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ABSTRACT 
 

How ICT Investment and Energy Use Influence the 
Productivity of Korean Industries 

 
This empirical study examines changes in industrial productivity in Korea between 1980 and 
2009, focusing on how investment in information and communication technology (ICT) and 
energy use, influence productivity levels. A dynamic factor demand model is applied in order 
to link inter-temporal production decisions by explicitly recognizing that the level of certain 
factors of production cannot be changed without incurring so-called adjustment costs, defined 
in terms of forgone output from current production. In particular, we investigate how the ICT–
energy relationship affects total factor productivity growth in 30 industrial sectors. Describing 
industry-specific productivity levels is important for policymakers when the allocation of public 
investment and support is limited. The results presented herein show that ICT/non-ICT 
capital investment are substitutes for labor and energy use. We also find a high output growth 
rate in the sampled sectors, and increasing returns to scale, whose effects on the TFP 
component are higher than those of technological progress. 
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1. Introduction 

Since Schumpeter (1939) emphasized that entrepreneurship is the main engine of economic 
growth, many researchers have attempted to explain the causal relationship between such growth 
and technological development. Solow (1957) introduced the residual approach to measure the 
contribution of technological development to productivity growth. He found that approximately 
70 percent of productivity increase is attributed to technological change. Hence, technology is 
considered to be the main driver of economic growth. Indeed, researchers suggest that ideas and 
innovations serve to grow total factor productivity (TFP) (Mokyr, 2005), which in turn raises 
worldwide income per capita, transforms production processes, and modifies the way in which a 
business runs (Maddison, 2005). 

Historical examples of the link between new technologies with growth abound. Since the 18th 
century when general purpose technologies such as steam engines, electricity, automobiles, and 
telephones were introduced during the Industrial Revolution, living standards have dramatically 
increased. Similarly, investment in new information and communication technologies (ICT) in 
the late 1990s radically changed the underlying structure of advanced economies. For example, 
after an extended and unexpected stagnation during the 1970s and 1980s, the US experienced 
high levels of output growth associated with a strong and widespread productivity boom owing 
to ICT improvements. 

Korea is a new industrialized economy that has also taken advantage of technological 
development, thereby serving as an economic model for emerging economies. It enjoyed a high 
economic growth rate from the post-war period until 1997, at which point per capita GDP was 
10,000 USD. The Korean economy quickly recovered from the Asian financial crisis of the late 
1990s, the ICT bubble of 2001, and the credit crunch of 2003 (Borensztein and Lee, 2000; Oh et 
al., 2012). Moreover, it was the first country to recover within a year from the global economic 
crisis of 2007/08. In addition, through the conclusion of negotiations on a US–South Korea free 
trade agreement (FTA) and a potential Japan–South Korea FTA in the future, the liberalization 
of South Korean markets will continue (Fukao et al., 2009). 

The South Korean government applied a sequence of industrial and technological policy 
initiatives across different stages of its economic development, in which it assisted in interpreting 
most of the economic variables estimated under this study. A brief description of the history of 
policy initiative is provided bellow based on literature survey of (Kim, 1997; Oh et al., 2008; 
Park, 2000): 

For the period of the 1980s onward, the policy focused on the growth in foreign direct 
investment (FDI) concentrating on technology based industries as a source for economic growth.  
The technology policy was toward encouraging the private sector for innovativeness and R&D, 
also called for collaboration between the ministries’ R&D activities. The period of the 1990s saw 
continuously supported FDI with concentration in technology as a source of economic growth 
and enhancing the innovation capabilities in the private sector. Therefore, hi-tech sectors were 
encouraged to internationalize. This period was characterized by highly advanced technology 
area, ICT, Bio-technology and R&D collaboration. The globalization era in the 2000s was the 
last stage of the process of economic growth in South Korea, where the growth was mainly 
resulting from technology and innovation, and building the national innovation system. 
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This study examines the productivity performance of 30 industrial sectors in Korea during the 
period 1980–2009, and estimates the impacts of factors that affect TFP growth in order to 
determine whether they have responded to environmental change effectively. In particular, we 
investigate how the ICT–energy relationship affects TFP growth. Describing industry-specific 
productivity levels is important for policymakers when the allocation of public investment and 
support is limited. 

The remainder of this paper is organized as follows. Section 2 explains the traditional measure of 
TFP by using the Divisia Index (DI) approach and describes its limitations. Section 3 presents 
the theoretical model and derives the factor demand equations for the empirical analysis. In this 
section, the traditional measure of TFP growth is decomposed based on the effects of technical 
change, scale, equilibrium, and adjustment costs. It also provides the measures of capacity 
utilization (CU) within the TFP framework. Section 4 presents the results of the parameter 
estimates and Section 5 concludes. 

2. The DI Approach 

The DI approach to calculating TFP is based on comparing the growth of output with the growth 
of inputs. To the extent that over a particular time interval, output grows faster than inputs, there 
is evidence that productivity has increased (Tangen, 2002). Firms and industries use different 
inputs such as labor, physical capital, ICT capital, energy use, and materials. Overall input 
growth is therefore a weighted average of the growth rates of these individual inputs. In the 
absence of input and output elasticities, the DI method weights inputs and output based on cost 
and revenue proportions. For example, if twice as much is spent by a firm on labor as on capital, 
the input index weights the labor input twice as heavily as the capital input. Therefore, as these 
cost proportions change over time, so too do the weights used in the DI. Similarly, overall output 
growth can be computed as a weighted average of the growth in the individual outputs. TFP 
growth over a specific time interval such as a year is then calculated by subtracting the growth of 
the input index from the growth of the output index. 

The accuracy of the DI method rests on four main assumptions that may not hold in practice: (1) 
technology displays constant returns to scale (RTS), (2) producers operate at the long-run 
equilibrium, (3) the market is in perfect competition, and (4) input factors are utilized at a 
constant rate. Owing to these limitations, a parametric flexible framework is developed for 
computing TFP that relaxes many of the restrictive assumptions inherent in the DI methodology 
(Nadiri and Prucha, 1986, 1990, 1996, 1999, 2001). The present study applies the Nadiri and 
Prucha (1990) model in order to provide a rich set of observations on the sampled industrial 
sectors in Korea. In particular, the analysis presented herein is based on a dynamic factor 
demand model that links inter-temporal production decisions by explicitly recognizing that 
certain factors of production cannot be changed without incurring adjustment costs, which are 
defined in terms of forgone output from current production. While certain (variable) inputs such 
as labor and materials can be adjusted easily, others such as ICT and non-ICT capital are subject 
to adjustment costs, and only adjust partially in the first period. These inputs are thus referred to 
as quasi-fixed, meaning that they are fixed in the short run but variable in the long run. 

Further, since output growth is high across industrial sectors in Korea, a priori constant RTS is 
not imposed; rather, RTS is estimated empirically from the data. Moreover, because the rate of 



4 
 

ICT capital in the industrial sector is also high, ICT capital is incorporated as one of the inputs 
herein. In summary, by using structural parameter estimates, this study analyzes the sources of 
growth in output, TFP, and TFP growth rate. 

3. Theoretical Model and Empirical Specification 

3.1 The Dynamic Factor Demand 

Consider a firm or industry that employs m variable inputs and n quasi-fixed inputs to produce a 
single output from a technology with internal adjustment costs. In line with the approach taken 
by Nadiri and Prucha (1990), the firm’s production process can be described by the following 
generalized production function: 

(1)  𝑌𝑖𝑡 = 𝐹(𝑉𝑖𝑡,𝑋𝑖𝑡−1,𝛥𝑋𝑖𝑡,𝑇𝑖𝑡) 

Where the subscripts (i=1,2,…) and (t=1,2,…) represent industry and time, respectively, Yit 
denotes gross output, Vit is a vector of variable inputs, Xit-1 is a vector of quasi-fixed inputs, ΔXit 
= Xit - Xit-1 is a vector that represents the internalization of the adjustment costs in the production 
function (in terms of the foregone output) due to changes in the stock of quasi-fixed inputs, and 
Tit is an exogenous technology index1. A change in the levels of the quasi-fixed factors will 
result in incurring adjustment costs because of the resource allocation require to change the input 
stock rather than product level. 

The duality principle in production theory indicates that given a production function, under the 
appropriate regularity conditions, it is possible to derive the corresponding firm’s total minimum 
cost function C(w,Y) as the solution to the problem of minimizing the cost of producing a 
specified level of output as follows: 

 (2)  𝐶(𝑤,𝑌) = {𝑚𝑖𝑛𝑥 𝑥𝑤: 𝑓(𝑥) ≥ 𝑌} 

where x is a vector of input quantities and w is a vector of input prices2. The production structure 
can then be described equivalently in terms of a restricted cost function. A perfectly competitive 
factor input market for the industry should be assumed. The acquisition prices for the variable 
and quasi-fixed inputs are denoted as p�i,t

Vs(𝑠 = 1, 2, … ,𝑚) and q� i,t
Xd(𝑑 = 1,2, … ,𝑛) respectively. 

All prices are normalized to the price of the first variable factor—this procedure has been found 
convenient. These normalized prices are denoted as pi,t

V𝑗 = p�i,t
V𝑠/p�i,t

V1  and qi,t
X𝑗 = q� i,t

X𝑑/p�i,t
V1  , (j =

1,2, … , m). The normalized restricted cost function is then defined as follows: 

(3)  𝐺 �𝑝𝑖,𝑡
𝑉𝑗 ,𝑋𝑖,𝑡−1,𝛥𝑋𝑖,𝑡,𝑌𝑖,𝑡,𝑇𝑖,𝑡� = ∑ �̂�𝑖,𝑡

𝑉𝑗𝑉�𝑗𝑖,𝑡𝑚
𝑗=1  

                                                           
1 The function F is assumed to be twice continuously differentiable, while 𝜕𝐹/𝜕𝑣 > 0, 𝜕𝐹/𝜕𝑥𝑡−1  > 0, and 𝜕𝐹/𝜕𝛥𝑋 
< 0. In addition, F is strictly concave in all arguments, except, possibly, for the technology index. 

2  The cost function C(.) should validate the regularity conditions: i.e, to be a concave, non-decreasing, and 
continuous function of w, and positive homogeneous of degree one. 
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where 𝑉�𝑗𝑖,𝑡  denotes the cost-minimizing amounts of variable inputs required to produce the 
output 𝑌𝑖,𝑡 conditional on 𝑋𝑖,𝑡−1 and 𝛥𝑋𝑖,𝑡. The normalized restricted cost function 𝐺(. ) assumed 
to be convex in 𝑋𝑖,𝑡−1 and 𝛥𝑋𝑖,𝑡, and concave in pi,t

V𝑗 and qi,t
X𝑗 (Lau, 1986). As mentioned by Jehle 

and Reny (2001), when the firm is constrained in the short run by a fixed amount of specific 
inputs for its production, it cannot freely select the optimal amount, meaning that short- and 
long-run costs differ. Under these assumptions, the firm’s cost in period t is specified as follows: 

(4)  𝐶�𝑋𝑖,𝑡,𝑋𝑖,𝑡−1,Ω𝑖,𝑡� = 𝐺�𝑝𝑖,𝑡𝑉 ,𝑋𝑖,𝑡−1,𝛥𝑋𝑖,𝑡,𝑌𝑖,𝑡,𝑇𝑖,𝑡� + ∑ 𝑞𝑖,𝑡
𝑋𝑗𝑛

ℎ=1 𝐼ℎ,𝑡 

Where Ω𝑖,𝑡is a vector composed of pi,t
V𝑗 , qi,t

X𝑗 ,𝑌𝑖,𝑡 and 𝑇𝑖,𝑡. The real investment of the hth quasi-
fixed input is defined as follows: 

(5)  𝐼ℎ𝑡 = 𝑋ℎ𝑡 − (1 − 𝛿ℎ)𝑋ℎ𝑡−1 

where δh denotes the depreciation rate of the stock of the hth quasi-fixed input. 

The dynamic problem facing the firm is assumed to minimize the expected present value of 
current and future costs given the initial values of quasi-fixed inputs. The firm’s optimization 
problem can be classified according to the planning horizon into finite and infinite planning 
horizon. For the infinite planning horizon, the firm’s objective function in period t is defined as 
follows: 

(6)  ∑ 𝐶�Xt, Xt−1,, EΩt�(1 + r)−t∞
t=0  

where E  denotes the expectations operator conditional on information available at the beginning 
of period τ and r is the real interest rate. The firm in each period τ derives an optimal plan for the 
quasi-fixed inputs for period t, t+1,…, such that equation (6) is minimized subject to the initial 
stocks Xt−1,, and then chooses its quasi-fixed inputs in period t according to this plan. In each 
period the firm only implement a portion of its optimal input plan. This process is repeated every 
period in which a new optimal plan is formulated as new information to the exogenous variables 
are available, and expectations on those variables are modified accordingly. In the case of a finite 
but shifting planning horizon, where the stock of quasi-fixed inputs at the end of the horizon are 
assumed to be determined endogenously subject to the assumption of static expectations, the 
optimal plans converges rapidly to those of the infinite planning horizon model as the planning 
horizon extends (Nadiri and Prucha, 1990). Accordingly, this study applies the optimal plans for 
the infinite planning horizon. 

The empirical model with the mathematical formulations along with the analysis of the 
industry’s optimization problem is provided in appendix A. The model is specified to employ the 
optimal levels of the variable inputs materials (M), energy (E), and labor (L) and the quasi-fixed 
inputs ICT capital (ICT) and non-ICT-capital (K). It is assumed that the variable inputs can be 
adjusted instantaneously in response to a change in relative input prices. The adjustment of the 
capital stock in response to changes in relative input prices will be slow. 

The demand equations for the quasi-fixed factors are in the form of accelerator model, while the 
industry’s variable inputs are directly derived from the normalized restricted cost function via 
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shepherd’s lemma. Explicit expressions for the resulting demand equations for the inputs are 
given in equations (A.8) to (A.12). 

3.2 Effects of TFP Growth 

As discussed in Section 2, the DI is defined as the weighted sum of the growth rate in outputs 
minus the weighted sum of the growth rate of the input variables, while the weights are the 
revenue and cost proportions. The Tornqvist index is a discrete approximation to a continuous DI 
that averages the measures in two adjacent time periods. This index is attractive to scholars 
because it enables smooth changes and better captures trends. If the TFP growth rate is measured 
by using the conventional DI, the corresponding Tornqvist index is defined as: 

(7)  𝛥𝑇𝐹𝑃𝑖𝑡 = 𝛥𝑙𝑛ℎ(𝑌𝑖𝑡) − 𝛥𝑙𝑛𝑁𝑖𝑡 

where Δ𝑙𝑛ℎ(𝑌𝑖𝑡) is output growth and ΔlnN𝑖𝑡 is the growth rate of the cost-weighted index of 
aggregate inputs. The input growth rate is then defined as: 

 (8)  𝛥𝑙𝑛𝑁𝑖𝑡 = 1
2
��∑ �

𝑝𝑖,𝑡
𝑉𝑗𝑉𝑖,𝑡

𝑗

𝐶𝑖,𝑡
+

𝑝𝑖,𝑡−1
𝑉𝑗 𝑉𝑖,𝑡−1

𝑗

𝐶𝑖,𝑡−1
�𝛥𝑙𝑛𝑉𝑖,𝑡

𝑗
𝑗 � + �∑ �

𝑞𝑖,𝑡
𝑋𝑗𝑋𝑖,𝑡−1

𝑗

𝐶𝑖,𝑡
+

𝑞𝑖,𝑡−1
𝑋𝑗 𝑋𝑖,𝑡−2

𝑗

𝐶𝑖,𝑡−1
� 𝛥𝑙𝑛𝑋𝑖,𝑡−1

𝑗
𝑗 �� 

where 𝐶𝑖𝑡 = 𝑀𝑖,𝑡 + 𝑝𝑖,𝑡𝐿 𝐿𝑖,𝑡 + 𝑝𝑖,𝑡𝐸 𝐸𝑖,𝑡 + 𝑞𝑖,𝑡𝐾 𝐾𝑖,𝑡−1 + 𝑞𝑖,𝑡𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝑡−1  is total cost C, the variable 
inputs are represented by the vector 𝑉𝑗 and the quasi-fixed inputs by the vector 𝑋𝑗, while 𝑝𝑖,𝑡𝑉  and 
𝑞𝑖,𝑡𝑋  are price of the variable inputs and the long-run rental prices for quasi-fixed inputs, 
respectively. 

The technical change measure of Solow (1957) is often calculated as the difference between the 
growth rates of aggregated output and the growth rate of aggregated weighted inputs. However, 
as argued by Nadiri and Prucha (2001), TFP growth based on the DI will generate biased 
estimates of technical change, which may include scale effects and temporarily equilibrium 
effects, if any one of the sets of the assumptions of the DI has been biased and violated. The 
empirical results and unrealistic restrictiveness of these assumptions have led researchers to 
prefer alternative parametric TFP growth measures. Accordingly, TFP growth in this study is 
decomposed as follows (Nadiri and Prucha, 1986, 1990, 2001): 

(9)  ∆𝑇𝐹𝑃𝑖,𝑡 = ∆𝑇𝐹𝑃𝑖,𝑡𝑇 + ∆𝑇𝐹𝑃𝑖,𝑡𝑆 + ∆𝑇𝐹𝑃𝑖,𝑡𝐸 + ∆𝑇𝐹𝑃𝑖,𝑡𝐴  

Thus, the overall TFP growth rate is decomposed into the effects of the following factors: 
technical change, scale, equilibrium, and direct adjustment costs.  

Based on the Tornqvist notion, the effect of technical change is described as follows: 

(10)  ∆𝑇𝐹𝑃𝑖,𝑡𝑇 = 1
2

[𝜆𝑥(𝑡) + 𝜆𝑥(𝑡 − 1)] 

where the input-based measure of technical change is obtained from: 
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(11)  𝜆𝑥 = −𝜕𝐺𝑖,𝑡
𝜕𝑇𝑖,𝑡

/ �𝐺𝑖,𝑡 − �∑ 𝜕𝐺𝑖,𝑡
𝜕𝑋𝑖,𝑡−1

𝑗 𝑋𝑖,𝑡−1
𝑗

𝑗 + ∑ 𝜕𝐺𝑖,𝑡
𝜕∆𝑋𝑖,𝑡

𝑗 ∆𝑋𝑖,𝑡
𝑗

𝑗 �� 

This measure of technical change corresponds to the decrease in input use achieved through 
technical change without decreasing output (Caves et al., 1982; Caves et al., 1981).  

The output based measure of technical change is obtained from: 

(12)  𝜆𝑌 = − 𝜕𝐺𝑖𝑡
𝜕𝑇𝑖,𝑡

�𝜕𝐺𝑖,𝑡
𝜕𝑌𝑖,𝑡

ℎ(𝑌𝑖,𝑡)��  

The return to sale is defined as 𝜀 = 𝜆𝑌
𝜆𝑥

  and the technical change  𝑇𝐶 = (𝜕𝐺/𝜕𝑡)/𝐶 (Nadiri and 
Prucha, 1990). The output-based measure of technical change is the rate of expansion in output 
achieved by technical change without changing the input use (Caves et al., 1982; Caves et al., 
1981). 

The scale effect, or deviation from constant RTS, is specified as follows: 

(13)  ∆𝑇𝐹𝑃𝑖,𝑡𝑆 = (1 − 𝜀𝑖.𝑡−1)∆ln (ℎ(𝑌𝑖,𝑡)) 

The temporary equilibrium effect is specified as follows: 

(14)  ∆𝑇𝐹𝑃𝑖,𝑡𝐸 = −1
2
∑ �∑

�𝜕𝐺𝑖,𝜏 𝜕𝑋𝑖,𝜏
𝑗� +𝑞𝑖,𝜏

𝑋𝑗�𝑋𝑖,𝜏
𝑗

𝜀𝑖,𝜏�𝜕𝐺𝑖,𝜏 𝜕ℎ(𝑌𝑖,𝜏)⁄ �ℎ(𝑌𝑖,𝜏)
�∆𝑙𝑛𝑋𝑖,𝜏

𝑗 − ∆𝑙𝑛𝑁𝑖,𝑡𝜏 �𝑗 �𝜏=𝑡,𝑡−1  

Finally, the direct adjustment cost effect is described as follows: 

(15)  ∆𝑇𝐹𝑃𝑖,𝑡𝐴 = −1
2
∑ �∑

�𝜕𝐺𝑖,𝜏 𝜕∆𝑋𝑖,𝜏
𝑗� �∆𝑋𝑖,𝜏

𝑗

𝜀𝑖,𝜏�𝜕𝐺𝑖,𝜏 𝜕ℎ(𝑌𝑖,𝜏)⁄ �ℎ(𝑌𝑖,𝜏)
�∆𝑙𝑛∆𝑋𝑖,𝜏

𝑗 − ∆𝑙𝑛𝑁𝑖,𝑡𝜏 �𝑗 �𝜏=𝑡,𝑡−1  

The detailed decomposition of the TFP is provided in Appendix B based on the Lemma 
developed by Nadiri and Prucha (1990). 

3.3 Measure of CU 

The marginal value products of the quasi-fixed factors represented by shadow prices differ from 
their rental prices because of the presence of adjustment costs. Such differences ensure the 
existence of market disequilibrium effects. If the adjustment to the long-run equilibrium is 
instantaneous, the rental prices would be equal to the shadow prices, and the effect of the 
temporary equilibrium on the change in TFP would be zero. However, if the shadow prices are 
greater than the rental prices, the existing stocks of the quasi-fixed inputs are over-utilized, 
which implies that CU is greater than one. Any attempt to reach full CU raises TFP, with higher 
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investment rates positively related to TFP and vice versa. How the direct adjustment cost affects 
the TFP change is thus uncertain3. 

The temporary short-run equilibrium may occur in two ways: (i) when unexpected demand 
shocks lead to capacity under/over-utilization or (ii) when sudden changes in factor prices result 
in increase/decrease in short-run relative factor usage, which is unsuitable in the long run (Berndt 
and Fuss, 1986). One of the most common examples of the temporary equilibrium is the 
existence of excess capacity, say because of a reduction in output demand. Accordingly, it is 
necessary to measure CU as well as TFP in the presence of variation in the former. 

Following Nadiri and Prucha (1996), the CU measure can be defined based on the ratio of 
shadow cost to total cost. This measure is called the shadow valuation measure of CU. The total 
cost normalized by the price of materials input is defined as follows: 

(16) 
 𝐶𝑖,𝑡 = 𝑀𝑖,𝑡 + p𝑖,𝑡𝐿 𝐿𝑖,𝑡 + p𝑖,𝑡𝐸 𝐸𝑖,𝑡 + c𝑖,𝑡𝐾 𝐾𝑖,𝑡−1 + c𝑖,𝑡𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝑡−1 =
𝐺�p𝑖,𝑡𝐿 , p𝑖,𝑡𝐸 , q𝑖,𝑡𝐾 , q𝑖,𝑡𝐼𝐶𝑇 ,ℎ(𝑌𝑖,𝑡),𝐾𝑖,𝑡−1, 𝐼𝐶𝑇𝑖,𝑡−1,∆𝐾𝑖,𝑡,∆𝐼𝐶𝑇𝑖,𝑡,𝑇𝑖,𝑡� + �1 + 𝑟𝑖,𝑡�q𝑖,𝑡𝐾 𝐾𝑖,𝑡−1 +
c𝑖,𝑡𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝑡−1 

where 𝐺(. ) is the normalized restricted variable cost function defined in equation (3), while 
c𝑖,𝑡𝐼𝐶𝑇 = q𝑖,𝑡𝐼𝐶𝑇(𝑟𝑖,𝑡 + 𝛿𝑖,𝑡𝐼𝐶𝑇)  and c𝑖,𝑡𝐾 = q𝑖,𝑡𝐾 (𝑟𝑖,𝑡 + 𝛿𝑖,𝑡𝐾 )  are the rental prices of ICT and non-ICT 
capital, respectively. Shadow cost Cs is shown in equation (B.2) in appendix B. The CU measure 
can then be defined as the ratio of shadow cost to total cost: 

(17)  CU= Cs/C  

The CU measure above implies a deviation from unity because of the quasi-fixed effect of 
capital on the short-run temporary equilibrium. 

4. Estimation and Empirical Results 

4.1 Data and Estimation Procedures 

In this study, the production structure and factor demand outlined above are estimated for a panel 
dataset of 30 industrial sectors in Korea for 1980–2009. We also analyze the data by three sub-
sample periods, namely 1980–1989, 1990–1999, and 2000–20094. A detailed description of the 
data used in this study and the constructed variables are reported in Table C.1 in Appendix C. 
Details of the industries and their characteristics are described in Table C.2. The estimation 
results reported in Table C.3 are based on an infinite planning horizon and static expectations for 
output and factor prices. The system equations include dummy variables in order to capture 
                                                           
3 It should be noted that when a firm invests in capital, they may need to divert resources toward installing new 
capital rather than producing marketable output, which means that in periods of rapid investment growth, firms 
could be producing two types of products: the final product sold in the market and the services used within the firm 
to install capital. Marketable output may therefore be lower in periods of high investment growth, and this would 
cause a downward bias in the estimates of measured productivity growth. 
4 The aim is to reflect the possible structural changes in the Korean economy due to the implementation of economic 
development plans as described in section 1. 
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industry-specific effects because the presence of heterogeneity across sectors cannot be 
explained by the production structure alone 5. The Durbin–Watson and White tests show serial 
correlation and heteroskedasticity in the residuals. The variance-covariance estimator used for 
the FIML method is from the generalized least squares estimator. Therefore, the generalized least 
squares approximation to the Hessian is used in the minimization procedure based on the 
recommendation in Nadiri and Prucha (1990). 

The parameter estimates satisfy the conditions of the convexity of the normalized restricted cost 
function in ICT and non-ICT capital, and the concavity in variable input prices. Further, the 
parameter estimates 𝑎𝐾𝐾,𝑎�̇��̇�,𝑎𝐼𝐶𝑇𝐼𝐶𝑇, and 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇  are positive, while 𝑎𝑙𝑙  and 𝑎𝑒𝑒  are negative. 
The hypothesis of the absence of adjustment costs for the quasi-fixed inputs K and ICT, 𝑎�̇��̇� = 0 
and 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ = 0 is thus rejected. Hence, we deem the static equilibrium model to be unsuitable 
for describing the technology and structure of the factor demand of Korean industries. 

The demand for variable inputs depends negatively on their own normalized prices. The negative 
signs of the quasi-fixed inputs of ICT and non-ICT capital in the labor and energy demand 
functions indicate that ICT and non-ICT capital are substitutes for labor and energy use. 
Significant coefficients for the industry dummy variables imply significant differences in the cost 
structure across industries. RTS can be calculated based on the estimated parameters Ωo and Ω1. 
The parameter estimates per se are difficult to interpret. Consequently in the following, estimates 
for various implied characteristics for the estimated factor demand systems are presented. 

4.2 Adjustment Costs 

The optimal paths for the quasi-fixed inputs of ICT and non-ICT capital are described by the 
flexible accelerator coefficients in equations (A.7.3) and (A.7.4). In each period, a proportion of 
the difference between the initial stocks of these two quasi-fixed capitals and the respective long-
run optimal values adjusted is similar. The partial adjustment is caused by the cost of investment 
in capital. However, the long-run optimal values change over time in response both to changes in 
those variables exogenous to the firm’s input decisions, and to changing market conditions. 
These coefficients are essential for determining the investment patterns of the quasi-fixed factors. 
Omitting these terms would lead to misspecification of investment patterns and inconsistency in 
the estimates of the other technology parameters (Nadiri and Prucha, 1990). 

The estimated adjustment coefficients for ICT and non-ICT capital, mkk and mICTICT are reported 
in Table 1. Note that when the value of the adjustment coefficient is close to zero (unity), it 
implies that the stock of the quasi-fixed input moves slowly (quickly) toward the optimal value. 

Table 1 

The Coefficients of the Adjustment Speed 

 mkk mICTICT 

Mean 0.181 0.244 

Std Dev 0.007 0.0071 

                                                           
5 Fixed effect approach is applied for panel data. The coefficients of dummy variable are not reported to save space. 
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Minimum 0.167 0.231 

Maximum 0.193 0.256 

We see that ICT capital adjusts faster than non-ICT capital. It closes approximately one-quarter 
of the gap between the initial and desired stock in the first period, while non-ICT capital only 
closes approximately one-fifth of this gap. The fast adjustment of ICT capital concurs with the 
findings of Kim and Park (2009), who argued that technological flows across industries that use 
ICT have positive relationships with time. In addition, the fast trend in the speed of ICT 
adjustment is due to technological diffusion, which has been shown to strengthen technology 
linkages across industries since the 1990s. Moreover, high investment in ICT is partly due to the 
rapid decline in ICT capital prices, which allowed for substituting between different types of 
capital goods. Investment in ICT capital might be driven by the perceived benefits that industries 
expect from ICT such as higher efficiency (López-Pueyo and Mancebón, 2010; Pilat and Lee, 
2001). 

To indicate the disequilibrium in the factor inputs from a long-run point of view, the percentage 
difference of the actual values from the long-run optimal values for the respective inputs are 
presented in Table 2. The long-run optimal values for ICT capital ICT* and non-ICT capital K* 
are defined in equations (A.7.5) and (A.7.6), respectively, while those for the variable inputs (i.e., 
labor, energy use, and materials) are obtained by substituting ICT* and K* into equations (A.10), 
(A.11), and (A.12), respectively. The percentage deviations are calculated as (100 ∗ 𝑋𝑖,𝑡−𝑥𝑖,𝑡

∗

𝑥𝑖,𝑡
∗ ) 

where 𝑋𝑖,𝑡 and 𝑋𝑖,𝑡∗  represent the estimated and optimal inputs factors, respectively. 

Table 2 
Average Percentage Deviation of Actual Value from the long run optimal values by Sub-period 

Years Capital ICT Labor Materials Energy 

1981-1989 0.060 -0.465 -0.360 -0.190 -0.085 

1990-1999 0.007 -0.533 0.964 -0.048 -0.023 

2000-2009 0.051 -0.039 1.971 0.087 0.112 

Non-ICT capital exceeds the long-run optimal value, whereas the reverse is true for ICT capital. 
At the beginning of the sample period, labor was less than optimal but then it dramatically 
increased to exceed the optimal value. Energy was overused during the third sub-period. Further, 
the gap between actual energy use and the long-run optimal value widened during this sub-period, 
indicating more energy use in the sampled Korean industries during the 2000s. By contrast, there 
was a substantial decline in the gap in ICT capital during the third sub-period. The negative 
values indicate that investment in ICT capital in Korean industries is suboptimal. Moreover, 
there is also the opportunity to invest more in ICT in order to bridge the gap between its actual 
and long-run optimal values. 

4.3 RTS 

For all the sampled industrial sectors, we find significant scale effects (average RTS = 1.5), 
suggesting substantial differences in productivity growth. Our finding that the production 
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structures of the sampled sectors are characterized by increasing RTS is in line with those of 
some previous studies. For example, Kwack and Sun (2005) and Park and Kwon (1995) found 
similar results with regard to the existence of scale economies and increasing RTS in Korea. On 
the contrary, Kim and Han (2001) and Oh et al. (2008), although based on different datasets and 
periods, found constant and even decreasing RTS in Korean manufacturing industries. Table 3 
highlights the slight decreasing trend in RTS over time (see also Figure 1), implying that Korean 
firms are moving toward an efficient size and technical optimal scale by downsizing (Oh et al., 
2012). 

Table 3 

 RTS and Technical Change by Sub-period 

Years TC RTS 

1981-1989 0.69 1.52 
1990-1999 0.38 1.51 
2000-2009 1.10 1.49 
Whole Sample 0.72 1.50 

 

 

Figure 1: RTS by Year 

The average RTS by industry are plotted in Figure 2. It shows that the electrical & optical 
equipment, post & telecommunications, and transport equipment sectors (i.e., high-tech and 
export-based industries) have the highest RTS values. According to Edwards (1992), many 
empirical studies have shown that trade liberalization has played a significant role in the rapid 
growth of East Asian countries, especially South Korea. Subsequently, two streams of the 
literature have sought explain the link between trade liberalization and economic growth. The 
first group is the trade literature, which bases this relation on economies of scale (Ethier, 1982; 
Krugman, 1994) and the advantageous competitiveness environment for trade (Krueger and 
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Tuncer (1982). The theoretical models related to the former, for instance, emphasize that trade 
allows for the further utilization of scale economies that are limited by the size of the domestic 
market. The second research strand is related to endogenous growth theory, which suggests that 
economies of scale, human capital accumulation, and technological progress are all forces that 
make trade liberalization a driver of economic growth (Hwang, 2003). 

 

Figure 2: RTS by Industry 

 

4.4 Technical Change 

According to the technical change measure, the average rate is estimated to be -0.69 percent, 
suggesting that technological progress has led, on average, to approximately 0.7 percent 
reduction in total cost per year (decreasing from -0.7 percent in 1980–1989 to -1.0 percent in 
2000–2009). Similarly, Kwack and Sun (2005) estimated the average reduction of technical 
change to be 2 percent of total cost for 1969–2000, implying the existence of Schumpeterian as 
well as neutral technical change. The pure technical change represented by a simple time trend in 
our model suggests a reduction of 0.2 percent of total cost (at=-0.002). The overall mean rate of 
technical change also decreases during the study period (see Table 1); however, no uniform 
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pattern can be detected. The rate of technical change rapidly increased in 1990–1999 in the 
aftermath of the Asian financial crisis but dropped again between 2000 and 2009. 

The extent of technology change varies by industry 6. For example, of the 10 industries that have 
the highest rate of technical change (see Figure 3), only two are classified as low-tech, only three 
are domestic market-oriented, and only one has low R&D expenditure. This finding implies that 
high-tech industries, export-based industries, and industries that show higher R&D are 
technically more efficient in general. In other words, technological growth usually comes from 
R&D expenditure. 

 

Figure 3: Average Rate of Technical Change by Industry 

                                                           
6 The technical change is negative on the cost function. We changed the sign to positive for illustration. 
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4.5 Price and Output Elasticity 

The own- and cross-price elasticities of the inputs for 1995 for the sampled industrial sectors are 
reported in Table C.4 in Appendix C. These elasticities are calculated for the short- and long-run 
for each input. All the own-price elasticities have the expected negative sign. The own-price 
elasticity of ICT capital is largest among all inputs, followed by non-ICT capital, labor, energy 
use, and materials. However, although the cross-price elasticities are smaller compared with the 
own-price elasticities, some are nevertheless sizable (e.g., the elasticities of ICT capital with 
respect to the wage rate, energy price, and materials price). Furthermore, the own-price 
elasticities of all inputs except for ICT capital are inelastic (less than unity). There are also 
differences between the short- and long-run own-price elasticities of all the variable inputs, 
suggesting slow adjustment to long-run steady-state levels. 

Because ICT and non-ICT capital are treated as quasi-fixed factors, there is no adjustment in the 
short run (i.e., their short-run elasticities are zero). In the long run, the own-price elasticity of 
non-ICT capital (ICT capital) demand is inelastic (elastic); therefore, ICT capital has a 
substitution relationship with energy use and labor. These results agree with the finding of Park 
and Park (2003), who argued that Korean industries increasingly deploy ICT in order to reduce 
the use of labor, and thus that skills-biased technological change is emerging. In other words, the 
use of ICT, although replacing low-skilled labor, is creating high-skilled complex jobs. Many 
studies in the fields of manufacturing and technical processes have also indicated that investing 
more in ICT capital substantially reduces energy use (Cho et al., 2007; Erdmann and Hilty, 2010; 
Røpke and Christensen, 2012). Finally, the elasticity of ICT with respect to energy use is larger 
than that of energy use with respect to wage rate, implying that ICT has stronger substitutability 
with energy use. 

The long-run elasticities of the inputs exceed their short-run values and thus they reflect sizable 
economies of scale. The patterns of the output elasticities indicate that labor and materials 
respond strongly to short-run changes in output, because labor, energy use, and materials 
overshoot their long-run equilibrium values in the short run in order to compensate for the 
sluggish adjustment of the quasi-fixed factors. In brief, they slowly adjust toward their long-run 
equilibrium values as ICT and non-ICT capital adjusts. Indeed, the positive output elasticity of 
energy use suggests that economic growth leads to higher energy use. Therefore, although 
economic growth may improve productivity per unit of energy use, it increases total energy use 
and CO2 emissions. 

4.6 TFP Growth 

Based on equations (9)–(15), the growth rate of TFP (∆TFP) is divided into the three sub-periods 
(see Table 4). The results indicate that the scale effect is by far the most important contributor to 
TFP growth. During the 1980s, the Korean government directed the country’s limited national 
resources toward promoting the heavy and chemicals manufacturing sectors. One of the policy 
objectives was to enable firms to grow large enough to utilize scale economies and compete in 
foreign markets (Kim and Han, 2001). While many studies have showed technological progress 
to be a key contributor to TFP growth (see the literature survey by Kim and Han, 2001), we 
found a small technical change factor (less than 1.0 percent). Similarly, the effects of adjustment 
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costs and the temporary equilibrium are also negligible, implying a slightly inefficient allocation 
of production inputs with a resulting decline in TFP. 

Table 4 

Decomposition of Traditional Measure of Average TFP Growth (in percentage) 

Years 
TFPT 

∆ 
TFPS 

∆ 
TFPE 

∆ 
TFPA 

∆ 

TFP 
(Divisia7) 

∆ 

Unexplained 
estimation 
residual 

1981-1989 0.67 2.20 -0.010 -0.001 6.00 3.12 
1990-1999 0.83 2.32 0.010 -0.080 6.29 3.21 
2000-2009 0.99 2.92 0.003 -0.026 8.35 4.47 

The contributions of the inputs, technical change, and adjustment costs to output growth are 
reported in Table 5 (the decomposition is based on the approximation in equation (B.2) in 
Appendix B). We find that the average growth rate of output is approximately 7.3 percent per 
year over the entire sample period, whereas the effect of technical change on output is only 0.7 
percent on average. Moreover, the various inputs influence output growth to different degrees. 
The highest rate of contribution is that of energy use followed by labor and materials. Further, 
non-ICT capital has a greater effect than ICT capital, which, given the proportion of ICT capital 
in total capital, is reasonable. These results are also consistent with the similar study carried out 
by Pyo et al. (2007), who reported an average output growth rate of 9 percent. 

Table 5 

Decomposition of Output Growth (Average annual rate of growth in percentage) 

Years 

Output 
Growth 

Labor 

Effect 

Material 

Effect 

Energy 

Effect 

Capital 

Effect 

ICT 

Effect 

Adjustment Cost 

TC Capital ICT 

1981-1989 6.35 0.51 2.58 2.69 0.05 0.05 -0.04 -0.02 0.69 

1990-1999 6.86 0.67 0.75 3.03 2.4 0.03 -0.13 -0.16 0.38 

2000-2009 8.78 0.85 3.47 3.07 0.05 0.18 -0.19 -0.11 1.00 

4.7 CU Index 

The CU index for the three sub-periods is reported in Table 6. The results of this measure 
indicate optimistic investment for the final two sub-periods (the excess of unity indicates 
capacity over-utilization; (See Berndt and Morrison, 1981; Morrison, 1986 for details about CU 
measures). Moreover, the CU increases by approximately 8 and 13 percent for the 1990–1999 
and 2000–2009 sub-periods, respectively, reflect the corresponding increase in output. 

 

                                                           
7 The divisia measure is explicitly taken from the dataset for the sake of comparison with the estimated components.  
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Table 6 
Measure of CU for the Korean Industrial Sectors 

Year CU index 
1980-1989 0.965 
1990-1999 1.045 
2000-2009 1.196 

The CU measure including non-static expectations tends to be less than unity whenever an 
industry is investing extra in anticipation of, for example, output increases that are not justified 
by the current economic conditions. This result indicates that production sits to the right of the 
minimum point of the short-run average total cost curve, thereby inducing cost-reducing net 
investment for the final two sub-periods and cost-increasing net investment during 1980–1989. 
Nevertheless, the CU rate is increasing over time for the whole sample period (see Figure 4). 

 

 

Figure 4: CU Measure Trend and Output Growth over Time 

5. Discussion and Conclusion 

This study modeled the production structure and behavior of the factor inputs that affect 
production. In addition, it derived the sources of TFP growth by using a dynamic factor demand 
model for 30 Korean industrial sectors during the period 1980–2009. The sampled industries 
have experienced a high rate of output growth and demonstrated weak technological progress, as 
measured by the exogenous time trend that represents technical change or a shift in 
production/cost functions over time. The model used herein also allowed for scale effects and for 
quasi-fixed of two input factors, namely ICT and non-ICT capital. By including ICT capital, the 
model was thus able to capture the technological characteristics of the sample industries. 

The main results of this study can be summarized into the following six points. First, the 
production structures of the sampled sectors are characterized by increasing RTS. The responses 
of the factors of production to a change in factor price and output in both the short- and the long- 
run are similar. Likewise, in both the short-and the long-run, ICT has a substitution relationship 
with energy use, substitutes labor, but complements materials. Further, energy use has a 
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substitution relation with materials and labor, whereas labor complements both ICT and non-ICT 
capital. 

Second, the stock of ICT capital adjusts faster than that of non-ICT capital, implying that Korean 
industries are capital-intensive; hence, relaxing the assumption of constant RTS in our 
methodology was appropriate. The ratio of actual to optimal energy use was negative for the first 
two sub-periods of the dataset but overused in the third sub-period. According to Table 7, which 
provides an energy intensity indicator, there was a steady decline in the energy intensity of 
Korean industries of an average rate of 85 percent from the first sub-period to the second, but 
energy intensity slightly increased in the third sub-period. However, despite this decline in 
energy intensity, this measure is expected to remain above those of all other IEA countries (IEA, 
2012). 

Table 7 

Growth in value added and change in energy intensity at the aggregate economy level 

 Average Annual Growth rate 

 1981-1989 1990-1999 2000-2009 
Energy Intensity 1.74 0.94 0.99 
Value Added 2.73 1.95 0.74 

In addition, Korea’s target of a 30 percent emissions reduction by 2030 has led the government 
to pursue a series of aggressive energy efficiency policies (IEA, 2012). Indeed, the Korean 
government is continually transforming its economy from one based on large heavy industry that 
is energy-intensive and low value added to one based on high-tech industries that consume less 
energy and are high value added (Eichengreen et al., 2012). However, while the energy trends 
for the first two sub-periods concur with this shift in industrial focus, energy use increased by 11 
percent from the optimal level in the third sub-period (see Table 2 and Figure 5). Thus, the 
substitution relation between ICT capital and energy use (as found in this study) may help 
overcome this issue. In short, there is room for more investment in ICT in order to lower energy 
intensity in Korea’s industrial sectors consistent with its environmental goals. 

 

Figure 5: Average Industry Energy Intensity by Year 
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Third, TFP growth in Korean industry is positively affected by economies of scale above all 
other influencing factors. By contrast, technical change has a small positive effect on TFP 
growth. A possible explanation for this finding is that Korean industries have reached a level of 
technological sophistication from where it is difficult to make substantial additional progress; 
hence, they settle for taking advantage of the available scale effects. 

Since the 1980s, policymakers have focused on growing foreign direct investment by 
concentrating on technology-based industries. Such a technology-led policy has encouraged the 
private sector to invest in innovativeness and R&D as well as called for collaboration between 
ministries’ R&D activities (Park, 2000). In the 1990s, the Korean government continuously 
supported foreign direct investment in technology sectors and enhanced innovation capabilities 
in the private sector. The globalization era in the 2000s was then the last stage of the process of 
economic growth in Korea, where growth was mainly driven by technological progress and 
innovation. During that period, R&D investment sharply increased (Park, 2000) and high-tech 
sectors were encouraged to internationalize their technological development needs. Many 
scholars have emphasized the relationship between R&D expenditure and ICT investment and 
the role of both drivers in productivity growth (See for example: Hall et al., 2012; Polder et al., 
2009; van Ark et al., 2003). Figure 6 illustrates the high correlation between R&D expenditure 
and ICT capital (0.949 and 0.951 for one and two lags, respectively), which indicates that more 
investment in ICT results from greater R&D spending. 

 

Figure 6: Correlation between ICT capital and R&D investment 

Fourth, the temporary equilibrium effect is another source of TFP growth. A positive temporary 
equilibrium effect indicates that, on average, the rental prices of quasi-fixed inputs are less than 
the shadow prices, implying that quasi-fixed inputs are over-utilized. Increasing investment in 
ICT capital can therefore enhance the competitiveness of Korean industries at the global level 
and hence their productivity. The scale effects experienced by Korean industries suggest that 
their growth strategy should no longer focus on expansion in terms of firm size. An individual 
industry may still improve efficiency by catching up to the best practice frontier of the industry 
globally. When this possibility is exhausted, however, TFP change may stop. 

Fifth, the unexplained residual source of TFP (average 3.6 percent) may come from the 
assumption of perfect goods and factor markets and possible errors in the measurement of inputs. 
Kwack and Sun (2005) and Berthélemy and Chauvin (2000) found that the unexplained residuals 
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of TFP account for 1.3 percent and 1.2 percent, respectively. Further, Huggett and Ospina (2001) 
showed that the purchases of new technology equipment initially reduce TFP growth. The 
unexplained residuals may then be attributed to the under-utilization of certain imported capital 
goods, especially high-tech equipment, owing to their technological sophistication being beyond 
Korean technological capability in short run. Further, overinvestment and idle imported capital 
equipment raise the cost of capital as well as their contribution to output, diminishing 
productivity and negatively affecting TFP growth (Kwack and Sun, 2005). Hence, in order to 
analyze the unexplained proportion of TFP, new models that incorporate other factors explaining 
the decomposition of TFP should be developed. 

Sixth, Korea’s successful export-oriented industrial policy suggests that sector-level energy 
efficiency is high compared with other developed countries (IEA, 2012). However, there is room 
for further improvement, such as greater clarity on sector-specific targets, clear complementary 
plans and time schedules, and greater coordination and cooperation among government 
ministries and agencies. As recommended by IEA (2012), Korea may also be capable of 
strengthening its efforts to improve data collection and analysis for monitoring and evaluating 
the results of the impact of energy efficiency policies across all sectors of its economy. Industries 
characterized by energy-intensive technology and electricity-generating plants are considered to 
have significant potential for waste heat recovery and combined heat and power operations. For 
example, the recent implementation of the district heating system by the Korean government to 
supply 1.8 million households has already started to improve energy efficiency at the domestic 
level. However, Korea should explore further opportunities in this sector such as using the 
recovery of waste heat in district cooling systems to displace electricity usage during summer 
peaks in the electricity system. Policies for reducing energy use and restraining demand may 
further enhance energy policy and achieve a higher rate of energy independence, a key factor in 
Korea’s green growth strategy. 

Therefore, by allowing non-constant RTS, incorporating ICT capital as an exogenous factor, and 
including dynamic factor demand aspects, the presented model provided a rich framework for 
productivity growth and analysis compared with conventional approaches. However, a number 
of issues may remain unanswered. The approach used in this study is rooted in individual firm 
optimization that is estimated based on data from industry aggregates. The model assumes that 
firms in an industry are the same (i.e., they have identical demand curves and the same cost 
curves). While it is common to study industries from the point of view of a representative firm, it 
should be noted that the cost function used in this study is assumed to be that of a representative 
firm in the industry. In this vein, future research could aim to account for the efficiency of using 
these input factors. 

Moreover, the model lends itself to modifications in future research. For example, studies that 
use more adaptive and flexible functional forms under rational expectations may provide more 
insights into how ICT capital influences TFP growth. Finally, incorporating important intangible 
input factors into the model and relaxing the separability assumption between the quasi-fixed 
factors may also allow us to understand the interaction between these factors and examine more 
in depth how intangible factors affect TFP growth.  



20 
 

REFERENCES 

Berndt ER, Fuss MA. Productivity measurement with adjustments for variations in capacity 
utilization and other forms of temporary equilibrium. Journal of Econometrics 1986;33; 7-29. 

Berndt ER, Morrison CJ. Capacity utilization measures: Underlying economic theory and an 
alternative approach. The American Economic Review 1981;71; 48-52. 

Berthélemy JC, Chauvin S. Structural Changes in Asia and Growth Prospects After the Crisis. 
CEPII, Centre d'Etudes Prospectives et d'Informations Internationales: Paris: France; 2000. 

Borensztein A, Lee J-W, 2000. Financial crisis and credit crunch in Korea: Evidence from firm 
level data (Working Paper No. WP/00/25)  

Caves DW, Christensen LR, Diewert WE. Multilateral comparisons of output, input, and 
productivity using superlative index numbers. The Economic Journal 1982;92; 73-86. 

Caves DW, Christensen LR, Swanson JA. Productivity growth, scale economies, and capacity 
utilization in U.S. railroads, 1955-74. The American Economic Review 1981;71; 994-1002. 

Cho Y, Lee J, Kim T-Y. The impact of ICT investment and energy price on industrial electricity 
demand: Dynamic growth model approach. Energy Policy 2007;35; 4730-4738. 

Denny M, Fuss MA, Waverman L, 1981. Substitution Possibilities for Energy: Evidence from 
US and Canadian Manufacturing Industries, In: E.R. Berndt, Field BC (Eds), Modeling and 
Measuring Natural Resource Substitution. MIT Press; 1981. pp. 230-288. 

Edwards S. Trade orientation, distortions and growth in developing countries. Journal of 
Development Economics 1992;39; 31-57. 

Eichengreen B, Dwight HP, Kwanho S. From Miracle to Maturity: The Growth of the Korean 
Economy. Harvard University Asia Center; 2012. 

Erdmann L, Hilty LM. Exploring the Macroeconomic Impacts of Information and 
Communication Technologies on Greenhouse Gas Emissions. Journal of Industrial Ecology 
2010;14; 826-843. 

Ethier WJ. National and international returns to scale in the modern theory of international trade. 
The American Economic Review 1982;72; 389-405. 

Fukao K, Miyagawa T, Pyo HK, 2009. Estimates of multifactor productivity, ICT contributions 
and resource reallocation effects in Japan and Korea, RIETI Discussion Paper Series 09-E-
021. 

Hall BH, Lotti F, Mairesse J. Evidence on the impact of R&D and ICT investments on 
innovation and productivity in Italian firms. Economics of Innovation and New Technology 
2012;22; 300-328. 



21 
 

Hanoch G. The elasticity of scale and the shape of average costs. The American Economic 
Review 1975;65; 492-497. 

Huggett M, Ospina S. Does productivity growth fall after the adoption of new technology? 
Journal of Monetary Economics 2001;48; 173-195. 

Hwang AR. Exports, returns to scale, and total factor productivity: The case of taiwanese 
manufacturing industries. Review of Development Economics 2003;7; 204-216. 

IEA, 2012. Energy policies of IEA countries: The republic of Korea-2012 review. International 
Energy Association IEA. 

Jehle GA, Reny PJ. Advanced Microeconomic Theory, 2nd ed. Addison-Wesley: Pearson 
Education India; 2001. 

Kim M-S, Park Y. The changing pattern of industrial technology linkage structure of Korea: Did 
the ICT industry play a role in the 1980s and 1990s? Technological Forecasting and Social 
Change 2009;76; 688-699. 

Kim S, Han G. A decomposition of total factor productivity growth in Korean manufacturing 
industries: A stochastic frontier approach. Journal of Productivity Analysis 2001;16; 269-281. 

Kim ST. The role of local public sectors in regional economics growth in Korea. Asian 
Economic Journal 1997;11; 155-168. 

Krueger AO, Tuncer B. Growth of factor productivity in Turkish manufacturing industries. 
Journal of Development Economics 1982;11; 307-325. 

Krugman P. The myth of Asia’s miracle. Foreign Affairs 1994;73; 62-78. 

Kwack SY, Sun LY. Economies of scale, technological progress, and the sources of economic 
growth: case of Korea, 1969–2000. Journal of Policy Modeling 2005;27; 265-283. 

Lau LJ, 1986. Functional forms in econometric model building, In: Zvi G, Michael DI (Eds), 
Handbook of Econometrics, vol. 3. Elsevier; 1986. pp. 1515-1566. 

López-Pueyo C, Mancebón M-J. Innovation, accumulation and assimilation: Three sources of 
productivity growth in ICT industries. Journal of Policy Modeling 2010;32; 268-285. 

Maddison A. Monitoring the world economy. Oecd, Paris, Development Center Studies; 2005. 

Mokyr, 2005. Long-term economic growth and the history of technology, In: Aghion P, Durlauf 
S (Eds), Handbook of Economic Growth, vol. 1. Elsevier; 2005. pp. 1113-1180. 

Morrison CJ. Productivity measurement with non-static expectations and varying capacity 
utilization: An integrated approach. Journal of Econometrics 1986;33; 51-74. 

Nadiri MI, Prucha IR. A comparison of alternative methods for the estimation of dynamic factor 
demand models under non-static expectations. Journal of Econometrics 1986;33; 187-211. 



22 
 

Nadiri MI, Prucha IR. Dynamic factor demand models, productivity measurement, and rates of 
return: Theory and an empirical application to the US bell system. Structural Change and 
Economic Dynamics 1990;1; 263-289. 

Nadiri MI, Prucha IR. Estimation of the depreciation rate of physical and R&D capital in the U.S. 
total manufacturing sector. Economic Inquiry 1996;34; 43-56. 

Nadiri MI, Prucha IR. Dynamic factor demand models and productivity analysis. National 
Bureau of Economic Research Working Paper Series 1999;7079. 

Nadiri MI, Prucha IR, 2001. Dynamic Factor Demand Models and Productivity Analysis, In: 
Hulten CR, Dean ER, Harper MJ (Eds), New Developments in Productivity Analysis. The 
University of Chicago Press, Chicago and London; 2001. pp. 103-172. 

O'Mahony M, Timmer MP. Output, input and productivity measures at the industry level: The 
EU KLEMS database. The Economic Journal 2009;119; F374-F403. 

Oh D, Heshmati A, Lööf H. Technical change and total factor productivity growth for Swedish 
manufacturing and service industries. Applied Economics 2012;44; 2373-2391. 

Oh I, Lee J-D, Heshmati A. Total Factor Productivity in Korean Manufacturing Industries. 
Global Economic Review 2008;37; 23-50. 

Park GM, Park Y. An empirical analysis of the inter-industrial spillover effect of information and 
communications technology on cost and labor - The case of Korea. Journal of Scientific & 
Industrial Research 2003;62; 157-167. 

Park PH, 2000. A Reflection on the East Asian Development Model: Comparison of the South 
Korean and Taiwanese Experiences, In: Richter F-J (Ed), Thailand, Japan, and the East Asian 
Development Model. Macmillan Press, London; 2000. pp. 141-168. 

Park S-R, Kwon JK. Rapid economic growth with increasing returns to scale and little or no 
productivity growth. The Review of Economics and Statistics 1995;77; 332-351. 

Pilat D, Lee FC, 2001. Productivity Growth in ICTproducing and ICT-using Industries: A Source 
of Growth Differentials in the OECD?, in: OECD Science TaI (Ed.), Working Papers 
2001/04. OECD Publishing. 

Polder M, Van Leeuwen G, Mohnen P, Raymond W, 2009. Productivity effects of innovation 
modes. Statistics Netherlands Discussion Paper no 09033. Statistics Netherlands Discussion 
Paper no 09033, Netherlands. 

Pyo HK, Rhee KH, Ha BC, 2007. Growth accounting and productivity analysis by 33 industrial 
sectors in Korea (1984-2002), In: Jorgenson DW, Kuroda M, Motohashi K (Eds), 
Productivity in Asia: Economics growth and compitetiviness. MPG Books Ltd, U.K: Bodmin, 
Cornwall; 2007. 



23 
 

Røpke I, Christensen TH. Energy impacts of ICT – Insights from an everyday life perspective. 
Telematics and Informatics 2012;29; 348-361. 

Schumpeter J. Business Cycles: A Theoretical, Historical, and Statistical Analysis of the 
Capitalist Process. McGraw-Hill: New York; 1939. 

Solow RM. Technical change and the aggregate production function. The Review of Economics 
and Statistics 1957;39; 312-320. 

Tangen S, 2002. “Understanding the concept of productivity, Proceedings of the 7th 

Asia-Pacific Industrial Engineering and Management Systems Conference, Taipei, pp. 18-20. 

Toro EF. Riemann solvers and numerical methods for fluid dynamics: A practical introduction. 
Springer: Verlag Berlin Heidelberg; 2009. 

van Ark B, Inklaar R, McGuckin RH. ICT and Productivity in Europe and the United States 
Where Do the Differences Come From? CESifo Economic Studies 2003;49; 295-318. 

 
  



24 
 

Appendix A 

Estimated System of Factor Demand Equations 

The following dynamic cost function is solved with respect to the quasi-fixed factors with static 
expectation: 

(A.1)  𝑚𝑖𝑛𝐾𝑡+𝜏,𝐼𝐶𝑇𝑡+𝜏 ∑ [𝐺(𝑝𝑖,𝑡𝐿 ,𝑝𝑖,𝑡𝐸 ,𝐾𝑖,𝑡+𝜏−1, 𝐼𝐶𝑇𝑖,𝑡+𝜏−1,𝛥𝐾𝑖,𝑡+𝜏,𝛥𝐼𝐶𝑇𝑖,𝑡+𝜏,ℎ(𝑌𝑖,𝑡+𝜏),𝑇𝑖,𝑡+𝜏) +∞
𝜏=1

𝑝𝑖,𝑡𝐾 𝐼𝑖,𝑡+𝜏, + 𝑝𝑖,𝑡𝐼𝐶𝑇𝐻𝑖,𝑡+𝜏](1 + 𝑟𝑖,𝑡)−𝜏 

Subjects to: 

𝐼𝑖,𝑡+𝜏 = 𝐾𝑖,𝑡+𝜏 − (1 − 𝛿)𝐾𝑖,𝑡+𝜏−1 

𝐻𝑖,𝑡+𝜏 = 𝐼𝐶𝑇𝑖,𝑡+𝜏 − (1 − 𝜇)𝐼𝐶𝑇𝑖,𝑡+𝜏−1 

where pE, pL, pICT, and pK are prices for energy, labor, ICT capital, and non-ICT capital 
normalized by the price of materials, respectively. H and I are the real investment in ICT capital 
and non-ICT capital, respectively. The depreciation rates of ICT and non-ICT capital are μ and δ, 
respectively, and r denotes the discount rate. 

The normalized restricted cost function G(.) in a quadratic form, as introduced by Denny et al. 
(1981), can be described as follows: 

(A.2)  𝐺�𝑝𝑖,𝑡𝐿 ,𝑝𝑖,𝑡𝐸 ,𝐾𝑖,𝑡−1, 𝐼𝐶𝑇𝑖,𝑡−1,𝛥𝐾𝑖,𝑡,𝛥𝐼𝐶𝑇𝑖,𝑡,ℎ(𝑌𝑖,𝑡),𝑇𝑖,𝑡� = �𝑎0 + 𝑎𝑇𝑇𝑖,𝑡 + 𝑎𝑙𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝑝𝑖,𝑡𝐸 +

𝑎𝑒𝑙𝑝𝑖,𝑡𝐿 𝑝𝑖,𝑡𝐸 + 1
2
𝑎𝑙𝑙�𝑝𝑖,𝑡𝐿 �

2
+ 1

2
𝑎𝑒𝑒�𝑝𝑖,𝑡𝐸 �

2
� ℎ(𝑌𝑖,𝑡) + 𝑎𝐾𝐾𝑖,𝑡−1 + 𝑎𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝑡−1 + 𝑎𝑙𝐾𝑝𝑖,𝑡𝐿 𝐾𝑖,𝑡−1 +

𝑎𝑙𝐼𝐶𝑇𝑝𝑖,𝑡𝐿 𝐼𝐶𝑇𝑖,𝑡−1 + 𝑎𝑒𝐾𝑝𝑖,𝑡𝐸 𝐾𝑖,𝑡−1 + 𝑎𝑒𝐼𝐶𝑇𝑝𝑖,𝑡𝐸 𝐼𝐶𝑇𝑖,𝑡−1 + �1
2
𝑎𝐾𝐾K𝑖,𝑡−1

2 + 1
2
𝑎𝐼𝐶𝑇𝐼𝐶𝑇ICT𝑖,𝑡−12 +

1
2
𝑎�̇��̇�𝛥K𝑖,𝑡

2 + 1
2
𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ 𝛥ICT𝑖,𝑡2 �

1
ℎ(𝑌𝑖,𝑡)

  

The normalized restricted cost function specified in equation (A.2), corresponding to a 
homothetic production function, its general form is as follows: 

(A.3)   g �𝑝𝑖,𝑡𝐿 ,𝑝𝑖,𝑡𝐸 , 𝐾𝑖,𝑡−1
𝐻(𝑌) , 𝐼𝐶𝑇𝑖,𝑡−1

𝐻(𝑌) , 𝛥𝐾𝑖,𝑡
𝐻(𝑌) , 𝛥𝐼𝐶𝑇𝑖,𝑡

𝐻(𝑌) ,𝑇𝑖,𝑡� 𝐻(𝑌) 

where H(Y) is a function of Y. The elasticity scale can then be obtained as  𝐻(𝑌)/𝑌  (𝑑𝑌/𝑑𝐻). 
For a homothetic production function, the scale elasticity is a function of output alone and is 
independent of any specific direction of a change in inputs (Hanoch, 1975). RTS can be 
measured as an inverse of scale elasticity (Nadiri and Prucha, 1999). The marginal adjustment 
cost needs to be equal to zero at the steady state of the quasi-fixed inputs when ΔK and ΔICT are 
equal to zero. Hence, 𝜕𝐺(. ) 𝜕𝛥𝐾⁄  and 𝜕𝐺(. ) 𝜕𝛥𝐼𝐶𝑇⁄  will be zero at ΔK = ΔICT = 0 only if the 
following restrictions are imposed on the estimated parameters (Denny et al., 1981): 

(A.4)  𝑎�̇� = 𝑎𝐼𝐶𝑇̇ = 𝑎𝑙�̇� = 𝑎𝑙𝐼𝐶𝑇̇ = 𝑎𝐾�̇� = 𝑎𝐼𝐶𝑇𝐼𝐶𝑇̇ = 𝑎�̇�𝐼𝐶𝑇̇ = 𝑎𝐼𝐶𝑇�̇� = 𝑎𝑇�̇� = 𝑎𝑇𝐼𝐶𝑇̇ = 0  
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where a dot over a variable represents the growth rate of the quasi-fixed inputs. Imposing the 
separability assumption on the quasi-fixed inputs will simplify the derivation of the dynamic 
factor demand model. In this study, the separability of the quasi-fixed input implies that  aKICT =
aK̇ICṪ . The convexity and concavity conditions of the normalized restricted cost function under 
the separability assumption imply that aKK, aICTICT, aK̇K̇, aICṪ ICṪ > 0, and all, aee < 0.  

The optimal input paths of investment in ICT and non-ICT capital must satisfy the necessary 
conditions given by the Euler equations (Toro, 2009), obtained by solving equation (A.1) with 
respect to K and ICT as follows: 

 (A.5)  −𝑎�̇��̇�𝐾𝑖,𝑡+𝜏+1 + �𝑎�̇��̇� + �2 + 𝑟𝑖,𝑡�𝑎�̇��̇��𝐾𝑖,𝑡+𝜏 − �1 + 𝑟𝑖,𝑡�𝑎�̇��̇�𝐾𝑖,𝑡+𝜏−1 = −�(1 −

𝛿)𝑝𝑖,𝑡𝐾 + 𝑎𝐾 + 𝑎𝑙𝐾𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝐾𝑝𝑖,𝑡𝐸 + 𝑎𝑇𝐾𝑇𝑖,𝑡� ℎ(𝑌𝑖,𝑡) 

(A.6) 
 −𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ 𝐼𝐶𝑇𝑖,𝑡+𝜏+1 + �𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ + �2 + 𝑟𝑖,𝑡�𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ �𝐼𝐶𝑇𝑖,𝑡+𝜏 −
�1 + 𝑟𝑖,𝑡�𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ 𝐼𝐶𝑇𝑖,𝑡+𝜏−1 = −�(1 − 𝜇)𝑝𝑖,𝑡𝐼𝐶𝑇 + 𝑎𝐼𝐶𝑇 + 𝑎𝑙𝐼𝐶𝑇𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝐼𝐶𝑇𝑝𝑖,𝑡𝐸 + 𝑎𝑇𝐼𝐶𝑇𝑇𝑖,𝑡� ℎ(𝑌𝑖,𝑡)  

The transversality conditions below will rule out the unstable roots for the Euler equations: 

lim𝑛→∞�1 + 𝑟𝑖,𝜏�
𝜏
�𝑎�̇��̇�𝐾𝑖,𝑡+𝜏 − 𝑎�̇��̇�𝐾𝑖,𝑡+𝜏−1� = 0, and 

lim𝑛→∞�1 + 𝑟𝑖,𝜏�
𝜏
�𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ ICT𝑖,𝑡+𝜏 − 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ ICT𝑖,𝑡+𝜏−1� = 0 , 

The accelerator equations serve as a solution that corresponds to the stable roots for the Euler 
equations as follows: 

(A.7.1)  𝛥𝐾𝑖,𝑡 = 𝑚𝐾𝐾�𝐾𝑖,𝑡∗ − 𝐾𝑖,𝑡−1� 

(A.7.2)  𝛥𝐼𝐶𝑇𝑖,𝑡 = 𝑚𝐼𝐶𝑇𝐼𝐶𝑇�𝐼𝐶𝑇𝑖,𝑡∗ − 𝐼𝐶𝑇𝑖,𝑡−1� 

(A.7.3)  𝑚𝐾𝐾 = −1
2
��𝑟𝑖,𝑡 + 𝑎𝐾𝐾 𝑎�̇��̇�⁄ � − ��𝑟𝑖,𝑡 + 𝑎𝐾𝐾 𝑎�̇��̇�⁄ �

2
+ 4𝑎𝐾𝐾 𝑎�̇��̇�⁄ �

1 2⁄
� 

(A.7.4)  𝑚𝐼𝐶𝑇𝐼𝐶𝑇 = −1
2
��𝑟𝑖,𝑡 + 𝑎𝐼𝐶𝑇𝐼𝐶𝑇 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇⁄ � − ��𝑟𝑖,𝑡 + 𝑎𝐼𝐶𝑇𝐼𝐶𝑇 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇⁄ �

2
+

4𝑎𝐼𝐶𝑇𝐼𝐶𝑇 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇⁄ �
1 2⁄

� 

(A.7.5)  𝐾𝑖,𝑡∗ = − 1
𝑎𝐾𝐾

��𝑟𝑖,𝑡 + 𝛿�𝑝𝑖,𝑡𝐾 + 𝑎𝐾 + 𝑎𝑙𝐾𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝐾𝑝𝑖,𝑡𝐸 + 𝑎𝑇𝐾𝑇𝑖,𝑡�ℎ(𝑌𝑖,𝑡) 

(A.7.6)  𝐼𝐶𝑇𝑖,𝑡∗ = − 1
𝑎𝐼𝐶𝑇𝐼𝐶𝑇

��𝑟𝑖,𝑡 + 𝜇�𝑝𝑖,𝑡𝐼𝐶𝑇 + 𝑎𝐼𝐶𝑇 + 𝑎𝑙𝐼𝐶𝑇𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝐼𝐶𝑇𝑝𝑖,𝑡𝐸 + 𝑎𝑇𝐼𝐶𝑇𝑇𝑖,𝑡�ℎ(𝑌𝑖,𝑡) 

where a star indicates the optimal or target levels of the quasi-fixed inputs. 

Substituting the steady-state solutions of the Euler equations (A.5) and (A.6) and the adjustment 
coefficient forms (A.7.1) and (A.7.2) into the accelerator coefficients (A.7.3) and (A.7.4), 



26 
 

respectively, in line with Nadiri and Prucha (1990), this will provide the optimal quasi-fixed 
input path for ICT and non-ICT capital as follows: 

(A.8)  𝛥𝐾𝑖,𝑡 = (−1
2
��𝑟𝑖,𝑡 + 𝑎𝐾𝐾 𝑎�̇��̇�⁄ � − ��𝑟𝑖,𝑡 + 𝑎𝐾𝐾 𝑎�̇��̇�⁄ �

2
+ 4𝑎𝐾𝐾 𝑎�̇��̇�⁄ �

1 2⁄
�) ∗

�− 1
𝑎𝐾𝐾

��𝑟𝑖,𝑡 + 𝛿�𝑝𝑖,𝑡𝐾 + 𝑎𝐾 + 𝑎𝑙𝐾𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝐾𝑝𝑖,𝑡𝐸 + 𝑎𝑇𝐾𝑇𝑖,𝑡�ℎ(𝑌𝑖,𝑡) − 𝐾𝑖,𝑡−1�  

 (A.9) 
 𝛥𝐼𝐶𝑇𝑖,𝑡 =

(−1
2
��𝑟𝑖,𝑡 + 𝑎𝐼𝐶𝑇𝐼𝐶𝑇 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇⁄ � − ��𝑟𝑖,𝑡 + 𝑎𝐼𝐶𝑇𝐼𝐶𝑇 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇⁄ �

2
+ 4𝑎𝐼𝐶𝑇𝐼𝐶𝑇 𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇⁄ �

1 2⁄
�) ∗

�− 1
𝑎𝐼𝐶𝑇𝐼𝐶𝑇

��𝑟𝑖,𝑡 + 𝜇�𝑝𝑖,𝑡𝐼𝐶𝑇 + 𝑎𝐼𝐶𝑇 + 𝑎𝑙𝐼𝐶𝑇𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝐼𝐶𝑇𝑝𝑖,𝑡𝐸 + 𝑎𝑇𝐼𝐶𝑇𝑇𝑖,𝑡�ℎ(𝑌𝑖,𝑡) − 𝐼𝐶𝑇𝑖,𝑡−1� 

From Shephard’s lemma, the variable input demand equations for labor L, energy use E, and 
materials M can be obtained from the variable cost function as follows: 

(A.10)  𝐿𝑖,𝑡 = 𝜕𝐺(.)
𝜕𝑝𝑖,𝑡

𝐿 = �𝑎𝑙 + 𝑎𝑙𝑙𝑝𝑖,𝑡𝐿 + 𝑎𝑒𝑙𝑝𝑖,𝑡𝐸 �ℎ(𝑌𝑖,𝑡) + 𝑎𝑙𝐾𝐾𝑖,𝑡−1 + 𝑎𝑙𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝑡−1 

(A.11)  𝐸𝑖,𝑡 = 𝜕𝐺(.)
𝜕𝑝𝑖,𝑡

𝐸 = �𝑎𝑒 + 𝑎𝑒𝑒𝑝𝑖,𝑡𝐸 + 𝑎𝑒𝑙𝑝𝑖,𝑡𝐿 �ℎ(𝑌𝑖,𝑡) + 𝑎𝑒𝐾𝐾𝑖,𝑡−1 + 𝑎𝑒𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝑡−1 

From 𝐺(. ) = 𝑀𝑖,𝑡 + 𝑝𝑖,𝑡𝐿 𝐿𝑖,𝑡 + 𝑝𝑖,𝑡𝐸 𝐸𝑖,𝑡, the demand equation for M is described as follows: 

(A.12)  𝑀𝑖,𝑡 = 𝐺(. )− 𝑝𝑖,𝑡𝐿 𝐿𝑖,𝑡 − 𝑝𝑖,𝑡𝐸 𝐸𝑖,𝑡 = �𝑎0 + 𝑎𝑇𝑇𝑖,𝑡 −
1
2
𝑎𝑙𝑙�𝑝𝑖,𝑡𝐿 �

2
− 1

2
𝑎𝑒𝑒�𝑝𝑖,𝑡𝐸 �

2
−

𝑎𝑒𝑙𝑝𝑖,𝑡𝐿 𝑝𝑖,𝑡𝐸 � ℎ(𝑌𝑖,𝑡) + 𝑎𝐾𝐾𝑖,𝑡−1 + 𝑎𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝑡−1 + �1
2
𝑎𝐾𝐾K𝑖,𝑡−1

2 + 1
2
𝑎𝐼𝐶𝑇𝐼𝐶𝑇ICT𝑖,𝑡−12 + 1

2
𝑎�̇��̇�𝛥K𝑖,𝑡

2 +
1
2
𝑎𝐼𝐶𝑇̇ 𝐼𝐶𝑇̇ 𝛥ICT𝑖,𝑡2 �

1
ℎ(𝑌𝑖,𝑡)

 

The entire system of equations to be estimated consists of the two quasi-fixed inputs (K and ICT) 
and three variable inputs (L, E, and M) presented in equations (A.8)–(A.12). The industry 
dummy variables and a stochastic error term is added to each equation in order to capture the 
industry fixed effects and random errors in cost minimization problem, respectively. The system 
of equations is non-linear in both parameters and variables; therefore, it needs to be estimated by 
using non-linear estimation methods. We thus estimate the model parameters by using the full-
information maximum likelihood (FIML) method with the SAS 9.3 application package. 
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Appendix B 

The Decomposition of TFP 

According to the lemma presented by Nadiri and Prucha (1990), the relationship between the 
derivatives of the production function F(V,X,ΔX,T) and those of the restricted cost function 
G(pV,X,ΔX,Y,T)=V1 + pv2V2 + pv3V3 can be expressed as follows: 

𝜕𝐹
𝜕𝑉1

=
1

𝜕𝐺 𝜕𝑌⁄    ,       
𝜕𝐹
𝜕𝑉2

=
𝑝𝑉2

𝜕𝐺 𝜕𝑌⁄    ,      
𝜕𝐹
𝜕𝑉3

=
𝑝𝑉3

𝜕𝐺 𝜕𝑌⁄    , 

𝜕𝐹
𝜕𝑋1,𝑡−1

= −
𝜕𝐺 𝜕𝑋1,𝑡−1⁄
𝜕𝐺 𝜕𝑌⁄    ,       

𝜕𝐹
𝜕𝑋2,𝑡−1

= −
𝜕𝐺 𝜕𝑋2,𝑡−1⁄
𝜕𝐺 𝜕𝑌⁄    , 

𝜕𝐹
𝜕Δ𝑋1,𝑡−1

= −
𝜕𝐺 𝜕Δ𝑋1,𝑡−1⁄
𝜕𝐺 𝜕𝑌⁄    ,       

𝜕𝐹
𝜕Δ𝑋2,𝑡−1

= −
𝜕𝐺 𝜕Δ𝑋2,𝑡−1⁄
𝜕𝐺 𝜕𝑌⁄    , 

𝜕𝐹
𝜕𝑇

= −
𝜕𝐺 𝜕𝑇⁄
𝜕𝐺 𝜕𝑌⁄  

where, v1,v2, and v3 are the variable inputs materials, labor, and energy, respectively, with their 
respective price  1, pv2

, and pv3. X1 and X2 denote the quasi-fixed inputs. 

By differentiating the production function F(V,X,ΔX,T) with respect to time and dividing by 
output, we can decompose output growth: 

(B.1)  𝛥𝑙𝑛ℎ(𝑌𝑖,𝑡) = 1
2
��𝜖𝐹𝐿(𝑡) + 𝜖𝐹𝐿(𝑡 − 1)𝛥𝑙𝑛𝐿𝑖,𝑡� + �𝜖𝐹𝐸(𝑡) + 𝜖𝐹𝐸(𝑡 − 1)𝛥𝑙𝑛𝐸𝑖,𝑡� +

�𝜖𝐹𝑀(𝑡) + 𝜖𝐹𝑀(𝑡 − 1)𝛥𝑙𝑛𝑀𝑖,𝑡� + �𝜖𝐹𝐾𝑡−1(𝑡) + 𝜖𝐹𝐾𝑡−1(𝑡 − 1)𝛥𝑙𝑛𝐾𝑖,𝑡−1� + �𝜖𝐹𝐼𝐶𝑇𝑡−1(𝑡) +
𝜖𝐹𝐼𝐶𝑇𝑡−1(𝑡 − 1)𝛥𝑙𝑛𝐼𝐶𝑇𝑖,𝑡−1� + �𝜖𝐹𝛥𝐾(𝑡) + 𝜖𝐹𝛥𝐾(𝑡 − 1)𝛥𝑙𝑛𝛥𝐾𝑖,𝑡� + �𝜖𝐹𝛥𝐼𝐶𝑇(𝑡) + 𝜖𝐹𝛥𝐼𝐶𝑇(𝑡 −
1)𝛥𝑙𝑛𝛥𝐼𝐶𝑇𝑖,𝑡�� + 1

2
[𝜆𝑌(𝑡) + 𝜆𝑌(𝑡 − 1)]… (26) 

Where, 𝜖𝐹𝐽 (J=L, E, M, Kt-1, ICTt-1,∆Kt, ∆ICTt) are the elasticities of output with respect to the 
inputs. The shadow price of Xt-1 and ΔXt and shadow cost Cs are defined as follows: 

(B.2)  𝐶𝑆 = 𝐺 + ∑ 𝑢𝑗𝑋𝑗,𝑡−1
2
𝑗=1 + ∑ 𝑢�̇�𝛥𝑋𝑗𝑡2

𝑗=1 ,𝑤ℎ𝑒𝑟𝑒 𝑢𝑗 = − 𝜕𝐺
𝜕𝑋𝑗,𝑡−1

 𝑎𝑛𝑑 𝑢�̇� = − 𝜕𝐺
𝜕𝛥𝑋𝑗

 

Total cost C, shadow cost Cs, and RTS ε imply that 𝐶𝑆 = ε(𝜕𝐺 𝜕𝐻⁄ )𝐻. Where H is a function in 
Y. From the relationship between the derivatives of the production function and those of the 
restricted cost function and from the decomposition of output growth, we thus obtain the 
following relations: 

(B.3)  𝛥𝑙𝑛𝐻𝑖,𝑡𝜏 = 𝜀 �
𝑝𝑖,𝜏𝐿 𝐿𝑖,𝜏𝛥𝑙𝑛𝐿𝑖,𝑡 + 𝑝𝑖,𝜏𝐸 𝐸𝑖,𝜏𝛥𝑙𝑛𝐸𝑖,𝑡 + 𝑝𝑖,𝜏𝑀𝑀𝑖,𝜏𝛥𝑙𝑛𝑀𝑖,𝑡 + 𝑢𝐾𝑖,𝜏𝐾𝑖,𝜏−1𝛥𝑙𝑛𝐾𝑖,𝑡−1
+𝑢𝐼𝐶𝑇𝑖,𝜏𝐼𝐶𝑇𝑖,𝜏𝛥𝑙𝑛𝐼𝐶𝑇𝑖,𝑡−1 + �̇�𝐾𝑖,𝜏𝐾𝑖,𝜏𝛥𝑙𝑛𝛥𝐾𝑖,𝑡 + �̇�𝐼𝐶𝑇𝑖,𝜏𝐼𝐶𝑇𝑖,𝜏𝛥𝑙𝑛𝛥𝐼𝐶𝑇𝑖,𝑡

� /

𝐶𝑖,𝜏𝑆 +𝜆𝑌(𝑡) 
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(B.4)  𝛥𝑙𝑛𝐻𝑖,𝑡 = 1
2
�∆𝑙𝑛𝐻𝑖,𝑡𝑡 + ∆𝑙𝑛𝐻𝑖,𝑡𝑡−1� where τ=t, t-1 

The growth rate of the cost-weighted index of aggregate inputs can be expressed as follows: 

(B.5)  ΔlnN𝑖,𝑡
𝜏 = [𝑝𝑖,𝜏𝐿 𝐿𝑖,𝜏𝛥𝑙𝑛𝐿𝑖,𝑡 + 𝑝𝑖,𝜏𝐸 𝐸𝑖,𝜏𝛥𝑙𝑛𝐸𝑖,𝑡 + 𝑝𝑖,𝜏𝑀𝑀𝑖,𝜏𝛥𝑙𝑛𝑀𝑖,𝑡 + 𝑞𝑖,𝜏𝐾 𝐾𝑖,𝜏−1𝛥𝑙𝑛𝐾𝑖,𝑡−1 +

𝑞𝑖,𝜏𝐼𝐶𝑇𝐼𝐶𝑇𝑖,𝜏−1𝛥𝑙𝑛𝐼𝐶𝑇𝑖,𝑡−1]/𝐶𝑖,𝜏 … (30), 

ΔlnN𝑖,𝑡 = ∆𝑙𝑛𝑁𝑖,𝑡𝑡 + ∆𝑙𝑛𝑁𝑖,𝑡𝑡−1 where τ=t, t-1 

  



29 
 

Appendix C 

Data Sources and Construction of the Variables 

The data used in this study are obtained from secondary data sources, mainly the harmonized 
Asia KLEMS growth and productivity accounts database (June 2012 release). The input 
measures include various categories of capital, labor, energy use, materials, ICT capital, and 
services inputs. Total hours worked is used for labor input. The materials and energy use inputs 
are computed from the proportion of each of these inputs from the national accounts. Energy use 
is defined as the aggregate of energy mining, oil refining, and electricity and gas products8. Real 
non-ICT capital stock (converted into 2005 prices) is taken from the Korea Industrial 
Productivity 2012 database9. The macroeconomic variables are taken from the Bank of Korea’s 
Economic Statistics System. 

In addition to the measures mentioned above, the variables in this study are export/import-
oriented industry, industry size, R&D intensity, and labor skills for the 30 sampled sectors (see 
table C.2). The rental rate of capital stock is defined as 𝑝𝐾 = 𝑝𝐾(𝛿 + 𝑟)(1− 𝜏), where pk is the 
chained Fisher price index of capital stock, δ is the physical capital deflator, r is the real discount 
rate, and τ is the corporate tax rate (assumed to be 30 percent). Table C.1 presents the definition 
of the variables used: 

Table C.1 
Definition of variables used 
 
Variable Formula Source 
Industry Code   
Year   
IFPV Price Index of Gross Output (Index, 

2005=100 for Korea 
Asia KLEMS Growth And Productivity Database 
for Korea 

IFPK Price Index of Capital Stock  = 
IFPICT Price Index of ICT Capital Stock  = 
IFPL Price Index of Labor  = 
IFPE Price Index of Energy  = 
IFPM Price Index of Materials  = 
PVV PVV = Gross Output In Current 

Prices  
= 

PKK Real Non ICT Capital Stock (In 
2005 Prices for Korea 

The Real Capital Stock is taken form the KIP 
Database for Korea. The physical share of non-
ICT Capital is calculated after subtracting the real 
share of ICT Capital. 

PICT Real ICT Capital Stock The share is taken from the KLEMS database, 
multiplied by the Real Capital Stock  

PLL Total Hours Worked By Employees 
(Millions) 

= 

PEE Cost of Energy Input (Million KW) = 

                                                           
8 For details about the KLEMS growth accounting database, see O'Mahony M, Timmer MP. Output, input and 
productivity measures at the industry level: The EU KLEMS database. The Economic Journal 2009;119; F374-F403. 
9 These data are publically available at: 
http://www.kpc.or.kr/eng/state/2012_kip.asp?c_menu=5&s_menu=5_4. 

http://www.kpc.or.kr/eng/state/2012_kip.asp?c_menu=5&s_menu=5_4
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PMM Cost of Materials Input (Million 
Dollars) 

= 

CDR Capital Depreciation Rate: The 
Average Depreciation Rate Of 
Machinery, Transport Equipment, 
and Non-Residential Structure 

 

ICTDR ICT Capital Depreciation Rate 
=0.248% 

The service life is 7 years for hardware, 5 years 
for software,11 years for telecommunication 
equipment and 30 years for other assets 
(aggregated as non-ICT assets. These service lives 
can be approximated by a geometric depreciation 
rate of 0.315% for hardware and software, 11% 
for telecommunication equipment and 7.5% for 
the non-ICT assets; 

CITR Corporate Income Tax Rate OECD Statistics 
LTGOVBR Long-Term Government Bond 

Interest Rate 
Bank of Korea 

INFLATR CPI Inflation Rate Bank of Korea 
RIR Real Interest Rate=LTGOVBR - 

INFLATR 
 

Constructed Variables 
PFPK (IFPK/100)*(RIR+CDR)*(1-CITR) Non-ICT Capital Rental Price Index 
PFPL IFPL/100 Labor Price Index 
PFPE IFPE/100 Energy Price Index 
PFPM IFPM/100 Materials Price Index 
PFPICT IFPICT/100 ICT Capital Price Index 
PFPV IFPV/100 Gross Output Price Index 
QK PKK/PFPK Quantity of Non-ICT Capital Stock 
QL PLL/PFPL Quantity of Labor Input 
QE PEE/PFPE Quantity of Energy Input 
QM PMM/PFPM Quantity of Materials Input 
QICT PICT/PFPICT Quantity of ICT Capital Input 
QGO PVV/PFPV Quantity of Gross Output 
DIFQK QK(t)-QK(t-1) Internal Non-ICT Capital Adjustment Cost (in 

terms of foregone output due to changes in quasi-
fixed factors 

DIFQICT QICT(t)-QICT(t-1) Internal ICT Capital Adjustment Cost 
NIFPKICT (IFPK/IFPM)*(CDR+RIR)*(1-

CITR) 
Normalized Real Rental Price of Non-ICT Capital 
by Price of Materials Input 

NIFPICT IFPICT/IFPM Normalized Price of ICT Capital by Price of 
Materials Input 

NIFPL IFPL/IFPM Normalized Price of Labor Input by Price of 
Materials Input 

NIFPE IFPE/IFPM Normalized Price of Energy Input 
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Table C. 2 
Industry Sectors Classification* 

ID Description Technology 
 Level 

Export 
Market 
Orientation 

R&D 
Intensity 

1 Agriculture, Hunting, 
Forestry and Fishing L L M 

2 Mining and Quarrying L L L 

3 Food , Beverages and 
Tobacco L M M 

4 Textiles, Leather and 
Footwear L I M 

5 Wood and Cork L L L 

6 Pulp, Paper, Printing and 
Publishing L M H 

7 Coke, Refined Petroleum 
and Nuclear Fuel H L H 

8 Chemicals and Chemical 
Products H I M 

9 Rubber and Plastics H I M 
10 Other Non-Metallic Mineral M M M 

11 Basic Metals and Fabricated 
Metal M M L 

12 Machinery, NEC H I H 

13 Electrical and Optical 
Equipment H I H 

14 Transport Equipment H I M 

15 Manufacturing NEC; 
Recycling H I M 

16 Electricity, Gas and Water 
Supply M L H 

17 Construction H I H 

18 

Sale, Maintenance and 
Repair of Motor Vehicles 
and Motorcycles; Retail Sale 
of Fuel 

L L L 

19 

Wholesale Trade and 
Commission Trade, Except 
of Motor Vehicles and 
Motorcycles 

L L L 

20 

Retail Trade, Except of 
Motor Vehicles and 
Motorcycles; Repair of 
Household Goods 

L L L 

21 Hotels and Restaurants L L L 
22 Transport and Storage M L L 

23 Post and 
Telecommunications H I H 

24 Financial Intermediation M L H 
25 Real Estate Activities L L L 

26 Renting of M&Eq and Other 
Business Activities L L L 

27 Public Admin and Defense; L L L 
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Compulsory Social Security 
28 Education L L H 
29 Health and Social Work H L L 

30 Other Community, Social 
And Personal Services L L L 

*The letters H, M, and L refer to High, Medium, and Low, respectively. 
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Table C.3 
FIML Parameter Estimates for Dynamic Factor Demand Model 

Parameter Estimate t Value Parameter Estimate t Value 

akk 
0.097*** 
(0.005) 17.8 al 

0.991*** 
(0.055) 18.08 

akoko 
1.952*** 
(0.12) 16.26 all 

-0.014** 
(0.006) -2.1 

ak 
-0.157*** 
(0.007) -22.15 ael 

0.014*** 
(0.004) 3.99 

alk 
-0.045*** 
(0.004) -12.74 ae 

0.851*** 
(0.029) 29.47 

aek 
-0.036*** 
(0.003) -12.98 aee 

-0.007*** 
(0.002) -3.53 

aii 
0.124*** 
(0.004) 32.41 a0 

0.948*** 
(0.033) 28.36 

aioio 
1.334*** 
(0.053) 25.23 at 

-0.002*** 
(0.001) 3.12 

ai 
-0.235*** 
(0.007) -33.69 Ωo 

0.663*** 
(0.012) 55.38 

ali 
-0.076*** 
(0.007) -11.37 Ω1 

0.011* 
(0.008) 1.37 

aei 
-0.060*** 
(0.004) -13.63 

Log Likelihood: 631.699 
 Note: standard deviations are between parentheses. 
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Table C.4 

Short- and Long-run Price and Output Elasticities in the South Korean Industries (1995)* 

Elasticitities Short Run Long Run Elasticitities Short Run Long Run 
εLpl -0.12 -0.052 εKpk 0 -0.3182 
εLpe 0.069 0.123 εKpICT 0 0 
εLpm 0.051 0.189 εICTpl 0 1.334 
εEpl 0.014 0.068 εICTpe 0 0.812 
εEpe -0.006 -0.037 εICTpm 0 -0.818 
εEpm -0.008 0.101 εICTpk 0 0 
εMpl 0.011 -0.288 εICTpICT 0 -1.328 
εMpe -0.008 -0.244 εKY 0.070 0.076 
εMpm -0.003 -0.605 εICTY 0.081 0.086 
εKpl 0 0.554 εLY 0.37 0.37 

εKpe 0 0.352 εEY 0.06 0.07 
εKpm 0 -0.588 εMY 0.08 0.06 

* εZ (Z=L,M,E,K,ICT) denotes the elasticity of factor Z with respect to pl (wage rate), pe(price of energy), pm (price 
of materials), pICT (rental price of ICT capital), and pk(rental price of non-ICT capital) 

 


