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1 Introduction

This paper develops and applies a simple graphical approach to portfolio selection

that accounts for covariance between asset returns and an investor’s labor income.

Our graphical approach easily handles the realistic case in which income shocks are

partly, but not fully, hedgeable.2

We first show how covariance between income shocks and asset returns and per-

sistence in the shocks affect portfolio choice over the life cycle. Next, we estimate

the covariance and persistence parameters for occupation-level components of indi-

vidual income using data from the Current Population Survey. After extracting the

occupation-level components of individual income innovations, we investigate their

covariance with aggregate equity and bond returns, selected industry-level equity re-

turns, and the returns on portfolios formed on firm size and book-to-market equity

values. We then apply the theoretical framework to the empirical results to calculate

optimal portfolio allocations over the life cycle for selected occupations.

Our graphical approach captures several factors that influence portfolio choice

over the life cycle: the drawdown of human capital as a worker ages, the impact of

labor income innovations on the present value of lifetime resources, the increase in

an investor’s effective risk aversion as income smoothing ability declines with age,

and systematic life cycle variation in the covariance between labor income shocks and

asset returns. Each of these factors affects an investor’s optimal level of risky asset

holdings, as we show below.

According to the two-fund separation principle of traditional mean-variance port-

folio analysis, every investor holds risky financial assets in the same proportions —

only the level of holdings differs among investors. We show why and how that princi-

ple breaks down when an investor has a risky income stream (from work or business

ownership) that is correlated with asset returns. We quantify this breakdown and

several contributory factors. Our application of the theory shows that even moderate

covariances between income shocks and asset returns can drive large differences be-

tween optimal portfolio shares and the shares implied by a more traditional approach

that ignores labor income or other sources of income from nonmarketable assets.

The chief empirical inputs into our theoretical framework include the first two

2Bodie, Merton, and Samuelson (1992) derive analytical solutions for portfolio choice in a con-

tinuous time finite horizon setting with fully hedgeable labor income risks. Much other work adopts

computationally intensive approaches to the portfolio implications of unhedgeable or partly hedge-

able labor income risks. See, for example, Cocco, Gomes, and Maenhout (1999) for analysis in a

finite horizon setting and Heaton and Lucas (1997), Viceira (1998), and Haliassos and Michaelides

(1999) in infinite horizon settings.
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moments of the asset return distribution and the covariance between income shocks

and asset returns. While asset returns themselves receive enormous attention from

researchers, only a handful of previous studies investigate their covariance with labor

or proprietary business income. Campbell et al. (1999) consider the covariance

between aggregate equity returns and the permanent component of household income

for three education groups. Davis and Willen (2000) investigate the issue using a

synthetic panel approach to demographic groups defined in terms of sex, educational

attainment, and birth cohort. Although based on rather different empirical designs,

both studies find that the correlation between labor income shocks and equity returns

rises with education. Heaton and Lucas (2000) highlight the positive correlation

between equity returns and the income of self-employed persons.3

Previous empirical research on the covariance between income shocks and asset

returns relies on panel data sets or synthetic panels constructed from repeated cross

sections. This paper pursues a somewhat different empirical approach. In particular,

we rely on the repeated cross-section structure of the Current Population Survey to

extract mean occupation-level income shocks, while controlling for a host of observable

worker characteristics. We then focus the rest of the empirical investigation on the

properties of the occupation-level shocks and their covariance with asset returns.

Our empirical approach has less demanding data requirements than panel-based

approaches. It is also highly flexible in the sense that one can easily focus the empirical

lens on any type of income shock that can be tied to observable characteristics of

individuals, households, or businesses. We consider occupation-level income shocks in

this paper, but the same method can be applied to income shocks related to industry,

location, firm size, and worker characteristics like education, experience, and job

tenure. Because its starting point is a standard human capital earnings regression fit

to cross-sectional data, our approach offers a natural bridge between labor economics

and finance.

The paper proceeds as follows. Section 1 develops the graphical approach in a two-

period setting and explains how to handle multiple risky assets. Section 2 extends the

graphical analysis to a many-period setting and analyzes several determinants of life

cycle variation in optimal portfolio choice. Section 3 describes the data we use to iden-

tify occupation-level income innovations. Section 3 also characterizes the magnitude

3Other studies investigate the issue at a more aggregated level in an international setting. Botazzi,

Pesenti, and van Wincoop (1996) consider the covariance of national labor income shocks with

financial asset returns, and Baxter and Jermann (1997) consider their covariance with the returns

on hypothetical claims to a country’s capital stock. Davis, Nalewaik, and Willen (2000) consider

the covariance between national output shocks and a variety of domestic and foreign asset returns

for 18 industrialized countries.
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and persistence of the occupation-level income innovations. Section 4 investigates

the covariance between the occupation-level income innovations and a variety of as-

set return measures. Section 5 draws on the empirical results in Sections 3 and 4

to implement the theoretical framework developed in Sections 1 and 2. We calculate

optimal portfolio allocations for several occupations under various assumptions about

investor age and risk aversion, asset returns, and their covariance with labor income.

We use the examples to illustrate life cycle variation in optimal portfolio allocations

and the breakdown of two-fund separation.

2 Portfolio Choice with Risky Labor Income: A

Graphical Approach

In this section, we develop a graphical approach to portfolio choice when investors face

labor income shocks that are correlated with asset returns. Although our approach

shares many features with textbook mean-variance analysis, it is fundamentally dif-

ferent. Rather than consider the mean and variance of a portfolio of risky assets, we

consider the mean and variance of consumption. Wny do this? Because standard

mean-variance analysis gives wrong answers when labor income is correlated with

asset returns. Consider the following example: A standard mean-variance investor

would never invest in a portfolio with negative expected excess returns and positive

variance: a zero portfolio provides higher expected excess returns and lower vari-

ance. But if the portfolio is negatively correlated with labor income risk, an investor

might well want to purchase such a portfolio: the portfolio reduces consumption but

also reduces the variance of consumption. We show below that the failures of stan-

dard mean-variance analysis go beyond this simple example: for example, two-fund

separation generally fails when asset returns and labor income shocks are correlated.

In Section 2.1, we construct a two-period model of portfolio choice and we show

how to solve it graphically using indifference curves and budget sets. In Section 2.2,

we explore two interesting aspects of the solution: the failure of two-fund separation

and the gains from trade in risky assets. Section 3 extends our approach to a life

cycle setting with many periods. Some new issues arise in the many-period life cycle

setting, but all of the key points from the two-period setting carry over.

Some mathematical details are contained in the appendix. Willen (1999) and

Davis and Willen (2000) provide a more thorough development of the mathematical

analysis. Along with Davis, Nalewaik, and Willen (2000), they also consider asset

pricing and risk sharing implications of the underlying theoretical model. This paper
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restricts attention to portfolio choice.

2.1 Portfolio Choice in a Two-Period Model

Consider an investor h who works in occupation i, lives for two periods (t=0,1),

and initially has no financial assets. This period she receives labor income yi0, and

next period she receives stochastic labor income ỹi1. Expected income next period is

E
(

ỹi1
)

= ȳi1, and the income innovation is ηi = ỹi1−ȳi1. Our investor has access to J+1

financial assets: a riskless bond with certain gross return Rf ; J risky securities, each

with uncertain gross returns R̃j . Let R̃ =
[

R̃1 . . . R̃J

]′
. We assume that labor

income innovations ηi1 and risky asset returns R̃ are jointly normally distributed.

Investor h allocates B dollars to the riskless asset and Sj dollars to each risky asset.

Let S =
[

S1 . . . SJ

]′
.

Let c0 and c̃1 denote consumption in periods zero and one, respectively. The

intertemporal budget constraint (in expected value terms) follows from the definitions

above:

c0 +
1

Rf
E
(

c̃1
)

= yi0 +
1

Rf
E
(

ỹi1
)

+
1

Rf

(

E
(

R̃
)

− Rf

)′
S = Y +

1

Rf
ER′S = C, (1)

where Y is the expected present value of lifetime labor income discounted at the risk-

free rate (“human wealth”), ER = E
(

R̃
)

− Rf . We call C, the value of consumption

over the life cycle discounted at the riskless rate, “lifetime consumption.”

Let the primitive utility function over c0 and c̃1 be time separable, and assume

that the felicity functions defined over period consumption have the exponential form,

− exp
(

−Ac
)

, where Ah > 0 governs the degree of risk aversion. This functional

form implies constant absolute risk aversion (“CARA”) in the face of wealth shocks,

although it is easy to handle variation in risk aversion across persons or over the life

cycle. As a convenience, assume also that the subjective discount rate equals the

riskless rate. Under these conditions, we can write the present discounted value of

utility as a function of lifetime consumption and the variance of future consumption:

Uh
(

C, V
)

= − 1

aAh
exp

{

−aAh
(

C − Ah

2Rf

V
)}

, (2)

where Ah measures absolute risk aversion, a = 1/Rf is an annuitization factor, and

V = var
(

c1
)

. And maximizing equation (2) is equivalent to maximizing:

C − Ah

2Rf
V . (3)
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2.1.1 Indifference Curves

Figures 1 and 2 show indifference curves generated from equation (2). Each curve

traces out combinations of lifetime consumption and consumption variance that leave

utility unchanged. As one moves up and to the left, utility increases. Figure 1 shows,

for a fixed degree of risk aversion, indifference curves that correspond to different

levels of certain lifetime consumption. Figure 2 shows, for a fixed level of certain

lifetime consumption, indifference curves that correspond to different degrees of risk

aversion. Greater risk aversion steepens the slope of the indifference curve, because

a more risk averse investor requires greater compensation for added consumption

variance in order to maintain a given utility level.

Two aspects of these indifference curves merit attention. First, the indifference

curves are straight lines — the tradeoff between lifetime consumption and consump-

tion variance depends neither on the level of lifetime consumption nor on the variance

of consumption.4 Second, for a given level of risk aversion, all indifference curves in

the top panel are parallel. See Figure 2. This means that an increase in lifetime con-

sumption increases utility by the same amount regardless of the level of the variance.

2.1.2 Feasible Sets

In this section, we characterize the the feasible set — combinations of lifetime con-

sumption and consumption variance that can be implemented by some feasible port-

folio strategy — for any occupation i. To do this, we first consider an investor who

chooses the portfolio that minimizes the variance of his or her consumption. Call the

corresponding level of lifetime consumption C i
mv and call the corresponding variance

of period-one consumption V i
mv. We call the point (C i

mv, V
i
mv) the minimum variance

point. Equation (4) shows how to use the minimum variance point to characterize

the frontier of feasible set for any occupation:

C − C i
mv = (1/Rf )

(

V − V i
mv

)1/2(
ER′Σ−1ER

)1/2
. (4)

We now delve a little more deeply into equation (4). We first show how to derive it

for the one-asset case (the more general case is in the appendix). We then discuss two

aspects of the feasible set: (1) the shape of the feasible set is determined entirely by

the distribution of asset returns and is independent of occupation; (2) the properties

4This feature is unique to CARA utility. With other preferences, the curvature of the indifference

curves depends on both the level of lifetime consumption and the consumption variance. Specifically,

for the common isoelastic specification (constant relative risk aversion), the slope of the indifference

curves rises with the variance of consumption and decreases with lifetime consumption.
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of occupational income — specifically its mean, variance and the covariance of labor

income shocks with risky asset returns — determine the location of the feasible set.

To generate equation (4), we use some basic insights from regression analysis. Sup-

pose there is only one asset and an investor in occupation i invests βi
y = cov

(

η̃i, R̃
)

/ var
(

R̃
)

in the that asset. Since βi
y, is the coefficient on an OLS regression of η̃i on asset re-

turns, the resulting consumption profile is the minimum variance combination of labor

income and asset returns. So:

C i
mv = Y − 1

Rf
ERβi

y V i
mv = var

(

η̃i − βi
yR̃

)

. (5)

We can write any portfolio choice S as S = αS − βi
y. For any portfolio choice S:

V = var
(

η̃i − βi
yR̃ + αR̃

)

= V i
mv + α2

S var(R̃), (6)

where the second equality follows from the fact that η̃i − βi
yR̃ is a residual from a

regression and thus orthogonal to R̃. And we can similarly write for any S,

C = Y − 1
Rf
ERβi

y +
1
Rf
ERαS = C i

mv +
1
Rf
ERαS. (7)

Now, solve for αS using equation (6) and substitute into equation (7) to get equation

(4). Note that by setting S = 0, αS = βi
y and lifetime consumption equals lifetime in-

come (C = Y i) and variance of consumption equals variance of income (V = var(η̃i)).

We call this point (Y i, var(η̃i)) the endowment point.

What does equation (4) tell us? First, equation (4) tells us that the shape of the

frontier of the feasible set is independent of occupation and entirely determined by

the distribution of asset returns. A unit increase in the difference of the variance of

consumption from the minimum variance always leads to the same increase in the level

of lifetime consumption, which one can verify in Figures 3 and Figure 4. What does

determine the shape? Equation (4) implies that the shape of the feasible set depends

on
(

ER′Σ−1ER
)1/2

, the Sharpe ratio of the tangency portfolio, which simplifies to

ER/σ for the one-asset case. Figure 5 illustrates that an increase in the Sharpe ratio

increases the size of the feasible set.

Second, equation (4) shows how three aspects of labor income affect the location

of the feasible set: the level of income; the variance of income; and the covariance of

income with asset returns. The analysis of the first two items is straightforward; the

third, covariance, requires more insight and is one of the main contributions of the

paper.

How do the mean and variance of occupational income affect the location of the

feasible set? Figure 3 shows feasible sets for three different occupations: A, B, and C.

None of the three occupations’ income profiles covaries with asset returns, so βi
y = 0
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and C i
MV = Y i and V i

mv = var(η̃i). Occupation B has higher lifetime income and

the same variance as occupation A. So the minimum variance of occupation B lies

directly above that of occupation B and feasible set B lies directly above feasible

set A. Occupation C has the same lifetime income but higher variance of income

than occupation A, so by a similar argument, feasible set C lies directly to the left of

feasible set A.

How does the covariance of occupational income shocks with asset returns affect

the location of the feasible set? Figure 4 shows feasible sets for three occupations

that differ only in terms of the covariance of labor income shocks with asset returns.

To simplify matters, we again consider a model with a single risky asset. Income

for occupation A is uncorrelated with stock returns. So the minimum variance point

equals the endowment point. Income in occupation B is positively correlated with

stock returns, implying that βB > 0, which implies that CB
mv < Y B = Y A = CA

mv and

V B
mv < var(η̃B) = var(η̃A) = V A

mv. So feasible set B lies below and to the left of feasible

set A. To understand the intuition here, consider the actual stock portfolios which

correspond to the points in the feasible set. By equation (1) and the definition of Y ,

S =
(

C − Y
)

/

(

E
(

R̃1

)

− R0

)

. For occupation A, a small long position and a small

short position of equal absolute value lead to the same variance of consumption, but,

assuming positive excess returns, the long position leads to higher consumption and

the short position to lower consumption than the endowment point. For occupation

B, the effects of such opposite choices are asymmetric. A small long position leads

to an increase in consumption and in the variance of consumption. But a sufficiently

small short position leads to a reduction in the variance of consumption, because

portfolio returns are now negatively correlated with labor income shocks. Income

in occupation C is negatively correlated with asset returns and a similar argument

shows that the feasible set C is above and to the left of feasible set A.

2.1.3 Portfolio Choice

We solve for the optimal combination of lifetime consumption and variance, and thus

the optimal portfolio, by combining the feasible set and the indifference curves in

the usual way. Our discussion of portfolio choice proceeds in three steps. First, we

introduce the notion of the exposure of a point in the feasible set to a particular

risky asset. We then show that every investor has a “desired exposure” determined

by his or her absolute risk aversion. And associated with every occupation is a level

of “endowed exposure.” Then, we show that an investor’s demand for the risky asset

equals the difference between his or her desired exposure and the endowed exposure

associated with his or her chosen occupation.
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What do we mean by the exposure of a point in the feasible set? Consider the

one-asset case again. Exposure measures the sensitivity of consumption to the risky

asset. Mathematically, we measure exposure as the coefficient on risky asset returns

from a regression of consumption on risky asset returns and a constant. Consider an

arbitrary location (C, V ) in the feasible set. The exposure of (C, V ) to risky asset

returns R̃ equals

βc =
cov

(

c̃1, R̃
)

var(R̃)
. (8)

By the regression analysis above:

V = V i
mv + (βc)

2 var(R̃). (9)

Using equation (4),

βc = Rf
C − C i

mv

ER
.

In Figure 6, the exposure of points in the feasible set is measured on the right axis.

Note that the exposure is zero at the minimum variance point.

Desired exposure measures the level of exposure an investor wants. Mathemati-

cally, we can derive desired exposure from the standard consumption Euler equations,

which imply, under the maintained assumptions, that at an optimum:

βh
c =

ER

Ah var(R̃)
. (10)

Equation (10) implies that desired exposure is invariant of occupation and depends

only on risk aversion and the distribution of asset returns.5 Graphically, we find

desired exposure by finding the indifference curve in the feasible set that yields the

highest utility. As usual, this is the indifference curve that is tangent to the feasible

set. Desired exposure is the distance from 0 to the point labeled “D” on the right

axis in Figure 7. The invariance of desired exposure to occupation follows from the

fact that the indifference curves are parallel straight lines and the fact that the shape

of the feasible set is invariant to occupation. Thus the position of the desired location

in C-V space is always the same relative to the minimum variance point. Figure 8

shows how changes in risk aversion lead to changes in desired exposure. Higher risk

aversion leads to steeper indifference curves and consequently lower desired exposure.

Also note that as risk aversion increases to infinity, indifference curves converge to

5This is only true for CARA utility. In general, since the slope of the indifference curves depends

on the variance of consumption, an increase in the variance of income leads to a reduction in desired

exposure, a phenomenon called “crowding out.” See Bodie, Merton, and Samuelson (1992).
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vertical lines, and desired exposure converges to zero. Since risk aversion cannot be

negative, desired exposure is always positive.

Endowed exposure measures the level of exposure an investor has if he or she

invests nothing in the risky asset. Following the same logic as above, it is easy to see

that:

βi
y = Rf

Y − C i
mv

ER
. (11)

Graphically, endowed exposure is the distance on the right-hand axis from the mini-

mum variance line to the endowment line. Figure 9 illustrates endowed exposure It is

easy to verify that the four occupations listed in the figure all yield the same feasible

set. Yet since the endowment points are different, they all yield different amounts of

endowed exposure.

To solve for the optimal portfolio, use the budget constraint (equation (1)) and

equations (8) and (11) as follows:

S = Rf
C − Y

ER
= Rf

C − C i
mv

ER
− Rf

Y − C i
mv

ER
= βh

c − βi
y. (12)

In other words, demand for the risky asset equals the difference between desired and

endowed exposure. Graphically, demand for the risky asset equals the distance on the

right-hand axis between the endowed exposure point and the desired exposure point.

We can now see how risky labor income affects portfolio choice. Figure 10 combines

desired exposure from Figure 8 with endowed exposure from Figure 9. Consider an

investor with relative risk aversion of 3. His or her desired exposure, point D1 in

Figure 10, equals a little more than $40 thousand. How much will she invest in the

risky asset? That depends on his or her occupation. If he or she is in occupation 4,

demand for the risky asset is high, approximately $70 thousand. If he or she is in

occupation 2, then endowed exposure exceeds desired exposure: our investor demands

a short position in the risky asset.

For analytical simplicity, much of the preceding analysis focused on a version of

the model in which there was only one risky asset. Now we explore portfolio choice

in the more realistic case where investors can invest in a whole menu of risky assets.

Most of our analysis carries over. The shape of the feasible set remains independent

of occupation; the location of the feasible set is determined by the location of the

minimum variance point. The main difference is that when there is more than one

risky asset each point in the feasible set is associated with a vector of exposure

measures, one for each risky asset. Demand for a particular risky asset equals the

difference between desired and endowed exposure to that asset.

How do we measure exposure when there are many risky assets? In the single

asset case, the exposure of a given point in C − V space equals the coefficient on the

9



risky asset in a regression of consumption on the risky asset and a constant. In the

multi-asset case, the exposure of a given point in C − V space to asset j equals the

coefficient on risky asset j in a multiple regression of consumption on all the risky

assets and a constant. In other words:

βc = var(R̃)−1 cov(c̃1, R̃).

Using the Euler equations again as in equation (10), desired exposure equals:

βh
c =

1

Ah
var(R̃)−1ER.

And endowed exposure equals:

βi
y = var(R̃)−1 cov(η̃i1, R̃). (13)

And demand for the risky assets equals:

Sh = βh
c − βi

y = var(R̃)−1
[ 1

Ah
ER− cov(η̃i1, R̃)

]

. (14)

2.2 Features of the Solution

2.2.1 Two-Fund Separation

Two-fund separation holds with labor income if and only if there is no correlation

between labor income shocks and asset returns. If income shocks are uncorrelated

with asset returns, equation (14) implies that for any two investors, h and g:

Sg =
Ah

Ag
Sh.

In words, the proportion of total risky asset investment invested in any particular

asset must be the same for all investors — two-fund separation holds. But if income

shocks are correlated with asset returns, then two-fund separation always fails. It is

easy to see why two-fund separation fails when investors are in different occupations.

If one investor has relatively more endowed exposure to one asset than another, we

would expect relatively less investment in that asset by the more exposed investor.

Formally, consider two investors h and g in occupations i and k, respectively. Then

equation (14) implies:

Sg =
Ah

Ag
Sh +

(Ah

Ag

)

βi
y − βk

y.

What is more surprising is that two-fund separation fails even when two investors are

in the same occupation. The intuition is that differences in risk aversion only affect

desired exposure, not endowed exposure. Formally, the relationship of two investors

h and g in the same occupation i is

Sg =
Ah

Ag
Sh +

(Ah − Ag

Ag

)

βi
y.
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2.2.2 Welfare Gains to Trade in Risky Assets

How valuable is the opportunity to trade risky assets, what we call the gains from

trade, to an investor? Let C∗ measure the certainty equivalent consumption that

corresponds to a particular point in (C, V ) space. Equation (2) implies that:

C∗ = C − Ah

2Rf
V.

Graphically, the intersection of the indifference curve that passes through (C, V ) and

the left-hand axis measures the certainty-equivalent consumption level. Equations

(1), (9), and (12) imply that at an optimum:

C∗ = Y i +
ER

Rf
(βh

c − βi
y)−

Ah

2Rf
(V i + (βh

c − βi
y)

2 var(R̃)).

Equation (10) allows us to eliminate ER and the we use some arithmetic to get:

C∗ = Y i − Ah

2Rf
V i +

Ah var(R̃)

2Rf
(βh

c − βi
y)

2 = Y i∗ +
Ah var(R̃)

2Rf
(βh

c − βi
y)

2, (15)

where Y i∗ is the certain equivalent consumption associated with the endowment point.

Equation (15) implies that the gains from trade equal

C∗ − Y i∗ =
Ah var(R̃)

2Rf
(βh

c − βi
y)

2. (16)

We draw attention to three aspects of the gains from trade.

First, the gains from trade are always positive. Mathematically, this follows from

the fact that the right-hand side of equation (16) is a square and always positive.

Graphically and intuitively, the gains from trade are always positive because the

endowment point is always in the feasible set. Since not trading risky assets is always

an option, any alternative choice must be preferred by revealed preference. Second,

only the difference matters to magnitude of the gain. The welfare gain is the same

whether endowed exposure falls short of desired exposure by $25 thousand or exceeds

desired exposure by $25 thousand.

Third, the gains to trade are nonlinear in the gap between desired and endowed

exposure. For example, if we double the gap, we quadruple the gains from trade.

What generates this nonlinearity? At the margin, a dollar investment in a risky asset

(with positive excess returns) leads to an ER dollar increase in lifetime consumption,

but the sign and magnitude of the change in the variance depend on the level of

exposure. In Figure 11, going from exposure level E4 to E1 yields the same increase

in lifetime consumption as a jump from E1 to E3, as does a jump from E3 to E2.
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By contrast, an increase in exposure from E4 to E1 leads to a fall in the variance

of consumption, a jump from E1 to E3 leads to a small increase in the variance,

and a jump from E3 to E2 leads to a much bigger increase in the variance. Since

the change in certain equivalent consumption is a weighted sum of the change in

lifetime consumption and the change in variance, the marginal change in certain

equivalent consumption (measured on the left axis) inherits the sensitivity of the

marginal variance change to the level of exposure. Thus the marginal gains from

trade depend on the level of exposure and the total gains from trade depend not

only the difference between endowed and desired exposure but also on the level of an

investor’s endowed exposure.

Figure 11 illustrates the nonlinearity of the gains from trade. For an investor

in occupation 1, the gains are roughly $2 thousand. By contrast, for an investor in

occupation 2, the gains are negligible. The difference in correlations between the two

occupations is actually quite modest. Our parametric assumption for occupation 1

implies no correlation and for occupation 2 implies a correlation of 0.5. The above

analysis suggests that, if there is a fixed cost to trading risky financial assets, even a

moderate positive correlation might be enough to dissuade potential investors from

participating in risky asset markets.

3 Many Periods and Other Extensions

In this section we show how to extend our model to a life cycle setting. We first show

that we can redefine C and V so that all the analysis of section 2 carries over. We

then examine how a life cycle setting affects desired and endowed exposure. And then

we discuss some issues related to calculation of endowed exposure using time series

data.

3.1 Multi-Period Model

We now consider an investor now lives for T + 1 years (t = 0, 1, ...T ). As above, the

investor starts life with no financial assets. Each period an investor who works in

occupation i receives labor income yit, composed of a deterministic component and an

income innovation ηit = ỹit−E
(

ỹit
)

. Each year except the last, an investor allocates Sj,t

dollars to each risky asset j and Bt dollars to a riskless bond. Risky asset j pays gross

return R̃j and the riskless bond pays gross return Rf . Let c̃t denote consumption at

time t.
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At time t an investor chooses random sequences {Bs}T−1
s=t and {Ss}T−1

s=t to maximize:

U((
{

cs
}T

s=t
) =

T
∑

s=t

δs−tuh(ct) (17)

subject to the constraint that:

ct = yt +RfBt−1 +R′
tSt−1 − Bt − 1′St (18)

for all t.

We make three additional assumptions, which allow for an analytical solution to

the optimization problem defined by equations (17) and (18). First, as in Section

2, we assume that period utility is exponential. That is, u(c) − exp(−Ac). Second,

we assume that the joint distribution of income innovations and risky asset returns

evolves deterministically over the life cycle. And third, we assume that the joint

distribution of income innovations and risky asset returns is normal.

For convenience, we continue to assume that the rate of time preference equals

the risk-free rate of interest. We will find it convenient to use an operator that gives

the expected present value of a random sequence discounted at the riskless rate:

PDVt

({

z̃s
}T

s=t

)

=

T
∑

s=t

1

Rs−t
f

E
(

z̃s
)

.

In particular, we will let Yt = PDVt({ys}Ts=t) and Ct = PDVt({cs}Ts=t). The period-

by-period by constraint (equation (18) implies that:

Ct = Yt +RfBt−1 +R′
tSt−1 + PDVt({ER′Ss}T−1

s=t ).

In addition, we will often use the annuity factor at = 1/(ΣT
s=t1/R

s−t
f ).

3.2 Portfolio Choice

Our maintained assumptions dramatically simplify the dynamic optimization problem

defined by equations (17) and (18). Specifically, we can solve for the sequence {St}T−1
t=0

by solving T separate and independent optimization problems, one for each period,

each one of which is identical in form to the two-period problem solved in Section

2. Specifically, at time t, choose any arbitrary values for Ss, s 6= t and for Bt−1. An

investor chooses St to maximize:

Ct −
1

2
Ah

t+1Vt+1, (19)

where Vt+1 = var(C̃t+1), and A
h
t = atA

h.
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It is not surprising that the optimization problem defined by equations (17) and

(18), can be viewed as a series of two-period problems. Most well-posed dynamic

portfolio choice problems can. What is surprising is that the two-period prob-

lems can be solved irrespective of whether the investor’s future risky asset alloca-

tions are optimal. What generates this independence? Intuitively, we point to two

things. First, equation (19) shows that portfolio choice at time t is independent of

PDVt({ys}Ts=t) +RfBt−1 +R′
tSt−1, since adding a constant to an optimization prob-

lem has no effect on the solution. Second, by the same logic, future risky asset choice

doesn’t depend on current risky asset choice, meaning that the investor can ignore

the effects of his or her choices this period on his or her future choices. Formally, our

independence result depends on two maintained assumptions. First, we assume that

utility is exponential, so the level of wealth does not affect its risk tolerance. And

second, we assume that the conditional joint distribution of asset returns and labor

income shocks is state independent. At any time t, the covariance of asset returns

and labor income, for example, is independent of the level of liquid wealth, the level

of human wealth, or any previous investment decisions. Surprisingly, this indepen-

dence result does not depend on the normality of income and asset return shocks.

For details of the solution, see the appendix.

Since equation (19) has the same form as equation (3), all the analysis of Sec-

tion 2 carries over. We can construct a feasible set of combinations of Ct and Vt+1.

Associated with any point in the feasible set is a new measure of exposure:

βC,t = var(R̃)−1 cov(Ct, R̃).

Again, we can use the Euler equations with respect to the risky assets to calculate

desired exposure:

βh
C,t =

1

Ah
t

var(R̃)−1ER.

And endowed exposure equals the exposure of an investor who invests nothing in

risky assets:

βi
Y,t = var(R̃)−1 cov(Yt, R̃). (20)

As in the two-period model, portfolio choice equals the difference between desired

and endowed exposure:

St = βh
C,t − βi

Y,t.

How does the solution to the multi-period model differ from the solution to the

two-period model? In some ways, it does not differ. For example, lower absolute

risk aversion leads to higher desired exposure and, all else equal, higher demand for

risky assets. And higher covariance of labor income shocks with asset returns leads to
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higher endowed exposure and, all else equal, lower demand for risky assets. However,

there are key differences in the dynamic model. First, an investor’s time horizon

affects desired exposure — what we call the income smoothing effect. And the the

persistence of occupational income shocks affects endowed exposure — what we call

the magnification effect. We discuss each in turn.

3.3 The Income Smoothing Effect and Desired Exposure

The shorter the planning horizon, the greater the utility loss caused by a single bad

year for an investor. With only one more year to live, a $50 thousand investment

loss means a $50 thousand cut in consumption during the last year of life. With

a long time left to live, the investment loss can be spread over many years. Since

investors ultimately care about consumption and the marginal utility of consumption

is declining, a given-size shock to wealth has larger utility consequences for an investor

with a shorter planning horizon.

Recall from the two-period case that desired exposure depends only on absolute

risk aversion (the slope of the indifference curves). The same property holds in the

many-period case, but effective risk aversion becomes Ah
t = atA

h, where Ah is the

individual-specific measure of absolute risk aversion in the primitive utility function

and at is the marginal propensity to consume (MPC) out of wealth.6 The MPC is

positive and rises monotonically with age, eventually reaching unity in the last period

of life. In this model, as in traditional permanent income models, a dollar shock to

wealth is spread over the rest of life. The longer an investor has to live, the more

years over which to spread a shock. We refer to Ah
t as dynamic absolute risk aversion,

because it changes over time as the investor ages and her planning horizon shrinks.

Figure 2 shows indifference curves for different levels of risk aversion. A picture

showing different ages would look exactly the same — as an investor grows older,

dynamic absolute risk aversion rises and the indifference curves steepen. If the in-

vestor’s feasible set remains unchanged, she should reduce her holdings of risky assets

as she ages.7 Note, however, that we are talking about levels not proportions.

6Ah can also be allowed to vary with age.
7This effect arises in any permanent-income type model. That is, the higher the marginal propen-

sity to consume out of wealth, the larger the impact of a dollar shock to wealth on consumption.

With CRRA preferences, absolute risk aversion falls at the same rate as wealth, so that the pro-

portion of total wealth invested in the risky asset remains constant (conditional on the covariance,

magnification, and other life cycle considerations identified above). This constant-share implication

of CRRA preferences is well known. However, since wealth falls (in expectation) over the life cycle,

CRRA preferences also imply declining levels of risky asset holdings as an investor ages.
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As people age, total wealth Ct tends to decline, so that investment in risky financial

assets need not decline as a fraction of total wealth as an investor ages.

Financial wealth (Bt+St at time t) typically grows over an investor’s working life,

as she converts human capital into financial wealth for retirement. (Financial wealth

also tends to grow with the conversion of expected future excess returns into realized

excess returns.) Since financial wealth grows over her working life and the level of

risky financial asset holdings shrinks, the optimal share of financial wealth in risky

assets falls over the life cycle — just as financial planners recommend.8

To sum up, the two-period analysis applies to the many-period situation with

respect to income smoothing effects, if one replaces Ah with Ah
t .

3.4 The Magnification Effect and Endowed Exposure

In a dynamic model, shocks to income and asset returns affect more than an investor’s

financial wealth. If an investor can use shocks to asset returns or income to forecast,

then shocks convey information about expected future income and affect an investor’s

beliefs about his or her lifetime income. Consider a tenure-track finance professor at

a leading business school. If she is denied tenure and takes a position on Wall Street

as a result, her pay will immediately jump up, and her expected future pay will

also increase (perhaps even more). With the bad(?) news about tenure, her lifetime

income grows by more than her current income. As a result, a modest shock to current

income may magnify into a much more dramatic shock to lifetime income. For this

reason, we refer to the effect of forecastability on lifetime income as the magnification

effect.

Formally, we can see the magnification effect in our characterization of endowed

exposure in equation (20). In this paper, we make two assumptions about the labor

income process. First, we assume that it is an ARMA process. And second, we assume

that asset returns have some forecasting power for future labor income shocks. Under

8On the advice of financial planners, see Canner, Mankiw, and Weil (1998) and Ameriks and

Zeldes (2000). Since Bodie, Merton, and Samuelson (1992), many researchers have argued that the

explanation in the text (growing financial wealth implies shrinking proportion in risky assets) is

consistent with financial planner’s advice. This is not quite correct — financial planners typically

advise a falling proportion of wealth in risky assets even in retirement — after the drawdown of

human capital is complete. Consider the financial planner’s advice related in Ameriks and Zeldes,

“The longer you have to invest, the more time you have to weather the market’s inevitable ups and

downs.” This statement is inconsistent with the human capital drawdown explanation, but it is the

correct explanation for why the level of investment in risky assets should fall over the life cycle —

suggesting that financial planners are mixing up levels and proportions.
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these two assumption, we can write an innovation to lifetime income as:

Y i
t − Et−1(Y

i
t ) = PDVt

({

Ψs(Et(η̃
i
s)− Et−1(η̃

i
s))

}T

s=t

)

, (21)

where η̃is is the time-s innovation in labor income, and Ψs measures the impact on

lifetime income of unit innovation. When income obeys an ARMA process, Ψt sum-

marizes the impact of a current income innovation on the present value of lifetime

resources.9 Using equation (21), we can solve for the covariance of lifetime income

and current asset returns:

βi
Y,t = var(R̃t)

−1 cov(Yt, R̃t) = PDVt

({

Ψs var(R̃t)
−1 cov(η̃is, R̃t)

}T

s=t

)

. (22)

To illustrate the magnification effect, we consider three special cases. First, suppose

that income shocks are white noise — so we cannot use current income shocks to

forecast future income. Then Ψs = 1 for all s and

βi
Y,t = PDVt

({

var(R̃t)
−1 cov(η̃is, R̃t)

}T

s=t

)

. (23)

The expression inside the brackets equals endowed exposure in the two-period model

(see equation (13)) to asset returns at different lags. So endowed exposure in the

dynamic model equals the present discounted value of the two-period endowed expo-

sure measures. Second, suppose that asset returns do not enable investors to forecast

future income but current income shocks are valuable for forecasting. Then

βi
Y,t = Ψt var(R̃t)

−1 cov(η̃it, R̃t). (24)

Here, dynamic endowed exposure equals static endowed exposure multiplied by the

effect of a shock to labor income today on lifetime income. Third, suppose that asset

returns forecast income only one period ahead. Then endowed exposure equals:

βi
Y,t = Ψt var(R̃t)

−1 cov(η̃it, R̃t) + (1/Rf)Ψt+1 var(R̃t)
−1 cov(η̃it+1, R̃t). (25)

Now, endowed exposure is the sum of endowed exposure to current asset returns and

endowed exposure to lagged asset returns discounted at the riskless rate.

3.5 Other Constraints on the Portfolio Allocation Decision

Investors may face a variety of other constraints on portfolio allocation decisions

because of ownership positions in privately held firms, employment relationships that

9Formally, any ARMA process can be represented by an MA (∞).The MA coefficients ψi tell us

that Et(yt+i)− Et−1(yt+1) = ψ1
˜̃iηt. This means that Ψi = PDV

({

ψi

}T−t+1

i=1

)

.
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require certain equity positions, short-sale constraints on risky assets, and limitations

on borrowing ability. These constraints are easily handled in the two-period setting

and often in the many-period setting as well.

Consider investors who must hold long positions in particular risky assets. For

example, a small business owner is effectively endowed with a long position in her

own business. This long position creates an endowed exposure for the small business

owner that is analogous to the endowed exposure implied by a worker’s human capital.

Thus, we can treat the portfolio allocation decision in the same manner as before by

simply re-defining income to include profits from the business. Of course, the size,

variability, and covariance properties of a small business owner’s income stream may

differ from that of a worker’s, but these facts introduce no new conceptual issues.

Likewise, a senior executive at a large firm who must hold restricted stock as a

condition of employment is also endowed with a particular exposure. Similarly, a

pension fund with required holdings in certain firms, sectors, or geographic regions

is effectively endowed with certain exposures. All of these cases can be handled by

simply re-defining the endowed risky income stream in the analysis above.

Short-sale constraints on risky assets are also easily handled in the two-period and

many-period settings. Geometrically, and with one risky asset, a short-sale constraint

chops off the portion of the feasible set that lies below S=0. When a short-sale

constraint binds for a particular risky asset, it effectively shuts down the investor’s

ability to participate in that asset market. Hence, her portfolio allocation can be re-

computed after restricting attention to the subset of risky assets for which short-sale

constraints do not bind. Because the optimal portfolio has an analytical solution in

our model, candidate solutions are easily evaluated to determine which set of markets

is effectively open to an investor subject to short-sale constraints.

In practice, short-sale constraints are less likely to bind than they might appear for

a couple of reasons. First, higher expected returns on risky assets give every investor

a motive to adopt a long position. Only when the correlation between income shocks

and asset returns is positive and the hedging motive is strong enough will an investor

want to adopt a net short position. Second, at the level of a pension fund, for

example, short positions taken on behalf of some pension fund beneficiaries can be

netted against long positions taken on behalf of other beneficiaries. Thus, a pension

fund with a sufficiently diversified pool of beneficiaries can achieve the short positions

desired by individual beneficiaries without adopting short positions at the fund level.

Borrowing constraints on the riskless asset are easily handled in the two-period

setting. Geometrically, a no-borrowing requirement chops off the portion of the fea-

sible set that lies above the investor’s current level of financial assets. If the investor
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has access to limited borrowing, the constraint on her feasible set is further relaxed.

In the many-period setting, borrowing constraints on the riskless asset are not as

easy to handle. The added complexity arises because the possibility that borrowing

constraints bind in the future alters the investor’s attitude toward risky assets and

the current consumption-savings choice.

4 Occupation-Level Income Innovations

4.1 Income Data and Selection Criteria

The Current Population Survey (CPS) randomly samples about 60,000 U.S. house-

holds every month. Among other items, the survey inquires about labor income,

employment status, hours worked, educational attainment, occupation, and demo-

graphic characteristics of each household member. The Annual Demographic Files in

the March CPS contain individual data on these items for the previous calendar year.

Using the CPS March files, we estimate occupation-level components of individual

annual earnings from 1967 to 1994.

To compute annual earnings, we use CPS data on wage and salary workers in

the private and public sectors who were 23 to 59 years old in the earnings year. We

exclude unincorporated self-employed persons from the earnings calculations, but we

include self-employment and farm income for persons who were mainly wage and

salary workers. We restrict the sample to persons who worked at least 500 hours

during the year, and we exclude persons who were students or in the military at least

part of the year.10 In addition to these individual-level selection criteria, we also

impose the occupation-level criteria described below.

The detailed occupational classification schemes in the CPS underwent major

changes in 1970 and 1982. Where possible, we constructed a uniform classification

scheme from 1967 or 1970 to 1994 based on the occupational descriptions in the CPS

documentation and an examination of changes over time in occupational cell counts

and mean occupational earnings. We dropped individual-level observations that met

any of the following occupation-level selection criteria:

• The occupational group could not be extended back to 1970 or earlier in a

consistent manner.

• Self-employed persons account for a large fraction of occupational employment

(examples include physicians, dentists, lawyers, and farmers).

10We also exclude persons who report an hourly wage less than 75 percent of the federal minimum.

We handle top-coded earnings observations in the same manner as Katz and Murphy (1992).
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• The occupational category is vague (examples include “General Office Supervi-

sors” and “Financial Managers”).

• The number of individual-level observations in the occupation had a mean an-

nual cell count less than 100 or a minimum annual cell count less than 50.

These criteria yield 57 detailed occupational classifications that extend from 1967 or

1970 to 1994. The occupational selection criteria reduced the number of individual-

level observations by about one-half.

From these 57 occupations, we selected for further analysis 10 occupations with

large cell counts and a consistent definition back to 1967. Table 1 lists these occupa-

tions and reports summary statistics on cell counts and average annual earnings in

1982 dollars.11 As suggested by the table, the 10 occupations range widely in terms

of educational requirements and annual labor income.

4.2 The Occupation-Level Component of Income Innovations

To extract the occupation-level component of individual earnings shocks, we first fit

standard earnings regressions to the individual-level data. We fit separate earnings re-

gressions for each occupation after pooling the data over all available years. For each

occupation, we regress real earnings on sex, four educational attainment dummies,

a quartic polynomial in age interacted with sex, and a full set of occupation-specific

year effects. We estimate one set of regressions using annual earnings as the depen-

dent variable and another using log earnings. The log earnings specification is more

commonly used by empirical researchers, but the specification in natural units fits

more closely with our theoretical model.

Our specification allows the age-earnings profile to vary freely across occupations

(and sex) but not to shift over time. Effectively, we treat the occupation’s average

age-earnings profile over the 1967–1994 period, adjusted for sex and education, as

predictable variation in a worker’s expected earnings. As implied by the occupation-

level earnings specifications described below, we also treat the average occupational

earnings growth from 1967 to 1994 (conditional on worker characteristics) as part of

expected earnings growth.

Let εt, t= 1967, 1968, ..., 1994, denote the occupation-year effects estimated in

the first-stage earnings regressions. To characterize the stochastic properties of the

occupation-level component of individual earnings shocks, we fit simple ARMA mod-

els to the first-differenced values of the occupation-year effects. Following earlier work

11We express earnings in 1982 dollars using the GDP deflator for personal consumption expendi-

tures.
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by MaCurdy (1982) using panel data on individuals and by Davis and Willen (2000)

using synthetical panel data for demographic groups, we fit second-order moving av-

erage processes of the form,

∆εt = α+ ηt + ψ1 ηt−1 + ψ2 ηt−2, (26)

where ηt denotes the time-t innovation to the occupation-level component of individ-

ual earnings shocks. These innovations and their covariance with asset returns are

the main focus of the empirical investigation and the applied portfolio analysis in this

paper.

It is apparent that our empirical approach ignores selection issues associated with

worker mobility across occupational groups and between employment and not work-

ing. As a consequence, our estimates of the stochastic process for the occupation-level

component of individual earnings may be incorrect even for infra-marginal workers

who do not move. A proper treatment of these issues requires long panel data sets.

In Davis and Willen (2000), we take the panel requirement seriously by construct-

ing long time series for synthetic persons defined in terms of sex, birth cohort, and

educational attainment. Alternatively, one can use true panel data sets such as the

Panel Survey of Income Dynamics. In practice, the true panel approach has serious

limitations imposed by the nature and size of available data sets.

In the absence of panel data sets that contain rich information about hundreds

of thousands (better yet, millions) of persons over substantial portions of their life

cycles, we think the empirical approach adopted here is a useful one. It can be readily

adapted to investigate other components of individual-level earnings shocks that are

correlated with observable worker characteristics — for example, age, job tenure,

industry, and location. The main requirements for the approach are large cross-

sectional individual-level datasets repeated over a number of years. Such datasets are

staples of empirical studies in many countries.

4.3 The Magnitude and Persistence of the Innovations

The standard deviation of ηt in equation (26) quantifies the magnitude of innovations

to the occupation-level component of individual earnings. The implied magnitude of

the shock to the value of human capital depends on the persistence of η (a function

of ψ1 and ψ2), the risk-free rate of interest, and the number of years remaining until

retirement. By combining these elements, we can easily calculate the magnitude of

a typical shock to the occupation-level component of human capital at a given age.

The magnitude of this shock declines with age, because fewer years remain until
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retirement.12

Table 2 and Table 3 display the results of fitting (26) for wages measured in natural

units and natural logs, respectively. The tables also report the implied present value

multipliers on the occupation-level earnings shocks at ages 30 and 50, assuming a real

discount rate of 2.5 percent per year and retirement after age 59.

To illustrate the calculation of the human capital shock implied by an occupation-

level income innovation, consider the example of accountants and auditors at age 30.

According to Table 2, the standard deviation of innovations to the occupation-level

component of earnings is 1080 dollars, which equals 4.3 percent of annual earnings.

At age 30, the present value multiplier on this innovation is 20.0, so that the implied

impact on human capital amounts to 1080(20.0)= $21,600. This figure equals 87

percent of the average annual earnings for accountants and auditors reported in Table

1. As these calculations show, occupation-level earnings innovations are of modest

size, but the implied effects on the present value of lifetime earnings are not.

Occupations differ quite a bit in terms of magnitude and persistence of occupation-

level earnings innovations. The standard deviation of the occupation-level innovations

in Table 3 ranges from 2.9 to 6.9 percent of annual earnings. Plumbers have the most

volatile occupation-level earnings component in both dollar and percentage terms,

while registered nurses and elementary school teachers have the least volatile.

In most cases, the occupation-level earnings process is less persistent than a ran-

dom walk. For example, the long-run multiplier on an occupation-level earnings

innovation for accountants and auditors equals 1 + (-.18) + (.11) = .93, according to

the Table 2. The long run multiplier is much less persistent for electrical engineers

(.28) and much more persistent for registered nurses (1.94). Likewise, the present

value multiplier at age 30 is 6.8 for plumbers and 40.2 for registered nurses. These

two occupations are outliers in terms of persistence. For the other occupations, the

present value multipliers at age 30 range from 13 to 27 using the natural units wage

measure and from 11 to 26 using the log measure.

The last two columns in Table 2 and Table 3 show how the present value mul-

tiplier declines between ages 30 and 50, given our assumptions about discounting

and retirement. The age-50 multipliers are fairly sensitive to alternative assumptions

about retirement age, but the basic point is not. As workers near retirement, earnings

innovations have smaller and smaller effects on lifetime resources.

12As we mentioned in Section 2, this simple mechanical effect implies that a worker’s endowed

exposure to risky financial assets tends to decline with age. It must decline with age if the covariance

between labor income innovations and asset returns is nonzero and independent of age. A covariance

between labor income innovations and asset returns that rises with age works in the opposite direction

of this horizon effect.
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5 Covariance between Occupation-Level Income In-

novations and Asset Returns

5.1 Covariance with Aggregate Equity Returns

To investigate the covariance between occupation-level earnings innovations and ag-

gregate equity returns, we regress ηt from equation (26) on the realized market rate of

return during period t. Recall that the slope coefficient in an ordinary least squares

(OLS) regression of y on x can be written as COV(x,y)/VAR(x). Thus, we can

use standard regression methods to quantify the covariance between income shocks

and equity returns and to test whether the relationship is statistically significant.

Other return measures can be introduced as additional regressors to investigate the

covariance with multiple assets and to assess the scope for using financial assets to

hedge occupation-level earnings risk. The goodness of fit (R2 value) in this type

of regression has an important economic intepretation: it is the estimated fraction

of occupation-level earnings risk that can be hedged by a suitably structured asset

portfolio.

In unreported regressions, we find little evidence that occupation-level income in-

novations and aggregate equity returns are linearly related in annual data from 1968

to 1994. At the 10 percent confidence level, none of the 10 occupations shows a

statistically significant relationship between income innovations and returns on the

value-weighted market portfolio.13 As a check, we also considered the returns on sev-

eral other broad-based equity indexes: the S&P 500, the New York Stock Exchange,

the Wilshire 5000, and a value-weighted composite of the New York Stock Exchange,

American Stock Exchange, and NASDAQ. For each measure, the results showed the

same pattern of little or no evidence for a relationship between occupation-level in-

come innovations and contemporaneous aggregate equity returns.

This result is quite puzzling from the vantage point of standard economic theories

of growth, fluctuations, and asset pricing. Equilbrium models that obey standard

asset-pricing relationships and that embed a conventional specification of the aggre-

gate production technology imply a high positive correlation between aggregate equity

returns and shocks to the aggregate value of human capital.14 We take note of the

13As reported on Ken French’s web site http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html#HistBenchmarks.
14By “conventional”, we mean a production technology that is approximately Cobb-Douglas over

capital and labor. Given a stable Cobb-Douglas technology and a competitive economy, factor

income shares are constant over time. Hence, if the same discount rates apply to future capital

and labor income, and asset prices reflect fundamentals, the unobserved value of aggregate human
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puzzle here, but it is not necessary to resolve it to pursue this paper’s agenda.

However, the difficulty of reconciling the empirical finding with standard equilib-

rium models might lead some readers to discount our evidence. Hence, it is worth

remarking that other empirical studies find evidence with a similar flavor. For exam-

ple, under the assumption that labor income growth follows a random walk, Fama

and Schwert (1977) find a near-zero correlation between aggregate equity and human

capital returns in the United States. Botazzi et al. (1996) report similar results for

several countries. Davis, Nalewaik, and Willen (2000) find little correlation between

aggregate output growth and domestic equity returns in regressions for 14 countries.

Davis and Willen (2000) consider the correlation between asset returns and shocks to

the value of human capital for synthetic persons defined in terms of sex, birth cohort,

and educational attainment. The correlations with aggregate U.S. equity returns for

these persons are centered near zero, and the goodness-of-fit never exceeds 5 percent

of stochastic earnings variation for any group. While they find evidence of statistically

significant correlations between equity returns and labor income innovations for some

demographic groups, the correlations are rather modest, typically lying in the interval

from -0.1 to 0.2. In sum, several studies that consider a variety of countries, time

periods, and income components find zero or small correlations between aggregate

equity returns and the value of human capital.

Empirical work based on larger samples, different components of labor income,

different information sets, longer horizons, or more refined econometric techniques

may yet uncover more powerful relationships between labor income innovations and

aggregate equity returns. However, the evidence to date strongly suggests that the

“market” portfolio is only weakly correlated with innovations in aggregate and group-

level measures of labor income. It follows that the market portfolio has modest value

as a hedge instrument for the average worker and probably for most occupational and

demographic groups as well.

5.2 Other Asset Return Measures

We also investigated the covariance between occupation-level income innovations and

the returns on long-term government bonds and other assets. Bond returns are signif-

icantly correlated with income innovations for a few occupations, as we report below.

In most cases, bonds account for a greater fraction of occupation-level income innova-

capital fluctuates in a manner that is perfectly correlated with the observed value of claims to the

aggregate capital stock. Models with these ingredients are standard, but they are hard to reconcile

with the emerging body of work the finds low correlations between aggregate equity returns and

labor income innovations.
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tions when the returns are measured in nominal terms. Hence, we use nominal bond

returns in the regressions below.15

We pursued two other ideas for hedging instruments. First, we sought to construct

industry equity portfolios that respond sensitively to shocks to the value of human

capital in particular occupations. For example, demand shocks in the construction

sector induce a positive covariance between equity returns in construction industries

(SICs 15, 16 and 17) and occupation-level income innovations for electrical engineers,

electricians and plumbers. More generally, industry-level demand shocks and factor-

neutral technology shocks impart a positive covariance between returns on industry

equity and occupation-level income innovations.

However, prior reasoning alone cannot determine the sign, let alone the magnitude,

of the covariance between industry equity returns and labor income innovations for

industry workers. For example, labor-saving technological improvements in construc-

tion activity might be good for share holders but bad for the earnings of electricians

and plumbers. As another example, the deregulation of the trucking industry during

the 1970s and early 1980s was bad news for many truck drivers (Rose 1987) but good

news for many trucking firms (Keeler 1989). The basic point is that factor-biased

technology shifts (construction example) and rent shifting between owners and work-

ers (trucking example) impart a negative covariance between industry-level equity

returns and occupation-level income innovations.

The bottom line of this discussion is that the usefulness of industry-level equity

portfolios as hedging instruments for workers is very much an empirical issue. Fur-

thermore, if the mix of underlying shocks and economic response mechanisms changes

over time, the covariance between industry-level equity returns and occupation-level

income innovations is likely to change. The weight of this concern is also largely

an empirical issue. No single study can definitively settle these empirical issues, so

our results in this regard are best viewed as one installment in a broader empirical

inquiry.16

We constructed the industry portfolios using firm-level equity returns and market

values in the Center for Research in Security Prices (CRSP) database. For each

occupation, except janitors and cleaners, we identified one or more industries that

15We can still specify the first moment of bond returns in real terms for the purposes of portfolio

analysis. Data on bond returns are from “U.S. LT Gvt TR” in the “World Capital Market - Fixed”

module of the Ibbotson Database.
16Davis and Willen (2000) take a different empirical approach to the same issue. They construct

time-varying equity mutual funds for synthetic persons defined in terms of birth cohort, sex, and

educational attainment. The weights for the equity mutual funds mirror the contemporaneous

industry distribution of employment for the workers in the sex-education-cohort group.
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account for a large fraction of the occupation’s employment. In some cases, we had

to omit natural SIC counterparts for particular occupations, because CRSP contains

no firm-level observations during part of the sample period.17 In the end, we identified

the SIC industry groups listed in Table 4 for further analysis. We constructed value-

weighted industry returns using firms in the CRSP data, and we updated the firm-level

weights annually. The rightmost column in Table 4 shows the occupations to which

we matched each industry-level return measure.

In another approach to hedging instruments, we considered the covariance between

occupation-level income innovations and returns on equity portfolios formed on firm

size (market equity value) and the ratio of book-to-market equity value. Fama and

French (1993) construct these portfolios, and we use their data on returns.18 The

Fama-French SMB portfolio pays off the return on a portfolio of firms with small

market values minus the return on a portfolio of firms with large market values. The

Fama-French HML portfolio pays off the return on a portfolio of “value” stocks with

a high ratio of book-to-market equity minus the return on a portfolio of “growth”

stocks with a low ratio of book-to-market equity. The Fama-French portfolios are

rebalanced quarterly and adjusted for transactions costs when firms are bought and

sold.

Fama and French (1992, 1993, 1996) show that size and book-to-market factors

account for much of the cross-sectional variation in returns on common stocks. Many

other asset-pricing studies confirm an important role for these two factors.19 The

question naturally arises as to what types of risk are being priced by size and book-

to-market value. In other words, why do small cap stocks earn a higher average return

than large cap stocks? And, why do value stocks earn a higher average return than

growth stocks? One possibility is that shocks to the value of human capital covary

positively with the size and book-to-market factors. If so, then investors who are

exposed to labor income risk will demand a return premium to hold small cap and

value stocks. This asset-pricing logic suggests that labor income innovations might

be correlated with the returns on the size or book-to-market portfolios. Following

this logic, we investigate the covariance between occupation-level income innovations

17For example, SIC 872 (Accounting and Auditing) is a natural industry counterpart for the

accounting and auditing occupation, but CRSP contains no firm-level observations for SIC 872

during much of the sample.
18We obtained the data from Ken French’s web site http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html#HistBenchmarks.
19See the Fama and French studies for references to related work. Cochrane (2000) reviews the

asset-pricing evidence related to size and book-to-market factors and provides references to more

recent work.
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and returns on the SMB and HML portfolios.

5.3 Covariance with Other Asset Returns

We examined bivariate and multivariate regressions of the occupation-level income

innovations on returns for bonds, SMB and HML. Bond returns are significantly

related to income innovations for a few occupations, and HML returns add modestly

to the goodness of fit in regressions for truck drivers. However, only the SMB return

exhibits a statistically significant relationship to the income innovations for most

occupations.

Table 5 displays the bivariate regression results for SMB.20 The table shows that

the SMB portfolio accounts for 10 percent or more of income variation for about half

the occupations. For several occupations, the regression results imply a fairly large

positive correlation between income innovations and the SMB return. The correlation

for accountants and auditors, for example, is
√
.14=.37.

Drawing on Table 2, Table 4, and Table 5, we can calculate the implied covariance

between asset returns and innovations to the value of human capital for accountants

and auditors as follows. The standard deviation of annual returns on SMB is 15.5

percent. So, a realized return on SMB that is one standard deviation above its

mean is associated with an innovation in the value of human capital equal to (15.5)(-

25.2)(20.0) = -7,812 dollars.

In unreported results, we reran the regressions in Table 5 including the return

on the market portfolio. The market return is never significant at the 10 percent

level in these regressions. The SMB coefficients and the corresponding t-statistics are

typically somewhat larger when we include the market portfolio. We also examined

regressions on the Fama-French SMB “factor,” which differs from the SMB “portfo-

lio” in that it includes no adjustment for the costs of portfolio rebalancing. These

unreported results were similar to Table 5 but showed better fits for a few occupa-

tions. In the only dramatic difference, the R2 value for electrical engineers is twice as

large for the SMB factor as for the SMB portfolio.

The results in Table 5 suggest that the size portfolio offers some scope for hedging

occupation-level income risk, as suggested by the asset-pricing logic outlined above.

However, the pattern of results in Table 5 runs directly counter to our original moti-

vation for investigating the SMB portfolio. Most of the slope coefficients in Table 5,

and all of the statistically significant ones, imply that the relative return on small cap

stocks covaries negatively with occupation-level income innovations. Thus, investors

20When we allow the small cap and big cap portfolios to enter the regressions separately, they do

so with opposite signs and roughly equal magnitudes; likewise, for the growth and value portfolios.
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who are exposed to labor income risk should be willing to hold small cap equities at a

return discount relative to large cap equities. In fact, the average return on small cap

stocks is higher.21 So, while the findings in Table 5 are useful for portfolio allocation

purposes, they heighten rather than resolve asset-pricing puzzles related to the return

premium on small cap stocks.

Table 6 and Table 7 show regression results for the best-fitting set of asset return

measures. We selected the best-fitting set based on the adjusted R2 value in regres-

sions on SMB, HML, bonds, and the industry portfolios listed in Table 4. Four of the

industry meausures raised the adjusted R2 value in at least one regression.22 None of

the assets we considered had explanatory power for auto mechanics.

Several results in Table 6 and Table 7 merit some attention. First, the results

involving the SMB portfolio are typically strengthened by the inclusion of other as-

sets. Second, the best-fitting set of asset returns accounts for 20 percent or more of

occupation-level income risk for several occupations. Third, the covariance structure

between income innovations and asset returns differs considerably across occupations.

SMB is related to income innovations in most, but not all, occupations. Bonds are

significantly related to income innovations in four occupations, but the sign of the

relationship for registered nurses differs from the other occupations. Occupation-level

income innovations for auto mechanics are unrelated to any of the asset returns we

tried. Fourth, the industry equity portfolios are part of the best-fitting set of asset

returns for about half of the occupations, although t-statistics for a test of the null

hypothesis of no relationship to income innovations are usually below 2.

In summary, the regression results identify one or more assets for each occupa-

tion (except auto mechanics) that appear to provide some scope for hedging the

occupation-level income innovations and shocks to the value of human capital for

workers in those occupations. In the next section, we use these empirical results

to construct optimal portfolios of risky assets according to the theory developed in

Sections 2 and 3.

21Table 4 shows a very modest return premium on small cap stocks during our sample period. As

others have observed, the realized premium on small cap stocks has declined in recent decades. The

average annual value of the Fama-French SMB portfolio return was about 8 percentage points from

1964 to 1980 and -4 percentage points from 1981 to 1994.
22Aggregate equity returns are not statistically significant when added to the regression specifica-

tions shown in Table 6 and Table 7
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6 Life Cycle Portfolio Choice with Risky Labor

Income: Some Examples

We now implement the solution to the life cycle portfolio problem with risky labor

income. We draw upon the empirical work in Sections 4 and 5 to characterize the

magnitude, persistence, and covariance properties of labor income shocks.

6.1 Portfolio Allocations under Two-Fund Separation

Table 9 shows optimal portfolio allocations when asset returns and labor income are

uncorrelated. The table considers three risky assets — the market, size, and value

portfolios — and uses a real risk-free return of 3.5 percent per year. We do not impose

short-sale contraints on risky asset holdings or restrictions on borrowing at the risk-

free rate. Since two-fund separation holds under these conditions, every investor has

the same risky asset portfolio shares, as shown in the top row. These shares depend

on the joint return distribution for the three assets, which we fit to the first two

sample moments in the data.

The table also displays optimal risky asset holdings at ages 40 and 60 for two

occupations under various assumptions about relative risk aversion and expected

returns. Given the coefficient of relative risk aversion (CRRA), we calculate the

corresponding level of absolute risk aversion as

Ah =
CRRA

∑59
a=23 ya

/(

75− 22
) .

The denominator in this expression is a crude proxy for permanent income based on

labor earnings from ages 23 to 59 and assuming that age 75 is the last year of life.

The dynamic absolute risk aversion level that governs risky asset demand at each age

equals the product of Ah and the marginal propensity to consume out of wealth, as

discussed in Section 3.

This simple procedure neglects some issues that arise in a more careful calibration

of the risk aversion coefficients (and their variation over the life cycle). First, for ex-

ponential utility, Davis and Willen (2000) show that consumption is proportional to

a broad measure of wealth that includes the value of human capital, the discounted

value of expected future excess returns on risky asset holdings, and a downward

adjustment for consumption uncertainty that reflects precautionary behavior. The

above procedure for calculating Ah treats human capital in a crude way and ignores

the other components of the broad wealth measure. Second, changes in wealth and
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background risk over the life cycle influence the demand for risky assets when pref-

erences do not have the exponential form. For example, preferences with constant

relative risk aversion imply that absolute risk aversion falls with wealth and rises with

background risk. The effects of expected life cycle variaton in wealth and background

risk can be captured in an exponential framework by introducing life cycle variation in

Ah. Third, mortality risk rises with age, so that an investor’s effective time discount

rate also rises with age. We set these issues aside here, because they are sufficiently

involved as to merit an extended treatment in a separate paper.23

Table 8 shows that an electrical engineer with relative risk aversion of 3 should,

according to the theory, hold a $1.03 million portfolio of risky assets. The portfolio

consists of a $257 thousand short position in SMB and long positions in HML and the

market portfolio. The optimal risky positions are smaller if we consider an otherwise

identical investor who is 60 years old, or one who has relative risk aversion of 5.

Optimal holdings are also about 40 percent smaller for a secondary school teacher,

because her permanent income is about 40 percent smaller. In line with the two-fund

separation principle, none of these changes alter the optimal portfolio shares.

In all of these cases, the optimal holdings are quite large relative to casual and

systematic evidence regarding actual holdings — 40-year-old electrical engineers who

hold million-dollar equity portfolios are not the norm. One important factor behind

this gap between theory and evidence is the high returns on U.S. equities over the last

century. Since many analysts believe that these high returns are unlikely to hold in the

future, the last row in each panel of Table 8 shows the optimal allocations for expected

returns on risky assets that are only half as large as the corresponding sample means.

Investment positions drop by half as well, but the optimal allocations remain quite

large compared to observed holdings for the typical person. This portfolio puzzle

seems to have escaped attention in previous research because of the strong proclivity

to focus on portfolio shares and to disregard theoretical implications for the level of

risky asset holdings.24

We believe that the resolution of this puzzle rests at least partly on the opportunity

cost of investor funds. In computing the portfolio allocations in Table 8, we allow

investors to borrow unlimited amounts at the risk-free interest rate. If investors

23An interesting research question is how to best approximate the savings and portfolio choice

behavior of a consumer-investor with constant relative risk aversion, by suitably specifying the life

cycle path for Ah in a framework with exponential utility. A related question is how the best

exponential approximation compares to approximate analytical solutions based on log linearization

methods and to numerical approximation methods.
24Davis, Nalewaik and Willen (2000) discuss this portfolio puzzle in connection with the gains to

international trade in risky financial assets.
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must instead borrow at an interest rate that approximates the expected return on

risky assets, then the optimal risky asset position is approximately zero when asset

returns and labor income are uncorrelated. Since many (potential) investors face an

opportunity cost of funds at least as great as the expected return on equities, it is

unsurprising that half or more of all housholds have little or no holdings of risky

financial assets.

6.2 Endowed Exposure and the Breakdown of Two-Fund Sep-

aration

Non-zero covariances between asset returns and labor income cause two-fund sepa-

ration to break down in a particular way. To illustrate this point, Table 9 shows

optimal allocations for seven occupations when we account for covariance with labor

income shocks. Recall from Section 2 that optimal holdings in the zero-correlation

case, “desired exposure,” depend only on absolute risk aversion and asset returns.

“Endowed exposure” gives the risky asset position implicit in the covariance between

asset returns and the worker-investor’s labor income.

The regression results in Section 4 show that most of our occupational groups have

an endowed exposure to the SMB portfolio. As we explained in Section 2, the endowed

exposure reflects the persistence of labor income innovations and their covariance with

asset returns. So, while electrical engineers have much greater covariance of income

innovations with SMB returns than secondary school teachers, income innovations

are more pesistent for the latter and their endowed exposure is greater.

To calculate an investor’s optimal portfolio, we simply subtract endowed exposure

from desired exposure. Since endowed exposure is not proportional to desired expo-

sure, two-fund separation fails. Other things being equal, the bigger the endowed

exposure, the bigger the departure from the two-fund separation principle.

Table 10 illustrates this breakdown by showing optimal portfolio shares under

different assumptions about risk aversion and excess returns for each occupation that

has a non-zero covariance with one or more of the assets. The base case uses sample

average excess returns and a relative risk aversion of 3. Given these assumptions, the

departures from two-fund separation are modest. For example, the optimal shares for

electrical engineers never differ from the zero-covariance optimum by more than three

percentage points. For secondary school teachers, the traditional zero-covariance

portfolio understates SMB holdings by 9 percentage points.

Because these effects are small, a portfolio manager might be forgiven for ignor-

ing them. However, if one believes that high equity returns are an aberration, or
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that expected returns have declined in recent years, then the effects of covariance

on optimal portfolio shares become more important. As an example, the second line

for each occupation in Table 10 shows optimal portfolio shares when we set excess

returns to one-half their sample averages. Recall that this change has no impact on

the optimal shares when two-fund separation holds. In particular, the optimal SMB

share is -25 percent under two-fund separation, regardless of whether we scale down

excess returns. This invariance result fails when we take covariance into account.

As an example, the optimal SMB portfolio shares for secondary school teachers is

+2 percent when excess returns are half their sample values and relative risk aversion

is 5. To understand this result, recall that the level of excess returns has no effect on

“endowed exposure.” So, as we reduce excess returns and, hence, desired exposure,

the relative size of endowed exposure goes up.

Higher risk aversion has the same effect, and for much the same reason. Greater

risk aversion lowers desired exposure but does not affect endowed exposure. The

last line in each panel of Table 10 shows optimal portfolio shares for the case of

high risk aversion and low excess returns. In this case, the optimal portfolio shares

sometimes deviate substantially from the two-fund separation principle. Based on

traditional mean-variance analysis, a portfolio advisor would recommend a 25 percent

short position in SMB. In contrast, the optimal position for secondary school teachers

is a 17 percent long position in a plausible case that accounts for covariance betwen

asset returns and labor income.

6.3 Life Cycle Variation in Endowed Exposure

Table 11 shows endowed exposure to the occupation-specific assets at different stages

of the life cycle. Given an age-invariant covariance between labor income innova-

tions and asset returns, the endowed exposure declines monotonically with age as the

worker-investor draws down her human capital. This result follows immediately when

the covariance is age invariant.25 The rate of decline in endowed exposure is the same

for the other risky assets.

As we discussed earlier, endowed exposure depends both on covariance and on the

present value multiplier. Although the covariance with the health asset for registered

nurses is much lower than the covariance with the build asset for electrical engineers,

the present value multiplier on occupation-level income innovations is five times bigger

25Davis and Willen (2000) allow this covariance to vary smoothly with age in their empirical work

but find only modest life cycle variation for demographic groups defined in terms of sex, education,

and birth cohort. Given their findings, and since their empirical design is better suited for uncovering

age effects of this sort, we imposed an age-invariant covariance structure in this paper.
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for registered nurses. As a result, the endowed exposures to the industry-level assets

for these two occupations are fairly similar early on in the life cycle.

A final issue involves life cycle variation in the extent of departures from two-

fund separation. Other things being equal, a declining path of endowed exposure

leads to ever smaller departures from two-fund separation as a consumer-worker ages.

However, income smoothing capacity and “dynamic risk aversion” also decline with

age, which creates a countervailing force. In particular, greater risk aversion intensifies

the effect of covariance on optimal portfolio shares, as we showed above. So, for any

given level of endowed exposure, the departure from two-fund separation is bigger for

an older worker-investor.

7 Concluding Remarks

When labor income (or proprietary business income) and asset returns are correlated,

investors are implicitly endowed with certain exposures to risky financial assets. These

endowed exposures have important effects on optimal portfolio allocation.

We develop a simple graphical approach to portfolio choice over the life cycle that

accounts for an investor’s endowed exposure. Our graphical approach easily handles

risky labor income, multiple risky assets, many periods, and several determinants of

portfolio choice over the life cycle. As an added virtue, the chief empirical inputs into

the framework are easily estimated using standard statistical procedures.

The two-fund separation principle that governs optimal portfolio choice in a tra-

ditional mean-variance setting breaks down when investors have endowed exposures

to risky assets. In simple terms, an investor’s optimal portfolio can be calculated as

the difference between her desired exposure to risky assets and her endowed expo-

sure. Because investors typically differ in their endowed exposures, they also differ in

their optimal portfolio allocations (levels and shares), even when they have the same

tolerance for risk and the same beliefs about asset returns.

The empirical approach to endowed exposure in this paper relies on repeated cross

sections to extract occupation-level components of individual income innovations.

Using annual data from 1968 to 1994, we find little evidence that occupation-level

income innovations are correlated with aggregate equity returns. This finding and

similar findings in other work present something of a puzzle for standard equilib-

rium models of fluctuations, growth, and asset pricing. Given rational asset pricing

behavior, frictionless financial markets, and standard specifications of the aggregate

production technology, dynamic equilibrium models imply a high correlation between

aggregate equity returns and the value of human capital. That implication finds little
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support in our empirical results.

We do find evidence that several other asset return measures are correlated with

occupation-level income innovations. The returns on portfolios formed on firm size

(market capitalization) are correlated with occupation-level income innovations for

about half the occupations we consider. In a few occupations, income innovations are

correlated with returns on long-term bonds. In several instances, industry-level equity

returns are correlated with the occupation-level income innovations of the workers

in those industries. Both a priori reasoning and our empirical results suggest that

industry-level equity returns can covary negatively or positively with labor income

innovations for industry workers. It follows that the optimal hedge portfolio for

occupation-specific and industry-specific components of risky labor income cannot be

discerned without intensive empirical study.

When we apply the estimated covariances to our portfolio choice framework, we

find sizable departures from the two-fund separation principle for plausible assump-

tions about expected asset returns and investor risk aversion. It is likely that future

empirical research will more fully uncover the covariance structure between labor in-

come and asset returns. If so, then the gap between optimal portfolio allocations and

the uniform portfolio shares implied by the two-fund separation principle will also be

larger.
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A Mathematical Appendix

For expositional convenience, the discussion in the text presumes that the risk-free

interest rate equals the subjective discount rate. In the brief derivation of equations

(1) and (2) that follow, we consider the more general case where the subjective dis-

count factor δ is not necessarily equal to the reciprocal of the gross return on the

riskless asset.

In the two-period model, the single-period budget constraints are c0 = y0 − B −
Sand c̃1 = ỹ1+RfB+ R̃1S. Combining these two equations to eliminate B gives the

intertemporal budget constraint:

c0 +
1

Rf
c̃1 = y0 +

1

Rf
ỹ1 +

1

Rf

(

R̃1 − Rf

)

S.

Taking expectations gives equation (1) in the main text. By definition,

U
(

c0, c̃1
)

= − 1

Ah

[

exp
(

−Ac0
)

+ δE exp
(

−Ahc̃1
)]

. (27)

The first-order condition of the optimization problem with respect to the riskless asset

is

exp
(

−Ac0
)

= δRfE
(

exp
(

−Ahc̃1
))

. (28)

Substituting (28) into (27) characterizes utility entirely in terms of period-0 consump-

tion:

U
(

c0, c̃1
)

= − 1

Ah

(

1 +
1

Rf

)

exp
(

−Ac0
)

. (29)

Since c̃1 is the sum of normal random variables, it is also normal and we have

E
(

exp
(

−Ahc̃1
))

= exp
(

−AE
(

c̃1
)

+
1

2
var

(

Ahc̃1
))

. (30)

Taking logs of (28) and substituting in (30) yields

E
(

c̃1
)

= c0 +
1

2
Avar

(

c̃1
)

+ ln δRf . (31)

Substituting (31) into (1) gives:

(

1 +
1

Rf

)

c0 = C − 1

2
Avar

(

c̃1
)

− ln δRf . (32)

Substituting (32) into (29) and imposing ln δRf = 0 gives equation (2) in the text.

The many-period version follows by backward induction. The key insight is that

since first-period consumption is affine in C, the distribution of consumption condi-

tional on information in earlier periods is still normal and the above argument can

be used with small adjustment. For details, see Davis and Willen (2000).
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First, suppose a household satisfies its Euler equation with respect to the riskless

asset for all s ≥ t. Then:

exp−Ahcs = E(exp−Ahc̃s+1) for all s ≥ t.

And it implies first that we can measure utility at time t along the optimal path

entirely in terms of current consumption:

U(
{

cs
}T

s=t
) =

−1

atAh
exp−Ahct.

And the latter optimization problem is essentially the same as the one solved in

section 2. In other words, we can use the graphical apparatus developed in Section

2 to solve each component of the multi-period problem. We illustrate this fact in

three steps: first, we show that if a household satisfies its Euler equation with respect

to the riskless asset, then expected utility at time t is proportional to period utility

of consumption at time t. Second, we construct a consumption function that calcu-

lates current consumption conditional on current liquid wealth, current labor income,

and current and future investment in the risky asset. And third, we use backward

induction to prove our separability result.

We now use equation (x) to construct a consumption function. Taking logs of

equation (x) implies that consumption follows a random walk with drift:

ct = Et−1(c̃t+1) + Ah var(c̃t+1)/2.

Repeated forward substitution of equation (x) implies that consumption today equals:

ct = at
[

PDVt({cs}Ts=t)− Ah

2
PDVt(

{

var(c̃s)
as

}T

s=t+1
)
]

.

Substituting in the lifetime budget constraint yields our consumption function:

ct = at
[

Yt +RfBt−1 + R̃′
tSt−1+

PDVt

({

ER′Ss

}T−1

s=t

)

− Ah

2
PDVt(

{var(c̃s)
as

}T

s=t+1
)
]

. (33)

We now use backward induction and our consumption function (equation (z))

to solve for optimal portfolios. Consider portfolio choice at time T − 1. Since the

household lives for only one more period, the problem is exactly like the problem in

Section x, except that we need to include accumulated liquid wealth in our defini-

tion of current income. But since we showed that current income had no effect on

desired or endowed exposure, it has no effect on portfolio choice and that’s why our

definition of Ct above ignores current income. So we have shown that Formally, ST−1
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is independent of BT−2 and ST−2. Consequently, when our household chooses how

much of the risky asset to buy at time T − 2, it can take risky asset choice at time

T − 1 as given. And that means that we can ignore all terms involving St, t > T − 2

in maximizing equation (x). So at time T − 2 the houshold maximizes:

YT−2 +RfBT−3 + R̃′
tST−3 + (1/Rf)ER

′ST−2 −
Ah

2Rf

var(c̃T−1)

aT−1
. (34)

We can simplify further. Let Ct = Yt + RfBt−1 + R̃′
tSt−1 + (1/Rf )ER

′St. By equa-

tion (x) and the fact that S is non-stochastic: var(c̃T−1) = a2T−1 var(C̃T−1). So the

household maximizes:

CT−2 −
aT−1A

h

2Rf
var(C̃T−1). (35)

Extending this argument by backward induction, one can show that at any period t,

our household chooses St to maximize:

Ct −
Ah

t+1

2Rf
Vt+1. (36)
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Table 1: Occupational Classifications and Summary Statistics

1980 Standard Mean Minimum 1967-1994

Occupational Sample Cell Cell Average

Occupation Classification Period Count Count Earnings

Accountants and Auditors 23 1967-94 542 327 24,881

Electrical Engineers 55 1967-94 246 150 33,923

Registered Nurses 95 1967-94 704 392 17,823

Teachers, Elementary School 156 1967-94 842 679 18,325

Teachers, Secondary School 157 1967-94 733 487 20,886

Janitors and Cleaners 453 1967-94 805 336 11,846

Auto Mechanics 505 1967-94 389 306 17,675

Electricians 575 1967-94 325 267 23,646

Plumbers 585 1967-94 220 168 22,437

Truck Drivers 804,805 1967-94 1079 744 18,665

Source: Authors’ tabulations from the Annual Demographic Files of the March Cur-

rent Population Survey using the selection criteria described in the text.

Note: Average earnings are computed as the 1967-1994 simple mean of unweighted

mean annual earnings among persons who satisfy the selection criteria. Earnings are

expressed in 1982 dollars using the GDP deflator for personal consumption expendi-

tures.
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Table 2: Stochastic Process for Occupational Component of Individual Earnings, Second-Order Moving Average Fit to First

Differences, 1968-1994

Present Value

Root Mean Multiplier

MA(1) MA(2) Squared R-Squared Age Age

Occupation Intercept Coefficient Coefficient Error Value 30 50

Accountants and Auditors 65 -0.18 0.11 1080 0.04 20.0 8.3

Electrical Engineers 67 -0.58 -0.14 1283 0.22 6.8 3.4

Registered Nurses 246 0.30 0.64 446 0.25 40.2 15.9

Elementary School Teachers 85 -0.08 0.38 525 0.10 27.2 11.0

Secondary School Teachers 15 0.08 -0.02 637 0.00 22.5 9.4

Janitors and Cleaners -36 -0.35 -0.06 583 0.09 13.3 5.8

Auto Mechanics -79 -0.02 -0.12 714 0.01 18.9 8.0

Electricians -119 0.17 -0.60 951 0.16 13.2 6.1

Plumbers -150 -0.22 -0.22 1453 0.06 12.8 5.7

Truck Drivers -35 0.14 -0.30 790 0.06 18.5 8.0

Notes:

1. For each occupation, a second-order moving average process is fit to the occupational component of individual annual

earnings in 1982 dollars. The moving average process is estimated by (conditional) nonlinear least squares. See the text

for an explanation of how the occupational component of individual earnings is identified.

2. The standard errors on the moving average coefficients range from .17 to .23.

3. The present value multipliers are computed using a real discount rate of 2.5 percent per year and assuming retirement

after age 59.
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Table 3: Stochastic Process for Occupational Component of Individual Log Earnings, Second-Order Moving Average Fit to First

Differences, 1968-1994

Present Value

Root Mean Multiplier

Intercept MA(1) MA(2) Squared R-Squared Age Age

Occupation ×100 Coefficient Coefficient Error ×100 Value 30 50

Accountants and Auditors 0.0 -0.26 -0.04 4.3 0.06 15.3 6.6

Electrical Engineers 0.2 -0.67 -0.12 3.9 0.26 5.5 2.8

Registered Nurses 1.6 0.26 0.45 3.3 0.15 35.5 14.2

Elementary School Teachers 0.2 -0.09 0.32 2.9 0.05 26.0 10.6

Secondary School Teachers 0.0 -0.02 0.01 3.4 0.00 21.4 8.9

Janitors and Cleaners -0.6 -0.38 -0.07 4.4 0.12 12.2 5.4

Auto Mechanics -0.7 -0.02 0.00 4.3 0.00 21.0 8.8

Electricians -0.8 0.17 -0.63 3.8 0.25 12.7 5.9

Plumbers -1.1 -0.32 -0.18 6.9 0.09 11.4 5.2

Truck Drivers -0.4 0.00 -0.15 4.3 0.01 18.7 8.0

Notes:

1. For each occupation, a second-order moving average process is fit to the occupational component of individual log annual

earnings in 1982 dollars. The moving average process is estimated by (conditional) nonlinear least squares. See the text

for an explanation of how the occupational component of individual log earnings is identified.

2. The standard errors on the moving average coefficients range from .17 to .24

3. The present value multipliers are computed using a real discount rate of 2.5 percent per year and assuming retirement

after age 59.
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Table 4: Asset Return Measures, Definitions, and Summary Statistics

Variable Mean Annual Standard Occupation

Name Short Description Return in Percent Deviation of Match

1968-1994 Annual Returns

Size Fama-French Size Portfolio, Big - Small -0.2 15.5 All

HML Fama-French Book-to-Market Portfolio, 5.9 12.9 All

Value - Growth Stocks

Bonds Nominal Return on 10-Year Constant 8.5 10.1 All

Maturity U.S. Government Bonds

Autos Real Return on SIC 371 (Auto Mfg.) 6.4 25.0 Auto Mechanics

Elmach Real Return on SIC 36 (Electrical 5.8 21.4 Electrical Engineers

Machinery Manufacturing)

Build Real Return on SICs 15, 16, 17 3.2 27.8 Electrical Engineers,

(Construction) Electricians, Plumbers

Freight Real Return on SIC 42 and 472, ex. 4725 6.4 27.8 Truck Drivers

(Freight Transport by Road)

Technical Real Return on SICs 871 and 7336 8.1 31.9 Electrical Engineers

(Engineering, Architectural and

Technical Services)

Education Real Return on SICs 82, ex. 823, and 833 6.4 37.1 Elementary and

(Education Services) Secondary Teachers

Health Real Return on SIC 80 (Medical, Dental 12.8 37.1 Registered Nurses

and Health Services)

Utility Real Return on SICs 46 and 49, ex. 495 5.4 15.8 Electrical Engineers,

(Electricity, Gas, Steam, Water Works) Electricians, Plumbers

Finance Real Return on SICs 62 and 67 (Investment 7.9 19.8 Accountants and

Banking, Securities, Exchanges) Auditors
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Notes:

1. Returns data for the Size and HML portfolios were obtained from Ken French’s web site at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#HistBenchmarks. Fama and French

(1993) describe the construction of these portfolios.

2. Returns data on bonds are from the Center for Research in Security Prices.

3. All industry-level return series are constructed from value-weighted portfolios of firm-level equity returns in the Center

for Research in Security Prices database. See Davis and Willen (2000), especially Appendix A, for futher explanation.

Nominal returns for the industry-level measures were converted to real returns using the GDP deflator for personal

consumption expenditures.

4. There were insufficient firm-level equity securities to construct the returns for health in 1968 or for technical in 1987 and

1988. These data points are missing.

5. The last column lists the occupations for which we tried the returns measure as a regressor.
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Table 5: Occupation-Level Earnings Innovations Regressed on Size Portfolio Returns, 1968-1994

Natural Units Wage Measure Natural Log Wage Measure

Slope Standard R-squared Slope Standard R-Squared

Occupation Coeff. Error Value Coeff. Error Value

×1000 ×1000

Accountants and Auditors -25.2 12.4 .14 -1.0 0.5 .11

Electrical Engineers -30.6 14.6 .11 -0.9 0.4 .09

Registered Nurses -3.8 5.5 .02 -0.2 0.4 .01

Teachers, Elementary -13.1 5.9 .13 -0.8 0.3 .16

Teachers, Secondary -16.9 7.1 .15 -0.9 0.4 .14

Janitors and Cleaners -13.5 6.7 .10 -0.6 0.5 .02

Auto Mechanics -3.9 8.8 .01 -0.4 0.5 .02

Electricians 13.9 11.4 .05 0.4 0.4 .03

Plumbers -25.4 17.3 .08 -1.5 0.8 .12

Truck Drivers 2.2 9.8 .00 -0.1 0.5 .00

Notes:

1. All regressions are estimated by ordinary least squares.

2. The dependent variables are the innovations from the fitted time-series processes in Table 2 (Natural Units) and Table 3

(Natural Logs). The regressor is the return on the Fama-French SMB portfolio.
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Table 6: Occupation-Level Earnings Innovations Regressed on Best-Fitting Set of Asset Returns, Natural Units Wage Measure,

1968-1994

Occupation Size HML Bonds Industry Measure R-squared

Accountants and Auditors -25.2 (12.4) .14

Electrical Engineers -47.0 (19.2) 13.9 (10.7) Build .20

Registered Nurses 16.1 (8.2) -1.9 (2.3) Health .15

Teachers, Elementary -22.3 (9.2) 5.0 (3.9) Educ .22

Teachers, Secondary -32.3 (10.7) 8.4 (4.7) Educ .29

Janitors and Cleaners -13.5 (6.7) .14

Auto Mechanics –

Electricians -34.4 (16.3) 11.7 (5.9) Build .23

Plumbers -47.5 (22.9) -35.7 (26.7) 17.9 (12.9) Build .19

Truck Drivers 11.6 (11.3) -27.3 (14.4) .14

Notes:

1. All regressions are estimated by ordinary least squares.

2. The dependent variables are the innovations from the fitted time-series processes in Table 2.

3. No asset return measure is statistically significant in the regression for Auto Mechanics.
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Table 7: Occupation-Level Earnings Innovations Regressed on Best-Fitting Set of Asset Returns,

Natural Log Wage Measure, 1968-1994

Occupation SMB HML Bonds Industry Measure R-squared

Accountants and Auditors -1.4 (0.6) 0.5 (0.5) Finance .19

Electrical Engineers -1.3 (0.6) 0.4 (0.3) Build .18

Registered Nurses 1.0 (0.6) .10

Teachers, Elementary -0.8 (0.3) .20

Teachers, Secondary -1.7 (0.6) 0.4 (0.2) Educ .28

Janitors and Cleaners -0.6 (0.5) .06

Auto Mechanics –

Electricians -1.9 (0.6) 0.5 (0.2) Build .35

Plumbers -2.4 (1.0) -2.5 (1.2) 0.8 (0.6) Build .28

Truck Drivers 0.8 (0.6) -1.6 (0.8) .18

Notes:

1. All regressions are estimated by ordinary least squares. The table entries report slope coefficients (standard errors) on

the indicated asset returns.

2. The dependent variables are the innovations from the fitted time-series processes in Table 3.

3. No asset return measure is statistically significant in the regression for Auto Mechanics.
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Table 8: Investment in Risky Assets with Zero Covariance between Earnings and Re-

turns: Two-Fund Separation.

RRA Age % reduction SMB HML Market Total

in returns

Portfolio shares -25 88 37 100

Level of

investment

Electrical

Engineers

3 40 0 -257 903 381 1027

5 40 0 -154 542 229 616

3 60 0 -148 520 220 592

3 40 50 -129 451 191 514

Secondary

School

Teachers

3 40 0 -158 556 235 632

5 40 0 -95 334 141 379

3 60 0 -91 320 135 364

3 40 50 -79 278 117 316

Notes:

1. Portfolio shares are percentage of total investment in risky assets.

2. Level of investment is in thousands of 1982 dollars.
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Table 9: Endowed Exposure, Desired Exposure, and Portfolio Choice.

SMB HML Market Total

Accountants and

Auditors

Endowed exposure -36 0 0 -36

Desired exposure -189 662 280 753

Position -153 662 280 789

Electrical Engineers

Endowed exposure -28 0 0 -28

Desired exposure -257 903 381 1027

Position -229 903 381 1055

Elementary School

Teachers

Endowed exposure -42 0 0 -42

Desired exposure -139 488 206 555

Position -97 488 206 597

Secondary School

Teachers

Endowed exposure -52 0 0 -52

Desired exposure -158 556 235 632

Position -106 556 235 684

Janitors and Cleaners

Endowed exposure -13 0 0 -13

Desired exposure -90 315 133 359

Position -76 315 133 372

Plumbers

Endowed exposure -46 0 0 -46

Desired exposure -170 597 252 679

Position -124 597 252 725

Truck Drivers

Endowed exposure 0 16 0 16

Desired exposure -141 497 210 565

Position -141 481 210 550
Notes:

1. Entries show level of investment in risky assets in thousands of 1982 dollars.

2. Investor is 40 years old and has a relative risk aversion coefficient of 3.

3. See text for full discussion.
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Table 10: Effects of Risk Aversion and the Level of Excess Returns on Portfolio Shares:

The Breakdown of Two-Fund Separation.

Percentage reduction RRA SMB HML Market

in excess returns

Zero covariance 0 3 -25 88 37

Accountants and

Auditors

0 3 -19 84 35

50 5 -8 76 32

75 5 5 67 28

Electrical Engineers

0 3 -22 86 36

50 5 -15 81 34

75 5 -6 74 31

Elementary School

Teachers

0 3 -16 82 35

50 5 0 70 30

75 5 17 58 25

Secondary School

Teachers

0 3 -16 81 34

50 5 2 69 29

75 5 19 57 24

Janitors and Cleaners

0 3 -21 85 36

50 5 -11 78 33

75 5 -0 70 30

Plumbers

0 3 -17 82 35

50 5 -2 72 30

75 5 14 61 26

Truck Drivers

0 3 -26 88 38

50 5 -28 87 41

75 5 -31 85 46
Notes:

1. Entries show portfolio shares; percentage of total investment in risky assets.

2. Investor is 40 years old and has a relative risk aversion coefficient of 3.

3. See text for full discussion.
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Table 11: Endowed Exposure to Occupation Specific Assets.

Age

30 35 40 45 50 55

Electrical Engineers 9.5 8.9 8.2 7.4 6.4 5.2

Registered Nurses -6.7 -6.0 -5.1 -4.1 -2.9 -1.4

Elementary School Teachers 12.2 10.9 9.4 7.7 5.5 3.0

Secondary School Teachers 17.2 15.5 13.5 11.1 8.3 4.9

Electricians 14.5 13.3 11.9 10.2 8.2 5.8

Plumbers 21.2 19.5 17.3 14.8 11.8 8.2

Notes:

1. Entries show level of investment in risky assets in thousands 1982 dollars. got

2. See text for full discussion.
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Figure 1: Indifference Curves for an Investor with $40,000 a Year in Income. This figure shows

indifference curves equivalent to the same level of lifetime consumption with certainty for investors

with different levels of relative risk aversion.
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Figure 2: Indifference Curves for an Investor with $40,000 a Year in Income. This figure shows

indifference curves equivalent to the same level of lifetime consumption with certainty for investors

with different levels of relative risk aversion.
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Figure 3: Feasible Sets for Different Occupations. ER = 0.08, βi = 0, σ(R̃) = 0.16.
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Figure 4: Feasible Sets for Different Occupations. Assume that Y i = 80, std(η̃i) = 8, ER = 0.08,

σ(R̃) = 0.16.
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Figure 5: Feasible Set for a Single Occupation but Different Sharpe Ratios. Occupation character-

istics: Y i = 80, βi = 0, std(η̃i) = 8.
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Figure 6: The “Exposure” of Points in the Feasible Set. ER = 0.08, σ(R̃) = 0.16.
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Figure 7: Desired Exposure. Ah = 3/40 which implies RRA ≈ 3. ER = 0.08, σ(R̃) = 0.16.
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Figure 8: Desired Exposure for Households with Different Relative Risk Aversion. A1 = 3/40 which

implies RRA1 ≈ 3. A2 = 4/40 which implies RRA2 ≈ 4. A3 = 2/40 which implies RRA3 ≈ 2.

ER = 0.08, σ(R̃) = 0.16.
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Figure 9: Endowed Exposure. Plot shows four profiles all of which give the same feasible set, but

different levels of endowed exposure. std(η̃i) = 8, ER = 0.08, σ(R̃) = 0.16.
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Figure 10: Portfolio Choice. Demand for risky asset equals distance between points marked D and

E. For example, investor with RRA = 3 in occupation 4 demands D1−E4 dollars of the risky asset.

std(η̃i) = 8, ER = 0.08, σ(R̃) = 0.16.
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Figure 11: Gains from Trade. Intersection of indifference curves and left-axis measures certain

equivalent consumption. std(η̃i) = 8, ER = 0.08, σ(R̃) = 0.16.
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