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1 Introduction

We consider in�nitely repeated games in which the players privately know
their own payo¤s but are uncertain about the payo¤s (i.e., the types) of the
other players. We assume that the players start with given beliefs over each
other�s types and observe each other�s decisions at every stage of the game.
We are looking for a characterization of the perfect Bayesian equilibrium
payo¤s of the game, when the players are very patient. In other words, our
goal is to understand how the well-known folk theorem extends in repeated
games with private values and full monitoring.
The folk theorem goes back to the 1970�s and the extension that we seek

is very natural. So one would expect it to be already part of the literature.
However, as we shall show below, only partial answers are available. Be-
fore surveying them, we �rst brie�y describe our own contribution without
reference to any earlier work.
We make the further assumption that, in the one-shot Bayesian game,

uniform punishment strategies are available against every player. This prop-
erty means that there is no need to know a player�s type to punish him in
the harshest possible way, i.e., at his ex post individually rational level. The
assumption holds in a number of economic applications, including auctions
and oligopoly.
Both properties, private values and uniform punishment strategies, are

also satis�ed in a class of familiar public good games, in which every player
is endowed with some private good. Every player can either enjoy his en-
dowment or devote it to a public good, which is produced if and only if
enough players contribute. Individuals di¤er in their relative preferences for
the private and the public goods. Such games will be our reference model.
Hoping for some intuition on how the equilibrium payo¤s of the Bayesian

discounted in�nitely repeated game look like when players become very pa-
tient, we �rst characterize the set N [�1] of equilibrium payo¤s of the game
�1 without discounting, in which the payo¤s are evaluated by the limit of
means criterion. The characterization (stated as Proposition 1) turns out
to be amazingly tractable: a vector payo¤ is an equilibrium of the Bayesian
undiscounted in�nitely repeated game �1 if and only if it is a particular,
completely revealing equilibrium payo¤, which can be entirely described in
terms of the one-shot game. A partial analog to the standard folk theorem
(stated as Proposition 3) follows: the equilibrium payo¤s of the Bayesian
undiscounted in�nitely repeated game can be interpreted as feasible, incen-
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tive compatible and individually rational payo¤s in the one-shot game.
The similarity with the complete information case stops essentially there.

Applying the previous characterization to our reference public good games,
we �nd that Bayesian undiscounted in�nitely repeated games may not have
any equilibrium, i.e., it may happen that N [�1] = ;. This result is stated
as Proposition 2. By contrast, Nash�s theorem guarantees existence of an
equilibrium in every ��discounted in�nitely repeated game ��, for every
�xed discount factor �. But the problem is then to describe the solutions
as players become very patient, namely as the discount factor � goes to 1.
The fact that the undiscounted game does not have any equilibrium makes
useless the techniques that are often applied to check the non-emptiness of
relevant limit sets like lim inf�!1N [��].
Given this di¢ culty, we pursue with the study of a particular model,

namely, the two-person Bayesian ��discounted in�nitely repeated version of
the public good games mentioned above. It turns out that, with discount-
ing, Proposition 1 (all equilibria are payo¤-equivalent to completely revealing
ones) and Proposition 2 (the slightest doubt on the players�types can lead
to non existence of equilibrium) no longer hold, even when players become
increasingly patient. More importantly, for every discount factor �, we ex-
plicitly construct a family of perfect Bayesian equilibria in speci�c strategies,
in which the players behave as in a war of attrition. We prove that the pay-
o¤s associated with these war of attrition equilibria converge as the discount
factor � goes to 1. As a consequence, the (inferior) limit of the corresponding
sets of perfect Bayesian equilibrium payo¤s, i.e., lim inf�!1N [��], is non-
empty (and even has a nonempty interior). These results are summarized in
Proposition 7.
The war of attrition equilibria are �rst constructed in an auxiliary repu-

tation game, in which normal players play a game with strictly competitive
interests (SCI) and possibly face automata. In this auxiliary game, we allow
the players to have di¤erent discount factors. Propositions 4, 5 and 6 pro-
pose three di¤erent sets of su¢ cient conditions (on the parameters of the SCI
game, the strategies of the automata and the discount factors) that guaran-
tee the existence of perfect Bayesian equilibria in war of attrition strategies
in the auxiliary game. We believe that this analysis, which is entirely per-
formed in the discrete time, discounted reputation game, deserves interest
for its own sake.
Time has come to describe how our results are connected to three pop-

ular themes in the repeated games literature: information transmission,
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cooperation and reputation.

Information transmission
Aumann and Maschler started to analyze two-person in�nitely repeated

games with incomplete information in the 1960�s (see Aumann and Maschler
(1995)). They mostly studied the zero-sum case, in which the assumption
of known-own payo¤s is obviously not meaningful. They provided a charac-
terization of the value v1 of the undiscounted zero-sum in�nitely repeated
game and showed that v1 might not exist when both players have pri-
vate information. Mertens and Zamir (1971) proved that the values v� of
the ��discounted games always converge as � goes to 1; they characterized
lim�!1 v� and showed that it coincides with v1 when the latter exists. Our
main results (Propositions 1, 2 and 7) partially extend the previous ones to
non-zero-sum games.
Together with Stearns, Aumann and Maschler also started to investigate

two-person non-zero-sum undiscounted in�nitely repeated games in which
only one of the players has private information (see Aumann et al. (1968)
and Aumann and Maschler (1995)). In this framework, a full characterization
of Nash equilibrium payo¤s was obtained by Hart (1985) and existence was
established by Sorin (1983) and Simon et al. (1995). As the previous authors,
Koren (1992) considers two-person games but, instead of assuming that only
one player is privately informed, he assumes that every player knows his own
payo¤. He shows that the Nash equilibrium of the undiscounted in�nitely
repeated game �1 are payo¤-equivalent to completely revealing equilibria of
the in�nitely repeated game �1.1

In Proposition 1, we add an assumption to Koren (1992)�s ones, namely,
that uniform punishment strategies are available. This enables us to for-
mulate the characterization by simple inequalities, entirely in terms of the
one-shot game. By contrast, Koren (1992)�s characterization makes use of
Blackwell (1956)�s approachability, i.e., of punishments that are typical to
the in�nitely repeated game. Our new assumption enables us to de�ne indi-
vidual rationality in the in�nitely repeated game exactly as in the one-shot
game, so that we can dispense with approachability. As a by-product, our re-

1Koren (1992)�s result generalizes Shalev (1994)�s characterization of Nash equilibrium
payo¤s in undiscounted repeated games with lack of information on one side and known-
own payo¤s (see Forges (1992) for a survey of results on non-zero sum in�nitely repeated
games with incomplete information).
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sult immediately goes through in the case of n players.2 Known-own payo¤s
are crucial in Koren (1992) and in Proposition 1. Without this assumption,
the Nash equilibria of �1 are no longer payo¤-equivalent to completely re-
vealing equilibria, even if there are two players and only one of them has
private information (see Hart (1985) and Aumann and Maschler (1995)). In
the appendix, we illustrate the further role of uniform punishment strategies
in Proposition 1.
Koren (1992) already proposed an example of an undiscounted in�nitely

repeated game �1 with known-own payo¤s that did not have any Nash equi-
librium. We recall it as Example 1. Proposition 2, together with a comple-
ment in the appendix, further shows that the emptiness of N [�1] is quite
robust. The phenomenon arises in a large class of public good games (see,
e.g., Fudenberg and Tirole (1991, example 6.1) and Palfrey and Rosenthal
(1994)). It does not rely on the fact that some players�types have a dominant
strategy in the repeated game (in other words, it does not rely on the fact
that for some given types, the set of feasible and individually rational payo¤s
has an empty interior).
The papers on non-zero-sum games surveyed up to now all deal with

undiscounted in�nitely repeated games. A natural next step is to check
whether Mertens and Zamir (1971)�s result for zero-sum games survives,
namely, whether an appropriate limit of the sets of equilibrium payo¤sN [��]
as � goes to 1 is not empty and can be characterized.3 Restricting to pub-
lic good games, Proposition 7 gives a positive answer to the �rst question.
Peski (2008) focuses on two-person discounted repeated games �� with lack
of information on one side and known-own payo¤s, when the informed player
has two types (namely, the discounted version of Shalev (1994) in the case of
two types). In this very particular model, he shows that lim�!1N [��] exists
(in the sense that lim inf�!1N [��] = lim sup�!1N [��]). Peski (2008) char-
acterizes the set lim�!1N [��] and con�rms a phenomenon that was already
suggested in Cripps and Thomas (2003), namely, that more equilibrium pay-
o¤s can be achieved in the limit discounted case than in the undiscounted
case, namely, that lim�!1N [��] % N [�1] (where N [�1] 6= ;, as shown by
Shalev (1994)).
Peski (2013) extends the previous results to a larger class of n�person
2See Hörner et al. (2011) for a generalization of Blackwell (1956) to an arbitrary number

of players.
3Bergin (1989) proposes a characterization of equilibrium strategies in ��discounted

in�nitely repeated games �� but does not consider lim�!1N [��].
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discounted repeated games with known-own payo¤s, in which several players
may possess private information. More precisely, Peski (2013) makes an
�open thread assumption� which, in the two-person case, amounts to the
existence of a belief-free equilibrium in the sense of Hörner and Lovo (2009).
As already in Peski (2008), the non emptiness of limit sets of Bayesian perfect
Nash equilibrium payo¤s as players become increasingly patient is not an
issue in Peski (2013), at least in the two player case, since belief free equilibria
are assumed to exist at the outset. The main result in Peski (2013) is the full
characterization of lim�!1N [��] as the set of payo¤s of special equilibria,
the �nitely revealing ones, which have the property that the players update
their beliefs �nitely many times.
As shown by Hörner and Lovo (2009), two-person discounted repeated

games with lack of information on one side always have a belief-free equi-
librium when players are patient enough.4 Hence Peski (2013)�s open thread
assumption is always satis�ed in this particular case. However, the assump-
tion easily fails in familiar applications like our public good games, in which
both players have private information. Indeed, it appears that, as soon as
the undiscounted in�nitely repeated good game has no equilibrium for some
speci�cation of the players�beliefs, the discounted in�nitely repeated game
cannot have any belief free equilibrium.
Our Proposition 7 shows that nonetheless, in every discounted repeated

version of our public good game with a su¢ ciently high discount factor,
there exist perfect Bayesian equilibrium payo¤s which converge as the players
become increasingly patient. We thus show in particular that Peski (2013)�s
open thread assumption is not necessary for the convergence of equilibrium
payo¤s, i.e., for lim inf�!1N [��] to be nonempty. As already mentioned
above, we establish Proposition 7 by explicitly constructing equilibria, in
which the players�s strategies follow a war of attrition. These equilibria di¤er
from the ones that are used in Peski (2013)�s characterization, as they are
not �nitely revealing. However, our construction can be adapted to show
that, in the public good game, lim inf�!1N [��] contains �nitely revealing
equilibrium payo¤s.

4This result can be deduced from Shalev (1994)�s characterization of the set of Nash
equilibrium payo¤s N [�1] of any two-person undiscounted in�nitely repeated game �1
with lack of information on one side and known-own payo¤s, which implies that N [�1]
is always nonempty.
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Cooperation
The tractable characterization in Proposition 1 facilitates the comparison

between the solutions of the undiscounted repeated game and the coopera-
tive solutions of the initial Bayesian game. More precisely, Proposition 1
leads to a partial version of the folk theorem, which we state as Proposition
3: for any n�person Bayesian game � with known-own payo¤s and uniform
punishments, the set N [�1] of Nash equilibrium payo¤s of the undiscounted
in�nitely repeated game �1 is contained in the set F [�] of interim coopera-
tive solutions of the Bayesian game, as de�ned in Myerson (1991) and Forges
(2013). By de�nition, the set F [�] consists of the payo¤s that are feasible
(i.e., achievable by means of a mechanism), incentive compatible and (in-
terim) individually rational. The fact that N [�1] � F [�] con�rms that the
repetition of the game enables the players to cooperate, as in the folk theorem
with complete information. However, it may happen that N [�1] $ F [�],
even when N [�1] is not empty. Hence, according to a common, strict inter-
pretation, we could say that the folk theorem does not hold.
Our characterization shows that, under incomplete information, the co-

operative solutions of the one-shot game (i.e., F [�]) and the non-cooperative
solutions of the undiscounted repeated game (i.e., N [�1]) mostly di¤er in
the individual rationality levels of the players. Under our assumptions of
private values and uniform punishments, the ex post individual rationality
level vi(�i) of player i, namely the level at which the other players can punish
him when they know his type �i, is relevant in the in�nitely repeated game.
Interim individually rational payo¤s in the sense of Myerson (1991) are al-
ways ex post individually rational. When there exist uniform punishment
strategies, the reverse also holds: this is the key of Proposition 3. However,
if the assumption of uniform punishments is relaxed, individual rationality
in the in�nitely repeated game relies on Blackwell (1956)�s approachability
strategies. As a consequence, Proposition 3 is no longer true, while Koren
(1992)�s characterization still holds, at least in the two-person case. To sum
up, the inclusion N [�1] � F [�], which does not seem very surprising at
�rst sight, crucially depends on the fact that uniform punishment strategies
are available.
A recent paper of Wiseman (2012) o¤ers a di¤erent perspective on the

previous topic. He establishes a partial folk theorem in discounted repeated
games where the players have the same initial information and get private
and public signals along the play. While his model captures in particu-
lar known own payo¤s (see his example 3), he makes an assumption that
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ensures �gradual public learning�which has no counterpart in in�nitely re-
peated games like the ones considered here. As a consequence, Wiseman
(2012)�s folk theorem can be formulated in terms of feasible, ex post individ-
ually rational payo¤s, without any requirement of incentive compatibility. By
contrast, incentive compatibility is crucial in this paper and in Peski (2008,
2013).

Reputation
An extensive literature shows how a player can use the other players�un-

certainty on his payo¤ to establish a reputation (see the references in Mailath
and Samuelson (2006)).5 The repeated games of this paper share a property
with reputation models: players know their own payo¤s. However, our basic
model is not necessarily generated by perturbing a game with complete infor-
mation and may not involve any commitment type. Many other di¤erences
could be mentioned (e.g., most reputation models deal with a single informed
player6 and imperfect monitoring) but the main one lies in the motivations.
We are interested in the characterization and the existence of equilibrium
payo¤s while a reputation e¤ect is identi�ed by a form of equilibrium payo¤
uniqueness. Loosely speaking, a reputation e¤ect obtains when all appropri-
ately re�ned equilibria of the perturbed game guarantee a high payo¤ to the
player who is possibly committed to some behavior (see, e.g., Schmidt (1993)
for a more precise, yet informal, de�nition).
The previous comparison is relevant for characterization results like Propo-

sition 1. More must be said for the results that are established for public
good games. In these, there are two players, who can both be �normal�or
�greedy� and have two actions (�contribute�or �do not contribute�). When
both players are normal, they play a particular game with strictly compet-
itive interests (SCI), a notion de�ned in Cripps et al. (2005) and Atakan
and Ekmekci (2013). The di¤erence with the latter papers is that our greedy
players are not committed to a speci�c strategy. Proposition 2, which says
that, for a substantial set of parameters, the undiscounted repeated game
has no Nash equilibrium at all, implies that, without discounting, no two-
sided reputation e¤ect is achievable. While Cripps and Thomas (1995) and
Israeli (1999) acknowledge this phenomenon (as a direct consequence of Ko-

5See also Sorin (1999) for a synthetic presentation of various related models, including
in�nitely repeated games with known own payo¤s.

6There are exceptions, though, e.g., Kreps and Wilson (1982), Chan (2000) and Atakan
and Ekmekci (2013).
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ren (1992)�s example), they do not demonstrate its robustness, as we do here
(especially in the three action version of the public good game given in the
appendix).
We also construct sequences of equilibrium payo¤s in every ��discounted

public good game which all converge as � goes to 1 (Proposition 7). These
equilibria are constructed in two steps. First, we assume that the greedy
players are committed to some strategies, while the normal players have
complete freedom to pick theirs. This de�nes an auxiliary reputation game.
Then we show that it is a best reply for the greedy players to behave as
automata. The auxiliary game is at the same time more restrictive and
more general than the SCI model of Atakan and Ekmekci (2013). We assume
that the players have only two actions7 but, to account for the strategic
possibilities of our greedy players, we are led to consider a richer class of
automata.
We derive explicit conditions (on the parameters of the SCI game, the

strategies of the automata and the normal players�discount factors8) which
guarantee that the auxiliary game has a perfect Bayesian equilibrium in war
of attrition strategies. Atakan and Ekmekci (2013) make use of a war of
attrition game in continuous time that was proposed in Abreu and Gul (2000)
to study reputation in bargaining. We perform our analysis in the repeated
(i.e., discrete time) game with a �xed discount factor and generate a war of
attrition through appropriate players�strategies. By proceeding in this way,
we can compute the exact expression of a family of equilibrium payo¤s (each
equilibrium corresponding to a speci�cation of the automata) and show that
they do converge as players become increasingly patient.
Atakan and Ekmekci (2013) are rather interested in a reputation result.

Having identi�ed relevant reputation payo¤s for each normal player in the
SCI game, they allow the normal players to face particular, elementary au-
tomata and they prove that, when the stage game is played arbitrarily fre-
quently, the normal players get approximately their reputation payo¤s at
any Bayesian perfect equilibrium. Our results are consistent with theirs, in
the sense that, when we restrict to elementary automata, we recover their
reputation payo¤s as limit payo¤s.

As suggested in the previous paragraphs, the paper develops as follows:
Section 2 describes the one-shot Bayesian game and the reference public good

7We allow for arbitrary payo¤s as long as the SCI property is satis�ed.
8The normal players may have di¤erent discount factors in this part of the paper.
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games; Section 3 proposes a characterization of the set of equilibrium payo¤s
in the Bayesian undiscounted repeated game and demonstrates its possible
emptiness in public good games; Section 4 deduces a partial folk theorem;
Section 5 goes on with the analysis of equilibrium payo¤s in Bayesian dis-
counted repeated games; Section 5.1 is devoted to auxiliary reputation games,
which are based on SCI games with two actions and rich automata; Section
5.2 concentrates on the public good games; Section 6 is an appendix wich
contains supplementary material and proofs. Sections 5.1 and 6.4 (resp., 5.2
and 6.5) contain precise elements of comparison with Atakan and Ekmekci
(2013) (resp., Peski (2013)).

2 Basic Bayesian game

2.1 De�nition

Let us �x n players and, for every player i, i = 1; :::n,

� a �nite set of types �i

� a probability distribution qi over �i

� a �nite set of actions Ai, with jAij � j�ij

� a utility function ui : �i � A! R, where A =
Y
1�i�n

Ai.

This de�nes a (one-shot) Bayesian game with independent, private val-
ues9, which we denote as �(q), with q = (qi)1�i�n.10 Without loss of gen-
erality, we assume that qi(�i) > 0 for every �i 2 �i. The interpretation is
that types �i, i = 1; :::; n, are �rst chosen in �, independently of each other,
according to q. At the interim stage, player i is only informed of his own
type �i. The players then choose simultaneously an action.
For any �nite set E, let us denote as �(E) the set of probability distrib-

utions over E. A mixed strategy11 of player i in �(q) is a mapping from �i

9While private values (i.e., �known own payo¤s�) are crucial for our results, the inde-
pendence assumption can be relaxed in most of them.
10We only recall the parameter q in the notation �(q) for the Bayesian game, because it

will often happen, e.g., in the examples, that the beliefs q vary while all other parameters
are �xed.
11More correctly, �behavior strategy�.
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to �(Ai). Similarly, a correlated strategy for players j 6= i is a mapping from
��i =

Q
j 6=i�j to�(A�i), where A�i =

Q
j 6=iAj. We keep the notation ui for

the (multi)linear extension of utility functions over mixed and/or correlated
strategies. Hence we write, for every i = 1; :::; n, �i 2 �i, � 2 �(A),

ui(�i; �) =
X
a

�(a)ui(�i; a)

In particular, for every i = 1; :::; n, �i 2 �i, �i 2 �(Ai), ��i 2 �(A�i),

ui(�i; �i; ��i) =
X
ai;a�i

�i(ai)��i(a�i)ui(�i; ai; a�i)

We introduce a new property, which we call �uniform punishment strate-
gies�. To de�ne it, consider the (type-dependent) individually rational level
vi(�i) of player i, for every possible type �i. We assume that the other play-
ers, j 6= i, have a strategy pro�le (of course independent of player i�s type)
which enable them to keep player i�s payo¤ below vi(�i), for every possible
type �i. So, while player i can make use of his information �i to guarantee
himself the level vi(�i), the other players can guarantee that his payo¤ does
not exceed this level, even if they do not know his type �i.
More precisely, for every player i, i = 1; :::; n, and �i 2 �i, the individually

rational level vi(�i) is

vi(�i) = min
��i2�(A�i)

max
�i2�(Ai)

ui(�i; �i; ��i) = min
��i2�(A�i)

max
ai2Ai

ui(�i; ai; ��i) (1)

In the previous expression, the probability distribution ��i achieving the
�min�possibly depends on �i, which is �xed in the underlying optimization
problem. vi(�i) can thus be interpreted as the ex post individual rationality
level of player i, namely, the lowest amount at which players j 6= i can hold
player i when they know his type �i and correlate their strategies.
Our assumption of �uniform punishment strategies� can be for-

malized as follows:

8i 9��i 2
Y
j 6=i

�(Aj) s.t. 8�i 2 �i 8ai 2 Ai ui(�i; ai; ��i) � vi(�i) (2)

When (2) holds, ��i de�nes independent12 punishment strategies which en-
able players j 6= i to punish player i uniformly, i.e., whatever his type �i is,
12Independent punishment strategies are important for proposition 1.
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but even more, to keep player i�s payo¤ below his ex post individual ratio-
nality level.13 Assumption (2) is satis�ed in many applications, in particular
in the public good games below.14 We will clarify its role in the appendix.

2.2 A public good game

The example belongs to a class of public good games that was studied, e.g.,
by Palfrey and Rosenthal (1994). There are two players. The private infor-
mation of player i, i = 1; 2, is the value �i that he attributes to his endowment
of a single unit of the private good. The private endowment values �i are cho-
sen independently of each other, according to a probability distribution qi.
Player i has two possible actions ai: �contribute�(c) and �do not contribute�
(d). A public good is produced as soon as one of the players contributes. The
value of the public good is normalized to 1 for both players.
The payo¤ matrix associated with the pair of types (�1; �2) is thus

c d
c 1; 1 1; 1 + �2
d 1 + �1; 1 �1; �2

where we always assume �i � 0 but can have �i < 1 or �i > 1. Fudenberg
and Tirole (1991, example 6.1, p. 211) propose the following interpretation:
player 1 and player 2 belong to a group (say, the members of some university
department) and each of them can represent the group at a committee (say,
the scienti�c board of the university). To attend the committee is time
consuming and it is enough that one player attends the committee meeting
to defend the interests of the group. The whole problem is to decide which
one of the players will go to the meeting, given that the value of time for
each player is private information.
In this public good game, by playing d, player i guarantees himself �i

while by playing c, he guarantees himself 1. Hence, by playing according to

13As a slight weakening, vi(�i) could just be de�ned as

min
��i2

Q
j 6=i�(Aj)

max
�i2�(Ai)

ui(�i; �i; ��i):

14As a recent reference, Peters and Szentes (2012)�s assumption 1 (p. 397) takes exactly
the form of (2) if values are private and independent and mixed strategies are allowed.
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his type, player i can guarantee himself max f�i; 1g. By not contributing,
namely by playing aj = d, player j guarantees that player i�s payo¤ does
not exceed max f�i; 1g. Hence, vi(�i) = max f�i; 1g and aj = d is a uniform
punishment strategy of player j against player i.
We will speci�cally consider a Bayesian public good game in which each

player has two possible types: �i = f!; zg, i = 1; 2, where 0 < ! < 1
and z > 2: ! represents a �normal�type, who values the public good more
than his initial endowment, while z represents a �greedy�type. The possible
payo¤ matrices are thus

�2 = ! �2 = z

c d c d
�1 = ! c 1; 1 1; 1 + ! 1; 1 1; 1 + z

d 1 + !; 1 !; ! 1 + !; 1 !; z
�1 = z c 1; 1 1; 1 + ! 1; 1 1; 1 + z

d 1 + z; 1 z; ! 1 + z; 1 z; z

(3)

We denote as pi, 0 < pi < 1, the probability that player i is normal (i = 1; 2)
and we refer to this game as PG(p; !; z), with p = (p1; p2).

3 Bayesian undiscounted repeated game

Let us turn to in�nitely repeated versions of the Bayesian game �(q), starting
with the undiscounted one, which we denote as �1(q). The players�types are
intrinsic characteristics, which are �xed throughout the game. More precisely,
�1(q) is played as follows:

- at a virtual stage (stage �1): the types �i, i = 1; :::; n, are chosen in
� =

Y
1�i�n

�i independently of each other, according to q. Player i is

only informed of his own type �i.

- at every stage t (t = 0; 1; :::): every player i chooses an action in Ai. The
choices are made simultaneously and revealed publicly right after stage
t.

Payo¤s in �1(q) are evaluated as limits of means, namely as (Banach) limits
of arithmetic averages (see Hart (1985), Forges (1992)). In Section 5, we shall
rather consider the discounted version of the in�nitely repeated game.
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3.1 Characterization of Nash equilibrium payo¤s

Let us write q�i(��i) for
Q
j 6=i qj(�j) and let us denote as N [�1(q)] the set of

all Nash equilibrium interim expected payo¤s of �1(q). The next Proposition
provides a tractable characterization of N [�1(q)].15

Proposition 1 Let �(q) be a Bayesian game with independent private values
in which uniform punishment strategies are available. Let x = (xi)1�i�n =
((xi(�i))�i2�i)1�i�n. The payo¤ vector x is a Nash equilibrium interim ex-
pected payo¤ in �1(q) if and only if there exist probability distributions
�(�) 2 �(A), � 2 �, such that for every i = 1; :::; n, �i, �0i 2 �i

xi(�i) =
X

��i2��i

q�i(��i)ui(�i; �(�i; ��i))

�
X

��i2��i

q�i(��i)max fui(�i; �(�0i; ��i)); vi(�i)g (4)

In the case of complete information, namely if the prior probability distri-
bution q is degenerate, Proposition 1 reduces to the standard folk theorem:
x = (xi)1�i�n 2 Rn is a Nash equilibrium payo¤ of the in�nitely repeated
game if and only if x is feasible (i.e., achieved by means of a probability dis-
tribution � 2 �(A)) and individually rational (i.e., xi is larger than player
i�s minmax level).
The interpretation of Proposition 1, under incomplete information, is that

all Nash equilibria of �1(q) are payo¤ equivalent to completely revealing
equilibria, in which

- at stage 0, every player i truthfully reveals his type �i to the other players

- at every stage t � 1, given the reported types �0 = (�0i)1�i�n , every player i
plays according to �(�0) 2 �(A) provided that �(�0) has been followed
at every previous stage 1; :::; t � 1. Otherwise, if player i does not
follow �(�0) at some stage t � 1, players j 6= i punish player i by
using independent uniform punishment strategies ��i holding player i
at vi(�i) at every stage t+ 1, t+ 2, ... whatever his type �i and action
are.

15Koren (1992) already established a version of this result in the case of only two players
and without assuming uniform punishments. The latter assumption greatly facilitates the
formulation of the equilibrium conditions and the extension to n players.
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According to the nondeviation condition (4), player i, of type �i, takes for
granted that players j 6= i follow the equilibrium strategies. He can report
a type �0i, which is possibly di¤erent from �i. At the end of stage 0, player
i learns the true types ��i of the other players and can then either follow
�(�0i; ��i) or not. In the former case, he fully mimics the equilibrium strategy
of type �0i. In the latter case, the other players notice the deviation and player
i is punished at the level vi(�i).
Condition (4) is thus both an incentive compatibility condition and an

individual rationality condition. Even under our strong assumptions, it is not
possible to separate these two aspects of player i�s nondeviating condition.
Obviously, for �0i = �i, (4) is equivalent to

For every i and � = (�i; ��i) 2 � : ui(�i; �(�)) � vi(�i) (5)

which implies that

For every i and �i 2 �i : xi(�i) � vi(�i) (6)

With some abuse of language, we will refer to the latter property as x is ex
post individually rational and will denote as EXPIRi [�(q)] the set of all
vector payo¤s which satisfy it for player i.
Proposition 1 is established in the appendix. Intuitively, three properties

play a key role to show that an arbitrary equilibrium is payo¤ equivalent to
a completely revealing one. First, the posterior probability distributions of
every player on the other players�types converge, so that the players�behavior
on the equilibrium path becomes nonrevealing. Let us make things extreme
and assume that at equilibrium, no information is revealed from some stage
T on; then, from T on, the players� behavior on the equilibrium path is
described by a probability distribution �T over A (which depends on the
history of moves up to stage T ). Second, once the players have settled on �T ,
every player i may as well learn the types of the other players, since, thanks
to private values, his payo¤only depends on �i and �T . Finally, because there
is no discounting, the information that is transmitted in T stages can as well
be transmitted at once, at the �rst one. In the appendix, we also show the
role of uniform punishment strategies.

3.2 Existence of Nash equilibrium

Thanks to Proposition 1, the setN [�1(q)] of Nash equilibrium payo¤s of the
undiscounted repeated game has a tractable representation so that it is rela-
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tively easy to check whether it is empty or not. Let us denote as PG1(p; !; z)
the in�nitely repeated version of the public good game PG(p; !; z) introduced
in Section 2.2. We will show that PG1(p; !; z) has no Nash equilibrium as
soon as z, p1 and p2 are su¢ ciently large.
Koren (1992) already illustrated the same phenomenon in the two-player

game of Example 1 below. However, in the latter, as soon as one of the
players is greedy, the set of feasible individually rational payo¤s has an empty
interior. The same happens in PG1(p; !; z), when both players are greedy,
but only in that case. As shown in the appendix, our example can be modi�ed
slightly so as to completely get rid of this peculiarity.

Proposition 2 Consider the undiscounted in�nitely repeated public good game
PG1(p; !; z). If the priors p1; p2 and the payo¤ z are su¢ ciently large,
PG1(p; !; z) has no Nash equilibrium, i.e., N [PG1(p; !; z)] = ;. The same
holds in a variant of PG1(p; !; z) in which, for every pair of types, the in-
terior of the set of feasible individually rational payo¤s is nonempty.

Proof: Let us consider an interim expected equilibrium payo¤ x of the game
PG1(p; !; z). According to Proposition 1, x is described by probability
distributions �(�) over A = fc; dg�fc; dg for every pair of types � 2 fn; gg�
fn; gg, which must satisfy the equilibrium conditions (4) in Proposition 1, in
particular the ex post individual rationality conditions (6). From a geometric
representation of the feasible, individually rational payo¤s when one of the
players is normal and the other one is greedy, it appears that if z is su¢ ciently
large, z � z + 1. The ex post individual rationality conditions thus imply
that

�((c; d) j n; g) � 1� ", �((d; c) j g; n) � 1� " (7)

where we write �(a j �) for �(�)(a), for every a 2 A. A formal proof of these
inequalities is given in the appendix.
Condition (4) for player 1 of type n implies that he should not bene�t

from the following deviation: pretend to be of type g at stage 0; thereafter,
mimic type g when the other player turns out to be normal and defend his
individual rationality level (namely play c) when the other player turns out
to be greedy:

p2u1(n; �(n; n)) + (1� p2)u1(n; �(n; g)) � p2u1(n; �(g; n)) + (1� p2) � 1 (8)

The latter condition amounts to ex post individual rationality when p2 = 0.
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Let us set �1 = �((c; d) j n; g) and �2 = �((d; c) j g; n). Feasibility implies
that

u1(n; �(n; g)) � �1 � 1 + (1� �1)(1 + !) (9)

u1(n; �(g; n)) � �2(1 + !) (10)

Hence, (8) implies that

p2u1(n; �(n; n)) + (1� p2)(1� �1)! � p2�2(1 + !)

so that

u1(n; �(n; n)) � �2(1 + !)�
1� p2
p2

(1� �1)! if p2 > 0

and, if z is su¢ ciently large, from (7),

u1(n; �(n; n)) � (1 + !)� "(1 +
!

p2
):

If in addition p2 is su¢ ciently large, say p2 � !, we must have

u1(n; �(n; n)) � (1 + !)� 2�

By proceeding similarly for player 2,

u2(n; �(n; n)) � (1 + !)� 2�

which contradicts feasibility for " su¢ ciently small (since u1(n; �(n; n)) +
u2(n; �(n; n)) � 2 + !).
The variant of PG1(p; !; z) is described in the appendix. �

The previous �nding should be contrasted with what happens in one-sided
reputation models. If only one player is uncertain of the type of the other,
there exist equilibria accounting for a reputation e¤ect, even if the game is not
discounted (see Shalev (1994), Cripps and Thomas (1995) and Israeli (1999)).
However, as soon as both players believe with arbitrarily small probability
that the other player could be (very) greedy, the game has no equilibrium at
all. Two features of the previous example are important: lack of information
on both sides and no discounting. The analysis of the discounted game, when
the players become in�nitely patient, leads to di¤erent conclusions, as we will
see in Section 5.
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4 Repetition and cooperation

Under complete information, the set of feasible and individually rational pay-
o¤s of a one-shot game coincides not only with the set of Nash equilibrium
payo¤s of the in�nitely repeated game but also with a well founded set of
cooperative solutions of the one-shot game (see e.g. Kalai et al. (2010)).
The inequalities (4) in Proposition 1 can be interpreted as describing coop-
erative solutions for the one-shot Bayesian game �(q), so that Proposition
1 establishes a relationship between �repetition� and �cooperation�. How-
ever, under incomplete information, a more natural candidate for the set
of cooperative solutions is Myerson (1991)�s set of feasible, incentive com-
patible and interim individually rational payo¤s in the (one-shot) Bayesian
game �(q) (see Forges (2013)). We denote this set as F [�(q)] and de�ne it
precisely below.16 Myerson (1991)�s de�nitions take a simpler form in our
framework of independent private values. We then establish a partial analog
of the folk theorem, namely that F [�(q)] contains N [�1(q)], the set of Nash
equilibrium payo¤s of the in�nitely repeated game �1(q).
A payo¤ x = (xi)1�i�n = ((xi(�i))�i2�i)1�i�n is feasible in �(q) if there

exists a correlated strategy �(�) 2 �(A), � 2 �, achieving x, namely

xi(�i) =
X
��i

q�i(��i)ui(�i; �(�i; ��i)) i = 1; :::; n; �i 2 �i (11)

A feasible payo¤ x achieved through � (as in (11)) is incentive compatible
if

xi(�i) �
X
��i

q�i(��i)ui(�i; �(�
0
i; ��i)) for every i; �i; �

0
i 2 �i (12)

A payo¤ x is interim individually rational if, for every player i, there
exists a correlated strategy ��i 2 �(A�i) of players j 6= i such that17

xi(�i) � max
ai2Ai

ui(�i; ai; ��i) for every �i 2 �i (13)

16Under an assumption that is similar to our uniform punishment strategies, Peters
and Szentes (2012) also �nd that F [�(q)] corresponds to a set of reasonable cooperative
solutions of �(q), which are achieved through interim commitment.
17Literally, Myerson (1991)�s interim individual rationality condition requires that there

exists a type dependent correlated strategy of players j 6= i, ��i(��i) 2 �(A�i), ��i 2 ��i,
such that xi(�i) � maxai2Ai

P
��i
q�i(��i)ui(ti; ai; ��i(��i)) for every �i 2 �i. But, with

independent private values, (13) is an equivalent formulation, since ui(�i; �) is linear.
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Let INTIRi [�(q)] be the set of all vector payo¤s satisfying the previous
property for player i. Observe that the previous de�nition describes a set
of vector payo¤s which cannot be reduced to a �corner set� (of the form
xi(�i) � wi(�i), �i 2 �i, for some well-de�ned individually rational level
wi(�i)). By contrast, ex post individually rational payo¤s are described by a
�corner set�, since (vi(�i))�i2�i is de�ned without ambiguity by (1).
The set F [�(q)] is formally de�ned as the set of payo¤s satisfying (11),

(12) and (13). F [�(q)] contains the set of Nash equilibrium payo¤s of �(q)
and is thus not empty.
In the next two statements, we make use of uniform punishment strate-

gies.

Lemma 0 Let �(q) be a Bayesian game with independent private values and
let x be a feasible payo¤ in �(q). If x is interim individually rational (namely,
(13)), x is ex post individually rational (namely, (6)): INTIRi [�(q)] �
EXPIRi [�(q)] for every player i. If there exist uniform punishment strate-
gies, namely (2), then the reverse also holds: INTIRi [�(q)] = EXPIRi [�(q)]
for every player i.

The proof of Lemma 0 is straightforward and therefore omitted. The
intuition behind the �rst part is that players j 6= i can impose a harder
punishment to player i if they know player i�s type �i (i.e., ex post). For the
second part, a uniform punishment strategy of players j 6= i against player i
provides an appropriate correlated strategy ��i in (13).

Proposition 3 Let �(q) be a Bayesian game with independent private values
in which uniform punishment strategies are available: N [�1(q)] � F [�(q)].

Proof: The proposition readily follows from the characterizations ofN [�1(q)]
(in Proposition 1) and F [�(q)] ((11), (12) and (13) above): the equality in
(4) is (11), the inequality in (4) implies (12) and (6), which in turn implies
(13) by Lemma 0.�

As stated in Proposition 2, unlike F [�(q)], N [�1(q)] can be empty. The
characterization in Proposition 1 indeed makes clear that repetition is just
equivalent to a very demanding form of cooperation in the one-shot game, in
which every player can decide to participate (and get his individually rational
level if he does not) after having learnt the types of the other players. This
participation constraint makes incentive compatibility harder in N [�1(q)]
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than in F [�(q)]. Example 1 below, taken from Koren (1992), further illus-
trates that N [�1(q)] can be strictly included in F [�(q)].18

Example 1: A game in which N [�1(q)] is not empty and strictly included
in F [�(q)]
We will study a variant of the well-known battle of the sexes. Each player

has two possible types: �i = fn; gg, i = 1; 2, and two possible actions:
Ai = fc; dg, i = 1; 2. We denote as pi 2 [0; 1] the probability that player i�s
type is n (namely, qi = (pi; 1 � pi)). Payo¤s are described by the following
matrices:

�2 = n �2 = g

c d c d
�1 = n c 3; 1 0; 0 3; 1 0; 3

d 0; 0 1; 3 0; 1 1; 3
�1 = g c 3; 1 3; 0 3; 1 3; 3

d 1; 0 1; 3 1; 1 1; 3

When �1 = n, player 1 prefers c to d, but also prefers to make the same choice
as the other player. When �1 = g, player 1 just prefers c to d, independently
of the choice of the other player. The preferences of player 2 are similar. In
this game, vi(n) = 3

4
, vi(g) = 3, i = 1; 2. A uniform punishment strategy of

player 1 (resp., 2) is to play c with probability 3
4
(resp., 1

4
).

Let us consider the (ex post e¢ cient) correlated strategy �(�), � 2 �,
de�ned by

�2 = n �2 = b

c d c d
�1 = n c 1

2
0 0 0

d 0 1
2

0 1
�1 = g c 1 0 0 1

d 0 0 0 0

(14)

It is easily checked that �(�) satis�es (12) and (13), namely, induces a payo¤
in F [�(q)], if and only if pi � 1

2
, i = 1; 2. Similarly, in order to induce

18For appropriate values of the prior p, it also happens in the public good game that
N [PG1(p; !; z)] is not empty and is strictly included in F [PG(p; !; z)]. However, a
full characterization of N [PG1(p; !; z)] seems much harder in this game than in Koren
(1992)�s example.
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a payo¤ in N [�1(q)], �(�) must satisfy (4); in particular, player 1 of type
�1 = n cannot gain by pretending to be of type �

0
1 = g, namely,

p2 + 1 � p2max
�
3;
3

4

�
+ (1� p2)max

�
0;
3

4

�
, p2 �

1

5

The previous condition illustrates that, as expected, player 1 has more de-
viation possibilities at a (completely revealing) Nash equilibrium of �1(q)
than at an interim cooperative solution of �(q). Imagine that player 1 is of
type n but pretends to be of type g at the �rst stage of �1(q). Then he
learns player 2�s type �2 and faces �(g; �2). If �2 = n, player 1 gets the best
payo¤ 3 by playing according to �(g; n). However, if �2 = g, player 1 gets 0
by playing according to �(g; g). In this case, he should not play according
to �(g; g) but rather play c with probability 3

4
at every stage in order to

guarantee himself 3
4
. By checking the other equilibrium conditions in (4), we

get that �(�) induces a payo¤ in N [�1(q)] if and only if pi � 1
5
, i = 1; 2.

On the other hand, as already pointed out in Koren (1992), the correlated
strategy de�ned by

�2 = n �2 = g

c d c d
�1 = n c 0 0 0 0

d 0 1 0 1
�1 = g c 3

4
1
4

0 1
d 0 0 0 0

induces a payo¤ in N [�1(q)] if and only if p2 � 1
6
. There are thus many

probability distributions q 2 �(�) for which �(�) de�ned by (14) induces a
payo¤ in F [�(q)], and at the same time, N [�1(q)] is not empty but does
not contain the payo¤ de�ned by (14).�

5 Bayesian discounted repeated game

In this section, we focus on two players and we allow every player to evaluate
his payo¤ sequence with a discount factor � 2 (0; 1). The ��discounted
version ��(q) of the in�nitely repeated game is played as in Section 3, but a
sequence of actions a = (at)t�0 2 AN leads now to the payo¤

U �i (�i; a) =(1� �)
1X
t=0

�tui(�i; a
t) for every i, �i
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Let us denote as N [�
�
(q)] the set of all (interim expected) Nash equilibrium

payo¤s of �
�
(q). By the same arguments as under complete information,

N [�
�
(q)] is nonempty and compact, for every � 2 [0; 1). An interesting

question is whether lim�!1N [�
�
(q)] is also nonempty, for some appropriate

de�nition of the limit of a sequence of sets.
The equilibrium payo¤s of the undiscounted repeated game �1(q) are

natural candidates that could belong to lim�!1N [�
�
(q)]. However, as stated

in Proposition 2, the undiscounted repeated public good game PG1(p; !; z)
may have no equilibrium. Under the assumption that there exist belief-free
equilibria (in the sense of Hörner and Lovo (2009)), Peski (2013) characterizes
the set lim�!1N [�

�
(q)] as the set of �nitely revealing equilibrium payo¤s,

in which beliefs are updated �nitely many times. This is again of little use
in our public good game. Indeed, Hörner and Lovo (2009)�s characterization
of belief-free equilibrium payo¤s and Proposition 1 imply that there cannot
be any belief-free equilibrium when the undiscounted repeated game has no
equilibrium.19

Let PG�(p; !; z) be the ��discounted in�nitely repeated game associated
with the public good game PG(p; !; z) introduced in Section 2.2. Even if
there are no equilibria that would easily be shown to belong to lim�!1N [PG�(p; !; z)]
when p1; p2 and z are large, we establish below that (the interior of) this set
is always nonempty.20

The proof of this result will be fully constructive: we will show that
if both players are su¢ ciently patient, PG�(p; !; z) has a family of perfect
Bayesian equilibria of the form of a war of attrition, in which the normal
players do not contribute until one of them gives up and does contribute.
Then, the one who has �rst given up goes on by contributing at most stages.
The contributing player thus reveals that his type is normal, whereas the
other player only contributes occasionally and keeps his type unknown. We
will �rst de�ne precisely the war of attrition equilibria in auxiliary reputation
games, in which the payo¤s of the normal players have a general structure
and the greedy players reduce to automata. We consider a rather large class
of automata to re�ect the strategic possibilities of the greedy players.

19Hörner and Lovo (2009) show that all belief-free equilibrium payo¤s must belong to
the set V � of ex post incentive compatible and ex post individually rational payo¤s. By
Proposition 1, V � � \qN [�1(q)].
20More precisely, lim inf�!1N [PG�(p; !; z)] 6= ;, with the de�nition x 2 lim

inf�!1N [�
�
(q)], 8�n ! 1 9xn 2 N

�
�
�n
(q)
�
such that xn ! x.
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5.1 A family of reputation games

We introduce a family of reputation games G�(p; i; ), where � = (�1; �2),
p = (p1; p2), i = 1 or 2,  = (1; 2), pk, k 2 [0; 1], �k 2 [0; 1), k = 1; 2, and
1 + 2 < 1. There are two agents. At stage �1, according to independent
moves of nature, agent k (k = 1; 2) is a player, with probability pk, or an
automaton, with probability 1 � pk. At every stage t = 0; 1; :::, every agent
chooses c or d. The moves are made simultaneously and are observed after
every stage. As usual, automata do not have payo¤s. The stage payo¤s of
the players are described by

c d
c m1;m2 0; g2
d g1; 0 �l1;�l2

where 0 � mk < gk and 0 < lk, k = 1; 2.21 The stage game between the
players is a game with strictly competitive interests in the sense of Cripps et
al. (2005) and Atakan and Ekmekci (2013). Player k discounts streams of
payo¤s using a personal discount factor �k.22 We also assume that at every
stage t = 0; 1; :::, independently of past events, a random variable Rt is drawn
according to a uniform distribution over [0; 1] and is publicly revealed.23

Finally, the behavior of the automata depends on the parameters i and .
Let j 6= i, i.e., j = i+1 mod 2. At every stage t = 0; 1; :::, automaton i plays
d unless the next three conditions all hold24

� agent j played c for the �rst time at an odd stage s < t

� at any stage u 2 fs + 1; : : : ; t � 1g, agent j played d if and only if
Ru < j,

� Rt < j.
21The reputation game G�(p; i; ) is described by the following parameters: �k, pk, mk,

gk, lk, k, k = 1; 2 and i. The notation just keeps track of the main ones.There is a slight
abuse of notation in using a single matrix: the payo¤s of a player are the same, whether
he faces another player or an automaton.
22In this section, we follow the tradition of the reputation literature and allow the players

to use di¤erent discount factors.
23As usual (see Peski (2013) for a recent reference), the public random device is intro-

duced to simplify the exposition but is not necessary.
24If one of the conditions does not hold, the automaton plays c.
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In other words, automaton i may consent to an agreement that gives the
average payo¤ jgj to player j. If agent j did not initiate the agreement
by playing c at an odd stage, or if the agreement was broken, automaton i
always plays d.
The behavior of automaton j is similar, and is de�ned by inverting i and

j and by replacing �odd�by �even�in the former description.
We go on by identifying speci�c strategies in G�(p; i; ), in which the

players behave as in a war of attrition. We �rst de�ne a war of attrition
protocol, which depends on i and  and also on a positive integer parameter
T determining the horizon of the war.

War of attrition protocol: Before stage 0, every player chooses the �rst
stage at which he will play c if the other agent did not play c yet. To
this aim, player i (resp., player j 6= i) chooses � i 2 f0; 2; : : : ; 2Tg (resp.,
� j 2 f1; 3; : : : ; 2T + 1g) according to some probability distribution. If player
i (resp., j) plays c for the �rst time at an even (resp., odd) stage s � 2T +1,
the players initiate an agreement in which player i (resp., j) chooses c most
of the time. More precisely, if player k (k = i; j) is the one who gives in,
then, at every stage u � s + 1, if Ru � k, player k plays c and the other
player plays d and if Ru < k, player k plays d and the other player plays
c.25

The previous description tells what a player should do at every stage as
long as he follows the protocol and faces either an automaton or a player who
also follows the protocol. A complete description of the players�strategies,
which take account of all histories that are not consistent with the protocol,
will be given in the appendix. In particular, if a player adopts a war of at-
trition strategy, he follows the war of attrition protocol as long as the other
agent�s moves are consistent with it and behaves as his associated automaton
otherwise.

The next three propositions give precise, easy to check, conditions that
guarantee that G�(p; i; ) has a perfect Bayesian equilibrium in war of at-
trition strategies. The proofs are given in the appendix, together with the
explicit expression of the equilibrium payo¤s. The condition in the �rst propo-
sition is particularly simple: it just says that the automata cooperate with

25This latter part is similar to the standard construction to prove the folk theorem under
complete information.

25



an arbitrary small positive probability after a player has �rst cooperated.

Proposition 4 Let p and  be �xed, with 1; 2 > 0. There exists � 2 (0; 1)
such that, for any �1 > � and any �2 > �, G�(p; i; ) has a perfect Bayesian
equilibrium in war of attrition strategies for some i 2 f1; 2g.

Asmany other results of the reputation literature (see Mailath and Samuel-
son (2006)), the following proposition makes use of the fact that a player may
be signi�cantly more patient than the other.

Proposition 5 Fix p,  and i. There exists � 2 (0; 1) and c > 0 such that,
for every �1; �2 2 (0; 1) satisfying �i > � and 1 � �j � c(1 � �i), G�(p; i; )
has a perfect Bayesian equilibrium in war of attrition strategies.

The next proposition assumes that the players have the same discount
factor and identi�es a su¢ cient condition, condition (15) below, which is
satis�ed as soon as

- the players have the same payo¤s (g1 = g2, l1 = l2)26,

- automata always play d (i.e.,  = 0) and

- pi > pj (which of course always holds, for i = either 1 or 2, unless p1 = p2).

Proposition 6 Consider the game with equal discount factors � = �1 = �2
and assume that p,  and i satisfy

log(1� pi)
li + igi
gi

< log(1� pj)
lj + jgj

gj
: (15)

Then there exists � 2 (0; 1) such that, for any � > �, G�(p; i; ) has a perfect
Bayesian equilibrium in war of attrition strategies.

26As observed by Atakan and Ekmekci (2013), g1 = g2 can be achieved through a
normalization and is thus without loss of generality.
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Proposition 6 is consistent with Atakan and Ekmekci (2013)�s theorem
2. They specially study a reputation game in which the players of the basic
game, with strictly competitive interests, have an arbitrary number of actions
(as opposed to two, c and d, here) but they focus on very simple automata,
which would always play d in our framework. In other words, they set 1 =
2 = 0, while we allow for 1; 2 > 0. Assuming that both players have the
same discount factor �, they show that if condition (15) holds with 1 = 2 =
0, then, when � is su¢ ciently large, at any perfect Bayesian equilibrium of
the reputation game, one of the players (player i)27 gets approximately his
minmax payo¤ 0 while the other player (player j) bene�ts from a reputation
e¤ect, namely gets a substantial part of gj. As already suggested in the
introduction, the main di¤erence between our results and those of Atakan
and Ekmekci (2013) is that, being interested in a reputation result, they
establish the asymptotic uniqueness of a very special kind of equilibria, while
we are interested in characterizing a larger class of equilibria, which exist for
every su¢ ciently large discount factor. We will pursue the comparison in
the appendix, when the expression of the equilibrium payo¤s is available.

5.2 War of attrition equilibria in the public good game

Let us go back to the public good game PG�(p; !; z), in which there are
two players and no automaton. When both players are normal, they play a
game with strictly competitive interests in which (after subtracting 1 to all
payo¤s) mk = 0, gk = !, lk = 1 � !, k = 1; 2. Building on the previous
section, we consider speci�c strategies for the players of PG�(p; !; z), which
we call war of attrition strategies, as in the previous reputation games. Let
i = 1 or 2, j 6= i and k 2 [0; 1z ), k = 1; 2. In a war of attrition strategy
pro�le parametrized by i and  = (1; 2), player k behaves as automaton k
in G�(p; i; ) if his type is greedy and as player k in G�(p; i; ) if his type is
normal.28

The next proposition states that equilibria in war of attrition strategies
yield explicit elements in lim�!1N [PG�(p; !; z)].

27In the particular case g1 = g2, l1 = l2, agent i is the one who is the more likely to be
a player rather than an automaton, namely, pi > pj .
28Observe that given the description of automata, the behavior of greedy players is

de�ned on every possible history. The behavior of normal players is fully described in the
appendix.

27



Proposition 7 Consider the ��discounted in�nitely repeated public good
game PG�(p; !; z). For every 1; 2 2 (0; 1

z
), there exists � 2 (0; 1) such

that, for every � > �, PG�(p; !; z) has a perfect Bayesian equilibrium in war
of attrition strategies parametrized by i = 1 or 2 and  = (1; 2). Further-
more, if the priors are such that p1 6= p2, the same holds for 1 = 2 = 0.
The corresponding equilibrium payo¤s converge, as � ! 1, to

xi(n; ) = 1 + i!;

xj(n; ) = 1 + �0(1� i)! + �0j!;
xi(g; ) = z +

�
1� j + j(1� z)

�
ai;

xj(g; ) = z + (1� i + i(1� z)) (�0 + (1� �0)aj) ;

where i = 1 or 2, j 6= i, �0 = 1� 1�pi

(1�pj)
1�!+j!
1�!+i!

, ai =
1�!+i!

1�!+(1�j)!

�
1� (1� pj)

1�!+(1�j)!
1�!+i!

�
,

and aj =
1�!+j!

1�!+(1�i)!

�
1� (1� pj)

1�!+(1�i)!
1�!+i!

�
. In particular, lim inf�!1N [PG�(p; !; z)]

has a nonempty interior.

It may be useful to compare the latter result with our �ndings in the
undiscounted case, namely, Propositions 1 and 2. Note that in a war of
attrition equilibrium, once one of the players has revealed that his type is
normal, the players follow a cooperative agreement, as in the standard proof
of the folk theorem with complete information. Under our assumption of
private values, given such an agreement, the player who has not revealed
his type would not mind revealing it (provided that the agreement is not
modi�ed, of course).
However, the previous equilibria cannot be reduced to completely reveal-

ing ones (from the beginning of the game). Indeed, in the discounted game,
the time before revelation is costly and matters at equilibrium. The fact that
payo¤s are discounted is thus critical in war of attrition equilibria. In the
undiscounted game, a normal player is always better o¤waiting for the other
player revealing his type, because waiting is free.
Note also that the previous equilibria are not �nitely revealing in the sense

of Peski (2013), namely, they involve a number of changes of the players�
posteriors that increases with �. However, we can re�ne our construction of
equilibria by introducing, in the war of attrition, an arbitrary number of non-
revealing stages between each stage of information transmission. It is then
possible to keep the number of information transmission stages bounded as
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� ! 1 and to obtain similar limit payo¤s, so that lim inf�!1N [PG�(p; !; z)]
contains a set (with a non-empty interior) of �nitely revealing equilibrium
payo¤s (see the remark after the proof of Proposition 7 in the Appendix for
details).

6 Appendix: proofs and complements

6.1 Undiscounted game (Proposition 1)

6.1.1 Strategies and payo¤ functions

A strategy of player i in �1(q) is a sequence of mappings �i = (�ti)t�0,
�ti : �i � At�1 ! �(Ai). The n�tuple of prior probability distributions
q = (qi)1�i�n and an n�tuple of strategies � = (�i)1�i�n induce a probability
distribution over ��AN, where AN is the set of all in�nite sequence of moves.
We denote as Eq;� the corresponding expectation. Given a = (at)t�0 2 AN,
let us de�ne

U
T+1

i (�i; a) =
1

T + 1

TX
t=0

ui(�i; a
t) for every i, �i and T = 0; 1; :::

As in Hart (1985) (see also Forges (1992), Koren (1992), Shalev (1994)), we
de�ne the interim payo¤s associated with an n�tuple of strategies � as

Ui(�i;�) =L
h
Eq;�(U

T

i (�i;ea) j �i)i
where L is a Banach limit and ea denotes the sequence of moves as a random
variable.

6.1.2 Su¢ cient conditions for an equilibrium

Let us assume that the conditions (4) hold. Then we can construct an
n�tuple of strategies � = (�i)1�i�n in �1(q) which achieve the interim
payo¤s xi(�i) (namely, such that xi(�i) = Ui(�i;�) for every i, �i) and which
de�ne a Nash equilibrium of �1(q). For every player i, �i is described as
follows:

at the �rst stage (t = 0): choose ai so as to reveal type �i (which is possible
since jAij � j�ij)
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at every stage t � 1: given the n�tuple of reported types �0, play according
to �(�0) if �(�0) was chosen at every previous stage; otherwise, play a
punishment strategy in order to keep the �rst player j who did not
follow �(�0) below his ex post individually rational level vj(�j).

6.1.3 Necessary conditions for an equilibrium

Let us start with an arbitrary Nash equilibrium � = (�i)1�i�n in �1(q).
Let �i(�i) be the associated strategy of player i of type �i, namely, �i(�i) =
(�ti(�i))t�0, with �

t
i(�i) : A

t�1 ! �(Ai). Let xi(�i) = Ui(�i;�) be the as-
sociated interim equilibrium payo¤ of player i of type �i. Let us show that
the conditions (4) hold, namely, that the same payo¤s can be achieved by a
completely revealing equilibrium.
In order to get some intuition, let us assume that, at equilibrium, there

is a �nite, possibly very long, phase of information transmission (say, until
stage t0) and that afterwards (thus, at stages t0 + 1, t0 + 2,...), the players
play independently of their types. Since � is an equilibrium, player i of type
�i cannot bene�t from playing according to �i(�

0
i), with �

0
i possibly di¤erent

from �i, until stage t0 and then, from stage t0 + 1 on, by either continuing
to play �i(�

0
i) or just guaranteeing himself vi(�i) (i.e., by playing optimally

in �his true one-shot game�, with payo¤s ui(�i; �), at every stage t0 + 1,
t0 + 2,...).29

More precisely, the equilibrium strategies �i(�i) generate probability dis-
tributions ��(� j �1; :::; �n) over the limit frequencies of moves, i.e., over �(A)
(see Hart (1985) or Koren (1992) for details). Together with the prior q,
these probability distributions generate a probability distribution Pq;�� over
���(A) such that

xi(�i) = Ui(�i;�) = Eq;�� (ui(�i; e�) j �i) for every i; �i (16)

where Eq;�� is the expectation with respect to Pq;�� and e� stands for the
frequency of move as a random variable.30

By considering the previous speci�c deviations of player i of type �i
(namely, mimic type �0i and/or play optimally in the one-shot game), we

29Note that player i may reveal further information on his type by playing so as to
guarantee himself vi(�i). This typically happens out of equilibrium.
30If information transmission ends up after �nitely many stages t0, e� can be interpreted

as the frequency of moves from stage t0 + 1 on.
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obtain that

xi(�i) � Eq;�� (max fui(�i; e�); vi(�i)g j �0i) for every i; �i; �
0
i (17)

We can also rely on a variant of the revelation principle to see that (16)
and (17) must be satis�ed as soon as � is an equilibrium. Let us imagine
that a fully reliable mediator asks the players to report their types and then
given the n�tuple of reported types �0 2 �, chooses a frequency of moves
� 2 �(A) according to ��(� j �0) and recommends � to all players31. In
other words, when the players report �0 = (�0i)1�i�n, the mediator selects �
exactly as the players themselves do at the equilibrium �. (16) says that
by telling the truth and following the recommendation of the mediator, the
players get the same interim payo¤ as by playing �. (17) says that if players
j 6= i tell the truth to the mediator, follow the recommendation � as long as
every player follows � and punish any deviator at his ex post minmax level,
then player i of type �i cannot bene�t from reporting type �

0
i to the mediator

and/or not following �.
Conditions (16) and (17) di¤er from (4) in two respects. (16) and (17)

involve (type dependent) probability distributions over �(A), while (4) is
formulated in terms of deterministic distributions �(�), � 2 �. Moreover, in
(17), the probability distribution �� is not necessarily completely revealing

32.
By construction, and recalling that types are independent of each other,

for any function f over �(A), the probability Pq;�� satis�es

Eq;�� (f(e�) j �i) =X
��i

q�i(��i)E�� (f(e�) j �i; ��i) for every i, �i

Hence, for every i, �i, (16) can be rewritten as

xi(�i) =
X
��i

q�i(��i)E�� (ui(�i; e�) j �i; ��i)
Recalling that ui(�i; �) is linear, we get

xi(�i) =
X
��i

q�i(��i)ui
�
�i; E��(e� j �i; ��i)�

31As in the standard proof of the folk theorem under complete information, we interpret
a distribution of moves � as a deterministic sequence of moves (in A) which achieves the
frequency of �. This interpretation is straightforward if the components of � are rational
(in Q).
32The above reliable mediator selects � as a random function of the players�reported

types but does not reveal these reported types.
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which is the �rst part of (4) if we set �(�) = E��(e� j �).
By proceeding similarly and using in addition that �max�is convex, for

every i; �i; �
0
i, (17) can be rewritten as

xi(�i) �
X
��i

q�i(��i)E�� (max fui(�i; e�); vi(�i)g j �0i; ��i)
�

X
��i

q�i(��i)max
�
E�� (ui(�i; e�) j �0i; ��i) ; vi(�i)	

�
X
��i

q�i(��i)max
�
ui
�
�i; E��(e� j �0i; ��i)� ; vi(�i)	

�
X
��i

q�i(��i)max fui (�i; �(�0i; ��i)) ; vi(�i)g

The last expression is the inequality in (4).�

6.2 Generalization of the public good game, comple-
ments on Proposition 2

The main goal of this section is to formally establish inequalities (7). We
actually consider a variant of the public good game PG(p; !; z) of Section
2.2, in which every player has an extra action e, with the following payo¤s:

�2 = n �2 = g
c d e c d e

c (1; 1) (1; 1 + !) (1; 0) c (1; 1) (1; 1 + z) (1; 0)
�1 = n d (1 + !; 1) (!; !) (0; 0) d (1 + !; 1) (!; z) (0; 0)

e (0; 1) (0; 0) (0; 0) e (0; 0) (0; z) (0; 1 + z)

c d e c d e
c (1; 1) (1; 1 + !) (0; 0) c (1; 1) (1; 1 + z) (0; 0)

�1 = g d (1 + z; 1) (z; !) (z; 0) d (1 + z; 1) (z; z) (z; 0)
e (0; 1) (0; 0) (1 + z; 0) e (0; 0) (0; z) (1 + z; 1 + z)

In the new game, for every pair of types (�1; �2), the set of feasible, indi-
vidually rational payo¤s of the public good game with complete information,
in which �1 and �2 are common knowledge, has a nonempty interior, a prop-
erty that is not satis�ed when �1 = �2 = g in the initial game.
In the new game,
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� the ex post individual rationality levels are still vi(n) = 1, vi(g) = z,
i = 1; 2

� uniform punishments still exist (play d)

� for every (�1; �2) 6= (g; g), the set of feasible, individually rational pay-
o¤s is the same as in PG(p; !; z). In particular, there exist feasible,
strictly individually rational payo¤s for every (�1; �2) 6= (g; g). But now,
there also exist strictly individually rational payo¤s for (�1; �2) = (g; g).

Let us show that, without discounting, if z, p1 and p2 are su¢ ciently
large, there are no equilibria. As in Section 3.2, let �(� j �) be the equilibrium
distributions over A = fc; d; eg � fc; d; eg when � is reported and consider
the equilibrium conditions in Proposition 1 (namely, (12)). We �rst prove
that:

Claim: if z is su¢ ciently large, the feasibility and ex post individual ratio-
nality conditions imply that �((d; c) j g; n) � 1�" and �((c; d) j n; g) � 1�".

Proof of the claim: we establish the second inequality, the �rst one can be
established in the same way.

Let �(� j g; n) =

0@ �c � 13
� �d 23
31 32 33

1A and set  = 23 + 33.

The ex post individual rationality condition for player 1, of greedy type,
implies that

�z + �d(z � 1) + z � z � 1 (18)

(write the ex post individual rationality condition for the payo¤s �1 and
forget about some negative weights). Similarly, the ex post individual ratio-
nality condition for player 2, of normal type, implies that

�! + �d + (! + 1) � ! (19)

(proceed as for player 1, but also replace � by 1� all the other probabilities
in �(� j g; n)).
The feasibility constraints are � � 0, �d � 0,  � 0 and �+ �d +  � 1.
If the latter constraint is binding, namely if � + �d +  = 1, then �! +

�d+(!+1) � !, so that, by (19), �!+�d+(!+1) = ! and � = 1, which
establishes the claim ((18) is also satis�ed).
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The constraint � � 0 cannot be binding as soon as z � 1 + 1
!
(,

z
z�1 � ! + 1). Indeed, if � = 0, (18) and (19) imply then that 1 � ! �

�

z
z�1 � (! + 1)

�
� 0 contradicting ! � 1.

Hence the relevant extreme points are determined by the following binding
constraints:

- (18), (19), �d = 0:  =
!
z
, � = 1� 1+!

z
.

- (18), (19),  = 0: � = 1� 1
z(1�!)+! .

- (18), �d =  = 0: � = 1� 1
z
.

- (19), �d =  = 0: � = 1.

In all cases, the claim is satis�ed.�

If all kl�s are set to 0, the proof of the claim establishes the inequalities
(7) in the original public good game.
Furthermore, in the new game, the nondeviation condition (8) must be

satis�ed and feasibility still implies (9) and (10). Hence, by proceeding ex-
actly as in Section 3.2, one shows that the set of Nash equilibrium payo¤s is
also empty in the new game.

6.3 Role of uniform punishments (Propositions 1 and
3)

In the case of two players, if values are private and independent in �(q),
Koren (1992) proves that the Nash equilibria of �1(q) are payo¤ equivalent
to completely revealing equilibria without assuming uniform punishments
(i.e., (2)). However, in this more general case, the equilibrium conditions
can take a more complex form than (4). Examples 2 and 3 below illustrate
how the absence of uniform punishments modi�es the results.
In example 2, the conditions (4) of Proposition 1 are no longer su¢ cient

for an equilibrium. Proposition 3 does not hold either: we construct an equi-
librium payo¤ in �1(q) which does not belong to F [�(q)], i.e., cannot be
achieved through commitment in �(q).
In example 3, an assumption weaker than uniform punishments holds,

which guarantees that the Nash equilibrium payo¤s of �1(q) can be char-
acterized exactly as in Proposition 1, by (4). However, Proposition 3 still
fails.
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In both examples 2 and 3, there are two players and only player 1 has
private information (j�2j = 1, A = A1 � A2), so that the conditions in
Proposition 1 reduce to: there exists �(�1) 2 �(A), �1 2 �1, such that, for
player 1,

x1(�1) = u1(�1; �(�1))

� u1(�1; �(�
0
1)) 8�1; �01 2 �1 i.e., incentive compatibility (20)

� v1(�1) 8�1 2 �1 i.e., ex post individual rationality (21)

and, for player 2,

x2 = u2 (�(�1)) � v2 8�1 2 �1 i.e., ex post individual rationality (22)

As shown by Hart (1985), in order to characterize the equilibrium payo¤s
of �1(q), ex post individual rationality (namely, (6) or (21) above) is not
su¢ cient. A stronger condition, which makes full use of the fact that �1(q)
is an in�nitely repeated game, is needed. This condition is formally stated
below, in the current framework of lack of information on one side.33 Let
val1 [u] denote the value to player 1 of the one-shot game with payo¤ function
u.

De�nition A vector payo¤ x1 = (x1(�1))�12�1 is individually rational for
player 1 in the in�nitely repeated game �1(q) if and only if

8p1 2 �(�1),
X
�1

p1(�1)x1(�1) � val1

"X
�1

p1(�1)u1(�1; �)
#

(23)

Let INTIR1 [�1(q)] be the set of vector payo¤ that are individually
rational for player 1 in the in�nitely repeated game �1(q). The previous de-
�nition is justi�ed by Blackwell (1956)�s approachability theorem: condition
(23) is necessary and su¢ cient for player 2 to have a strategy in the in�nitely
repeated game �1(q) such that player 1�s payo¤ cannot exceed x1(�1) when
he is of type �1.
Let us compare INTIR1 [�1(q)] with the two sets of individually ratio-

nal payo¤s introduced for the one-shot game �(q), namely, EXPIR1 [�(q)]

33The same condition holds as well in two-person games with independent private values
(see Koren (1992)).
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and INTIR1 [�(q)]. First of all, player 2 can use a punishment strategy
of the one-shot game at every stage of the in�nitely repeated game: as a
consequence of Blackwell (1956)�s characterization, (13) implies (23). Fur-
thermore, (23) holds in particular at the extreme points of �(�1), so that it
implies ex post individual rationality (i.e., (21)). To sum up,

INTIR1 [�(q)] � INTIR1 [�1(q)] � EXPIR1 [�(q)]
These inclusions hold in two-person games with independent private values,
even if player 2 also has private information (see Koren (1992)). From Lemma
0, under the assumption of uniform punishments, the three sets coincide. In
examples 2 and 3 below, this assumption does not hold. In example 2,
the two inclusions are strict. In example 3, the �rst inclusion is strict but
INTIR1 [�1(q)] = EXPIR1 [�(q)].

Example 2
Let n = 2, �1 = fh; lg, j�2j = 1: only player 1 has private information.

Here, the prior probability distribution is fully described by the probability
that player 1�s type is h, which we still denote as q 2 [0; 1]. Let jA1j = jA2j =
2 and the utility functions be described by

u1(h; �) =
�
1 0
0 0

�
u1(l; �) =

�
0 0
0 1

�

u2(�) =
�
0 2
0 0

�
The assumption of uniform punishments is clearly not satis�ed: player 2 must
play right in order to hold player 1 of type h at his value level v1(h) = 0 and
must play left to hold him at v1(l) = 0. Consider the probability distribution

�(h) = �(l) = � =

�
1
4

1
2

0 1
4

�
2 �(A1 � A2)

Let us check that it de�nes an equilibrium of �1(q), for every p 2 (0; 1),
namely that the associated payo¤s, x1(h) = x1(l) =

1
4
, x2 = 1, verify the

above conditions (including (23)). Player 2�s payo¤ x2 = 1 is individually
rational since the value of player 2�s game is v2 = 0. � is clearly incen-
tive compatible since it is nonrevealing. According to (23), a vector payo¤
(x1(h); x1(l)) is individually rational for player 1 in �1(q) if and only if

8p 2 [0; 1] , px1(h) + (1� p)x1(l) � val1
�
p 0
0 1� p

�
= p(1� p)
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so that (1
4
; 1
4
) is indeed individually rational for player 1 in �1(p), for every

p 2 (0; 1). Hence ((1
4
; 1
4
); 1) 2 N [�1(q)] for every q 2 (0; 1). However,

((1
4
; 1
4
); 1) =2 F [�(q)] because (1

4
; 1
4
) is not interim individually rational in the

sense of (13): let � = (�; 1 � �); maxa1 u1(h; a1; �) = � � 1
4
is incompatible

with maxa1 u1(l; a1; �) = 1� � � 1
4
.

Consider now the probability distribution

�(h) = �(l) = � =

�
0 1
0 0

�
� satis�es the equilibrium conditions of Proposition 1 (namely (20), (21) and
(22) above) but the vector payo¤ of player 1 is (0; 0) and is not individually
rational for player 1 in �1(q), namely does not satisfy (23). Hence � does
not de�ne an equilibrium of �1(q).
Example 2 illustrates that player 1 can bene�t from not revealing his

information to player 2, if player 2 intends to punish him. Of course, when
uniform punishments are available, the revelation of information does not
matter.�

Example 3
The framework is the same as in example 2 but the utility functions are

described by

u1(h; �) =
�
1 2
0 �1

�
u1(l; �) =

�
�1 0
2 1

�

u2(�) =
�
2 0
0 2

�
v1(h) = v1(l) = 1. As in the previous example, the assumption of uniform
punishments is not satis�ed. Let p 2 [0; 1].

val1 [pu1(h; �) + (1� p)u1(l; �)] = val1

�
2p� 1 2p
2� 2p 1� 2p

�
= 1� 2p if p � 1

4

=
1

2
if
1

4
� p � 3

4

= 2p� 1 if p � 3

4
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This function is convex so that a vector payo¤ (x1(h); x1(l)) is individually
rational for player 1 in the sense of (23) if and only if it is ex post individ-
ually rational (namely, (21): x1(h) � 1 and x1(l) � 1): INTIR1 [�1(q)] =
EXPIR1 [�(q)]. In particular, in this example, the equilibrium conditions
in �1(q) are correctly described in Proposition 1, namely by (20), (21) and
(22).34

In spite of the previous property, Proposition 3 fails. The probability
distributions

�(h) =

�
1 0
0 0

�
�(l) =

�
0 0
0 1

�
lead to an equilibrium in �1(q), with payo¤ ((1; 1); 2), but (1; 1) is not in-
terim individually rational for player 1 in the sense of (13): let � = (�; 1��);
maxa1 u1(h; a1; �) = 2 � � � 1 is incompatible with maxa1 u1(l; a1; �) =
� + 1 � 1.�

In both examples 2 and 3, interim individual rationality takes a di¤erent
form in the one-shot game and in the in�nitely repeated game. In example 2,
in order to defend himself, player 1 must play in a non-revealing way in the
repeated game. In example 3, player 1 bene�ts from revealing his information
to player 2.
The phenomena described in the previous examples were �rst identi�ed in

the study of zero-sum in�nitely repeated games with incomplete information
(see Aumann and Maschler (1995)).

6.4 Reputation games (Propositions 4, 5 and 6)

Propositions 4, 5 and 6 state that, under appropriate assumptions, the repu-
tation game G�(p; i; ) has a perfect Bayesian equilibrium in war of attrition
strategies, which are based on a war of attrition protocol. We start by giv-
ing a full description of war of attrition strategies. Recall that, in a war
of attrition protocol, player i (resp., player j 6= i) chooses the �rst stage
� i 2 f0; 2; : : : ; 2Tg (resp., � j 2 f1; 3; : : : ; 2T + 1g) at which he will play c
if the other agent did not play c yet. If player i (resp., j) plays c for the
�rst time at an even (resp., odd) stage s � 2T + 1, the players initiate an
agreement in which player i (resp., j) chooses c with frequency 1� i (resp.,
34The simpli�cation of the equilibrium conditions in the case of convex value functions

(which give rise to a linear concavi�cation) is acknowledged in Koren (1992), remark 4. A
similar condition is considered in Forges (1988).
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1 � j). A player can observe three kinds of histories that are inconsistent
with the protocol

I c has been played for the �rst time at a �wrong�stage, namely,

I�by agent i at an odd stage t or by agent j at an even stage t (t <
2T + 2 or t � 2T + 2),

I� by player i only at an even stage t or by player j only at an odd
stage t, with t � 2T + 2;

II c is has been played for the �rst time at a �right�stage but the agreement
described by i or j is not followed by some player at some stage;

III the stage is � 2T + 2 and c has never been played.

War of attrition strategies: A war of attrition strategy for player k (k = 1; 2)
in G�(p; i; ) is de�ned from a war of attrition protocol (which depends on
the parameters of the game, T and appropriate probability distributions) as
follows: at every stage t = 0; 1; :::,

� if the history up to stage t � 1 is consistent with the protocol, play
according to it.

Otherwise,

� on type I�histories, if c has been played for the �rst time by player i
(resp., j) at an odd (resp., even) stage, player i (resp., j) chooses c and
player j (resp., i) chooses d.

� on type I� histories, players initiate an agreement, exactly as in the
protocol before 2T + 1.

� on type II histories, if player i (resp., only player j) did not follow the
agreement, player i (resp., j) chooses c and player j (resp., i) chooses
d from then on.

� on type III histories, player i (resp., j) plays a best response to au-
tomaton j (resp., i) (and the history becomes of type I after one or
two stages).
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Propositions 4, 5 and 6 will result from Lemma 8 below. To prepare for it,
let us set "1 and v2 such that ("1; v2) is the mean stage payo¤ in the sequence
of actions that begins when player 1 concedes �rst, i.e. "1 = �11g1 and
v2 = (1� �2)g2+ �2(1� 1)g2. We de�ne "1 and v2 symmetrically. Note that
v1�"1
g1

= 1 � �1(1 + 2) and v2�"2
g2

= 1 � �2(1 + 2), so that the fact that
1 + 2 � 1 implies that "1 < v1 and "2 < v2. We then set

�1 =
(1� �21)(l1 + "1)

�1(l1 + v1)� �21(l1 + "1)
;

and

T1 =

�
log(1� p2)
log(1� �1)

�
;

with the convention that T1 = 0 if �1 � 1.
We also de�ne �2 and T2, by inverting the roles of player 1 and player 2.

Lemma 8 Assume that the following conditions hold:

Ti � Tj; (24)

(1� �i)(�i�imi � li) � "i; (25)

(1� �j)(�j�jmj � lj) � "j; (26)
1� pi

(1� �j)Ti
� vj � (1� �j)mj

vj + lj � �j(lj + "j)� (1� �j)mj

: (27)

Then the reputation game G�(p; i; ) has a perfect Bayesian equilibrium in
war of attrition strategies with payo¤s

xi = "i;

xj =

�
1� 1� pi

(1� �j)Ti

�
vj +

1� pi
(1� �j)Ti

(�lj + �j(lj + "j)) :

Before establishing the lemma, it may be useful to understand how it
applies in a particular case where the automata always play d ( = 0), while
the players have the same discount factor �k = � and the same payo¤s gk = g,
lk = l, mk = 0, k = 1; 2. In this case, we can set � = �k, k = 1; 2; � � 1 as
soon as � � l

l+g
. Condition (24), which �xes the index i, is satis�ed if agent

i is more likely to be a player than agent j (namely, i is such that pi � pj).
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Conditions (25) and (26) are satis�ed, for every �, since mk = 0, k = 1; 2.
The whole point is to guarantee (27), which reduces to

1� pi
(1� �)Ti �

g

g + (1� �)l

The right hand side is < 1 for every � < 1 and can be made arbitrarily close
to 1 by choosing � su¢ ciently close to 1. The left hand side is � 1�pi

1�pj by
de�nition of Ti. Hence, if pi > pj (i.e., if p1 6= p2 and index i is chosen to
satisfy (24)), (27) is satis�ed for � su¢ ciently large.

Proof:
In order to show that the strategies described above de�ne an equilibrium,

we �rst construct the unique distributions for � i and � j that make player i
(resp. j) indi¤erent between playing c for the �rst time at stage 2t (resp.
2t + 1) for any t 2 f0; 1; : : : ; Tg. Then we check that the derived strategic
pro�le is indeed an equilibrium. We also show that T necessarily equals Ti.
We adopt the convention that � i = +1 if agent i is an automaton. Let us
compute the distribution P that an outside observer will assign to � i and � j,
prior to stage 0. Note that player i (resp. j) is an outside observer of � j
(resp. � i).
Note also that P(� j = t) = 0 if t is an even number or if t > 2T + 1, and
P(� j = +1) = 1 � pj. Similarly, P(� i = t) = 0 if t is an odd number or if
t > 2T , and P(� i = +1) = 1� pi.

Probability distribution of � j
The fact that player i has to be indi¤erent between starting contributing

at any stage t = 0; 2; : : : ; 2T will enable us to �nd the entire distribution
of � j. We denote by Gi(t) the overall payo¤ of player i when he starts to
contribute at stage t, the law of � j being �xed with the former restrictions.
Note that Gi(2t) refers to the expected payo¤ of the strategy that dictates
to start contributing at stage 2t if player j did not contribute before and
that initiate an agreement. Gi(2t+ 1) is the expected payo¤ of an arbitrary
strategy which is only required to start contributing at stage 2t+ 1 if agent
j did not contribute before.
We have, for any t � 0:

Gi(2t) =
t�1X
s=0

P(� j = 2s+1)(�li+�2s+1i (li+vi))+P(� j > 2t�1)(�li+�2ti (li+"i)):
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In particular, Gi(0) = "i.
So, the law of � j has to be such that "i = Gi(2) = : : : = Gi(2T ). From
equality Gi(2) = "i, we get P(� j = 1) = �i.
Note that if �i > pj (which is equivalent to Ti = 0), the latter equality can
not hold. In this case, T = Ti = 0 and P(� j = 1) = pj.

Now, let us show by induction that:

8t 2 f0; 1; : : : ; T � 1g; P(� j = 2t+ 1) = �i (1� �i)t :

The property is obvious for t = 0. Then, if the property holds for each
s 2 f0; 1; : : : ; t � 1g (t � T � 1), let us show that it also holds for s = t.
From the de�nition of Gi, one has:

Gi(2t+ 2)�Gi(2t)
= P(� j = 2t+ 1)

�
�li + �2t+1i (li + vi)

�
+P(� j > 2t+ 1)

�
�li + �2t+2i (li + "i)

�
�P(� j > 2t� 1)

�
�li + �2ti (li + "i)

�
= P(� j = 2t+ 1)

�
�li + �2t+1i (li + vi)

�
+(P(� j > 2t� 1)� P(� j = 2t+ 1))

�
�li + �2t+2i (li + "i)

�
�P(� j > 2t� 1)

�
�li + �2ti (li + "i)

�
= P(� j = 2t+ 1) (li + vi � �i(li + "i)) �2t+1i

�P(� j > 2t� 1)(li + "i)(1� �2i )�2ti :

As

P(� j > 2t� 1) = 1�
t�1X
s=0

P (� j = 2s+ 1)

= 1�
t�1X
s=0

(1� �i)s P(� j = 1)

= 1� �i
1� (1� �i)t

1� (1� �i)
= (1� �i)t ; (28)
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one �nally has

Gi(2t+ 2)�Gi(2t)
= (li + vi � �i(li + "i)) �2t+1i

�
P(� j = 2t+ 1)� �i (1� �i)t

�
:

(29)

The fact that Gi(2t+ 2) = Gi(2t) then implies that

P(� j = 2t+ 1) = �i (1� �i)t ;

which ends the induction.

Our construction must ensure that player i does not prefer conceding at
stage 2T +2, i.e. Gi(2T +2) � Gi(2T ). In fact, we construct an equilibrium
such that this preference is strict, i.e. Gi(2T+2) < Gi(2T ). Because equality
(29) still holds for t = T this is equivalent to

P(� j = 2T + 1) < �i (1� �i)T : (30)

Moreover P(� j � 2T + 1) = pj, and we have
T�1X
t=0

�i (1� �i)t = 1� (1� �i)T � pj <
TX
t=0

�i (1� �i)t = 1� (1� �i)T+1:

This implies that T = Ti.

Probability distribution of � i
Here, the point is that player j has to be indi¤erent between conceding

at stages t = 1; 3; : : : ; 2T +1. Let us denote Gj(t) the overall payo¤ of player
j when he is willing to concede at stage t, the law of � i being �xed. Again,
"2t + 1" refers to a regular war of attrition strategy, whereas "2t" refers
to an arbitrary strategy that dictates to contribute at stage 2t if i did not
contribute before. We have, for any t � 0:

Gj(2t+1) =
tX
s=0

P(� i = 2s)(�lj+�2sj (lj+vj))+P(� i > 2t)(�lj+�2t+1j (lj+"j)):

The law of � i has to be such that Gj(1) = : : : = Gj(2Ti + 1). By the same
means as in the former case, the fact that Gj(1) = Gj(3) implies that

P(� i = 2) = �j(1� P(� i = 0)):
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Again, this equality can not hold if �j(1 � P(� i = 0)) > pi, but this can
not happen. Indeed, if �j > pi then Tj = 0, and Ti = 0 because of (24).
As mentioned before, we then have T = 0. Thus P(� i = 0) = pi (which is
consistent with equality (31) below) and P(� i = 2t) = 0 for any t � 1.

One can prove by induction that:

8t 2 f1; : : : ; Tg; P(� i = 2t) = (1� �j)t�1 P(� i = 2)

Then, the fact that P(� i = +1) = 1� pi is equivalent to:

pi =

TiX
t=0

P(� i = 2t);

and to

pi = P(� i = 0) +
TiX
t=1

P(� i = 2t)

= P(� i = 0) + P(� i = 2)
TiX
t=1

(1� �j)t�1

= P(� i = 0) + �j(1� P(� i = 0))
Ti�1X
t=0

(1� �j)t

= P(� i = 0) + �j(1� P(� i = 0))
1� (1� �j)Ti
1� (1� �j)

= P(� i = 0) + (1� P(� i = 0))
�
1� (1� �j)Ti

�
so that

P(� i = 0) = 1�
1� pi

(1� �j)Ti
: (31)

Thus, we de�ne a proper distribution of � i, because then P(� i = 0) < 1
and

P(� i = 0) � 1�
1� pi

(1� �j)Tj
� 1� 1� pi

(1� �j)
log(1�pi)
log(1��j)

= 0:

Type dependent probabilities de�ning the equilibrium strategies
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The values of P(� j = 2t+1) and of P(� i = 2t) enable us to specify player
i and j�s strategies: player i chooses stage 0 with probability

�i0 =
P(� i = 0)

pi
=
1

pi

 
1� 1� pi

(1� �j)Ti

!

and stage 2t (1 � t � Ti) with probability

�i2t =
P(� i = 2t)

pi
=
1

pi
(1� �j)t�1 P(� i = 2)

=
1

pi
(1� �j)t�1 �j(1� P(� i = 0))

=
1� pi
pi

(1� �j)t�1�Ti �j;

Player j chooses stages 2t+ 1 (0 � t � Ti � 1) with probability

�j2t+1 =
P(� j = 2t+ 1)

pj
=
1

pj
(1� �i)t �i;

and stage 2Ti + 1 with probability

�j2Ti+1 =
P(� j = 2Ti + 1)

pj
=
1

pj

 
pj �

Ti�1X
t=0

P(� j = 2t+ 1)

!
=

1

pj

�
pj � 1 + (1� �i)Ti

�
:

Equilibrium conditions
Let us check that this strategic pro�le is indeed an equilibrium.
First, any player k 2 f1; 2g is right to follow an agreement that was

previously initiated by himself or by the other player. Indeed, if he plays c
instead of d, he will get mk instead of gk and if he plays d instead of c he
will get �lk instead of 0. For the rest of the stages, he will be punished and
win at most 0, which is less than what the agreement would have given him.
Note that this covers the case of I�histories.
Now, let us show that player i�s strategy is a best response to j�s one.

We have Gi(2T +2) � Gi(2T ) by construction, meaning that player i has no
interest in starting contributing at stage 2T+2. He obviously does not prefer
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to start contributing at stage t, t > 2T + 2, because if j did not contribute
before stage 2T +1, j is necessarily an automaton and then there is no more
reason for i to wait for starting contributing.
Let us now show that he had not better start contributing at odd stages

2t+1, t 2 f0; 1; : : : ; Tg. We compare the payo¤ of an arbitrary strategy that
starts contributing 2t+1 to the regular pure strategy that starts contributing
at stage 2t. Note that starting contributing at stage 2t + 1 is punished by
agent j. We have:

Gi(2t+ 1)�Gi(2t) � P(� j � 2t)� 0
+P(� j � 2t+ 1)

�
�li + �2t+1i li �

�
�li + �2ti (li + "i)

��
+P(� j = 2t+ 1)(1� �i)�2t+1i mi

� P(� j � 2t+ 1)�2ti [�ili � (li + "i)]
+P(� j = 2t+ 1)(1� �i)�2t+1i mi

For any t 2 f0; : : : ; T � 1g, P(� j = 2t+ 1) = �i (1� �i)t, and
P(� j = 2T + 1) � �i (1� �i)T (cf. (30)), so that:

Gi(2t+ 1)�Gi(2t) � (1� �i)t�2ti [�ili � (li + "i)]
+�i (1� �i)t (1� �i)�2t+1i mi

� (1� �i)t�2ti [�ili � (li + "i) + �i�i(1� �i)mi];

for any t 2 f0; 1; : : : ; Tg. By means of inequality (25), we then have
Gi(2t+ 1) � Gi(2t).
Finally, player i is indi¤erent between 0; 2; : : : ; 2T by construction, so his
strategy is a best response.

Similar arguments show that player j�s strategy is a best response to i�s
one. In particular, one can show that

Gi(2t+2)�Gi(2t+1) � (1�P(� i = 0))(1��j)t�2t+1j [�jlj�(lj+"j)+�j�j(1��j)mj];

for any t 2 f0; 1; : : : ; Tg. So Gi(2t+ 2) � Gi(2t+ 1) by inequality (26).
Yet, it remains to show that player j should not concede at stage 0, i.e.:

Gj(1) � P(� i = 0)(1� �j)mj + (1� P(� i = 0))� 0:

One can check that this is equivalent to inequality (27).
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Equilibrium payo¤s
One has xi(n; ) = Gi(0) and xj(n; ) = Gj(1), the expressions in the lemma
follow easily.

Bayesian perfectness
We now check that the players�strategies are best responses to each other,
for appropriate beliefs, on histories that are not consistent with the war
of attrition protocol. The case of I� histories has already been considered
above.
On I�and II histories, the player, say k, who is supposed to play c has

revealed earlier that he is not an automaton, which determines the belief of
the other player, ` 6= k. Given this belief and the fact that player k plays
c, it is a best reply for player ` to play d. For player k, whatever his beliefs
on agent ` (which may be a player or an automaton), playing c is a best
response to d.
Finally, if a normal player gets to see a III history, then the other agent

is an automaton with probability 1. It is then optimal for this normal player
to react accordingly.

�
Remark: The previous proof is written in terms of the players ex ante, over-
all payo¤s. Starting with Kreps and Wilson (1982), the reputation literature
rather considers conditional expected payo¤s at every stage. We can as well
construct our war of attrition equilibria inductively. By doing so, we �nd
that player i is indi¤erent between playing c �rst at a stage 2t and waiting
two more stages (hoping that agent j will concede at stage 2t+1) if and only
if the probability that agent j plays c at stage 2t + 1 given past history is
�i. That determines strategy of player j at stages 2t+1, t 2 f0; : : : ; T � 1g:
play c with probability �i

p2t+1j

and d otherwise, where p2t+1j is the probability

that player i assigns to j being a player (as opposed to an automaton) given
that c has not been played before stage 2t+1. The same holds for player i�s
strategy at stages 2t, t 2 f1; : : : ; Tg: play c with probability �j

p2ti
and d oth-

erwise, where p2ti is the probability that player j assigns to i being a player
given that c has not been played before stage 2t. For the construction to be
complete, it remains to see that:

� if c has never been played before stage 2T + 1, player j plays c with
probability 1 at stage 2T +1. Player i must then prefer c to d at stage
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2T if c has not been played before, and we impose the preference to be
strict, as in the former proof. This is equivalent to inequality �i

p2T+1j

> 1.

� if c has never been played before stage 2T , player i plays c with prob-
ability 1 at stage 2T . Player j must then be indi¤erent between c to
d at stage 2T if c has not been played before. This is equivalent to
inequality �j

p2Ti
= 1.

These two constraints enable us to determine T and P(� i = 0).

We will now prove Propositions 4, 5 and 6. They all consists in giv-
ing simple su¢ cient condition for inequalities (24), (25), (26), (27), so that
Lemma 8 holds.

Proof of Proposition 4 As k > 0, one has �k(lk + "k) > lk as long as
�k is close enough to 1. Thus we can choose � close enough to 1 so that,
for any �1; �2 > �, one has �1(l1 + "1) > l1 and �2(l2 + "2) > l2, and so that
Inequalities (25) and (26) hold. Then, for any of these �1; �2, one can choose
i 2 f1; 2g such that Ti � Tj. The left hand side of inequality (27) is lower
than 1:

1� pi
(1� �j)Ti

� 1� pi
(1� �j)Tj

� 1;

whereas the inequality �j(lj + "j) > lj ensures that the right hand side is
greater than 1. Therefore, inequalities (24), (25), (26), (27) of Lemma 8 all
hold. �

Proof of Proposition 5 One can check that �k �
�k!1

(1 � �k) 2(lk+kgk)
gk(1�1�2)

for any k 2 f1; 2g, so that

Tk =
�k

1� �k
+
�k(1� �k)
1� �k

; (32)

where �k = � log(1 � pl)gk(1�1�2)2(lk+kgk)
(with l 2 f1; 2g, l 6= k) and �k is a

function such that �k(x) ��!
x!0

0.
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Fix c = 1
2

�j
�i
. If 1� �j � c(1� �i), one has:

Ti =
�i

1� �i
+
�i(1� �i)
1� �i

� c�i
1� �j

+
c�i(1� �i)
1� �j

=
1

2

�j
1� �j

+
c�i(1� �i)
1� �j

� Tj �
1

2

�j
1� �j

�
�j(1� �j)
1� �j

+
c�i(1� �i)
1� �j

= Tj �
1

1� �j

�
�j
2
+ �j(1� �j)� c�i(1� �i)

�
:

Moreover, if 1��j � c(1��i), �j goes to 1 when �i goes to 1, so that �j(1��j)
and �i(1� �i) are arbitrary small if �i is close enough to 1. This ensures that
Ti < Tj if �i is close enough to 1.
Then we can �nd a simple upper bound for the right hand side of inequality
(27):

1� pi
(1� �j)Ti

� 1� pi
(1� �j)Tj�1

= (1� �j)
1� pi

(1� �j)Tj
� 1� �j:

If j > 0, the left hand side of inequality (27) tends to
1�i

1�i�j
> 1 as �j goes

to 1, so that (27) holds as long as �j is close enough to 1.
If j = 0, one can check that the left hand side of inequality (27) equals
1� lj

gj(1�i)
(1��j)+o(1��j), whereas 1��j = 1�2 lj

gj(1�i)
(1��j)+o(1��j).

Thus, (27) is always valid as long as �j is close enough to 1.
Finally, inequalities (25) and (26) are always valid when �i and �j are close
enough to 1. This means that if 1 � �j � c(1 � �i) and if �i is close enough
to 1 (i.e. �i � � for some � 2 f0; 1g), then �j is also close to 1, and the four
equations of Lemma 8 all hold. �

Proof of Proposition 6 This proof is similar to the former proof of Propo-
sition 5. Equation (32) still holds, and the inequality log(1 � pi) li+igigi

<

log(1� pj)
lj+jgj
gj

is equivalent to �i < �j. We have

Ti = Tj �
1

1� �
�
�j � �i + �j(1� �)� �i(1� �)

�
;

so that Ti < Tj if � is close enough to 1. The rest follows as in the proof of
Proposition 5. �
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Further elements of comparison between Proposition 6 and Atakan
and Ekmekci (2013)�s theorem 2
We can now make more precise the comparison that we started at the

end of Section 5.1. In their theorem 2, Atakan and Ekmekci (2013) assume
without loss of generality that the basic payo¤s satisfy g1 = g2 and focus
on the case  = 0. Under the latter assumption, both automata always
play d, but the war of attrition strategies (described at the beginning of
Section 6.4) still identify one of the players, player i, as the one who can
start to cooperate at even stages (in particular at stage 0), while the other
(player j 6= i) can start to cooperate at odd stages. This construction has no
counterpart in Atakan and Ekmekci (2013) who rely on an auxiliary war of
attrition in continuous time. When g1 = g2 = g and  = 0, condition (15) in
Proposition 6, which identi�es player i, reduces to li log(1�pi) < lj log(1�pj).
Furthermore, in this case, by proceeding as in the proofs of Propositions 5
and 6, one can show that, when � ! 1, the players�equilibrium payo¤s, given
in Lemma 8, converge to

xi = 0

xj = lim
�!1

�
1� 1� pi

(1� �j)Ti

�
g =

241� (1� pi)� 1

1� pj

� lj
li

35 g:
These payo¤s are exactly the same as the ones that are implicitly obtained in
Atakan and Ekmekci (2013)�s theorem 2, as the limit payo¤s of any perfect
Bayesian equilibrium of the reputation game with  = 0. Proposition 6
is not only consistent with Atakan and Ekmekci (2013)�s result but also
provides an explicit construction of a larger family of equilibria (namely,
with  > 0), for any su¢ ciently large discount factor, in the original discrete
time framework.35

6.5 Public good game (Proposition 7)

Proposition 7 results from the following lemma.

35There is an additional subtle point. As observed above, inequality (15) in Proposition
6 must be strict, which excludes for instance the case p1 = p2 and l1 = l2. No such
restriction is needed in Atakan and Ekmekci (2013)�s continuous time framework. We can
recover their result in the border case by deriving the equilibrium payo¤s for k > 0 and
letting k ! 0, k = 1; 2.
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Lemma 9 Let us assume that the ��discounted in�nitely repeated public
good game PG�(p; !; z) and  = (1; 2) satisfy the following conditions:

k 2
�
0;
1

z

�
; � � z � 1

z � kz
k = 1; 2 (33)

and inequalities (24) and (27) with mk = 0, gk = !, lk = 1�!, �1 = �2 = �,
for i = 1 or 2 and j 6= i. Then PG�(p; !; z) has a perfect Bayesian equilib-
rium in war of attrition strategies parametrized by i and . The corresponding
equilibrium payo¤s converge, as � ! 1, to

xi(n; ) = 1 + i!;

xj(n; ) = 1 + �0(1� i)! + �0j!;
xi(g; ) = z +

�
1� j + j(1� z)

�
ai;

xj(g; ) = z + (1� i + i(1� z)) (�0 + (1� �0)aj) ;

where �0 = 1� 1�pi

(1�pj)
1�!+j!
1�!+i!

, ai =
1�!+i!

1�!+(1�j)!

�
1� (1� pj)

1�!+(1�j)!
1�!+i!

�
, and

aj =
1�!+j!

1�!+(1�i)!

�
1� (1� pj)

1�!+(1�i)!
1�!+i!

�
.

Proof:
The situation of normal players i and j in PG�(p; !; z) is the same as in
the reputation game G�(p; i; ) with mk = 0, gk = !, lk = 1 � ! because
a greedy player behaves as an automaton. Thanks to Lemma 8, we mostly
need to check that playing as an automaton is indeed a best response for a
greedy player. A greedy player k has basically four ways to deviate from the
strategy of an automaton.

� Playing c �rst, when not supposed to (namely, at an odd (resp., even)
stage if k = i (resp., k = j)) : the player will gain 1 and will then be
punished and gain at most z for the remaining stages, whereas he could
have won at least z all along by simply always playing d.

� Playing c �rst, when supposed to: this will be interpreted as the ini-
tiation of an agreement by the other player. Depending on whether
and when he will break this agreement, the player will �rst gain 1 and
then his average gain will be between (1� k)1 + k(z + 1) and z. As
(1� k)1 + k(z + 1) � 2, this is again beaten by always playing d.
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� Breaking an agreement initiated by the other player by playing c instead
of d: he will get 1 and then will be punished and win at most z for all
the remaining stages, which is always less than he would have got by
always playing d.

� Breaking an agreement initiated by the other player by playing d in-
stead of c: he will win z and then be punished and win at most z for all
remaining stages; by following the agreement, he �rst get 1 and then
get averagely l + (1� l)(z + 1), where l 2 f1; 2g, l 6= k. This means
that k is right to follow the agreement if:

z � (1� �)1 + �(l:1 + (1� l)(z + 1));

and this is equivalent to the second inequality in (33).

The expression of limit payo¤s is a straightforward application of the
formulas that can be found in the proof of Lemma 8.
For a �xed �, payo¤s are given by:

x�i (n; ) = 1 + i!;

x�j(n; ) = 1 + P(� i = 0)(1� i)! + P(� i = 0)j!;

x�i (g; ) = z +
TX
t=0

P(� j = 2t+ 1)vi�2t+1;

x�j(g; ) = z +
TX
t=0

P(� j = 2t)vj�2t:

and the result comes from letting � go to 1. �

Elements of comparison with Peski (2013)
Following Peski (2013)�s ideas, we could also exhibit limit payo¤s of �-

nitely revealing equilibria. To this aim, one needs to re�ne the construction of
the war of attrition equilibria by adding an arbitrary number of non-revealing
stages between the information transmission stages. This means, e.g., that
player i (resp., j) possibly concedes at stages 2tk (resp., (2t+1)k), for some
k � 1, instead of stages 2t (resp., 2t + 1), the additional stages being de-
voted to playing (d; d) with probability 1 if no one conceded before. With
an appropriate choice of k as an increasing function of �, one can construct
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a class of equilibria such that the number of information transmission stages
is bounded as � goes to 1, and such that equilibrium payo¤s still converge 36.
To be more precise, such a construction would basically change � into �k in

the inequalities that drive the existence of war of attrition equilibria (Lemma
8). To ensure this existence, it is then su¢ cient to choose k such that �k tends
to a limit that is arbitrarily close to 1. This can be achieved by choosing
values of k of order �c

log �
, with c > 0 and small enough. With such a choice,

one can check that the corresponding value of Ti is bounded, and so is the
number of information transmission stages. Note that, in this construction,
even if the number of information transmission stages is bounded, the horizon
of the war of attrition (i.e., the last stage where some information may be
revealed) still goes to in�nity as � ! 1.
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