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Abstract

This study comprehensively assesses the immediate effects of extreme weather conditions and
high concentrations of ambient air pollution on population health. For Germany and the
years 1999 to 2008, we link the universe of all 170 million hospital admissions, along with all
8 million deaths, with weather and pollution data reported at the day-county level. Extreme
heat significantly increases hospitalizations and deaths. Extreme cold has a negligible effect
on population health. High ambient PM10, O3 and NO2 concentrations are associated with
increased hospitalizations and deaths, particularly when ignoring simultaneous weather and
pollution conditions. We find strong evidence for “harvesting”, and that the instantaneous
heat-health relationship is only present in the short-term. We calculate that one “Hot Day”
with a temperature higher than 30˚C (86˚F) triggers adverse health effects valued between
e 0.07 and e 0.52 per resident.
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1 Introduction

Climate change is one of the most formidable challenges of modern society. The Stern (2006) report

states that the world’s average temperature has risen by 0.7˚C (1.3˚F) over the past 100 years

and projects that this trend will continue into the future. For the US, the predicted temperature

change ranges between a 2 and 6˚C (4 and 11˚F) increase by the end of the 21st century (United

States Global Change Research Program, 2009). Moreover, climate scientists project a significant

increase of inclement weather conditions such as the number of hot days with temperatures above

30˚C (86˚F) or the number of heat waves. More precisely, the Intergovernmental Panel on

Climate Change (IPCC) projects: “It is very likely that hot extremes, heat waves and heavy

precipitation events will continue to become more frequent.” (IPCC (2007), p. 46, 53).

One important subfield in the economics literature empirically assesses the impact of adverse

weather conditions on human health (cf. Deschênes and Moretti (2009); Deschênes et al. (2009);

Deschênes and Greenstone (2011); Deschênes (2012); Barreca (2012); Barreca et al. (2013)).1 For

example, in two seminal studies that are close in spirit to this one, Deschênes and Moretti (2009)

and Deschênes and Greenstone (2011) estimate the impact of heat on mortality in the US and

derive implications of climate change. A recent literature review article nicely summarizes the

main motivation of the studies in this subfield: “Moreover, with global temperatures expected

to rise substantially over the next century, understanding these relationships [between climatic

factors and economically relevant outcomes] is increasingly important for assessing the “damage

function” that is central to estimating the potential economic implications of future climate change

(Dell et al. (2014), p. 2).”

The second, and more diverse, subfield in the economics literature evaluates the relationship

between air pollution and human health (cf. Currie and Neidell (2005), using a pollution-health

estimation approach similar to the one in this paper). Although thorough cost-benefit analyses

are still scant, almost all existing studies find that pollution negatively affects, or is negatively

associated with, population health. This finding has been shown to hold particularly for vulnerable

subgroups such as newborns (Currie and Neidell, 2005; Currie and Schmieder, 2009; Lleras-Muney,

2010; Sanders and Stoecker, 2011; Currie and Walker, 2011; Zivin and Neidell, 2013), children

(Chay and Greenstone, 2003; Nilsson, 2009; Currie et al., 2009; Agarwal et al., 2010; Beatty and

Shimshack, 2011; Coneus and Spiess, 2012), or the elderly (Villena et al., 2008; Schlenker and

Walker, 2011; Karlsson and Schmitt, 2011), but also for whole populations (Almond et al., 2009).

1 The epidemiological literature on this topic is older and, thus, more diverse (Curriero et al., 2002; Basu and
Samet, 2002)
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Outcome measures are typically mortality statistics (Chay and Greenstone, 2003; Currie and

Neidell, 2005; Knittel et al., 2011; Clay et al., 2013), but some studies also rely on hospitalization

data (Neidell, 2009; Lagravinese et al., 2013), school absence data (Currie et al., 2009), data on

worker productivity (Zivin and Neidell, 2012), specific diagnoses (Neidell, 2004; Hammitt and

Zhou, 2006), or even self-reported health data (Evans and Smith, 2005; Edwards and Langpap,

2012). Most existing studies use data from industrialized countries, although there has been an

upswing in the work on developing countries in recent years (Quah and Boon, 2003; Guiteras,

2009; Jayachandran, 2009; Greenstone and Hanna, 2011; Hanna et al., 2012; Greenstone and Jack,

2013).

Table 1 categorizes the study design of selected seminal studies in the two subfields as dis-

cussed above. As seen, due either to study design or to data limitations, existing studies are

limited in several dimensions: (i) narrowly defined outcome measures (e.g., Emergency Room

(ER) admissions), (ii) narrowly defined geographic foci (e.g., specific US states), or (iii) a high

level of data aggregation (e.g., on a monthly or annual basis). The latter renders a clean identifica-

tion of dose-response relationships difficult due to the complex nature of the climate system with

its many unobserved (confounding) factors. Moreover, (iv) the availability of pollutant or weather

measures is usually sparse and does not allow researchers to consider confounding climatic factors

comprehensively, e.g., the various interactions between the multiple pollutants and weather con-

ditions. For example, even in the study with the finest and richest underlying database, Moretti

and Neidell (2011) can only consider 6 weather and 2 pollution measures while focusing on the

health impact of O3. Other studies can only control for a very sparse set of climatic confounders,

mostly precipitation levels (see Table 1). In general, it seems fair to say that existing studies have

employed strategies to overcome one of the shortcomings cited above, but not all.

This paper’s main contribution is to comprehensively assess the joint population health effects

of weather and pollution by exploiting uniquely compiled and merged administrative datasets

that allow us to tackle issues (i) through (iv) simultaneously and better than any study before.

In addition, this paper also attempts to integrate the two literature substrands on (a) weather

and health and (b) pollution and health. More specifically, this paper (i) bases its findings on the

universe of all deaths and hospital admissions for (ii) an entire nation over one decade. It focuses

on all severe health effects in Germany, the most populous European country and fourth largest

industrialized nation in the world from 1999 and 2008. (iii) The paper relies on daily county-level

variation in extreme weather and pollution conditions to measure a clean short-term impact on

health. However, it also aggregates at a higher time level to assess medium to long-term effects.
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(iv) The paper makes use of 11 weather and 11 pollution measures recorded on a daily basis by a

high-quality network of more than 2,300 governmental ambient monitors distributed over an area

of the size of the US state Montana. This allows us to measure effects of single pollutants, or

the temperature alone, while comprehensively controlling for (non-linear) confounding impacts of,

and interactions between, other climatic factors.

The paper bases its health outcome findings on two high-quality health register datasets: First,

the German Mortality Census, containing all deaths occurring on German territory from 1999 to

2008; and second, the German Hospital Admission Census, containing more than 170 million

hospital admissions from 1999 to 2008. Solely relying on either hospitalizations or deaths only

allows the researcher to capture a fraction of the total population health effects of weather and

pollution. In contrast, relying on both the universe of deaths and hospital admissions should

capture most serious population health effects. We aggregate and link the German Mortality

Census, the German Hospital Admission Census, the weather data, and the pollution data at the

county-day level over ten years, resulting in 1.5 million county-day observations. German counties

are comparable to US counties but less heterogeneous in terms of population density and area

size.

Methodologically, the paper exploits the exogenous nature of day-to-day climatic variation

along with rich sets of spatial and temporal fixed effects. As such it identifies the immediate

effects of spikes in temperature and pollution levels on hospital admissions and deaths. In other

words, the econometric models use the random de-seasonalized within-county daily variation in

extreme temperature and pollution levels over 365 days and 10 years to identify their short-run

impact on residents’ health. The econometric advantage of this approach is that it is generally

accepted that (daily) climatic shocks are exogenous to individuals. In a recent JEL article, Dell

et al. (2014) write: “By harnessing exogenous variation over time within a given spatial unit, these

studies [a growing body of research applying panel methods to examine how climate influences

economic outcomes] help credibly identify (i) the breadth of channels linking weather and the

economy [...]. (p. 1)” Table 1 shows that the large majority of published papers on the impact

of weather and pollution on health employ fixed effects models along with plausibly exogenous

climatic variation.

The setup of the German health care system is particularly well-suited for our research objective

since institutional and geographic access barriers to hospitals are very low. Germany has one of the

highest densities of hospital beds worldwide, universal health care coverage, and virtually no access

barriers for inpatient care (cf. OECD, 2013). In addition, Germany’s climatic conditions are ideal
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to empirically study and identify the effects of extreme temperatures and high pollution levels.

Like most countries in the North Temperature Zone, Germany has four seasons, hot summers and

cold winters. For example, during the 10 years that we study, daily maximum temperatures range

from -14˚C (7˚F) to 39˚C (102 ˚F). Partly due to the fact that weather conditions determine

pollution levels, the tempo-spatial pollution variation is likewise very rich. For example, the

daily maximum O3 concentration ranges from 1 to 192µg/m3. Lastly, the findings are likely to

have external validity for most industrialized countries in the North Temperate Zone, where the

majority of the world’s population resides.

In summary, this paper makes several main contributions to the literature. First of all and most

importantly, this paper represents the most comprehensive attempt to assess the population health

effects of weather and pollution for an entire country over one decade. The approach provides

credible externally valid estimates that can be interpreted as policy-relevant “intention-to-treat”

estimates. It is not the purpose of this paper to identify full exposure estimates that we believe

can be better and more cleanly assessed in laboratory experiments. Rather, we stress that we use

real-world data to analyze the real-world impact of existing extreme temperature and pollution

conditions. We show that extreme heat events have a highly significant and largely adverse impact

on both hospitalizations and deaths, whereas extreme cold seems to have a negligible impact on

population health.

Second, in terms of mechanisms we find that—at the beginning of heat events—people die

or need to be hospitalized primarily because of heart and respiratory diseases. Ongoing heat

lets humans’ health further deteriorate due to these conditions, but also triggers deaths and

hospitalizations due to infections and metabolic diseases. Cancer patients tend to get admitted at

the beginning of heat events and then die during ongoing heat. We show that mostly the elderly

are affected by heat events and find strong evidence for harvesting, i.e., that heat affects people

in weak health and brings forward their hospitalizations or deaths for several weeks but has no

long-lasting impact.

Third, particularly when not controlling for simultaneous weather and pollution conditions,

high levels of outdoor air pollution are associated with significant adverse health effects. Note

that these levels of air pollution lie significantly below the regulatory threshold levels in the US.

The EU alert thresholds are two to three times lower than their US counterparts. In addition, the

actual average PM10 and O3 concentrations in the US are 2 to 3 times higher than in Germany;

however, the geographical variation in concentrations is huge in Germany as well as in the US

(Environmental Protection Agency (EPA), 2013). Thus, our findings have direct implications not
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only for European countries, but also for the US. For example, the EPA is currently discussing

a petition that foresees tighter air pollution regulation on nine “Rust Belt” and “Appalachian”

states with high coal emissions. To the degree that regulators can actively bring down spikes in

pollution levels, the findings of this paper suggest that a more stringent environmental regulation

would improve population health.

Fourth, although it is generally accepted that short-run climatic variations are exogenous

to humans and out of individuals’ influence, it is also clear that the climate represents a very

complex system with thousands of mostly unobserved factors playing a role. For example, it is well

documented that the different available weather measures are non-linear functions of one another

(cf. Arya, 1998). In addition, different pollutants form non-linear relationships with each other—

some pollutants are necessary chemical input factors for the development of other pollutants (cf.

Potter, 2002). To complicate it further, specific weather conditions can be seen as necessary

conditions for the formation of high pollution concentrations, whereas there is less evidence that

pollution affects weather, especially in the short-run (cf. Arya, 1998; Seinfeld, 2006; Li et al.,

2011). Despite its richness, the economic literature has been relatively silent regarding how to

philosophically and econometrically interpret and account for these relationships and interactions.

We hope to provide a first step towards a better understanding by making use of unique and

extraordinarily rich data.

To keep the analysis tractable, the empirical portion focuses on two main approaches. Hence-

forth, Approach I is defined as the “Unconditional Approach.” This means that the underlying

models only consider one single weather or pollution measure as the variable of interest (in addi-

tion to a rich set of time and spatial fixed effects). The identified effect of this single indicator on

population health yields the “overall” effect on health. For example, consider the effect of a Hot

Day. In Approach I, we do not net out any contemporaneous weather and pollution conditions

that typically prevail on a Hot Day, e.g., high ozone levels or sunshine. In contrast, Approach

II—the “Conditional Approach”—always controls for a full set of simultaneous weather and pol-

lution conditions as well as their own and cross-interactions in order to estimate the net effect of a

Hot Day, i.e., the pure heat effect net of higher pollution levels, less rain, and more sunshine. We

show that this distinction makes a crucial difference: When comprehensively considering contem-

poraneous weather and pollution conditions, the impact of extreme temperature on health shrinks

significantly, by at least a factor of two. The highly significant effect of high ambient concentra-

tions of single pollutants also decreases strongly and even vanishes entirely in some specifications

when fully considering other pollutants and weather conditions that prevail simultaneously. This
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finding suggests that it is more the overall combination of various highly elevated concentrations

of pollutants—along with the mostly extreme weather conditions that prevail on high pollution

days—that causes humans’ physical condition to deteriorate. This is in line with well-established

epidemiological and medical experimental evidence suggesting that very high concentrations of

single pollutants are required before significant physical health effects can be detected in the lab

(cf. Stewart et al., 1970; Anderson et al., 1973; Hackney et al., 1975; Kerr et al., 1979; Horstman

et al., 1988; Lippmann, 1989; Jäppinen et al., 1990; Dye et al., 2001). However, environmental

regulators typically rely on unconditional measures from ambient monitors in order to develop

alert thresholds and policy action.

As a final contribution, we provide a first step to better assess and understand the health

costs associated with extreme climatic conditions that are very likely to increase in the future

due to climate change. Systematically and comprehensively monetizing different subcategories of

climate change-related costs is a necessary first step towards cost-benefit analyses. Solid cost-

benefit analyses are crucial for welfare increasing evidence-based climate change management.

The most concrete and reliable climate change prediction of the IPCC (2007) is an increase in the

number of extreme heat events. Thus, we attempt to monetize the health loss associated with

one additional Hot Day for an entire nation. One main conclusion from this exercise is that two

factors crucially drive the estimates: (i) the choice between the Unconditional and the Conditional

Approach, and (ii) whether one considers “harvesting” or not. In line with the literature, we find

strong evidence in line with the harvesting hypothesis, according to which heat mostly adversely

affects humans in bad health who, in the absence of heat, would have likely died shortly after.

Empirical tests demonstrate that heat does not lead to a permanent increase in hospitalizations

and deaths. Depending on the underlying assumptions, the last part of the paper estimates that

one additional Hot Day triggers a monetized health loss of between e 6m and e 43m for Germany

or between e 0.07 ($0.10) and e 0.52 ($0.68) per German resident.

The next section describes the datasets used as well as the rich tempo-spatial variations in

the main variables of interest. Section 3 describes the estimation strategy and discusses the

identification of the effects. Section 4 contains the empirical findings. In Section 5, we monetize

the health loss of one additional Hot Day. Section 6 concludes.

6



2 Datasets, Main Variables, and Identifying Variation

2.1 Hospital Admission Census:

The Universe of all German Hospital Admissions 1999-2008

The first dataset used is the Hospital Admission Census. Access is provided by the German

Federal Statistical Office. It comprises all German hospital admissions from 1999 to 2008.

Germany has about 82 million inhabitants and registers about 17 million hospital admission per

year. We observe every single hospital admission from 1999 to 2008, i.e., a total of more than 170

million hospitalizations.2 To obtain our working dataset, we aggregate the individual-level data at

the day-county level and normalize admissions per 100,000 people using official population counts

(see Appendix E).3

As seen in Appendix A, along with other admission characteristics, the Hospital Admission

Census provides information on the age and gender of the patient, the day of admission, the length

of stay, the county of residence as well as the primary diagnosis in form of the ICD-10 code (10th

revision of the International Statistical Classification of Diseases and Related Health Problems).

Construction of Main Dependent Variables

Using the information on the primary diagnosis, we generate a series of dependent variables. The

dependent variables represent different groups of diagnoses, generated by extracting the letter

and digits of the ICD-10 code, e.g., J00-J99 refers to “diseases of the respiratory system.” In

some cases, the second and third ICD-10 digits are helpful to identify more specific conditions. In

addition to all-cause hospitalizations, which is simply the sum of all admissions, we examine five

specific subgroups: (i) cardiovascular hospitalizations (I00-I99), (ii) respiratory hospitalizations

(J00-J99), (iii) infectious hospitalizations (A00-B99), (iv) metabolic hospitalizations (E00-E89),

and (v) neoplastic hospitalizations (C00-D49).

We also exploit the death and length of stay information. Following up on the example from

2 By law, German hospitals are required to submit depersonalized information on every single hospital admission.
This excludes military hospitals and hospitals in prisons. The 16 German states collect the information and the
German Federal Statistical Office (Statistische Ämter des Bundes und der Länder) provides restricted data
access for researchers.

3 The remote access servers of the Statistische Ämter des Bundes und der Länder only provide a memory of 18
gigabytes per computer. The individual admission data is provided in files by calendar years. The memory capacities
only allow to merge and analyze one calendar year of hospitalizations on the individual admission level. Therefore,
one has to restrict the working dataset to patients who were admitted after January 1st of a given year. In other
words, one has to delete all admissions that led to hospital stays over New Year. This is because we first aggregate
admissions at the day-county level and then merge the files by calendar years, resulting in duplicate observations
for counties and days with admissions in t0 and discharges in t1. In a robustness checks, we run the analysis using
only one calendar year, but include stays over New Year’s Day. The results are robust to excluding people who stay
in hospitals over the change in years and are available upon request.
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above, cardiovascular death identifies people who died after they were admitted to a hospital due

to a cardiovascular disease. Cardiovascular hospital days includes the number of nights that a

patient spent in a hospital after a cardiovascular admission.

After having summed the total of admissions—as well as the cause-specific admissions—at

the day-county level, we normalize the dependent variables per 100,000 population using official

population data at the year-county level (Federal Institute for Research on Building, Urban Affairs

and Spatial Development, 2012). Appendix A displays the summary statistics of all normalized

admission variables.4 For example, on a given day, we observe 58 hospital admissions per 100,000

residents. This admission rate varies substantially over days and across counties; the standard

deviation is 26. On average, a day triggers 489 hospital days, i.e., the 58 admissions have an average

length of stay of 8.4 days. The largest single group of diseases is cardiovascular hospitalizations.

Nine cardiovascular admissions per 100,000 pop. represent 16% of all admissions.

2.2 Mortality Census:

The Universe of all German Deaths 1999-2008

The second dataset employed is the Mortality Census which is also provided by the German

Federal Statistical Office. The Mortality Census includes every death that occurred on

German territory. Per year, one observes approximately 800,000 deaths, i.e, about 8 million

deaths from 1999 to 2008. To obtain the working dataset, we aggregate the individual-level data

at the day-county level and generate the mortality rate per 100,000 population.

Appendix B shows all raw measures included in the Mortality Census. It contains information

on age, gender, day of death, county of residence as well as the primary cause of death in ICD-10

form.

Construction of Main Dependent Variables

Analogously to the Hospital Admission Census, we generate dependent variables that indicate the

all-cause mortality rate, as well as the cause-specific mortality rates for five specific categories:

the (i) cardiovascular mortality rate, (ii) respiratory mortality rate, (iii) infectious mortality rate,

(iv) metabolic mortality rate, and (v) neoplastic mortality rate. The total daily mortality rate is

3 deaths per 100,000 pop.—1.4 or almost 50% of which are caused by cardiovascular health issues.

The summary statistics of the all-cause—as well as cause-specific—mortality rates are displayed

in Appendix B.

4 Note that the German data protection laws prohibit us from reporting min. and max. values.
8



2.3 Official Daily Weather Data from 1,044 stations 1999-2008

The weather data is provided by the German Meteorological Service (Deutscher Wetterdi-

enst (DWD)), a publicly funded federal institution. Weather measures are collected from 1999 to

2008 from up to 1,044 meteorological monitors which are distributed all over Germany. Figure 1

shows the distribution of all ambient monitors along with county borders. It is easy to see that

the German weather station network is very dense.

[Insert Figure 1 about here]

The paper uses official measurement data from all existing weather stations in a given year. As

described in Section 2.5, we interpolate the point measures into county space on a daily basis using

Inverse Distance Weighting (IDW).

Weather Variation Across Space and Time

Summary statistics of all raw weather measures at the day-county level are given in Panel A of

Table C1 in Appendix C. The mean daily air temperature is 10˚C (49˚F), averaged over the whole

time period and all counties. Note the extremely rich variation in the average daily temperature:

it ranges from -19˚C (-2˚F) to 31˚C (87˚F). Equally rich is the variation in the minimum and

maximum temperature, hours of sunshine and other weather measures.

[Insert Figure 2 about here]

Figure 2a shows a boxplot of the mean temperature over the twelve months of a year (averaged

over all ten years). The graph illustrates the large cross-county as well as cross-seasonal variation

in weather. One observes a clear increase in average temperatures and sunshine duration during

the summer months. Figure 2b shows the daily cross-county temperature variation over all ten

years. One observes the typical seasonal trends along with a lot of spikes in the high-frequency

data. The empirical models will exploit the rich positive and negative weather shocks across space

and over time. Deviations in daily weather variations are plausibly exogenous to individuals’

health.

Figure 10 in Appendix C displays a scatter matrix which shows, illustratively, the associations

between some raw weather measures. Not surprisingly, one finds a strong positive association

between the hours of sunshine and the temperature, as well as a strong negative association

between the hours of sunshine and the precipitation level.
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Construction of Extreme Temperature Indicators & Identifying Variation

Construction of Extreme Temperature Indicators. At the beginning of the Results section,

this study employs the raw continuous weather measures and provides nonparametric evidence

on the (non-linear) relationship between temperature and health. As a next step, we employ

semiparametric variants that net out seasonal and geographic effects, but let a series of temperature

regressors float flexibly without too strict parametric assumptions while allowing for precise enough

estimates. In the main parametric models, however, we mostly employ a single binary indicator

to measure extreme heat and cold for the following reasons:

(i) The binary measures generated refer to the official definitions of Hot and Cold Days,

e.g., the German Meteorological Service defines a Hot Day as a day with a maximum

temperature above 30˚C (86˚F). In addition, the previous literature has employed these binary

measures, which facilitates the comparison of results (cf. Deschênes and Moretti, 2009; Barreca

et al., 2013).5

(ii) Defining a binary indicator to measure Hot and Cold Days greatly simplifies the empirical

analysis, provides the reader with a better intuition, and makes it easier to follow the thought

experiment wherein we ask, “What are the health effects of one additional Hot Day?”

(iii) As we will demonstrate in the Results section, there is empirical evidence that most

adverse health effects kick in when temperatures exceed 30˚C (86˚F). Thus we define the binary

measures:

• Hot Day = 1 if the max. temperature >30˚C (86˚F), 0 else.

• Heat Wave Day = 1 if Hot Day=1 and the 3 previous days were also Hot Days, 0 else.

• Cold Day= 1 if the min. temperature < -10˚C (14˚F).

• Cold Wave Day= 1 if Cold Day=1 and the 3 previous days were also Cold Days, 0 else.

Identifying Variation. Panel B of Table C1 in Appendix C shows the descriptive statistics

for the generated extreme temperature indicators. As seen, 2% of all days are Hot Days. This

translates into roughly seven Hot Days per year. However, between 1999 and 2008, the number

of Hot Days varied between 4 (1999, 2004, 2007) and 18 (2003). Note that the variation in Hot

Days between counties is even larger. The number of Hot Days varies between 0 and 40 per year,

depending on county (Figure 3a). In one empirical specification, we aggregate the data at the

year-county level and exploit the variation in the annual number of Hot Days.

5 To be precise, the US studies by Deschênes and Moretti (2009) and Barreca et al. (2013) define a Hot Day as
a day with the mean temperature >90˚F (32˚C).
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On average, there is about one Heat Wave Day per year (see Panel B of Table C1). Between

1999 and 2008, the number of Heat Wave Days varied between 0.03 (2005) and more than 6 (2003,

not shown in Table C1).6

Figure 3a plots the distributions of (i) the annual mean of the maximum daily county-level

temperatures, and (ii) the annual number of Hot Days per county. This is to show that (a) the

annual maximum temperatures follow a normal distribution with the mass point around 14˚C

(57˚F), and (b) that the annual number of Hot Days is skewed to the right and exhibits substantial

variation with many counties showing more than 10 Hot Days per year. Overall, Figure 3a

illustrates that the identifying variation stems from the majority of counties and not just a small

subset of “hot” counties. Thus extrapolation and out-of-sample predictions are largely avoided.

[Insert Figure 3 about here]

Turning to the other temperature extreme, more than 1% or about 20,000 of all county-day

observations are Cold Days with minimum temperatures below -10˚C (14˚F). This translates

into about 4 days per year, but the variation ranges from an average of 1 Cold Day in 2008 to

10 Cold Days in 2003. The annual county-level variation in Cold Days ranges from 0 to 41 (see

Figure 3b). Rarer are Cold Wave Days with more than three consecutive Cold Days—between

one and zero occur per year. However, over 10 years, we still count 2,870 county-level Cold Wave

Days.

Figure 3b shows the distributions of (i) the annual mean of the minimum daily county-level

temperature, and (ii) the annual number of Cold Days per county. As in the extreme heat case,

the minimum temperature distribution is about normal (mean 6˚C (42˚F)), while the county-

level Cold Day distribution is skewed to the right (mean 4 days). Again, the empirical models

largely avoid out-of-sample predictions since the identifying variation occurs in the large majority

of German counties.

2.4 Official Daily Pollution Data from 1,314 stations 1999-2008

The pollution data are provided by the German Federal Environmental Office (Umwelt-

bundesamt (UBA)), a publicly funded federal agency. From 1999 to 2008, pollution measures are

collected from up to 1,314 ambient monitors (Figure 1). As with the weather measures and as

described in Section 2.5, we interpolate the monitor point measures into the county space. Panel

A of Table D1 in Appendix D shows all raw pollution measures on a daily county-level basis.

6 Note that 6 heat wave days could be the result of a very long heat wave, lasting 9 days, or 6 short heat waves
of 4 consecutive Hot Days, or a combination of the two.
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Appendix D also discusses in detail the chemical composition of the five pollutants investigated,

as well as their health hazards. Moreover, Appendix D describes and graphically illustrates the

tempo-spatial variation of the pollutants and their association with weather conditions: All pollu-

tants have in common that they (i) exhibit some seasonal pattern, (ii) exhibit strong (non-)linear

associations with the weather indicators—in particular the temperature—and most importantly

for identification purposes: (iii) exhibit strong daily variation across counties and over time.

Construction of Non-Compliance Pollution Indicators, Comparison to US Thresholds,

& Identifying Variation

Construction of Non-Compliance Pollution Indicators. One objective of this paper is to

assess the effects of high pollution concentrations on human health. As in the temperature case, we

first demonstrate the nonparametric nonlinear relationship between pollution concentrations and

health graphically. Then we employ nonparametric models that net out seasonal and geographical

impacts but explore the pollution-health relationship via flexibly varying pollution concentration

regressors. Finally, the main models make use of the official EU alert thresholds to assess the

health impact of crossing these thresholds.7 Appendix D discusses the different thresholds in

detail and also the policy action required when counties violate these thresholds. Henceforth, we

call a day during which the pollution concentration exceeds its EU threshold a “non-compliance”

day. Accordingly, the following binary indicator variables are generated (European Environment

Agency, 2012).8 The descriptives of these indicators are displayed in Panel B of Table D1.

• O3 non-compliance day = 1 if the max. O3 level >120 µg/m3, 0 else.

• NO2 non-compliance day = 1 if the average NO2 level >40 µg/m3, 0 else.

• PM10 non-compliance day = 1 if the average PM10 level >50 µg/m3, 0 else.

According to these definitions, 12% of all 1.5 million county-day observations are NO2 and PM10

non-compliance days. This translates into 44 days per year. Thirty-four days per year are O3

non-compliance days.

Comparison to US Thresholds. In principle, the pollution regulation in the US is similar to

the one in the EU: the US Environmental Protection Agency (EPA) implements pollution

concentration thresholds and requires all US states to comply. However, the EPA thresholds are

7 This is not always exactly feasible since we rely on day-county level averages, whereas some EU thresholds rely
on hourly averages.

8 Note that CO and SO2 are omitted. The maximum county-level CO concentration that we observe is 2.8 ppm,
which is significantly below the EU threshold and the WHO 8-hour threshold of 8.7 ppm. All SO2 values also lie
significantly below the maximum daily EU threshold of 125 µg/m3. Interestingly we observe the same pattern for
the US (Environmental Protection Agency (EPA), 2013).
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significantly less strict than the EU ones: The PM10 threshold is a 24 hour average concentration

of 150 µg/m3. The O3 threshold is an 8 hour average concentration of 159 µg/m3. And the NO2

threshold is an annual average concentration of 107 µg/m3 or a maximum hourly concentration

of 203 µg/m3 (Environmental Protection Agency (EPA), 2013).9 Thus, the threshold levels for

NO2 and PM10 are 2 to 3 times larger in the US, which should be kept in mind when comparing

the results of this study to related US studies. In Germany, from 1999 to 2008, the US regulatory

thresholds for PM10, O3 and NO2 were never exceeded (see Table D1). The measured pollution

concentrations in the US are likewise 2 to 3 times higher than in Germany—at least for PM10

and O3, while NO2 concentrations are very similar (Environmental Protection Agency (EPA),

2013). However, note that the variation in concentrations across US regions is very large and the

distribution overlaps with the distribution of concentration levels in Germany.

Identifying Variation. Figure 4 illustrates several crucial empirical facts about the identi-

fying pollution variation using the example of ozone (O3): (a) Figure 4a in the top left corner

illustrates that the annual number of O3 non-compliance days is highly correlated with the annual

maximum ozone concentration. This shows that the binary non-compliance indicator represents

and captures high ozone concentrations well.

[Insert Figure 4 about here]

(b) Figure 4b in the top right corner shows the pollution variation with respect to the daily

maximum ozone concentration per county and year (black), as well as the number of annual non-

compliance days per county and year (red). Both distributions are roughly normal and have large

supports. This shows that the identifying variation is based on a broad set of counties and not

just a small subset of non-representative high ozone-level counties with permanently high levels

of ozone. It is worthwhile to note that every single German county had non-compliance days

between 1999 and 2008. In fact, the number of non-compliance days ranges between 10 and 553

across the counties and over the ten years.

(c) Figure 4c in the bottom left corner plots the annual number of non-compliance days along

with the GDP growth rate, while Figure 4d plots the annual number of non-compliance days along

with the annual maximum temperature. The graphs illustrate that there is not much correlation

between economic activity and high ozone concentrations, but that there is a strong correlation

between high temperatures and high ozone levels at the county level. This relationship is also

9 The original scales for NO2 and O3 are expressed in “parts per million (ppm)” and have to be converted to
“micrograms per cubic meter of air (µg/m3)”. The annual threshold for NO2 is 0.053 ppm and the hourly maximum
0.1 ppm. For O3, the “annual fourth-highest daily maximum 8 hours concentration, averaged over 3 years,” must
not exceed 0.075 ppm.
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illustrated in Figure 15 in Appendix D. The relationship derives from the chemical process that

leads to high ozone levels. High temperatures and sunshine are important input factors for the

photochemical oxidation process between CO and NOx and thus for the development of ozone

(cf. Arya, 1998; European Environment Agency, 2013). It that sense one can think of extreme

temperatures causally triggering extreme ozone levels.

The equivalent graphs to Figure 4 for NO2 and PM10 can be found in Appendix D (Figures 13

and 16). The conclusions drawn for O3 also hold for NO2 and PM10. For example, from 1999 to

2008, even the German county with the least NO2 or PM10 pollution experienced 4 (NO2) and 8

(PM10) non-compliance days, respectively. High NO2 and PM10 concentrations are also triggered

by high temperatures.

2.5 Interpolation of Weather and Pollution Measures

To obtain the working datasets, we (i) had to interpolate the point measures of the weather

and pollution monitors into the county space, (ii) aggregate and normalize all information at

the (daily) county level, and (iii) merge the register datasets with the pollution, weather, and

the socioeconomic dataset (see Appendix E) at the day-county level. Assuming that the number

of counties is time-invariant and 400, we should obtain 400 × 365 × 10 = 1, 460, 000 rows, each

representing one county on a given day.

Interpolation of Weather and Pollution Measures

Hanigan et al. (2006) discuss and compare different approaches of how to calculate population

exposure estimates of daily weather and pollution conditions from monitors. In this work, we rely

on inverse distance weighting within a certain radius. Thus, we first determined the centroid of

each county. In a second step, the distance between each county and each monitor was calculated.

In the final step we calculated a weighted average for each county with weights based on the

inverse distance to all monitors within a radius of 60 km (37.5 miles) of the county centroid.

Thus, denoting by δij the distance between a location i (a county centroid) and a monitor j, one

can define the weighting scheme as:

wijd =



1
δij

if i 6= j and δij < 60

1 if δiMid
> 60 and j = Mid

0 otherwise

(1)
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where Mid denotes the nearest station outside location i. Thus, whenever there are no stations

within a radius of 60 kilometers, the measure from the nearest station outside this radius is used.

Henceforth, we call this interpolation approach simply Inverse Distance Weighting (IDW).

3 Empirical Approach and Identification

3.1 Econometric Approach

As a first step, we investigate the temperature and pollution-health relationship nonparametrically

by plotting scatterplots along with Kernel-weighted local polynomial smooth plots. Next, we run

the following model by OLS:

Ycd = α+
39∑

h=20

βhMaxTemphcd (2)

+
468∑
j=2

νj countyj +
52∑
k=2

ζk weekk +
Dec 2008∑

m=Feb1999

σmmonthm + θXct + εcd

where, depending on the specification, Ycd either denotes the hospital admission rate or the mor-

tality rate per 100,000 population in county c on day d. MaxTemphcd are a series of temperature

regressors of interest that equal 1 if the maximum daily temperature in the county falls into a bin

of h degrees and is zero otherwise. To increase statistical power, we choose a bin size of 3 degrees

Celsius (5-7˚F), i.e., when assessing the health effects of heat we employ six temperature dum-

mies (20-23, 23-26, 26-29. 29-32, 32-35, above 35˚C) and evaluate their health impact relative to

temperatures below 20˚C (68˚F). When plotting the temperature coefficients we semiparamet-

rically evaluate the temperature-health relationship, net of seasonal influences. This means that

we net out county fixed effects,
∑468

j=2 νj countyj , calendar week fixed effects,
∑52

k=2 ζk weekk ,

year-month fixed effects,
∑Dec 2008

m=Feb 1999 σmmonthm, as well as yearly county-level covariates, Xct.

The latter vector contains demographics, the share of private hospitals, the bed density, or the

county-level GDP per capita (see Appendix E). We routinely cluster standard errors at the county

level but show that clustering at the state level or two-way clustering at the county and day level

are no threat to inference. All econometric models are weighted by the total county population in

a given year.

Finally, our basic fully parametric approach is based on the following model:

15



Ycd = α+ β ETcd + γ PNCcd + φWcd + ρPcd + ψWcd × Pcd

+
468∑
j=2

νj countyj +
52∑
k=2

ζk weekk +
Dec 2008∑

m=Feb 1999

σmmonthm + θ Xct + εcd (3)

As mentioned earlier, the parametric analysis is implemented using two main approaches: the “Un-

conditional” and the “Conditional” Weather and Pollution Approach. Both approaches routinely

control for all covariates that appear in the second row in equation (3), i.e., county fixed effects,

calendar week fixed effects, year-month fixed effects, as well as yearly county-level covariates.

Approach I is the Unconditional Approach that does not net out contemporaneous weather

and pollution conditions. In addition to the sets of covariates listed above, only one weather

or pollution variable of interest is added to the model. For example, this could be either the

dummy Hot Day, the dummy Cold Wave Day, or a pollution non-compliance dummy like NO2

non-compliance day (see Section 2.3 and 2.4). One can think of this approach as a reduced

form “intention-to-treat” approach where the main regressor of interest absorbs all weather and

pollution conditions that are correlated with the exogenous weather or pollution indicator.

Approach II is the Conditional Approach, net of contemporaneous weather and pollution con-

ditions. A saturated model is estimated that includes—in addition to the weather or pollution re-

gressor of interest—all covariates listed in the first row of equation (3), i.e., Extreme Temperature

dummies in the vector ETcd, a set of Pollution Non-Compliance dummies PNCcd, the 7 “raw”

continuous weather measures, as well as 15 own interactions of these measures at the day-county

level, represented by the vector Wcd (see Tables C1 and D1).10 The Conditional Approach also

makes use of Pcd which contains 5 continuous pollution measures—O3, NO2, SO2, NO2, PM10—

their quadratic and cubic terms, as well as the 10 most relevant interactions between these 5

pollutants (cf. Figure 17). Finally, Approach II also considers cross-interaction effects between

Wcd and Pcd. In total, in addition to the binary variable of interest, the Conditional, saturated,

Approach includes more that 80 additional weather and pollution control variables—in levels,

quadratic, cubic and interacted terms. As such, the Conditional Approach disentangles the single

pollutant or extreme temperature effect from simultaneous weather and pollution conditions.

10 Obviously, when estimating the effect of a Hot Day this vector does not additionally include the temperature,
but such measures as precipitation, sunshine, or air pressure (see Table C1 in Appendix C).
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3.2 County-Level Aggregation and Measurement Errors in Pollution and

Weather Measures

Every empirical study has to deal with the issue of measurement errors. It is known that classical

measurement error attenuates parameter estimates. In case of non-classical measurement error, the

direction of the bias is unclear. Moreover, measurement error in the dependent variables inflates

standard errors (Chen et al., 2011). Since this study makes use of several rich high-frequency

administrative register datasets it (i) certainly does not have a power issue, and (ii) the overall

data quality is very high.

However, particularly when it comes to the mapping of monitor point measures into space,

it is obvious that one has to deal with measurement errors.11 To assess the measurement error

that is introduced via the IDW method, following Currie and Neidell (2005) we perform the

following (indirect) test: For each weather and pollution monitor (not county centroid), one

calculates the IDW value using the weighting scheme in equation (1). The crucial point is that the

weighting scheme attaches weight 0 to the own station.12 Thus, for each ambient monitor and all

weather and pollution measures from that monitor Zd, we calculate a cross-validated Z̃d = ZdΩd;

where Ωd is the symmetric matrix of weights for day d with elements ωijd = wijd/
∑

k wikd. In

other words, we predict the values of each monitor using all surrounding monitors and the IDW

interpolation method. Then, we assess the accuracy of the IDW interpolation by calculating

Pearson’s correlation coefficient for the variables Z and Z̃. The results of this exercise are in

column (1) of Table F1 in Appendix F.

Table F1 illustrates that (a) the IDW method dominates the simpler NN weighting scheme:

only for air pressure does the NN method deliver better accuracy. Besides, it becomes clear that (b)

our IDW interpolation algorithm delivers a very acceptable accuracy with correlation coefficients

ranging up to 0.98 for the mean temperatures. Overall, the correlation values for pollution range

between 0.4 and 0.8 while the weather measures mostly deliver even better results. Note that

this paper particularly relies on minimum, mean, and maximum temperature measurements, all

of which deliver excellent accuracy results with correlation values ranging above 0.95 (column (1)

of Table F1). This means that we are able to predict 95% of the variation of the temperature

measured by monitor X using our IDW method and all surrounding monitors.13 Note that the

11 Currie et al. (2013) show that if one uses variation in the toxic exposure of plants as source of exogenous
pollution variation, at least in the US, the measurable impact of the emitted pollutants mostly lies within the radius
of one mile.

12 When using the county centroid in the IDW interpolation of point measures into county space, the closest
monitor obviously gets the largest weight.

13 One concern with this interpolation test is that a seemingly high degree of accuracy might be driven by time
trends and seasonal variation in the variables. Thus, we calculate alternative accuracy correlation measures that
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results are robust to considering individual years instead of the entire pooled sample (results

available upon request).

Table F2 in Appendix F show results of a similar test for the generated extreme weather

indicators and confirms the results of Table F1. Basically, one finds that the overall share of

correctly predicted heat and cold indicator values is above 99%, as is the share of correctly predicted

zeros. Since there is only a small percentage of extreme temperature events, “false positives” have

a larger impact on estimates than “false negatives”. Thus, it is reassuring to see that (i) IDW

clearly outperforms NN, and (ii) the share of false positives is low and less than 20% in the case

of heat.

Finally, we calculate the Reliability Ratio (RR) α that indicates the magnitude of measurement

errors and thus the attenuation bias (Hyslop and Imbens, 2001):

α =
Cov

(
Z, Z̃

)
Var

(
Z̃
) (4)

In a bivariate regression, the RR measures the attenuation bias and can thus be used to adjust

estimates. In a multivariate setting, the issue is less straightforward. Under the assumption that

covariates are uncorrelated with the measurement error, a specific RR—which is typically lower

than the RR for the bivariate case—can be derived. However, as we include covariates which are

prone to measurement error themselves, it is not possible to draw general conclusions about the

size of the bias (Maddala, 1977). Nevertheless, it is reassuring that the RR is relatively high and

lies around 0.8 for the most important indicators.

As a last conceptual point, please note that the issue of introducing measurement error when

extrapolating point measures into space is methodologically not fundamentally different from the

issue of unknown individual exposure to weather and pollution conditions. We approximate the

individual level exposure to weather and pollution on a given day by taking inverse distance

weighted averages of the daily measures of the next monitors. Even if we knew the exact ambient

weather and pollution conditions at the exact locations of residence of all German residents, we

would still (i) have to take daily averages in ambient conditions, (ii) lack knowledge about the

exact length, place, and time of the day spent outdoors by the individuals, and thus (iii) deal with

are based on transformed versions of Z which had first been nonparametrically adjusted for individual day effects.
As seen, the correlation coefficients in columns (3) and (4) of Table F1 drop somewhat, but still show that there is
a considerable correlation between imputed and actual values. For the temperature measures, the time trend and
season-adjusted correlation values all lie around 0.7. It should also be noted that this method of controlling for day
time effects is very conservative in the sense that it is likely to remove “too much” variation from the data since one
cannot disentangle the “true” correlation between monitors and climatic measures from day effects. By removing
the daily mean one obviously also removes part the non time-trend correlation.
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exposure-related measurement error of unknown form.

As time, empirical methods, and data collection advance, researchers will have access to in-

creasingly more and better data that reduce measurement errors. Considering our extremely

precise coefficient estimates stemming from various high-quality register datasets and comparing

this data quality to the data quality of self-reported survey data often used in empirical studies, we

believe and argue that the issue of measurement error is of secondary importance for the general

findings of this paper.

3.3 Identification of Exogenous Pollution and Weather Effects Using Daily

Spikes in High Pollution and Extreme Temperatures

From an identification point of view, the appealing aspect of using weather and pollution variation

to estimate their impact on health is that weather and pollution is very likely to be orthogonal

to the error term in equation (3) above. More precisely, it is very plausible that pollution and

weather variation at the day-county level is exogenous to the outcomes of any one individual

(cf. Angrist et al. (2000); Moretti (2011)). Remember that the econometric models net out

a rich array of geographic, seasonal, and time effects and solely rely on high-frequency, daily

within county variation. Positive and negative pollution and temperature shocks are then linked

to contemporaneous health effects at the day-county level. As Table 1 shows, this econometric

approach to identification is carried out by the large majority of the leading and published weather-

pollution-health studies in economic journals.

One could still list the following three identification concerns: (i) based on (un)observables,

people may self-select into living in specific regions, (ii) pollution levels may be correlated with

economic activities which, in turn, may affect health outcomes, (iii) individual-level exposure to

weather and pollution conditions is unknown and adaption behavior may bias the “true” causal

effect downward.

A few recent papers address some of these concerns by using variation in traffic as an instrument

for CO, PM10, and O3 exposure (Knittel et al., 2011; Moretti and Neidell, 2011; Schlenker and

Walker, 2011). While these approaches as stimulating and worthwhile to pursue, this paper

abstains from instrumenting pollution levels with traffic activity.

Instead, this paper addresses the potential concerns in the following ways. First of all, with

respect to (i): It is of course true that people with specific characteristics may self-select into

specific regions. This is of particular concern for studies that rely on small geographic regions—

one may question the external validity of the findings. One particular strength of the approach
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used in this paper is that it relies on the universe all hospital admissions and deaths from the

fourth largest industrial nation in the world over one decade. To the extent that one is interested

in the real-world effects of weather and pollution on population health in a given geographic area,

one should consider and include sorting into regions; the identified parameters then represent the

effects on population health once geographic preferences are accounted for. In the case of Germany,

it should be added that (intergenerational) geographic mobility is historically very low. Using the

SOEP we find that, in a given year, only about 1% of all SOEP respondents move, which also

includes within-county moving (Wagner et al., 2007; SOEP, 2012).

Second, as far as (ii) is concerned: it is obvious that the level of regional economic activity and

the regional pollution level may be correlated. This is particularly worrisome when pollution and

health outcome data are linked on a highly aggregated level, e.g., when the unit of observation is

the year or month and studies do not or cannot account for year and region fixed effects.

However, as a first argument, recall that we rely on high-frequency data, recorded on a daily

county-level basis. We do not only consider county fixed effects, but also week fixed effects and

month-year fixed effects. The results are also robust to county time trends and county-year

fixed effects. Moreover, we make use of binary indicators that indicate changes in high pollution

concentrations in these fixed effects models. Econometrically, this means that we exclusively

focus on daily county-level increases or decreases in high pollution concentrations, i.e., EU non-

compliance days and alternative high pollution thresholds. Economic activity, in contrast, does

not fluctuate strongly at the day-county level.

Moreover, a robustness check relates changes in high pollution concentrations to hospitaliza-

tions that may stem from an increased economic activity: treatments due to physical injuries

caused by accidents. We do not find any evidence that there is a meaningful relationship between

these two factors. For example, in the Unconditional Model, an ozone non-compliance day is

associated with a 0.024 ppt. (0.5%) lower standardized accident rate at the daily county-level.

However, this association is clearly not statistically significant with a p-value of 0.52 (detailed

results available upon request).

In addition, Figures 4c, 13c, and 16c do not suggest a significant relationship between economic

activity and high levels of pollution. Looking at annual county-level variation in GDP growth

and pollution concentrations, it becomes clear that changes in extreme pollution are not primarily

driven by economic activity but rather by high temperatures. On the annual county level, only the

maximum NO2 concentration is positively correlated with the GDP growth per capita. However,

even this correlation is rather small. An increase in the growth rate by 1 ppt. increases the
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average maximum NO2 level by 0.25 µg/m3 or 0.5%. High O3 and PM10 concentrations are

in fact negatively correlated with GDP growth. Thus, assuming a positive association between

economic activity and adverse health effects would cause us to underestimate the adverse effect of

pollution on health. Thus economic activity is very unlikely to significantly confound our identified

pollution-health relationship.

As an important last point, note that concern (ii)—economic activity may affect both, pol-

lution and health—is clearly irrelevant when it comes to extreme temperature events which are

definitely exogenous to any one human’s behavior. Research in atmospheric science strongly sug-

gests that extreme pollution levels are triggered by high temperatures. The discussion in Appendix

D strongly supports this. Particularly O3 and PM10 are secondary pollutants and oxidants; the

oxidation process requires sunshine and heat. For example, the relationship between ozone and

the temperature is almost linear (see Figure 15a) and the daily county-level correlation between

the maximum temperature and the maximum ozone concentration is 0.7(!). The equivalent non-

parametric graphs between PM10, NO2 and the mean temperature are U-shaped (e.g., see Figure

12a). When daily temperatures exceed 20˚C (68˚F), PM10 and NO2 concentrations increase

strongly with correlations of about 0.25. Overall, one can think of extreme temperatures and

weather conditions playing a significant causal role in producing high pollution concentrations.

If weather is exogenous to individuals, so are changes in high pollution concentrations that are

triggered by high temperatures.

Third, with respect to the third potential identification concern (iii) and adaptation behavior:

We argue that we intentionally want to estimate an effect that would equal an “intention-to-

treat (ITT)” estimate in other settings, including avoidance behavior and human adaptation to

extreme temperatures and pollution. This parameter is the relevant parameter for policymakers.

Any policy action should be based on this parameter. We do not deny that people engage in

avoidance behavior and spend less time outdoor when pollution levels and temperatures are high.

It is also clear that it is a challenging and relevant task to study avoidance behavior. However,

we believe that in this setting, a parameter measuring the health effects of a theoretical 24 hours

exposure to high pollution levels, heat or cold events would not be policy-relevant. This exercise

has been and can be better conducted by medical scientists in laboratory settings (cf. Stewart

et al., 1970; Anderson et al., 1973; Hackney et al., 1975; Kerr et al., 1979; Horstman et al., 1988;

Lippmann, 1989; Jäppinen et al., 1990; Dye et al., 2001). We think that real-world data offers

great advantages over such experimental studies. The relationship that this paper intends to

expose is: given that people adjust their behavior to climatic conditions, how would a decrease
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in the number of annual days with heavy ambient air pollution affect population health? Or:

Given that humans have the capacity to adjust to extreme temperatures, based on real-world

behavioral data from today, how would climate change in the form of more heat events most likely

affect population health? However, without question, this ITT estimate represents a lower bound

estimate as compared to a “full exposure” estimate.

Also please note that it is beyond the scope of this paper to make projections about human

behavioral adaptation and/or technological progress that could facilitate adaption behavior in the

future. Such projections are inherently uncertain and notoriously difficult to make. However,

recent state-of-the-art empirical evidence shows that humans adapt to adverse climatic conditions

and that adaptation has increased over time (cf. Deschênes, 2012; Zivin and Neidell, 2013; Barreca

et al., 2013). Given this recent empirical evidence, an approach that assumes no further increases

in adaptation behavior produces conservative estimates of the potential adverse health effects of

climate change.

Finally it should be re-iterated what has been discussed at various places throughout the

manuscript: thanks to its climatic conditions and four seasons, Germany is particularly well-

suited for this type of study that links daily increases as well as decreases in extreme temperatures

and pollution to immediate severe health effects. As Figures 3, 4, 13, and 16 demonstrate, the

identification of parameters is based on a broad set of counties and largely avoids out-of-sample

predictions. All German counties experienced variation in the extreme temperature variables as

well as in the non-compliance pollution indicators of interest. Identification is not based on a

small non-representative subset of high pollution, extremely hot or extremely cold counties, but

has broad support.

4 Results

4.1 Nonparametric Relationship Between Temperature, Pollution and Health

Figure 5a-d shows scatterplots of hospital admission rates and the daily county-level (a) maximum

temperature, (b) minimum temperature, (c) mean NO2, and (d) mean PM10 concentration—along

with local polynomial smooth plots and confidence bands. Interestingly, the equivalent mortality

rate graphs follow very similar patterns, but the patterns are even less pronounced (available upon

request).

Overall, at first sight, it is difficult to detect an unambiguous positive relationship between

hospital admissions and extreme temperature or pollution conditions. The data seem to be very
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noisy: hospital admission rates vary widely across the whole range of temperature and pollution

values on the x-axis. The smoothed polynomial plots appear surprisingly flat.

[Insert Figure 5 about here]

However, having a closer look, a few peculiarities are of note: (a) The higher the temperature,

the wider the confidence bands. Moreover, the admission rate seems to smoothly—but only very

slightly and linearly—increase between 20˚C and 36˚C (68˚F and 97˚F). Then, admissions dip

slightly, before they significantly increase for temperatures above 38˚C (100˚F).

(b) For daily minimum temperatures below -10˚C (14˚F), the admission rate seems to increase

slowly and smoothly down to -18˚C (-2˚F). Then, again, admissions seem to dip, before they

increase significantly for temperatures below -22˚C (-8˚F).

(c) The relationship between mean NO2 concentrations and admissions increases strongly for

NO2 concentrations between 10 and 20 µg/m3 and subsequently slightly for concentrations up to

63µg/m3. Between 63µg/m3 and 74µg/m3 one observes a clear increase in hospitalizations, then

a drop, and for concentrations above 78µg/m3, a strong increase.

(d) Finally, the relationship between mean PM10 concentrations and admissions looks pretty

flat but is also slightly bumpy, up to ambient concentrations of around 56µg/m3. Then, one

observes a relatively clear and strong increase of admissions up to the recorded maximum PM10

value. This strong increase has broad support in actual observed PM10 values—more that 200,000

county-day observations or about 12% of all observations carry PM10 concentrations above the

EU alert threshold of 50µg/m3.

4.2 Semiparametric Relationship Between Temperature, Pollution and Health

Next we investigate the temperature-health relationship semiparametrically using flexible temper-

ature and pollution cut-off variables. More specifically, we run the model in equation (2) by OLS.

We always employ Approach I, i.e, the model nets out county fixed effects, week fixed effects, and

month-year fixed effects, but does not consider contemporaneous weather and pollution conditions

other than the variable of interest. The variables of interest are a series of dummy variables which

equal one if daily temperature or pollution conditions fall into the temperature bins as illustrated

by the x-asis of Figure 6, e.g., between 26 or 29˚C or 40 to 50 µg/m3.

Figure 6a—illustrating heat effects—plots the coefficient estimates,
∑39

h=20 βhMaxTemphcd, of

the regression in equation 2. Since the model considers all six temperature dummies simultane-

ously, the plotted graph in Figure 6a shows the marginal temperature impact of three degrees,
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relative to the baseline category of less than 20˚C (68˚F). Figure 6a shows that the temperature

range from 26 to 29˚C (79 to 84˚F) induces additional admissions, but at a low rate of 2%. For

temperatures above 30˚C (86˚F) one observes strongly increasing, almost exponentially, adverse

health effects—admissions increase up to 12% for temperatures above 35˚C (95˚F). Thus, it

seems reasonable to follow the convention and define a HotDay as a day with temperature above

30˚C (86˚F), and use that cut-off to estimate the impact of one additional HotDay on health.

We employ this convention henceforth.

Figure 6b applies the same approach for the daily minimum temperature. As seen, the coeffi-

cient estimates are negative up to temperatures of -15˚C (5˚F) but then strongly increase and

lead to hospitalization increases of 3% for temperatures between -18 ˚C (0˚F) and -21˚C (-6˚F).

We discuss potential explanations for the negative effect of cold on admissions below.

[Insert Figure 6 about here]

Figures 6c and d show the results for NO2 and PM10. The x-axis of Figure 6c shows the ambient

NO2 concentration in µg/m3, where 40 equals the official EU alert threshold. One observes

significantly positive effects on admissions when concentrations exceed this threshold. Recall that

the US threshold is significantly higher, with an annual average concentration of 107 µg/m3. The

marginal impact of concentrations below 50 µg/m3 is practically zero and precisely estimated.

When NO2 concentrations exceed 50 µg/m3, admissions linearly and significantly increase from a

significant 2% (50 to 60 µg/m3) to an imprecisely estimated 6% (70 to 80 µg/m3).

The findings for Figures 6d and PM10 confirm what we observe in the nonparametric Figure 5d

above. One finds that adverse health effects are flat for concentrations up to 60 µg/m3. Admission

rates are about 2% higher as compared to PM10 concentrations below 20 µg/m3. Admission rates

strongly increase to 8% for PM10 concentrations above 60 µg/m3.14 50 µg/m3 is the official

EU alert threshold and thus seems to be relatively well-targeted, while the US threshold of 150

µg/m3 seems to be too high to avoid adverse population health effects, assuming similar physical

responses in the US and Germany.

In general, one can say that all graphs in Figure 6 are in line with the nonparametric scatterplots

in Figure 5. However, the dose-response relationship between temperature and single pollutants

on the one hand, and health on the other is carved out in a much clearer way in Figure 6. The

equivalent nonparametric and semiparametric graphs for the mortality rates follow very similar

14 The results of the Conditional Approach II are almost identical. Rates are basically zero for concentrations up
to 50 µg/m3 but the only strongly increase to 2% (50 to 60 µg/m3) and 11% (60 to 70 µg/m3) higher admission
rates.
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patterns, albeit the adverse health effects are less pronounced. They are available upon request.

The following section focuses on models that solely employ the official Hot and Cold Day

definitions as well as the official EU alert thresholds for pollutants. Instead of varying the threshold

parameters, the next section analyzes the differences between Approach I and II as discussed in

Section 3.1, i.e., the differences in estimates when considering vs. not considering contemporaneous

weather and pollution conditions in addition to the parameter of interest.

4.3 Health Effects of Extreme Temperatures: Unconditional and Conditional

on Contemporaneous Weather and Pollution Conditions

Table 2 illustrates the impact of extreme heat and cold on health. Panel A shows the effects on

hospitalizations and Panel B the effects on mortality. The dependent variable always measures the

all-cause hospitalization or mortality rate, i.e., does not distinguish by diagnoses. Each column

in the panels represents one model estimated according to equation (3). Columns (1) to (4) run

Approach I, the Unconditional Approach. This means that these models do not control for any

contemporaneous weather or pollution conditions and solely focus on the extreme heat or cold

measures as indicated in the rows.

Column (1) shows that a Hot Day, i.e., a day with a maximum temperature of more than 30˚C

(86˚F) leads to a 5% increase in hospitalizations and to a 10% increase in deaths. For the whole

of Germany, this translates into 2,400 additional hospital admissions and 250 additional deaths.

Again, please note that this represents the overall Hot-Day-Effect, including all other weather and

pollution conditions that prevail on a Hot Day.

Column (2) shows the effect of the fourth consecutive Hot Day. A Heat Wave Day increases

hospital admissions by about 6% and mortality by about 22%, i.e., the mortality effect doubles

after 3 consecutive Hot Days. Appendix C1 shows that 2% of all county-day observations during

the time period between 1999 and 2008 were Hot Days. One three out of one thousand of all

observations were Heat Wave Days in Germany. This translates into an annual average of 7 Hot

Days, of which 1 is a Heat Wave Day.

Column (3) shows the overall effect of a Cold Day, i.e., a day with a minimum temperature of

less than -10˚C (14˚F). We find that, not netting out other weather and pollution conditions, a

Cold Day leads to 2% fewer hospital admissions and has no significant effect on mortality. The

decrease in hospitalizations is very likely an artifact of higher hospital admission costs and less

outdoor activities, e.g., through snowfall and bad traffic and weather conditions on Cold Days

(Schwartz et al., 2004). This is reinforced by column (4) which shows that hospital admissions
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significantly decrease by 7% on the fourth consecutive Cold Day while mortality increases by a

marginally significant one percent during Cold Waves.

[Insert Table 2 about here]

Column (5) show results from estimation using the fully saturated Conditional Approach II. Here,

we add an extensive set of 7 continuous weather measures, such as sunshine and precipitation

as well as 15 interaction terms between those weather measures (cf. Table C1).15 Moreover, we

simultaneously control for high pollution non-compliance days. In addition, the continuous mean

values of the 5 pollutants—CO, O3, NO2, SO2, PM10—their 5 quadratic and 5 cubic terms as well

as 10 of their cross interactions are added to the model (cf. Table D1). The covariates model the

rich non-linear interactions between pollutants, as shown in Figure 17 in the Appendix. Lastly,

the model includes 25 interaction terms between the 7 continuous weather and the 5 continuous

pollution measures modelling the nonparametric associations displayed in Figures 12 and 15. In

total, Approach II adds 77 continuous pollution and weather measures as well as their interactions

to the model, plus up to 4 extreme temperature and 3 high pollution non-compliance indicators.

Again we find that extreme cold alone does not affect mortality in a meaningful size. When

controlling for a full set of weather and pollution conditions, the Cold Day effect on hospitalizations

turns positive but carries a small size of about one percent. Interestingly, the negative Cold Wave

Day hospitalization coefficient remains large significant in size (-7%). The finding that the first

(presumably unexpected) Cold Day slightly increases admissions but Cold Wave Days strongly

decrease hospitalizations yield strong evidence in support for the “higher transportation cost

hypothesis” outlined above. Bad weather and transportation conditions associated with several

subsequent extremely Cold Days are the most likely reason for the drop in hospital admissions.

This is in line with existing research from epidemiology (Schwartz et al., 2004). The drop in

admissions does not seem to trigger an (immediate) increase in mortality.

Netting out all climatic factors that prevail on Hot Days, in the Conditional Approach II, the

hospitalization effect of a Hot Day is reduced by the factor two to +3% and the effect of a Heat

Wave Day is even reduced by a factor of six to just +1%. However, both coefficient estimates

are still highly significant and of meaningful size. As compared to the Unconditional Approach I,

the Hot Day mortality effect is also reduced by the factor six to less than 2%. The Heat Wave

Day mortality effect shrinks by a factor of two to (a still large) +13% increase in the death rate

on the fourth consecutive Hot Day. When adding the sets of covariates step-wise, it becomes

15 The model does not consider the three plain temperature indicators since the main variables of interest are the
four extreme temperature indicators.
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clear that the main reduction in coefficient sizes is due to the inclusion of the (i) seven continuous

weather measures such as precipitation, the (ii) five continuous mean pollution measures as well

as (iii) the five quadratic and five cubic terms of the pollutants (see Panels A of Tables C1 and

D1). Overall, these sharp declines in coefficient sizes illustrate the importance of considering other

health-damaging weather and pollution conditions associated with extreme heat.16

4.4 Health Effects of High Pollution Concentrations: Unconditional and Con-

ditional on Contemporaneous Weather and Pollution Conditions

The setup of Table 3 is identical to that of Table 2. Considering the Unconditional Approach I, it is

easy to see that for all three pollutants—NO2, O3 and PM10—the following holds: When ambient

pollution levels cross EU alert thresholds, hospital admissions increase significantly. However, the

effects for O3 and PM10 are small and have magnitudes of about 1%. On the other hand, the NO2

effect is relatively large and associated with 8% more hospital admissions.

Mortality rates increase by between 1% and 5% when NO2, O3 and PM10 levels increase

above EU alert thresholds. For example, during a PM10 non-compliance day when concentrations

increase above 50 µg/m3, the death rate increases by 3% or about 68 deaths for the whole of

Germany. These effects are of significant relevance since 13% of all county-day observations in the

sample carry PM10 concentrations above EU alert thresholds. No county entirely avoids violation

of the EU norm over the ten years of observation. Similarly high pollution levels are reached for

O3 (9% of all obs.; +5% deaths) and NO2 (12% of all obs.; +1% deaths).

[Insert Table 3 about here]

However, interestingly and maybe surprisingly, when considering the extremely rich set of con-

current weather and pollution conditions—Figures 12 and 15 illustrate the nonlinear relationships

between pollution levels and weather conditions—all formerly significant associations between pol-

lutants and mortality dramatically shrink in size and become insignificant. The effects on hospital

admissions remain partly significant, but the coefficients are very small in size; the effects in

percentage terms tend towards zero. This finding is absolutely in line with research in medical

science and epidemiology, where high concentrations of a single pollutant are seen rather as an

indicator for overall general adverse environmental conditions that put strain on human bodies.

16 Since we are conducting multiple tests for multiple endpoints, we checked the robustness of our significance
tests by using the procedure suggested by Benjamini and Hochberg (1995). For all conventional false discovery
rates, the conclusions regarding significance and insignificance for all of the parameters remain the same as under
the corresponding significance test. The same result applies if Tables 2 and 3 are considered jontly. In other words,
the asterisks in the two tables may be interpreted as signifying q values of a Benjamini-Hochberg test.
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Laboratory experiments show that concentrations of single pollutants need to be extremely high—

higher than they typically occur in outdoor environments, at least in Germany—before adverse

physical health effects such as lung, pulmonary, or respiratory function responses can be detected

(cf. Stewart et al., 1970; Anderson et al., 1973; Hackney et al., 1975; Kerr et al., 1979; Horstman

et al., 1988; Lippmann, 1989; Jäppinen et al., 1990; Dye et al., 2001).

However, for the regulator, the relevant pollution parameter of interest should be the one that

the Unconditional Approach I identifies. To date, regulatory thresholds always apply to uncondi-

tional pollution levels and do not consider simultaneous weather and pollution conditions. In the

EU and the US, measures from official ambient monitors are taken on a daily basis. If they exceed

official thresholds, action must be taken. It that sense, it may be of interest for the researcher that

one only detects small health-damaging effects of single pollutants when comprehensively consid-

ering all other health-damaging weather and pollution conditions, but the policy implications of

this empirical exercise are questionable.

Both in Germany and the US, SO2 and CO concentration levels rarely exceed alert thresholds.

However, in Germany, in more than ten percent of all county level observations, PM10, O3, and

NO2 levels were significantly elevated above EU thresholds and associated with more deaths and

hospitalizations. PM10 levels even below the EU threshold are associated with adverse health

effects (see Figure 6d). This suggests significant public health benefits from stricter regulation

and/or stricter enforcement of the existing regulation. It should also be recalled that the US

regulatory thresholds for PM10 and NO2 are 2 to 3 times higher as compared to the EU regulatory

thresholds (Environmental Protection Agency (EPA), 2013); actual average PM10 and O3 levels

in the US are also 2 to 3 times higher than in Germany (Environmental Protection Agency (EPA),

2011). Obviously, the public health benefits from lowering the US thresholds and actual pollution

concentrations could be large.

4.5 Cause-Specific Health Effects of Extreme Heat Conditional on Contempo-

raneous Weather and Pollution Conditions

Table 4 now disentangles the extreme temperature effects by diagnoses applying the Conditional

Approach II.17 We can summarize the following:

First, Hot Days significantly increase cardiovascular, respiratory, metabolic and neoplasmic

hospital admissions. Infections are unaffected. The latter is confirmed when looking at mortality

effects in Panel B. Plausibly, Hot Days do not trigger infectious and metabolic deaths.

17 The results are similar for Approach I but more pronounced and available upon request.
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Second, ongoing heat—i.e., the fourth consecutive Hot Day—increases all of the above listed

diagnosis-specific deaths. The same holds true for hospital admissions; however, neoplasmic and

cardiovascular health shocks requiring inpatient stays are solely triggered at the beginning of heat

events.

[Insert Table 4 about here]

Third, in line with expectations, metabolic and neoplasmic health shocks are totally unrelated

to extreme cold while cardiocascular, respiratory and infectious diseases are triggered by extreme

cold. As mentioned above, longer periods of extreme cold are most likely associated with bad

traveling conditions and therefore decrease admissions significantly.

Fourth, Cold Days and Cold Wave Days are not associated with higher mortality rates for any

of the cause-specific deaths. All coefficient estimates are very small in size.

Figures 7 graphically illustrates the effect of extreme heat on the different disease types and

also considers the overall relevance of the different disease groups. Hospitalization effects are

evenly distributed across diagnostic categories. The effects of one Hot Day is relatively moderate

but always significant. They range between 2% and 6% across disease categories. With increasing

duration, heat particularly triggers infections as well as metabolic health issues, whereas cardio-

vascular and neoplasmic admissions occur at the onset of heat events (Figure 7b).

[Insert Figure 7 about here]

The latter may be due to the fact that people with cancer die at a significantly higher rate during

heat events (Figures 7c and d). Figures 7c and d also illustrate that cardiovascular (50%) and

neoplasmic (25%) deaths make up 75% of all heat-related deaths. One Hot Day slightly elevates

the rate of these two types of deaths, and also respiratory deaths, but only by between 2% and

4%. Ongoing heat boosts all type of deaths, independent of diagnoses—in particular respiratory

deaths (+35%) and deaths dues to infections (+60%), but also cardiovascular (+9%) and metabolic

(+17%) deaths.

4.6 Robustness Checks

Table 5 presents a series of robustness checks. The reference specification is always the effect

of one Hot Day on the hospital admission rate in the Unconditional Approach I (column (1) in

Table 2). All findings also hold when using the mortality rate as the dependent variable (results

available upon request).
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Column (1) in Panel A reports results with standard errors clustered at the state instead of the

county level (Cameron and Miller, 2011). Column (2) applies two-way clustering by county and

date (Cameron et al., 2011). As compared to the standard specification, standard errors increase,

but the coefficient estimates remain highly significant at the one percent level.

The next three columns add nation-level (column (3)), state-level (column (4)), and county-

level (column (5)) time trends to the model. The latter two specifications reduce the magnitude of

the estimated Hot Day coefficients only slightly. The last column in Panel A adds county-by-year

fixed effects which leave the coefficients again unchanged.18

[Insert Table 5 about here]

The first column in Panel B shows another way of modelling the heat-health relationship illustrated

in Figures 5 and 6. Here, the model includes the maximum daily temperature as a continuous

variable, along with the Hot Day dummy and an interaction between Hot Day and a continuous

variable that captures the difference between the average maximum temperature that prevails on

Hot Days, 32˚C (89˚F), and the county-specific maximum temperature on a given Hot Day.

In other words: The interaction term indicates the degree to which hospitalizations additionally

increase with every temperature increase above 32˚C (89˚F). An average Hot Day increases

admissions by about 3%. For every degree Celsius above 32˚C (89˚F), the admission rate rises

by another 1%—a factor four times as large as the general impact factor of a one degree increase

in temperature. This tells us that increasing temperatures are especially harmful once the Hot

Day threshold has been surpassed.

Column (2) of Panel B interacts Hot Day with a dummy for weekends. This specification

indirectly tests behavioral adaptations to heat—under the assumption that individuals have more

and better options to engage in adaptation behavior on weekends as compared to weekdays.

Although the coefficient estimate of the interaction term carries a negative sign, it is small in size

and not statistically significant from zero. This suggests that adaptation behavior may exist but

is unlikely to play an economically significant role here. However, other mechanisms may be at

work on weekends. For example, stress related to work may exacerbate the adverse health effects

of heat on weekdays. This is in line with the sharp decrease in hospitalizations on weekends—by a

staggering 50%. To the extent that this hypothesis is true, it would reinforce a potential positive

adaptation effect on health on weekends. Thus, finding no significant reduction in heat-related

18 The slightly larger decrease found with the addition of county-level trends and county-by-year fixed effects
is due to the fact that we have to restrict this specification to the years 2006 to 2008 due to computer memory
constraints.
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admissions on weekends strengthens the notion that behavioral adaptation behavior may exist but,

at least in Germany, there is suggestive evidence that it is of secondary importance to the general

heat-health relationship. Other explanations for the strong decrease in admissions on weekends

could result from institutional factors related to hospital management.

Columns (3) and (4) indirectly test another form of adaptation behavior: Namely, whether

the human body adapts to heat and warmer temperatures when humans live in warmer versus

colder regions. Econometrically, we define a “warm region” as a region where the mean annual

county-level temperature falls into the highest temperature quartile for Germany (>10˚C (50˚F)).

Analogously defined is a “cold region” which is a county with a mean annual temperature below

the lowest temperature quartile (<9˚C (48˚F)). Accordingly, we define two dummy variables,

Cold and Warm Region and add them to the models in levels and in interactions with the Hot

Day indicator. There is clear evidence in line with the human body adaptation hypothesis since,

in warm regions, the effect of a Hot Day is 1 ppt. (2%) smaller than the average Hot Day effect.

Likewise, in cold regions, the effect of a Hot Day is 1% larger. Note that this finding would also

be in line with heat-(in)sensitive individuals sorting into colder (warmer) regions. In any case,

although human body adaption or sorting seems to exist, it is also clear that it amounts to a

relatively small overall effect and does not alter our basic findings: In warm regions, Hot Days

still lead to 4% more hospital admissions and in cold regions, to 6% more admissions.

5 Monetized Health Costs of One Additional Hot Day: Implica-

tions of Climate Change

5.1 Increase in Deaths Due to Heat: Who Dies and Is There “Harvesting”?

Next, we explore in more detail: Who dies during weather events? Obviously, the conclusion

from this analysis has important implications in assessing the economic relevance of additional

heat events due to climate change. The literature discusses a phenomenon called the “harvesting

hypothesis” (cf. Rabl, 2005; Fung et al., 2005). According to the harvesting hypothesis heat events

temporarily lead to a higher mortality rate, particularly among the elderly who are already in bad

health. The hypothesis suggests that people who die during heat events would have died a few

days later, even in the absence of the heat event. If this were true, then the overall effect of heat

events on population health would be dramatically reduced since heat would only reduce the life

expectancy of the old and sick by a few days. Empirically, a decline in mortality rates in the days

following a heat event is often cited as evidence strongly in line with the harvesting hypothesis.
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This paper makes several contributions to the harvesting debate. First of all, we do not only

focus on mortality but also on hospital admissions. In the Hospital Admission Census, we see

the age (group) of the admitted patients, how long they stayed in the hospital, and whether they

died subsequent their admission. This allows us to pinpoint the population health loss of heat

in a much more precise way. For people who do not die after an admission, one knows precisely

how many days they had to stay in the hospital. This allows us to calculate the overall number

of hospital days triggered by a heat event. Thus, our research design allows us to evaluate the

harvesting hypothesis with reference to several different endpoints in order to gain a much deeper

understanding of its practical relevance.

Second, this paper tests whether mortality rates actually decline in the days after a heat event.

If the results were completely driven by harvesting, one would expect the mortality effect observed

on Hot Days to be completely reversed during the next few days. Figure 8 provides a test. It is

based on the Unconditional Approach I not considering contemporaneous weather and pollution

conditions and plots the development of the mortality rate during the days preceding and following

a Hot Day. As expected, the adverse health effects peak on the Hot Day itself. Within three days

following a Hot Day, the effects decrease strongly to below +2%, but are still significantly greater

than zero. As expected, during the days prior to a Hot Day as well as after day three following a

Hot Day, there are virtually zero remaining effects of the heat event.19 This can be interpreted as

evidence against the harvesting hypothesis because one would expect that harvesting would lead

to a decrease in mortality rates in the days immediatetly after a heat event.

[Insert Figure 8 about here]

However, the results presented in Figure 8 may potentially suffer from omitted variable bias:

the temporal correlation of temperature and also pollution is significant. The plain correlation

coefficient between the maximum daily temperatures on a Hot Day and the following day is 0.6.

For ozone it is even higher, 0.7. More specifically, the average maximum temperature on a day

preceding a Hot Day is 29˚C (84˚F) and on a day following a Hot Day it is 28˚C (83˚F).

Consequently, maximum ozone levels on the days prior and subsequent to a Hot Day are also

highly elevated, between 129 and 127µg/m3. The underlying model displayed in Figure 8 does not

disentangle the health effects due to high temperatures and adverse pollution conditions during

the days surrounding a Hot Day. Nor does it take into account that the leads and lags are likely

to be Hot Days as well. Since we know that environmental conditions on the days preceding and

19 The according graph for hospitalizations looks very similar and is available upon request.
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following a Hot Day are likely to lead to adverse health (and thus increases in hospitalizations and

mortality), it becomes clear that this impact factor works in opposition to potential harvesting

effects and may actually obscure it. Disentangling the two opposing forces empirically is very

challenging.

Next, Figure 9 plots the coefficient estimates from interaction terms between Hot Day and

5-year age group dummies that have been added to the model.20 It is easy and nice to see that

the hospitalizations on Hot Days are driven by people above 55, and in particular by the elderly

between 71 and 80 years of age.21 This finding yields strong evidence in favor of the harvesting

hypothesis. It may be reconciled with the apparent refutation of a harvesting effect in Figure 8

with reference to the time frame: the four-day window in Figure 8 might have been too short to

identify a reversal of mortality rates. Thus we now turn to a more long-term perspective.

[Insert Figure 9 about here]

Finally, a sound test for the empirical relevance of the harvesting hypothesis is to aggregate

data up at a higher level, e.g., the month-county or year-county level. Using this method, one

can test whether the occurrence of one additional Hot Day has a significant impact on the annual

mortality and hospital admission rate. In other words: If it were true that heat events triggered

persistent adverse health effects that would not have occurred in the counterfactual state, then

an additional Hot Day should also significantly elevate the monthly and annual mortality and

hospitalization rate, not only the daily one. However, due to data limitations and power issues,

researchers often cannot implement this test since one obviously needs enough years of observation

with enough variation in the annual number of Hot Days.22 In addition, the number of regional

units of observations—in this case counties—should be sufficiently large. Our data and setting

fulfills all of these conditions.

Columns (5) and (6) in Panel B of Table 5 report results from the test and uses data aggregated

at the county-month and county-year level, resulting in 52,272 and 4,356 observations. The results

show coefficients of sizes 0.03 to 0.04 which translate into increases by about 0.05%—i.e., reduced

by a factor of 100(!) as compared to the standard estimate in column (1) of Table 2. However,

these coefficients are statistically highly significant and translate into about 30 additional hospital

admissions due to one additional Hot Day. This means that we can assume that these 30 people

20 The results here are for the Unconditional Approach I but are almost identical for the Conditional Approach
II.

21 The plain Hot Day coefficient estimate is of magnitude 0.16 (i.e. 0.3% of the mean) and not statistically
different from zero.

22Deschênes and Greenstone (2011) being an exception.
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would not have been hospitalized within a year in the absence of the Hot Day. Obviously, this

finding delivers strong support for the harvesting hypothesis. The finding is reinforced by the

mortality data which yields a highly significant coefficient of 0.0024. Again, the yearly coefficient

is more than 100 times smaller than the daily one, and translates into only minor annual mortality

increases of 0.08% or 2 people per additional Hot Day in Germany. This finding is very similar to

the one in Deschênes and Greenstone (2011) for the US, who find an annual age-adjusted mortality

rate increase of 0.11% per additional Hot Day.

5.2 Monetizing the Health Loss of One Additional Hot Day

As a last step, this paper seeks to assess and monetize the total health effects triggered by extreme

weather conditions and to derive implications from climate change. Although this exercise requires

many assumptions, we believe that it is an important first step to conduct an evidence-based cost-

benefit analyses of climate change regulation.

Given the complex nature of climate change, it is not surprising that projections are relatively

vague. Concrete statements are hard to find in the famous Stern (2006) report. According to

the IPCC (2007), it is very likely that hot extremes, heat waves and heavy precipitation events

will continue to become more frequent (p. 46, 53). The underlying state-of-the art global climate

model of the IPCC is the third version of the so-called Hadley Centre Coupled Model (HadCM3)

(Pope et al., 2000). These climate models are extremely complex and require many underlying

assumptions and scenarios. Deschênes and Greenstone (2011) make use of the HadCM3 model

and the “business-as-usual” scenario to predict the change in the number of Hot Days for 2070

to 2099 relative to 1968 to 2002 and different US regions.23 For the region whose climate comes

closest to Germany’s, New England, Deschênes and Greenstone (2011) estimate a 20% increase in

the number of Hot Days. Hübler et al. (2008) make use of the Regional Climate Model REMO

and predict “two to five times as many hot days [for Germany from 2071 to 2100 relative to 1971

to 2000]” (p. 383).

Given the difficulty and inherent uncertainty of making such long-term predictions (Heal and

Millner, 2013), for the following reasons, the remainder of the paper focuses on the monetized

health effects of one additional Hot Day: (i) Additional Hot Days are extremely plausible climate

change predictions and are always referred to in predictions of climate change models. (ii) One

additional Hot Day is an intuitively plausible concept. The monetized health effects can be easily

adapted to varying climate change predictions. (iii) One additional Hot Day represents an increase

23 Hot Days are in this case defined as days with a mean daily temperature above 90˚F.
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of about 14% in the total number of Hot Days in Germany, which is very much in line with the

Deschênes and Greenstone (2011) prediction for New England using HadCM3. (iv) Finally, we

abstain from estimating the impact of fewer Cold Days for two reasons: First, the empirical models

do not yield strong evidence for the notion that extreme cold significantly affects population health

in Germany. Second, climate change projections concerning Cold Days are not unambiguous. On

the one hand, the IPCC (2007) projects that snow cover will contract (globally) in the future. On

the other hand, loss of arctic sea ice has been linked to the recent extreme cold weather in North

America and Europe (Liu et al., 2012). The latter finding suggests that climate change would lead

to both more heat and cold events in the mid-latitudes.

Table 6 summarizes the results from the empirical models and calculates the total health costs

of one Hot Day under competing assumptions. The basis for these calculations is Table 2 and

equivalent tables using the dependent variables Hospital Days and Hospital Death reported in

Appendix A1. The health effects that we monetize consist of (i) hospital days due to a Hot Day,

(ii) death after a hospital stay due to a Hot Day, (iii) immediate death due to a Hot Day—in

accordance with the dependent variables (see Tables A1 and B1). Table 6 presents the results using

estimates obtained from three main models: Approach I and Approach II on the day-county level,

and the approach outlined in column (5) of Table 5, which aggregates at the year county level,

completely internalizing the harvesting effect.

The first four columns of Table 6 evaluate the economic value of hospital days that are triggered

by one Hot Day. Column (1) simply multiplies the number of triggered hospital days by the average

health care costs of one hospital day in Germany, which is e 500 (German Federal Statistical

Office, 2013b). Column (2) shows the value of the Hot Day-induced loss in labor productivity

by multiplying the rough share of the working population, 50%, by the number of hospital days

and the average daily gross wage in 2012, including employer-mandated benefits: e 150 (German

Federal Statistical Office, 2013a).24 Columns (3) and (4) show results where we convert the number

of hospital days into Quality-Adjusted Life Years (QALYs) lost by assuming that 365 hospital days

equal a loss of one QALY (column (3)) and half a QALY (column (4)). We evaluate one QALY

with e 100,000 ($130,000) (Shiroiwa et al., 2010; Kniesner et al., 2010; Robinson et al., 2013).

Note that alternative assumptions about the value of a QALY do not significantly alter the main

findings below.

[Insert Table 6 about here]

24 Note that this column very likely overestimates the true effects, given that mostly the elderly are hospitalized
on Hot Days, see Figure 9.
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Column (5) assesses the value of the total number of deaths, which is the sum of deaths after a

hospital stay as well as immediate deaths. Again, one QALY is evaluated at a value of e 100,000.

Results in the first two rows are derived from the two approaches that use the data at the day-

county level and that ignore harvesting; here we assume that people who died would have lived

another calendar year absent the heat event. For the third approach—results displayed in the

third row—which aggregates at the year-county level and accounts for harvesting, we assume that

people who died would have lived another 30 years.25

As can be seen in the final two columns: (i) the upper and lower bound QALY assumptions

barely affect the estimates (and neither do varying assumptions about their value). (ii) The

Unconditional Approach I yields the largest monetized health loss estimates and the approach that

aggregates at the year-county level, and thus accounts for harvesting, yields the lowest monetized

health loss. (iii) All estimates are relatively close and relatively small in size. The estimated

monetized losses range from e 6m to e 43m per Hot Day for an entire nation with a GDP of e 2.5

trillion and 82 million residents. The according values for the US would lie between $30m and

$212m. The values equal between e 0.07 ($0.10) and e 0.52 ($0.68) per resident.26 (iv) Assuming

that climate change leads to a permanent increase of one additional Hot Day per year and taking

the largest annual loss estimate of e 43m, the nominal health-related welfare loss over one life

cycle, i.e., 80 years, would accumulate to e 3.4bn for Germany. Applying a discount rate of 2.5%

reduces this sum to e 470m or about e 6 ($8) per resident. The according values for the US would

be $16.8bn and $2.3bn, respectively.

Finally, it should be stressed that these back-of-the-envelope calculations solely consider the

health-related costs of one additional Hot Day. They also ignore any health effects that do not

manifest in immediate hospital admissions or death. We also abstract away from costs associated

with health-related avoidance behavior, as well as from any health effects stemming from potential

climate change-related increases in flooding, hurricanes, and tornados. As a comparison, the second

costliest hurricane in US history—Hurricane Sandy—is estimated to have cost 72 human lives in

the US, most of whom would not have died absent the hurricane (Blake et al., 2012). Assuming

that these humans would have lived another 30 years, the monetized mortality-loss of Sandy would

be $280m or about $1 per US resident. The total loss is an estimated $50bn, the large majority

of which is attributed to property damage.

25 30 years is roughly the difference between the average current age of Germans and their life expectancy.
Alternative assumptions do not alter the main findings.

26 Assuming an exchange rate of 1.3 and that the US has 311/82=3.8 times as many residents as Germany.
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6 Conclusion

Around the world, climate change with its potentially adverse effects on mankind and the question

of appropriate regulatory measures are heavily debated. The issue will continue to be at the top of

policy agendas. To put policymakers into a position to be able to seriously evaluate and balance

costs and benefits of climate change and according regulatory efforts, scientists have to provide

state-of-the art empirical analyses and cost projections.

This paper assesses more comprehensively than any previous paper the adverse population

health effects of extreme temperatures and pollution. Weather and pollution are inherently linked.

Thus it is necessary to consider many high quality measures of both. At the day-county level,

we link an extensive set of administrative weather and pollution measures from more than 2,300

ambient monitors obtained over a time period of 10 years to two register datasets: (i) a mortality

census comprising all deaths on German territory from 1999 to 2008, and (ii) a hospital census

of all admissions from 1999 to 2008. All databases together allow us to comprehensively analyze

the short-term, immediate, health effects of weather and pollution and to draw conclusions of the

implications of climate change for population health.

This study makes the following important contributions: First, in line with the existing liter-

ature, it finds that extreme heat triggers significant increases in adverse health events that lead

to hospital stays or deaths. The length of a heat wave determines which types of diseases are

primarily triggered. For example, infectious and metabolic hospital admissions strongly increase

with the length of a heat event. However, the admission rates for other disease categories, e.g.,

cardiovascular or neoplasmic diseases, are front-loaded and tend to occur at the beginning of heat

events. Thus the average impact of a Hot Day—a day with maximum temperatures above 30˚C

(86˚F)—on hospital admissions is about 5% and remains relatively stable over time. A Hot Day

also leads to a 10% increase in the overall mortality rate. Again, as for hospitalizations, the

heat-related causes of death vary with the length of the heat event, e.g., metabolic and infectious

deaths are not affected at the beginning of heat events and ongoing extreme heat particularly

boosts respiratory and infectious deaths.

Second, we apply several methods to assess the validity of the harvesting hypothesis according

to which mostly older people die or are hospitalized during heat events—and that those people

would have died or admitted absent the heat event shortly after. We provide strong support in

favor of the harvesting hypothesis by (i) looking at the evolution of mortality and admission rates

before and after heat events, (ii) looking at the age structure of those admitted on Hot Days and
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finally, and most convincingly, (iii) exploiting the richness of the data by aggregating it at the

month-county and year-county level and using monthly and annual variation in the number of

Hot Days as the identifying variation. If one applies the latter test that accounts for harvesting

comprehensively, the basic heat-health relationship remains robust and highly significant, but

the strength of the dose-response function is reduced by the factor 100(!). This finding strongly

supports the view that the adverse health effects of heat are overwhelmingly temporary phenomena

with little long-lasting impact on population health.

Third, we do not find empirical evidence that extreme cold significantly affects population

health to a significant degree. All estimated effects are very small or even negative. The latter

applies to the impact of cold waves on hospital admissions and is very likely an artifact of the

associated bad outdoor and driving conditions that may prevent some hospital admissions.

Fourth, pollution levels above EU alert thresholds are significantly associated with both in-

creased hospitalizations and deaths. However, this mainly holds when ignoring simultaneous

weather conditions and other pollutants that may also drive adverse health effects. Climate re-

mains a poorly understood, complex system, but it is well known that certain climatic conditions

serve as input factors for the formation of others. For example, ozone is an oxidant and the chemi-

cal product of CO and NOx under the influence of high temperatures and sunshine. This explains

why these climatic factors are correlated. When one disentangles and controls for these simulta-

neous climatic factors, the impact of a single pollutant via elevated ambient concentration levels

decreases significantly and converges to zero for some pollutants. This is in line with findings from

medical scientists and epidemiologists who showed in laboratory experiments that surprisingly

high pollution levels of single pollutants are required before significant adverse health effects could

be detected in humans. These and the findings from this study suggest that the real-life adverse

health effects of pollutants mostly stem from a combination of several adverse climatic factors

and elevated pollutants that generally prevail on days with high ambient air pollution. Thus,

high pollution levels of single pollutants can also be interpreted as general indicators of adverse

outdoor environmental conditions. However, since—to date—regulators around the world only

regulate “unconditional” pollution levels and do not consider contemporaneous climatic condi-

tions or implement action plans accordingly, we see the unconditional effects as the relevant policy

parameters of interest. When ambient pollution levels of O3, NO2 and PM10 increase above the

current EU thresholds hospitalizations and deaths clearly and significantly increase by between

1% and 8%. In the US, NO2 and PM10 regulatory thresholds as well as actual concentration

levels are two to three times higher than in the EU (Environmental Protection Agency (EPA),
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2011, 2013). To the extend that our findings are transferable, tightening the regulation to EU

standards and enforcing it strictly could translate into 40 (NO2) and 83 (PM10) fewer deaths per

100 million residents and avoided high pollution day. Obviously, the same applies to a stricter

enforcement of the EU regulation, which has been violated in more than 10% of all German day

observations.

Fifth, in general, all findings differ significantly in size depending on whether one considers

a rich set of simultaneous weather and pollution conditions in addition to the temperature or

pollution variable of interest. For example, the adverse health effects of a Hot Day decrease

by factors of two and more when comprehensively controlling for all contemporaneous climatic

conditions like high ozone or particular matter concentrations that typically prevail on Hot Days.

Finally, we monetize the health effects of one additional Hot Day—a very concrete and plausi-

ble prediction of climate change. We provide the results for three main approaches: (a) estimates

obtained at the day-county level, which ignore contemporaneous climatic conditions and harvest-

ing, (b) estimates at the day-county level that consider contemporaneous climatic conditions, but

ignore harvesting, and (c) year-county level estimates, which ignore contemporaneous climatic

conditions, but account for harvesting. The total estimated health loss of one Hot Day represents

a monetary welfare loss of between e 6m and e 43m for the whole of Germany ($30m to $212m

for the US)—or up to e 0.52 ($0.68) per resident.

As a last point, we would like to stress the limitations of this study. First of all, this paper solely

studies the health effects of extreme temperature and pollution. Second, it does not consider health

effects that lead to ambulatory doctor visits or no treatments at all. However, our calculations

demonstrate that mild health effects do not seem to matter a lot when it comes to the overall

monetized health effects. A very large share of the serious health effects should be captured by

this study. One important exception may be fetal health effects which may have long-lasting

and expensive impacts (cf. Heckman (2012). For example, Currie et al. (2013) estimate that

the overall discounted long-term societal costs of being born with low-birth weight are at least

$100,000. We also acknowledge that we do not consider adverse health effects of avoidance behavior

in the estimates but, at the same time, this omission should not significantly impact the central

findings of this study, which incorporates avoidance behavior in its estimates.27 More importantly,

to the extent that climate change leads to an increase in floods, tornadoes, and hurricanes, we

underestimate the total health effects. However, in the time period from 1993 to 2006, the average

27 Obviously, for predictions about the future, assumptions about avoidance behavioral matter and the adverse
health effects would be mitigated if avoidance behavior further increased (cf. Barreca et al., 2013) and reinforced if
people engaged in less avoidance behavior in the future.
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total number of deaths from all these natural disasters combined was 273 in the US (Goklany,

2009). Even if 20% of these incidences were triggered by climate change, the overall impact on the

total cost estimates would be relatively moderate. Lastly, this study solely focuses on short-term

adverse health effects of extreme climatic conditions. It entirely disregards any long-term effects

that extreme temperatures or high pollution concentrations may have on health (cf. van den Berg,

2006; Currie and Almond, 2011; Zivin and Neidell, 2013; Currie et al., 2013).

We see this study as a first step to better assess climate change-related social costs. More

studies on other regions and other outcome measures are instrumental for a better understanding

of how weather, pollution and human health interact.
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Figure 1: Distribution of Official German Ambient Weather and Pollution Monitors

Figure 2: (a) Boxplot of Mean Temperature Over Month and (b) Temperature Variation Over 10 Years
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Figure 3: Distributions of Max. and Min. Temperatures and Number of Hot and Cold Days
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Figure 4: Distribution of Ozone (O3) Concentration and Non-Compliance Days: Identifying Variation
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Figure 5: Nonparametric Relationship Between Temperature, Pollution and Hospitalizations
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Figure 6: Semiparametric Relationship Between Temperature, Pollution and Hospital Admissions
(Unconditional Approach I)

Figure 7: Effect of Heat on Cause-Specific Hospitalizations and Mortality (Conditional Approach II)
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Figure 8: Mortality Rates Four Days Before and After a Hot Day (Unconditional Approach I)

Figure 9: Age Structure of Hospital Admissions on Hot Days: Plotted Interaction Terms Between Hot
Day and Age Groups (Unconditional Approach I)
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Table 1: Selected Published Empirical Papers on the Health Effects of Extreme Weather and Outdoor Air Pollution, Economic Journals, Developed Countries

A: Weather Impact Area Period Unit of Obs. Method Outcomes Var. of Interest Climate
Controls

Deschênes and Moretti (2009), continental US, ’72-’88 county-day county-month-year FE mortality rate hot days, precip.
REStat white deaths (cause, age, gender) cold days
Deschênes et al. (2009), continental US ’72-’88 ind.-pregn., county-year FE; birth wgt, LBW # days in N/A
AER: PP during gestation 5 temp. bins N/A
Deschênes & Greenstone (2011), continental US ’68-’02 county by year county FE, mortality rate # days in 10 precipitation
AEJ: Applied state-year FE temp. bins
Barreca (2012), 373/3,100+ ’73-’02 county-month county-month FE, mortality rate mean temp.& temp.-precip.
JEEM US counties county-month trends precip. interactions
Barreca et al. (2013), US 1900-2004 state-month state-month FE, mortality rate # days in 10 precipitation
JPE, R&R year-month FE temp. bins

B: Pollution Impact

Chay and Greenstone (2003), US ’78-’84 county-year ’81’82 recession, county infant death TSPs temp.,precip.
QJE FE, TSP lags as IV (75% of birth) (month-state)
Neidell (2004), California (CAL), US ’92-’98 zip code-month zip code-year FE, ER asthma adm. CO, O3, max. temp.,
JHE year-month FE, (<18 years) PM10, NO2 avg. precip.
Currie and Neidell (2005), CAL, US ’89-’00 zip code-week zip code-month FE, infant death, LBW CO, O3,PM10 max. temp.,
QJE year FE (70% of birth) avg. precip.
Currie et al. (2009), New Jersey (NJ), US ’89-’03 ind.-trimester mother FE, infant death, LBW CO, O3, PM10 max. & min temp.,
JHE (300,000 obs.) monitor*quarter FE (36% of birth) precip. (90 day avg.)
Lleras-Muney (2010), enlisted married men ’89-’95 ind.-year changes in location infant respiratory CO, O3,PM10, temp, temp2,
JHE & dependents, US (115,000 obs.) b/c military transfers hospitalization SO2, NO2 rain
Moretti and Neidell (2011), LA, US ’93-’00 zip code-day daily traffic in ports ER respiratory adm. O3 CO, NO2,
JHR (Apr to Oct) & distance as IV 6 weather ind.
Knittel et al. (2011), CAL, US ’02-’07 zip code-week traffic & weather infant death CO, O3,PM10 6 weather ind.
REStat, R&R as IVs
(extension of Currie and Neidell (2005))

Currie and Walker (2011), Pennsylvania & ’97-’00, ind.-pregn. DID, <2km of toll prematurity, LBW E-ZPass , only in aux.
AEJ: Applied NJ, US ’94-’03 (400,000 obs.) (treated) introduction regression
Coneus and Spiess (2012), Germany ’02-’07 ind.-year zip code, family FE, hgt., wgt., fetal gr. CO, O3,PM10 N/A
JHE (1,200 + 700 obs.) year FE disorder, resp. dis. SO2, NO2

Schlenker and Walker (2011), CAL, US: 164 zip c. ’05-’07 zip code-day CAL airport congestion: hospital admissions CO, NO2, O3 temp, precip., wind
RESTud, R&R around 12 airp. IV conges. other airports
Beatty and Shimshack (2011), Puget Sound, US; ’96-’06 school distr. DID; school bus emission bronch. & asthma, adopter distr. monthly temp. &
JHE 53 school distr. -month reduction program pneum. & pleur. hosp. (treat. group) precip.
Beatty and Shimshack (2014), England 2/3 of birth ind.- month individual FE, region- respiratory CO, O3,PM10 mean+max temp.
JEEM ’97-’99; (380,000 obs.) year FE, region-age FE hospitalizations mean+max precip.



Table 2: The Impact of Extreme Temperature on Health: Conditional and Unconditional on Contemporaneous Pollution and Weather Conditions

Panel A: Hospitalizations (1) (2) (3) (4) (5)

Hot Day 2.9083*** 1.6362***
(0.1585) (0.1688)

Heat Wave Day 3.5423*** 0.5970**
(0.1953) (0.2542)

Cold Day -1.2245*** 0.7778***
(0.1208) (0.1991)

Cold Wave Day -3.9633*** -4.1638***
(0.3561) (0.5724)

change in % +5.0% +6.1% -2.1% -6.8%
N 1,590,454 1,590,454 1,590,454 1,590,454 1,429,928
R2 0.4775 0.4773 0.4772 0.4772 0.5296

Panel B: Mortality

Hot Day 0.3090*** 0.0467***
(0.0088) (0.0093)

Heat Wave Day (>3 Hot Days) 0.6573*** 0.3931***
(0.0299) (0.0270)

Cold Day 0.0163 -0.0249*
(0.0112) (0.0134)

Cold Wave Day (>3 Cold Days) 0.0488* 0.0365
(0.0276) (0.0298)

change in % +10.3% +21.9% +0.5% +1.6%
N 1,518,000 1,518,000 1,518,000 1,518,000 1,364,921
R2 0.0263 0.0261 0.0252 0.0252 0.0268

County, week, & month-year fixed effects yes yes yes yes yes
Age, gender, county & hospital controls yes yes yes yes yes
7 continuous weather measures + 15 interactions no no no no yes
5 continuous pollution measures + 5 quadratic + 5 cubic no no no no yes
+ 10 interaction terms
3 pollution EU Non-Compliance Indicators (O3, NO2, PM10) no no no no yes
25 interaction terms weather & pollution no no no no yes

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level. Regressions are weighted by the yearly county population. Data sources are
discussed in Section 2. All specifications estimate the model in equation (3) by OLS. Each column in each panel represents one model. Models only differ by the sets of covariates
included as indicated. In Panel A, the dependent variable is the daily incidence of hospital admissions per 100,000 population at the county level (mean: 57.99, see Appendix A).
In Panel B, the dependent variable is the daily mortality rate per 100,000 population at the county level (mean: 2.99, see Appendix B). For example, according to column (1) in
Panel A, a Hot Day—defined as the max. temperature exceeding 30˚C (86˚F)—triggers 2.9 additional hospital admissions per 100,000 pop. This represents an increase by 5.0%
and translates into 2,385 additional admissions for the whole of Germany with its 82 million inhabitants, or roughly 1 additional daily admission per hospital. As shown in Table
C1, about 2% of all days are Hot Days in Germany, between 7 and 8 per year. Columns (1) to (4) show the Unconditional Approach, where the regressor of interest absorbs the
effects of all contemporaneous weather and pollution conditions, whereas column (5) shows the Conditional Approach that nets out all contemporaneous weather and pollution
conditions. Weather conditions are specified and defined as explained in Section 2 and Appendix C. Column (5) has fewer observations since PM10 data for 2000 is not available.



Table 3: The Impact of High Pollution Levels (“EU Non-Compliance Days”) on Health: Conditional and Unconditional on Pollution and Weather Conditions

Panel A: Hospitalizations (1) (2) (3) (4)

NO2 EU Non-Compliance Day 4.6796*** 0.4651***
(0.1484) (0.1638)

O3 EU Non-Compliance Day 0.3881*** -1.3795***
(0.0910) (0.1573)

PM10 EU Non-Compliance Day 0.6559*** -0.0469
(0.1012) (0.1588)

change in % +8.1% +0.7% +1.1%
N 1,590,454 1,590,454 1,590,454 1,429,928
R2 0.4808 0.4772 0.4772 0.5296

Panel B: Mortality

NO2 EU Non-Compliance Day 0.0398*** 0.0047
(0.0036) (0.0056)

O3 EU Non-Compliance Day 0.1468*** -0.0045
(0.0047) (0.0061)

PM10 EU Non-Compliance Day 0.0830*** 0.0074
(0.0073) (0.0124)

change in % +1.3% +4.9% +2.8%
N 1,518,000 1,518,000 1,518,000 1,364,921
R2 0.0253 0.0262 0.0253 0.0268

County, week, & month-year fixed effects yes yes yes yes
Age, gender, county & hospital controls yes yes yes yes
7 continuous weather measures + 15 interactions no no no yes
5 continuous pollution measures + 5 quadratic + 5 cubic no no no yes
+ 10 interaction terms
4 extreme temp. indicators (Hot Day, Heat Wave, Cold Day, Cold Wave) no no no yes
25 interaction terms weather & pollution no no no yes

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level. Regressions are weighted by the yearly county population.
Data sources are discussed in Section 2. All specifications estimate the model in equation (3) by OLS. Each column in each panel represents one model. Models
only differ by the sets of covariates included as indicated. In Panel A, the dependent variable is the daily incidence of hospital admissions per 100,000 population
at the county level (mean: 57.99, see Appendix A). In Panel B, the dependent variable is the daily mortality rate per 100,000 population at the county level
(mean: 2.99, see Appendix B). For example, according to column (1) in Panel B, a NO2 EU Non-Compliance Day—defined as a day with the average NO2 level
exceeding the EU alert threshold of 40 µg/m3—triggers 0.0375 additional deaths per 100,000 pop. This represents an increase by 1.3% and translates into 31
additional deaths for the whole of Germany. As shown in Table D1, about 12% of all days are NO2 EU Non-Compliance Days in Germany, 44 per year. Columns
(1) to (3) show the Unconditional Approach, where the regressor of interest absorbs the effects of all contemporaneous weather and pollution conditions, whereas
column (4) shows the Conditional Approach that nets out all contemporaneous weather and pollution conditions. Pollution conditions are specified and defined
as explained in Section 2 and Appendix D. Column (4) has fewer observations since PM10 data for 2000 is not available.



Table 4: The Impact of Extreme Temperature on Health by Diagnoses: Conditional on Weather Conditions and Other Pollutants

(1) (2) (3) (4) (5) (6)
Panel A: Hospitalizations all causes heart respiratory infections metabolism neoplasm

Hot Day 1.6362*** 0.2103*** 0.1025*** -0.0044 0.0903*** 0.4137***
(0.1688) (0.0274) (0.0162) (0.0072) (0.0113) (0.0324)

Heat Wave Day (>3 Hot Days) 0.5970** 0.0157 0.1388*** 0.1369*** 0.1998*** -0.0851*
(0.2542) (0.0456) (0.0268) (0.0186) (0.0206) (0.0464)

Cold Day 0.7778*** 0.1882*** 0.0546*** 0.0227** 0.0033 0.0537
(0.1991) (0.0377) (0.0203) (0.0111) (0.0125) (0.0382)

Cold Wave Day (>3 Cold Days) -4.1638*** -0.5621*** -0.2021*** -0.0229 -0.1747*** -0.8317***
(0.5137) (0.1001) (0.0496) (0.0226) (0.0289) (0.1007)

share of all causes 100% 15.7% 6.2% 2.3% 2.8% 11.3%
N 1,429,928 1,429,928 1,429,928 1,429,928 1,429,928 1,429,928
R2 0.5296 0.4626 0.2623 0.0918 0.2311 0.4712

Panel B: Mortality all causes heart respiratory infections metabolism neoplasm

Hot Day 0.0467*** 0.0222*** 0.0041* 0.0006 -0.0006 0.0180***
(0.0093) (0.0062) (0.0024) (0.0013) (0.0018) (0.0047)

Heat Wave Day (>3 Hot Days) 0.3931*** 0.1501*** 0.0696*** 0.0236*** 0.0185*** 0.0492***
(0.0270) (0.0160) (0.0067) (0.0034) (0.0044) (0.0107)

Cold Day -0.0249* -0.0127 -0.0037 0.0032* 0.0048** -0.0101
(0.0134) (0.0095) (0.0033) (0.0016) (0.0023) (0.0065)

Cold Wave Day (>3 Cold Days) 0.0365 0.0155 0.0003 0.0007 0.0051 -0.0095
(0.0298) (0.0222) (0.0089) (0.0035) (0.0060) (0.0152)

share of all causes 100% 46.3% 6.4% 1.3% 2.4% 25.7%
N 1,364,921 1,364,921 1,364,921 1,364,921 1,364,921 1,364,921
R2 0.0263 0.0263 0.0263 0.0229 0.0206 0.0214

County, week, & month-year fixed effects yes yes yes yes yes yes
Age, gender, county & hospital ind. yes yes yes yes yes yes
7 cont. weather ind. + 15 interactions yes yes yes yes yes yes
5 cont. pollution ind. + 5 quadratic + 5 cubic yes yes yes yes yes yes
+ 10 interaction terms
3 pollution EU Non-Compliance Indicators yes yes yes yes yes yes
25 interactions weather & pollution yes yes yes yes yes yes

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level. Regressions are weighted by the yearly county population. Data sources
are discussed in Section 2. All specifications estimate the model in equation (3) by OLS. Each column in each panel represents the Conditional Approach that nets out all
contemporaneous weather and pollution conditions. In Panel A, the dependent variable is the daily incidence of hospital admissions per 100,000 population at the county
level (mean: 57.99, see Appendix A). In Panel B, the dependent variable is the daily mortality rate per 100,000 population at the county level (mean: 2.99, see Appendix
B). For example, according to column (1) in Panel A, a Hot Day—defined as the max. temperature exceeding 30˚C (86˚F)—triggers 1.4 additional hospital admissions per
100,000 pop. This represents an increase by 2.4% and translates into 1,148 additional admissions for the whole of Germany. Weather conditions are specified and defined as
explained in Section 2 and Appendix C.



Table 5: The Impact of Extreme Heat on Normalized Hospitalizations: Robustness Checks

cluster
at state level
(1)

2-way cluster
(2)

linear &
quadratic
time trends (3)

linear &
quadratic state
time trends (4)

linear & quadratic
county time
trends [2006-2008](5)

county by year
FE [2006-2008](6)

Panel A

Hot Day 2.9083*** 2.9083*** 2.9083*** 2.6515*** 2.1616*** 2.2053***
(0.2376) (0.2474) (0.1585) (0.1303) (0.2188) (0.2287)

change in % +5.0% +5.0% +5.0% +4.6% +3.7% +3.8%
N 1,590,454 1,590,454 1,590,454 1,590,454 467,770 467,770

×(temp.>32˚C)
(1)

×weekend
(2)

×warm region
(3)

×cold region
(4)

aggregated
at monthly
level (5)

aggregated
at annual level
(6)Panel B

Hot Day×[column header] 0.5751*** -0.0159 -1.0389*** 0.4892**
(0.0603) (0.1483) (0.1911) (0.2459)

Hot Day 1.6456*** 2.3653*** 3.3788*** 2.8509*** 0.0261*** 0.0421**
(0.1598) (0.1317) (0.1684) (0.1685) (0.0043) (0.0207)

max. daily temp. 0.1654***
(0.0039)

Weekend -28.7369***
(0.4506)

N 1,590,454 1,590,454 1,590,454 1,590,454 52,272 4,356

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level except for columns (1) of Panel A which clusters at the state and column
(2) of Panel A which clusters at the county and day level (2-way cluster). Regressions are weighted by the yearly county population. Data sources are discussed in Section
2. Each column in each panel represents one Unconditional Approach model, i.e., the model does not control for other contemporaneous weather and pollution conditions.
The dependent variable is always the hospitalization rate (mean: 57.99, see Table A1); the reference estimate is the one in Column (1) of Table 2. All specifications estimate
a model similar to equation (3) by OLS. More precisely, in Panel A, column (3) adds a nation-wide linear and quadratic time trend. Column (4) adds state-level time trends
and column (5) adds county-level time trends (for 2006-2008 only because of computer memory constraints). The first column in Panel B adds a continuous measure for the
maximum daily temperature as well as an interaction term between the maximum daily temperature and the average maximum Hot Day temperature (31.9˚C (89.4˚F)).
Thus, the interaction term estimates the marginal effect of one temperature degree above 31.9˚C. Column (2) of Panel B adds a weekend dummy and interacts it with Hot
Day. Column (3) and (4) add a dummy for warm region (mean annual county-level temperature falls into the highest temperature quartile for Germany (>10.2˚C (50˚F)))
and cold region (mean annual temperature below the lowest temperature quartile (<9.0˚C (48˚F))) as well as their interactions with Hot Day. Column (5) in Panel B
aggregates the data at the annual county level and estimates the impact of one additional Hot Day per year.



Table 6: The Monetized Health Effects of One Additional Hot Day

Hospitalizations Mortality Total

Health Care
Expenditures
(1)

Lost
Labor
(2)

Lost QALYs
(upper bound)
(3)

Lost QALYs
(lower bound)
(4)

remaining life
years (5)

(1)-(3)
+(5)

(1)+(2)
+(4)+(5)

Unconditional Approach, 19,000×e 500 0.5×19,000×e 150 (19,000/365)×e 100,000×1.0 (19,000/365)×e 100,000×0.5 270×1×e 100,000
daily county level, (Approach I) =e 9.5m =e 1.4m =e 5.2m =e 2.6m =e 27m ∼e 43.1m ∼e 40.5m

Conditional Approach, 8,000×e 500 0.5×8,000×e 150 (8,000/365)×e 100,000×1.0 (8,000/365)×e 100,000×0.5 78×1×e 100,000
daily county level, (Approach II) =e 4.0m =e 0.6m =e 2.2m =e 1.1m =e 7.8m ∼e 14.6m ∼e 13.5m

Unconditional Approach, 180×e 500 0.5×180×e 150 (180/365)×e 100,000×1.0 (180/365)×e 100,000×0.5 2×30×e 100,000
annual county level =e 90,000 =e 13,000 =e 50,000 = e 25,000 =e 6m ∼e 6.2m ∼e 6.1m

The table shows the health-related costs associated with one Hot Day. The first row is based on the Unconditional Approach I that does not consider additional weather or pollution
control variables other than Hot Day. The underlying models that estimate how many hospital days are triggered by a Hot Day are similar to equation (3) but use Hospital Days as
dependent variable (see Appendix A1). The second row is based on the Conditional Approach II and a saturated model that simultaneously considers a rich set of weather and pollution
controls. These first two approaches are based on daily county-level observations and include potential harvesting effects. The third row considers harvesting and is based on aggregated
annual county-level data (see column (5) in Panel B of Table 5). Column (1) makes use of the fact that an average hospital day in Germany is reimbursed with e 500. Column (2)
considers that the average daily wage in Germany is e 150. Columns (3) and (4) assume that 365 hospital days equal a loss of 1 and 0.5 QALYs, respectively. One QALY is evaluated
with e 100,000. Column (5) assumes that the remaining life expectancy for those who die during heat events is 1 year for rows one and two (excluding harvesting) and 30 years for row
three (including harvesting). We do not discount the monetized health-related loss in welfare. Under Approach I in the first row, a discount rate of 2.5% would reduce the costs over
80 years from e 3.2bn to e 1.4bn or e 17 per resident. The table does not consider health issues that lead to outpatient treatments. Neither does it consider health-related avoidance
behavior costs or adverse health effects due to tornados, hurricanes, or floods.



Appendix A: Hospital Admission Census

The first register dataset is the Hospital Admission Census. It contains the universe of hospital
admissions from 1999 to 2008. This is a restricted access dataset provided by the German
Federal Statistical Office (Statistische Ämter des Bundes und der Länder). We observe
every single of the more than 17 million annual hospital admissions. The data contain the following
information on the individual admission level:

• age in 18 age groups
(0-2 yrs., 3-5 yrs., 6-9 yrs., 10-14 yrs.,..., 60-64 yrs., 65-75 yrs., >75 yrs.)

• gender (binary indicator)

• county of residence [between 442 (1999) and 413 (2008) counties]

• day of admission

• length of stay (censored at 85 days)

• died in hospital (binary indicator)

• primary diagnosis (ICD-10, 3 digit)

• surgery needed (binary indicator)

• primary hospital department (43 categories)

• #hospital beds (12 categories)

• hospital location (federal state level; 16 states)

• private hospital (binary indicator)

• hospital identifier

As described in Section 2.5, we normalize, aggregate, and merge this dataset with the other
datasets at the day-county level. As such, we obtain the following descriptive statistics for the
hospital admission data:
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Table A1: Hospital Admission Census: Dependent Variables per 100,000 pop. (Daily County-Level,
1999-2008)

Variable Mean Std. Dev. N

All-cause hospitalization rate 57.99 25.71 1,590,454
Hospital days 488.87 267.21 1,590,454

Cardiovascular hospitalization rate 9.1116 4.9216 1,590,454
Cardiovascular hospital days 83.69 55.96 1,590,454
Cardiovascular deaths 0.4532 0.6423 1,590,454

Respiratory hospitalization rate 3.6013 2.5195 1,590,454
Respiratory hospital days 27.93 23.39 1,590,454
Respiratory deaths 0.1557 0.3685 1,590,454

Infectious hospitalization rate 1.3442 1.1759 1,590,454
Infectious hospital days 10.45 13.36 1,590,454
Infectious deaths 0.0509 0.2072 1,590,454

Neoplastic hospitalization rate 6.54 5.1076 1,590,454
Neoplastic hospital days 56.92 49.24 1,590,454
Neoplastic deaths 0.2812 0.5022 1,590,454

Metabolic hospitalization rate 1.6476 1.5454 1,590,454
Metabolic hospital days 15.48 18.39 1,590,454
Metabolic deaths 0.02534 0.1489 1,590,454

Source: German Federal Statistical Office (Statistische Ämter des Bundes
und der Länder). The German Hospital Admission Census includes the county of
residence and the day when the patient was hospitalized. The hospitalization rate
counts the daily incidence of hospitalizations per 100,000 pop. on the county level.
Hospital days is the sum of all hospital days that were triggered on a given day, i.e.,
it is the product of the hospitalization rate and the length of stay. Deaths counts the
number of hospital deaths per 100,000 pop. on the county level. Reference point is
always the day when the patient was hospitalized. The patient died sometime after
being admitted, but not necessarily on the day of admission. German data protection
laws prohibit us from reporting min. and max. values.
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Appendix B: Mortality Census

The second register dataset is the Mortality Census. It contains the universe of deaths on German
territory from 1999 to 2008. This is a restricted access dataset provided by the German Federal
Statistical Office (Statistische Ämter des Bundes und der Länder). We observe all of the 0.8
million annual deaths. The data contain the following information at the individual admission
level:

• age in years

• gender (binary indicator)

• county of residence [between 442 (1999) and 413 (2008) counties]

• day of death

• primary cause of death (ICD-10, 3 digit)

As described in Section 2.5, we normalize, aggregate, and merge this dataset with the other
datasets at the day-county level. As such, we obtain the following descriptive statistics.

Table B1: Mortality Census: Dependent Variables per 100,000 pop. (Daily County-Level, 1999-2008)

Variable Mean Std. Dev. N

Mortality rate 2.9897 1.5229 1,518,000
Cardiovascular mortality rate 1.3839 1.0788 1,518,000
Respiratory mortality rate 0.1918 0.4039 1,518,000
Infectious mortality rate 0.0374 0.1749 1,518,000
Metabolic mortality rate 0.0973 0.2889 1,518,000
Neoplasmic mortality rate 0.7676 0.2889 1,518,000

Source: German Federal Statistical Office (Statistische Ämter des Bundes
und der Länder). The mortality statistic includes the county of residence and the day
of death. The mortality rate counts the daily mortality rate per 100,000 pop. at the
county level. German data protection laws prohibit us from reporting min. and max.
values.

Identification of Population Health Effects Using Hospitalization and Mortality
Censuses

First of all, one needs to consider that we “only” observe the universe of deaths and inpatient
treatments, i.e., hospital admissions that require the patient to stay over night. This excludes
mild conditions that are treated in outpatient settings. Since this paper intends to assess the
population health effects of weather and pollution, the underlying assumption here is that adverse
health effects not requiring an overnight stay in a hospital are negligible relative to inpatient
treatments and mortality effects. This assumption essentially means that we obtain a lower bound
total population health effect triggered by weather and pollution conditions.

Second, note that we interpret the estimates strictly as contemporaneous short-run effects on
population health. While this approach has several methodological advantages—one of them is the
immediate and obvious dose-response relationship that substantially ameliorates concerns about
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confounding impacts of third unobserved factors—one has to keep in mind that this approach
abstracts away from long-term effects on health. The main neglected long-term effect is certainly
the adverse effect of in-utero and early childhood exposure to adverse environmental conditions
(cf. van den Berg, 2006; Cunha et al., 2010; Currie and Almond, 2011; Zivin and Neidell, 2013).
While the paper abstains from comment on any long-term effects of climatic conditions on health,
please note that the approach considers the immediate effect on hospitalizations and deaths of
newborns and children.

Third, while we are able to observe every single hospital admission, data protection laws
prohibit us from analyzing panel data. This means that we are unable to observe hospital read-
missions. According to representative Socio-Economic Panel Study (SOEP) data, about 13% of all
Germans were admitted to a hospital in 2010. About 2% (15% conditional on an admission), had
more than one hospital stay in 2010 (Wagner et al., 2007). Not being able to identify readmissions
would be particularly worrisome if we were interested in treatments of chronic diseases such as
diabetes where patients are obliged to return to the hospital in regular intervals.28

Fourth, we implicitly assume that all severe health effects triggered by weather and pollution
eventually lead to a hospital admission or death. We believe that this is a reasonable assumption.
German geography, combined with the institutional setting of the German health care system,
supports the assumption. First of all, the German population density is relatively high. Germany
has 82 million residents living in an area roughly the size of the US state Montana. The average
German population density is about seven times as high as the US population density (231 vs. 32
people per km2) (U.S. Census Bureau, 2012; German Federal Statistical Office, 2012). The hospital
bed density is also much higher. Germany has a total of 2,045 hospitals while Montana has only 70
hospitals (German Federal Statistical Office, 2013b). Per 100,000 population, Germany’s health
care infrastructure offers 824 hospital beds, while the US has only 304 (OECD, 2012). This
illustrates that geographic hospital access barriers, such as travel distances, are low in Germany
and significantly lower than in the US.

To date, Germany has 402 counties or county-equivalents (“urban municipalities”). The av-
erage population is about 190,000 but varies from 35,000 to 3.5 million for Berlin (see Table E1
in Appendix E). As compared to the US, the area size of German counties is smaller and the
population density is higher. The US has 3,144 counties but is 27 times the size of Germany.
The average US county population is about 100,000 but variation is much larger than in Germany
and ranges from 82 inhabitants in the smallest to 10 million inhabitants in the largest US county,
Los Angeles County (United States Census Bureau, 2013). Hence, the German counties are more
homogeneous. Still it is fair to say that US and German counties are comparable both in terms
of their administrative function in the two federalist states, as well as their overall structure.

Lastly, the uninsurance rate in Germany is below 0.5%. The public health care system covers
90% of the population and copayment rates in the public scheme are uniform and low.29 The
overwhelming majority of hospitals can be accessed independently of insurance status and provider
networks are almost unknown in Germany. Thus, insurance barriers to hospital access are also
low in Germany, and certainly lower than in the US.

Given these very low geographic and institutional access barriers, it is reasonable to assume
that severe health conditions ultimately lead to hospitalizations or death

28 Note that, using the age, gender and county-level information, we could apply propensity score matching
methods to probabilistically identify readmissions.

29 If total out-of-pocket expenditures do not exceed 2% of the individual’s income (1% for people with chronic
conditions), the daily copayment for inpatient stays is e 10 in the public system.
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Appendix C: Official Weather Data

The third register dataset contains daily weather measures from up to 1,044 ambient weather
stations. The data are provided by the German Meteorological Service (Deutscher Wet-
terdienst (DWD)). It covers the years from 1999 to 2008. The following weather measures were
collected on a daily basis:

• average temperature in˚C [measured 2 m (6’7”) above ground]

• minimum temperature in˚C [measured 2 m (6’7”) above ground]

• maximum temperature in˚C [measured 2 m (6’7”) above ground]

• total hours of sunshine

• precipitation level in mm per day

• average humidity in percent

• average storm force

• max. wind speed in km per hour (Beauford scale)

• average cloud coverage in percent

• vapor pressure in hectopascal (hPa)

• min. air pressure in hectopascal (hPa) measured [5 cm (2 inches) above ground]

As described in Section 2.5, in a first step, we interpolate the point measure into the county
space. Then we merge the weather dataset with the other datasets at the day-county level.

Figure 10: Scatter Matrix Illustrating Associations Between Temperature, Sunshine, and Precipitation

61



Panel A of Table C1 shows the descriptive statistics for the raw measures as collected by the
DWD. Figure 10 illustrates the associations between the temperature, the hours of sunshine and
the precipitation levels. Panel B contains the generated weather condition indicators, i.e., our
main variables of interest in the regression models.

Table C1: Weather Data (Daily County-Level, 1999-2008)

Variable Mean Std. Dev. Min. Max. N

A. Raw Measures

Average temperature in ˚C 9.5573 7.3047 -19 30.6 1,590,454
(2 m (6’7”) above ground)
Minimum temperature in ˚C 5.4671 6.4965 -25.01 23.8 1,590,454
(2 m (6’7”) above ground)
Maximum temperature in ˚C 13.8912 8.5608 -14.1 39.07 1,590,454
(2 m (6’7”) above ground)
Total hours of sunshine 4.6252 4.2373 0 16.7 1,590,454
Precipitation level 2.2246 4.2154 0 144.98 1,590,454
Average humidity 78.3161 11.4307 10 100 1,590,454
Average cloud coverage 5.3128 2.1534 0 8.23 1,590,454
Average storm force 3.6065 2.0856 0 26.3 1,590,454
Max. wind speed 10.4964 4.4462 0 54 1,590,454
Vapor pressure 9.8876 3.9981 0.5 25.9 1,590,454
Min. air pressure 3.8456 6.5299 -29.01 22 1,590,454
(5 cm (2 inches) above ground)

B. Extreme Temperature Indicators

Hot Day (max temp. >30˚C (86˚F)) 0.0197 0.1389 0 1 1,590,454
Heat Wave Day (4the consecutive Hot Day) 0.0032 0.0568 0 1 1,590,454

Cold Day (min temp. <-10˚C (86˚F)) 0.0124 0.1106 0 1 1,590,454
Cold Wave Day (4the consecutive Cold Days) 0.0018 0.0421 0 1 1,590,454

Source: German Meteorological Service (Deutscher Wetterdienst (DWD)). The information was recorded
on a daily basis by up to 1,044 ambient weather monitors that are distributed across the German counties (see
Figure 1). The number of weather stations varies from year to year. The weather indicators displayed cover the
years 1999 to 2008. As described in Section 2.5, all point measures from the stations are interpolated into the
county space by means of deterministic inverse distance weighting (IDW). Level of analysis is the day×county
level. Hence, with exactly 400 counties in each year, we would obtain 400× 365× 10 = 1, 460, 000 observations.
However, the number of counties varies across years from 442 (1999) to 413 (2008).
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Appendix D: Official Pollution Data

The fourth register dataset contains daily pollution measures from up to 1,314 ambient monitors.
The data are provided by the German Federal Environmental Office (Umweltbundesamt
(UBA)). It covers the years from 1999 to 2008. Measures of the following pollutants have been
recorded on a daily basis:

• average concentration of carbon monoxide (CO) in parts per million (ppm)

• minimum concentration of carbon monoxide (CO) in ppm

• maximum concentration of carbon monoxide (CO) in ppm

• average concentration of ozone (O3) in micrograms per cubic meter of air (µg/m3)

• minimum concentration of ozone (O3) in µg/m3

• maximum concentration of ozone (O3) in µg/m3

• average concentration of nitrogen dioxide (NO2) in µg/m3

• minimum concentration of nitrogen dioxide (NO2) in µg/m3

• maximum concentration of nitrogen dioxide (NO2) in µg/m3

• average concentration of sulphur dioxide (SO2) in µg/m3

• average concentration of particular matter (PM10) in µg/m3; since 2000

As described in Section 2.5, in a first step, we interpolate the point measure into the county space
via IDW. Then we merge the pollution dataset with the other datasets at the day-county level.
Panel A of Table D1 shows the descriptive statistics for the raw measures. The next section
describes the chemical composition of the five pollutants, their health hazards, and discusses their
tempo-spatial variation. Panel B of Table D1 contains the generated high pollution concentration
indicators. The thresholds are modelled after the alert thresholds of the European Union (see
Section 2.4 and European Environment Agency (2012)).
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Table D1: Pollution Data (Daily County-Level, 1999-2008)

Variable Mean Std. Dev. Min. Max. N

A. Raw Measures

Average CO in ppm 0.4342 0.1794 0.0023 1.3083 1,594,154
Min. CO in ppm 0.2326 0.0911 0 0.6 1,594,154
Max. CO in ppm 0.8145 0.38 0.025 2.8 1,594,154

Average O3 in µg/m3 45.9786 22.0423 0.8612 135.79 1,594,154
Min. O3 in µg/m3 17.9888 13.8282 0 79.6 1,594,154
Max. O3 in µg/m3 73.7943 31.5263 1.1673 192.15 1,594,154

Average NO2 in µg/m3 26.8907 10.6284 0.0278 80.3095 1,594,154
Min. NO2 in µg/m3 12.6384 5.9959 0 39.5 1,594,154
Max. NO2 in µg/m3 46.4607 16.3252 0.5 132.1 1,594,154

Average SO2 in µg/m3 3.7256 1.6115 0.0654 12.5435 1,594,154
Average PM10 in µg/m3 24.3097 11.4625 2.0625 64.625 1,432,822

B. Pollution Non-Compliance Indicators

O3 non-compliance day (max level >120 µg/m3) 0.0929 0.2903 0 1 1,594,154
NO2 non-compliance day (av. level >40 µg/m3) 0.1194 0.3243 0 1 1,594,154
PM10 non-compliance day (av. level >50 µg/m3) 0.1278 0.3339 0 1 1,594,154

Source: German Federal Environmental Office (Umweltbundesamt (UBA)). The information was
recorded on a daily basis by up to 1,317 ambient pollution monitors that are distributed across the German
counties (see Figure 1). The number of counties and weather stations vary from year to year. The pollution
measures displayed cover the years 1999 to 2008. As described in Section 2.5, all point measures from the
stations are interpolated into the county space by means of deterministic inverse distance weighting (IDW).
Level of analysis is the day×county level. Hence, with exactly 400 counties in each year, we would obtain
400 × 365 × 10 = 1, 460, 000 observations. However, as explained in Section 2.5, the number of counties varies
across years from 442 (1999) to 413 (2008). CO stands for “carbon monoxide” and ppm for “parts per million.”
NO2 stands for “nitrogen dioxide,” O3 stands for “ozone,” SO2 stands for “sulphur dioxide,” and PM10 stands
for “particular matter.” µg/m3 stands for micrograms per cubic meter of air. The high pollution concentration
“non-compliance” days are modelled after the alert thresholds of the European Union (European Environment
Agency, 2012) and Section 2.4.

NO2, O3, CO, SO2, PM10: Occurence, Health Hazards, and Varia-
tion across Space and Time

D1.2 Nitrogen Dioxide (NO2)

Nitrogen dioxide is a red-brown toxic gas that is formed by oxidation of nitrogen monoxide (NO).
NOx—describing the sum of NO and NO2—is a product of combustion processes under high
temperature that happen in automobile engines or fossil fuel power plants; it is also an important
intermediate in the chemical industry.

Since NOx is one main ingredient in the formation of O3 (see below) and highly correlated
with the other pollutants, isolating its single impact on human health is challenging. One purpose
of this study is to disentangle the health effects of the single pollutants from one another and
the weather conditions. Experts by the WHO and the EU warn that “epidemiological studies of
NO2 exposure from outdoor air are limited in being able to separate these effects” (World Health
Organization (2003), p. 46; European Environment Agency (2012), p. 39). Evidence for negative
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health effects mainly comes from indoor toxicological studies showing that NOx has a negative
effect on respiratory functions (cf. Ehrlich et al., 1977; Kerr et al., 1979; Sandstrom et al., 1991;
Blomberg et al., 1999; Barck et al., 2002; Lippmann, 2009).

Figure 11: Nitrogen Dioxide (NO2) Variation Across Counties and Over Time

Figure 12: Association Between Nitrogen Dioxide (NO2) and Weather

The NO2 concentration is measured in µg/m3. The European Union (EU) applies a long-term
threshold of 40 µg/m3 and an hourly alert threshold of 400 µg/m3. If exceeded for more than
three hours, authorities are required to implement short-term action plans (European Environment
Agency, 2012). The thresholds in the US are much larger—an annual average NO2 concentration
of 107 µg/m3 or a maximum daily hourly concentration of 203 µg/m3 (Environmental Protection
Agency (EPA), 2013).

65



Figure 11a shows a boxplot of the mean daily NO2 levels across German counties and over
the twelve months of a year (averaged over 10 years). There is some seasonal variation with lower
NO2 levels during the summer month, but most striking is the huge variation within months across
counties. The average value over all years and counties is 27µg/m3 and very similar to the actu-
ally measured values in the US, despite the more generous regulatory thresholds (Environmental
Protection Agency (EPA), 2011).

Figure 11b shows the mean, minimum, and maximum daily NO2 levels over the time period
from 1999 to 2008. First, we observe a significant difference between minimum and maximum
daily values throughout the years. Second, there seems to exist a slightly increasing trend in NO2

levels over the 10-year period.

Figure 13: Distribution of Nitrogen Dioxide (NO2) Concentration and Non-Compliance Days:
Identifying Variation
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Figure 12 reveals the relationship between NO2 and some of the weather indicators in Table D1.
One observes a slightly negative correlation between NO2, the mean temperature and the wind
speed. On the other hand, humidity levels of more than 80% seem to be positively correlated
with NO2. The is no correlation with hours of sunshine.

Figure 13 is the equivalent to Figure 4 for O3, which was discussed in Secion 2.4. Figure
13 shows that the variation in high concentrations of NO2 has wide support across the German
counties—every single county exceeded the EU thresholds several times during the ten years under
consideration. The right upper corner of Figure 13 (13b) shows the distributions of both the
continuous NO2 measure as well as the binary non-compliance indicator. The left lower corner
(Figure 13c) shows that high NO2 concentrations do not seem to be correlated with economic
activity at the annual county level, but rather with the maximum temperature (Figure 13d).
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D1.3 Ground-Level Ozone (O3)

Ozone is an oxidant and may lead to respiratory hazards. It is called a “secondary pollutant” since
it is formed by various photochemical reactions between carbon monoxide (CO), nitrogen oxides
(NOx) and free oxygen molecules (O) (European Environment Agency, 2013). The ground-level
ozone concentration is measured in µg/m3. According to the European Union (EU), values below
100 µg/m3 do not pose a threat to human health. Very high ozone concentrations of more than
240 µg/m3 may lead to asthma, bronchitis, chest pain, coughing, throat irritation, or congestion,
but also to more severe conditions such as heart attacks or other cardiopulmonary problems (cf.
Hackney et al., 1975; Lippmann, 1989; Wright et al., 1990; Devlin et al., 1997; Broeckaert et al.,
2000).

Figure 14: Ozone (O3) Variation Across Counties and Over Time

In the EU, an hourly concentration of more than 180 µg/m3 requires that the population is
officially informed by the national authorities. The health alert threshold requires the hourly
concentration to not exceed 240 µg/m3. The EU Air Quality Directive specifies that a daily
maximum 8-hour average of 120 µg/m3 should not be exceeded by the member states to avoid
health hazards (European Environment Agency, 2012). In the US, the according threshold is an
8 hour average concentration of 160 µg/m3 (Environmental Protection Agency (EPA), 2013).

As shown in Table D1 above, in Germany, the average ozone level is 45.98, but average daily
values vary from 0.86 to 135.79. Minimum daily values vary from 0 to 79.6, whereas maximum
daily county averages range between 1.17 and 192.15 µg/m3. In comparison, in the US in 2010,
the average ozone concentration was about 150 µg/m3 and thus only slightly below the regulatory
threshold. A quarter of all sites measured above-threshold concentrations on at least four days of
the year (Environmental Protection Agency (EPA), 2011).

Figure 14a shows the O3 variation across counties and over calendar months. First, there is
enormous variation in ozone levels across counties within months. Second, ozone levels increase
significantly over the summer months. This is due to the fact that ground-level ozone is highly
and positively correlated with both the temperature and the hours of sunshine and thus negatively
correlated with humidity (Figure 15). Over the time period from 1999 to 2008, both the variation
and the levels of ozone seem to have been stable (Figure 14b).

The equivalent to Figure 13 for ozone is Figure 4 which has been discussed in the main text
in Section 2.4.

D1.4 Particular Matter (PM10)

Particular matter (PM) is a generic term and describes aerosol particles—or athmospheric
aerosol—which can be of different size and chemical composition. PM10 refers to particles with
a diameter of at most 10 micrometres. PM may have a “natural” origin and stem from sea salt,
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Figure 15: Association Between Ozone (O3) and Weather

dust, pollen or ash from volcanos. However, PM may also result from fuel combustion, e.g., burn-
ing of wood, domestic heating, road dust due to traffic, or power generation. Then it is typically
formed from oxidation and transformation of “primary” pollutants such as SO2 or NO2 (European
Environment Agency, 2012).

Health effects of PM are caused through lung inhalation, and physical as well as chemical
reactions with lung cells. A plenitude of epidemiological studies demonstrate a strong link between
PM exposure and cardiovascular mortality in particular (cf. Pope III et al., 2002; Li et al., 2011).
For example, Abbey et al. (1999) find a signficant impact of PM10 on respiratory deaths as well
as lung cancer. However, studies that intend to measure the effects of long-term exposure to PM
suffer from various methodological challenges, such as selection into regions and a high permanent
correlation with other pollutants.

The EU short-term limit value is a 24 hour concentration of 50 µg/m3. Effective January
2005, this concentration ought not to be exceeded on more than 35 days per year. However,
various European cities regulary exceed that threshold (European Environment Agency, 2012).
The WHO sets the same daily air quality guideline value in addition to a maximum annual mean
value of 20 µg/m3 and states: “The aim is to achieve the lowest concentration possible. As no
threshold for PM has been identified below which no damage to health is observed [...]” (World
Health Organization, 2011). The Environmental Protection Agency (EPA) (2013) defines the
PM10 threshold as an 24 hour average concentration of 150 µg/m3, i.e., three times larger than in
Europe.

Table D1 shows that the average daily PM10 concentration is indeed relatively high in Germany,
namely 24.3 µg/m3 and thus lies above the WHO annual guideline value. However, it is twice as
low as in the US. The maximum daily mean is 64.6 µg/m3. Nevertheless, plotting the daily PM10

concentrations over a decade, it becomes clear that concentrations decreased between 1999 and
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Figure 16: Distribution of Particular Matter (PM10) Concentration and Non-Compliance Days:
Identifying Variation

0
10

20
30

40

2000 2001 2002 2003 2004 2005 2006 2007 2008

mean daily PM10 concentration (in µg/m3)

# of non-compliance days with EU thresholds

0
.1

.2
.3

D
en

si
ty

0 20 40 60 80
x-scale: (i) annual mean PM10 concentration, (ii) # of non-compliance days per year

(ii) # of non-compliance days with EU thresholds per county and year (red)
Distribution of (i) mean PM10 concentration per couny-day obs. (black) and

.0
1

.0
2

.0
3

.0
4

.0
5

0
10

20
30

40

2000 2002 2004 2006 2008
year

# of non-compliance days

GDP growth rate per resident

13
13

.5
14

14
.5

0
10

20
30

40

2000 2002 2004 2006 2008
year

# of non-compliance days

max. daily temperature

2008 (graph not shown). Interestingly, there are only very weak seasonal PM10 trends (not shown).
In the US, in 2010, the average measured PM10 concentration is twice as high as in Germany and
about 60 µg/m3. Ten percent of all sites measure average concentrations of more than 90 µg/m3,
despite a 30% decrease in average national concentrations since 2001 (Environmental Protection
Agency (EPA), 2011).

Figure 16 is the equivalent to Figures 4 (for O3) and 13 (for NO2) for PM10. As for O3 and
NO2, one sees that a large set of German counties contributes to the identifying variation in the
PM10 concentration. Between 1999 and 2008, all German counties exceeded the thresholds on
between 8 and 558 days per county, i.e., even the least PM10 polluted county did not comply to
regulatory thresholds on 8 days within a decade. The bottom graphs of Figure 16 also show that
high temperatures rather than GDP growth are correlated with high levels of particular matter.
As for high ozone levels, heat is an input factor for the formation process—through oxidation—of
this secondary pollutant (Arya, 1998; World Health Organization, 2003; European Environment
Agency, 2012). The relationship between daily PM10 levels and the daily mean temperature
is U-shaped with PM10 levels increasing strongly when temperatures exceed 20˚C (68˚F). For
maximum daily temperatures above 20˚C (68˚F), the correlation between the maximum daily
temperature and the maximum daily O3 concentration is 0.7, for the maximum daily NO2 con-
centration it is 0.2, and for mean daily PM10 concentration it is 0.3. Hence, it is reasonable to
think of exogenous heat shocks triggering high pollution levels.

D1.5 Carbon Monoxide (CO)

Carbon monoxide is a colorless odorless gas that is toxic to humans in higher concentrations.
The typical concentration in the atmosphere is about 0.1 parts per million (ppm). Incomplete
burning of carbon-containing materials, such as smoke from fire, is one main source of high CO
concentrations. However, in industrialized countries, automobile fuel combustion is responsible
for a large fraction of CO concentration in the air. CO concentrations of more than 100 ppm are
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considered health damaging, although individual tolerance levels vary significantly (Stewart et al.,
1970; Anderson et al., 1973; Penney, 2000; Omaye, 2002; Mayr et al., 2005).

CO decreases the blood oxygen transmission. According to the Centers for Disease Pre-
vention and Control (CDC), in the US, about 450 people die every year from “accidental,
non-fire related exposure to this toxic gas.” CO poisoning would require medical care for thou-
sands more (Centers for Disease Control and Prevention, 2012). Omaye (2002) notes that CO
poising may be the main cause of more than 50% of all fatal poisonings in industrialized countries
and that many situations would remain un- or misreported. The EU and WHO 8-hour threshold
values are 10 µg/m3 (or 8.7 parts per million (ppm)) (European Environment Agency, 2012).
The US threshold is very similar and an 8-hour average concentration of 9 ppm (Environmental
Protection Agency (EPA), 2013). In 2010, the average actual concentration in the US was 2 ppm.

Table D1 above shows that the daily mean ambient carbon monoxide (CO) concentration in
parts per million (ppm) is 0.43, ranging from 0.002 to 1.31. The daily mean minimum concentration
is 0.23 and the maximum concentration is 0.81. The latter varies between 0.03 and 2.8. A boxplot
of daily CO levels shows the typical seasonal variation with lower CO levels during the summer
month. Over the last decade, average CO concentrations have slightly decreased, but the standard
deviation remains high.

Note that we do not generate binary “non-compliance” indicators for carbon monoxide, simply
because the EU alert threshold was never exceeded during the period of observation in Germany.

D1.6 Sulphur Dioxide (SO2)

Sulphur dioxide is a colorless toxic gas emitted by sulphur containing fuels when burned. Industrial
processes lead to SO2 emissions as do domestic heating and transportation. For example, coal
contains sulphur and thus coal combustion releases SO2 unless the sulphur components are removed
before the burning process. Oxidation of SO2 may lead to H2SO4 and acid rain. SO2 is also a
precursor for particular matter. While SO2 is still one of the main air pollutants in developing
countries, due to environmental regulation, SO2 emissions decreased significantly over the last
decades in industrialized countries (World Health Organization, 2000; European Environment
Agency, 2013).

Epidemiological and experimental studies with small numbers of volunteers show that SO2

concentrations may primarily result in adverse respiratory health effects. It disrupts the ciliary
function, slows the ciliary transport of mucus and may lead to coughing, asthma and chronic
bronchitis. Moreover, for people with heart diseases and among vulnerable populations, SO2

shocks my lead to hospitalizations, premature birth, and deaths (Lawther et al., 1975; Horstman
et al., 1988; Shah and Balkhair, 2011).

Natural SO2 concentrations in rural areas are around 5 µg/m3. The EU threshold for daily SO2

concentrations is 125 µg/m3. The hourly alert threshold is 500 µg/m3 and action plans have to be
implemented when this threshold is exceeded in three consecutive hours. The US thresholds are
significantly larger. The “primary” threshold is a one hour concentration of not more than 75 ppb
(=2,120 µg/m3) and the “secondary” threshold a three hour concentration of not more than 0.5
ppm (= 14 µg/m3) (Environmental Protection Agency (EPA), 2013). The average concentration
measured across the US was about 2.5 ppb (= 71 µg/m3) (Environmental Protection Agency
(EPA), 2011).

As Panel A of Table D1 illustrates, all SO2 concentration values measured in all German
counties from 1999 to 2008 are significantly below these thresholds. The average concentration
is 3.7 µg/m3 and its maximum 12.5 µg/m3. Thus, as in case of CO, we do not generate binary
non-compliance indicators for SO2. Boxplot graphs (not displayed) show significant variation
across counties with average values slightly lower in the summer months. Plotting values over
time illustrates a significant decline in SO2 concentrations from 1999 to 2008.

In principle, pollution regulation in the US is similar to in the EU: the US Environmen-
tal Protection Agency (EPA) implements pollution concentration thresholds and requires
the US states to comply. However, the EPA thresholds are significantly less strict: The PM1070



Figure 17: Scatter Matrix Illustrating Associations Between Pollutants

threshold is an 24 hour average concentration of 150 µg/m3. The O3 threshold is an 8 hour av-
erage concentration of 160 µg/m3. And the NO2 threshold is an annual average concentration of
107 µg/m3 or a maximum daily hourly concentration of 203 µg/m3 (Environmental Protection
Agency (EPA), 2013).30 Thus, the threshold levels for NO2 and PM10 are 2 to 3 times larger in
the US, which should be kept in mind when comparing the results of this study to related US
studies. In Germany, from 1999 to 2008, the US regulatory thresholds for PM10, O3 and NO2

were never exceeded (see Table D1). The actually measured average concentrations for O3 and
PM10 are three and two times larger in the US than in Germany, respectively, while average NO2

concentrations are—despite larger regulatory thresholds—very similar.

D1.7 Associations Between All 5 Pollutants

Lastly, Figure 17 shows the associations between all five air pollutants discussed above. NO2 is
positively correlated with SO2 and PM10, but negatively correlated with O3. The same is true
for CO. O3 exhibits only very noisy and weak associations with SO2 and PM10. However, SO2

and PM10 show a strong and positive association.

30 The original scales for NO2 and O3 are expressed in “parts per million (ppm)” and have to be converted to
“micrograms per cubic meter of air µg/m3”. The annual threshold for NO2 is 0.053ppm and the hourly maximum
100ppm. For O3, the “annual fourth-highest daily maximum 8 hours concentration, averaged over 3 years,” must
not exceed 0.075ppm.
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Appendix E: Annual Socio-Economic County-Level Data

Finally, this paper makes use of yearly county-level data provided by the Federal Institute for
Research on Building, Urban Affairs and Spatial Development (2012) (Bundesinstitut
für Bau-, Stadt- und Raumforschung) in their INKAR (Indicators and Maps on Spatial Devel-
opment) database. The data vary by year.31 To normalize the hospitalization and death rate
dependent variables, we use county-level total population counts. In addition, we use information
on the unemployment rate and GDP per capita. Supply-side constraints are captured by the #
hospitals per county, hospital beds per 10,000 pop. and physicians per 10,000 pop.

On average, about 190,000 residents live in each German county. The average per capita income
is e 25,000 p.a.32, but varies between e 11,282 and e 86,728 across counties and over years. A
similarly strong variation is observed for the county unemployment rate which varies between 1.6
and 29.3% with an average of 10.5%.

An average county has 5 hospitals. However, in some counties there exist no hospital and one
county counts a staggering 76 hospitals. Consequently, the number of hospital beds per 10,000
residents and county varies between 0 and 24,170. The outpatient physician density varies between
69 and 394 doctors per 10,000 residents of a county.

Table E1: Descriptive Statistics Other (County-Level, 1999-2008, Annual)

Variable Mean Std. Dev. Min. Max. N

Unemployment rate 10.47 5.28 1.6 29.3 4,356
GDP per capita 24971 10146 11,282 86,728 4,354

# hospitals per county 4.84 5.49 0 76 4,354
Hospital beds per 10,000 pop. 1211.19 1593.88 0 24,170 4,354
Physicians per 10,000 pop. 152.72 52.59 69 394 4,358

Total population 189,450 219,753 34,525 3,431,675 4,361

Male 0 to 2 years 2,575 3,034 331 47,489 4,361
Male 3 to 5 years 2,697 2,968 328 42,964 4,361
Male 6 to 9 years 3,776 3,972 409 60,320 4,361
Male 10 to 14 years 5,151 5,277 525 92,611 4,361
Male 15 to 17 years 3,280 3,323 366 55,698 4,361
Male 18 to 19 years 2,241 2,323 383 38,669 4,361
Male 20 to 24 years 5,613 6,704 987 111,475 4,361
Male 25 to 29 years 5,708 7,926 1,007 134,581 4,361
Male 30 to 34 years 6,628 9,117 881 164,445 4,361
Male 35 to 39 years 7,991 10,168 1,056 172,517 4,361
Male 40 to 44 years 8,089 9,634 1,347 164,928 4,361
Male 45 to 49 years 7,195 8,082 1,157 149,742 4,361
Male 50 to 54 years 6,274 7,021 926 116,102 4,361
Male 55 to 59 years 5,589 6,749 845 129,022 4,361

Male 60 to 64 years 5,745 6,929 817 119,554 4,361
Male 65 to 74 years 9,210 10,096 1,108 187,669 4,361
Male > 75 years 4,882 5,087 658 81,884 4,361

Continued on next page...

31 The hospitalization and mortality data contain the county of residence according to the county codes and
boundaries of the specific year. In contrast, the INKAR database contains all information according to the county
codes and boundaries as of January 1, 2012. From 1999 to 2008, various county reforms, mostly mergers between
two counties, led to changes in the county codes and boundaries. Consequently, the number of counties varies across
years from 442 (1999) to 413 (2008). For counties with county reforms, we imputed pre-reform values using the
post-reform boundary data as of January 1, 2012. In addition to reforms, not all information listed above have been
collected in every single calendar year. We imputed missing values for these cases. See notes to Table E1 for more
details.

32 In 2012 values.
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... Table E1 continued

Variable Mean Std. Dev. Min. Max. N

Female 0 to 2 years 2,442 2,882 295 44,660 4,361
Female 3 to 5 years 2,561 2,824 313 41,049 4,361
Female 6 to 9 years 3,584 3,770 406 57,060 4,361
Female 10 to 14 years 4,887 4,997 492 88,234 4,361
Female 15 to 17 years 3,109 3,147 358 52,753 4,361
Female 18 to 19 years 2,135 2,275 377 37,463 4,361
Female 20 to 24 years 5,431 7,071 939 117,108 4,361
Female 25 to 29 years 5,516 8,044 828 137,220 4,361
Female 30 to 34 years 6,331 8,559 699 152,632 4,361
Female 35 to 39 years 7,578 9,364 1,046 158,939 4,361
Female 40 to 44 years 7,714 9,012 1,204 153,034 4,361
Female 45 to 49 years 6,998 7,868 1,270 140,548 4,361
Female 50 to 54 years 6,232 7,188 906 117,351 4,361
Female 55 to 59 years 5,634 6,939 855 127,897 4,361
Female 60 to 64 years 5,959 7,239 838 123,874 4,361
Female 65 to 74 years 10,689 11,874 1,952 214,713 4,361
Female > 75 years 10,006 11,110 1,964 164,217 4,361

Source: Federal Institute for Research on Building, Urban Affairs and Spatial Development (2012). The
information varies across counties and over years on an annual basis. Some information has not been
surveyed in every calendar year. In addition, in contrast to the register databases in Appendices A and B,
the INKAR data refers to the county codes and boundaries as of January 1, 2012. Since various county
reforms were implemented between 1999 and 2008, we had to impute information for pre-reform counties
with post-reform data (if possible). For example, if counties A and B simply merged to county C and
we only had the GDP per capita for county C, we would impute the GDP per capita values for A and B
using the population information on A and B which is available for all years and counties. If, as another
example, data was surveyed in every other year, we took the mean value of t0 and t2 to impute information
for t1. However, we were unable to impute values for all measures and all counties in every year according
to the boundaries of that specific year, which is why the number of observations slightly varies between the
measures.
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Appendix F: Cross-Validation of Weather and Pollution Interpo-
lation

Table F1: Cross-Validation of IDW Interpolation

Variable Raw Correlation Time and Season-Adjusted Correlation
IDW Method NN Method IDW Method NN Method

CO Mean 0.477 0.363 0.149 0.082
CO Max 0.413 0.301 0.131 0.069
CO Min 0.607 0.522 0.227 0.182
NO2 Mean 0.562 0.450 0.407 0.321
NO2 Max 0.531 0.423 0.400 0.313
NO2 Min 0.606 0.497 0.434 0.349
O3 Mean 0.862 0.797 0.435 0.362
O3 Max 0.929 0.896 0.373 0.328
O3 Min 0.671 0.555 0.473 0.371
SO2 Mean 0.616 0.532 0.306 0.265
PM10 Mean 0.837 0.814 0.239 0.212

Cloud 0.874 0.821 0.585 0.508
Humidity 0.876 0.826 0.643 0.566
Vapor Pressure 0.979 0.970 0.735 0.678
Temperature 0.981 0.972 0.733 0.661
Air Pressure 0.549 0.579 0.239 0.257
Wind Speed 0.497 0.478 0.219 0.156
Min Temperature 0.968 0.953 0.713 0.637
Max Temperature 0.977 0.966 0.659 0.587
Precipitation 0.788 0.740 0.688 0.634
Sunshine 0.934 0.922 0.556 0.535

Source: German Meteorological Service (Deutscher Wetterdienst (DWD)) and German
Federal Environmental Office (Umweltbundesamt (UBA)). The table represents the cross-
validation of the weather and pollution interpolation as described and discussed in Section 2.5.
The underlying data stems from up to 1,044 ambient weather monitors and up to 1,317 ambient
pollution monitors between 1999 and 2008. Columns (1) and (3) display the Pearson’s Correlation
Coefficient between the orginal values of monitior X and its predicted values solely using all
surrounding monitors and Inverse Distance Weighting (IDW). Columns (2) and (4), in contrast,
simply use the Nearest Neighbor (NN) method and thus predict values of monitor X with the
measurement of its nearest neighbor monitor. Columns (3) and (4) are based on values that
have been non-parametrically adjusted for all 3,650 day effects, i.e., the nationwide daily mean
of a specific measure was first removed from all monitor measurements. This exercise removes
time trends, but likewise the “true” correlation in measurements between monitors and has to
be regarded as a very conservative test. More details are in Section 3.2.
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Table F2: Share of Correctly Predicted Extreme Weather Indicators

Panel A: IDW
Overall Positives Zeros Reliability

Correct Predicted Correct Predicted Correct Predicted Ratio

Hot Day 0.9904 0.8133 0.9939 0.8071
Heat Wave Day 0.9983 0.8003 0.9989 0.7993

Cold Day 0.9927 0.7680 0.9954 0.7634
Cold Wave Day 0.9982 0.5812 0.9989 0.5801

Panel B: NN
Overall Positives Zeros Reliability

Correct Predicted Correct Predicted Correct Predicted Ratio

Hot Day 0.9881 0.7286 0.9937 0.72233
Heat Wave Day 0.9978 0.7089 0.9989 0.7079

Cold Day 0.9908 0.6699 0.9951 0.6651
Cold Wave Day 0.9965 0.3063 0.9991 0.3054

Source: German Meteorological Service (Deutscher Wetterdienst (DWD)). The underlying data
stems from up to 1,044 ambient weather monitors between 1999 and 2008. Panel A tests the predictive
quality of the Inverse Distance Weighting (IDW) interpolation method into the county space and Panel
B the Nearest Neighbor (NN) method. All numbers are shares of predicted relative to actual values.
The predicted value for monitor X are calculated using solely all surrounding monitors and assuming that
monitor X is non-existent. Column (1) reports the overall share of correctly predicted positive or negative
extreme weather indicator values. Column (2) reports the share χ of correctly predicted positives and
column (3) the share δ of correctly predicted zero values. Consequently, 1-χ represent false positives and
1-δ false negatives. Column (4) shows the Reliability Ratio (RR) α which indicates the ratio between OLS
and IV estimates and thus assesses the size of the potential attenuation bias (Hyslop and Imbens, 2001).
More details are in Section 3.2.
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