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Abstract

The accuracy of measuring credit risk directly decides on the interest

on credit, which has to be paid when raising a credit, and the amount

of capital to keep in reserve by a firm. The structural credit risk model

proposed by Merton (1974) lays the groundwork for the assessment of a

firm’s credit risk by its default probability. Doubtlessly, the volatility of

the firm’s equity represents the most sensitive parameter influencing the

default probability. By combining the Merton approach with conditional

volatility models, we empirically examine in this article that the speci-

fication of conditional volatility affects the probability of default and

therefor the credit rating. More precisely, we show on German stock

market data that financial market data properties (i.e. asymmetric re-

sponse of conditional volatility to return shocks and long-range depen-

dencies within the conditional volatility) may not be neglected within

the computation of credit risk. Moreover, the influence on the default

probability by the type of conditional distribution is pointed out.

Keywords: Credit risk, Merton model, conditional volatility, default probability,

stylized facts

JEL numbers: C22, C58, G24



1. Introduction

1. Introduction

The aim of credit rating of firms, which apply for a credit, consists in their clas-

sification in rating categories. The accurate measurement of credit risk is of prime

importance for the entire economic sector and potentiates credit ratings and rating

agencies: Creditors are interested in an adequate credit rating that reflects the deb-

tors’ reliability, while borrowing firms strive for a preferably low interest on credits

and a small amount of capital to keep in reserve, both of which are determined by

their credit risk.

For a long time the term credit risk featured only an abstract denotation. However,

this changed since the enacting of the Basel II regulations issued by Basel Committee

on Banking Supervision (2004) which mandatorily took effect in 2007 within the EU

countries. One of the three pillars of Basel II addresses the maintenance of regulatory

capital of credit institutes, between which in turn minimum capital requirements

are imposed on a bank subject to its credit risk. Within the regulations it is ruled

that corporate equity backing must depend on the probability of default of a firm.

Thereby, credit risk becomes a quantifiable value which allows the evaluation of

credit risk with quantitative methods.

The most popular approach to value credit risk in terms of probabilities of default

involves the asset value model proposed by Merton (1974) which represents a ge-

neralization of the option pricing theory originated by Black and Scholes (1973)

and Merton (1973). The Merton (1974) model was first commercially applied in an

adjusted form by Moody’s KMV which nowadays constitutes an industry standard

tool for credit rating.

The probability of default commonly depends on a multiplicity of parameters.

Among them the most sensitive parameter, which severely reacts to extreme shocks

and therefor is in the main focus of investor’s attention, is the volatility of stock

price which directly affects the asset volatility and thereby also the probability of

default. For this reason, it is of crucial interest to depict the stock volatility within

the model framework in the most adequate way. This issue, however, was paid on-

ly minor attention so far, albeit there are articles that refer to the importance of

the specification of volatility (see Leland (2006), Jacobs and Li (2008), Afik et al.

(2012)).

The well-known stylized facts refer to empirical findings in financial time series and

comprise (among others) volatility clustering and leptokurtosis of returns, a negative

correlation between past returns and future volatilities (the so-called leverage effect)

and long-range dependencies (see Sewell (2011) for a comprehensive overview about

characteristics of financial series). The presence of stylized facts within stock market

time series is undisputable and repeatedly proven even for German stock market

data (see e.g. Corhay and Rad (1994), Sun et al. (2007)).

Several works exist which recognize the special role of volatility in credit risk valua-

tion, but rather target to model the volatility as Itō stochastic process (see Heston

(1993) for the most popular stochastic volatility approach and different extensions

within the Merton framework such as Bu and Liao (2013)). Another strand of lite-
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2. The Merton Credit Risk Model

rature deals with implied volatilities, see e.g. Hull, Nelken and White (2004) where

the parameters of the Merton model are estimated from options on the firm’s stock.

However, while being considered when modeling stock market data, stylized facts

are widely disregarded within the computation of credit risk. The main objective

of this work is therefor to account for the existence of specific data characteristics

by combining the Merton credit risk framework with conditional volatility models

which were primary introduced by Engle (1982). By employing conditional volatility

models which use fractional integration, we allow shocks to die out at a hyperbolical

rate and take account for the possibility of long-range dependencies within the

conditional volatility equation as well. Furthermore, we disclose that the disrespect

of the leverage and long memory effect within the conditional volatility directly

affects the credit rating of a firm. This in turn provides practical relevance for the

consequential interest rate to be paid by the borrowing firm.

The remainder of this article is organized as follows. Section 2 presents Merton’s

structural approach to model corporate credit risk, defines all relevant variables and

determining factors of the underlying model and illustrates a method to compute

default probabilities. In Section 3 several conditional volatility models (the GARCH

class of models) are introduced, which account for different stylized facts on financial

market series. On the basis of German stock market data the introduced approaches

are combined in Section 4 to compute default probabilities and to quantify the risk

of neglecting properties of financial data. Section 5 concludes the article.

2. The Merton Credit Risk Model

Two approaches of credit risk modeling can be distinguished. The reduction ap-

proach on the one hand derives the credit risk directly from the market price of

corporate bonds, where the point of firm’s default can be considered as first jump

of a Poisson process which (default) intensity is aligned to the given market values

(see Duffie and Singleton (1994) for a more detailed overview of this model class).

Robert Merton’s (1974) credit risk model, on the other hand, which is grounded by

the option pricing model by Black and Scholes (1973) and Merton (1973), marks

the prominent of the structural model approach. The main issue of this approach

lies in the capital structure of a firm and in particular in the development of the

firm’s asset. Consequently, the possible default of the considered firm happens en-

dogenously and occurs if the firm’s value falls behind a fixed boundary. Another

advantage over the reduction approach, where the default is exogenous by design,

is therefor the economic justification of default.

To introduce the Merton model, a firm is considered which capital structure contains

an equity with a market value at time t of Et. Moreover, the firm holds liabilities of

constant face amountD, which consists only of a single debt taken up by a zero bond

with debt maturity T . By assumption, without any priorities the entire amount of

liabilities has to be released at T . 1 The firm defaults if the firm’s asset value At

1In addition, some of the usual assumptions in financial modeling are imposed, such as the absence
of transaction costs or taxes and a constant risk-free interest rate.
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2. The Merton Credit Risk Model

at maturity time t = T is too small to compensate its liabilities, i.e. AT < D.

Within this setting it is assumed that the firm is conveyed to the creditors when

the credit is raised, while the firm is transferred back to the holders if the asset

value is sufficiently large to repay the liabilities at T .

Thus, the holders have a payoff function given by

ΛH := max{0;AT −D}.

This is the same payoff structure as given by the long position of a European call

option within the Black-Scholes model, so the equity value can be considered as

a call option on the firm’s asset value, E(At, t). If the option is exercised by the

firm holders, D is payed and debts are cleared, whereas in the Merton setup D is

regarded as the Black-Scholes strike price. The firm’s holders then earn AT − D

for AT > D and zero otherwise which is equivalent to the non-exertion of the call.

Since all standards of a European call option are satisfied, the Black-Scholes formula

to determine the value of a European call option to describe the specified setup.2

Let τ = T − t be the remaining time to maturity and Φ(·) the N (0; 1) cdf. Then,

according to Black-Scholes,

E(At, t) = At Φ(v1)−D exp(−µA τ)Φ(v2) (1)

depicts the equity value depending on t and the respective firm’s asset At, where

v1 =
ln
(
At

D

)
+

(
µA + 1

2σ
2
A

)
τ

σA
√
τ

(2)

and

v2 = v1 − σA
√
τ . (3)

The parameters µA ∈ R and σA > 0 arise from the asset value process {At}t∈R≥0

which follows (corresponding to Black-Scholes stock value) a Geometric Brownian

Motion, solving the stochastic differential equation

dAt = µAAt dt+ σAAt dWt, (4)

where {Wt}t∈R≥0
is a standard Wiener process and µA depicts the expected return

on assets. The diffusion parameter σA > 0 covers the dimension of volatility of the

2The situation from the creditors point of view determines a payoff of

ΛC := min{D;AT } = D −max{0;D −AT },

i.e. D for AT > D or AT if the firm defaults. If one takes a look at the latter term, it is quiet
interesting that max{0;D −AT } is a measure for the credit risk of the creditors. It is zero for
the case of a non-defaulting firm and becomes D − AT for the case of default. As this depicts
the payoff structure of a put option, the Black-Scholes formula for European put options can
either be used to calculate the credit risk.
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2. The Merton Credit Risk Model

asset value. By Itō’s Lemma the solution process for SDE (4) is given by

At = A0 exp

(
(µA − 1

2
σ2
A) t+ σAWt

)
.

The credit risk can be derived from the Black-Scholes framework. A key figure for

the valuation of the creditor’s risk is the probability of the firm’s default (PD) which

occurs if the credit cannot fully be repaid at T . If one takes a look at the Gaussian

cdf Φ(v2), it is obvious that this specifies the probability for full repayment, i.e. the

firm does not default. Hence,

PD := P (AT < D) = Φ(−v2) = Φ

 ln
(

D
At

)
−

(
µA − 1

2σ
2
A

)
τ

σA
√
τ

 (5)

denotes the probability of default by time T , where D
At

is the debt financing ratio.

Intuitively, increasing the debt financing ratio (thus meaning a higher amount of

liabilities and a smaller asset value, resp.) leads to an increasing PD. Since the GBM

At is log normal distributed, it follows ln(At) to be Gaussian. Thus, (µ − 1
2σ

2)τ

depicts the time-dependent expected value of the asset value, while σA
√
τ is the

time-dependent asset volatility, increasing the probability of default for a high value

of σA.

Within the Black-Scholes framework, E(At, t) depicts the option values to be com-

puted, depending on observable stock price At. In contrast, the unobservable varia-

ble within the Merton approach is the asset value At (and thereby also its volatility

σA), while the equity value Et is known by the stock price here.

Since both variables are employed in calculating the PD (5), a system of equations

depending on both variables needs to be solved prior to the computation of (5).

Using Itō’s Lemma for the equity value E(At, t) the equation

σE Et =
∂E

∂A
At σA

holds (see Jones et al. (1984)), where σE is the instantaneous volatility of equity at

time t. The derivative ∂E
∂A equals the European call option delta in the Black-Scholes

framework. Thus,

σE = Φ(v1)
At

Et
σA. (6)

forms the first part of the system of equations. Moreover, the Black-Scholes type

formula for the equity value given by (1), (2) and (3) is an equation in At and σA.

Solving (1) (in conjunction with (2) and (3)) and (6) for At and σA, the unobservable

values can be obtained to then compute the probability of default (5). To solve

this high-grade nonlinear system of equations the parameters Et, σE , µA and the

remaining time to maturity τ are needed. Usually, the firm’s stock price is used to

model the equity value of the firm.
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3. Conditional Volatility Modeling

The accurate modeling of the stock price volatility is of crucial relevance for the

valuation of credit risk since high volatilities give rise to a high possibility of heavy

amplitudes of the stock price process. Accounting for the stylized facts of financial

time series, i.e. heteroskedastic volatilities along with volatility clustering, heavy tai-

led distributions of returns, asymmetric response of conditional volatility to return

shocks (leverage effect) and the existence of long memory, the class of Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) models should be employ-

ed to model the stock price volatility.

3.1. Symmetric and Asymmetric GARCH Models

The GARCH class of models originates Engle (1982) by introducing the feasibility

of separate modeling of a process volatility, which is supposed to be a function of

p past squared innovations, ε2t−1, . . . , ε
2
t−p. Employing Engle’s ARCH model, Bol-

lerslev (1986) remarked that a high lag order p cannot be avoided to obtain a good

fit. Generalizing the work of Engle (1982), Bollerslev (1986) then introduced the

GARCH model which allows next to the past squared innovations the past varian-

ces to influence the instantaneous volatility.

Let {Rt}t∈N0 be the mean process of a time series and assume {Rt} to follow

some ARMA(k, l) type process. Furthermore, let {Ft}t∈N0 , Ft = σ(Rs, s ≤ t), be

the filtration generated by {Rt}. The innovation process {εt}t∈N then follows a

conditional distribution,

εt|Ft−1 ∼ iid(0, σ2
t ), (7)

depending on the information gathered by the past observations of the mean process.

The conditional volatility of the residual process is then given by

σ2
t = ω +

p∑
i=1

αi ε
2
t−i +

q∑
j=1

βj σ
2
t−j , (8)

representing the GARCH(p, q) model, where ω > 0, αi ≥ 0, i = 1, . . . , p and βj ≥
0, j = 1, . . . , q are imposed to ensure positivity of the conditional variance. However,

Nelson and Cao (1992) show that positivity of (8) can be ensured without the non-

negativity restrictions of the coefficients. The GARCH model features the stylized

fact of volatility clustering as high values of elapsed conditional volatilities increase

the probability to observe a high present conditional volatility. Transforming the

GARCH(p, q) into its ARCH(∞) representation it can easily be shown that an

innovation observed infinitely long ago still influences the instantaneous variance

by t by only include p + q + 1 model parameters. Bollerslev (1986) shows that (8)

is weakly stationary for
∑p

i=1 αi +
∑q

j=1 βj < 1.

Since the past innovations influence the current volatility by its squared value,

both negative and positive innovations have the same influence on (8). However,

Black (1976) remarks that negative innovations cause a higher influence on the
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3. Conditional Volatility Modeling

conditional volatility than positive ones. This is commonly known as the leverage

effect on financial markets which is reasoned by a higher risk of default seized by

the stock owners after a decreasing stock price, as the liabilities D are constant and

the ratio D
At

increases. This leads to a higher fluctuation of the stock price and a

phase of high volatilities.

Ding, Engle and Granger (1993) generalize the GARCH model by accounting for

the direction of impact of the innovations. The assumption of the conditional va-

riance, i.e. the squared volatility, to be the best method of modeling the conditional

volatility is renounced and replaced by the volatility to the power of δ ∈ R≥0. The

Asymptotic Power ARCH (APARCH) of order (p, q, γ, δ) is then expressed by eq.

(7) and the corresponding asymmetric conditional volatility equation

σδ
t = ω +

p∑
i=1

αi (|εt−i| − γi εt−i)
δ +

q∑
j=1

βj σ
δ
t−j . (9)

The restrictions for the parameters αi and βj , i = 1, . . . , p, j = 1, . . . , q are abided

while γi ∈ (−1; 1) , i = 1, . . . , p is imposed on the leverage parameter again to ensure

positivity of (9). Besides, δ > 0 is required. For γi > 0 negative innovations have

a higher influence on the volatility than positive innovations (leverage effect). The

power parameter δ describes a Box-Cox transformation of the volatility σt. Note

that the GARCH model is nested by the APARCH model for δ = 2 and γi = 0∀i.

For δ = 2 it is assumed that the conditional volatility can be depicted best by the

second centralized moment of {εt}, without neglecting the leverage effect. This case

is covered by the GJR-GARCH introduced by Glosten et al. (1993), which restricts

δ = 2 within the APARCH conditional volatility (9). All parameter restrictions stay

the same as for the APARCH. Modeling a return series by GJR(p, q, γ), however,

might rather be adequate if the innovations {εt} follow a conditional Gaussian

distribution. Duan et al. (2006) employ the GJR to represent the volatilities in

option price models.

3.2. Long Memory GARCH Models

Another property belonging to the well-known stylized facts on financial markets

comprises the existence of a long term structure of dependence, i.e. innovations

which occurred way back in the past still have a significant impact on present

values of the process.

Within the mean equation the ARFIMA(k, d, l) model by Granger and Joyeux

(1980) accounts for the long term structure by introducing the memory parame-

ter d which represents the degree of persistence. Here, d is no longer restricted to

be a natural number, but can embrace the set of real numbers. However, Harris

and Nguyen (2011) refer to lots of empirical evidence for a more slowly declining

ACF of the past squared returns than a GARCH model, which is characterized

by a geometrical decay of the ACF, could catch. Thus, modeling the long memory

of the stock price only within the mean equation could not be sufficient as condi-

tional volatilities are possibly influenced by past innovations as well affecting the
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3. Conditional Volatility Modeling

instantaneous fluctuation of the stock price.

When generalizing the GARCH model to allow for long term dependencies within

the conditional volatility equation, it is practical to rewrite the GARCH conditional

volatility equation (8) by its ARMA(p,max(p, q)) in squares form 3

(1− α(L)− β(L)) ε2t = ω + (1− β(L)) (σ2
t − ε2t ) (10)

using the GARCH lag polynomial notation, where

α(L) =

p∑
i=1

αi L
i and β(L) =

q∑
j=1

βj L
j

as well as Lσ2
t = σ2

t−1 and Lε2t = εt−1, resp. An alternative definition of the condi-

tional variance of the GARCH (8) is then given by

σ2
t =

ω

1− β(L)
+ Θ(L)εt, (11)

where Θ(L) := 1 − 1−α(L)−β(L)
1−β(L) . Note that each of the models introduced in the

following are firstly defined by the corresponding ARMA in squares representation

for constructional reasons. Define the lag polynomial of GARCH coefficients

φ(L) = (1− α(L)− β(L))(1− L)−d (12)

to obtain the Integrated GARCH (IGARCH) introduced by Engle and Bollerslev

(1986) for d = 1 with

φ(L) (1− L)ε2t = ω + (1− β(L))(σ2
t − ε2t ).

In contrast to GARCH, the IGARCH comprises the possibility of a unit root for 1−
α(L)−β(L) = 0. Nelson (1990) shows that the IGARCH unconditional volatility is

infinite, while the first squared differences are stationary. Thus, the IGARCH covers

infinite persistence which comprises, however, commonly no property of financial

series.

Baillie et al. (1996) provide the Fractionally Integrated GARCH (FIGARCH) which

generalizes the degree of integration for the squared innovations to real numbers,

resulting in

φ(L) (1− L)dε2t = ω + (1− β(L))(σ2
t − ε2t ) d ∈ R (13)

where φ(L) is defined by (12) for d ∈ R. By transposition of (13) and definition of

ω̃ =
ω

1− β(L)

ψ(L) = 1− φ(L)

1− β(L)
(1− L)d

3The order max(p, q) results from the dependence of the squared innovations from the GARCH
coefficients.
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3. Conditional Volatility Modeling

the explicit form of the FIGARCH conditional volatility ends in

σ2
t = ω̃ + ψ(L) ε2t , (14)

where d ∈ [0; 1] and ω̃ > 0 ensure positive values of conditional volatility. Further

non-negativity restrictions are derived by Bollerslev and Mikkelsen (1996). Note that

(14) depicts an ARCH(∞) representation with lag polynomial ψ(L) =
∑∞

i=1 ψi L
i.

For d = 0 and d = 1 the FIGARCH results in the GARCH and IGARCH, respec-

tively.

Robinson (1991) uses the dissolved lag polynomial representation of ψ(L) to show

that the coefficients ψi for d ∈ (0; 1) decrease hyperbolically if ∀i : ψi ≥ 0 holds.

Baillie et al. (2007) remark that for the relevant interval of d the series is sufficiently

flexible to allow for slower hyperbolic rates of decay of the ACF.

However, the unconditional variance of the FIGARCH

E[ε2t ] =
ω̃

1− ψ(1)
(15)

is infinite for values of d ∈ (0; 1). By developing the arguments of Nelson (1990)

it is alleged by Baillie et al. (1996) that despite the lack of weakly stationarity

the FIGARCH process is strongly stationary and ergodic. For a prove see Caporin

(2002). Kazakevicius and Leipus (1999) formulate a necessary condition for weak

stationarity in the existence of summable ψi coefficients.

It has to be remarked that the properties of d varying in the range of [0; 1] is con-

trary to the modeling of the mean equation with ARFIMA since for the FIGARCH

memory becomes shorter when d is increasing. Consistently, the lower the value of d

the longer the memory. Davidson (2004) refers this property to be counterintuitive

as for the transition from d→ 0 to d = 0 memory jumps from infinite long memory

to the short memory GARCH case and, respectively, by transition from d → 1 to

d = 1 from short memory to infinite persistence (IGARCH). The reason for this

finding is caused by the lag operator (1 − L) since it is connected to the squared

residuals in the FIGARCH case (see (13)), while in the ARFIMA model the lag

operator is tied to the process values.

Allowing again for asymmetric effects without neglecting long memory the features

of the APARCH and the FIGARCH are combined within the Fractional Integrated

Asymmetric Power ARCH (FIAPARCH) model developed by Tse (1998). The pa-

rameters (ω, p, d, q, γ, δ) determine the model volatility which is given analogue to

the ARMA in squares representation of the FIGARCH (13) by

φ(L) (1− L)d (|εt| − γεt)
δ
= ω + (1− β(L))

(
(|εt| − γεt)

δ − εδt
)
. (16)

In analogy to the FIGARCH the explicit form of the conditional volatility can be

written by

σδ
t = ω̃ + ψ(L) (|εt| − γεt) ,

where δ > 0, ∀i ∈ 1, . . . , q : γi = γ ∈ (−1; 1), d ∈ [0; 1], ω̃ = ω(1 − β(L))−1,

8



3. Conditional Volatility Modeling

φ(L) = (1−α(L)− β(L))(1−L)d and ψ(L) = 1−
[
ϕ(L)(1− L)d(1− β(L))−1

]
still

to be the summarized back-shifted ARCH(∞) coefficients. Values of d varying in

[0; 1] ensure hyperbolic decreasing ACFs and strong stationarity again (see Degian-

nakis (2004)). Correspondingly, weak stationarity is not achieved for d ∈ (0; 1). The

parameter choice γ = 0 an δ = 2 results in the FIGARCH alternative. Note that

the FIAPARCH representation is exclusively able to picture the most frequently

arising stylized facts within a sole model: heavy tailed distribution of returns, vola-

tility clustering, long memory and asymmetric impacts of random shocks. A proof

of weak stationarity, however, fails to appear so far for the FIAPARCH as well.

Combining the advantages of weak stationarity of the GARCH on the one hand, and

the ability of modeling long memory of the FIGARCH on the other hand, Davidson

(2004) provides the Hyperbolic GARCH (HYGARCH) model. By introducing the

HYGARCH parameter η to the lagged squared residuals through the linear combi-

nation ((1−η)+η (1−L)d)ε2t the ARMA in squares representation of the FIGARCH

(13) results in

φ(L)(1 + η[(1− L)d − 1])ε2t = ω + (1− β(L))(σ2
t − ε2t ).

Thus, the explicit form of the conditional variance of the HYGARCH(p,d,q,η) is

given by

σ2
t = ω̃ + Ξ(L)ε2t , (17)

where d ∈ [0; 1], η ∈ R≥0, φ(L) = (1−α(L)− β(L))(1−L)d, Ξ(L) = 1− [φ(L)(1 +

η[(1− L)d − 1])(1− β(L))−1] and ω̃ = ω(1− β(L))−1. Analogue to the FIGARCH

case, (17) represents the ARCH(∞) form of the HYGARCH, while Ξ(L)ε2t expresses

the infinite sum of the lagged squared residuals (with coefficients Ξj , j = 1, . . .).

Under certain parameter restrictions the HYGARCH achieves weak stationarity

and therefor existence of variance.

Theorem. The HYGARCH provides weak stationarity if both 1− α(1)
1−β(1) > 0 and

η ∈ [0; 1) holds.

Proof. Firstly, it is to show that HYGARCH can be decomposed into a GARCH

and a FIGARCH fraction. In continuance of notation (see (11),(14) and (17))

Θ(L) = 1− φ(L)

1− β(L)

ψ(L) = 1− φ(L)(1− L)d

1− β(L)

Ξ(L) = 1− ϕ(L)(1 + η((1− L)d − 1))

1− β(L)

denote the ARCH(∞) lag polynomials for GARCH, FIGARCH and HYGARCH,

respectively, where for Θ(L) d = 0 holds. Then it easily follows for Ξ(L) by adding

9



3. Conditional Volatility Modeling

an absolute zero

Ξ(L) = η − η
ϕ(L)(1− L)d

1− β(L)
+ (1− η)− (1− η)

ϕ(L)

1− β(L)

= η

(
1− ϕ(L)(1− L)d

1− β(L)

)
+ (1− η)

(
ϕ(L)

1− β(L)

)
= η ψ(L) + (1− η)Θ(L).

Apparently, the bigger the value for η in this linear combination, the higher the in-

fluence of the long memory FIGARCH part and the less the short memory GARCH

part.

Secondly, restrictions must be derived for which the process assures weak stationa-

rity. Reminding of E[εt] = 0∀t and Cov(εt, εt−j) = 0 ∀t ∀j ∈ N in the general case

for the GARCH class of models only E[ε2t ] =
ω̃

1− Ξ(1)
< ∞ is left to prove. For

this purpose consider

Ξ(1) =
∞∑
i=1

Ξi = η ψ(1) + (1− η)Θ(1)

and investigate the ARCH(∞) polynomials separately for covariance stationarity.

Clearly, the GARCH polynomial provides weak stationarity if Θ(1) < 1 is fulfilled

(which is an alternative definition of the more common condition φ(1) = 1−α(1)−
β(1) > 0 from the ARMA representation of GARCH). However, since FIGARCH

is not able to provide weak stationarity ψ(1) = 1 for d ∈ (0; 1) must hold, see (15).

Thus,

η + (1− η)Θ(1) < 1

is fulfilled, if

Θ(1) = 1− 1− α(1)− β(1)

1− β(1)
=

α(1)

1− β(1)
< 1 (18)

and η ∈ (0; 1) constitutes a linear combination as mean between GARCH and FIG-

ARCH polynomial. Trivially, this is also true for η = 0 (GARCH case). Rewriting

(18) the parameter restrictions for the HYGARCH to be weak stationary result in

1− α(1)

1− β(1)
> 0 and η ∈ [0; 1). (19)

�

Conrad (2010) points out that a weak stationary HYGARCH under small modi-

fications is possible to be obtained even for η ≥ 1. Also note that an asymmetric

version of HYGARCH, the HYAPARCH model, is provided by Dark (2006), but is

of less practical relevance.
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4. Computing Default Probabilities

4.1. Data Description and Estimation Procedure

In this section we want to bring together both the ideas of Merton’s credit risk

model and conditional volatility modeling with the GARCH class of models in

order to compute probabilities of default (PD’s) for a one-year horizon. We therefor

consider daily stock data over a period from July 2002 to September 2007 of 24

firms which were part of German DAX30 at that time, i.e. we observe 1370 trading

days for each of the firms (with the exception of Lanxess which stock market launch

took place by February 2005, leaving only 695 observations here). Appendix A.1

provides the plots of the log return series. In contribution of better understanding

the procedure can be abbreviated as follows: The first step comprises the estimation

of different models of the GARCH class (GARCH, APARCH, GJR, FIGARCH,

FIAPARCH, HYGARCH) for the log-differences of the stock price which represents

the proportional equity value. The DGP which describes the data best is then

selected by the Hannan-Quinn information criterion. Subsequently, data for the

selected model are simulated over the relevant horizon of one year from which the

volatility parameter is estimated. Again, this parameter is needed to solve the non-

linear system of equations represented by (1) and (6) in order to finally compute

the PD’s for firm i given by (5),

PDi = Φ

 ln
(

Di

At,i

)
−

(
µA − 1

2σ
2
A,i

)
τ

σA,i
√
τ

 . (20)

Note that µA may not be mixed up with the risk-free interest rate r, but denotes the

expected return on assets which has to be determined separately. Consistent with

Campbell et al. (2008) we use a constant market risk premium µA = r+0.06, where

r = 0.04 is the effective key interest rate set by ECB in June 2007. Several other

approaches to determine µA exist, some of them using the CAPM model (see Afik

et al. (2012) for an overview), while Bharath and Shumway (2008) set the expected

return assets equal to stock return over the preceding year. The debt capital per

share can be extracted from the annual business reports. However, it might fall

short of considering only the short term debt as inauspicious developments could

the firm require to serve long term credits preferentially. Most of recent studies use

the KMV approach devised by Bohn and Crosbie (2003), where the default barrier

is composed of the short term debt plus half of the long term debt, see e.g. Bharath

and Shumway (2008), Campbell et al. (2008), Duffie et al. (2007).

4.2. Results

For the estimation of the AR-GARCH models, let Rt = ln
(

Et

Et−1

)
be the log return

at time t of the stock prices Et. The mean equation of all models estimated in

the following are represented by a simple AR(1) process, Rt = ϱRt−1 + εt, where

εt = σtνt with νt ∼ iid(0; 1) ∀t and σt the conditional variance equation of the

suitable model. The usage of AR(1) for the mean can describe the observed log

11
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returns well and is in line with many other work on modeling finance data with AR-

GARCH (e.g. Ferenstein and Gasowski (2004)). Furthermore, in order to compare

the effect on PD’s resulting from the applied conditional distribution we employ

both a Gaussian and a student-t distribution for all firms and models.

Different orders (p, q) for the GARCH part of all models were applied in the esti-

mation process, but for the very most of cases the setting p = q = 1 outperforms all

other combinations. Thus, only the models of GARCH order (1, 1) with coefficients

α := α1 and β := β1 are reported.

The full estimation results for the GARCH class of models both for assuming a

Gaussian and a student-t conditional distribution can be found in Appendix A.2.

It is not surprising that a simple GARCH model is selected for only one firm (this

being the Siemens stock which is commonly known for its stability and insensitivity

for cycles), since typical properties of financial data are suppressed though. For the

selected models we mostly observe highly significance for those parameters that

indicate for specific stylized facts, i.e. γ for the leverage effect (APARCH, GJR), d

for long memory (FIGARCH) or both γ and d (FIAPARCH), every time the model

features the effect in question. These results confirm that the well-known stylized

facts as well have to be accounted when modeling the conditional variance of stock

market data and not only within the mean. Notably, for the Gaussian conditional

distribution the HYGARCH parameter η is not significantly different from 1 in

nearly each case, meaning that the model falls back into the FIGARCH case which

is nested for η = 1. Assuming the student-t conditional distribution η clearly fails

to be located within the interval that assures weak stationarity (see (19)). Thus,

the HYGARCH in general seems not to be adequate to model stock market data.

Table I provides the selected models and the corresponding PD’s for each firm when

assuming a Gaussian and a Student-t conditional distribution within the volatility

equation, respectively. In the majority of cases the selected models for both condi-

tional Gaussian and Student-t distribution are equal. For only nine firms the best

performing model is different, with only a marginal discrepancy for two of these

firms as APARCH and GJR measure essentially the same effect. In contrast, for

only one case a rough deviance (APARCH vs. FIGARCH measuring different ef-

fects for Dt. Telekom) is observed. Note that the Student-t selected models always

outnumber the Gaussian selected model by maximizing the HQIC which is in line

with the findings by Corhay and Rad (1994).

In most cases the computed default probabilities are slightly higher for a student-

t conditional distribution than for a Gaussian, which can especially be compared

when the selected models for one and the same firm are equal. Under identical con-

ditions otherwise, this finding appears to be intuitive when comparing Gaussian and

heavy tailed innovations. For three firms we observe a higher PD for the Gaussian

conditional distribution. It can also be derived from the results that for those mo-

dels which feature long memory tend to yield higher values of PD (of course, under

the assumption that equity quotas for two firms are nearly on an equal level, e.g.

Henkel and Lanxess, Bayer and Infineon, Continental and RWE).

12
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Firm
Sel. Model & PD

Firm
Sel. Model & PD

Gaussian Student-t Gaussian Student-t

Adidas
FIAPARCH FIGARCH

E.ON
FIGARCH FIAPARCH

0.00004 0.00006 0.00098 0.00095

Allianz
FIAPARCH FIAPARCH

Fresenius MedCare
FIGARCH FIAPARCH

0.00000 0.00000 0.00008 0.00014

BASF
APARCH APARCH

Henkel
FIAPARCH FIAPARCH

0.00015 0.00016 0.00013 0.00014

Bayer
GJR GJR

Infineon
FIGARCH FIGARCH

0.00005 0.00003 0.00007 0.00011

BMW
FIGARCH FIGARCH

Lanxess
GJR GJR

0.00075 0.00084 0.00009 0.00009

Continental
FIAPARCH FIAPARCH

Linde
GJR APARCH

0.00029 0.00037 0.00018 0.00006

Daimler
FIGARCH FIGARCH

RWE
GJR GJR

0.00032 0.00032 0.00025 0.00031

Dt. Bank
FIAPARCH GJR

SAP
FIGARCH FIAPARCH

0.00104 0.00117 0.00000 0.00000

Dt. Börse
APARCH GJR

Siemens
GARCH GARCH

0.00037 0.00243 0.00012 0.00017

Dt. Lufthansa
FIAPARCH FIGARCH

ThyssenKrupp
FIGARCH FIGARCH

0.00043 0.00050 0.00045 0.00048

Dt. Post
FIGARCH FIGARCH

TUI
FIGARCH FIGARCH

0.01880 0.01933 0.00047 0.00048

Dt. Telekom
APARCH FIGARCH

Volkswagen
FIGARCH FIGARCH

0.00070 0.00072 0.00052 0.00050

Table I: Selected models and estimated PD’s for DAX30 firms for Gaussian

and Student-t conditional distribution, respectively.

The next question arising for consideration is whether there is an effect on PD’s

when not the best model (selected by HQIC) is used to model the conditional vola-

tility, but a “wrong” model. For this purpose we employ the simple GARCH(1,1),

insinuating to discount special stylized facts such as leverage and long memory ef-

fects, one of which is found in nearly all data. The comparison between the selected

and the GARCH model is exemplifically elaborated for the assumption of a Gaussi-

an conditional distribution. Table II provides the PD’s computed both for the actual

model and under the assumption of GARCH innovations and its corresponding one

year credit ratings as awarded by Standard & Poor’s.

For those firms for which an APARCH/GJR was selected by HQIC the PD’s tend

to be higher when the “wrong” GARCH is used to model the conditional volatility

(i.e. BASF, Bayer, Dt. Börse, Dt. Telekom, Lanxess, Linde, RWE). This effect is

rather reverse for the models which account for long memory, even if not as distinct

as for those which cover asymmetric reaction. This tendency might be explained

by the fact that fractionally integrated conditional volatility models do not feature

weak stationarity and therefor are prone to be explosive, although the very most of

the estimated models are very mildly explosive if at all.
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Firm
PD & Rating

Firm
PD & Rating

Selected Model GARCH Selected Model GARCH

Adidas
0.00004 0.00001

E.ON
0.00098 0.00085

AAA AAA A- A-

Allianz
0.00000 0.00000

Fresenius MedCare
0.00008 0.00000

AAA AAA AAA AAA

BASF
0.00015 0.00017

Henkel
0.00013 0.00005

AA+ AA+ AA+ AAA

Bayer
0.00005 0.00005

Infineon
0.00007 0.00001

AAA AAA AAA AAA

BMW
0.00075 0.00069

Lanxess
0.00009 0.00010

A A AAA AA+

Continental
0.00029 0.00020

Linde
0.00018 0.00027

AA AA AA+ AA

Daimler
0.00032 0.00034

RWE
0.00025 0.00031

AA- AA- AA AA-

Dt. Bank
0.00104 0.00099

SAP
0.00000 0.00000

A- A- AAA AAA

Dt. Börse
0.00037 0.00258

Siemens
0.00012

-
AA- BBB AA+

Dt. Lufthansa
0.00043 0.00050

ThyssenKrupp
0.00045 0.0023

A+ A A+ AA

Dt. Post
0.01880 0.01506

TUI
0.00047 0.00037

BB- BB A+ AA-

Dt. Telekom
0.00070 0.00070

Volkswagen
0.00052 0.00058

A A A A

Table II: Influence of “wrong” model on PD and S&P 1yr rating using Gaussian conditional

distribution.

The impact resulting from the employment of the wrong model seems not to be

decisive at first view. However, taking into consideration that highest graded credit

ratings are awarded only within an PD interval of [0.0%; 0.1%] and that a stock is

already labeled to be speculative for a PD in excess of 0.94% (see Appendix A.3

for an overview), the consequence from neglecting occurrent effects in stock data

becomes more evident. At least for nearly 40% of the firms the disregard of special

characteristics of financial data entails a change of credit rating. Four of these show

a positive chance of rating (Dt. Post, Henkel, ThyssenKrupp, TUI), while five firms

are classified worse (Dt. Börse, Dt. Post, Lanxess, Linde, RWE). The degree of

discrepancy yields one rating category each, with the exception of ThyssenKrupp

(improvement of two categories) and Dt. Börse, for which the degradation of five

rating categories is striking. Certainly, all of these results come off by means of the

S&P rating categorization - using a different classification of credit rating would

possibly bring out different rating migrations, as a result of which different firms

could be affected.

For the sake of completeness the empirical examination also involved constant stock

price volatilities estimated from an AR(1) process. All of the results, however, yield

significantly higher volatilities than under the assumption of conditional volatility

leading to higher PD’s in consequence. This finding might be an explanation for the

gap between the computed PD’s and corresponding credit ratings and the actual

rating of the firms in question, which tend to be worse than expectable under

conditional volatility.
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5. Conclusion

We combine the structural credit risk model proposed by Merton (1974) and the

GARCH conditional volatility class of models to compute default probabilities in

consideration of occurrent characteristics of stock market data. This can be achieved

by employing conditional volatility models, which account for leverage effect and

the existence of long memory, while credit risk is depicted by the probability of

default of a firm subject to the Basel II regulations.

Applying this method to data on firms of German stock market, we thereby find

strong evidence for the adequacy of separate conditional volatility modeling as near-

ly all data sets contain leverage effects and/or long memory. One considered condi-

tional volatility model using fractional integration (HYGARCH), whose weak sta-

tionarity is proved previously, turns out to be inappropriate to model stock market

data.

Computing one year default probabilities, slightly higher PD’s result when assuming

a conditional student-t distribution compared to a Gaussian conditional distributi-

on. To derive implications regarding the risk of neglecting special stylized facts, we

assume that simple GARCH models are preferred over the actually selected models

and obtain distinct credit ratings for one and the same firm in a considerable num-

ber of cases. The main finding therefor comprises the fact that the occurrence of

specific stylized facts must not only be regarded within the mean equation of stock

price series when computing PD’s, but within the conditional volatility as well.

Practical relevance arises directly from the high share of discrepant ratings resulting

from the employment of an inferior model since credit ratings provide an indicating

device for a firm’s reliability and the consequential interest rate, which has to be

paid out when raising a credit.

The computation of credit risk is a highly extensive topic as there are plenty of

potential adjustable screws to rotate on. Along these lines, it would be reasonable to

also implement conditional volatility within some of the large number of extensions

of the Merton approach. E.g., the first passage class assumes a time dependent

exogenous default barrier where default is possible to appear as stopping time before

expiration (see Black and Cox (1976)), while Longstaff and Schwartz (1995) suggest

the expected return to follow a stochastic process, to name but a few. Additionally,

a more detailed empirical investigation which involves the influence of conditional

volatility on mid and long term credit PD’s would be important to determine the full

credit risk a firm has to bear. The treatment of these issues would be an interesting

task for future research.
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A.1. Time Series Plots
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A.2. Estimation Results for GARCH model class

Description: - All estimations for the GARCH constants do have actually positive values with digits

different from zero at least the from sixth position after decimal point on. - (∗∗∗), (∗∗), (∗) indicate

significance of the coefficient to 1%, 5% and 10% level, respectively. - Testing H0 : ln(η) = 0 for

the HYGARCH parameters. - Highest HQIC values written in bold indicating the corresponding

selected model. - ncr: No convergence reached for this model.

A.2.1. Choose Gaussian conditional distribution

Adidas GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0444 0.0471 0.0470 0.0433 0.0478 0.0433

ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

d - - - 0.1385∗∗∗ 0.2125∗∗∗ 0.0012∗∗

α 0.0698∗ 0.0694∗∗∗ 0.0399 0.2409 0.1141 0.2186

β 0.8085∗∗∗ 0.8658∗∗∗ 0.8113∗∗∗ 0.3072 0.2592 0.2480

γ - 0.5291∗∗ 0.0752∗ - 0.7262∗∗ -

δ - 1.2496∗∗∗ - - 0.8862∗∗∗ -

η - - - - - 4.5396∗∗∗

HQIC 5.647 5.650 5.649 5.651 5.656 5.649

Allianz GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0564∗∗ 0.05668∗ 0.0567∗∗ 0.0579∗∗ 0.0539∗ 0.0567∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4345∗∗∗ 0.2262∗∗∗ 0.2126∗∗∗

α 0.0794∗∗∗ 0.0754∗∗∗ 0.0427∗∗∗ 0.2612∗∗∗ 0.1552 0.2645∗

β 0.9083∗∗∗ 0.9047∗∗∗ 0.9048∗∗∗ 0.5815∗∗∗ 0.2997∗ 0.4361∗∗

γ - 0.2452∗∗∗ 0.0741∗∗∗ - 0.2092∗∗∗ -

δ - 2.0000∗∗∗ - - 2.5965∗∗∗ -

η - - - - - 1.3569

HQIC 5.311 5.321 5.319 5.314 5.324 5.313

BASF GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0372∗ -0.03836 -0.0384 -0.0358 -0.0424 -0.0366

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3376∗∗∗ 0.1377 0.1608

α 0.0674∗∗∗ 0.0634∗∗∗ 0.0214∗ 0.2449∗∗ 0.1559 0.1807

β 0.9164∗∗∗ 0.9012∗∗∗ 0.9013∗∗∗ 0.04919∗∗∗ 0.2387 0.3264

γ - 0.4179∗∗ 0.1060∗∗∗ - 0.2670∗∗∗ -

δ - 2.0000∗∗∗ - - 2.8267∗∗∗ -

η - - - - - 1.4492

HQIC 5.784 5.803 5.802 5.783 5.780 5.781
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Bayer GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0145 0.0140 0.0234 0.0144 0.0140

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.8023∗∗∗ 0.8584∗∗∗

α 0.0766∗∗∗ 0.8584∗∗∗ 0.0284∗∗∗ 0.1287 0.0971

β 0.9181∗∗∗ 0.0971 0.9399∗∗∗ 0.8482∗∗∗ 0.8694∗∗∗

γ - 0.8694∗∗∗ 0.9917∗∗∗ - -

δ - 0.0056 - - -

η - - - - - 0.9944

HQIC 5.263 5.309 5.321 5.261 ncr 5.258

BMW GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0149 0.0144 0.0152 0.0149 0.0155 0.0148

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4911∗∗∗ 0.04720∗∗∗ 0.4467∗∗∗

α 0.0557∗∗∗ 0.0482∗∗∗ 0.0408∗∗∗ 0.2703∗∗∗ 0.2747∗∗∗ 0.2902∗∗∗

β 0.9348∗∗∗ 0.9351∗∗∗ 0.9339∗∗∗ 0.7111∗∗∗ 0.7008∗∗∗ 0.6966∗∗∗

γ - 0.1502∗ 0.0276∗ - 0.1436∗ -

δ - 2.1652∗∗∗ - - 1.9367∗∗∗ -

η - - - - - 1.0223

HQIC 5.566 5.562 5.565 5.568 5.564 5.564

Continental GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0138 -0.0101 -0.0144 -0.0127 -0.0100 -0.0128

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3435∗∗∗ 0.4705∗∗∗ 0.3713∗

α 0.0727∗∗∗ 0.0731∗∗∗ 0.0313∗∗ 0.2195∗∗∗ 0.2692∗∗∗ 0.2157∗∗∗

β 0.8976∗∗∗ 0.9086∗∗∗ 0.8957∗∗∗ 0.5021∗∗∗ 0.6980∗∗∗ 0.5164∗∗∗

γ - 0.5629∗∗∗ 0.0855∗∗∗ - 0.7969∗ -

δ - 1.1405∗∗∗ - - 0.8736∗∗∗ -

η - - - - - 0.9740

HQIC 5.308 5.319 5.317 5.309 5.324 5.306

Daimler GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0079 0.0093 0.0091 0.0115 0.0119 0.0112

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3246∗∗∗ 0.3726∗∗∗ 0.5081∗

α 0.0757∗∗∗ 0.0753∗∗∗ 0.0597∗∗∗ 0.1600∗ 0.1775∗∗ 0.1294

β 0.8932∗∗∗ 0.8953∗∗∗ 0.8951∗∗∗ 0.4633∗∗∗ 0.5237∗∗∗ 0.5736∗∗∗

γ - 0.0897 0.0260 - 0.0485 -

δ - 1.8722∗∗∗ - - 1.7857∗∗∗ -

η - - - - - 0.9064∗

HQIC 5.346 5.341 5.344 5.348 5.343 5.345
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Deutsche Bank GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0488∗ 0.0464∗ 0.0464∗ 0.0539∗ 0.0494∗ 0.0543∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4449∗∗∗ 0.4294∗∗∗ 0.5044∗∗

α 0.0690∗∗∗ 0.0519∗∗∗ 0.0269∗∗ 0.2250∗∗∗ 0.2730∗∗∗ 0.2047∗∗

β 0.9147∗∗∗ 0.9303∗∗∗ 0.9279∗∗∗ 0.6300∗∗∗ 0.6567∗∗∗ 0.6571∗∗∗

γ - 0.3240∗∗∗ 0.0608∗∗∗ - 0.3168∗∗∗ -

δ - 1.9145∗∗∗ - - 1.7606∗∗∗ -

η - - - - - 0.9759

HQIC 5.536 5.540 5.542 5.539 5.543 5.536

Deutsche Börse GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0588∗ 0.0661∗∗∗ 0.0684∗∗ 0.0567∗ 0.0580∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2928∗∗∗ 0.8308∗∗∗

α 0.1251∗∗∗ 0.1139∗∗∗ 0.0688∗∗∗ 0.2103∗ 0.0562

β 0.7798∗∗∗ 0.8237∗∗∗ 0.7783∗∗∗ 0.3875∗∗∗ 0.6565∗∗∗

γ - 0.7052∗∗∗ 0.1250∗∗∗ - -

δ - 0.5524∗∗∗ - - -

η - - - - - 0.8561∗

HQIC 5.426 5.449 5.431 5.418 ncr 5.420

Deutsche Lufthansa GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0244 0.0277 0.0274 0.0380 0.0318 0.0359

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3945∗∗∗ 0.3393∗∗∗ 0.0017∗∗∗

α 0.0408∗∗∗ 0.0327∗ 0.0168∗ 0.3674∗∗∗ 0.3818∗∗∗ 0.4217

β 0.9524∗∗∗ 0.9555∗∗∗ 0.9514∗∗∗ 0.6236∗∗∗ 0.5984∗∗∗ 0.4618

γ - 0.4438 0.0475∗∗∗ - 0.2864∗∗∗ -

δ - 1.8952∗∗∗ - - 2.0171∗∗∗ -

η - - - - - 107.7916∗∗∗

HQIC 5.291 5.296 5.298 5.295 5.301 5.297

Deutsche Post GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0254 -0.0234 -0.0261 -0.0312 -0.0324 -0.0302

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4104∗∗∗ 0.3616∗∗∗ 0.2463

α 0.0405∗∗∗ 0.0471∗∗∗ 0.0449∗∗∗ 0.3249∗∗∗ 0.3434∗∗∗ 0.3618∗∗∗

β 0.9495∗∗∗ 0.9730∗∗∗ 0.9503∗∗∗ 0.6701∗∗∗ 0.6499∗∗∗ 0.6321∗∗∗

γ - -0.0334 -0.0076 - -0.0393 -

δ - 1.6654∗∗∗ - - 2.2019∗∗∗ -

η - - - - - 1.2246

HQIC 5.519 5.520 5.516 5.523 5.518 5.521
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Deutsche Telekom GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0303 0.0304 0.0304 0.0381 0.0258 0.0366

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3770∗∗∗ 0.1476∗∗ 0.2645

α 0.0543∗∗∗ 0.0545∗∗∗ 0.0542∗∗∗ 0.2933∗∗∗ 0.3843∗∗∗ 0.3274∗∗∗

β 0.9287∗∗∗ 0.9288∗∗∗ 0.9286∗∗∗ 0.6004∗∗∗ 0.4965∗∗∗ 0.5582∗∗∗

γ - 0.1733∗ 0.0006 - -0.0127 -

δ - 2.0304∗∗∗ - - 2.9276∗∗∗ -

η - - - - - 1.1417

HQIC 5.689 5.697 5.686 5.692 5.693 5.689

E.ON GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0386 -0.0398 -0.0398 -0.0422 -0.0411 -0.0401

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.8466∗∗∗ 0.9125∗∗∗ 0.9184∗∗∗

α 0.0486∗∗∗ 0.0469∗∗∗ 0.0353∗∗∗ 0.2116∗∗∗ 0.1533∗ 0.1355∗

β 0.9394∗∗∗ 0.9382∗∗∗ 0.9382∗∗∗ 0.9205∗∗∗ 0.9323∗∗∗ 0.9292∗∗∗

γ - 0.1428 0.0254 - 0.1481 -

δ - 1.9979∗∗∗ - - 1.6992∗∗∗ -

η - - - - - 0.9882

HQIC 5.674 5.671 5.674 5.675 5.670 5.673

Fresenius MedCare GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0625∗∗ -0.0476∗∗ -0.0683∗∗ -0.0570∗∗ -0.0649∗∗ -0.0694∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.6206∗∗∗ 1.0000∗∗∗ 0.1875

α 0.0376∗∗∗ 0.0324∗∗∗ 0.0165∗ 0.4567∗∗∗ 0.1328∗∗ 0.7329∗∗∗

β 0.9573∗∗∗ 0.9728∗∗∗ 0.9658∗∗∗ 0.8859∗∗∗ 0.9707∗∗∗ 0.8597∗∗∗

γ - 0.5021∗∗ 0.0301∗∗ - 0.1689 -

δ - 0.5307∗∗∗ - - 1.7987∗∗∗ -

η - - - - - 1.4977

HQIC 5.550 5.552 5.551 5.5575 5.557 5.556

Henkel GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0236 -0.0387 -0.0271 -0.0257 -0.0382 -0.0252

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2815∗∗∗ 0.4018∗∗∗ 0.6001∗∗

α 0.0722∗∗∗ 0.0620∗∗∗ 0.0109 0.4337∗∗∗ 0.3296∗∗∗ 0.3058∗∗

β 0.8775∗∗∗ 0.9189∗∗∗ 0.8820∗∗∗ 0.6013∗∗∗ 0.6596∗∗∗ 0.7006∗∗∗

γ - 0.7606∗∗∗ 0.1060∗∗∗ - 0.7775∗∗∗ -

δ - 0.8305∗∗∗ - - 0.8690∗∗∗ -

η - - - - - 0.8671∗

HQIC 5.832 5.844 5.843 5.831 5.848 5.829
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Infineon GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0175 0.0167 0.0173 0.0126 0.0122 0.0156

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4100∗∗∗ 0.3690∗∗∗ 0.1506

α 0.0654∗∗∗ 0.0612∗∗∗ 0.0557∗∗∗ 0.3743∗∗∗ 0.3928∗∗∗ 0.4395∗∗

β 0.9188∗∗∗ 0.9182∗∗∗ 0.9186∗∗∗ 0.6666∗∗∗ 0.6495∗∗∗ 0.5637∗∗

γ - 0.0830 0.0199 - 0.0811 -

δ - 2.1540∗∗∗ - - 2.1345∗∗∗ -

η - - - - - 1.5917

HQIC 4.793 4.788 4.790 4.794 4.789 4.791

Lanxess GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0178 0.0021 0.0215 0.0132 0.0241 0.0142

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.1393∗∗ 0.1387∗ 0.7904∗∗∗

α 0.0638∗∗ 0.0648∗ 0.0138 0.0771 0.0433 0.0000

β 0.7682∗∗∗ 0.7622∗∗∗ 0.7634∗∗∗ 0.2021 0.1374 0.5181∗∗

γ - 0.1226 0.1364∗∗ - 0.9261 -

δ - 2.0011∗ - - 1.0149 -

η - - - - - 0.6707

HQIC 5.168 5.172 5.176 5.155 5.160 5.155

Linde GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0421 -0.0362∗ -0.0316 -0.0361 -0.0363

ω 0.0000∗∗∗ 0.0001∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2918∗∗∗ 0.0016∗∗∗

α 0.0302∗∗∗ 0.0336∗∗∗ 0.0377∗∗ 0.5814∗∗∗ 0.8596∗∗∗

β 0.9591∗∗∗ 0.9648∗∗∗ 0.9275∗∗∗ 0.7420∗∗∗ 0.9016∗∗∗

γ - 0.9787∗∗∗ 0.0941∗∗∗ - -

δ - 0.5539∗∗∗ - - -

η - - - - - 96.6890∗∗∗

HQIC 5.510 5.528 5.529 5.513 ncr 5.514

RWE GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0033 0.0033 0.0018 0.0032 0.0021 0.0031

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3428∗∗∗ 0.3551∗∗∗ 0.3135

α 0.0690∗∗∗ 0.0697∗∗∗ 0.0302∗ 0.5321∗∗∗ 0.4630∗∗∗ 0.5513∗∗∗

β 0.9024∗∗∗ 0.8949∗∗∗ 0.8947∗∗∗ 0.7011∗∗∗ 0.6685∗∗∗ 0.7015∗∗∗

γ - 0.3392∗∗∗ 0.0830∗∗∗ - 0.3106∗∗∗ -

δ - 1.7920∗∗∗ - - 1.6231∗∗∗ -

η - - - - - 1.0313

HQIC 5.604 5.610 5.613 5.607 5.612 5.604
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SAP GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0321 -0.0227 -0.0240 -0.0191 -0.0183 -0.0191

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5721∗∗∗ 0.5817∗∗∗ 0.5744∗∗∗

α 0.1304∗∗∗ 0.1375∗∗∗ 0.0974∗∗∗ 0.0491 0.0698 0.0489

β 0.8553∗∗∗ 0.8578∗∗∗ 0.8537∗∗∗ 0.5691∗∗∗ 0.5818∗∗∗ 0.5704∗∗∗

γ - 0.1597∗∗∗ 0.0751∗∗ - 0.1150∗ -

δ - 1.7742∗∗∗ - - 1.9080∗∗∗ -

η - - - - - 0.9986

HQIC 5.198 5.198 5.200 5.209 5.206 5.206

Siemens GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0539∗ 0.0528∗ 0.0535∗ 0.0517∗ 0.0532∗ 0.0545∗

ω 0.0000∗∗ 0.0000∗∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.5085∗∗∗ 0.4089∗∗∗ 0.2450

α 0.0482∗∗∗ 0.0412∗∗∗ 0.0395∗∗∗ 0.2932∗∗∗ 0.3253∗∗∗ 0.3733∗∗∗

β 0.9441∗∗∗ 0.9447∗∗∗ 0.9426∗∗∗ 0.7417∗∗∗ 0.6815∗∗∗ 0.6234∗∗∗

γ - 0.1135 0.0189 - 0.1453∗ -

δ - 2.2711∗∗∗ - - 2.1410∗∗∗ -

η - - - - - 1.2614

HQIC 5.439 5.435 5.438 5.435 5.432 5.433

ThyssenKrupp GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0306 0.0323 0.0305 0.0257 0.0274 0.0266

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.5620∗∗∗ 0.3783∗∗∗ 0.3779∗∗

α 0.0543∗∗∗ 0.0339∗∗∗ 0.0548∗∗∗ 0.4197∗∗∗ 0.5222∗∗∗ 0.5242∗∗∗

β 0.9383∗∗∗ 0.9437∗∗∗ 0.9386∗∗∗ 0.8248∗∗∗ 0.7650∗∗∗ 0.7882∗∗∗

γ - -0.0492 -0.0014 - -0.0051 -

δ - 2.7987∗∗∗ - - 2.4798∗∗∗ -

η - - - - - 1.0964

HQIC 5.195 5.192 5.192 5.202 5.198 5.200

TUI GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0178 0.0174 0.0178 0.0161 0.0160 0.0160

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5141∗∗∗ 0.6959∗∗∗ 0.4964∗∗

α 0.0520∗∗∗ 0.0668∗∗∗ 0.0482∗∗∗ 0.3375∗∗∗ 0.2468∗∗ 0.3458∗∗∗

β 0.9397∗∗∗ 0.9358∗∗∗ 0.9404∗∗∗ 0.7648∗∗∗ 0.8401∗∗∗ 0.7589∗∗∗

γ - 0.0115 0.0060 - 0.0419∗∗∗ -

δ - 1.4548∗∗∗ - - 1.6153∗∗∗ -

η - - - - - 1.0059

HQIC 5.090 5.087 5.088 5.092 5.089 5.090
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Volkswagen GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0793∗∗∗ 0.0785∗∗∗ 0.0787∗∗∗ 0.0802∗∗∗ 0.0803∗∗∗ 0.0798∗∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4202∗∗∗ 0.4549∗∗∗ 0.3594

α 0.0834∗∗∗ 0.0819∗∗∗ 0.0657∗∗∗ 0.2594∗∗∗ 0.2697∗∗∗ 0.2762∗∗∗

β 0.8912∗∗∗ 0.8879∗∗∗ 0.8883∗∗∗ 0.6135∗∗∗ 0.6562∗∗∗ 0.5850∗∗∗

γ - 0.1165∗ 0.0390∗ - 0.1160 -

δ - 2.0795∗∗∗ - - 1.9195∗∗∗ -

η - - - - - 1.0451

HQIC 5.258 5.255 5.258 5.262 5.259 5.259

A.2.2. Choose Student-t conditional distribution

Adidas GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0165 0.0220 0.0168 0.0227 0.0235 0.0188

ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

d - - - 0.2920∗∗∗ 0.4078∗∗∗ 0.0029∗∗∗

α 0.0179∗∗∗ 0.0658∗∗∗ 0.0161∗∗ 0.6714∗∗∗ 0.3961∗∗∗ 0.8998∗∗∗

β 0.9809∗∗∗ 0.9262∗∗∗ 0.9788∗∗∗ 0.8003∗∗∗ 0.6914∗∗∗ 0.9528∗∗∗

γ - 0.4548∗∗ 0.0065 - 0.5873∗ -

δ - 1.1189∗∗∗ - - 0.8930∗∗ -

η - - - - - 74.1804∗∗∗

HQIC 5.771 5.767 5.769 5.772 5.769 5.771

Allianz GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0591∗∗ 0.0600∗∗ 0.0622∗∗ 0.0598∗∗ 0.0603∗∗ 0.0588∗∗

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.4740∗∗∗ 0.2749∗∗∗ 0.2392

α 0.0930∗∗∗ 0.0706∗∗∗ 0.0444∗∗ 0.2338∗∗∗ 0.1524 0.2342

β 0.8976∗∗∗ 0.8900∗∗∗ 0.8989∗∗∗ 0.5940∗∗∗ 0.3488∗ 0.4316∗∗

γ - 0.2245∗∗∗ 0.0899∗∗∗ - 0.2506∗∗∗ -

δ - 2.6010∗∗∗ - - 2.4183∗∗∗ -

η - - - - - 130744∗∗∗

HQIC 5.321 5.328 5.3293 5.322 5.3295 5.320

BASF GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0460∗ -0.0457∗ -0.0456∗ -0.0423 -0.0438 -0.0429

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.3714∗∗∗ 0.2588∗ 0.1441

α 0.0700∗∗∗ 0.0658∗∗∗ 0.0199 0.2022 0.2298 0.0998

β 0.9167∗∗∗ 0.9053∗∗∗ 0.9053∗∗∗ 0.4919∗∗∗ 0.4256∗ 0.2587

γ - 0.4433∗ 0.1143∗∗∗ - 0.3509∗∗ -

δ - 2.0102∗∗∗ - - 2.2460∗∗∗ -

η - - - - - 14200∗∗∗

HQIC 5.802 5.820 5.818 5.801 5.813 5.800
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Bayer GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0215 0.0241 0.0258 0.0248 0.0252

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3955∗∗∗ 0.2525

α 0.0706∗∗∗ 0.0433∗∗∗ 0.0253∗∗∗ 0.2553∗∗ 0.2451

β 0.9156∗∗∗ 0.9497∗∗∗ 0.9435∗∗∗ 0.5602∗∗∗ 0.4531∗

γ - 0.9878∗∗∗ 0.9877∗∗∗ - -

δ - 1.2341∗∗∗ - - -

η - - - - - 199.099∗∗∗

HQIC 5.333 5.355 5.360 5.332 ncr 5.330

BMW GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0178 0.0172 0.0175 0.0174 0.0158 0.0165

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5223∗∗∗ 0.4680∗∗∗ 0.3607∗

α 0.0541∗∗∗ 0.0488∗∗ 0.0377∗∗ 0.2715∗∗∗ 0.3010∗∗∗ 0.3452∗∗∗

β 0.9400∗∗∗ 0.9402∗∗∗ 0.9388∗∗∗ 0.7321∗∗∗ 0.7107∗∗∗ 0.6834∗∗∗

γ - 0.1683 0.0311 - 0.1601 -

δ - 2.0706∗∗∗ - - 2.0309∗∗∗ -

η - - - - - 2248.7∗∗∗

HQIC 5.589 5.585 5.588 5.590 5.586 5.587

Continental GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0184 -0.0164 -0.0205 -0.0160 -0.0154 -0.0158

ω 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗ 0.0000∗∗

d - - - 0.3691∗∗∗ 0.5147∗∗∗ 0.3394

α 0.1007∗∗∗ 0.0976∗∗∗ 0.0501∗∗ 0.1349 0.2349∗∗∗ 0.1323

β 0.8635∗∗∗ 0.8840∗∗∗ 0.8667∗∗∗ 0.4259∗∗ 0.6724∗∗∗ 0.4044

γ - 0.4398∗∗∗ 0.1032∗∗∗ - 0.5496∗∗ -

δ - 1.2146∗∗∗ - - 1.0494∗∗∗ -

η - - - - - 416.089∗∗∗

HQIC 5.347 5.352 5.352 5.348 5.353 5.344

Daimler GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0083 0.0111 0.0093 0.0135 0.0137 0.0123

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.0478∗∗∗ 0.5919∗∗∗ 0.2371

α 0.0678∗∗∗ 0.0817∗∗∗ 0.0503∗∗∗ 0.1567∗∗ 0.1516∗ 0.1997∗

β 0.9239∗∗∗ 0.9165∗∗∗ 0.9209∗∗∗ 0.6218∗∗∗ 0.7065∗∗∗ 0.4873∗∗∗

γ - 0.1698∗ 0.0397∗∗∗ - 0.1412 -

δ - 1.6028∗∗∗ - - 1.7251∗∗∗ -

η - - - - - 622.478∗∗∗

HQIC 5.409 5.407 5.409 5.411 5.407 5.408

28



A. Appendix

Deutsche Bank GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0420∗ 0.0409 0.0407 0.0454∗ 0.0407 0.0447∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5479∗∗∗ 0.3717∗∗∗ 0.3891∗∗

α 0.0724∗∗∗ 0.0473∗∗ 0.0164 0.1913∗∗∗ 0.3053∗∗∗ 0.2450∗∗∗

β 0.9226∗∗∗ 0.9386∗∗∗ 0.9336∗∗∗ 0.6931∗∗∗ 0.6251∗∗∗ 0.6279∗∗∗

γ - 0.5424∗∗ 0.0901∗∗∗ - 0.4510∗∗∗ -

δ - 1.8653∗∗∗ - - 2.0079∗∗∗ -

η - - - - - 3116.6∗∗∗

HQIC 5.567 5.578 5.580 5.569 5.579 5.567

Deutsche Börse GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0500∗ 0.0661∗ 0.0547∗ 0.0517∗ 0.0503∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4106∗∗∗ 0.8750∗∗∗

α 0.1744∗∗∗ 0.1331∗∗∗ 0.1019∗∗∗ 0.1503∗∗∗ 0.0453

β 0.7345∗∗∗ 0.8104∗∗∗ 0.7416∗∗∗ 0.3684∗∗∗ 0.06454∗∗∗

γ - 0.6114∗∗∗ 0.1556∗ - -

δ - 0.5666∗∗ - - -

η - - - - - 102.044∗∗∗

HQIC 5.510 5.513 5.514 5.505 ncr 5.505

Deutsche Lufthansa GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0002 0.0021 0.0023 0.0052 0.0049 0.0027

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4361∗∗∗ 0.4062∗∗∗ 0.0404

α 0.0788∗∗ 0.0981∗∗∗ 0.0560∗ 0.2653∗∗ 0.2703∗∗ 0.2892

β 0.9137∗∗∗ 0.9032∗∗∗ 0.9074∗∗∗ 0.5669∗∗∗ 0.5496∗∗∗ 0.3535

γ - 0.2017∗∗ 0.0545∗ - 0.1995∗∗ -

δ - 1.4724∗∗∗ - - 2.0163∗∗∗ -

η - - - - - 245.501∗∗∗

HQIC 5.349 5.348 5.350 5.352 5.351 5.351

Deutsche Post GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0216 -0.0197 -0.0214 -0.0243 -0.0230 -0.0241

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4656∗∗∗ 0.4985∗∗∗ 0.2335

α 0.0864∗∗∗ 0.0934∗∗∗ 0.0840∗∗∗ 0.3426∗∗∗ 0.3305∗∗∗ 0.4538∗∗∗

β 0.8994∗∗∗ 0.9000∗∗∗ 0.8981∗∗∗ 0.6918∗∗∗ 0.7050∗∗∗ 0.6457∗∗∗

γ - 0.0323 0.0068 - 0.0527 -

δ - 1.7285∗∗∗ - - 1.8657∗∗∗ -

η - - - - - 401.336∗∗∗

HQIC 5.569 5.564 5.567 5.5710 5.566 5.569

29



A. Appendix

Deutsche Telekom GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0026 -0.0010 -0.0011 0.0028 0.0037 0.0013

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4593∗∗∗ 0.3564∗∗∗ 0.1431

α 0.0711∗∗∗ 0.0772∗∗∗ 0.0592∗∗∗ 0.2199∗∗ 0.1998∗ 0.2346

β 0.9241∗∗∗ 0.9189∗∗∗ 0.9200∗∗∗ 0.6028∗∗∗ 0.4863∗∗∗ 0.4128∗

γ - 0.1151 0.0328 - 0.1368 -

δ - 1.9339∗∗∗ - - 2.2804∗∗∗ -

η - - - - - 79.0673∗∗∗

HQIC 5.800 5.797 5.799 5.801 5.798 5.800

E.ON GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0371 -0.0322 -0.0379 -0.0341 -0.0292 -0.0342

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4680∗∗∗ 0.5283∗∗∗ 0.5127∗∗

α 0.0658∗∗∗ 0.0698∗∗∗ 0.0341∗ 0.3118∗∗∗ 0.3029∗∗∗ 0.2942∗∗

β 0.9196∗∗∗ 0.9229∗∗∗ 0.9149∗∗∗ 0.6740∗∗∗ 0.7227∗∗∗ 0.6919∗∗∗

γ - 0.5593∗∗ 0.0683∗∗ - 0.7150∗∗∗ -

δ - 1.2616∗∗∗ - - 1.0080∗∗∗ -

η - - - - - 176.355∗∗∗

HQIC 5.737 5.7381 5.7386 5.734 5.7389 5.731

Fresenius MedCare GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0761∗∗∗ -0.0760∗∗∗ -0.0769∗∗∗ -0.0745∗∗ -0.0736∗∗ -0.0799∗∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3781∗∗∗ 0.3487∗∗ 0.0227

α 0.0594∗∗∗ 0.0720∗∗∗ 0.0256∗∗∗ 0.5982∗∗∗ 0.6036∗∗∗ 0.9799∗∗∗

β 0.9257∗∗∗ 0.9266∗∗∗ 0.9365∗∗∗ 0.7729∗∗∗ 0.7577∗∗∗ 0.9867∗∗∗

γ - 0.2835∗∗ 0.0581∗∗∗ - 0.2367∗∗∗ -

δ - 1.5118∗∗∗ - - 2.0894∗∗∗ -

η - - - - - 372.747∗∗∗

HQIC 5.635 5.638 5.640 5.6429 5.643 5.641

Henkel GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0474∗ -0.0484∗ -0.0502∗ -0.0494∗ -0.0484∗ -0.0494∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.2807∗∗∗ 0.3317∗∗∗ 0.2600

α 0.0685∗∗∗ 0.0629∗∗∗ 0.0475∗ 0.4159∗∗ 0.3356∗∗∗ 0.4219∗∗

β 0.8878∗∗∗ 0.9005∗∗∗ 0.8806∗∗∗ 0.5762∗∗∗ 0.5914∗∗∗ 0.5706∗∗∗

γ - 0.7066∗∗ 0.1251∗∗∗ - 0.6949∗∗ -

δ - 1.3280∗∗∗ - - 1.2819∗∗∗ -

η - - - - - 92.712∗∗∗

HQIC 5.919 5.924 5.923 5.919 5.927 5.916
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Infineon GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0283 0.0283 0.0283 0.0275 0.0282 0.0295

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.4922∗∗∗ 0.4306∗∗∗ 0.1979

α 0.0633∗∗∗ 0.0609∗∗∗ 0.0512∗∗∗ 0.3260∗∗∗ 0.3476∗∗∗ 0.4024∗∗∗

β 0.9283∗∗∗ 0.9309∗∗∗ 0.9305∗∗∗ 0.7098∗∗∗ 0.6798∗∗∗ 0.5828∗∗∗

γ - 0.0875 0.0203 - 0.0803 -

δ - 1.9860∗∗∗ - - 2.1650∗∗∗ -

η - - - - - 12510.2∗∗∗

HQIC 4.822 4.817 4.820 4.821 4.816 4.819

Lanxess GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0183 -0.0179 -0.0179 -0.0261 -0.0210 -0.0236

ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

d - - - 0.2222∗∗ 0.2904∗ 0.6730∗

α 0.0577∗ 0.0645 0.0156 0.0258 0.3682 0.0000

β 0.8510∗∗∗ 0.8112∗∗∗ 0.8113∗∗∗ 0.2758 0.3682∗ 0.5025∗

γ - 0.5033∗∗∗ 0.1298∗ - 0.5885 -

δ - 0.8343 - - 0.8722 -

η - - - - - 146.028∗∗∗

HQIC 5.222 5.226 5.229 5.218 5.218 5.216

Linde GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0479∗ -0.0507∗ -0.0390 -0.0460∗ -0.0398∗ -0.0436

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3785∗∗∗ 0.3623∗∗∗ 0.0015∗∗∗

α 0.0350∗∗ 0.0316∗∗∗ 0.0709∗∗∗ 0.4714∗∗∗ 0.3533∗∗∗ 0.9345∗∗∗

β 0.9627∗∗∗ 0.9739∗∗∗ 0.9049∗∗∗ 0.7038∗∗∗ 0.6073∗∗∗ 0.9652∗∗∗

γ - 0.9999∗∗∗ 0.3480∗∗∗ - 0.4850∗∗ -

δ - 0.7783∗∗∗ - - 1.6697∗∗∗ -

η - - - - - 74.896∗∗∗

HQIC 5.607 5.615 5.613 5.607 5.614 5.611

RWE GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0030 0.0021 0.0008 0.0045 0.0009 0.0045

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.3815∗∗∗ 0.3960∗∗∗ 0.2837

α 0.0619∗∗∗ 0.0700∗∗∗ 0.0343∗ 0.4646∗∗∗ 0.4178∗∗∗ 0.5166∗∗∗

β 0.9200∗∗∗ 0.9064∗∗∗ 0.9059∗∗∗ 0.6870∗∗∗ 0.6676∗∗∗ 0.6761∗∗∗

γ - 0.2959∗∗ 0.0696∗∗ - 0.2890∗∗ -

δ - 1.7333∗∗∗ - - 1.6355∗∗∗ -

η - - - - - 13436.1∗∗∗

HQIC 5.621 5.623 5.625 5.622 5.624 5.619
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SAP GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ -0.0130 -0.0099 -0.0093 -0.0148 0.0009 -0.0133

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5119∗∗∗ 0.3960∗∗∗ 0.2888

α 0.0713∗∗∗ 0.0753∗∗∗ 0.0358∗ 0.2344∗∗∗ 0.4178∗∗∗ 0.2915∗∗∗

β 0.9252∗∗∗ 0.9364∗∗∗ 0.9390∗∗∗ 0.6742∗∗∗ 0.6676∗∗∗ 0.5756∗∗∗

γ - 0.2592∗∗ 0.0465∗∗ - 0.2890∗∗ -

δ - 1.3090∗∗∗ - - 1.6355∗∗∗ -

η - - - - - 61.6701∗∗∗

HQIC 5.335 5.338 5.336 5.335 5.339 5.334

Siemens GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0392 0.0382 0.0382 0.0409 0.0392 0.0409

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.7035∗∗∗ 0.4427∗∗ 0.3689

α 0.0509∗∗∗ 0.0388∗∗ 0.0378∗∗∗ 0.1883 0.3332∗∗∗ 0.3412∗∗∗

β 0.9456∗∗∗ 0.9486∗∗∗ 0.9450∗∗∗ 0.8428∗∗∗ 0.7247∗∗∗ 0.7086∗∗∗

γ - 0.1470∗∗∗ 0.0269 - 0.1599∗ -

δ - 2.4089∗∗∗ - - 2.3055∗∗∗ -

η - - - - - 1327.03∗∗∗

HQIC 5.471 5.468 5.470 5.469 5.466 5.466

ThyssenKrupp GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0227 0.0228 0.0227 0.0195 0.0189 0.0199

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.7145∗∗∗ 0.5618∗∗ 0.4187∗

α 0.0624∗∗∗ 0.0671∗∗∗ 0.0583∗∗∗ 0.3192∗ 0.4143∗∗∗ 0.4968∗∗∗

β 0.9348∗∗∗ 0.9320∗∗∗ 0.9328∗∗∗ 0.8697∗∗∗ 0.8166∗∗∗ 0.7978∗∗∗

γ - 0.0547 0.0115 - 0.0437 -

δ - 1.8896∗∗∗ - - 2.2043∗∗∗ -

η - - - - - 883.331

HQIC 5.231 5.226 5.229 5.234 5.229 5.232

TUI GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0177 0.0148 0.0171 0.0139 0.0126 0.0159

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5858∗∗∗ 0.6132∗∗ 0.3419

α 0.0514∗∗∗ 0.0620∗∗∗ 0.0352∗∗ 0.3005∗∗∗ 0.2911∗ 0.4107∗∗∗

β 0.9467∗∗∗ 0.9378∗∗∗ 0.9532∗∗∗ 0.7942∗∗∗ 0.8084∗∗∗ 0.7228∗∗∗

γ - 0.1105 0.0204 - 0.0813 -

δ - 1.4791∗∗∗ - - 1.9194∗∗∗ -

η - - - - - 96.3127∗∗∗

HQIC 5.1707 5.167 5.169 5.1708 5.166 5.168
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Volkswagen GARCH APARCH GJR FIGARCH FIAPARCH HYGARCH

ϱ 0.0646∗∗ 0.0639∗∗ 0.0639∗∗ 0.0658∗∗ 0.0655∗∗ 0.0658∗∗

ω 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

d - - - 0.5301∗∗∗ 0.5890∗∗∗ 0.5504∗

α 0.0919∗∗∗ 0.0910∗∗∗ 0.0660∗∗∗ 0.2232∗∗∗ 0.2057∗∗ 0.2147

β 0.8902∗∗∗ 0.8914∗∗∗ 0.8913∗∗∗ 0.6809∗∗∗ 0.7264∗∗∗ 0.6894∗∗∗

γ - 0.1499∗ 0.0538∗ - 0.1760∗∗ -

δ - 1.9965∗∗∗ - - 1.8784∗∗∗ -

η - - - - - 396.629∗∗∗

HQIC 5.3182 5.315 5.3180 5.3183 5.316 5.315

A.3. Standard & Poor’s 1 Year Credit Ratings

Rating PD (in %) Rating category

AAA <0,01 Prime

AA+ <0,02

AA <0,03 High grade

AA- <0,04

A+ <0,05

A <0,08 Upper medium grade

A- <0,13

BBB+ <0,22

BBB <0,36 Lower medium grade

BBB- <0,58

Rating PD (in %) Rating category

BB+ <0,94

BB <1,55 Speculative

BB- <2,50

B+ <4,08

B <6,75 Highly speculative

B- <10,88

CCC <17,75

CC <29,35 Extremely speculative

C >29,35

D In default
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