 = 8.

3. Now assume that the bidder makes a bid of 68 points and the randomly assigned number

is 45. The bidder thus wins the auction, as his bid (68) is higher than the randomly

assigned number (45). The price the bidder must pay is the randomly assigned number.
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The following payment in points thus results: Payment for the bidder = own value – price

(randomly assigned number) = 20 – 45 = –25.

Please note, as in example 3, that the payment of the bidder who wins the auction can also

be negative. Losses will be compensated with profits from other periods and with the initial

endowment.

Procedure on the Computer: A bidder is informed in each period about the value of the

commodity for him on the screen below. A bidder also places his bid on this screen:

[Same screen as in SPA]

The upper part of the screen shows the period you are in on the left; in this example, it is period

1 of 24. On the right you see the maximum amount of time you should take for entering your

bid. This time limitation is not binding, however; a bid can also be placed after the time has

expired. The middle part of the screen shows the value that the commodity has for you in the

current period. Here on the example screen, “XX” is shown instead of a value. You enter your

bid in the field directly under the value of the commodity. Any integer between 1 and 100 can

be entered as a bid. In order to confirm a bid, you must click on the “confirm bid” button. You

can change your bid until you click on this button. After a bidder has entered his bid, it will

be determined whether he won the auction. The bidder will be informed of the results of the

auction on a screen. You will see whether you won the auction on the information screen. You

will again see the value of the commodity for you in the period in question and your bid. He

will also learn of the randomly assigned number. Here is an example of the screen for the bidder

who did not win the auction:
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The screen for a bidder who won the auctions is equivalent. The next period begins after all

participants have looked at their information screens. Your payment at the end of the study is

the sum of all of your payments from four periods that the computer randomly selects. As you

do not know which periods will be randomly selected, you should consider your decisions in each

of the 24 periods very carefully. Do you have any further questions? If yes, please raise your

hand. We will come to you at your workplace. Otherwise, we ask you to answer the control

questions on the next pages.

Control questions: The value of the commodity for a bidder amounts to 50 points in all

questions.

1. The bidder places a bid of 50, and the randomly assigned number is 30. How high is the

bidder’s payment in this period?

2. The bidder places a bid of 83, and the randomly assigned number is 18. How high is the

bidder’s payment in this period?

3. The bidder places a bid of 100, and the randomly assigned number is 65. How high is the

bidder’s payment in this period?

4. The bidder places a bid of 1, and the randomly assigned number is 28. How high is the

bidder’s payment in this period?

5. The bidder places a bid of 50, and the randomly assigned number is 75. How high is the

bidder’s payment in this period?
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6. The bidder places a bid of 43, and the randomly assigned number is 24. How high is the

bidder’s payment in this period?

7. The bidder places a bid of 72, and the randomly assigned number is 90. How high is the

bidder’s payment in this period?

Please raise your hand when you have completed the control questions. We will then come to

you at your workplace.

A.3.3 Instructions for ERA

General Instructions for Bidders: [As in SPA]

The Study: This study lasts for 24 periods. All participants are in the roll of bidders. In each

period, two bidders are randomly assigned to a group of two. An auction takes place in each of

these groups of two; in the auction, one of the two bidders can purchase a commodity by paying

a price. No real commodities are purchased in this study. The “purchase of a commodity” means

that the winner of the auction receives a number of points corresponding to the value of the

commodity to him which is credited to his account. The price of the commodity will also be

determined in points and deducted from the winner’s account. The value of a commodity for

a bidder will be randomly determined in each period. The value can be any integer between 1

and 100, where every value is equally probable. The value of the commodity for the two bidders

in a group of two is thus typically variously large. Each bidder only knows the value that the

commodity has for him but not the value that the commodity has for the other bidder. The

procedure in a period:

1. First, each bidder learns the value that the commodity has for him in the current period

(but not the value of the commodity for the other bidder).

2. Each bidder then places his bid for the commodity. The placement of the bids takes place

simultaneously. A bidder thus does not know the other bidder’s bid for the time being.

3. The bidder in the group of two who makes the higher bid wins the auction and receives the

commodity. If both bidders make the same bid, random chance (with the same probability

for each bidder) determines who wins the auction.

4. The price that the winner of the auction must pay for the commodity corresponds to his

own bid. Furthermore, each bidder receives a bonus payment that only depends on the
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own bid. Your bonus payment is higher, the higher your bid is. You can see the exact

amount of the bonus for each bid on the supplementary information sheet.

5. At the end of a period, the payment of the bidder who won the auction is: Payment =

own value of commodity – own bid + bonus payment. The payment of the bidder who did

not win the auction is: Payment = bonus payment.

Examples: Bidders A and B form a group of two. The value of the commodity for bidder A in

a given period is 20 points. The value of the commodity for bidder B is 60 points in this period.

1. Assume that bidder A makes a bid of 20 points and bidder B makes a bid of 60 points.

Bidder B thus wins the auction, as his bid (60) is higher than that of bidder A (20). The

price that bidder B must pay is his own bid. Both bidders also receive a bonus payment

determined by their own bids (see supplementary information sheet). The following pay-

ments in points thus result: Payment for bidder A = bonus payment = 1.9. Payment for

bidder B = own value – price (own bid) + bonus payment = 60 – 60 + 17.7 = 17.7.

2. Now assume that bidder A makes a bid of 18 points and bidder B a bid of 12 points. Bidder

A thus wins the auction, as his bid (18) is higher than that of bidder B (12). The price

bidder A must pay is his own bid. Both bidders also receive their own bonus payments.

The following payments in points thus result: Payment for bidder A = own value – price

(own bid) + bonus payment = 20 – 18 + 1.53 = 3.53. Payment for bidder B = bonus

payment = 0.66.

3. Now assume that bidder A makes a bid of 68 points and bidder B a bid of 45 points. Bidder

A thus wins the auction, as his bid (68) is higher than that of bidder B (45). The price

bidder A must pay is his own bid. Both bidders also receive their own bonus payments.

The following payments in points thus result: Payment for bidder A = own value – price

(own bid) + bonus payment = 20–68+22.78 = –25.22. Payment for bidder B = bonus

payment = 9.9.

Please note, as in example 3, that the payment of the bidder who wins the auction can also

be negative. Losses will be compensated with profits from other periods and with the initial

endowment.

Procedure on the Computer: A bidder is informed in each period about the value of the

commodity for him on the screen below. A bidder also places his bid on this screen:
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[Same screen as in SPA]

The upper part of the screen shows the period you are in on the left; in this example, it is period

1 of 24. On the right you see the maximum amount of time you should take for entering your

bid. This time limitation is not binding, however; a bid can also be placed after the time has

expired. The middle part of the screen shows the value that the commodity has for you in the

current period. Here on the example screen, “XX” is shown instead of a value. You enter your

bid in the field directly under the value of the commodity. Any integer between 1 and 100 can

be entered as a bid. In order to confirm a bid, you must click on the “confirm bid” button. You

can change your bid until you click on this button. After both bidders have entered their bids,

it will be determined who won the auction. Both bidders will be informed of the results of the

auction on a screen. Each bidder sees whether he or the other bidder won the auction on the

information screen. A bidder will again see the value of the commodity for him in the period

in question and his bid. He will also learn of the other bidder’s bid (but not of the value of the

commodity to the other bidder). Here is an example of the screen for the bidder who did not

win the auction:

[Same screen as in SPA]

The screen for the bidder who won the auctions is equivalent. The next period begins after

all participants have looked at their information screens. Again, two bidders will be randomly

assigned to each other in this period. Your payment at the end of the study is the sum of all

of your payments from four periods that the computer randomly selects. As you do not know

which periods will be randomly selected, you should consider your decisions in each of the 24

periods very carefully. Do you have any further questions? If yes, please raise your hand. We

will come to you at your workplace. Otherwise, we ask you to answer the control questions on

the next pages.

Control Questions: The value of the commodity for bidder A amounts to 50 points in all

questions.

1. Bidder A places a bid of 50, and bidder B places a bid of 30. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?

2. Bidder A places a bid of 83, and bidder B places a bid of 18. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?
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3. Bidder A places a bid of 100, and bidder B places a bid of 65. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?

4. Bidder A places a bid of 1, and bidder B places a bid of 28. How high is bidder A’s payment

in this period? How high is bidder B’s price in this period? (You can only determine the

price but not the payment for bidder B, as you do not know the value of the commodity

for bidder B.)

5. Bidder A places a bid of 50, and bidder B places a bid of 75. How high is bidder A’s

payment in this period? How high is bidder B’s price in this period?

6. Bidder A places a bid of 43, and bidder B places a bid of 24. How high is bidder A’s

payment in this period? How high is bidder B’s payment in this period?

7. Bidder A places a bid of 72, and bidder B places a bid of 90. How high is bidder A’s

payment in this period? How high is bidder B’s price in this period?

Please raise your hand when you have completed the control questions. We will then come to

you at your workplace.

A.3.4 Instructions for ERA-C

General Instructions for Bidders: [As in SPA]

The Study: This study lasts for 24 periods. All participants are in the roll of bidders. An

auction takes place in each period; in this auction, you as bidder can purchase a commodity by

paying a price. No real commodities are purchased in this study. The “purchase of a commodity”

means that the winner of the auction receives a number of points corresponding to the value of

the commodity to him which is credited to his account. The price of the commodity will also

be determined in points and deducted from the winner’s account. The value of a commodity for

a bidder will be randomly determined in each period. The value can be any integer between 1

and 100, where every value is equally probable. The procedure in a period:

1. You will first learn the value that the commodity has for you in the current period.

2. You then place a bid for the commodity. At the same time, a number between 1 and 100

will be assigned to you. You do not know this number for the time being. (The exact

distribution of the randomly assigned numbers corresponds to the bids that were made in

the past in an identical auction with two bidders.)
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3. If your bid is higher than the randomly assigned number, you win the auction and receive

the commodity. If your bid exactly equals the assigned number, random choice (with a

probability of 50%) determines whether you win the auction.

4. The price that you must pay for the commodity if you win the auction corresponds to your

own bid. Furthermore, you receive a bonus payment that only depends on your own bid.

Your bonus payment is higher, the higher your bid is. You can see the exact amount of

the bonus for each bid on the supplementary information sheet.

5. If you win the auction, your payment at the end of the period is: Payment = value of

commodity to you – your bid + bonus payment. If you do not win the auction, your

payment is: Payment = bonus payment.

Examples: The value of a commodity for a bidder in a given period is 20 points.

1. Assume that the bidder makes a bid of 20 points and the randomly assigned number is

60. The bidder thus does not win the auction, as his bid (20) is less than the randomly

assigned number (60). He receives a bonus payment, however, determined by his own bid

(see supplementary information sheet). The following payments in points thus results:

Payment for the bidder = bonus payment = 1.9.

2. Now assume that the bidder makes a bid of 18 points and the randomly assigned number is

12. The bidder thus wins the auction, as his bid (18) is higher than the randomly assigned

number (12). The price the bidder must pay is his own bid. He also receives his bonus

payments. The following payment in points thus results: Payment for the bidder = own

value – price (own bid) + bonus payment = 20 – 18 + 1.53 = 3.53.

3. Now assume that the bidder makes a bid of 68 points and the randomly assigned number is

45. The bidder thus wins the auction, as his bid (68) is higher than the randomly assigned

number (45). The price the bidder must pay is his own bid. He also receives his bonus

payments. The following payment in points thus results: Payment for the bidder = own

value – price (own bid) + bonus payment = 20–68+22.78 = –25.22.

Please note, as in example 3, that the payment of the bidder who wins the auction can also

be negative. Losses will be compensated with profits from other periods and with the initial

endowment.
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Procedure on the Computer: A bidder is informed in each period about the value of the

commodity for him on the screen below. A bidder also places his bid on this screen:

[Same screen as in SPA]

The upper part of the screen shows the period you are in on the left; in this example, it is period

1 of 24. On the right you see the maximum amount of time you should take for entering your

bid. This time limitation is not binding, however; a bid can also be placed after the time has

expired. The middle part of the screen shows the value that the commodity has for you in the

current period. Here on the example screen, “XX” is shown instead of a value. You enter your

bid in the field directly under the value of the commodity. Any integer between 1 and 100 can

be entered as a bid. In order to confirm a bid, you must click on the “confirm bid” button. You

can change your bid until you click on this button. After a bidder has entered his bid, it will

be determined whether he won the auction. The bidder will be informed of the results of the

auction on a screen. You will see whether you won the auction on the information screen. You

will again see the value of the commodity for you in the period in question and your bid. He

will also learn of the randomly assigned number. Here is an example of the screen for the bidder

who did not win the auction:

[Same screen as in SPA-C]

The screen for a bidder who won the auctions is equivalent. The next period begins after all

participants have looked at their information screens. Your payment at the end of the study is

the sum of all of your payments from four periods that the computer randomly selects. As you

do not know which periods will be randomly selected, you should consider your decisions in each

of the 24 periods very carefully. Do you have any further questions? If yes, please raise your

hand. We will come to you at your workplace. Otherwise, we ask you to answer the control

questions on the next pages.

Control Questions: The value of the commodity for a bidder amounts to 50 points in all

questions.

1. The bidder places a bid of 50, and the randomly assigned number is 30. How high is the

bidder’s payment in this period?

2. The bidder places a bid of 83, and the randomly assigned number is 18. How high is the

bidder’s payment in this period?
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3. The bidder places a bid of 100, and the randomly assigned number is 65. How high is the

bidder’s payment in this period?

4. The bidder places a bid of 1, and the randomly assigned number is 28. How high is the

bidder’s payment in this period?

5. The bidder places a bid of 50, and the randomly assigned number is 75. How high is the

bidder’s payment in this period?

6. The bidder places a bid of 43, and the randomly assigned number is 24. How high is the

bidder’s payment in this period?

7. The bidder places a bid of 72, and the randomly assigned number is 90. How high is the

bidder’s payment in this period?

Please raise your hand when you have completed the control questions. We will then come to

you at your workplace.
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A.3.5 Supplementary Information Sheet

Bonus Payments
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Bid Bonus

1 0

2 0.01

3 0.03

4 0.06

5 0.1

6 0.15

7 0.21

8 0.28

9 0.36

10 0.45

11 0.55

12 0.66

13 0.78

14 0.91

15 1.05

16 1.2

17 1.36

18 1.53

19 1.71

20 1.9

21 2.1

22 2.31

23 2.53

24 2.76

25 3

Bid Bonus

26 3.25

27 3.51

28 3.78

29 4.06

30 4.35

31 4.65

32 4.96

33 5.28

34 5.61

35 5.95

36 6.3

37 6.66

38 7.03

39 7.41

40 7.8

41 8.2

42 8.61

43 9.03

44 9.46

45 9.9

46 10.35

47 10.81

48 11.28

49 11.76

50 12.25

Bid Bonus

51 12.75

52 13.26

53 13.78

54 14.31

55 14.85

56 15.4

57 15.96

58 16.53

59 17.11

60 17.7

61 18.3

62 18.91

63 19.53

64 20.16

65 20.8

66 21.45

67 22.11

68 22.78

69 23.46

70 24.15

71 24.85

72 25.56

73 26.28

74 27.01

75 27.75

Bid Bonus

76 28.5

77 29.26

78 30.03

79 30.81

80 31.6

81 32.4

82 33.21

83 34.03

84 34.86

85 35.7

86 36.55

87 37.41

88 38.28

89 39.16

90 40.05

91 40.95

92 41.86

93 42.78

94 43.71

95 44.65

96 45.6

97 46.56

98 47.53

99 48.51

100 49.5
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