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Abstract

This paper develops an econometric model of industry dynamics for

concentrated markets that can be estimated very quickly from market-level

panel data on the number of producers and consumers using a nested fixed-

point algorithm. We show that the model has an essentially unique symmetric

Markov-perfect equilibrium that can be calculated from the fixed points

of a finite sequence of low-dimensional contraction mappings. Our nested

fixed point procedure extends Rust’s (1987) to account for the observable

implications of mixed strategies on survival. We illustrate the model’s

empirical application with ten years of County Business Patterns data from

the Motion Picture Theaters industry in 573 Micropolitan Statistical Areas.

The results are suggestive of fierce competition between theaters in the market

for film exhibition rights.
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1 Introduction

This paper introduces an econometric model of firm entry, competition, and exit in

dynamic oligopolistic markets. The model includes sunk entry costs and market-

level demand and cost shocks. Because all shocks with dynamic consequences occur

at the market level, the model’s theoretical analysis and equilibrium computation

are straightforward. In particular, we prove that there exists an essentially unique

symmetric Markov-perfect equilibrium that can be computed from the fixed points

of a finite sequence of low-dimensional contraction mappings. We use these results to

develop a nested fixed point (NFXP) procedure for the model’s maximum likelihood

estimation. This extends Rust’s (1987) algorithm to account for the observable

implications of mixed strategies on survival.

We begin with Abbring et al.’s (2010) model of Markov-perfect duopoly

dynamics. They describe it as “simple” because adding a second firm to a

market always lowers the equilibrium payoff of a monopolist incumbent. This

result allows them to prove that there is an essentially unique “natural” Markov-

perfect equilibrium and to develop an algorithm for its fast calculation. At the

cost of removing persistent firm-specific shocks to profitability, we extend their

equilibrium uniqueness and calculation results to an oligopoly setting. We also add a

market-level shock to both potential entrants’ sunk costs of entry and incumbents’

fixed costs of continuation. This is observed by market participants but not by

the econometrician and so serves as the model’s econometric error. The lack of

long-lived firm-specific shocks makes our framework inappropriate for applications

that focus on persistent firm heterogeneity, as in Hopenhayn (1992) and Melitz

(2003). However, it is well suited for extending Bresnahan and Reiss’s (1990; 1991)

measurements of the effect of entry on profitability to a dynamic setting.

Monte Carlo results indicate that the NFXP procedure can accurately estimate

sunk costs and profits per customer (as a multiple of the per-period fixed cost of

production) using observations on the number of producers and consumers from as

few as 100 markets over ten years. We further illustrate the model’s application

by estimating its primitives for one industry with many concentrated local markets,

Motion Picture Theaters (NAICS 512131). Our data include observations on the

number of theaters from 2000 to 2009 serving 573 Micropolitan Statistical Areas

(µSAs). We find that adding a single firm to a monopoly market lowers profits
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per customer by almost half. Adding two more firms brings profits per customer

to 34 percent of its monopoly value. Since Davis (2005, 2006) found only modest

effects of competition on ticket prices, we interpret these results as suggestive of

fierce competition between theaters for film exhibition rights. In any case, the

maximum likelihood estimation underlying this analysis takes only a few minutes

on an ordinary desktop computer.

Both our model and that of Abbring et al. (2010) can be viewed as special cases

of the Ericson and Pakes (1995) Markov-perfect industry dynamics framework that

restrict firms from varying their investments in productivity improvements. Since

computing that model’s equilibria has proven to be computationally challenging

(see Doraszelski and Pakes (2007) for examples), its estimation has focused on

statistically inefficient methods that avoid equilibrium calculation altogether. For

example, Bajari et al. (2007) apply the Hotz and Miller (1993) inversion to estimate

the structural parameters governing a single agent’s dynamic optimization problem

after conditioning on the observed distribution of all other agents’ choices. Our

nested fixed-point algorithm computes maximum likelihood estimates, which are, of

course, statistically efficient. Even with parameter estimates in hand, the lack of

a fast algorithm for equilibrium computation makes counterfactual analysis of the

Ericson and Pakes (1995) model difficult. Weintraub et al. (2008) make equilibrium

computation more tractable by assuming that firms ignore current information about

competitors’ states. Instead, they make dynamic decisions based solely on their own

state and knowledge of the long-run average industry state. Such oblivious equilibria

approximate Markov-perfect equilibria when the number of competitors is large, yet

they are much easier to compute and thus can serve as a starting point for empirical

analysis, as in Xu (2008). Our model can serve as a similar starting point for the

analysis of markets with only few firms.

The remainder of the paper proceeds as follows. The next section presents

the model’s primitives, and Section 3 discusses equilibrium existence, uniqueness,

and computation. Section 4 develops the model’s empirical implementation,

which includes sampling, likelihood construction, identification, and maximum

likelihood estimation using the NFXP procedure. Section 5 demonstrates the light

computational demands of the NFXP procedure and explores the estimator’s finite

sample behavior using Monte Carlo experiments. It also briefly discusses the relative

performance of Su and Judd’s (2012) mathematical programming with equilibrium
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constraints (MPEC) implementation of the estimator. Section 6 illustrates the

model’s application with the application to Motion Picture Theaters. Section 7

concludes. The Appendix provides technical details.

2 The Model

Consider a market in discrete time indexed by t ∈ N ≡ {1,2, . . .}. In period t, firms

that have entered in the past serve the market. Each firm has a name f ∈ F ≡ N×N.

The firm’s name gives the precise node of the game tree in which the firm has

its single opportunity to enter the market. Aside from the timing of their entry

opportunities, the firms are identical.

Figure 1 details the actions taken by firms in period t and their consequences for

the game’s state at the start of period t+1. We call this the game’s recursive extensive

form. For expositional purposes, we divide each period into two subperiods, the

entry and survival subgames. Play in period t begins on the left with the entry

subgame. If t = 1, nature sets the number N1 of firms serving the market in period

1 and an initial demand state C0; if t > 1, the number of incumbent firms Nt and

the demand state Ct−1 are inherited from period t− 1. Nature draws a new demand

state Ct from the conditional distribution GC(⋅ Ct−1) and a real-valued cost state

Wt from the marginal distribution GW (⋅). We use C to denote the support of Ct;

Wt’s support is the real line. All incumbent firms observe (Ct,Wt), and each earns

a surplus π(Nt,Ct) from serving the market. We assume that

• ∃π̌ <∞ such that ∀n ∈ N and ∀c ∈ C, E[π(n,C ′)∣C = c] ≤ π̌;

• ∃ň ∈ N such that ∀n > ň and ∀c ∈ C, π(n, c) = 0; and

• ∀n ∈ N and ∀c ∈ C, π(n, c) ≥ π(n + 1, c).

The first assumption is technical and allows us to restrict equilibrium values to the

space of bounded functions. We will use the second assumption to bound the number

of firms that will participate in the market simultaneously. It is not restrictive in

empirical applications to oligopolistic markets. The third assumption requires the

addition of a competitor to weakly reduce each incumbent’s per-period surplus.

Sutton (1991) labelled the rate at which additional competitors lower post-entry

surplus the toughness of competition.
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The period t entry cohort consists of firms with names in t×N. After incumbents

receive their payoffs, these firms make their entry decisions sequentially in the order

of their names’ second components. We denote firm f ’s entry decision with afE ∈
{0,1}. Firm f incurs the sunk cost ϕ exp(Wt) if it enters the market (i.e. afE = 1).

Otherwise (i.e. if afE = 0), it earns a payoff of zero and never has an opportunity to

enter again. This refusal to enter also ends the entry subgame, so firms remaining

in this period’s entry cohort that have not yet had an opportunity to enter never

get to do so. Since the next firm in line faces exactly the same choice as did the

firm that refused to enter, this convenient assumption is without economic content.

Since every period has at least one firm refusing an available entry opportunity, the

model is one of free entry.

The total number of firms in the market after the entry stage equals NE,t,

which sums the incumbents with the actual entrants (Jt in Figure 1). Denote their

names with f1, . . . , fNE,t
. In the survival subgame, these firms simultaneously choose

probabilities of remaining active, aftS , . . . , a
fNE,t

S ∈ [0,1]. Nature subsequently draws

the firms’ survival outcomes independently across firms from the chosen Bernoulli

distributions. Firms that survive pay a fixed cost κ exp(Wt), with κ > 0. Firms

that exit earn 0 and never again participate in the market. The Nt+1 surviving

firms continue in the next period, t + 1. Finally, firms value future payoffs with the

discount factor ρ ∈ [0,1).
Before continuing to the model’s analysis, we review its key assumptions from

the perspective of its econometric implementation using data on a panel of markets.

In Section 4, we will assume that, for each market, the data contain information

on Nt, Ct, and possibly some time-invariant market characteristics X that shift

the market’s primitives. The market-level cost shocks Wt are not observed by the

econometrician and serve as the model’s structural econometric errors. Because

they are observed by all firms and affect their payoffs from entry and survival, they

make the relation between the market structure Nt and the observed demand state

Ct statistically nondegenerate.

The assumptions on {Ct,Wt} make it a first-order Markov chain satisfying

Rust’s (1987) conditional independence assumption.1 This ensures that the markets’

1Rust (1987) defines “conditional independence” for a controlled Markov process, but his
definition specializes to our case of an externally specified process {Ct,Wt} if we take the control to
be trivial.Rust’s conditional independence assumption allows Wt and Ct to depend on (Ct−1,Wt−1)
through a conditional distribution GW (⋅ Ct). Our analysis easily extends to this case.
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Period t Entry Subgame (Sequential Moves)

Start with Nt incumbents and demand
state Ct−1 (or initialize (N1,C0) if t = 1).

Ct ∼ GC(⋅∣Ct−1) and Wt ∼ GW

a
(t,1)
E

Incumbents earn π(Nt,Ct).

Period t
Survival

Subgame,
Jt = 0

(t,1) earns 0.

0

a
(t,2)
E

(t,1) pays ϕeWt .

1

Period t
Survival

Subgame,
Jt = 1

(t,2) earns 0.

0

a
(t,3)
E

1

(t,2) pays ϕeWt .

⋯

(t,3) pays ϕeWt .

1
Period t
Survival

Subgame,
Jt = 2

(t,3) earns 0.

0

Period t Survival Subgame (Simultaneous Moves)

Start with NE,t ≡ Nt + Jt active
firms with names f1, f2, . . . , fNE,t

.

af1S

Exp. disc. profits: vE(NE,t,Ct,Wt)

f1 pays κeWt . f1 earns 0.

1

af2S

0

f2 pays κeWt . f2 earns 0.

1

⋮
0

a
fNE,t

S

fNE,t
pays κeWt . fNE,t

earns 0.

1

Nt+1 ∼ B (af1S , a
f2
S , . . . , a

fNE,t

S )

0

Period t + 1
Entry Subgame

Exp. disc. profits: vS(Nt+1,Ct)Assumptions:

• ∃π̌ <∞ ∶ ∀n ∈ N and ∀c ∈ C, E[π(n,C ′)∣C = c] ≤ π̌.

• ∃ň ∈ N ∶ ∀n > ň and ∀c ∈ C, π(n, c) = 0.

• ∀n ∈ N and ∀c ∈ C, π(n, c) ≥ π(n + 1, c).

• κ > 0 and ϕ ≥ 0.

• Firms discount future profits with ρ ∈ [0,1).

Figure 1: The Model’s Recursive Extensive Form

observed (by the econometrician) initial conditions (N1,C0) cannot be informative

of the unobserved cost shocks {Wt}.

3 Equilibrium

We assume that firms play a symmetric Markov-perfect equilibrium (Maskin and

Tirole, 1988), a subgame-perfect equilibrium in which all firms use the same Markov

strategy.

3.1 Markov Strategies

A Markov strategy is a strategy that maps payoff relevant states into actions. When

a potential entrant (t, j) makes its entry decision in period t, the payoff-relevant

states are the number of firms in the market including all of the current period’s

entrants up to and including (t, j), M j
t ≡ Nt + j, the current state of demand Ct,
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and the cost shock Wt. We collect the entrant’s payoff relevant state variables into

(M j
t ,Ct,Wt), which takes values in H ≡ N × C ×R. Similarly, we collect the payoff

relevant state variables of a firm f contemplating survival in period t in the H-

valued (NE,t,Ct,Wt). Since survival decisions are made simultaneously, this state is

the same for all active firms. A Markov strategy is a pair of functions aE ∶ H → {0,1}
and aS ∶ H → [0,1]. Since time itself is not payoff relevant, we drop the subscript

t from the payoff relevant states and denote the next period’s value of a generic

variable Z with Z ′.

3.2 Symmetric Markov-Perfect Equilibrium

In a symmetric Markov-perfect equilibrium, a firm’s expected continuation value at

a particular node of the game can be written as a function of that node’s payoff-

relevant state variables. Two of these value functions are particularly useful for

the model’s equilibrium analysis: the post-entry value function, vE, and the post-

survival value function, vS. The post-entry value vE(NE,C,W ) equals the expected

discounted profits of a firm facing C consumers and cost shock W in a market with

NE firms just after all entry decisions are made. The post-survival value vS(N ′,C)
equals the expected discounted profits from being active in a market with N ′ firms

just after the survival outcomes are realized. The post-survival function does not

depend on W because that cost shock has no forecasting value and is not directly

payoff relevant after survival decisions are made. Figure 1 shows the points in the

survival subgame where these value functions apply.

The payoff from leaving the market equals zero, so vE and vS satisfy

vE(nE, c,w) = aS(nE, c,w) (−κ exp(w)
+ EaS [vS(N ′, c)∣NE = nE,C = c,W = w]). (1)

Here and throughout, capital and small letters denote random variables and their

realizations. The expectation EaS over N ′ takes survival of the firm of interest as

given. Its subscript makes its dependence on aS explicit. Similarly, we have

vS(n′, c) = ρEaE[π(n′,C ′) + vE(N ′
E,C

′,W ′)∣N ′ = n′,C = c]. (2)

This expectation operator’s subscript indicates its dependence on aE.
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A strategy (aE, aS) forms a symmetric Markov-perfect equilibrium with payoffs

(vE, vS) if and only if no firm can gain from a one-shot deviation (see Sections 4.2

and 13.2 in Fudenberg and Tirole, 1991). Thus, given the pair of payoff functions

(vE, vS), their corresponding strategy must satisfy

aE(mj, c,w) ∈ arg max
a∈{0,1}

a( − ϕ exp(w) (3)

+EaE [vE(NE, c,w)∣M j =mj,C = c,W = w]),
aS(nE, c,w) ∈ arg max

a∈[0,1]
a( − κ exp(w) +EaS [vS(N ′, c)∣NE = nE,C = c]). (4)

Before proceeding to the equilibrium analysis, we wish to note and dispense

with an uninteresting source of equilibrium multiplicity. If a potential entrant is

indifferent between its two choices, we can construct one equilibrium from another

by varying only that choice. Similarly, an incumbent monopolist can be indifferent

between continuation and exit, and we can construct one equilibrium from another

by changing that choice alone. To avoid these uninteresting caveats to our results,

we follow Abbring and Campbell (2010) by focusing on equilibria that default to

inactivity. In such an equilibrium, a potential entrant that is indifferent between

entering or not stays out,

EaE [vE(NE, c,w)∣M =m,C = c,W = w] = ϕ exp(w)⇒ aE(m,c,w) = 0,

and an active firm that is indifferent between all possible outcomes of the survival

stage exits,

vS(n, c) = ⋯ = vS(1, c) = κ exp(w)⇒ aS(n, c,w) = 0.

The restriction to equilibria that default to inactivity does not restrict the game’s

strategy space. Hereafter, we require the strategy underlying a “symmetric Markov-

perfect equilibrium” to default to inactivity.

3.3 Existence, Uniqueness, and Computation

This section presents our analysis of equilibrium existence, uniqueness, and

computation. For this, three features of the model are disposable: the serial
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independence of Wt, the additive separability of per-period flow profits from the

costs of continuation, and the invariance of sunk costs to the number of firms and

the current demand state. In the Appendix, Sections A and B generalize the model

by removing these assumptions and Section C provides proofs of all of this section’s

appropriately extended results.

We start by noting that the assumption that per-period surplus equals zero if

n > ň bounds the long-run number of firms in equilibrium.

Lemma 1 (Bounded number of firms) In a symmetric Markov-perfect equilib-

rium, ∀c ∈ C and ∀w ∈ R, aE(n, c,w) = 0 and aS(n, c,w) < 1 for all n > ň.

Intuitively, the post-survival payoff to one of more than ň firms must be negative

because the flow payoff can become positive only when some other firm leaves. Since

all firms must earn zero expected payoffs if the common survival strategy gives a

positive probability to exit, any positive expected profits earned after other firms’

departures are balanced by losses when more than ň firms continue. Thus survival

with ň or more rivals incurs a cost — the current value of κ exp(W ) — with no

benefit. Consequently, no firm would pay a positive sunk cost to enter the market

(aE(n, c,w) = 0) and all incumbent firms choosing sure continuation is inconsistent

with individual payoff maximization (aS(n, c,w) < 1).

In equilibrium, the market can only have more than ň active firms if N1 > ň.

Because these firms exit with positive probability until there are ň or fewer of them,

Nt must eventually enter {0,1, . . . , ň} permanently. Consequently, the equilibrium

analysis hereafter focuses on the restrictions of aE, vE, and aS to {1,2, . . . , ň}×C×R ⊂
H and of vS to {1,2, . . . , ň} × C. With an equilibrium strategy over this restricted

state space in hand, it is straightforward to extend it to the full state space.

The next step in the equilibrium analysis uses the assumption that flow payoffs

weakly decrease with the number of competitors to show that the same monotonicity

applies to the post entry and survival value functions.

Lemma 2 (Monotone equilibrium payoffs) In a symmetric Markov-perfect equi-

librium, ∀c ∈ C and ∀w ∈ R, vE(n, c,w) and vS(n, c) weakly decrease with n.

The monotonicity assumption on π rules out exogenously specified comple-

mentarities between firms in the market. Lemma 2 says that no endogenous

complementarity arises in equilibrium. Although this is intuitive, it is not a trivial
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result. Indeed, Abbring et al. (2010) give a counterexample to the analogous

proposition in a model with heterogeneous productivity types. In it, two high-

productivity firms benefit each other by jointly deterring the entry of two low-

quality potential rivals. That counterexample shows that Lemma 2 cannot be easily

extended to the case with post-entry heterogeneity.2

Consider a one-shot simultaneous-moves survival game played by nE active firms.

In it, each of the n′ survivors earns −κ exp(w) + vS(n′, c), with vS the post-survival

value in a symmetric Markov-perfect equilibrium of our dynamic game, and each

exiting firm earns zero. The Nash equilibria of this game are intimately connected

to the Markov-perfect equilibria of our model. In particular, (3) and (4) imply that

a survival rule aS(nE, c,w) from a symmetric Markov-perfect equilibrium forms a

symmetric Nash equilibrium of the one-shot game, and vice versa.

First note that this one-shot game has many equilibria in the trivial case that

vS(nE, c) = ⋯ = −vS(1, c) = κ exp(w). In this case, our restriction to equilibria that

default to inactivity picks the unique one in which aS(nE, c,w) = 0.

In the more interesting case where vS(n′, c) ≠ κ exp(w) for at least one n′ ∈
{1, . . . , nE}, Lemma 2 guarantees that the one-shot game has a unique symmetric

Nash equilibrium. To show this, we distinguish three subcases.

• First, suppose that vS(1, c) ≤ κ exp(w). If vS(1, c) = κ exp(w), then Lemma

2 implies that vS(n′, c) ≤ κ exp(w) for all n′ ∈ {1, . . . , nE − 1}. Furthermore,

since vS(n′, c) ≠ κ exp(w) for at least one n′ ∈ {1, . . . , nE}, we know that

vS(nE, c) < κ exp(w). Since exiting for sure (setting as(nE, c,w) = 0) is a

weakly dominant strategy, it forms one symmetric equilibrium. Exiting for

sure is also the unique best response to any positive symmetric continuation

value, so it is the only symmetric equilibrium.

• Next, suppose that vS(nE, c) ≥ κ exp(w). Lemma 2 implies that vS(n′, c) ≥
κ exp(w) for n′ = 2, . . . , nE − 1. Since vS(n′, c) ≠ κ exp(w) for at least one

n′ ∈ {1, . . . , nE}, we also have and vS(1, c) > κ exp(w). Therefore, continuing

for sure (setting aS(n, c,w) = 1) is a strictly dominant strategy and forms the

unique Nash equilibrium.

2Abbring et al. (2010) show that a version of Lemma 2 also holds in a model with heterogeneous
productivity if ň = 2, so proving payoff monotonicity does not (strictly speaking) require post-entry
homogeneity.
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• For the last subcase, suppose that vS(1, c) > 0 and vS(nE, c) < 0. No

pure strategy equilibrium exists, because the best response to all other firms

continuing for sure is to exit for sure, and vise versa. However, the intermediate

value theorem guarantees that that there is at least one survival probability

aS satisfying symmetric mixed strategy equilibria exist. no pure-strategy

symmetric equilibrium exists, but there is an equilibrium in a mixed strategy.

In it, aS(nE, c,w) leaves firms indifferent between continuation and exit:

nE

∑
n′=1

(nE − 1

n′ − 1
) an′−1

S (1 − aS)nE−n
′
(−κ exp(w) + vS(n′, c)) = 0. (5)

Lemma 2 guarantees that the left hand side of (5) weakly decreases in aS,

and the subcase’s conditions further require it to be strictly decreasing for all

aS ∈ [0,1]. Therefore, there is only one mixed strategy equilibrium.

For future reference, we state the equilibrium uniqueness result for this nontrivial

case with

Corollary 1 Let vS be the post-survival value function associated with a symmetric

Markov-perfect equilibrium. Consider the one-shot survival game in which nE firms

simultaneously choose between survival and exit (as in the survival subgame of Figure

1), each of the n′ survivors earns −κ exp(w)+vS(c, n′), with −κ exp(w)+vS(n′, c) ≠ 0

for at least one n′ ∈ {1, . . . , nE}, and each exiting firm earns zero. This game has a

unique symmetric Nash equilibrium, possibly in mixed strategies.

It follows that the survival rule in a symmetric Markov-perfect equilibrium is unique

and takes values equal to the symmetric Nash equilibrium strategies of the one-shot

game. Because this rule gives firms the individual payoff from joint continuation if

it is positive and gives them zero otherwise (because the equilibrium strategy puts

positive probability on exit), we also have

Corollary 2 If vE and vS are the post-entry and post-survival value functions

associated with a symmetric Markov-perfect equilibrium, then

vE(nE, c,w) = max{0,−κ exp(w) + vS(nE, c)}. (6)

With Corollaries 1 and 2 in hand, we proceed to demonstrate equilibrium

existence constructively. Our equilibrium uniqueness result and algorithm for
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equilibrium calculation follow from the construction as byproducts. Begin with

calculating vE(ň, ⋅, ⋅) and vS(ň, ⋅). From Lemma 1, there will be no entry in the next

period, so

vS(ň, c) = ρE[π(ň,C ′) + vE(ň,C ′,W ′)∣C = c]. (7)

Using Corollary 2 to replace vE(ň,C ′,W ′) yields

vS(ň, c) = ρE[π(ň,C ′) +max{0,−κ exp(W ′) + vS(ň,C ′)}∣C = c]. (8)

The right-hand side defines a contraction mapping on the complete space of bounded

functions on C, with a unique fixed point vS(ň, ⋅). Although we are constructing a

candidate equilibrium, the fixed point’s uniqueness implies that this is the only

possible equilibrium post-survival value. Applying Corollary 2 to this immediately

yields vE(ň, ⋅, ⋅). Again, this is the only possible candidate value. The unique entry

rule that is consistent with these payoffs and individual optimality that also defaults

to inactivity is

aE (ň, c,w) = 1 [vE(ň, c,w) > ϕ exp(w)] .

Here, 1[x] gives x;s truth value.

With vE(ň, ⋅, ⋅) and aE(ň, ⋅, ⋅) in hand, the construction of the remaining

candidate value functions and entry strategies proceeds recursively. To this end,

define

µ(n, c,w) ≡ n +
ň

∑
m=n+1

aE(m,c,w). (9)

This is the number of firms that will be active after potential entrants follow the

candidate entry strategies. For given n, suppose that vE(m, ⋅, ⋅) and aE(m, ⋅, ⋅) for

m = n + 1, n + 2, ..., ň are in hand. Then, the equilibrium optimality conditions (3)

and (4) along with Corollary 2 imply

vS(n, c) = ρE[π(n,C ′) +
ň

∑
m=n+1

1[µ(n,C ′,W ′) =m]vE(m,C ′,W ′) (10)

+ 1[µ(n,C ′,W ′) = n]max{0,−κ exp(W ′) + vS(n,C ′)}∣C = c].
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Given the values of vE(m, ⋅, ⋅) for m = n + 1, . . . , ň, the right hand side defines a

contraction mapping with vS(n, ⋅) as its unique fixed point. Corollary 2 again yields

the unique vE(n, ⋅, ⋅). Finally, by (3), a firm in state (n, c,w) enters if

EaE [vE(NE, c,w)∣M = n,C = c,W = w] > ϕ exp(w). (11)

Because, by Lemma 2, further entry cannot make an incumbent better off, a

necessary condition for (11) is that the firm would enter in the absence of further

entry, vE(n, c,w) > ϕ exp(w). On the other hand, because later entrants pay the

same entry costs, further entry will never take post-survival values below ϕ exp(w),
so vE(n, c,w) > ϕ exp(w) is also sufficient for (11). Therefore,

aE (n, c,w) = 1 [vE(n, c,w) > ϕ exp(w)]

is the only possible entry equilibrium entry rule consistent with vE(n, c,w).3
When this recursion is complete, we have the unique continuation values and

entry strategies that are consistent with an equilibrium. To find a candidate survival

strategy aS(n, c,w), we find an equilibrium to the one-shot survival game described

above. If the candidate is actually an equilibrium, then Corollary 1 guarantees that

these survival strategies are unique. This is indeed the case.

Theorem 1 (Equilibrium existence and uniqueness) There exists a unique

symmetric Markov-perfect equilibrium that defaults to inactivity.

4 Empirical Implementation

The previous section shows that there exists a unique symmetric Markov-perfect

equilibrium for given primitives π, κ, ϕ, ρ, GC , and GW . Given (N1,C0), this

equilibrium induces a distribution for the process {Nt,Ct}. This section studies

how data on this process for a panel of markets can be used to estimate the model’s

primitives.

3In the more general model of the Appendix, we assume that the sunk costs of entry weakly
increase with the number of firms already committed to production in the next period. Therefore,
the logic of this paragraph applies straightforwardly to that setting.
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4.1 Sampling

Suppose that we have data on ř ≥ 1 markets r = 1, . . . , ř. For each market r, we

observe the number of active firms Nr,t and the demand state Cr,t in each period

t = 1, . . . , ť; for some ť ≥ 2.4 We also observe some time-invariant characteristics of

each market r, which we store in a row vector Xr. However, we have no data on the

cost shocks Wr,t.

We assume that ({Nr,t,Cr,t; t = 1, . . . , ť},Xr) is distributed independently across

markets r.5 The initial conditions (Nr,1,Cr,1,Xr) are drawn from some distribution

that is common across markets r. Conditional on (Nr,1,Cr,1,Xr), industry dynamics

{Nr,t,Cr,t; t = 2, . . . , ť} follow the transition rules implied by Section 2’s unique

equilibrium, with primitives πr, κr, ϕr, ρr, GC,r, and GW,r. The primitives may

vary across markets r, but with Xr only. We make this explicit by parameterizing

πr(⋅, ⋅) = π(⋅, ⋅ ∣ Xr, θP ), κr = κ(Xr, θP ), ϕr(⋅) = ϕ(⋅ ∣ Xr, θP ), and ρr = ρ(Xr, θP ) for

some finite vector θP ; GC,r(⋅ ∣ ⋅) = GC(⋅ ∣ ⋅ ;Xr, θC) for some finite vector θC ; and

GW,r(⋅) = GW (⋅ ;Xr, θW ) for some finite vector θW .6

4.2 Likelihood

We focus on inferring the structural parameters θ ≡ (θP , θC , θW ) from the conditional

likelihood L(θ) of θ for data on market dynamics {Nr,t,Cr,t; t = 2, . . . , ť; r = 1, . . . , ř}
given the initial conditions (Nr,1,Cr,1,Xr; r = 1, . . . , ř).7 Using the model’s Markov

structure and conditional independence, this likelihood can be written as L(θ) =

4In a typical application, like our empirical illustration in Section 6, ť would be small and ř
would be large. However, the model can be estimated with data on a sufficiently long time series
for a single market; that is, with ť large and ř = 1.

5Our estimation procedure can be straightforwardly extended to allow for observed (to the
econometrician) time-varying covariates that are common across markets, such as business cycle
indicators, provided that we make appropriate assumptions on their evolution.

6 These assumptions rule out persistent unobserved (to the econometrician) heterogeneity in
the markets’ primitives. Extending our NFXP procedure to account for unobserved heterogeneity is
straightforward in principle, but it does require us to provide a model-based solution to the “initial
conditions problem”, that (Nr,1,Cr,1,Xr) is not independent of the the persistent unobervables.
See Footnote 7 below for further discussion of this point.

7We neither specify nor estimate the initial conditions’ distribution, because we want to be
agnostic about their relation to the dynamic model. We could instead assume that the initial
conditions and covariates are drawn from their ergodic distribution in the dynamic model, which
is fully determined by θ. This would allow us to develop a more efficient estimator, at the price of
robustness. Moreover, it would allow us to deal with the initial conditions problems alluded to in
Footnote 6 in an extension with unobserved heterogeneity across markets.
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LC(θC) ⋅LN(θ), with

LC(θC) ≡
ř

∏
r=1

ť

∏
t=2

gC (Cr,t ∣ Cr,t−1;Xr, θC) , (12)

the marginal likelihood of θC for the demand state dynamics; and

LN(θ) ≡
ř

∏
r=1

ť

∏
t=2

p (Nr,t ∣ Nr,t−1,Cr,t;Xr, θ) , (13)

the conditional likelihood of θ for the evolution of the market structures. Here,

gC (⋅ ∣ ⋅;Xr, θC) is the density of GC,r and p(n′∣n, c;Xr, θ) = Pr(Nr,t = n′∣Nr,t−1 =
n,Cr,t−1 = c;Xr, θ) is the equilibrium probability that market r with n firms and in

demand state c has n′ firms next period.

Note that LC(θC) can be computed directly from the demand data, without

ever solving the model. To calculate LN(θ) we need to compute the equilibrium

transition probabilities p(⋅ ∣ ⋅ ;Xr, θ) for each distinct value of Xr in the sample and

substitute these into (13). To this end, for each value of Xr, we first compute the

equilibrium post-survival values vS,r corresponding to the primitives implied by Xr

and θ. From these, we obtain cost-shock thresholds for entry and sure survival,

defined by

wE,r(n, c) ≡ log vS,r(n, c) − log (κr + ϕr) , (14)

and

wS,r(n, c) ≡ log vS,r(n, c) − logκr. (15)

For n′ > n, p (n′∣n, c;Xr, θ) can easily be calculated as the probability that Wr,t

falls into [wE,r(n′ + 1, c),wE,r(n′, c)). For n′ ≤ n, the computations are complicated

by equilibrium mixing of survival decisions. For example, the probability that the

number of firms remains unchanged at n sums the probability that the cost shock

falls into [wE,r(n+ 1, c),wS,r(n, c)] with the probability that it instead equals some

Wr,t ∈ (wS,r(1, c),wS,r(n, c)] and that all the n firms outcomes from mixed strategy

aS(n, c,Wr,t) dictate survival. Similar complications arise for n′ ∈ {1, . . . , n − 1},

which requires firms to follow a non-trivial mixed strategy, and for n′ = 0, which
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can occur if either the incumbents all choose certain exit or they are mixing

nontrivially and all exit by chance. Accounting for the influence of mixed strategies

on p (n′∣n, c;Xr, θ) in these last three cases is tedious but straightforward.

4.3 Identification

Before proceeding to use the likelihood function for the model’s estimation, we first

analyze to what extent we could determine θ uniquely if we would observe not just

our sample of ř market histories ({Nr,t,Cr,t; t = 1, . . . , ť},Xr) but the population

({Nt,Ct; t = 1, . . . , ť},X) from which it is drawn. Specifically, suppose that we know

the distribution of (N ′,C ′) conditional on (N,C,X) = (n, c, x) for all n ∈ N0 ≡
{0} ∪ N, c ∈ C and x ∈ X .8 Throughout the remainder of this section, we keep

conditioning on X = x implicit, so the results demonstrate identification of the

model’s primitives as nonparametric functions of x.

To begin, note that there is little hope that we can uniquely determine ρ from

this distribution: Rust (1994) established the non-identifiability of the discount rate

in a decision theoretic model of dynamic discrete choice and his fundamental insight

holds good in our model. Therefore, we will assume that auxiliary information that

identifies ρ, such as the average borrowing rate for small businesses, is in hand. Next,

note that GC(⋅∣c) can be identified directly with the given distribution of C ′∣C = c.9
The remaining primitives of interest are the model’s fixed cost, κ, sunk cost

ϕ, surplus function π, and the distribution GW .of the econometric error. Our

identification argument for these parameters follows that of Hotz et al. (1994), who

retrieve value functions by applying the inverse cumulative distribution function of

the econometric error to observed choice probabilities. Since this strategy requires

knowledge of GW , we assume that this belongs to the parametric family

GW (w) = Φ(w + ω2/2
ω

) . (16)

That is, exp(W ) has a log-normal distribution with unit mean and scale parameter

ω. Since observations of the number of producers give us no information on the level

8We ignore information about θ in the initial conditions (N1,C0,X), for reasons given in
Footnote 7.

9Above, we specified this distribution as a function of a vector of parameters, θC . Such a
parametric restriction might be of use when estimating using a finite sample, but it is not necessary
for identification.
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of profits, we also normalize the mean per-period fixed cost κ to one.

The identification argument begins by retrieving wS(1, c), up to the unknown

scale and shift in GW , from the probability of a monopolist surviving:

wS(1, c) + ω2/2
ω

= Φ−1 (Pr[N ′ ≥ 1∣N = 1,C = c]) .

Similarly, we can recover wE(n, c) from the probability of n firms entering a

previously empty market:

wE(n, c) + ω2/2
ω

= Φ−1 (Pr[N ′ ≥ n∣N = 0,C = c]) .

These and the definitions of wS(1, c) and wE(1, c) in (14) and (15) can be used to

identify the sunk cost of entry up to the scale parameter ω:

log (ϕ + 1)
ω

= wS(1, c) −wE(1, c)
ω

= Φ−1 (Pr[N ′ ≥ 1∣N = 1,C = c]) −Φ−1 (Pr[N ′ ≥ 1∣N = 0,C = c]) .

In turn, this allows us to retrieve

wS(n, c) + ω2/2
ω

= wE(n, c) + ω
2/2

ω
+ log (ϕ + 1)

ω
.

The argument’s next step identifies the scale parameter ω. In a simple probit

model, the analogous parameter is not identified unless one places an a priori

restriction on the regressors’ coefficients.10 For the present model, the mixing

sometimes employed by exiting oligopolists provides information on the scale of

payoffs relative to the econometric error. This information identifies ω without the

use of auxiliary restrictions on payoffs.

To proceed, suppose that, for some c ∈ C and nE ∈ {2, . . . , ň},

wS(1, c) = ⋯ = wS(nE − 1, c) > wS(nE, c).

By (15), this is equivalent to requiring that

vS(1, c) = ⋯ = vS(nE − 1, c) > vS(nE, c)

10For example, normalizing a coefficient to equal one allows identification of the error’s variance.
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for some c and nE. This is a very weak condition, in particular given Lemma 2’s

result that vS(n, c) is always weakly decreasing in n. Moreover, it can be verified

in data, because we have already determined the sure survival thresholds up to a

common scale and location shift.

Now, consider the probability of nE incumbents simultaneously exiting:

Pr[N ′ = 0∣N = nE,C = c]

= Pr[W ≥ wS(1, c)] + ∫
wS(1,c)

wS(nE ,c)
[1 − aS(nE, c,w)]nE gW (w)dw

= Pr[N ′ = 0∣N = 1,C = c] + ∫
wS(1,c)

wS(nE ,c)
[1 − aS(nE, c,w)]nE gW (w)dw. (17)

Because Pr[N ′ = 0∣N = nE,C = c] and Pr[N ′ = 0∣N = 1,C = c] are known, this

identifies the integral in the right hand side of (17).

We will now show that this integral can be written as a known monotone function

of ω, so that, in turn, it identifies ω. To this end, first note that, using vS(1, c) =
⋯ = vS(nE −1, c), we can explicitly solve (5) for the mixing probability aS(nE, c,w):

aS(nE, c,w) = ( vS(1, c) − exp(w)
vS(1, c) − vS(nE, c)

)
1

nE−1
.

Rewrite the integral in the right hand side of (17) by substituting this expression for

aS(nE, c,w), use (17) to replace post-survival values with sure survival thresholds,

and change the variable of integration from w to ε = (w + ω2/2)/ω . This gives

∫
k1

knE

⎡⎢⎢⎢⎢⎣
1 − ( exp(ωk1) − exp(ωε)

exp(ωk1) − exp(ωknE
))

1
nE−1⎤⎥⎥⎥⎥⎦

nE

φ(ε)dε, (18)

with

k1 ≡
w̄S(1, c) + ω2/2

ω
and knE

≡ w̄S(nE, c) + ω
2/2

ω
.

Because k1 and knE
are known,

exp(ωk1) − exp(ωε)
exp(ωk1) − exp(ωknE

) = 1 − exp(−ω (k1 − ε))
1 − exp(−ω (k1 − knE

)) (19)

is a known function of ω. Moreover, it is straighforward to verify that it is strictly
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increasing in ω for ε ∈ (knE
, k1). Hence, the integrand in (18) is a known, strictly

decreasing function of ω. Because the domain of integration of the integral in (18)

is also known, this establishes that the integral itself is a known decreasing function

of ω, so that ω can be uniquely determined from the integral’s known value.

With ω identified, we immediately recover ϕ and w̄S(n, c) = log vS(n, c) With

this value function, ω, the observed transition probabilities for C ′ and N ′, and

the assumed value for ρ, we can recover π(n, c) as the unique solution to a linear

functional equation constructed from the definition of a value function.

We summarize this result in a theorem.

Theorem 2 Suppose that ρ and κ are known and that GW is specified up to scale

as in (16). Furthermore, suppose that, for some c ∈ C and nE ∈ {2, . . . , ň},

Pr[N ′ = 0∣N = 1,C = c] = ⋯ = Pr[N ′ = 0∣N = nE−1,C = c] < Pr[N ′ = 0∣N = nE,C = c].

Then,the distribution of (N ′,C ′) given (N,C) = (n, c) for n ∈ N0 and c ∈ C uniquely

determines π, ϕ, GC, and GW .

To emphasize that it can be verified in data, we have rewritten the condition that

there exist c and nE such that wS(1, c) = ⋯ = wS(nE − 1, c) > wS(nE, c) in terms

of known probabilities, using (17) and the fact that 0 < aS(nE, c,w) < 1 for w ∈
(wS(nE, c),wS(1, c)).

We take three lessons away from this identification argument. First, it is

possible to identify the model’s parameters without examining the cross-sectional

relationship between N and C that Bresnahan and Reiss (1990, 1991) use in their

estimation. Second, estimation of our model need not follow the nested fixed

point approach that we adopt. In the spirit of Hotz et al. (1994), we could

instead estimate the equilibrium value functions directly from observed transition

probabilities and from these deduce the underlying primitives. Third, the use of

nontrivial mixed strategies can identify the scale of the econometric error without

imposing restrictions on players’ payoffs. Identifying the analogous parameter

in static discrete choice models always requires restricting the non-stochastic

portion of payoffs in some way. Although we can impose similar restrictions on

π(c, n) (for example by requiring linearity in c), we have found that these do not

create straightforward restrictions on the equilibrium continuation values useful

for extending static identification arguments to this dynamic setting. We do not
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doubt the practical usefulness of restrictions on payoffs for estimation with a finite

sample of data. We pursued the identification of ω through mixed strategies for its

feasibility, not its novelty.

4.4 Estimation

We have created C++ and Matlab code for computing a full information maximum

likelihood estimator of θ. As in Rust (1994), computation proceeds in three steps:

1. Estimate θC with θ̃C ≡ arg maxθC LC(θC);

2. estimate (θP , θW ) with (θ̃P , θ̃W ) ≡ arg max(θP ,θW )LN(θP , θ̃C , θW ); and

3. estimate θ by maximizing the full likelihood function θ̂ ≡ arg maxθ L(θ), using

θ̃ ≡ (θ̃P , θ̃C , θ̃W ) as a starting value.

Note that the partial likelihood estimator θ̃ computed in the first two steps is

consistent, but not efficient. The third step’s estimator θ̂ is asymptotically efficient.

To compute estimated standard errors, we use the outer-product-of-the-gradient

estimator of the (full) information matrix. In particular, we assume that R is large

and T is small and use the average over markets of the outer products of the market-

specific gradients, evaluated at θ̂.

The C++ code provides a full implementation of this three-step NFXP procedure

for specifications with and without covariates. It uses Knitro for the optimization,

with analytical gradients. We use this code for the Monte Carlo experiments in

Section 5 and the empirical illustration in Section 6. The Matlab code provides a

more user friendly implementation of the NFXP procedure that can be used as a

sandbox for experimentation and teaching.

5 Monte Carlo Experiments

In this section we investigate the statistical properties and computational perfor-

mance of our estimation procedure with Monte Carlo experiments. For these,

we set the maximum number of firms entering any market to ň = 5, let the

cost shocks be log normally distributed with unit mean and scale parameter ω,

normalize the mean per period fixed costs κ to one, and fix the discount factor
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ρ at 1
1.05 . The statistical process governing the demand state has support on

200 grid points that are equally spaced on the logarithmic scale with distance d,

{c[1], c[2] = c[1]ed, ..., c[200] = c[1]e200d}. So that the growth of Ct is approximately

normally distributed with mean µ and variance σ2, we follow Tauchen (1986) and

specify the probability of transitioning to c[i] from c[j] for any i = 2, ...,199 and

j = 1, ...,200 with

Pr(C ′ = c[i]∣C = c[j]) = Φ(
log c[i] − log c[j] + d

2 − µ
σ

) −Φ(
log c[i] − log c[j] − d

2 − µ
σ

) .

The probabilities of transitioning to the grid’s end points equal Pr(C ′ = c[1]∣C =
c[j]) = Φ( log c[1]−log c[j]+ d

2
−µ

σ ) and Pr(C ′ = c[200]∣C = c[j]) = 1 − Φ( log c[200]−log c[j]− d
2
−µ

σ )
respectively. We set µ = 0 and σ = 0.02.

Each Monte Carlo experiment consists of 1,000 synthetic samples. We use four

different sample sizes, each of them with ten time periods and between 100 and

1,000 identical markets. We compute the equilibrium and simulate the evolution

of (N,C), beginning with a draw from the model’s ergodic distribution. Since this

specification includes no regressors in X, a single equilibrium calculation can support

the likelihood function calcualtions for all of a sample’s observations. We then use

each sample to estimate the model’s parameters with the three step procedure

presented in Section 4. The starting parameter vector used for the likelihood

function’s maximization equals a vector of ones multiplied by one random variable

uniformly distributed on the interval [1,10]. Dubé et al. (2012) caution that a nested

fixed point algorithm can falsely converge when the tolerance criterion for the inner

loop (which calculates the equilibrium) is set too loosely relative to that of the outer

loop (which maximizes the likelihood function). We fix the convergence tolerance for

the value function iteration at a value that is multiple orders of magnitude smaller

than that for the likelihood maximization to avoid this potential pitfall.11

We first simulate data from a model where the surplus function is parameterized

as π(c, n) = (c/n)k, which means that per consumer surplus is constant in the

number of active firms. We set the true values of k, ϕ, and ω, to 1.5, 10, and 1

respectively. Table 1 reports the corresponding Monte Carlo experiments’ results.

Its first panel gives the averages of the 1,000 estimates for each parameter, and it

shows that the NFXP estimator is essentially without bias, even for the sample with

11We set the tolerance value to 10−10 for the inner loop and to 10−6 for the outer loop.
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Table 1: Monte Carlo Results with Constant Profits

ř = 100 ř = 250 ř = 500 ř = 1,000

Averages of Estimates
k 1.501 1.500 1.501 1.499
ϕ 10.255 10.113 10.075 10.029
ω 0.995 0.999 0.999 1.000
µ × 102 -0.002 -0.000 0.001 -0.000
σ × 102 2.000 1.999 1.999 1.998

Averages of Estimated Standard Errors
k 0.049 0.031 0.022 0.015
ϕ 2.924 1.790 1.254 0.879
ω 0.070 0.044 0.031 0.022
µ × 102 0.068 0.043 0.030 0.021
σ × 102 0.049 0.031 0.022 0.015

Monte Carlo Estimates of 95 % CI Coverage
k 0.954 0.937 0.945 0.958
ϕ 0.924 0.944 0.948 0.956
ω 0.950 0.936 0.946 0.946
µ 0.948 0.948 0.951 0.963
σ 0.943 0.933 0.939 0.943

Note: Results of a Monte Carlo experiment using the three step NFXP estimator with 1,000
repetitions estimating the model with one profit parameter, k. The true value of k equals 1.5 and
the true value of ϕ equals 10. The true value of the standard deviation of the cost shock, ω, equals
1. Demand is discretized into 200 states. The demand process is governed by the drift parameter
µ, which is set to zero, and the standard deviation σ, which equals 0.02. The bottom-most panel
displays the fraction of samples for which the estimated 95% confidence interval contained the
parameter’s true value.

only 100 markets. The second panel reports the averages of the estimated standard

errors. For the sample with 100 markets, the average estimated standard error

for the estimate of the sunk cost is 2.924. Therefore, we would expect a 95 percent

confidence interval to approximately correspond to (4,16). This is possibly too wide

for empirical usefulness, but the other estimates’ standard errors are relatively small.

As expected, increasing the sample size decreases the standard errors approximately

at the rate
√
ř. So for ř = 500 the standard error on ϕ̂ is only 1.254. The table’s

final panel reports the Monte Carlo estimates of 95% confidence intervals’ coverage

probabilities. With the exception of that for ϕ with ř = 100, these are all within

1.5 probability points of their common nominal value. Apparently, the estimated

standard errors provide accurate inference.
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Table 2: Monte Carlo Results with Decreasing Profits

ř = 100 ř = 250 ř = 500 ř = 1,000

Averages of Estimates
k(1) 1.804 1.800 1.801 1.800
k(2) 1.397 1.399 1.400 1.400
k(3) 1.198 1.200 1.200 1.198
k(4) 1.000 1.000 1.000 0.999
k(5) 0.897 0.898 0.899 0.898
ϕ 9.939 10.014 9.951 9.977
ω 0.983 0.994 0.996 0.999
µ × 102 -0.004 -0.001 -0.002 -0.001
σ × 102 1.995 1.997 1.998 1.998

Averages of Estimated Standard Errors
k(1) 0.087 0.053 0.037 0.026
k(2) 0.094 0.059 0.041 0.029
k(3) 0.079 0.049 0.035 0.024
k(4) 0.078 0.049 0.034 0.024
k(5) 0.100 0.061 0.043 0.030
ϕ 3.401 2.093 1.451 1.024
ω 0.085 0.053 0.037 0.026
µ × 102 0.068 0.043 0.030 0.021
σ × 102 0.049 0.031 0.022 0.015

Monte Carlo Estimates of 95 % CI Coverage
k(1) 0.948 0.943 0.946 0.954
k(2) 0.938 0.952 0.957 0.960
k(3) 0.941 0.943 0.956 0.938
k(4) 0.958 0.960 0.957 0.950
k(5) 0.946 0.942 0.946 0.937
ϕ 0.882 0.918 0.934 0.941
ω 0.926 0.940 0.953 0.944
µ 0.946 0.941 0.945 0.953
σ 0.949 0.957 0.949 0.953

Note: Results of a Monte Carlo experiment using the three step NFXP estimator with 1,000
repetitions estimating the model with five profit parameters k(1), k(2), ..., k(5) and one entry cost
parameter ϕ. The true value of (k(1), k(2), ..., k(5)) equals (1.8,1.4,1.2,1.0,0.9) and the true value
of ϕ equals 10. The true value of the standard deviation of the cost shock, ω, equals 1. Demand
is discretized into 200 states. The demand process is governed by the drift parameter µ, which
is set to zero, and the standard deviation σ, which equals 0.02. The bottom-most panel displays
the fraction of samples for which the estimated 95% confidence interval contained the parameter’s
true value.
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For our second set of simulations we parameterize the flow surplus function as

π(c, n) = (c/n)k(n), where (k(1), k(2), k(3), k(4), k(5)) is set to (1.8,1.4,1.2,1.0,0.9).
This specification has the average surplus per consumer decrease in the number

of active firms.12 Table 2 reports the results of the corresponding Monte Carlo

experiments. Again, all parameter estimates are essentially without bias, the

estimated standard errors are small enough to be empirically useful, and the 95%

confidence intervals have coverage probabilities close to their common nominal value.

To check whether the estimator is able to distinguish a model with a decreasing per

consumer surplus from a model with a constant surplus, we compute a likelihood

ratio test for each sample. We can reject the null hypothesis k(1) = . . . = k(5) at the

95% confidence level in all of our Monte Carlo samples regardless of the sample size.

Overall, we conclude that the NFXP procedure has the potential to be empirically

useful. Verifying that potential with observations not created by the model is the

subject of the next section.

Since our equilibrium computation algorithm finds fixed points to relatively low

dimensional contraction mappings, one would expect the estimation procedure to

be relatively fast. Table 3 shows that this in fact the case. Even in the largest

of our Monte Carlo samples, the average computation of the maximum likelihood

estimator takes about two minutes using the C++ code.

Su and Judd’s (2012) results suggest that we might be able to improve on the

already rapid performance of our estimation procedure by using a mathematical

programming with equilibrium constraints (MPEC) procedure in lieu of a nested

fixed point algorithm. The MPEC estimator treats the value functions as a vector

of nuisance parameters to be estimated subject to the equilibrium constraint implied

by the sequence of Bellman equations and thereby omits the inner loop. We

implemented the MPEC estimator of our model in C++ using analytical gradients

of both the objective function and the constraints. The MPEC estimator always

yielded the same estimates as our NFXP procedure, but we found it to be more

than ten times slower than the NFXP implementation.13 MPEC’s relatively poor

12The parameter values for the Monte Carlo simulation are chosen such that the specification
with decreasing average surplus per consumer generates a realistic distribution of firms per market.
No firm is active in about 5% of the markets, a monopolist serves about 30% of the markets, and
five firms serve about 5% of the markets. In contrast, the previous specification with constant
per consumer surplus generates a distribution with an additional local mode at five firms, because
competition does not get “tougher” when the number of firms increases.

13Su and Judd (2012) emphasize the usefulness of passing “sparsity patterns” to the optimizer,
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Table 3: Computational Performance

ř = 100 ř = 250 ř = 500 ř = 1,000

one entry cost parameter, one profit parameter
time per run (in seconds) 30.46 38.27 50.17 73.97

one entry cost parameter, five profit parameters
time per run (in seconds) 65.79 74.90 90.50 123.73

Note: Average computational performance of the NFXP estimators in the Monte Carlo samples.
The estimator is implemented in C++ and Knitro and runs as a single thread on an Intel Core
i7-860 with 2.8GHz.

performance arises from the computation of the objective function’s gradients with

respect to the nuisance parameters, which requires repeatedly retrieving information

from very large and relatively dense matrices. These computational challenges might

not be insurmountable, but our NFXP estimator seems to balance the costs of

programmer time and execution time well.

6 Empirical Illustration

The Monte Carlo results suggest that we can use observations from a few hundred

markets over ten time periods to estimate the model’s parameters accurately enough

for differentiating between economically distinct hypotheses about the magnitude

of sunk costs and the effects of additional competition on producers’ surplus. In

this section we take the model beyond “data” of its own making and estimate its

parameters with observations from the Motion Picture Theaters industry. Although

we intend this application to be illustrative, we have tried to make our results

slightly more useful by including in Xr a measure of the geographic diversity of a

market’s consumers. Davis (2006) finds that theater location substantially influences

consumers’ decisions about whether and where to attend film screenings. Indeed,

one’s probability of attending a given theater declines substantially when the travel

which indicate which derivatives of the constraints with respect to the nuisance parameters are
identically zero. We followed their advise, and we also initialized the nuisance parameters at their
true values. For the parameters of interest, we used the same starting values as in the NFXP
estimation.
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distance moves from between zero and five miles to between five and ten miles.14

Davis (2002) finds that the concomitant low cross-price elasticities from such spatial

preferences impact firms’ pricing behavior. Using observations from a New Haven

area theater that experimented with a temporary price cut, Davis (2002) found that

rivals five to seven miles away responded with lower prices but those ten to twelve

miles away did not. This spatial differentiation of Motion Picture Theaters makes

market definitions based on readily available geographic data plausibly applicable

to this industry. Since we place a measure of how far apart consumers are from each

other into Xr, our estimates quantify how the spatial structure of demand impacts

the level of profits and the toughness of competition.

6.1 The Data

This analysis equates a market with a Micropolitan Statistical Area (µSA) as defined

by the Office of Management and Budget. Each one is based around of an urban core

of at least 10,000 but less than 50,000 inhabitants.15 For this paper, we dropped the

µSA “The Villages, FL”, because its population growth far exceeds that of any other

µSA. The remaining 573 µSAs account for about ten percent of the United States

population. We measured the diversity of the geographic preferences of each µSA’s

residents using the locations and populations of its constituent year 2000 Census

tracts. For this, we supposed that each census tract is a circle with an area equal to

that of the tract itself, that population is uniformly distributed over the circle, that

all travel within a tract must pass through its center, and that straightline roads

connect the tracts’ centers to each other. We then measured geographic preference

diversity with the average distance between two randomly-chosen residents of the

µSA. With the same methodology, we can measure the average distance between

two randomly chosen individuals from two distinct µSAs. By construction, µSAs are

geographically isolated from larger Metropolitan Statistical Areas, so we measure

a given µSA’s geographic market isolation as the shortest such distance to another

µSA.

For the 573 µSAs, Table 4 displays the five standard quantiles for population,

14See the logit model estimates reported in Table 5 of Davis (2006).
15We use the release of the “Annual Estimates of the Population of Metropolitan and

Micropolitan Statistical Areas from April 1, 2000 to July 1, 2009” from the US Census Bureau as
baseline for our analysis, which includes information on 574 µSAs.
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Table 4: Summary Statistics for µSAs

Quantile
10 25 50 75 90

Population 23.51 32.57 42.67 62.32 87.71
Median Household Income 32.77 37.10 41.29 45.83 51.10
Geographic Preference Diversity 9.24 11.17 13.37 16.81 21.23
Geographic Market Isolation 23.94 28.77 37.61 51.83 72.70

Note: All variables are measured as of 2000 for the 573 µSAs in our sample. Population is expressed
in thousands of people, Median Household Income is expressed in thousands of dollars, and the
remaining variables are expressed in miles. Please see the text for further details.

median per capita income, geographic preference diversity, and geographic market

isolation. Population varies by about a factor of four from the 10th to the 90th

percentiles. For the United States as a whole, median household income equalled

$42,148 in 2000. This is very close to the median value across the µSA’s, $41,288.

About 80 percent of the µSAs have median household incomes within $10,000

of this central tendency. The median geographic preference diversity is 13.37

miles. Perhaps unsurprisingly, this variable is highly skewed to the right. The

10th percentile is 9.24 miles, while the 90th percentile is 21.23 miles. Given the

evidence from Davis (2002, 2006) regarding urban consumers’ transportation costs

for attending movies, it is plausible that the least geographically diverse µSAs in our

sample might form a single geographic market. On the other hand, those with the

most geographic preference diversity might actually be collections of two or more

“markets” with relatively low elasticities of substitution across them. In any case,

the measures of geographic isolation indicate that the elasticities of substitution

across locations within a µSA should be much larger than those across µSAs. The

median value across µSAs equals 37.61 miles. Indeed, there are only eight µSAs

where this distance is less than twenty miles. We conclude that the µSAs are

isolated enough from each other so that substitution between them can be ignored.

The Motion Picture Theaters industry (NAICS code 512131) consists of all

establishments that primarily display first-run and second-run motion pictures,

except for drive-in theaters. Our estimation uses annual counts of the number of

theaters in each µSA from the County Business Patterns (CBP), beginning in 2000

and ending in 2009. The top panel of Table 5 reports the frequencies of the number

of theaters across all of the µSA-year observations. No theaters serve the market
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Table 5: Frequencies and Transition Rates from the County Business Patterns

% of µSA-Year Observations
by Number of Movie Theaters

0 1 2 3 ≥ 4
19.3 50.6 19.4 5.8 4.9

% of Transitions Given Nt−1

↓ Nt−1/Nt → 0 1 2 3 ≥4
0 88.9 9.3 1.6 0.2 0.0
1 4.3 89.2 5.9 0.4 0.1
2 0.7 13.1 77.9 7.2 1.1
3 0.0 3.7 22.1 62.2 11.9
≥4 0.4 0.8 2.4 13.0 83.5

Note: The top panel describes the distribution of the number of movie theaters per µSA from
2000 to 2009 from the County Business Patterns for the 573 µSAs in our sample. The bottom
panel displays the conditional distribution of transitioning from Nt−1 movie theaters in a µSA at
time t − 1 (row) to Nt theaters at time t (column).

in about twenty percent of the observations, a single theater serves about half of

them, and about thirty percent of our observations have more than one theater.

The maximum number of theaters observed is nine, but only 4.9 percent of the

observations have four or more. Each row of Table 5 reports the observed frequencies

of the number of theaters conditional on its previous year’s value. Regardless of the

initial number of theaters, the most common outcome is for it to remain unchanged.

Nevertheless, the number of theaters changes in about 15 percent of the observed

annual transitions.

In addition to this panel of producer counts, our estimation requires repeated

measurements of the demand indicator C and cross-sectional measurements of time-

invariant regressors X. The time-invariant regressors we employ are the median

income and geographic preference diversity from the 2000 Census described above

as well as dummy variables indicating membership in the nine U.S. Census Divisions.

For the time-varying demand indicator, we use annual population for each µSA as

published by the Census Bureau. For our sample from 2000 to 2009, the mean

and standard deviation for the annual population growth rate in this sample equal

0.34 percent and 1.11 percent. The Census Bureau estimates these for non-census

years using the most recent decennial census as a baseline, so they have very

large adjustments between 2009 and 2010. The mean and standard deviation of
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population growth between these two years equals 1.5 percent and 3.1 percent. Since

the measured changes between 2009 and 2010 overwhelmingly reflect differences in

measurement methodology rather than true population adjustments, we end our

estimation sample in 2009.

6.2 Bresnahan and Reiss (1990, 1991) Ordered Probits

Our model is an infinite-horizon extension of the two-period free-entry model of

Bresnahan and Reiss (1990, 1991), so it behooves us to estimate that simpler model

before proceeding with our own. That model shares the specification for one-period

profits used by our Monte Carlo experiments, with the effects of market-specific

regressors Xr captured by a log-linear term.

πr(n, c) = exp(β′Xr)
c

n
k(n) (20)

Just as in our model, the cost of entry has a log-normal distribution. Each market

begins each period with no incumbents, and entry occurs until its cost exceeds its

benefit. With this, the probability of observing Nr firms serving a market with Cr

customers and other regressors Xr equals

Pr[Nr = n∣Cr,Xr] =Φ( ln(Cr) + β′Xr + ln(k(n)/n)
ω

)

−Φ( ln(Cr) + β′Xr + ln(k(n + 1)/(n + 1))
ω

) ,

where ω is the standard deviation for the cost of entry’s logarithm. Estimation of

this ordered-probit specification is straightforward.

Table 6 reports the results from estimating this model using our data. The

regressors Xr include the logarithm of median income as well as Census Division

dummies, but the table omits their corresponding coefficient estimates. Because

there are few observations with four or more firms, we truncate the number of

firms (our dependent variable) from above at four. The table’s first column reports

estimates based on data from using the 5730 observations from all of the sample’s

µSAs. The next two columns report estimates from a model in which k(n) was

allowed to depend on whether geographic preference diversity was above or below

its median value, 13.4 miles. The first line reports 1/(k(1) × 103), which gives the
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Table 6: Estimates of Bresnahan and Reiss (1990, 1991) Ordered-Probit Model

Sample Selection
All µSAs Diversity > 13.4 miles Diversity ≤ 13.4 miles

1/(k(1) × 103) 12.83 15.02 11.31
(1.22) (1.42) (1.09)

k(2)/k(1) 0.50 0.61 0.43
(0.02) (0.03) (0.02)

k(3)/k(2) 0.71 0.75 0.65
(0.02) (0.02) (0.03)

k(4)/k(3) 0.85 0.87 0.80
(0.02) (0.02) (0.04)

ω 0.85 0.83
(0.02) (0.03)

Observations 5730 2860 2870

Note: Standard errors are reported in parentheses. In the ordered probit model, 1/(k(1) × 103)
gives the median value of the population (in units of 1,000) above which at least one firm enters
the market. The standard deviation of the entry cost’s logarithm is ω. The coefficient on each
µSA’s log population is constrained to equal one, and both specifications included the logarithm of
median income and census division dummies as regressors. Please see the text for further details.

population (in thousands of people) that is required to support one producer at

the entry cost’s median value, 1, in a market with characteristics Xr = 0. For the

specification that ignores geographic product diversity, this is slightly under 13,000

people. We expect that concentrating customers’ locations increases a monopolist’s

profit by making it easier to simultaneously satisfy their geographic preferences. The

estimates from the model that accounts for geographic preference diversity support

this prior. It takes about 15,000 people to support a monopolist in a µSA with

geographic preference diversity above the median and only about 11,300 to support

a monopolist in a µSA with preference diversity below the median. A Wald test

indicates that this difference is statistically significant at every conventional level,

but we take this with a grain of salt since the model assumes that the errors are

i.i.d. over time for a given µSA.

The estimates of k(n+1)/k(n) indicate very tough competition. Those from the

first specification indicate that duopolists receive half of a monopolist’s producers’
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surplus per customer. Adding even more competitors erodes this surplus further,

but at a decreasing rate. The theoretical literature on spatial differentiation

overwhelmingly points to heterogeneity of consumers’ locations as a source of

market power. This leads us to expect producers’ surplus to fall less rapidly with

additional competition in the high-diversity markets. The estimates support this

prior conjecture. For high-diversity markets, the duopolists’ producers’ surplus per

customer equals about 60 percent of a monopolist’s, while the analogous estimate

for low-diversity markets is only 43 percent. Again, a Wald test indicates that this

difference is statistically significant, but we caution against uncritically accepting

its conclusion.

6.3 The Dynamic Model

These estimates of tough competition are difficult to reconcile with other evidence

from this industry. Movie theaters potentially compete in the market for customers

and the market for films. Davis (2005) provides evidence on competition for

customers from regressions of theaters’ admissions prices against indicators of the

presence of other theaters at various distances using data from large (relative to

µSAs) U.S. cities in the 1990s. Based on both across-market and within-market-

over-time variation, he concludes that

... the magnitude of the price-reducing effect of local competition

appears to be economically modest.

Prior research on the vertical relationships between theater owners and

their upstream suppliers, film distributors, has emphasized formal and informal

arrangements to manage the popcorn conflict over the final ticket price: Popcorn

and other concession sales are complements with theater attendance, and theater

owners keep all surplus from concession sales while splitting surplus from ticket sales

with the film distributor. Therefore, theater owners prefer lower ticket prices than

do distributors. The motion picture industry operates under a relatively unique

legal regime, under which the producers of films are legally barred from directly

influencing box-office pricing or vertically integrating with motion picture theaters.

Nevertheless, repeated interactions between distributers and theater owners might
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give owners indirect and extralegal control over box-office prices.16 Supporting the

view that film distributors constrain theaters’ pricing choices, Davis (2006) finds

that

... the average theater owner would prefer to actually lower

admissions prices, if she could attract the same set of films.

Although the literature says little about theaters’ potential monopsony power

in the market for films, it is possible that it is substantial. On the other hand,

misspecification from omitting sunk costs and non-trivial dynamic interactions

between theater owners might be responsible for the finding of substantial toughness

of competition where in fact there is none.17 The estimation of our dynamically

richer model can determine whether such a misspecification is responsible for this

conflict.

This dynamic model’s estimation uses the demand-process specification from

our Monte Carlo exercise. We restrict Cr,t to a grid of 200 points equally spaced on

a logarithmic scale. Its minimum value equals the minimum population observed

in our data, 11,011, divided by 1.25. Analogously, its maximum value equals the

maximum population, 197,912 multiplied by 1.25. For estimation, we replace each

observation of µSA population with the closest grid point. The maximum number of

movie theaters sustainable, ň is fixed at the maximum number of theaters observed

in the data, nine. We give the cost shocks’ logarithms a normal distribution with

standard deviation ω and mean −ω2/2, normalize κ to one, and fix the discount

factor ρ at 1
1.05 . The specification for the producers’ surplus function comes from

(20). As with the ordered probit model, we include the logarithm of the µSA’s

median income in 2000 and Census Division dummies in Xr.18

Table 7 reports the estimated parameters for two specifications that mimic those

applied to the Bresnahan and Reiss (1990, 1991) ordered probit model. In the

first specification (that ignores geographic preference diversity), the full-information

maximum likelihood estimates of the demand process drift and innovation standard

16Orbach and Einav (2007) review the legal environment in which theater owners negotiate with
film distributers and set admissions prices.

17Abbring and Campbell (2010) illustrate this possiblity with a Monte Carlo study based on
their Last-In First-Out model of oligopoly.

18Our estimation code constrains the flow surplus to weakly decrease with the number of firms,
as required by the monotonicity assumption in Section 2. This constraint does not bind at the
maximum-likelihood estimates.
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deviation are very close to the unconditional sample mean and standard deviation

of population growth; 0.34 and 1.21 percent versus 0.34 and 1.11 percent. The

coefficients in β are jointly and (with the exceptions of those multiplying three

division dummies) individually significant. The average realization of the sunk cost

of entry, ϕ is over fifty times the average realization of the fixed cost of continuation.

However, one should not interpret this as a measure of the typical sunk cost paid

because entry only occurs when the realization of the the cost shock is low. To

calculate more informative measures of fixed and sunk costs, we simulated the

estimated model with median income set equal to its (cross µSA) mean and the

dummy for the East North Central division (which includes Illinois, Michigan,

Wisconsin, Indiana, and Ohio) set to one. In the simulation, the average fixed

cost of continuation and sunk cost of entry paid were 0.72 and 1.59. The estimates

of all these parameters from the specification that accounts for geographic preference

diversity are similar, but not identical, to these baseline estimates.

Although Table 7 contains estimates of k(n) for n = 1, . . . ,4; it is easier

to interpret these if they are presented as in Table 6. Table 8 reports these

transformations and their standard errors. In Table 6, 1/(k(1) × 103) gave the

population (in thousands) necessary to attract one firm at the cost shock’s median

realization in a market with characteristics Xr = 0. In this dynamic model, the

same object has only the narrower interpretation of the population that sets the

monopolist’s current profit equal to zero at the cost shock’s median realization in

a market with characteristics Xr = 0. The baseline specification’s estimate of this

is 16,600 people. This greatly exceeds the analogous estimate from the ordered

probit model, 12,830 people. Abbring and Campbell’s (2010) simulation results

suggest that the option value of delaying exit lies behind this difference. Since exit

is irreversible, firms exit only after producer surplus earned is much less than the

fixed cost of operating. The continued operation of such firms biases the static

model’s estimate of 1/(k(1) × 103) downwards. The analogous estimates from the

specification that accounts for geographic preference diversity equal 18,520 and

16,250 people for high-diversity and low-diversity µSA’s, respectively. A Wald test

indicates that this difference is significant at the 10 percent level. Just as with

the static ordered probit model, concentrating customers’ locations makes a market

more profitable for a monopolist.
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Table 7: Parameter Estimates of the Dynamic Model

Sample Selection
All µSAs Diversity > 13.4 miles Diversity ≤ 13.4 miles

k(1) × 105 6.01 5.40 6.16
(0.80) (0.73) (0.86)

k(2) × 105 3.23 3.24 2.93
(0.47) (0.48) (0.49)

k(3) × 105 2.65 2.72 2.29
(0.41) (0.42) (0.43)

k(4) × 105 2.04 2.16 1.53
(0.33) (0.35) (0.35)

ϕ 50.66 48.36
(9.68) (9.56)

Median Income 0.87 0.84
(0.17) (0.17)

Mid Atlantic -0.63 -0.59
(0.15) (0.15)

East North Central -0.48 -0.44
(0.14) (0.14)

West North Central 0.06 0.10
(0.16) (0.16)

South Atlantic -0.73 -0.71
(0.15) (0.15)

East South Central -0.51 -0.49
(0.16) (0.16)

West South -0.32 -0.28
(0.15) (0.15)

Mountain -0.12 -0.07
(0.15) (0.15)

Pacific -0.10 -0.08
(0.15) (0.15)

ω 1.75 1.74
(0.07) (0.08)

µ × 102 0.34 0.34
(0.02) (0.02)

σ × 102 1.21 1.21
(0.01) (0.01)

−L 9199.22 9192.20
Number of Markets 573 287 286

Note: Standard errors are reported in parentheses. The data include 573 µSAs from 2000 to
2009. ň equals nine, which is the maximum of the number of active firms observed in the data.
The geographic entities are dummy variables that refer to Census Divisions. The baseline is New
England.
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Table 8: Estimates of the Toughness of Competition in the Dynamic Model

Sample Selection
All µSAs Diversity > 13.4 miles Diversity ≤ 13.4 miles

1/ (k(1) × 103) 16.65 18.52 16.25
(2.21) (2.51) (2.27)

k(2)/k(1) 0.54 0.60 0.48
(0.14) (0.14) (0.21)

k(3)/k(2) 0.82 0.84 0.78
(0.06) (0.06) (0.10)

k(4)/k(3) 0.77 0.79 0.67
(0.08) (0.08) (0.21)

Number of Markets 573 287 286

Note: This Table is based on the model’s estimates as reported in Table 7. Standard errors are
reported in parentheses. The ratio 1/(k(1)×103) can be interpreted as the population (in units of
1,000) that sets the monopolist’s current profit equal to zero at the cost shock’s median realization.
The ratio k(n + 1)/k(n) is an indicator of the toughness of competition. Please see the text for
further details.

Leaving aside this bias in the level of profits, the dynamic model’s estimates of

how profits change with entry closely resemble the analogous estimates from the

static ordered probit. In the baseline specification, duopolists’ producers’ surplus

per consumer equals 54 percent of a monopolist’s (as opposed to 50 percent), and

the analogous estimates from the alternative specification equal 60 and 48 percent

respectively (as opposed to 61 and 43 percent). However, the difference between

these two estimates is not statistically significant at any conventional level. The

remaining estimates in Table 8 also differ little from their analogues in Table

6. We conclude that the dynamic model finds evidence that lowering preference

diversity substantially increases profits, but there is little evidence that it intensifies

competition between theaters.

Apparently, adding competitors strongly reduces producers’ surplus per cus-

tomer. Since Davis (2002, 2006) found little effect of competition on ticket prices,

our results suggest that adding theaters increases competition in the market for

screening rights. Such a finding, if supported by more direct observations of vertical

contracts, would open an interesting policy question. How should a local social

planner that licenses entry trade off the benefits of additional product diversity

against the cost of transferring surplus to film producers. Although our model might

contribute to answering this and similar policy questions, its full consideration lies

well beyond the scope of this illustrative estimation exercise.
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7 Conclusion

We have demonstrated uniqueness of our model’s symmetric Markov-perfect

equilibrium, provided an algorithm for its fast calculation, shown that its parameters

can be identified from observations on the joint evolution of demand and the number

of active firms, provided a nested fixed-point algorithm for its maximum-likelihood

estimation, evaluated the estimator’s statistical properties and computational

burden with Monte Carlo experiments, and applied all of these tools to estimate the

toughness of competition between Motion Picture Theaters in U.S. µSAs. That this

relatively complete development and application of a dynamic oligopoly model was

feasible validates our title’s assertion that our model’s dynamics are “very simple”.

We anticipate three applications of our model and its maximum-likelihood

estimator. First, they can be used to estimate the impact of observable cross-market

heterogeneity on the primitive determinants of industry dynamics. Our examination

of geographic preference diversity above exemplifies such an application. Second, our

model is simple enough for inclusion as a moving part in general equilibrium models

with entry, exit, and endogenous markups, such as Jaimovich’s (2007). Third, the

estimated model can serve as a point of departure for an analysis with a more

computationally and theoretically demanding model. By estimating our model first,

one can gain familiarity with the industry’s dynamics and obtain starting values for

homotopy-based estimation and equilibrium calculation.
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Appendix

The model in the main text embodies structure on the stochastic processes for

profitability shocks and how they influence profits that contributes nothing to its

theoretical analysis but nevertheless makes maximum likelihood estimation more

tractable. This appendix presents a general model without this structure that

encompasses the special model of the main text, and it proves the appropriate

generalizations of Lemmas 1 and 2, Corollaries 1 and 2, and Theorem 1.

A Primitives

In the general model, firms’ profits depend on Yt ∈ Y, which could be vector

valued. Figure 2 gives the model’s recursive extensive form. Period t starts in state

(Nt, Yt−1), and then Yt is drawn from the Markov transition distribution G̃(⋅∣Yt−1).
(Here and throughout this appendix, we place a tilde over any primitive object with

a similar name in the special model.) Next, each of the Nt incumbent firms earns

profits π̃(Nt, Yt). As in the special model, all players have names giving the date of

their entry opportunity and their position in the entry queue. In the entry subgame

of period t, firm (t, j) pays the sunk cost ϕ̃(Nt + j, Yt) upon entry. Otherwise, the

potential entrant earns 0. Progressing to the period t survival subgame, an active

firm choosing survival incurs no cost during period t. The expected profits from

operating in period t + 1 subsume the special model’s costs of continuation.

The restrictions we place on π̃(n, y) are

A1. ∃π̌ <∞ ∶ ∀n ∈ N+ and ∀y ∈ Y, E [π̃(n,Y ′)∣Y = y] < π̌;

A2. ∃ň ∈ N+ ∶ ∀n > ň and ∀y ∈ Y, π̃(n, y) < 0;

A3. ∀n ∈ N+ and ∀y ∈ Y, π̃(n, y) ≥ π̃(n + 1, y); and

A4. ∀n ∈ N+ and ∀y ∈ Y, 0 ≤ ϕ̃(n, y) ≤ ϕ̃(n + 1, y).

Assumption A1 differs slightly from the uniform bound of E[π(n,C ′)∣C = c] in the

text because π̃(n, y) encompasses the costs of continuation, but it serves the same

function of restricting equilibrium post-entry expected continuation values to the

space of bounded non-negative functions. The remaining assumptions have direct

analogues in the text.
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Period t Entry Subgame (Sequential Moves)

Start with Nt incumbents and profit
state Yt−1 (or initialize (N1, Y0) if t = 1).

Yt ∼ G(⋅∣Yt−1)

a
(t,1)
E

Incumbents earn π̃(Nt, Yt).

Period t
Survival

Subgame,
Jt = 0

(t,1) earns 0.

0

a
(t,2)
E

(t,1) pays ϕ̃(Nt + 1, Yt).
1

Period t
Survival

Subgame,
Jt = 1

(t,2) earns 0.

0

a
(t,3)
E

1

(t,2) pays ϕ̃(Nt + 2, Yt).

⋯

(t,3) pays ϕ̃(Nt + 3, Yt).
1

Period t
Survival

Subgame,
Jt = 2

(t,3) earns 0.

0

Period t Survival Subgame (Simultaneous Moves)

Start with NE,t ≡ Nt + Jt active
firms with names f1, f2, . . . , fNE,t

.

af1S

Exp. disc. profits: ṽE(NE,t, Yt)

f1 earns 0.

1

af2S

0

f2 earns 0.

1

⋮
0

a
fNE,t

S

fNE,t
earns 0.

1

Nt+1 ∼ B (af1S , a
f2
S , . . . , a

fNE,t

S )

0

Period t + 1
Entry Subgame

Exp. disc. profits: ṽS(Nt+1, Yt)

Assumptions:

• ∃π̌ <∞ ∶ ∀n ∈ N and ∀y ∈ Y , π̃(n, y) < π̌.

• ∀n ∈ N, E [π̃ (n,Y ′) ∣Y ] exists.

• ∃ň ∈ N ∶ ∀n > ň and ∀y ∈ Y , π̃(n, y) < 0.

• ∀n ∈ N and ∀y ∈ Y, π̃(n, y) ≥ π̃(n + 1, y).

• ∀n ∈ N and ∀y ∈ Y, 0 ≤ ϕ̃(n, y) ≤ ϕ̃(n + 1, y).

• Firms maximize profits discounted with factor ρ ∈ [0,1).

Figure 2: The General Model’s Recursive Extensive Form

To cast the special model within this more general framework, set

Yt ≡ (Ct,Wt,Wt−1) ,
π̃(n; c,w,w−1) ≡ π(n, c) − ρ−1κ exp(w−1),
ϕ̃(n; c,w,w−1) ≡ ϕ(n) exp(w), and

G̃(c,w,w−1∣Ct−1,Wt−1,Wt−2) ≡
⎧⎪⎪⎨⎪⎪⎩

GC(c∣Ct−1)GW (w) if Wt−1 ≤ w−1

0 otherwise.

B Equilibrium

For both a potential entrant and a firm contemplating survival, the payoff-relevant

variables are the number of firms committed to play that period’s survival subgame
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and the current state of demand. A Markovian strategy is a pair of functions,

ãE ∶ N+ × Y → {0,1} and ãS ∶ N+ × Y → [0,1]. An equilibrium strategy and its

associated continuation values ṽE(n, y) and ṽS(n′, y) satisfy conditions analogous to

the special model’s equations (1), (2), (3) and (4):

ṽE(n, y) = max
a∈[0,1]

aEãS [ṽS(N ′, Y )∣NE = n,Y = y] , (21)

ṽS(n′, y) = ρEãE [π̃(n′, Y ′) + ṽE(N ′
E, Y

′)∣N ′ = n′, Y = y] , (22)

ãE(n, y) ∈ arg max
a∈{0,1}

a(−ϕ̃(n, y) +EãE [ṽE(NE, y)∣M = n,Y = y]), (23)

and

ãS(n, y) ∈ arg max
a∈[0,1]

a(EãS [ṽS(N ′, y)∣NE = n,Y = y]). (24)

The expectation operators condition on the deciding firm choosing continuation and

all other firms using the strategy in the operator’s subscript. As in (3), the M in

(23) denotes the number of active firms if the potential entrant chooses entry.

The general model’s characterization of equilibrium begins with the appropriate

analogues to Lemmas 1 and 2 and Corollaries 1 and 2. Section C contains their

proofs.

Lemma 1 (Bounded number of firms in the general model) In a symmet-

ric Markov-perfect equilibrium, ∀y ∈ Y, ãE(n, y) = 0 and ãS(n, y) < 1 for all n > ň.

Lemma 2 (Monotone equilibrium payoffs in the general model) In a sym-

metric Markov-perfect equilibrium, ∀y ∈ Y, ṽS(n, y) weakly decreases with n.

Corollary 1 Let ṽS be the post-survival value function associated with a symmetric

Markov-perfect equilibrium. Consider the one-shot survival game in which nE firms

simultaneously choose between survival and exit (as in the survival subgame of Figure

2), each of the n′ survivors earns ṽS(n′, y), and each exiting firm earns zero. This

game has a unique symmetric Nash equilibrium, possibly in mixed strategies.

Corollary 2 If ṽE and ṽS are the post-entry and post-survival value functions

associated with a symmetric Markov-perfect equilibrium, then

ṽE(nE, y) = max{0, ṽS(nE, y)}.
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To demonstrate equilibrium existence and uniqueness in the general model using

these results, begin with a number of incumbent firms n, hypothesized values for the

equilibrium post-survival continuation value w̃S(n′, y) and entry strategy α̃E(n′, y)
for all n′ ∈ {n+1, . . . , ň} and y ∈ Y. With the entry strategy, construct the transition

rule

µ(n, y) ≡ n +
∞

∑
n′=n+1

Λ̃E(n′, n, y),

with

Λ̃E(n′, n, y) ≡
n′

∏
j=n+1

α̃E(j, y).

Lemma 1 tells us that for any strategy consistent with an equilibrium, µ(n, y) ≤ ň
if n ≤ ň.

From Corollary 2, we know that all n incumbent firms choose survival with

certainty whenever the individual value to joint continuation is positive. Suppose

that whenever µ(n, y) = n, incumbents expect to receive a (trial) post-survival

continuation value f(y). When entry brings the number of firms to n′, they expect

to receive w̃S(n′, y). Under these conditions, the Bellman operator used to update

f(y) is

Tn(f)(y) = ρE[π̃(n,Y ′)
+max{0, f(Y ′) + 1{µ(n,Y ′) > n}(w̃S(µ(n,Y ′), Y ′) − f(Y ′))}∣Y = y]

If w̃S(n′, y) ∈ [0, π̂
1−ρ] for all n′ > n and y ∈ Y, then Tn maps the set {f ∶ Y →

[0, π̂
1−ρ]} into itself. Furthermore, Tn(f) satisfies Blackwell’s sufficient conditions for

a contraction mapping, so it has a unique fixed point f⋆(y). Of course, this fixed

point depends on the hypothesized values of w̃S(n′, ⋅) and α̃E(n′, ⋅).
As noted in the text, this dynamic program is the centerpiece of our algorithm

for equilibrium calculation. Algorithm 1 presents it in flowchart form. It begins

with initializing n at ň and assigning the initial values of zero to the equilibrium

strategies, continuation values, and a dummy function f⋆ ∶ Y → [0, π̌
1−ρ]. The next

step initializes the transition rule µ(n, y) to the constant ň and the following step

applies Bellman equation iteration to calculate the fixed point to Tň. The result
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gets assigned to w̃S(ň, ⋅) and is used to construct the corresponding the hypothesized

post-entry continuation value w̃E(ň, ⋅). Then, the entry strategy α̃E(ň, y) gets set to

an indicator for positive post-entry payoffs. A loop repeats these calculations for all

valid lower values of n, using the results of earlier calculations to set µ(n, y). After

completing this first loop, a second loop sets the survival strategy α̃S(n, y) to the

highest probability consistent with equilibrium in the survival subgame given the

candidate continuation values in memory. (Because these calculations do not build

on each other, the second loop can be parallelized.) The appropriate generalization

of Theorem 1 to this framework states that the candidate equilibrium strategies and

payoffs arising from Algorithm 1 correspond to the unique Markov-perfect Nash

equilibrium that defaults to inactivity.

Theorem 1 (Equilibrium existence and uniqueness in the general model)

There exists a unique symmetric Markov-perfect equilibrium that defaults to

inactivity. Algorithm 1 computes it and its corresponding post-entry and post-

survival continuation values.

C Proofs

This final appendix contains the formal proofs of the numbered results.

Proof of Lemma 1. Let Nt denote the random sequence of the number of active

firms at the beginning of period t and let Mt denote the random sequence of the

number of active firms just before period t’s survival subgame. These arise from

equilibrium play conditional on the initial state (m0, y0). Define the random time

τ (with 0 ≤ τ ≤∞) as the first period in which the firms playing the survival game

choose exit with a positive probability. That is,

τ = min{{t ∶ ãS(Mt, Yt) < 1} ∪ {∞}}.

If indeed ãS(m0, y0) < 1 as asserted, then τ = 0. Suppose to the contrary that

ãS(m0, y0) = 1, so Pr[τ > 0] = 1. By definition, exit can occur only in or after period

τ , so we know that Nt+1 =Mt ≥m0 for t < τ . Since m0 > ň, Assumption A2 implies

π̃(Nt, Yt) < 0 for t ≤ τ . If the realization of τ is infinite, then the incumbent firms
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START

α̃S(⋅, ⋅) ← 0, α̃E(⋅, ⋅) ← 0, w̃E(⋅, ⋅) ← 0, w̃S(⋅, ⋅) ← 0, n ← ň

µ(n, ⋅) = n +
∞

∑
n′=n+1

n′

∏
n=n+1

α̃E(j, ⋅)

f⋆(⋅) ← lim
r→∞

T rn(f⋆)(⋅)
w̃S(n, ⋅) ← f⋆(⋅)
w̃E(n, ⋅) ← max{w̃S(n, ⋅),0}

α̃E(n, ⋅)← 1{w̃E(n, ⋅) > ϕ̃(n, ⋅)}

n = 1?n ← n − 1

n ← ň

α̃S(n, ⋅)←max

⎧⎪⎪⎨⎪⎪⎩
{p∣

n−1

∑
j=0

(n − 1

j
)pj(1 − p)n−1−jw̃S(j + 1, ⋅) ≥ 0} ∩ [0,1]

⎫⎪⎪⎬⎪⎪⎭

n = 1?n ← n − 1

STOP
The text defines Tn. Above, T rn
denotes Tn coposed with itself r
times.

Yes

No

No

Algorithm 1: Equilibrium Calculation for the General Model
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receive an infinite sequence of strictly negative payoffs. If instead the realization of τ

is finite, then the incumbent firms receive a finite sequence of strictly negative payoffs

followed by a zero expected continuation value from playing the period-τ survival

subgame. Therefore, the expectation of the discounted sum of payoffs, ṽS(m0, y0)
must be strictly negative. Since any incumbent firm can raise its payoff to zero

by choosing certain exit, the supposition that ãS(m0, y0) = 1 must be incorrect. If

ϕ̃(m0 + 1, y) > 0, then the first potential entrant (firm (0,1)) maximizes its payoff

by staying out of the industry and earning zero. If instead ϕ̃(m0+1, y) = 0, then the

assumption that the equilibrium strategy defaults to inactivity dictates the same

action. In either case, ãE(m0, y0) = 0 as asserted.

Proof of Lemma 2. We need to show that for all y0 ∈ Y and all n1 ∈ N,

ṽS(n1, y0) ≥ ṽS(n1 + 1, y0).
Let Nt and N+

t denote the number of firms at the beginning of period t from the

games initialized with n1 and n1+1 firms respectively. Below, we refer to Nt and N+
t

as the outcomes of the original and perturbed games. The corresponding numbers

of active firms just before period t’s survival subgame are Mt and M+
t . The original

and perturbed games share a common realization of demand shocks, y0, Y1, . . ..

Define the random times τ and τ+ as in the proof of Lemma 1.

τ = min{{t ∶ ãS(Mt, Yt) < 1} ∪ {∞}}
τ+ = min{{t ∶ ãS(M+

t , Yt) < 1} ∪ {∞}}

By these definitions, Nt and N+
t are weakly increasing sequences for all t < τ and

t < τ+, respectively. We know that Nt ≤ N+
t for all t ≤ τ+, because otherwise the

two games would have potential entrants in the same payoff-relevant states making

different entry decisions. That would violate the assumption that the equilibrium

strategy is Markovian.

We first wish to show that τ+ ≤ τ always. Suppose to the contrary that there

exists realizations of {Yt}∞t=0, {Mt}∞t=0, {Nt}∞t=0, {M+
t }∞t=0, and {N+

t }∞t=0 such that

τ < τ+. In this case, Nt < N+
t for t ≤ τ . Otherwise the original and perturbed games

would have the same payoff relevant state at some date before τ and so would evolve

identically thereafter. This would imply that τ = τ+.

By definition, ãS(Mτ , Yτ) < 1. Suppose that one of the Mτ incumbents deviates

from this strategy and chooses certain survival, and let Nt denote the sequence of
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firm numbers that arises in that game after that deviation conditional on (i) the

deviating incumbent surviving until period t and (ii) all other players following

the equilibrium strategy. Since ãS(Mτ , Yτ) < 1, we know that no entry occurs in

period τ of the original game. (Otherwise, either an entrant pays a positive sunk

cost for a zero continuation value or the proposed equilibrium strategy does not

default to inactivity.) Therefore, Nτ = Mτ . Since some of these Nτ active firms

might not survive, we have Nτ+1 ≤ Nτ Combining this with Nτ < N+
τ and N+

τ ≤ N+
τ+1

yields Nτ+1 < N+
τ+1. Since the equilibrium strategy is Markovian, Nt ≤ N+

t for

t = τ + 1, . . . , τ+. Assumption A3 then implies that for all possible realizations of

{Yt}∞t=τ+1, π̃(Nt, Yt) ≥ π̃(N+
t , Yt) for t = τ + 1, . . . , τ+. Furthermore, this inequality is

strict for t = τ + 1.

By choosing survival until the realization of τ+ and exiting at that date, the

deviating incumbent in the original game earns a strictly greater payoff than does

an incumbent in the perturbed game. Since τ+ > τ we know that the expected

discounted sum of these payoffs from the perturbed game, ṽS(N+
τ , Yτ), is strictly

positive. Therefore, we conclude that the deviating incumbent in the original game

recieves a payoff strictly greater than that earned from following the equilibrium

strategy, zero. This is inconsistent with the supposition of equilibrium, so we

conclude that τ+ ≤ τ .

Since τ+ ≤ τ , period 0 incumbents in both the original and perturbed games

survive until τ+; the original game’s incumbent earns a weakly higher payoff until τ+.

The original game’s incumbent must have a weakly higher period-τ+ post-survival

continuation value because the analogous continuation value from the perturbed

game is non-positive. These two conclusions together imply that vS(n1, y0) ≥ vS(n1+
1, y0).

Proof of Corollaries 1 and 2. Suppose that the survival subgame starts with

m active firms. One of three mutually-exclusive cases holds good.

• ṽS(m,y) > 0. In this case, Lemma 2 implies that ṽS(n′, y) > 0 for all n′ <m, so

ãS(m,y) = 1 is a dominant strategy. Therefore, this is the unique symmetric

equilibrium strategy. The realized payoff to each of the active firms equals

ṽS(m,y).

• ṽS(1, y) < 0. In this case, Lemma 2 implies that ṽS(n′, y) < 0 for all n′ > 1, so

ãS(m,y) = 0 is a dominant strategy. Therefore, this is the unique symmetric
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equilibrium strategy. The realized payoff to each of the active firms equals

zero.

• ṽS(m,y) ≤ 0 and ṽS(1, y) ≥ 0. If m = 1, then ãS(1, y) = 0 by the default

to inactivity assumption. Consider the case with m > 1. The expected

payoff to survival given that all other firms survive with probability p is

υ(p) ≡ ∑mn′=1 (m−1
n′−1

)pn′−1(1 − p)m−n′ ṽS(n′, y). A firm’s best response to p is

certain survival if υ(p) > 0 and certain exit if υ(p) < 0. If υ(p) = 0

then any survival probability is a best response to p, including p itself. If

ṽS(m,y) = ṽS(1, y) = 0, then υ(p) = 0 for all p. In this case, the reqirement

that the equilibrium strategy defaults to inactivity requires that p = 0. If

instead ṽS(1, y) > ṽS(m,y), then υ(p) is strictly decreasing in p, and the

conditions of the case can be expressed as υ(0) ≥ 0 and υ(1) ≤ 0. Therefore,

there exists exactly one p ∈ [0,1] such that υ(p) = 0. This is the unique

equilibrium survival probability.

This establishes the equilibrium uniqueness asserted by Corollary 1. To establish

Corollary 2, simply note that the equilibrium payoff to the survival subgame equals

ṽS(m,y) if this is positive and equals zero otherwise.

Proof of Theorem 1.

The proof is divided into three parts. First, we show that the candidate

continuation values satisfy the monotonicity requirements of Lemma 2. Second,

we demonstrate that these continuation values are indeed those associated with

candidate equilibrium strategy. By construction, the candidate strategy admits no

profitable one-shot deviation if the continuation values are indeed those given by the

candidate equilibrium. Therefore, this second step establishes that the candidate

strategy forms an equilibrium. Third, we apply Lemma 2 to demonstrate that an

equilibrium’s existence implies its uniqueness.

Fix n ∈ {1,2, . . . , ň} and suppose that for all n′ ∈ {1,2, . . . , ň} ∩ {n + 1, n + 2, . . .},

we know that w̃S(n′, y) ≥ w̃S(n′ + 1, y). (This condition is trivially true for n = ň.)

Consider evaluating Tn at the value of f⋆(y) in memory after the completion of

the n + 1-indexed dynamic programming problem. Let µ(⋅, ⋅) be the value of the

transition rule at the conclusion of the algorithm. (Because µ(n′, ⋅) gets set at the

beginning of loop iteration with n = n′ and never is altered again, it has the same
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value that was used to construct the Bellman operator Tn′ .) With these definitions,

we have

Tn(f⋆)(y) =ρE[π̃(n,Y ′) +max{0, f⋆(Y ′)
+ 1{µ(n,Y ′) > n}(w̃S(µ(n,Y ′), Y ′) − f⋆(Y ′))}∣Y = y]

>ρE[π̃(n + 1, Y ′) +max{0, f⋆(Y ′)
+ 1{µ(n,Y ′) > n}(w̃S(µ(n,Y ′), Y ′) − f⋆(Y ′))}∣Y = y]

=ρE[π̃(n + 1, Y ′) +max{0, f⋆(Y ′)
+ 1{µ(n,Y ′) > n + 1}(w̃S(µ(n,Y ′), Y ′) − f⋆(Y ′))}∣Y = y]

=ρE[π̃(n + 1, Y ′) +max{0, f⋆(Y ′)
+ 1{µ(n + 1, Y ′) > n + 1}(w̃S(µ(n + 1, Y ′), Y ′) − f⋆(Y ′))}∣Y = y]

= w̃S(n + 1, y)

The inequality follows from Assumption A3, and the first equality comes from the

equivalence of w̃S(n + 1, Y ′) with f⋆(Y ′). Since w̃S(n′, Y ) is weakly decreasing in

n′ for n′ > n, so is w̃E(n′, Y ). Thus, we know that α̃E(n′, Y ′) weakly decreases

with n′. Therefore, µ(n,Y ′) = µ(n + 1, Y ′) whenever µ(n,Y ′) > n + 1. This gives

us the second equality. The operator Tn is a monotone contraction mapping, so

Tn(f⋆)(n, y) > w̃S(n + 1, y) implies that its fixed point, w̃S(n, y), strictly exceeds

w̃S(n + 1, y). This is the desired monotonicity result for the proof’s first part.

For the second part, we note that monotonicity of the candidate post-survival

continuation value immediately implies that α̃E(n + 1, y) ≤ α̃S(n, y) for all n ∈ N+.

That is, the candidate strategy never prescribes entry immediately before an

incumbent choses a positive probability of exit. This result gives us a simple

expression for the probability that the number of firms active after the current

period’s survival subgame is n′ given the period starts with demand state y and

n firms, one incumbent survives for sure, and all other firms follow the candidate
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equilibrium strategy.

λ(n′, n, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if n′ > n & ∏n′
j=n+1 α̃E(j, y) = 1,

& α̃E(n′ + 1, y) = 0,

(n−1
n′−1

)(α̃S(n, y))n′−1 if 1 ≤ n′ ≤ n & α̃E(n + 1, y) = 0,

×(1 − α̃S(n, y))n−n′

0 otherwise.

With this, we create a functional operator with its unique fixed point equal to the

post-survival continuation value from playing the game when all players follow the

candidate equilibrium strategy.

T ⋆(w)(n, y) = ρE [π̃(n,Y ′) + α̃S(n,Y ′)
∞

∑
n′=1

λ(n′, n, Y ′)w(n′, Y ′) ∣ Y = y]

We wish to show that T ⋆(w̃S)(n, y) = w̃S(n, y). For this, note whenever αS(n,Y ′) =
0, then the expected value of continuing when all other firms choose to exit for

sure, w̃(1, Y ′) is non-positive. If instead ã(n,Y ′) ∈ (0,1), then Algorithm 1 was

used to compute this survival probability by equating the payoff to surviving for

sure to that from exiting for sure, zero. Therefore, the second term inside the

expectations operator of T ⋆(w̃S)(n, y) is non-zero only if α̃S(n,Y ′) = 1. In this case,

λ(n′, n, Y ) = 1 for n′ = n +∑∞
j=0 α̃E(n + j, Y ′) and equals zero otherwise. Since the

post-survival continuation value at this value of n′ must weakly exceed zero, we have

T ⋆(w̃S)(n, y) = ρE [π̃(n,Y ′) +max{0, w̃S(n +
∞

∑
j=0

α̃E(n + j, Y ′), Y ′)} ∣Y = y]

= ρE [π̃(n,Y ′) +max{0, w̃S(µn(n,Y ′), Y ′)} ∣Y = y]
= Tn(w̃S(n, ⋅))(y) = w̃S(n, y).

The second equality follows from the definition of µ(n, y) in Algorithm 1 and the

weak monotonicity of α̃E(n′, Y ′) in n′, and the third equality uses definition of

Tn(f).
Since the candidate continuation values are indeed those induced by the

candidate equilibrium strategy, the candidate strategy’s construction guarantees

that there is no profitable one-shot deviation from the strategy given that all

other firms follow it. We conclude that Algorithm 1’s candidate equilibrium is
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indeed an equilibrium. The remainder of this proof demonstrates its uniqueness.

Corollary 1 says that there is a unique equilibrium survival strategy corresponding

to every equilibrium continuation value function, and Lemma 2 implies that an

equilibrium entry strategy must prescribe entry if and only if the continuation value

from entering and immediately proceeding to the survival subgame is positive.

Therefore, each pair of equilibrium continuation value functions ṽS and ṽE has

exactly one corresponding equilibrium strategy. Corollary 2 requires any equilibrium

continuation values to be fixed-points to the Bellman operators used in Algorithm

1. These fixed points are unique because the operators are contractions. Therefore,

there is a unique pair of equilibrium continuation value functions (those constructed

by Algorithm 1) and a unique corresponding equilibrium strategy.
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