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Abstract

In this paper we empirically examine a hybrid New-Keynesian model with
heterogeneous bounded rational agents who may adopt an optimistic or
pessimistic attitude - so called animal spirits - towards future movements
of the output and inflation gap. The model is estimated via the simulated
method of moments using Euro Area data from 1975Q1 to 2009Q4. In
addition, we compare its empirical performance to the standard model
with rational expectations. Our empirical results show that the model-
generated auto- and cross-covariances of the output gap, the inflation gap
and the nominal interest gap can provide a good approximation of the
empirical second moments. The result is mainly driven by a high degree
of persistence in the output and inflation gap due to the impact of animal
spirits on economic activity. Furthermore, over the whole time interval the
agents had expected moderate deviations of the future output gap from
its steady state value.
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1 Introduction

Rational expectations are a flexible and common way of describing market be-
havior in dynamic stochastic general equilibrium (DSGE) models. Since the
DSGE approach disposes a convenient analytic tractability under the assump-
tion of rational expectations, the microfoundations of macroeconomic dynamics
serve as an efficient toolbox for analyzing monetary and fiscal policy strategies.
As Selten (2001 p. 2) states, however, "modern mainstream economic theory is
largely based on an unrealistic picture of human decision theory". Indeed, ex-
perimental research on human behavior supports information processing with a
limited cognitive ability instead of suggesting perfect information (see Hommes
(2011) among others).

Keynes (1936) already attributed significant irrationality to the human na-
ture and discussed the impacts of waves of optimism and pessimism - so called
animal spirits - on economic activity.1 In this paper, we show empirically that
a behavioral approach with respect to the microfoundations can be used to
help identifying the cognitive ability of economic agents and introducing a sub-
stantial degree of inertia in DSGE models. According to De Grauwe (2011),
if agents are known to be either optimists or pessimists, then their ability (or
better: limitation) to form their expectations affects economic activities, i.e.
movements in employment, the output gap and the inflation rate, more ap-
propriately than in standard rational expectations models. It follows that the
assumption of animal spirits results in a non-linear behavior of bounded ratio-
nal agents under consideration of discrete choice theory. Hence, optimistic or
pessimistic expectations are considered as a kind of emergent behavior based
on a stochastic switching rule.2

Indeed, in his paper, De Grauwe (2011) replaces the forward-looking el-
ements in the baseline hybrid three-equations New-Keynesian Model (NKM)
– which stem from the assumption of rational expectations – by a regime-
switching mechanism based on animal spirits. While inertia in the dynamics
of the output gap and the inflation rate (gap) is observed empirically, it is well
known that the forward-looking NKM under rational expectations is not able
to reproduce the corresponding IRFs without exogenous persistence induced
by autocorrelated shock processes (cf. Chari et al. (2000) and Christiano et al.
(2005)). As a possible alternative to rational expectations, the specification
of a bounded rational expectation formation process can in fact account for
intrinsic persistence in the output gap and the inflation rate – even if only non-
autocorrelated exogenous shocks are considered. To the best of our knowledge,
however, there is very little research into an empirical evaluation of a bounded
rationality DSGE model of this type.

In this paper, we compare the empirical performance of a bounded rational-

1According to Akerlof and Shiller (2009), emotional states are reflected in economic behavior
- see also Franke (2012) for his extensive discussion about market behavior and alternative
ways to describe expectation formation processes in macroeconomic models.

2This procedure was first introduced by Brock and Hommes (1997) in their seminal paper on
equilibrium models with adaptive learning (see also e.g. Westerhoff (2008) as well as Lengnick
and Wohltmann (2013) among others).
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ity model to a standard rational expectations model. In particular, similarities
and dissimilarities between two polar cases of expectation formation processes
will be examined: while the underlying model structure is identical to a baseline
hybrid three-equations NKM, the two models differ in terms of the expectation
formation process, namely, rational expectations and endogenously-formed ex-
pectations using the behavioral specification by De Grauwe (2011). In other
words, we study his behavioral economic framework and provide an empirical
investigation of bounded rationality on economic dynamics in the Euro Area
from 1975Q1 to 2009Q4. In general, the behavioral modification of the NKM
serves as an appropriate starting point for this kind of investigation, but it is in-
herently difficult to conduct the empirical analysis in the presence of non-linear
mapping between the model and reduced form parameters. Hence, we aim to
evaluate the potentially non-linear behavior of expectation formation processes
via the Simulated Method of Moments (SMM) in the context of statistical in-
ference.

Our main findings can be summarized as follows. First, our empirical re-
sults show that the model-generated auto- and cross-covariances of the output
gap, the inflation gap and the nominal interest gap can provide a good approxi-
mation of the empirical moments. Here, the second moments represent specific
aspects of the data generating process and, in particular, those which mimic one
of the most important stylized facts of the economy. Second, the agents had
expected moderate deviations of the future output gap from its steady state
value over the whole time interval. These deviations show a strong correlation
for contemporaneous changes based on booms and busts in economic activity.
Third, one of the main results suggests strong evidence for a backward-looking
expectation formation process, i.e. the previous realization of the inflation gap
is strongly considered. This kind of expectation formation process has been dis-
cussed extensively by experimental economists (see Roos and Schmidt (2012)
for an overview). Furthermore, the results indicate that the parameter esti-
mates for the price indexation in both model specifications are close to unity.
This result stands in contrast to other (empirical) studies in the New-Keynesian
literature, which discuss the evidence for a purely forward-looking specification.
Finally, we offer reliable point estimates that can be used for calibration exer-
cises in the future work, e.g. studying monetary and fiscal policy analysis in a
DSGE model without making the assumption of rational expectations.

Indeed, a plethora of studies have been done on alternative forms of infor-
mation processing mechanisms in macroeconomics; see e.g. the literature on
learning (Evans and Honkaphohja (2001)), rational inattention (Sims (2003)),
sticky information (Mankiw and Reis (2002)) or bounded rationality in general
(Sargent (1994) and Kahneman (2003)). Camerer (1998) also offers an infor-
mative overview of the discussion on these topics in economics. In addition, the
results of previous studies include a discussion on the estimation of bounded
rationality (mostly partial equilibrium) models. Therefore, our approach can
be seen as related to the work of Brock and Hommes (1997), Milani (2007),
Cornea et al. (2013) and Boswijk et al. (2007).

Brock and Hommes (1997) show that disequilibrium arises in a cobweb-type
model when agents form rational and naive expectations – as being considered
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in De Grauwe (2011), and, of course, this paper. Milani (2007) estimates a
linear hybrid NKM similar to the one in this paper with Bayesian techniques.
As a feature of this model, the expectation formation process is described by
constant-gain learning. According to the results of model comparison exercises,
he shows that the model with constant-gain learning outperforms its rational
expectation counterpart, where in the former case the learning process can
generate a substantial degree of inertia in the model dynamics. However, the
bounded rationality model studied in this paper is based on a non-linear switch-
ing rule from discrete choice theory. It is well known that Bayesian techniques
can not be easily used to evaluate the non-linearity in this kind of models.

In another study, Cornea et al. (2013) estimate the NKPC for the US econ-
omy with an endogenous variation in the fractions of forward-looking funda-
mentalists and backward-looking native price-setters. The authors show that
due to their theoretical modifications, their specification of the NKPC fits the
data well. They conclude that this result is mainly driven by a regime switch-
ing mechanism, which is similar to the one presented in this paper. In general,
the non-linear least squares approach used in Cornea et al. (2013) is in gen-
eral based on the stringent assumptions about the underlying shock process
(e.g. homoscedastic and non-autocorrelated shocks), while the effectiveness of
this procedure might be limited to the case where the model is parsimonious.
However, the results in their paper are not affected by this shortcoming, since
they just consider a partial equilibrium model (for inflation rate dynamics),
where the amount of parameters to be estimated is indeed manageable. In
the same vain, Boswijk et al. (2007) estimate a dynamic single-equation as-
set pricing model with two types of agents. Behavioral heterogeneity in their
paper is described by a high degree of switching between fundamentalists and
chartists. However, the major difference in our approach is that making infer-
ences about the group behavior is based on a system-of-equations estimation
approach. Therefore, the current study aims to show that the SMM approach
can be applied in order to improve the empirical shortcomings on non-linear
behavioral dynamics within a highly parameterized model. To the best of our
knowledge, such kind of investigation with respect to a non-linear DSGE model
with regime-switching has not been undertaken in the literature so far.

The remainder of the paper is structured as follows. In section 2 we present
the baseline NKM known from the literature and discuss the standard model
with rational expectations and its variant under consideration of animal spirits.
The estimation methodology is presented in section 3. In Section 4 we estimate
the two specifications of the model by the (S)MM approach and give an eco-
nomic interpretation of the empirical results. Finally, section 5 concludes. All
relevant technical details are collected in the Appendix.
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2 TheModel: Rational Expectations versus Bounded
Rationality

The baseline hybrid three-equations NKM reads as follows:

yt =
1

1 + χ
Ẽj

t yt+1 +
χ

1 + χ
yt−1 − τ(r̂t − Ẽj

t π̂t+1) + εy,t (1)

π̂t =
ν

1 + αν
Ẽj

t π̂t+1 +
α

1 + αν
π̂t−1 + κyt + επ̂,t (2)

r̂t = φr̂ r̂t−1 + (1− φr̂)(φπ̂π̂t + φyyt) + εr̂,t (3)

where the superscript j = {RE, BR} refers to the rational expectations (RE)
and the bounded rationality (BR) model, respectively. The corresponding ex-
pectations operator is Ẽj

t , which has to be specified for both models. It goes
without saying that all variables are given in quarterly magnitudes.

In equation (1), the hybrid dynamic IS curve results from inter-temporal op-
timization of consumption and saving, which leads to consumption smoothing.
The parameter τ ≥ 0 denotes the inverse inter-temporal elasticity of substi-
tution in consumption behavior. Equation (2) represents the hybrid NKPC
where the output gap (yt) acts as the driving force behind inflation dynamics
from monopolistic competition and Calvo-type sticky prices. The slope of the
Phillips Curve is given by the parameter κ ≥ 0. ν measures the discount fac-
tor (0 < ν < 1). According to the Taylor rule with interest rate smoothing
(equation (3)), the nominal interest gap is a predetermined variable, while the
monetary authority reacts directly to contemporaneous movements in the out-
put (φy ≥ 0) and inflation (φπ̂ ≥ 0) gap. We account for intrinsic persistence
in the stylized version of the well-known Smets and Wouters (2003, 2005 and
2007) model where backward-looking behavior is indicated by the parameters
for habit formation χ, price indexation α and interest rate smoothing φr̂, re-
spectively (0 ≤ χ ≤ 1, 0 ≤ α ≤ 1, 0 ≤ φr̂ ≤ 1). We assume that the exogenous
driving forces in the model variables follow idiosyncratic shocks εz,t, which are
independent and identically distributed around mean zero and variance σ2

z with
variables z = {y, π̂, r̂}.

Note here that we consider the gaps instead of the levels and therefore ac-
count explicitly for a time-varying trend in the inflation rate and the natural
rate of interest. The corresponding gaps are simply given by taking the dif-
ference of the actual value for the output, the inflation rate and the nominal
interest rate from their trends (i.e. time-varying steady state values) respec-
tively, where the latter are computed by applying the Hodrick-Prescott filter
with a standard value of the corresponding smoothing parameter of λ = 1600.
Accordingly, the set of equations is used to describe the dynamics in the output
gap yt, the inflation gap π̂t and the nominal interest rate gap r̂t, where x̂t with
x = {π, r} denotes the deviations in both variables from the time-varying trend
explicitly.3

3The results of previous studies show that the model may produce misleading results if a
constant trend (e.g. a zero-inflation steady state) is assumed. For example, Ascari and
Ropele (2009) observe that the stability of the economic system can depend on the variation
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To make the description of the expectation formation processes more ex-
plicit, we examine two polar cases in the theoretical model framework of the
baseline NKM. First, under rational expectations, the forward-looking terms
are described by the expectations of the output gap and inflation gap at time
t+ 1 in the equations (1) and (2):

ẼRE
t yt+1 = Etyt+1 (4)

ẼRE
t π̂t+1 = Etπ̂t+1, (5)

where Et denotes the expectation operator conditional on information at time
t. Second, as regards the other specification, we depart from rational expecta-
tions by considering the behavioral model of De Grauwe (2011). It is generally
assumed that agents may adopt either an optimistic or pessimistic attitude to-
wards movements in the future output gap (in the following indicated by the
superscripts O and P , respectively):

EO
t yt+1 = dt (6)

EP
t yt+1 = −dt, (7)

where

dt =
1

2
· [β + δλy,t]. (8)

Note here that the term dt can be interpreted as "the divergence in beliefs
among agents about the output gap" (De Grauwe (2011, p. 427)). The main
difference between the RE and BR model is that the bounded rational agents
are uncertain about the future dynamics of the output gap and therefore predict
a fixed value of yt+1 measured by β ≥ 0. We can interpret the latter as the
predicted subjective mean value of yt. However, this kind of subjective forecast
is generally biased and therefore depends on the volatility in the output gap,
i.e. given by the unconditional standard deviation λy,t ≥ 0. In this respect, the
parameter δ ≥ 0 measures the degree of divergence in the movement of economic
activity. Note that due to the symmetry in the divergence in beliefs, optimists
expect that the output gap will differ positively from the steady state value
(which for consistency is set to zero), while pessimists will expect a negative
deviation by the same amount. The value of δ remains the same with different
types of agents.

in trend inflation. Cogley and Sbordonne (2008) also provide evidence for the explanation of
inflation persistence by considering a time-varying trend in inflation. In the same vein, we
regard the assumption of a constant natural rate of interest empirically unrealistic. In this
paper, we follow the empirical approaches proposed by Cogley et al. (2010), Castelnuovo (2010)
among others, who consider gap specifications for the inflation (and the nominal interest) rate.
Furthermore, inflation and money growth are likely to be non-stationary in the Euro Area
data. Given the presence of nonstationarity, we suggest that the estimation methodology such
as the (S)MM approach presented here (or GMM in general) will lead to biased estimates of
the model parameters. See also Russel and Banerjee (2008) as well as Assenmacher-Wesche
and Gerlach (2008) among others for methodological issues related to non-stationary inflation
in the US and Euro Area. Hence, in this study, we consider the gaps rather than the levels in
order to ensure the behavior of the stationary times series.
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The expression for the market forecast regarding the output gap in the
bounded rationality model is given by

ẼBR
t yt+1 = αO

y,t · EO
t yt+1 + αP

y,t ·EP
t yt+1 = (αO

y,t − αP
y,t) · dt, (9)

where αO
y + αP

y = 1 holds. The probabilities αO
y and αP

y indicate a stochastic
behavior of the agents when choosing a particular forecasting rule (i.e. equation
(6) or (7)). Note that αO

y (or αP
y ) can be interpreted as the probability being an

optimist (or pessimist). In the following, we give an explicit description of these
probabilities. First, the selection of the forecasting rules (6) or (7) depends on
the forecast performances of optimists and pessimists Uk

t (with k = O, P ) given
by the mean squared forecasting error. The utility for the forecast performances
can be simply updated in every period as (cf. Brock and Hommes (1997)):

Uk
t = ρUk

t−1 − (1− ρ)(Ek
t−1yt − yt)

2, (10)

where the parameter ρ is used to measure the memory of agents (0 ≤ ρ ≤ 1).

Here ρ = 0 suggests that agents have no memory of past observations, while
ρ = 1 means that they have infinite memory instead. Second, by applying the
discrete choice theory under consideration of the forecast performances, agents
can revise their expectations in which different performance measures will be
utilized for αO

y,t and αP
y,t:

4

αO
y,t =

exp(γUO
t )

exp(γUO
t ) + exp(γUP

t )
(11)

αP
y,t =

exp(γUP
t )

exp(γUO
t ) + exp(γUP

t )
= 1− αO

y,t, (12)

where the parameter γ ≥ 0 denotes the intensity of choice: if γ = 0, the
self-selecting mechanism is purely stochastic (αO

y,t = αP
y,t = 1/2), whereas if

γ = ∞, it is fully deterministic (αO
y,t = 0, αP

y,t = 1 or vice versa (see De Grauwe
(2011), p. 429)). In other words, in the polar case where γ = 0 holds, agents are
indifferent in being optimist or pessimist. Their expectation formation processes
are independent of their emotional state when γ = ∞ holds, i.e. as they react
quite sensitively to infinitesimal changes in their forecast performances.

We explain this revision process as follows. Given the past value of the
forecast performance (Uk

t−1), we see that the lower the difference between the
expected value of the output gap (taken from the previous period, i.e. Ek

t−1yt =
|dt−1|) and its realization in period t, the higher the corresponding forecast per-
formance Uk

t will be. More precisely, if e.g. the forecast made by the optimists
is more accurate than the one made by the pessimists, this will lead to a higher
level of utility for the optimistic agents, i.e. UO

t > UP
t holds. Hence, the pes-

simists have the incentive to adopt the forecasting rule used by the optimists,
which we can express as EO

t yt+1 = dt. Finally, this forecasting rule prevails
and the share of pessimists in the market decreases. According to the equa-
tions (10) to (12), we can rationalize equation (9) by using simple substitution.

4See also Westerhoff (2008, p. 199) and Lengnick and Wohltmann (2013) among others for an
application of discrete choice theory to models in finance and macroeconomics.
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This results in a higher degree of volatility in the expectation formation process
regarding the output gap relative to the outcome in the RE model – hereby we
refer to Figure 1 given in section 4.3 for a clarification.

The same logic can be applied for the inflation gap expectations. Following
De Grauwe (2011, pp. 436), we assume that agents will be either so called infla-
tion (gap) targeters (tar) or extrapolators (ext).5 In the former case, the central
bank anchors expectations by announcing a target for the inflation gap ¯̂π. From
the view point of the inflation targeters, we consider this pre-commitment strat-
egy to be fully credible. Hence the corresponding forecasting rule becomes

Etar
t π̂t+1 = ¯̂π, (13)

where we assume ¯̂π = 0.6 The extrapolators instead will expect that the future
value of the inflation gap is given by its past value:

Eext
t π̂t+1 = π̂t−1. (14)

Note that the market forecast for the inflation gap is similar to the forecast in
equation (9):

ẼBR
t π̂t+1 = αtar

π̂,tE
tar
t π̂t+1 + αext

π̂,tE
ext
t π̂t+1 = αtar

π̂,t
¯̂π + αext

π̂,t π̂t−1. (15)

The forecast performances of inflation targeters and extrapolators are given by
the mean squared forecasting error written as

U s
t = ρU s

t−1 − (1− ρ)(Es
t−1π̂t − π̂t)

2, (16)

where s = (tar, ext) holds. Finally, we can write:

αtar
π̂,t =

exp(γU tar
t )

exp(γU tar
t ) + exp(γU ext

t )
(17)

αext
π̂,t =

exp(γU ext
t )

exp(γU tar
t ) + exp(γU ext

t )
= 1− αtar

π̂,t , (18)

where αtar
π̂,t denotes the probability to be an inflation targeter. Economic agents

will adopt a target behavior if the forecast performance using the announced
inflation gap target is superior to the extrapolation of the inflation gap ex-
pectations, and vice versa. Note here that the memory (ρ), as well as the
intensive of choice (γ), do not differ across the expectation formation processes
in terms of the output and inflation gap. In the end, the BR model exhibits
purely backward-looking behavior (cf. the equations (10) and (16)), while both
forward- and backward-looking elements are contained in the RE model.7 The

5This concept of behavioral heterogeneity has been widely used in financial market models, see
e.g. Chiarella and He (2002) as well as Hommes (2006) among others.

6In this respect (based on an optimal monetary policy strategy), an inflation gap target of
zero percent implies that the European central bank seeks to minimize the deviation of its
(realized) target rate of inflation from the corresponding time-varying steady state value. Thus
the deviation should be zero in the optimum.

7Note that the two models are overlapping, i.e. the forward-looking behavior in the RE model
cannot be nested in the group behavior as being specified in a bounded rationality model. In
particular, the expectation formation processes in both models do not share common structural
features due to discrete choice theory.
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solution to both systems can be computed numerically by backward-induction
as well as the method of undetermined coefficients together with the brute force
iteration procedure (Binder and Pesaran (1995)). However, the BR model does
not have a simple closed-form solution. We refer to the Appendix A for details.

Finally, it can be argued that the BR model presented is not suitable for
e.g. policy analysis since it is not based completely on microfoundations. In
other words, the expectation mechanisms are imposed ex post on a system of
structural equations which themselves have been derived from maximizing be-
havior under the assumption of rational expectations. However, the assumption
for the divergence in beliefs (which reflects guessing) and the existence of the
extrapolators can be guided by research evidence in experimental economics.
In this respect it might be interpreted as pattern-based time-series forecasting
rule done by De Grauwe (2011) and adopted in our study.8

From a theoretical point of view, Branch and McGough (2009) investigate
the effects of heterogeneous expectations on a New-Keynesian framework where
the forward-looking expressions in the dynamic IS curve and the NKPC are
convex combinations of backward- and forward-looking behavior. The authors
show that a micro-founded NKM under bounded rationality can be theoretically
consistent if specific axioms are considered within the optimizing behavior of
households and firms. These axioms lay the ground work for the ability of
agents to forecast future realizations of the output gap and inflation (gap) at the
micro level as well as aggregated behavior at the macro level. In comparison, De
Grauwe (2011) allows for a switching mechanism based on discrete choice theory.
It is an open question whether the latter based on the axioms by Branch and
McGough (2009) may mitigate the (neglected) problems of misspecification. To
sum up, there is no doubt that an extensive elaboration on the microfoundations
of expectation formation is needed. However, cognitive information processing
in the human brain remains ambiguous (De Grauwe (2011, p. 428, fn. 4)).

3 The Simulated Method of Moments Approach

In this paper we seek to match the model-generated autocovariances of the
output gap, the inflation gap and the nominal interest rate gap with their
empirical counterparts. Statistical inference on the market behavior is based
on those model parameter values. The parameter estimates are considered as
the result of the minimization of the distance between the model-generated and
empirical second moments when applying the (S)MM approach. As mentioned
in the Introduction, we focus on specific aspects of the data generating process
when taking the models empirically to the real world. In other words, our study
aims to show that a set of auto- and cross-covariances can be used to describe

8Roos and Schmidt (2012) find evidence for a backward-looking behavior in forming expecta-
tions by non-professionals in economic theory and policy. In their experimental study, they
show that the projections of the future realizations in the output gap and the inflation rate
are based either on historical patterns of the time series or - in the case of no information
available - on simple guessing.
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the regular properties of the business cycle.9

To be more specific, we suggest that the moment conditions play an impor-
tant role in accounting for distributional properties of empirical data Xt with
t = 1, · · · , T , where T denotes the sample size. The sample covariance matrix
at lag k is defined by:

mt(k) =
1

T

T−k∑

t=1

(Xt − X̄)(Xt+k − X̄)′, (19)

where X̄ = (1/T )
∑T

t=1 Xt is the vector of the sample mean. The sample
average of discrepancy between the model-generated and empirical moments is
denoted as

g(θ;Xt) ≡ 1

T

T∑

t=1

(m∗
t −mt), (20)

where θ denotes a l × 1 vector of unknown structural parameters. m∗
t and mt

are the empirical and the model-generated moment function, respectively (cf.
equation (19)). In the empirical analysis of the structural model, an explicit
closed-form solution for the endogenous variables in the RE model is used to
derive the moment conditions (see Appendix A and Franke et al. (2012) for the
intermediate steps needed). In the BR case, due to its non-linear structure,
the analytic solution for mt cannot be easily obtained. Therefore, the SMM
approach must be applied instead (see further below). However, before we turn
to the description of SMM, we briefly explain (again) the MM approach with
respect to the estimation of the linear RE model.

One of main goals in this study is to draw inference from the underlying
model to the auto- and cross-covariances of the observations at a (fixed) lag k
with k = 0, · · · , n.10 After selecting an appropriate number of j variables for
the lag length, we compute the corresponding p-dimensional vector of (empirical
and simulated) moment conditions by

p = p(k, j) = (j · k − 1) · j. (21)

From this, we avoid the double counting at the zero lags in the cross relation-
ships by subtracting the term j · k by one. To construct a confidence interval
for the auto- and cross-covariance moments, we use the Delta method. Here

9Indeed, its approximation will be as efficient as the maximum likelihood approach when ap-
propriate moments are selected (see also Canova (2007, his Chapter 5)). For example, the
Gaussian distribution can be approximated by the first and second moments. In addition, if
empirical observations do not follow a Gaussian process, information on higher moments will
be effective in matching the data generating process. In our empirical application, however,
the sample size of the macro data being considered is not sufficient enough to provide accurate
estimates on the higher moments. Thus we decide to focus on the second moments for our
current study only, while further statistical analysis on the, let’s say, optimal selection of the
moments being left for future research.

10The maximal number of lags (denoted by n) is chosen under consideration of the economic
model and sample size. In the macroeconomic model being considered here, n captures the
length of the business cycle.
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we apply a linear approximation of the moment function around the point esti-
mates under consideration of the corresponding gradient vector (see Appendix
B for details).

Given that the duration of the business cycle lies between (roughly) one and
eight years in the Euro Area (cf. Artis et al. (2003)), a reasonable compromise
is a length of two years. According to equation (21), p = 78 moments are
then considered as appropriate choice for our study, where we (based on the
underlying model structure) take into account a lag length of n = kmax = 8 and
j = 3 variables. As we choose a lag structure in the auto- and cross-covariances
of n = kmax = 8, we take 1/4 of the total length of a business cycle into account,
where the latter is defined by the change in the output gap from a trough to
the next one. In the next section we will show that the output gap exhibits
similar patterns in the upswing movement from a trough to a peak over the
whole time series. Therefore we claim that the relevant observations rely on
p = 78 moments only, since repeating patterns in the time series do not exhibit
additional information.11

With a focus on these moment conditions, we can estimate the model pa-
rameters by minimizing the following quadratic objective function:

J(θ) = min
θ

g(θ;Xt)
′ Ŵ g(θ;Xt), (22)

where more importance is attached to particular moment conditions accord-
ing to the weighting matrix Ŵ (see Andrews (1991)). The kernel estimator
has the following general form with the covariance matrix of the appropriately
standardized moment conditions given by

Γ̂T (h) =
1

T

T∑

t=h+1

(mt − m̄)(mt − m̄)′, (23)

where m̄ once again denotes the sample mean. To find an appropriate lag length,
we use a popular choice of h ∼ T 1/3, that is, h = 5 for estimating the covariance
matrix in the Euro Area (i.e. the Hansen-White covariance estimator):

Ω̂ = Γ̂T (0) +

5∑

h=1

(
Γ̂T (h) + Γ̂′

T (h)
)
. (24)

The weighting matrix Ŵ is computed from the inverse of the estimated covari-
ance matrix Ω̂. However, a high correlation between the moment conditions that
we consider makes the estimated covariance matrix nearly singular. Singularity
in the covariance matrix stands out, as the moment conditions and the elements
of the weighting matrix are highly correlated when the small sample size is used
(Altonji and Segal (1996)). To circumvent the econometric issues, we use the

11Broadly speaking, the business cycle can be seen approximately as a sinus function, where a
fraction of 1/4 describes the upswing movement if a trough being the starting point. Hence,
the transition from the peak to the second trough mimics the upswing with, of course, the
opposite sign. Therefore, we judge our choice of p = 78 moments (or, equivalently, a fraction
1/4 of the length of the business cycle) as being valid.
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diagonal matrix entries as the weighting scheme, while the off-diagonal com-
ponents of the matrix Ŵ = Ω̂−1 are ignored. Although the weighting matrix
is not optimal enough to provide unbiased or consistent parameter estimates,
we claim that this procedure is based on an economic (rather than a strict
econometric) rationale. The estimated confidence bands (intervals), then, be-
come wider, as the sandwich elements in the covariance of parameter estimates
cannot cancel each other out in the presence of this weighting scheme (see also
Anatolyev and Gospodinov (2011)).12

Next, to make inferences about the model parameters, we study the prop-
erties of the sample distribution for the parameter estimation. In particular,
under certain regularity conditions, we arrive at the following asymptotic dis-
tribution of the model parameters:

√
T (θ̂T − θ0) ∼ N(0,Λ), (25)

where Λ = [(DWD′)−1]D′WΩWD[(DWD′)−1]′ holds. D is the gradient vector

of moment functions evaluated around the point estimates. This can be written
as:

D̂ =
∂m(θ;XT )

∂θ

∣∣∣∣
θ=θ̂T

. (26)

Under RE, we can obtain the simple analytic moment conditions of the model
as described above. However, for the BR model, the analytic expressions for the
moment conditions are not available because of its non-linear structure and, in
particular, discrete choice theory (see again Appendix A). To circumvent this
problem, we use the simulated data to estimate the behavioral parameters in
the BR model. In particular, SMM is suited to a situation where the model is
easily simulated by replacing theoretical moments. Then the model-generated
moments in equation (22) are replaced by their simulated counterparts:

mt =
1

S

S∑

s=1

m̃t. (27)

In equation (27), we approximate the theoretical moments (mt) based on the
simulated data of m̃t. The simulation size is denoted by S. Under certain
regularity conditions, the SMM estimator is known to be asymptotically normal
(Duffie and Singleton (1993), Lee and Ingram (1991)):

√
T (θ̂SMM − θ0) ∼ N(0,ΛSMM ), (28)

where ΛSMM = [(B′WB)−1]B′W (1 + 1/S) Ω WB[(B′WB)−1]′ holds, that is
a covariance matrix of the SMM estimates. A gradient vector of the moment

function is defined as B ≡ E
[
∂mt

∂θ

∣∣∣
θ=θ̂

]
.

12The possibility of a non-optimal weighting matrix can be identified as a drawback of the
(S)MM approach. However, we state that the SMM can be successfully used to estimate
non-linear bounded rational NKM in terms of the features given by transparency and muted
manageability. Alternative estimation approaches like e.g. simple GMM, Indirect Inference,
Bayesian techniques or Non-Linear Least Squares exhibit problems with respect to non-linear
data generating processes, the use of auxiliary models, the requirements for sufficient prior
information and Gaussian shocks, respectively.
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However, the model estimation is now subjected to simulation errors, as the
estimated covariance matrix is less accurate than its analytic counterpart. In
particular, a linear approximation to the non-linear dynamics of the BR model
(i.e. the Delta method) will be inaccurate.13 To find the parameter values with
certainty, we compute the standard errors by using the following steps:

1. The BR model is estimated using a simulation size of S = 10.

2. The estimation is iterated over 100 times, while different random seeds are
used to obtain point estimates of the model parameters for each iteration.

3. We take 100 different estimates to compute the mean and standard error
of the parameter estimates.

Indeed, the above iterative method corresponds to the case where we estimate
the model based on a simulation size of 1,000. The iterative approach to the
model estimation can be used to avoid large simulation errors; the parameter
estimates based on simulation are likely to be deviated from the true values of
the model parameters because of the non-linear switching rule being assumed.
We provide an alternative approximation to the parameter values over each
iteration with a small simulation size.14

Accordingly, we can obtain the simulated intervals for the model parameters,
especially for the behavioral parameters with certainty. Finally, we use the J
test to evaluate compatibility of the moment conditions:

J̄ ≡ T · J(θ̂) d→ χ2
p−l, (29)

where l denotes the number of parameters to be estimated. Note that the J-
statistic is asymptotically χ2 distributed with (p − l) degrees of freedom. In
this study, the lag length for the covariance is set to two years. Hence, the
number of moment conditions exceeds the model parameters, and we consider
this particular case as overidentification.15 Note that the degrees of freedom is
smaller in the hybrid RE than the hybrid BR model (66 versus 68) due to the
additional behavioral parameters, β and δ, to be estimated.

13We can reduce the approximation error by increasing the simulation size in order to maintain
1

S
→ 0. For instance, the simulation error becomes 1% when the moments are simulated 100

times. However, the non-linearity often increases the magnitude of changes in these errors, i.e.
E(η(θ̂)) 6= η(E(θ̂)) holds, where η is a highly non-linear function. Because of this, we do not
use the Delta method to measure the uncertainty of parameter estimates on the BR model.

14Alternatively, Jang (2013) discussed the parameter uncertainty of a stochastic agent-based
model by investigating the simulated parameter space.

15However, if the off-diagonal components in the estimated covariance matrix Ω̂ (given in equa-
tion (24)) are discarded, the distribution in the J-statistic is likely to have a larger dispersion
than the χ2-distribution with degrees of freedom of (p− l). Indeed, when the weighting ma-
trix is non-optimal or some moment conditions are not valid, the J-statistic is no longer χ2

distributed. To examine the effectiveness of the J-test, in a working paper version of this
paper, Jang and Sacht (2012) investigate the validity of the weighting matrix with our chosen
moment conditions via an extensive Monte Carlo study.
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4 Empirical Application to the Euro Area

4.1 Data

Euro Area data set is retrieved from the 10th update of the Area-Wide Model
(see Fagan et al. (2001)) quarterly database. The data applied in this study
cover the period from 1975:Q1 to 2009:Q4. The output gap and interest rate gap
are computed from real GDP and nominal short-term interest rate, respectively.
A standard smoothing parameter of λ = 1600 is used to estimate the trend of
the observed data from the Hodrick-Prescott filter. The inflation measure is the
quarterly log difference of the Harmonized Index of Consumer Prices (HICP)
instead of the GDP deflator. The inflation gap is also computed using the
Hodrick-Prescott filter.16 The sample for this data set is available from 1970:Q1
onwards. Five years are considered in a rolling window analysis to estimate the
perceived volatility of the output gap λy,t. The underlying MATLAB codes are
available upon readers request.

4.2 Basic Results

Table 1 presents the parameter estimates when the intensity of choice γ is
varied over an admissible range, that is, γ ∈ {0.1, 1, 10, 100} – where the value
of 100 serves as an approximation to infinity. Hence, we cover the cases where
the self-selecting mechanism is close to being purely stochastic (γ = 0.1) up
to being almost fully deterministic (γ = 100). In addition, this parameter is
set to unity, which is in line with De Grauwe (2011, p. 439) and account for a
moderate degree in the intensity of choice together with a value of 10. We choose
this treatment in order to check how sensitive the estimation results are with
respect to the switching process across different forecasting strategies. We have
difficulties in identifying the parameter γ because of the non-linear structure
based on the discrete choice mechanism (see Appendix A). Several authors
address these problems in their studies, e.g. Gaunersdorfer and Hommes (2007)
as well as Goldbaum and Mizrach (2008).17 Furthermore, in our application,
the structural representation of the behavioral parameters can cause multiple
optima over a particular parameter space, i.e. the point estimates are located
in economically uninteresting and/or implausible regions. By calibrating γ
we focus on our objective of the empirical application, that is, the economic
interpretation of the model parameters in the BR model. This holds especially
for those parameters which account for the existence of animal spirits besides
γ — namely the predicted subjected mean value and the degree of divergence

16The HICP and GDP deflation can be used to measure the consumer price index (CPI) and
producer price index (PPI) inflation, respectively. For our empirical application, inflation is
measured by the HICP instead of the implicit GDP-deflator, since the former has been widely
used for micro-level analysis. For instance, Forsells and Kenny (2004) show that inflation
expectations can be approximated by micro-level data like consumer surveys (i.e. in the Eu-
ropean Commission survey indicators). Also see Ahrens and Sacht (2014) for a discussion on
using the HICP instead of the GDP-deflator in macroeconomic studies.

17Gaunersdorfer et al. (2008) show that the intensity of choice is a crucial parameter with respect
to (local) stability in this kind of bounded rationality model with regime-switching.
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given by β and δ, respectively. Nevertheless, we emphasize that the estimation
of γ will be a fruitful project to be undertaken in future research.

De Grauwe emphasizes in his original paper that the “heuristic model does
not need lags in the transmission process to generate inertia” (2011, fn. 11,
p. 443). Although it can be agreed on this from a theoretical point of view,
we show that this statement is empirically incorrect. To see this, we estimate
a purely forward-looking version of the BR model where price indexation and
habit formation are constrained, i.e. χ = α = 0 holds. The value of J (see
second last row of Table 1) suggest that the fit of the forward-looking speci-
fication does not outperform the hybrid specification of the model. Whether
this observation holds by increasing the number of deep parameters to be es-
timated (i.e. including the lags) in the latter case is not of primary concern.
Most importantly, the backward-looking elements in the dynamic IS equation
and the NKPC play indeed a distinct role in matching the empirical moments.
Therefore we focus on the comparison of the hybrid RE to the hybrid BR model
only.

In the hybrid BR case, we will consider those parameter estimates for in-
terpretation, which are connected to the lowest value of the loss function given
the corresponding value of γ. However, the values of the criterion function
for the cases γ = 0.1 and γ = 1 do not differ, i.e. J = 51.51 vs. J = 53.72
holds. Given the corresponding p-values (0.905 vs. 0.861), both models provide
almost an equal fit to the data. Hence, we interpret those point estimates based
on the empirical evaluation in the case γ = 1. The reason is that the confi-
dence interval for parameter estimates is narrow in this case - especially for the
parameters α and β. For the latter, the increase in uncertainty is not really
surprising as γ approaches zero because the switching process becomes almost
purely stochastic in that case. As the intensity of choice is set close to its lower
bound, expectations do not influence the realizations of the current output gap
and inflation gap. Therefore we can conclude that the point estimate for β is
hard to pin down. Since there is less uncertainty connected to the estimation
results of the parameters as γ = 1 holds, however, we claim that the results
are more reasonable for economic interpretation – besides the point estimates
do not differ (except for β) either. In addition, the cases of strong switching
processes (γ = 10 and γ = 100) do not provide a good approximation to the
data generating process. According to the model specification test, the corre-
sponding p-value is very small and they are rejected as being a ‘true’ model
with a high probability.

As it is common in a persuasive amount of empirical studies, the discount
parameter ν is calibrated to 0.99. And the memory parameter ρ is set to zero,
i.e. past errors are not taken into account (cf. the equations (10) and (16)), since
this is based on the empirical result for all our estimations. From this, we see
that a strict forgetfulness or cognitive limitation holds, which is a requirement
for observing animal spirits (cf. De Grauwe (2011, p. 440)).18 By fixing those
parameters in the final estimation, we may partially alleviate the problems with

18For clarification, we apply the estimations for all calibrated values of γ and include ρ as a
parameter to be estimated. Hence, the parameter ρ is equal to zero in all cases.
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a high-dimensional parameter space, and focus on a particular subspace which
will be more interesting for (empirical) economists. Given these assumptions,
we can separately obtain the estimates for remaining parameters from the RE
and BR model via (S)MM. Note here that the Taylor principle φπ̂ > 1, which is
required to hold in order to ensure the stability of the system, is always fulfilled.
For that purpose, we set the lower bound of this monetary policy parameter
equal to one.

4.3 Economic Interpretation of the Results

Several observations are worth mentioning. The parameter estimate for the de-
gree of price indexation α is higher in the BR (0.973) than the RE (0.765) model.
It follows that the expressions, which are in front of the forward- and backward-
looking terms in the Phillips Curve, indicate a (slightly) higher weight on future
inflation Ẽj

t π̂t+1 (i.e. ν
1+αν > α

1+αν ), where the result is more pronounced for
the RE (0.563 > 0.437) than the BR (0.504 > 0.496) model. From this, we
see that there is strong evidence for a hybrid structure of the NKPC in both
models. As mentioned earlier, however, the forward-looking behavior in the
BR model is controlled via the group dynamics based on the forecasting per-
formance given in Equation (10). The empirical applications of the BR model
show that the dynamics of the inflation gap are driven by the expectation for-
mation process (i.e. the evaluation of the forecast performance) in the inflation
gap, i.e. agents’ cognitive limitation. In other words, we find evidence for a
backward-looking expectation formation process, since the estimated value for
α is quite high: one group believes in a central bank inflation target of zero
percent (equation (13)) while the other group of agents form their expectations
in a purely static way (equation (14)), i.e. under consideration of π̂t−1. More
precisely, the group dynamics with respect to the price setting scheme are not
sufficient enough to account for the persistence in the inflation gap alone.

Furthermore, the results on the estimate of price indexation have important
implications for conducting optimal monetary policy. According to Leitemo
(2008), the optimal targeting rule in the (pre-)commitment case has to be much
more forward-looking the higher the degree of backward-looking behavior in
the NKPC will be. Our results indicate that this most likely holds for the RE
model via MM. But the result is quite different when the Bayesian technique
is applied; i.e., the parameter of price indexation is estimated to be zero (cf.
Smets and Wouters (2003, 2007), Benati and Surico (2009), Cogley et al. (2010)
among others). In particular, the estimated high degree of price indexation will
have a similar impact on the results from optimal monetary policy analysis (as
reported in Leitemo (2008)) based on the BR model, although such kind of
investigation has not to be undertaken (to the best of our knowledge) in the
literature so far.

Regarding the dynamic IS equation in the RE model, the output gap is
influenced by the same proportion of forward- and backward-looking behavior,
since the empirical result shows that χ = 0.999 holds. Any specific statement
cannot be made with respect to the impact of habit formation on the dynamics
of the output gap in the BR model, since χ is estimated to be insignificant
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Label hybrid RE
γ = 0.1 γ = 1 γ = 10 γ=100

pure BR hybrid BR pure BR hybrid BR pure BR hybrid BR pure BR hybrid BR

α 0.765 0 0.931 0 0.973 0 0.856 0 0.432
0.481 - 1.000 0.657 - 1.000 0.831 - 1.000 0.440 - 1.000 0.000 - 0.947

κ 0.035 0.381 0.191 0.312 0.175 0.355 0.178 0.268 0.269
0.011 - 0.058 0.294 - 0.468 0.140 - 0.242 0.219 - 0.404 0.139 - 0.211 0.106 - 0.603 0.071 - 0.284 0.0 - 0.575 0.117 - 0.421

σπ̂ 0.275 0.446 0.495 0.297 0.498 0.192 0.432 0.164 0.277
0.097 - 0.453 0.105 - 0.788 0.269 - 0.721 0.000 - 0.643 0.326 - 0.670 0.000 - 0.408 0.084 - 0.780 0.000 - 0.370 0.000 - 0.577

χ 0.999 0 0.547 0 0.451 0 0.542 0 0.351
0.349 - 1.000 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000 0.000 - 0.842

τ 0.079 0.737 0.329 0.371 0.322 0.179 0.259 0.164 0.242
0.000 - 0.222 0.298 - 1.177 0.106 - 0.551 0.172 - 0.570 0.158 - 0.486 0.000 - 0.663 0.026 - 0.492 0.000 - 0.442 0.000 - 0.559

σy 0.561 0.423 0.669 0.808 0.793 0.760 0.835 0.635 0.756
0.354 - 0.768 0.018 - 0.827 0.364 - 0.974 0.654 - 0.962 0.630 - 0.957 0418 - 1.102 0.623 - 1.048 0.204 - 1.065 0.490 - 1.021

φπ̂ 1.289 1.527 1.128 1.816 1.145 1.316 1.250 1.322 1.284
1.000 - 1.944 1.000 - 2.743 1.000 - 1.534 1.000 - 3.313 1.000 - 1.485 1.000 - 2.059 1.000 - 1.973 1.000 - 2.031 1.000 - 1.826

φy 0.497 0.621 0.681 0.713 0.674 0.580 0.608 0.755 0.589
0.058 - 0.936 0.257 - 0.985 0.438 - 0.924 0.252 - 1.175 0.443 - 0.904 0.066 - 1.094 0.239 - 0.978 0.000 - 1.911 0.181 - 0.997

φr̂ 0.604 0.685 0.675 0.739 0.677 0.602 0.660 0.488 0.578
0.411 - 0.797 0.614 - 0.755 0.613 - 0.736 0.671 - 0.808 0.608 - 0.746 0.305 - 0.900 0.534 - 0.786 0.075 - 0.901 0.292 - 0.863

σr̂ 0.421 0.109 0.216 0.269 0.256 0.439 0.304 0.435 0.361
0.140 - 0.701 0.000 - 0.409 0.000 - 0.563 0.000 - 0.601 0.000 - 0.565 0.000 - 0.965 0.000 - 0.728 0.000 - 1.020 0.000 - 0.840

β - 5.563 4.584 2.379 2.269 3.101 2.274 1.645 1.927
3.899 - 7.227 1.918 - 7.249 1.417 - 3.341 1.082 - 3.456 0.0 - 7.767 0.000 - 6.331 0.387 - 2.902 0.565 - 3.289

δ - 0.709 0.688 0.379 0.488 1.291 0.465 0.658 0.386
0.000 - 2.123 0.000 - 2.789 0.000 - 1.278 0.000 - 1.653 0.000 - 4.455 0.000 - 1.736 0.000 - 2.655 0.000 - 1.403

J 56.31 80.04 51.51 100.88 53.72 100.52 71.67 241.61 122.93
p 0.843 0.151 0.905 0.006 0.861 0.006 0.295 0.000 0.000

Table 1: Estimation results (RE versus BR model).

Note: We consider p = 78 moments (two years), based on the SMM approach. The 95% confidence interval is given in brackets. The degrees
of freedom for the χ2 distribution amount to 68 (hybrid RE, pure[ly forward-looking] BR) and 66 (hybrid BR). The 5% critical values are 88.25
and 85.96, respectively. No memory is assumed in the BR models (ρ = 0) due to pre-estimations. The discount factor ν is calibrated to 0.99.
The p-value is denoted by p.
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in this case. This result indicates that there is no possible interpretation for
the role of the habit formation process in explaining the persistence in the
output gap. In other words, inertia seems to be fully captured by the switching
process with respect to the future output gap realizations. Furthermore, the
result on the interest rate smoothing parameter supports a moderate degree of
persistence (φr̂ = 0.677) in the nominal interest rate gap in the BR model. This
observation is consistent with the results obtained from Bayesian estimations
taken from the literature. In our study, however, the results obtained by MM
show that the point estimate for φr̂ is less pronounced.

In addition, the empirical estimates for κ and τ in the RE model provide an
evidence of a small degree of inherited persistence, where the latter measures the
cross-relationships between the output and inflation gap. These results suggest
that both economic indicators respond less to the changes in the associated
driving forces, i.e. the real interest rate gap and the output gap, respectively.
However, this does not hold for the BR model. In particular, the changes in
the output gap have a strong impact on the movements in the inflation gap
(indicated by κ = 0.175) compared to the RE case (κ = 0.035). For the
output gap in the BR model, inherited persistence plays a fundamental role
in shaping the dynamics of this variable, which can be seen through the high
values of inverse inter-temporal elasticity of substitution (τ = 0.322). For the
RE model, this parameter is estimated to be insignificant. This implies that
bounded rational agents are likely to have a higher degree of risk aversion than
the representative agents. To sum up, our results show that in the BR model,
the cross-movements in the output and inflation gap account for the persistence
in both variables (under consideration of perfect habit formation χ = 0.999 in
the RE case) rather than price indexation alone. This can be seen through the
high values for κ and τ together with α in which the model allows for a limited
cognitive ability of agents.

The variance in the output and inflation gap shocks are estimated to be
larger for the BR (σy = 0.793 and σπ̂ = 0.498) than those of the RE (σy = 0.561
and σπ̂ = 0.275) model, respectively. The results reveal that the volatility of
the output and inflation gap are closely related to the switching rules with re-
spect to the consumption and price-setting behavior. For instance, the waves
of optimism and pessimism act much like a persistent force in the output gap
fluctuations going from peaks to troughs. Figure 1 illustrates that the peak
of the fluctuation in the simulated output gap for the BR case (middle-left
panel) corresponds to the market optimism (lower-left panel) and vice versa.
The qualitative interpretation remains almost the same for the inflation gap in
the BR case (middle- and lower-right panels, respectively) – but the dynamics
of extrapolators are highly volatile reflecting the large variations in the sec-
ond moments of the empirical inflation gap (upper-right panel). Furthermore,
whether γ = 1 is a high, moderate, or low intensity of choice depends also on
the variance of the forecast performance given by U i with i = {k, s}. This can
be seen from both bottom panels of Figure 1. In the case of the output gap,
the switching between regimes is clearly more ‘aggressive’ than for the inflation
gap, despite the intensity of choice being fixed at γ = 1 for both variables.

The fit of the models should not be directly compared by illustrating the
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simulated time series (middle-panels) as the simulated ones display a single
realization of the stochastic processes from the model. However, we see that
the series qualitatively resembles their empirical counterparts (upper-panels).
Finally, the nominal interest rate shocks σr̂ in the RE model are estimated to
be 0.421, while in the BR case no interpretation can be made since the point
estimate is not significant.
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Figure 1: Dynamics in the output and inflation gap (RE versus BR model).

Note: The upper and middle panels display the empirical and simulated values
for the output gap (left) and the inflation gap (right), while the lower panels
display the corresponding fractions of market optimists (left) and extrapolators
(right). The simulated time series are computed using the point estimates for
the parameters in the RE and BR model in Table 1. The time in quarters is
displayed on the horizontal axis.

The remaining parameter estimates confirm the known results from the
literature where the monetary authority may react slowly to changes in the
output gap, while the opposite holds for the coefficient on the inflation gap
(RE: φy = 0.497 and φπ̂ = 1.289 vs. BR: φy = 0.674 and φπ̂ = 1.145). The
results for φπ̂ suggest that the Taylor principle clearly holds over the whole
sample period when φπ̂ is significantly higher than its lower bound of one. This
is true in both cases. Nevertheless, the results for the BR model indicate a
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stronger concern in the output gap movements relative to the RE model. It
is worth mentioning that the estimation results indicate that the monetary
policy coefficient on the output gap φy is equal to 0.673, which is consistent
with the observations by De Grauwe (2011, pp. 443-445). His simulations show
that flexible inflation targeting can reduce both output gap and inflation (gap)
variability at its minimum level when φy lies in the range between 0.6 and 0.8.
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Figure 2: Model covariance (Cov) profiles in the Euro Area.

Note: The dashed line results from the empirical covariance estimates. The 95%
confidence intervals for the empirical moments are represented by the shaded
area. The triangle (BR) and star (RE) lines indicate the model generated ones.
The confidence bands are computed via the Delta method (see Appendix B).
The lag length is displayed on the horizontal axis.

The interpretation of this observation is manifold. First, we can consider the
case of strict inflation targeting, where the central bank does not account for the
volatility in the output gap.19 As a result, the targeting rule does not change
the forecast performance of the optimists and pessimists, as the real interest
rate gap in the dynamic IS curve does not response directly to monetary policy.
However, there is still an indirect effect (even highly volatile movements in yt

19Note here, that strict and flexible inflation targeting are measured by low and high values of
φy in the Taylor rule, respectively. This definition of inflation targeting is rather uncommon in
the literature, while it is more connected to the corresponding weights in the loss function of
the central bank in terms of optimal monetary policy. However, we follow the interpretation by
De Grauwe (2011, pp. 443-445) to build a bridge from our empirical results to his theoretical
analysis.
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are not dampened by the policy makers) indicated by κ in the NKPC. Hence,
due to the high degree of inherited persistence the strict inflation targeting
cannot control fluctuations in the output and inflation gap. Second, in the case
of strong output gap stabilization (relative to the inflation gap) the central bank
dampens its pre-commitment to an inflation target. The amplification effects
of this kind of policy on the forecast performances of the inflation extrapolators
will then result in a higher volatility of the inflation gap. In this respect, it can
be concluded that our empirical findings account for neither the first nor the
second extreme case, but for a moderate degree of flexible inflation targeting in
the Euro Area over the observed time interval instead.20

As mentioned earlier, a major emphasis in our study is to find the values
of the bounded rationality parameters. First, over the whole sample period,
the optimistic agents have expected a fixed divergence of belief indicated by
β = 2.269. Roughly speaking, the optimists have been really optimistic that the
future output gap will differ positively by slightly above one percent on average
from its steady state value.21 Due to the symmetric structure of the divergence
in beliefs, pessimistic agents were moderately pessimistic over the same sample
period. From their point of view the future output gap was expected to be
around one percent on average below its steady state value. The point estimate
for the bounded rationality parameter δ, which measures the divergence in
beliefs, is unfortunately insignificant. Hence, one can not make any statements
about how both types of agents felt confident about their expectations. In other
words, there is no clear evidence for either a low or high degree of uncertainty
connected to the expected future value of yt given by β.

In addition, the value for ρ = 0 indicates endogenous and inherited per-
sistence (α, χ, κ and τ). The highly subjective expected mean value of the
output gap β - in conjunction with the dynamics induced by the self-selecting
mechanisms (see the corresponding fractions in the lower-panels in Figure 1)
- explains the (high) volatility of the output gap. According to the discrete
choice theory, we see that this strengthens the optimistic agents’ belief about
the future output gap to diverge in the data, since they can over(or under)react
to the underlying shocks that occur within the Euro Area. The same observa-
tion holds for the inflation gap dynamics. The proportion of the extrapolators
in the economy corresponds to the empirical inflation gap movements (cf. lower
right vs. upper-right panels in Figure 1): the higher the fraction of extrapola-
tors is, the more volatile the inflation gap dynamics due to backward-looking
expectations, i.e. under the past realizations π̂t−1 will be.

The visual inspection in Figure 2 shows a fairly remarkable fit of the models
to the data. The match of both models looks clearly good over the first few
lags and still fairly good over the higher lags until a lag of two years. Ex-

20Indeed, there are a plethora of studies on the estimation of (small, medium or large) linear

NKMs with rational expectations using Euro Area data, e.g. Smets and Wouters (2003) and
Moons et al. (2007) among others. To the best of our knowledge, however, some of these
studies provide some implications which differ from our contribution with respect of the use
of the GMM and the Bayesian approach and non de-trended specifications of π̂t and r̂t.

21Note that the expected future value of the output gap is given by Ei
tyt+1 = |dt| =

1

2
β on

average with i = {O, P}.
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ceptions can be found in the (yt, r̂t−k), (yt, π̂t−k) and (π̂t, yt−k) nexus, where
the simulated covariance profiles generated by both models diverge from their
empirical counterparts beginning at around a lag of one year. More precisely,
the simulated covariance profiles of the RE model approximate the empirical
ones for the cross-covariance (π̂t, r̂t−k) quite well, while the same holds for the
BR model in case of the cross-/auto-covariances (π̂t, yt−k) and (π̂t, π̂t−k). In the
latter, although the sharp decline in the autocovariance of the inflation gap over
the first two lags is not covered by both models, the BR specification matches
the empirical profiles slightly better than the RE one. In any case, all of the
moments are inside the confidence intervals of the empirical moments up to
lag 8. The graphical results are also confirmed by the values of the objective
function J for the RE (56.31) and BR (53.72) model in the second to last row
of Table 1. The asymptotic χ2 distributions for the J-test have the degrees of
freedom of 68 and 66 for the RE and BR model, respectively. Since the critical
values at 5% level are 88.25 and 85.96, that is the estimated loss function values
are smaller than these criteria, we do not reject the null hypothesis that these
models can approximate the data generating process well. Moreover, the sim-
ulated trajectory shows a remarkable fit of the BR model, which leads to some
confidence in the estimation procedure. It can be concluded that the bounded
rationality model presented here can provide a reasonable fit to the empirical
auto- and cross-covariances.

Note that the significant differences between the two models could be tested
using a formal model comparison method, since the models do not have any
difficulties to fit the empirical moments at the 5% significant interval (see also
Jang (2012) among others). In other words, the J-test only evaluates the va-
lidity of the model along the lines of the chosen moment conditions. Therefore
we cannot provide a direct comparison between the fits of the two models.
More rigorous tests will be a priority in future research. Nevertheless, our em-
pirical results indicate that the empirical test on bounded rationality (i.e. the
assumption of the divergence in beliefs) has to be treated carefully, because
some parameters (including the behavioral parameter δ) within the non-linear
modeling approach are insignificant.

While the current study focused on Euro Area data in which we could use
the large sample size for parameter estimation, an estimation for e.g. the US
economy would be a promising exercise to be undertaken. However, note that in
this case the sample size must be split into two sub-periods namely the Great
Inflation and Moderation period, respectively. This is necessary due to the
existing structural breaks in the US time series based on a change in inflation’s
volatility from high to low at beginning of the 1980s. We apply a robustness
check, where we re-estimate both models based on US data provided by the
St. Louis FED (in gap specification) for the sub-periods 1960:1 – 1979:2 (Great
Inflation period) and 1982:4 – 2007:2 (Great Moderation period) as well as for
the whole sample 1960:1 – 2007:2. In each of these cases we found that the RE
model outperforms the BR one given the associated p-value. In particular, the
model has difficulties to explain the high volatility in interest rate and inflation
gap over the whole sample period, while we state that because of the small
sample size in both sub-periods for the US the BR model is hard to evaluate.
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5 Conclusion

In this paper, we provide empirical evidence for a non-linear expectation forma-
tion process as well as the relevance of bounded rational acting agents via SMM.
In particular, the validity of the model assumptions on the cognitive limitation
(e.g. because of different individual emotional states) is empirically tested us-
ing historical Euro Area data. To show this, we focus on the estimation of the
behavioral parameters in the model, which can account for the amplification
channel from animal spirits in the Euro Area, i.e. we hypothesize that histor-
ical movements of macro dynamics are influenced by waves of optimism and
pessimism. From this, we have analyzed the effects of group behavior on the
output and inflation gap. Indeed, our results support the behavioral framework
by De Grauwe (2011), who assumes divergence in beliefs about the future value
of both variables. The corresponding decision rules for market optimists and
pessimists are described by the forecast performance of heterogeneous agents
based on discrete choice theory. Furthermore, we contrast it with a standard
hybrid version of the three-equations NKM under consideration of rational ex-
pectations. To the best of our knowledge, such kind of empirical study – a
structural estimation of a bounded rationality model under consideration of
the moment conditions – has not been extensively investigated before in the
literature.

One of the main findings in this paper shows that a bounded rationality
model with cognitive limitation provides a reasonable fit to auto- and cross-
covariances of the data. Therefore our empirical results for the BR model offer
new insights into expectation formation processes for the Euro Area. First, the
agents had expected moderate deviations of the output gap from its steady state
value over the whole time interval. Second, in the absence of rational behavior
we find strong evidence for a backward-looking expectation formation process
regarding the inflation gap. These results indicate that the market behavior
acts as an amplification effect for a high degree of persistence in the data; i.e.
animal spirits may strengthen the optimists’ belief about the future output gap
to diverge in the historical Euro Area data.

However, the estimation of the BR model (i.e. under the assumption of the
divergence in beliefs) suggests that the parameters which measures the degree
of habit formation in the dynamic IS curve, the standard deviation in the nom-
inal interest rate shock and, unfortunately, the degree of the divergence in the
movement of economic activity are statistically insignificant. In the latter case,
however, no statement can be made about the uncertainty in agents’ forecast
regarding the output gap. A reason for this bounded rationality parameter
being insignificant could be explained by the highly non-linear approach for
modeling expectations being considered.

Nonetheless, this research will serve as a base for future studies. For exam-
ple, one can further continue the model estimation with much richer models like
e.g. the medium-scale version developed by Smets and Wouters (2005, 2007).
More interestingly, different kinds of expectation processes can be considered
for estimation. We leave all these issues to future research.
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6 Appendix

6.1 A: Solution of the Baseline NKM under RE and BR

In general, all model specifications are described by the following system in
canonical form:

AXt +BXt−1 + CXt+1 + εt = 0, (30)

where

Xt =




yt
π̂t
r̂t


 , Xt−1 =




yt−1

π̂t−1

r̂t−1


 , Xt+1 =




Ẽj
t yt+1

Ẽj
t π̂t+1

Ẽj
t r̂t+1


 , εt =




εy,t
επ̂,t
εr̂,t


 .

The corresponding matrices are given by:

A =




1 0 τ
−λ 1 0

−(1− φr̂)φy −(1− φr̂)φπ 1


 , B =




− χ
1+χ 0 0

0 − α
1+αν 0

0 0 −φr̂


(31)

and

C =




− 1
1+χ −τ 0

0 − ν
1+αν 0

0 0 0


 . (32)

Remember that for the BR model we assume

ẼBR
t yt+1 = (αO

y,t − αP
y,t)dt

ẼBR
t π̂t+1 = αtar

π̂,t
¯̂π + αext

π̂,t π̂t−1

with

dt =
1

2
(β + δλy,t), (33)

where we consider the equations (10) to (18) with ¯̂π = 0. In the following,
we solve for the dynamics of the system (30). In case of the BR model, the
‘solution’ is given by

Xt = −A−1[BXt−1 + CXt+1 + εt], (34)

where the matrix A is of full rank, i.e. its determinant is not equal to zero, given
the point estimates of the parameters in Table 1. Under consideration of the
heuristics for the forecasts regarding the output and inflation gap expectations,
the forward-looking term Xt+1 is substituted by the equivalent expressions for
the discrete choice mechanism given in section 2. It follows that the model
is based on purely backward-looking behavior and thus (34) can be solved by
backward induction. In particular, the backward solution of the BR model is
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based on a non-linear parameterization. To see this, the expected output gap
can be rewritten as (cf. the equations (6) to (9)):

ẼBR
t yt+1 = (2αO

y,t − 1)
1

2
(β + δλy,t). (35)

In addition, the probability for being optimists can be rewritten as (cf. the
equations (11) and (12)):

αO
y,t =

exp(γUO
t )

exp(γUO
t ) + exp(γUP

t )
=

1

1 + exp{γUP
t − γUO

t }

=
1

1 + exp{γ(EO
t−1yt − yt)2 − γ(EP

t−1yt − yt)2}
,

(36)

where UP
t = −(EP

t−1yt− yt)
2 and UO

t = −(EO
t−1yt− yt)

2 are applied. Note here
that no memory is assumed (ρ = 0).22 Then we substitute the term EO

t−1yt by
1
2(β+δλy,t−1). Similarly, the term EP

t−1yt is replaced by −1
2(β+δλy,t−1). After

some algebra we get

ẼBR
t yt+1 =

[
2
{ 1

1 + exp{−2γ(β + δλyt−1
)yt}

}
− 1

]1
2
(β + δλy,t), (37)

where the term inside the [·] brackets controls the magnitude of the changes in
the divergence in beliefs, that is, [·] ∈ (−1, 1).

From this, we see that the analytic solution for yt cannot be easily obtained
due to the non-linearity in the expected future output gap of optimists. The
same results hold for the derivation of the expected future output gap of pes-
simists. In addition, we obtain a non-linear solution formula for the expected
inflation gap (not shown here), but the non-linearity can also not be dropped
in this case. Hence, simulations are used to approximate the backward solution
of the BR model. We estimate the BR model parameters by using SMM. In
contrast, for the RE model we assume

ẼRE
t yt+1 = Etyt+1

ẼRE
t π̂t+1 = Etπ̂t+1,

where Et denotes the mathematical expectation operator. As a result, the RE
model is both backward- and forward-looking. Therefore we apply the method
of undetermined coefficients in order to solve the model. The law of motion,
which describes the analytic solution of the model, is given by

Xt = ΩXt−1 +Φεt, (38)

where Ω ∈ R
3×3 and Φ ∈ R

3×3 are the solution matrices. The former is a stable
matrix as long as (similar to the matrix A in the BR case) its determinant is not
equal to zero, which ensures the invertibility of Ω. Again, this is confirmed given

22It is based on our empirical results (cf. section 4.2). Note that equation (36) will be complicated
in the case ρ > 0, while all non-linearity prevails.
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the estimation results in Table 1. We substitute equation (38) into equation
(30):

A(ΩXt−1 +Φεt) +BXt−1 + C(ΩXt +ΦEtεt+1) + εt = 0.

This is equivalent to

A(ΩXt−1 +Φεt) +BXt−1 + C(Ω2Xt−1 +ΩΦεt +ΦEtεt+1) + εt = 0.

Hence, the reduced-form can be rewritten as

(CΩ2 +AΩ+B)Xt−1 + (AΦ+ CΩΦ+ I)εt = 0 (39)

with I being the identity matrix. Note that εt ∼ N(0, σ2
z ) with z = {y, π̂, r̂} and

thus Et(εt+1) = 0 holds. In order to solve equation (39), all the terms in brackets
must be zero.23 Thus the solution matrices can be uniquely determined. We
may write that as

CΩ2 +AΩ+B = 0 ⇒ Ω = −(CΩ+A)−1B. (40)

In order to solve the quadratic matrix equation (40) numerically, we apply
the brute force iteration procedure (Binder and Pesaran (1995)). Hence an
equivalent recursive relation of (40) is given by

Ωn = −(CΩn−1 +A)−1B (41)

with an arbitrary number of iteration steps N , i.e. n = {1, 2, ..., N}. We define
as the initial value Ω0 = ςI with I being the identity matrix and 0 ≤ ς ≤ 1,
where we set ς = 0.8. The iteration process (41) proceeds until ||Ωn−Ωn−1|| < ̺
holds, where ̺ is an arbitrarily small number (we set ̺ = 0.16).24 Given the
‘solution’ of Ω, the computation of Φ is straightforward:

AΦ+ CΩnΦ+ I = 0 ⇒ Φ = −(A+ CΩn)
−1. (42)

6.2 B: Delta Method and Confidence Interval for Auto-/Cross-
Covariances

The Delta method is a common technique for providing the first-order approxi-
mations to the variation of moments (see Chapter 5 of Davidson and MacKinnon
(2004) among others). In this paper, we compute the standard errors of the
estimated auto- and cross-covariances of the data via the Delta method. The
covariance is defined as:

γij(h) = E[(Xi,t − µi)(Xj,t+h − µj)
′], t = 1, · · · , T, (43)

where γij is the auto-covariance function when i = j. Otherwise γij denotes the

cross-covariance between Xi,t and Xj,t+h. h and µi(or µj) are the lag length

23It is obvious that we can discard the trivial solution Xt−1 = Γt = εt = 0.
24In particular, we search for the fix point of Ωn according to equation (41), respectively, such
that ΩN = f(ΩN ) = −(CΩN +A)−1B holds.
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and the sample mean of the variable Xi(or Xj), respectively. The covariance
function in Equation (43) proceeds with a simple multiplication:

γij(h) = E[Xi,t ·X ′
j,t+h]− µi · E[X ′

j,t+h] = µij − µi · µj,

where µij denotes E[Xi,t · X ′
j,t+h]. Now, we see that γij(h) is a transformed

function of the population moments µi, µj and µij. The vector µ is denoted as
the collection of the moments: µ = [µi µj µij]. The covariance function can
be differentiated with respect to the vector µ, as follows:

D =
∂γij(h)

∂µ
=




∂γij(h)
∂µi

∂γij(h)
∂µj

∂γij(h)
∂µij



=




−µj

−µi

1


 . (44)

Note that the Delta method is used to provide the asymptotic distribution for

the estimate γ̂ij when matching the sample moments of the data:

√
T (γij − γ̂ij) ∼ N(0,D′SD), (45)

where D′SD is the covariance matrix of the estimated moments. As regards

to some suitable lag length q, we employ a common HAC estimator when esti-
mating the covariance matrix of sample moments:

Σ̂µ = Ĉ(0) +

q∑

k=1

(
1− k

q + 1

)
[Ĉ(k) + Ĉ(k)′] (46)

with

Ĉ(k) =
1

T

T∑

t=k+1

[f(zt)− µ̂][f(zt−h)− µ̂]′, (47)

where f(zt) = [Xi, Xj , Xi ·Xj] holds. The total number of lags is once again

denoted by k. In particular, we follow the advice by Davidson and MacKinnon
(2004, p. 364) and scale q with T 1/3. Accordingly, we set it to q = 5 for the
Euro Area data. The optimal weight matrix is defined as S = Σ̂−1

µ , which
will be used to estimate the covariance matrix of moments. If we use sγ to
denote

√
D′SD, then the 95% asymptotic confidence intervals for auto- and

cross-covariance estimates can be expressed as:

[γij − 1.96 · sγ , γij + 1.96 · sγ ]. (48)
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