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Abstract

Holst (1985) introduced a discrete spacings model that is related to
the Bose-Einstein distribution and obtained the distribution of the number
of vacant slots in an associated circle covering problem. We correct his
expression for its probability mass function, obtain the first two moments,
and describe their limiting properties. We also discuss an application of
our results to a study of contagion in banking networks.

Key Words: spacings; sampling without replacement; Bose-Einstein distribu-
tion; Hypergeometric probability.
2010 Mathematics Subject Classification: Primary: 60C05; Secondary:
62E15.

1 Introduction

Consider r (≥ 2) boxes arranged in a ring. Starting with one box chosen at
random, number the boxes 0, 1, ..., r − 1. Draw m− 1 boxes by simple random
sampling without replacement from the boxes numbered 1, 2, ..., r − 1, where
2 ≤ m ≤ r. Let 1 ≤ R1 < · · · < Rm−1 ≤ r − 1 be the drawn numbers, and set
R0 = 0 and Rm = r. Define

Sk = Rk −Rk−1

for k = 1, 2, ...,m, i.e. Sk are spacings. Next, for an integer b where 1 ≤ b ≤ r,
define

V =

m∑
k=1

(Sk − b)+ (1)
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230 South LaSalle, Chicago, IL 60604, USA.
†hnagaraja@cph.osu.edu; College of Public Health, Division of Biostatistics, The Ohio
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where (x)+ = max {x, 0}. Thus V represents the number of vacant slots in a
discrete circle covering problem with arcs of length b.

Our interest is in basic characteristics of V , specifically its distribution and
some of its moments. Holst (1985) has derived the marginal and joint distribu-
tions of Sk and showed that they are exchangeable. He also explored the connec-
tions between these random variables (rv’s) and the Bose-Einstein distribution.
Feller (1968, Sec II.5(a)) provides a nice introduction to the Bose-Einstein urn
model.

Note that in the limit, as r →∞ while b = ar for some constant a < 1, this
problem converges to the well known circle covering problem in which m points
are chosen uniformly from the unit circle, and each of the m points forms the
end point of an arc of length a that is drawn. The limit of V/r corresponds to
the fraction of the circle that is uncovered. This problem was originally analyzed
by Stevens (1939) and has been extensively analyzed; see for example, Siegel
(1978). However, the finite version of the problem has been less studied, even
though as we discuss below this version can arise in practical applications.

We derive in Section 2 an explicit expression for the probability mass function
(pmf) of V including an exploration of the range of its values; in this process
we correct an error in the expression for the pmf given in Holst (1985). We give
explicit expressions for the first two moments of V in Section 3 using several
properties of the joint distribution of Sk derived by Holst (1985). We establish
limiting properties of V in Section 4 and link our results to those of Siegel
(1978). In Section 5, we discuss an application exploring contagion among
interconnected financial intermediaries in which the discrete version of the circle
covering problem arises under certain conditions. The application reveals a
new generalization of the circle covering problem that has not been explored in
previous work.

2 Exact Distribution of V

2.1 The Range

The value of V must be at least r−mb and it has to be non-negative. Further,
the largest possible value of V occurs when the chosen boxes are consecutive
and V takes on the value r − m − b + 1. Thus, the support of V is the set
{(r −mb)+, . . . , (r −m− b+ 1)+}, and so V is degenerate at 0 whenever r <
m+ b. Further when r −mb ≥ 0, the total number of points in the support of
V is (m − 1)(b − 1) + 1 independently of r. Hence when b = 1 and m < r, we
have a single support point is at r −m > 0. We now examine the form of the
pmf P (V = x) for various x values when r ≥ m+ b and b > 1.

2.2 Probability Mass Function of V

Holst (1985; Theorem 2.2) argues that P (V = x) is given by

2



m∑
y=1

(
m

y

)m−y∑
t=0

(−1)
t

(
m− y
t

) (
x− 1

y − 1

)(
r − (y + t) b− x− 1

m− y − 1

)/(
r − 1

m− 1

)
. (2)

Note that expression (2) may include improper binomial coefficients
(
n
k

)
where either n < 0 or k /∈ {0, . . . , n}. Such terms are traditionally set to 0. We
now argue that this convention may yield an incorrect expression for P (V = x)
for x = 0 and for x = r −mb, and offer correct expressions for P (V = x) for
these cases.

Observe first that for x = 0, the right-hand side of (2) is always equal to 0,
at odds with the fact that P (V = 0) = 1 whenever r < m+ b.

To obtain a proper expression for P (V = 0), we use the observation noted
by Holst that

P (V = 0) = P

 m∑
j=1

I(Sj > b) = 0

 , (3)

where I(C) = 1 if condition C is true and 0 else. Holst (1985) derives an
expression for the right hand side of (3) in part (a) of his Theorem 2.2. Using
his result, we can deduce that for x = 0, (2) must be replaced by

P (V = 0) =


m∑
j=0

(−1)j
(
m

j

)(
r − jb− 1

m− 1

)
/(

r − 1

m− 1

)
. (4)

We next turn to the case where r ≥ m + b and x > 0, and examine the
range of values for y and t for which the associated terms on the right side of
(2) are all positive, i.e. when 0 ≤ t ≤ min{m− y, [r−m− x− (b− 1)y]/b}, and
1 ≤ y ≤ min{m−1, x, (r−m−x)/(b− 1)} for b > 1 and 1 ≤ y ≤ min{m−1, x}
for b = 1.

We shall now argue that for this range, (2) holds except when r −mb ≥ m
and x = r−mb. To see this, we begin with the observation by Holst in his proof
of Theorem 2.2 that if Ik = I(Sk > b), then P (V = x) must equal

m∑
y=1

(
m

y

)m−y∑
t=0

(−1)
t

(
m− y
t

)
P

(
y∑
k=1

(Sk − b)+ = x, I1 = · · · = Iy+t = 1

)
. (5)

Expression (5) can in turn be rewritten as

m−1∑
y=1

(
m

y

)m−y−1∑
t=0

(−1)
t

(
m− y
t

)
P

(
y∑
k=1

(Sk − b)+ = x, I1 = ·· = Iy+t = 1

)

+

m∑
y=1

(
m

y

)
(−1)m−yP

(
y∑
k=1

(Sk − b)+ = x, I1 = · · · = Im = 1

)
. (6)
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Holst then computes the following probabilities based respectively on parts
(E) and (D) of his Theorem 2.1:

P (I1 = · · · = Iy+t = 1) =

(
r−(y+t)b−1

m−1
)(

r−1
m−1

)
and

P

(
y∑
k=1

(Sk − b)+ = x

∣∣∣∣∣ I1 = · · · = Iy+t = 1

)
=

(
x−1
y−1
)(
r−(y+t)b−x−1

m−y−1
)(

r−(y+t)b−1
m−1

) (7)

and thus concludes that

P

(
y∑
k=1

(Sk − b)+ = x, I1 = · · · = Iy+t = 1

)
=

(
x−1
y−1
)(
r−(y+t)b−x−1

m−y−1
)(

r−1
m−1

) . (8)

The expression for the conditional probability in (7) is valid and nonzero when-
ever y ≤ m− 1, and y + t < m.

Next we consider the last sum on the right in (6). Since the event {I1 = · · · =
Im = 1} implies Si > b for i = 1, . . . ,m, the sum

∑y
k=1 (Sk − b)+ is strictly

increasing in y for y ≤ m and
∑y
k=1 (Sk − b)+ <

∑m
k=1 (Sk − b)+ ≡ r − mb.

This means
m∑
y=1

(
m

y

)
(−1)m−yP

(
y∑
k=1

(Sk − b)+ = x, I1 = · · · = Im = 1

)
is 0 for any x > r −mb and when x = r −mb only the last term in the sum,
namely P

(∑m
k=1 (Sk − b)+ = r −mb, I1 = · · · = Im = 1

)
is potentially positive.

Since each term in
∑m
k=1 (Sk − b)+ is at least one, the sum should be at least

m. In other words, the only nonzero term in the last sum on the right side of
(6) is

P
(∑m

k=1 (Sk − b)+ = r −mb, I1 = · · · = Im = 1
)

= P (I1 = · · · = Im = 1) = P (S1 > b, · · · , Sm > b) = P (S1 > mb)

=
(
r−mb−1
m−1

)/ (
r−1
m−1

)
(9)

provided r −mb ≥ m. Upon collecting all of our findings (in (4), (6), (8), and
(9)), we have the following modification of Theorem 2.2 of Holst (1985).

Theorem 1. The support of the rv V representing the length of the vacant
region is given by {(r −mb)+, . . . , (r −m− b+ 1)+}. When r < m + b, V is
degenerate at 0. When r > m and b = 1, V is degenerate at (r −m). When
r ≥ m + b and r − mb ≤ 0, P (V = 0) is given by (4). In all other cases,
P (V = x) is given by{

m−1∑
y=1

(
m

y

)m−1−y∑
t=0

(−1)
t

(
m− y
t

)(
x− 1

y − 1

)(
r − (y + t) b− x− 1

m− y − 1

)
+I(x = r −mb ≥ m)

(
r −mb− 1

m− 1

)}/(
r − 1

m− 1

)
. (10)
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Remark 1: The actual range of values for y and t for which the associated
terms are positive are more restricted than given by the limits in the double
sum in (10) in a way that depends on x. For example, when x = r −mb, the
lowest value V can assume, the terms are positive for all 1 ≤ y ≤ m − 1 and
0 ≤ t ≤ min{m−y−1,m−y− (m−y)/b}. In contrast, when x = r−m− b+1,
the highest value V can assume, y = 1, t = 0 is the only combination that
produces a positive term. In that case, (10) yields

P (V = r −m− b+ 1) = m

/(
r − 1

m− 1

)
,

a quantity free of b.
Table 1 below provides the pmf of V for r = 10 and m = 5. It shows how

the probabilities shift towards 0 as b increases.

Table 1: The pmf P (V = x) for r = 10,m = 5 for various b values

x
b 0 1 2 3 4 5
1 0 0 0 0 0 1
2 0.008 0.159 0.476 0.317 0.040
3 0.405 0.397 0.159 0.040
4 0.802 0.159 0.040
5 0.960 0.040
6 1

3 Moments of V

Instead of using the pmf for V to compute the first two moments of V , we take
advantage of an exchangeability argument to derive them from those of Sk. We
will need the following expressions for the first two moments of nonnegative
integer valued rv’s X and Y .

E(X) =

∞∑
i=0

P (X > i); (11)

E(X2) = 2

∞∑
i=0

iP (X > i) + E(X); (12)

E(XY ) =

∞∑
i=0

∞∑
j=0

P (X > i, Y > j). (13)

The first two are well-known. Equations (11) and (12) are given in, for exam-
ple, David and Nagaraja (2003), p. 43, and go back to Feller’s classical work.
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Expression (13) is similar to known results for the continuous case; see, for ex-
ample, the expression for the covariance in Barlow and Proschan (1981, p. 31),
and the idea goes back to Hoeffding (1940); see Wellner (1994).

Here we give a short proof of (13) when X and Y are nonnegative integer
valued rv’s.

E(XY ) =

∞∑
i=0

∞∑
j=0

ijP (X = i, Y = j)

=

∞∑
i=0

i

∞∑
j=0

P (X = i, Y > j)

=

∞∑
i=0

∞∑
j=0

P (X > i, Y > j)

upon using the idea of the form on the right side of (11) twice.
The moments expressions simplify further by the use of the following well-

known identity: For positive integers c ≤ a,

a∑
k=c

(
k − 1

c− 1

)
=

(
a

c

)
. (14)

Harris, Hirst, and Mossinghoff (2008) derive this identity using an induction
argument (see equation (2.10) in their book). We give a simple probabilistic
proof.

Proof. Multiply both sides by (1/2)a. Then the right side,
(
a
c

)
(1/2)a represents

the probability that in a tosses of a fair coin there are exactly c heads. Now
if we have c heads, this event can be written as the union of disjoint events
Ec, . . . , Ea where Ek is the event that we have exactly c heads and the cth head
appears at the kth toss. By the negative binomial type argument we know that
this probability is (

k − 1

c− 1

)
(1/2)c(1/2)a−c =

(
k − 1

c− 1

)
(1/2)a.

Now sum this over k from c to a. 2

Theorem 2. Let Wi = (Si − b)+, for i = 1, 2. Then the Wi are exchangeable
and for r ≥ m+ b

E(W1) =

(
r − b
m

)/(
r − 1

m− 1

)
, (15)

and

E(W 2
1 ) = (2(r − b) + 1)E(W1)− 2m

(
r−b+1
m+1

)(
r−1
m−1

) , (16)
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For r ≥ m+ 2b,

E(W1W2) =

(
r − 2b+ 1

m+ 1

)/(
r − 1

m− 1

)
, (17)

and E(W1W2) = 0 if r < m+ 2b.

Proof. Exchangeability follows from Theorem 2.1 of Holst (1985). Now

E(W1) =

r−m−b∑
i=0

P (W1 > i) [from (11)]

=

r−m∑
j=b

P (S1 > j)

=

r−m∑
j=b

(
r − j − 1

m− 1

)/(
r − 1

m− 1

)
[from Th 2.1(B), Holst]. (18)

From (14), the numerator on the right side of (18) reduces to
(
r−b
m

)
.

To establish (16), we use the expression for the second moment in (12).
Consider

∞∑
i=0

iP (W1 > i) =

r−m∑
j=b

(j − b)P (S1 > j)

=

r−m∑
j=b

{r − (r − j)}P (S1 > j)− bE(W1)

= r

r−m∑
j=b

P (S1 > j)−
r−m∑
j=b

(r − j)P (S1 > j)− bE(W1)

= (r − b)E(W1)−
r−m∑
j=b

(r − j)
(
r − j − 1

m− 1

)/(
r − 1

m− 1

)
(19)

from the expression for P (S1 > i) in Theorem 2.1, Part (B) of Holst (1986).
The numerator in the second term in (19) above can be expressed as

m

r−m∑
i=b

(
r − i
m

)
= m

r−b+1∑
j=m+1

(
j − 1

m

)
= m

(
r − b+ 1

m+ 1

)
, (20)

where the last equality follows from (14). Upon using (12) with W1 = X and
applying (19) and (20) we obtain (16).

Using (13) with W1 = X and W2 = Y , and applying Theorem 2.1 Part (E),
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and Part (B) of Holst (1985) in succession, we obtain

E(W1W2) =
∑
i≥b

∑
j≥b

P (S1 > i, S2 > j)

=

r−m−b∑
i=b

r−m−i∑
j=b

P (S1 > i, S2 > j)

=

r−m−b∑
i=b

r−m−i∑
j=b

P (S1 > i+ j)

=

r−m−b∑
i=b

r−m−i∑
j=b

(
r − i− j − 1

m− 1

)/(
r − 1

m− 1

)
.

Now, with k = r − i− j,

r−m−i∑
j=b

(
r − i− j − 1

m− 1

)
=

r−b−i∑
k=m

(
k − 1

m− 1

)
=

(
r − b− i

m

)

from (14). Hence

r−m−b∑
i=b

r−m−i∑
j=b

(
r − i− j − 1

m− 1

)
=

r−m−b∑
i=b

(
r − b− i

m

)
.

With k = r − b− i+ 1, the above sum can be expressed as

r−2b+1∑
k=m+1

(
k − 1

m

)
=

(
r − 2b+ 1

m+ 1

)
.

Hence the claim in (17) holds. Clearly, when r < m+ 2b, we cannot have both
W1,W2 be positive simultaneously and hence E(W1W2) = 0. 2

From (1) and the exchangeability of the Wi we see that

E(V ) = mE(W1)

Var(V ) = mVar(W1) +m(m− 1)Cov(W1,W2)

= m[E(W 2
1 )− {E(W1)}2] +m(m− 1)[E(W1W2)− {E(W1)}2]

= mE(W 2
1 ) +m(m− 1)E(W1W2)−m2{E(W1)}2 (21)

where the expectations on the right side of (21) are given by Theorem 2. Thus
we have the following result.

Theorem 3. If r ≥ m+ b, the first two moments of the rv V representing the

8



number of vacant slots are given by

E(V ) = m

(
r−b
m

)(
r−1
m−1

) , (22)

Var(V ) =
m(2(r − b) + 1)

(
r−b
m

)
− 2m2

(
r−b+1
m+1

)
+m(m− 1)

(
r−2b+1
m+1

)(
r−1
m−1

)
−m2

{ (
r−b
m

)(
r−1
m−1

)}2

(23)

where the coefficient of m(m− 1) in (23) is taken to be 0 whenever r < m+ 2b.

Notes:

1. After deriving the expression for E(V ), we discovered it was previously
reported in Ivchenko (1994). However, he does not derive a formula for
the variance.

2. For r ≥ m+ b,

E (V ) = m

(
r − b
m

)/(
r − 1

m− 1

)
=

(r − b)! (r −m)!

(r − b−m)! (r − 1)!
. (24)

As seen from the second version in (24), E (V ) is symmetric in b and
m, even though the distribution for V is not symmetric in these parame-
ters. The symmetry only holds for the first moment, but not the second
moment.

3. As mentioned in Theorem 1, if r < m + b, P (V = 0) = 1. Thus if b ≥
r−m+ 1 or m+ b > r, all the Si are b or less. Thus, E(V ) = Var(V ) = 0
whenever r < m + b. When b = 1 and r > m, V is degenerate at r −m
and in that case E(V ) = r −m and Var(V ) = 0.

4 Limiting Properties of V

4.1 Limiting Distributions

Holst (1985; Theorem 3.2) shows that as r, b→∞ such that b/r → a for some

0 < a < 1, then V/r
d→ Va where Va has the same distribution as the length

of non-covered segments when m arcs of length a are dropped at random on
a circle with unit circumference. Siegel (1978; Theorem 3) has shown that
the distribution of Va can be expressed as the mixture of a degenerate and a
continuous rv. Specifically, he shows that P (Va(m) = (1 − ma)+) = pa(m)
where

pa(m) =

m−1∑
i=0

(−1)i
(
m

i

)
(1− ia)m−1+ ,ma > 1 (25)

= (1−ma)m−1,ma ≤ 1, (26)

9



and with probability 1 − pa(m), Va(m) behaves like a continuous rv Wa(m)
having the pdf f(w; a,m) given by

f(w; a,m) =

m

1− pa(m)

m∑
i=1

m−1∑
j=1

(−1)i+j
(
m− 1

i− 1

)(
m− 1

j

)(
i− 1

j − 1

)
wj−1(1− ia− w)m−j−1+ ,

(1−ma)+ < w < 1− a. (27)

with the convention that (1− ia−w)0+ is interpreted as 1 if 1− ia−w ≥ 0, and
as 0, otherwise. We now show the following.

Lemma 1. If r, b→∞ such that b/r → a, 0 < a < 1, then

P{V = (r −mb)+} → pa(m) ≡ P{Va = (1−ma)+},

given by (25) when ma > 1, and by (26) when ma < 1. When ma = 1, both
(25) and (26) reduce to 0.

Proof. When ma > 1, r −mb is eventually negative, our interest then is in the
limiting form of P (V = 0) given in (4). Consider the jth term there, excluding
the factor (−1)m

(
m
j

)
:(

r−jb−1
m−1

)(
r−1
m−1

) =
(r − jb− 1) · · · (r − jb−m+ 1)

(r − 1) · · · (r −m+ 1)
,

if r − jb = r(1 − j(b/r)) > m − 1; and it is 0 if r(1 − j(b/r)) ≤ m − 1. So if
b/r → a with 1 −ma < 0, the above ratio converges to (1 − ja)m−1+ . Thus the
limit is given by (25).

Whenever ma < 1, since r−mb = r(1−m(b/r)), r−mb eventually exceeds
any fixed m. In that case the term (9) converges to (1−ma)m−1. The remaining
finite number of terms in the numerator on the right in (10) are finite and each
is of o(rm−1) whereas the denominator is O(rm−1). Thus, the only nonzero
term in the limit is that of (9) and it coincides with (26).

If ma = 1, (26) is obviously 0 and now we show that (25) also converges to
0 as ma → 1+. For this we consider the continuous uniform spacing problem
where one chooses at random m−1 points U1, . . . , Um−1 from the interval (0, 1).
With spacings defined as Yi = Ui:m−1−Ui−1:m−1, i = 1, . . . ,m where U0:m−1 = 0
and Um:m−1 = 1, it is known that the survival function of the continuous rv Y(m)

representing the maximal spacing is given by (see, e.g., David and Nagaraja,
2003, p. 135)

P (Y(m) > a) =

m∑
i=1

(−1)i−1
(
m

i

)
(1− ia)m−1+ , (28)

for all a in (0, 1). Since it corresponds to the maximal spacing, Y(m) ≥ 1/m,
and so this probability is 1 whenever a ≤ 1/m or ma ≤ 1. The right side sum

10



in (25) is nothing but 1 − P (Y(m) > a) where P (Y(m) > a) is given by (28) for
all a in (0, 1). Hence as ma→ 1+ the expression in (25) converges to 0. 2

Notes:

4. When b = ar, with ma < 1, we have seen that the term in (9) converges
to (1 − ma)m−1, while the other terms contributing to P (V = r − mb)
converge to 0, indicating the dominant nature of this term missing in
Holst’s Theorem 2.2 (1985).

5. Holst’s Theorem 3.2 gives expressions for P (Va = 0) and the pdf of the
continuous part. Lemma 1 reveals that his expressions are imprecise and
fail to properly account for the range of V .

6. Siegel’s (1978) version of (25) [his expression (3.23)] has the summation
that includes an additional term with i = m. In view of the assumption
that ma > 1, the corresponding term is 0, and hence they coincide. Fur-
ther, in view of the above lemma, we can conclude that when ma = 1
both (25) and (26) hold.

For m = 5 and selected r values, Figure 1 and Figure 2 respectively provide the
normalized conditional pmf of V given the event {V > (r −mb)+}, for a = 0.1
and 0.25. The case of r = ∞ corresponds to the conditional pdf f(w; a,m)
of the continuous case, given in (27). Both these figures suggest that by the
time r reaches 500, we are close to the limiting result, indicating that when the
sampling fraction is under 1%, f(w; a,m) provides a close approximation to the
conditional pmf of V .

Holst (1985, Theorem 4.2) has another limit result for a normalized V .
Assuming b is held fixed and r,m → ∞ such that m/r = p = 1 − q and
p→ p0 = 1− q0, 0 < p0 < 1, he shows that

(V − rqb)/
√
m

d→ N(0, σ2
0), (29)

where σ2
0 = (1 + q0 − qb0)qb0 − (q0 + bp0)2q2b−10 .

4.2 Limiting Moments

Since V/r is uniformly bounded, the convergence in distribution implies that
E(V/r)k → E(V ka ) when r →∞ and b/r → a and ma 6= 1. Siegel has shown in
his Theorem 2 that,

E(V ka ) =

(
k +m− 1

m

)−1 k∑
i=1

(
k

i

)(
m− 1

i− 1

)
(1− ia)m+k−1

+ , k ≥ 1. (30)

Hence we can obtain approximations to any moment of V when m is small and
r and b are large using the moments of Va.
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Figure 1: rP{V = rw|V > (r − bm)+} for m = 5, a = 0.1, b = ar, for selected
r; f(w; a,m), given in (27), corresponds to r =∞.
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Figure 2: rP{V = rw|V > (r− bm)+} for m = 5, a = 0.25, b = ar, for selected
r; f(w; a,m), given in (27), corresponds to r =∞.

Table 2 provides some key facts about the features of the distributions of V
and the limiting rv Va for m = 5, r = 20, 50 and b values up to 20 corresponding
to a good range of a values. It shows that as a increases pa(m) decreases for
a ≤ 1/m, it is 0 when ma = 1 and then pa(m) increases. Note that whenever
a reaches 1/m from below, the lower limit of the support of Va moves towards
0 and whenever ma > 1, the lower limit remains at 0. This limiting pattern
is closely followed by V when r = 50, but not that closely when r = 20. The
moments converge fairly quickly to the limiting values. The mean is better
approximated by the limit for small b (=ar) whereas for the standard deviation,
large b values tend to be slightly more efficient.

Remark 2: When b is held fixed and r,m → ∞ such that m/r → p0 =
1 − q0, 0 < p0 < 1, convergence of moments is not evident from the limiting
normal distribution. By using Stirling’s approximation in the expression for
E(V ) computed earlier in Section 3, we can show that E(V − rqb)/

√
m → 0

only when
m

r
= p0 + o(

1√
m

).
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Table 2: Properties of V and Va for m = 5, r = 20, 50, and selected b
values; a = b/r.

b P (V = (r −mb)+) pa(m) E(V ) rE(Va) SD(V ) rSD(Va)
r = 20

1 1 0.3164 15 15.48 0 0.49
2 0.008 0.0625 11.05 11.14 0.80 1.14
3 0.405 0.0040 7.98 8.87 1.42 1.71
4 0.802 0 5.63 6.55 1.84 2.11
5 0.960 0.0040 3.87 4.75 2.04 2.31

r = 50
1 1 0.6561 45 45.196 0 0.341
2 0.6407 0.4096 40.408 40.769 0.586 0.899
3 0.3882 0.2401 36.199 36.695 1.213 1.536
4 0.2189 0.1296 32.348 32.954 1.875 2.196
5 0.1121 0.0625 28.832 29.525 2.532 2.842
6 0.0502 0.0256 25.628 26.387 3.156 3.452
7 0.0183 0.0081 22.716 23.521 3.726 4.009
8 0.0047 0.0016 20.075 20.911 4.229 4.503
9 0.0006 0.0001 17.685 18.537 4.658 4.925
10 0.0000 0 15.528 16.384 5.007 5.270
11 0.0006 0.0001 13.587 14.436 5.273 5.538
12 0.0047 0.0016 11.845 12.678 5.457 5.728
13 0.0179 0.0081 10.287 11.095 5.560 5.842
14 0.0452 0.0246 8.897 9.675 5.586 5.881
15 0.0885 0.0545 7.661 8.404 5.541 5.852
16 0.1467 0.0989 6.566 7.27 5.430 5.759
17 0.2158 0.1561 5.601 6.262 5.261 5.609
18 0.2912 0.2226 4.752 5.369 5.041 5.408
19 0.3689 0.2944 4.010 4.581 4.780 5.164
20 0.4455 0.3680 3.363 3.888 4.486 4.886

5 Application to Banking Networks

Alvarez and Barlevy (2013), building on earlier work by Caballero and Simsek
(2010), analyze a model of contagion among interconnected banks that encom-
passes the discrete circle covering problem analyzed here. Acemoglu, Ozdaglar,
and Tahbaz-Salehi (2013) present a closely related model of financial contagion
where the circle covering problem is a special case.

The Alvarez and Barlevy model assumes each bank owes a fixed amount λ
to exactly one other bank, and that it is in turn owed λ by exactly one other
bank. Hence, each bank will be connected to a set of other banks through a
cyclical network in which banks are linked if they have a debt obligation between
them. Let r denote the number of banks in a given cycle, and index banks in
that cycle by i ∈ {0, . . . r − 1} so that bank i owes λ to bank i + 1 modulo
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r. We drop the reference to modulo r in what follows. Their model makes
the following assumptions: (1) Each bank owns µ worth of assets that it can
sell to repay its outstanding obligations if it needs to, (2) m banks among the
r banks, drawn uniformly from among the

(
r
m

)
possible selections, are “bad”,

meaning they incur a loss of constant size φ, and (3) µ < φ < r
mµ. The last

assumption implies bad banks incur losses that exceed what they can afford to
pay by liquidating their assets, but total losses across all m bad banks are still
less than the combined value of all assets held among all r banks in the network.
Banks are required to pay their full obligation λ if possible, and must sell their
asset holdings if they fall short.

Let xi denote the amount bank i pays bank i+ 1 and assume that the bad
banks are labeled Ri, i = 0, . . . ,m−1, and these are the ones who have incurred
a direct external loss of φ and the others have no external losses. Given that
banks must pay their obligations if they can, the payments {xi}r−1i=0 satisfy the
following system of equations

xi = min{(xi−1 + µ− φ)+, λ}, i ∈ {R0, ..., Rm−1}
= min{xi−1 + µ, λ}, i 6∈ {R0, ..., Rm−1},

with x−1 ≡ xr−1. For φ < r
mµ, there exists a unique solution {xi}r−1i=0 to this

system. Bank i is said to be insolvent if xi < λ, i.e. if it cannot meet its
obligation, and solvent otherwise. Each of the m bad banks are insolvent, since
even if they received the full amount λ from the bank that is obligated to them,
the fact that µ < φ implies xi−1 + µ − φ < λ and so they would be unable to
pay in full even after liquidating their assets. Beyond these m bad banks, banks
that do not directly suffer losses may still end up insolvent because they are
exposed to bad banks either directly – meaning the bank that owes them λ is
bad – or indirectly – meaning the bank that owes them λ is good but is exposed
to a bad bank. One question of interest is to determine the number of banks
that are insolvent, i.e. to gauge the extent of contagion.

The parameter λ plays an important role in determining the distribution
of the number of insolvent banks. Now suppose λ ≤ φ − µ, and λ = bµ,
for some integer b. Then (b + 1)µ ≤ φ, and xRk

= 0, and xRk+j = jµ, j =
1, . . . ,min{b−1, Sk+1−1}, for k = 0, . . . ,m−1. Hence, the number of insolvent
banks starting from each bad bank is a fixed number b unless there is another
bad bank that is closer. In this case, the number of solvent banks in the network
corresponds to the number of vacant slots V we analyze in this paper with b
equal to λ

µ . Thus our results provide the small as well as large sample properties
of the number of solvent banks in the Alvarez and Barlevy model with λ ≤ φ−µ.

The situation where λ > φ− µ provides a new generalization of the discrete
circle covering problem. Then bk, the number of insolvent banks induced by
the kth bad bank, becomes a rv that depends on the location of the other bad
banks. However, unlike in Siegel and Holst (1982) who discuss the continuous
case of the circle covering problem assuming the length of the arc b starting at
any point is an i.i.d. rv, here the number of insolvent banks starting at each
Rk will depend on the distribution of the spacings between the bad banks. To
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elaborate, xRk
= (xRk−1−(φ−µ))+ is no longer identically 0, and this will affect

the number of associated insolvent banks. That is, the number of successive
boxes that must be filled starting at the kth bad bank is a rv that depends on
the location of that bad bank and the associated bk here are all dependent on
the entire collection of spacings {Sk}mk=1. Even then, for λ > m(φ− µ) Alvarez
and Barlevy (2013) have shown that the number of solvent banks V (vacant
slots) is degenerate and equals r − mb where b = λ/µ. In the intermediate
case where φ − µ < λ < m(φ − µ) the distribution of V is non-degenerate and
unknown. We leave the investigation of its distribution for future work.
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