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Fast	Methods	for	Jackknifing	Inequality	
Indices	
 

  

Lynn A. Karoly, RAND 

Carsten Schröder, SOEP/DIW Berlin and Freie Universität Berlin 

 

Abstract. The jackknife is a resampling method that uses subsets of the original database by 

leaving out one observation at a time from the sample. The paper develops fast algorithms for 

jackknifing inequality indices with only a few passes through the data. The number of passes is 

independent of the number of observations. Hence, the method provides an efficient way to 

obtain standard errors of the estimators even if sample size is large. We apply our method using 

micro data on individual incomes for Germany and the US. 
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1	Introduction	

When examining time-series changes in inequality or cross country differences in inequality, the 

measured changes are sometimes small. To estimate the precision of a statistic from a sample and 

to test the statistical significance of changes or cross country differences of the same statistic, the 

jackknife has been suggested.1 The jackknife is a resampling method that uses subsets of the 

original database by leaving out one observation at a time from the sample.  

The central advantage of the jackknife over other resampling methods such as the bootstrap is 

that it allows the replication of results. A disadvantage of standard jackknife procedures is that 

for large sample sizes the computational burden is substantial. This is because there are as many 

subsets as there are observations in the sample, and for each subset the jackknife statistic needs to 

be computed. This paper offers a solution. We provide fast algorithms, requiring only a few 

passes through the data, for jackknifing several popular inequality indices: coefficient of 

variation, variance of the logarithms, mean log deviation, Theil index, and Atkinson index.2 Since 

the number of passes is independent of the number of observations, even for large samples the 

computational burden remains small. 

To get an idea of the computational burden see Figure 1. It charts the computer time in minutes 

for a standard procedure for jackknifing inequality indices as a function of sample size.3 

Computer time increases exponentially in sample size, and for a sample size of about 80,000 

cases it already exceeds four hours. Since many comparative inequality analyses rely on data 

from several points in time, countries and income concepts, computing the jackknife for all 

results can easily take days or weeks. This is a serious limitation, especially for researchers who 

use data stored on external servers (e.g., the Luxembourg Income Study) and face limited 

processing power.   

 

                                                            
1 For the theoretical justification for the jackknife and other related resampling techniques see Efron (1982). 
2 Algorithms for the Gini coefficient are provided in Karagiannis and Kovacevic (2000) and Yitzhaki (1991). Karoly 
(1989) derives jackknife procedures for calculating the between- and within-group inequality components of the 
variance of the logarithms, the mean log deviation, and the Theil index. Ogwang (2000) shows that it is also possible 
to obtain standard errors for the Gini index from OLS regression. Giles (2004) extends the regression-based approach 
to test hypotheses regarding the sensitivity of the Gini coefficient to changes in the data using seemingly unrelated 
regressions.  
3 We have used the STATA software package “inequal7.ado” on the following hardware: 64-bit system; 8 GB ram; 
core(TM)2 Duo CPU;  3GHz.  
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Figure 1 about here  

Section 2 explains our jackknife algorithm. Section 3 provides the results from the empirical 

application. Section 4 concludes. Derivations of all the formulas and STATA codes are provided 

in an Appendix.  

	

2	Efficient	jackknife	procedures	for	inequality	indices	

The jackknife offers a conceptually simple way to estimate the precision of a statistic (see the 

pioneering works of Tukey, 1958; Efron, 1982; Efron and Gong, 1983; Wolter, 1985). In the 

context of inequality measurement, we have a random sample of ܰ observations on income, 

࢟ ൌ ሺݕଵ, ,ଶݕ … , ,ேሻ and sampling weights, ߱ଵݕ ߱ଶ, … , ߱ே. Let ߠ ൌ  ሺ࢟ሻ denote our measure ofߠ

inequality. Let ߠሺ௜ሻ ൌ ,ଵݕሺߠ ,ଶݕ … , ,௜ିଵݕ ,௜ାଵݕ … ,  ேሻ denote the jackknife estimate of the sameݕ

measure of inequality for the subset where the ݅th observation has been deleted.  

Following Wolter (1985), the jackknife estimate of the standard error of ߠ is, 

ሺ1ሻ				ܵܧఏ ൌ ൭
ܰ െ 1
ܰ

෍
߱௜

ഥ߱
ሺ௜ሻߠൣ െ ൧ߠ

ଶ
ே

௜ୀଵ

൱

଴.ହ

, 

with ഥ߱ ൌ ଵ

ே
∑ ߱௜
ே
௜ୀଵ .4 Computing the jackknife standard error estimate relies on the ܰ values of 

 ሺ௜ሻ, one jackknife statistic per subset. For large samples the computational burden to deriveߠ

equation (1) seems to be large. However, as we will outline below, for standard inequality indices 

deriving the ܰ values of ߠሺ௜ሻ requires just a few passes through the data. Hereby, the number of 

passes is independent of the number of sample observations, ܰ. 

The procedure is detailed below by means of the Theil index, and the variance of logarithms. The 

general idea of the procedure is to write the jackknife estimates ߠሺଵሻ,…,ߠሺேሻ as a function of 

statistics from the overall sample (i.e., as a function of ߠ, ܰ, arithmetic or geometric mean) and a 

subset-specific correction factor that can be derived with a single run through the data. The 

                                                            
4 An alternative method is to compute the squared differences between the jackknife statistics and their mean (see, 
for example, Yitzhaki, 1991). 
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procedure can be adapted to other inequality indices including indices of the generalized entropy 

class, and indices based on the variance or social-welfare functions (e.g. the Atkinson index). 

We will make use of the following notation and definitions: 

௜ݓ ,௜ denotes the normalized weightݓ .1 ൌ
ఠ೔

భ
ಿ
∑ ఠ೔
ಿ
೔సభ

 . Accordingly, ∑ ௜ݓ ൌ ܰே
௜ୀଵ .  

തݕ ,ത denotes the arithmetic mean of incomeݕ .2 ൌ ଵ

ே
∑ ௜ݕ௜ݓ
ே
௜ୀଵ . 

∗ݕ ,denotes the geometric mean of income ∗ݕ .3 ൌ exp 	ቀଵ
ே
	∑ ௜ݓ lnሺݕ௜ሻ

ே
௜ୀଵ ቁ	. The natural 

logarithm of the geometric mean is denoted  ̅ݔ ൌ lnሺݕ∗ሻ ൌ 	 ଵ
ே
∑ ௜ݔ௜ݓ
ே
௜ୀଵ  with ݔ௜ ൌ lnሺݕ௜ሻ. 

 

2.1 Efficient jackknife procedure for the Theil index 
The Theil index from the sample is,  

ሺ2ሻ					்ߠ ൌ
1
തݕܰ

൭෍ݓ௜ݕ௜ lnሺݕ௜ሻ
ே

௜ୀଵ

൱ െ lnሺݕതሻ. 

The Theil index for the subset where the ݅th observation has been deleted is,  

ሺ3ሻ					்ߠሺ௜ሻ ൌ
1

ሺܰ െ തሺ௜ሻݕ௜ሻݓ
ቌ෍ݓ௝ݕ௝ ln൫ݕ௝൯
௝ஷ௜

ቍ െ ln൫ݕതሺ௜ሻ൯, 

with ݕതሺ௜ሻ denoting the arithmetic mean of income from the subset,  

ሺ4ሻ					ݕതሺ௜ሻ ൌ
തݕܰ െ ௜ݕ௜ݓ
ܰ െ ௜ݓ

. 

The first step is to write ்ߠሺ௜ሻ in terms of ்ߠ. Initially, from (3): 

	ሺ5ሻ					்ߠሺ௜ሻ ൌ
1

ሺܰ െ തሺ௜ሻݕ௜ሻݓ
൭෍ݓ௜ݕ௜ lnሺݕ௜ሻ

ே

௜ୀଵ

൱ െ
௜ݓ

ሺܰ െ ௜ሻݓ
௜ݕ
തሺ௜ሻݕ

݈݊ሺݕ௜ሻ െ ln൫ݕതሺ௜ሻ൯. 

Rewriting equation (2) gives, 

ሺ6ሻ					∑ ௜ݕ௜ݓ lnሺݕ௜ሻ
ே
௜ୀଵ ൌ ሾ்ߠ ൅ lnሺݕതሻሿܰݕത,  
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and substituting (6) and (4) into (5) gives, 

ሺ7ሻ					்ߠሺ௜ሻ ൌ
തݕܰ

തݕܰ െ ௜ݕ௜ݓ
൫	்ߠ ൅ ln	ሺݕതሻ൯ െ

௜ݕ௜ݓ lnሺݕ௜ሻ

തݕܰ െ ௜ݕ௜ݓ
െ ݈݊ ൬

തݕܰ െ ௜ݕ௜ݓ
ܰ െ ௜ݓ

൰. 

Equation (7) reveals that ்ߠሺ௜ሻ can be expressed as a function of three statistics from the full 

sample, ܰ,  ௜. Thus, afterݕ ௜ andݓ ,and characteristics of the observation that is left out ,்ߠ		and	ത,ݕ

having calculated ܰ,  for the full sample, to compute all the jackknife statistics ்ߠ		and	ത,ݕ

,ሺଵሻ்ߠ … ,  .ሺேሻ  takes a single pass through the data்ߠ

 

2.2	Efficient	jackknife	procedure	for	the	variance	of	logarithms	
Applying Bessel’s correction5, the variance of the logarithms from the sample is,  

ሺ8ሻ					ߠ௏௅ ൌ
1

ܰ െ 1
	෍ݓ௜ ln ൬

௜ݕ
∗ݕ
൰
ଶ

ே

௜ୀଵ

ൌ 	
1

ܰ െ 1
	෍ݓ௜ሺݔ௜ െ ሻଶݔ̅
ே

௜ୀଵ

 

The variance of the logarithms for the subset where the ݅th observation has been deleted is,  

ሺ9ሻ					ߠ௏௅ሺ௜ሻ ൌ
1

ܰ െ 2
	෍ݓ௝ሺ௜ሻሺݔ௝ െ ,ሺ௜ሻሻଶݔ̅
௝ஷ௜

 

with ̅ݔሺ௜ሻ ൌ
ଵ

ேି௪೔
ሾܰ തܺ െ	ݔ௜ݓ௜ሿ, and with ݓ௝ሺ௜ሻ ൌ

௪ೕ

ሺேି௪೔ሻ ሺேିଵሻ⁄
 denoting re-weighted normalized 

weights. By means of the re-weighting the average of ݓ௝ሺ௜ሻ over the subset where the ݅th 

observation has been deleted equals unity. So, the analogue of the term ଵ

ேିଵ
 in (8) in (9) is ଵ

ேିଶ
. 

Substituting the definition of ݓ௝ሺ௜ሻ in (9) gives:  

ሺ10ሻ					ߠ௏௅ሺ௜ሻ ൌ
ሺܰ െ 1ሻ

ሺܰ െ 2ሻሺܰ െ ௜ሻݓ
	෍ݓ௝ሺݔ௝ െ ሺ௜ሻሻଶݔ̅

௝ஷ௜

	, 

Initially, from (8): 

                                                            
5 Bessel’s correction, the division in the variance formula by ܰ െ 1 instead of by ܰ, secures unbiasdness. 
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ሺ11ሻ				ߠ௏௅ ൌ
1

ܰ െ 1
		෍ݓ௝ሺݔ௝ െ ሻଶݔ̅ ൅

ே

௝ஷ௜

	
1

ܰ െ 1
௜ݔ௜ሺݓ െ  	.ሻଶݔ̅

Substituting ̅ݔ ൌ ଵ

ே
ൣሺܰ െ ሺ௜ሻݔ௜ሻ̅ݓ ൅  :௜൧ in (11) givesݓ௜ݔ

ሺ12ሻ				ߠ௏௅ ൌ
1

ܰ െ 1
		෍ݓ௝ ൬ݔ௝ െ	

1
ܰ
ൣሺܰ െ ሺ௜ሻݔ௜ሻ̅ݓ ൅ ൰	௜൧ݓ௜ݔ

ଶே

௝ஷ௜

൅	
1

ܰ െ 1
௜ݔ௜ሺݓ െ  ሻଶݔ̅

ൌ
1

ܰ െ 1
		෍ݓ௝ ቌݔ௝ െ	

ܰ
ܰ
ሺ௜ሻᇣᇧᇧᇤᇧᇧᇥݔ̅

࡭

൅
௜ݓ
ܰ
ሺ௜ሻݔ̅ െ

௜ݓ
ܰ
ᇣᇧᇧᇧᇤᇧᇧᇧᇥ	௜ݔ

࡮

ቍ

ଶ
ே

௝ஷ௜

൅	
1

ܰ െ 1
௜ݔ௜ሺݓ െ  ሻଶݔ̅

Equation ሺ12ሻ can be rewritten as: 

ሺ13ሻ				ߠ௏௅ ൌ
1

ܰ െ 1
		෍ݓ௝൫ݔ௝ െ ሺ௜ሻ൯ݔ̅

ଶ
ே

௝ஷ௜ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
࡯

൅	
2

ሺܰ െ 1ሻ
෍ݓ௝ ቀሺݔ௝ െ ሺ௜ሻሻݔ̅ ቀ

௜ݓ
ܰ
ቁ ሺ̅ݔሺ௜ሻ െ ௜ሻቁݔ

ே

௝ஷ௜ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ࡰ

൅
1

ܰ െ 1
		෍ݓ௝ ቆ

௜ݓ
ܰ
ሺ௜ሻݔ̅

௝
െ
௜ݓ
ܰ
ቇ	௜ݔ

ଶே

௝ஷ௜ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ࡱ

൅	
1

ܰ െ 1
௜ݔ௜ሺݓ െ  ሻଶݔ̅

The ܥ -term on the right handside of (12) can be rewritten as ൌ ௏௅ሺ௜ሻߠ
ሺேିଶሻሺேି௪೔ሻ

ሺேିଵሻమ
 . The ܦ -term 

is zero since 

ሺ14ሻ			ܦ ൌ
2

ܰ െ 1
௜ݓ
ܰ
			෍ݓ௝൫ݔ௝ െ ሺ௜ሻݔሺ௜ሻ൯൫̅ݔ̅ െ ௜൯ݔ
௝ஷ௜

ൌ
௜ݓ	2

ሺܰ െ 1ሻܰ
൫̅ݔሺ௜ሻ െ ௝ݔ௝൫ݓ௜൯෍ݔ െ ሺ௜ሻ൯ݔ̅

௝ஷ௜ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
ୀ଴

ൌ 0 

The ܧ –term after some algebra becomes,  

ሺ15ሻ			ܧ ൌ
1

ܰ െ 1
௜ଶݓ

ሺܰ െ ௜ሻଶݓ
	෍ݓ௝ሺ̅ݔ െ	ݔ௜ሻଶ

௝ஷ௜

 

ൌ
1

ܰ െ 1
௜ଶݓ

ሺܰ െ ௜ሻଶݓ
	ሺܰ െ ݔ௜ሻሺ̅ݓ െ	ݔ௜ሻଶ ൌ

1
ܰ െ 1

௜ଶݓ

ܰ െ ௜ݓ
ሺ̅ݔ െ	ݔ௜ሻଶ	 
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Substituting (14-15) in (13), the variance of the logarithms for the sample becomes, 

	ሺ16ሻ			ߠ௏௅ ൌ ௏௅ሺ௜ሻߠ
ሺܰ െ 2ሻሺܰ െ ௜ሻݓ

ሺܰ െ 1ሻଶ
൅

1
ܰ െ 1

௜ଶݓ

ܰ െ ௜ݓ
ሺ̅ݔ െ	ݔ௜ሻଶ ൅	

௜ݓ
ܰ െ 1

ሺݔ௜ െ  .ሻଶݔ̅

After some algebra, (16) becomes, 

ሺ17ሻ				ߠ௏௅ ൌ ௏௅ሺ௜ሻߠ
ሺܰ െ 2ሻሺܰ െ ௜ሻݓ

ሺܰ െ 1ሻଶ
൅

௜ݓܰ
ሺܰ െ 1ሻሺܰ െ ௜ሻݓ

ሺ̅ݔ െ  .௜ሻଶݔ

Solving (17) with respect to ߠ௏௅ሺ௜ሻ gives the desired expression for the jackknife estimator of the 

variance of the logarithms: 

ሺ18ሻ ௏௅ሺ௜ሻߠ			 ൌ ௏௅ߠ 	
ሺܰ െ 1ሻଶ

ሺܰ െ 2ሻሺܰ െ ௜ሻݓ
െ

௜ሺܰݓܰ െ 1ሻ
ሺܰ െ ௜ሻଶሺܰݓ െ 2ሻ

ሺ̅ݔ െ  ௜ሻଶݔ

Equation (18) is the analogue of the jackknife estimator of the Theil index in equation (7): ߠ௏௅ሺ௜ሻ 

can be expressed as a function of statistics from the full sample (ܰ,  ௏௅) and theߠ		and	,ݔ̅

characteristics of the observation that is left out, ݓ௜ and ݔ௜. Thus, after having calculated 

ܰ, ,௏௅ሺଵሻߠ ௏௅ for the full sample, computingߠ		and	,ݔ̅ … ,  ௏௅ሺேሻ  takes a single pass through theߠ

data. 

 

2.3	Efficient	jackknife	procedure	for	other	inequality	indices	
Similar derivations as those explained in Sections 2.1 and 2.2 can be made for other inequality 

indices. Formulas for an efficient computation of the Atkinson index, θ஺ഄ (with inequality 

aversion parameter ߝ ൌ 1 and ߝ ൌ 2), the mean log deviation, θெ௅஽, and the coefficient of 

variation, θ஼௏, are as follow: 

ሺ19ሻ ஺భሺ௜ሻߠ			 ൌ 1 െ
݌ݔ݁ ൤ ܰ

ܰ െ ௜ݓ
lnሺݕ∗ሻ െ	

lnሺݕ௜ሻݓ௜
ܰ െ ௜ݓ

൨

തݕܰ െ ௜ݕ௜ݓ
ܰ െ ௜ݓ

 

ሺ20ሻ ஺మሺ௜ሻߠ			 ൌ 			1 െ
ܰ െ ௜ݓ

തݕܰ െ ௜ݕ௜ݓ
തሺܰݕ െ ௜ሻݓ

ܰ
1 െ ஺మߠ

െ
തݕ௜ሺܰݓ െ ௜ሻݕ௜ݓ
௜ሺܰݕ െ ௜ሻݓ
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ሺ21ሻ ெ௅஽ሺ௜ሻߠ		 ൌ
1

ܰ െ 	௜ݓ
ሾߠெ௅஽ െ lnሺݕതሻሿ ൅

௜ݓ lnሺݕ௜ሻ

ܰ െ ௜ݓ
൅ ln ൬

തݕܰ െ ௜ݓ௜ݕ
ܰ െ ௜ݓ

൰ 

ሺ22ሻ ஼௏ሺ௜ሻߠ		 ൌ
൬	ߠ௏ 	

ሺܰ െ 1ሻଶ

ሺܰ െ 2ሻሺܰ െ ௜ሻݓ
െ

௜ሺܰݓܰ െ 1ሻ
ሺܰ െ ௜ሻଶሺܰݓ െ 2ሻ

ሺݕത െ ௜ሻଶ൰ݕ
଴.ହ

1
ሺܰ െ ௜ሻݓ

ሾሺܰݕത െ ௜ሻሿݓ௜ݕ
 

 

Derivations of the formulas can be found in the Appendix. Again, after having calculated some 

basic statistics from the full sample, computing all the jackknife indices takes only a single pass 

through the data. 

 

3	Empirical	application	

We have calculated the above inequality indices and their associated jackknife confidence 

intervals for distributions of disposable household incomes in the US and in Germany from the 

Luxembourg Income Study (LIS) database. For 40 countries and several years, the LIS provides 

representative micro-level information on private households’ incomes and their demographics.  

Our computations rely on the LIS household-level datasets. Household disposable income is our 

income concept. Household disposable income is harmonized across countries, covers labor 

earnings, property income, and government transfers in cash minus income and payroll taxes. To 

adjust household incomes for differences in needs, we have deflated household disposable 

income by means of the square root equivalence scale. The square root equivalence scale is the 

number of household members to the power of 0.5. This gives the needs-adjusted equivalent 

income of the household. Household units are weighted by the frequency weights (as provided in 

the data) and the number of household members.  Our weighting procedure accommodates the 

principle of normative individualism that considers any person as important as any other. The so 

derived distribution depicts differences in living standards, captured by differences in equivalent 

incomes, among individuals (Bönke and Schröder, 2012). 
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We have removed household observations with missing information or with negative values of 

disposable income. Moreover, to avoid outlier-driven biases of inequality estimates, we use 

trimmed data with the one percent observations with the highest and with the lowest incomes 

being discarded. 

It has taken a few seconds to obtain all the results presented in Table 1. The Table is split in two 

panels. The upper panel provides the results for the US, the lower panel provides the results for 

Germany.6 In the US, the results cover the period 1991-2010; in Germany, the results cover the 

period 1994-2010. For every country-period combination, the Table provides the point estimates 

of the inequality indices along with their upper and lower bounds of 95 percent confidence 

intervals, ܫܥఏ.
௟௢ and  ܫܥఏ.

௛௜, derived from the jackknife statistics. 

  

Table 1 about here 

We comment on the US first. An examination of the statistics shows a significant rise of 

inequality over the observation period: the point estimate of the Theil index increases from 0.161 

in 1991 to 0.192 in 2010, and the confidence intervals are clearly distinct: ሾ0.158; 0.165ሿ vs. 

ሾ0.189; 0.196ሿ. However, some inter-temporal changes in inequality for this sample are not 

statistically significant (e.g. 1997-2000; 2000-2004; 2004-2007).  

For Germany, we also see a significant rise of inequality over the observation period. This is due 

to a prominent rise of inequality between 2000 and 2004. The inter-temporal comparisons before 

the rise (1994-2000) and after the rise (2004-2007 and 2007-2010) indicate no significant 

changes in inequality. 

Comparing inequality levels in the US and Germany there is significantly more inequality in the 

US. The result holds for all six inequality indices and all the observed points in time.7 

 

                                                            
6 The LIS data for Germany are based on the German Socio-Economic Panel Study (SOEP). 
7 We have executed our empirical analysis using the alternative formulation of the standard error introduced in 
footnote 4. It did not change our conclusions since confidence intervals changed very tittle. 
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4	Conclusion	

This paper has outlined a procedure to obtain jackknife estimates for several inequality indices 

with only a few passes through the data. The number of passes is independent of the number of 

observations: After having computed some statistics from the overall sample, computing all the 

jackknife indices takes only a single pass through the data. Hence, the method provides an 

efficient way to get standard errors of the estimators even if sample size is large.  

We have applied our method using data from the Luxembourg Income Study to evaluate the 

statistical significance of inter-temporal inequality in Germany and the US, and also to evaluate 

cross country differences in inequality levels. 
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Appendix	
 

A.1	Derivation	of	jackknife	formulas			
 

Mean log deviation (Entropy 0) 

ሺ1ெ௅஽ሻ					ߠெ௅஽ ൌ
1
ܰ
෍ ௜ݓ ln ൬

തݕ
௜ݕ
൰ ൌ

ே

௜ୀଵ
െ
1
ܰ
෍ ௜ݓ lnሺݕ௜ሻ ൅ lnሺݕതሻ

ே

௜ୀଵ
 

ሺ2ெ௅஽ሻ				ߠெ௅஽ሺ௜ሻ ൌ െ
1

ܰ െ 	௜ݓ
෍ ௝ݓ lnሺݕ௜ሻ ൅ lnሺݕതሻ

௝ஷ௜
 

From ሺ2ெ௅஽ሻ: 

ሺ3ெ௅஽ሻ				ߠெ௅஽ሺ௜ሻ ൌ െ
1

ܰ െ 	௜ݓ
ቈ෍ ௝ݓ ln൫ݕ௝൯ ൅ ௜ݓ lnሺݕ௜ሻ

௝ஷ௜
቉ ൅

௜ݓ lnሺݕ௜ሻ
ܰ െ ௜ݓ

൅ ln൫ݕതሺ௜ሻ൯ 

ሺ4ெ௅஽ሻ				ߠெ௅஽ሺ௜ሻ ൌ െ
1

ܰ െ 	௜ݓ
൤෍ ௜ݓ ln൫ݕ௝൯

ே

௜ୀଵ
൨ ൅

௜ݓ lnሺݕ௜ሻ
ܰ െ ௜ݓ

൅ ln൫ݕതሺ௜ሻ൯ 

Substituting െܰሾߠெ௅஽ െ lnሺݕതሻሿ ൌ 	∑ ௜ݓ lnሺݕ௜ሻ
ே
௜ୀଵ  from ሺ1ெ௅஽ሻ gives: 

ሺ5ெ௅஽ሻ				ߠெ௅஽ሺ௜ሻ ൌ െ
1

ܰ െ 	௜ݓ
	ൣെܰሾߠெ௅஽ െ lnሺݕതሻሿ൧ ൅

௜ݓ lnሺݕ௜ሻ
ሺܰ െ ௜ሻݓ

൅ ln൫ݕതሺ௜ሻ൯	 

Substituting ݕതሺ௜ሻ by 	ே௬തି௬೔௪೔

ேି௪೔
 gives:  

ሺ6ெ௅஽ሻ				ߠெ௅஽ሺ௜ሻ ൌ
ଵ

ேି௪೔	
ሾߠெ௅஽ െ lnሺݕതሻሿ ൅ ௪೔ ୪୬ሺ௬೔ሻ

ேି௪೔
൅ ln ቀே௬

തି௬೔௪೔

ேି௪೔
ቁ  
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Atkinson Index  

The general form of the Atkinson index is, ߠ஺ഄ ൌ 1 െ ൤ଵ
ே
∑ ௜ݓ ቀ

௬ത

௬೔
ቁ
ଵିఌ

ே
௜ୀଵ ൨

భ
భషഄ

. Below we derive 

the jackknife formulas for two prominent case of the inequality aversion parameter, ߝ.  

Inequality aversion parameter ࢿ ൌ ૚ 

ሺ1஺భሻ				ߠ஺భ ൌ 1 െ
∗ݕ

തݕ
			ൌ 			1	–

exp ቂ1ܰ	∑ ௜ሻݕlnሺ	௜ݓ
ே
௜ୀଵ ቃ

തݕ
							 

ሺ2஺భሻ				ߠ஺భሺ௜ሻ ൌ 1 െ
exp ቂ 1

ܰ െ ௜ݓ
	∑ ௝ሻ௝ஷ௜ݕlnሺ	௝ݓ ቃ

തሺ௜ሻݕ
	 

Expansion of the term in brackets in the numerator with  ୪୬ሺ௬೔ሻ௪೔

ேି௪೔
െ ୪୬ሺ௬೔ሻ௪೔

ேି௪೔
 , and substitution of 

ே௬തି௬೔௪೔	 തሺ௜ሻ byݕ

ேି௪೔
 gives: 

ሺ3஺భሻ				ߠ஺భሺ௜ሻ ൌ 1 െ
݌ݔ݁ ൤ ܰ

ܰ െ ௜ݓ
	ቀ1ܰ∑ ௜ሻݕlnሺ	௜ݓ

ே
௜ୀଵ ቁ െ

lnሺݕ௜ሻݓ௜
ܰ െ ௜ݓ

൨

തݕܰ െ ௜ݕ௜ݓ
ܰ െ ௜ݓ

	 

Substitution of the term  ଵ
ே
∑ ௜ሻݕlnሺ	௜ݓ
ே
௜ୀଵ 	(log of the geometric mean of income from the full 

sample) by  lnሺݕ∗ሻ gives:  

ሺ4஺భሻ				ߠ஺భሺ௜ሻ ൌ 1 െ
݌ݔ݁ ൤ ܰ

ܰ െ ௜ݓ
lnሺݕ∗ሻ െ	

lnሺݕ௜ሻݓ௜
ܰ െ ௜ݓ

൨

തݕܰ െ ௜ݕ௜ݓ
ܰ െ ௜ݓ

 

Inequality aversion parameter ࢿ ൌ ૛ 

ሺ1஺మሻ				ߠ஺మ ൌ 1 െ
ܰ

∑ ௜ݓ
തݕ
௜ݕ

ே
௜ୀଵ

				 

ሺ2஺మሻ				ߠ஺మሺ௜ሻ ൌ 1 െ
ܰ െ ௜ݓ

∑ ௝ݓ
തሺ௜ሻݕ
௝ݕ

ே
௝ஷ௜
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Expansion of the denominator with ݓ௜
௬തሺ೔ሻ
௬ത

௬ത

௬೔
െ ௜ݓ

௬തሺ೔ሻ
௬ത

௬ത

௬೔
  and rewriting the sum gives: 

ሺ3஺మሻ				ߠ஺మሺ௜ሻ ൌ 1 െ
ܰ െ ௜ݓ

൬
തሺ௜ሻݕ
തݕ ∑ ௝ݓ

തݕ
௝௝ஷ௜ݕ ൰ ൅ ௜ݓ

തሺ௜ሻݕ
തݕ

തݕ
௜ݕ
െ ௜ݓ

തሺ௜ሻݕ
തݕ

തݕ
௜ݕ

								 

ሺ4஺మሻ				ߠ஺మሺ௜ሻ ൌ 1 െ
ܰ െ ௜ݓ

൬
തሺ௜ሻݕ
തݕ ∑ ௜ݓ

തݕ
௜ݕ

ே
௜ୀଵ ൰ െ ௜ݓ

തሺ௜ሻݕ
തݕ

തݕ
௜ݕ

 

From ߠ஺మ ൌ 1 െ ே

∑ ௪೔
೤ഥ
೤೔

ಿ
೔సభ

	 it follows that  ∑ ௪೔௬ത

௬೔
ൌ ே

ଵିఏಲమ

ே
௜ୀଵ , and replacement of the sum in the 

denominator gives: 

ሺ5஺మሻ				ߠ஺మሺ௜ሻ ൌ 			1 െ			
ܰ െ ௜ݓ

തሺ௜ሻݕ
തݕ

ܰ
1 െ ஺మߠ

െ ൬
തሺ௜ሻݕ௜ݓ
௜ݕ

൰
 

Finally, substitution of ݕതሺ௜ሻ by 	ே௬തି௬೔௪೔

ேି௪೔
 gives: 

ሺ6஺మሻ				ߠ஺మሺ௜ሻ ൌ 			1 െ
ܰ െ ௜ݓ

തݕܰ െ ௜ݕ௜ݓ
തሺܰݕ െ ௜ሻݓ

ܰ
1 െ ஺మߠ

െ
തݕ௜ሺܰݓ െ ௜ሻݕ௜ݓ
௜ሺܰݕ െ ௜ሻݓ
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Variance and Coefficient of Variation 

ሺ1௏ሻ				ߠ௏ ൌ
1

ܰ െ 1
෍ݓ௜ሺݕ௜ െ തሻଶݕ
ே

௜ୀଵ

 

ሺ2௏ሻ				ߠ௏ሺ௜ሻ ൌ
ሺܰ െ 1ሻ

ሺܰ െ 2ሻሺܰ െ ௜ሻݓ
෍ݓ௝ሺݕ௝ െ തሺ௜ሻሻଶݕ

௝ஷ௜

 

Rewriting of  ߠ௏ gives: 

ሺ3௏ሻ				ߠ௏ ൌ
1

ܰ െ 1
෍ݓ௝ሺݕ௝ െ തሺ௜ሻሻଶݕ

௝ஷ௜

൅	
1

ܰ െ 1
௜ݕ௜ሾݓ െ  തሿଶݕ

Substituting  ݕത ൌ ଵ

ே
ൣሺܰ െ തሺ௜ሻݕ௜ሻݓ ൅  ௜൧  and reorganizing in analogy to the variance of theݓ௜ݕ

logarithms gives: 

ሺ4௏ሻ				ߠ௏ ൌ ܥ ൅ ܦ ൅ ܧ ൅	
1

ܰ െ 1
௜ݕ௜ሺݓ െ  തሻଶݕ

ሺ5௏ሻ				ܥ ൌ
1

ܰ െ 1
෍ݓ௝ሺݕ௝ െ തሺ௜ሻሻଶݕ

௝ஷ௜

ൌ ௏ሺ௜ሻߠ
ሺܰ െ 2ሻሺܰ െ ௜ሻݓ

ሺܰ െ 1ሻଶ
 

ሺ6௏ሻ				ܦ ൌ 	
2

ܰ െ 1
௜ݓ
ܰ
			෍ݓ௝ሺݕ௝ െ തሺ௜ሻݕതሺ௜ሻሻሺݕ െ ௜ሻݕ
௝ஷ௜

	

ൌ
௜ݓ	2

ሺܰ െ 1ሻܰ
ሺݕതሺ௜ሻ െ ௝ݕ௝ሺݓ௜ሻ෍ݕ െ തሺ௜ሻሻݕ

௝ஷ௜ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
ୀ଴

ൌ 0 

ሺ7௏ሻ				ܧ ൌ
1

ܰ െ 1
		ቀ
௜ݓ
ܰ
ቁ
ଶ
෍ݓ௝ሺݕതሺ௜ሻ െ ௜ሻଶݕ

௝ஷ௜

 

Analogously to ߠ௏௅we can rewrite ሺ7௏ሻ	as:  

ሺ8௏ሻ				ܧ ൌ
1

ܰ െ 1
௜ଶݓ

ܰ െ ௜ݓ
ሺݕത െ	ݕ௜ሻଶ 

Substituting ሺ5௏ሻ, ሺ6௏ሻ, and ሺ8௏ሻ in ሺ4௏ሻ	gives: 
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ሺ9௏ሻ				ߠ௏ ൌ ௏ሺ௜ሻߠ
ሺܰ െ 2ሻሺܰ െ ௜ሻݓ

ሺܰ െ 1ሻଶ
൅

1
ܰ െ 1

௜ଶݓ

ܰ െ ௜ݓ
ሺݕത െ	ݕ௜ሻଶ ൅

௜ݓ
ܰ െ 1

ሺݕ௜ െ  തሻଶݕ

Analogously to ߠ௏௅we can rewrite ሺ9௏ሻ	as:  

ሺ9௏ሻ				ߠ௏ ൌ ௏ሺ௜ሻߠ
ሺܰ െ 2ሻሺܰ െ ௜ሻݓ

ሺܰ െ 1ሻଶ
൅

௜ݓܰ
ሺܰ െ 1ሻሺܰ െ ௜ሻݓ

ሺݕത െ  ௜ሻଶݕ

Solving ሺ9௏ሻ for ߠ௏ሺ௜ሻ gives: 

	ሺ10௏ሻ				ߠ௏ሺ௜ሻ ൌ ௏ߠ 	
ሺܰ െ 1ሻଶ

ሺܰ െ 2ሻሺܰ െ ௜ሻݓ
െ

௜ሺܰݓܰ െ 1ሻ
ሺܰ െ ௜ሻଶሺܰݓ െ 2ሻ

ሺݕത െ  ௜ሻଶݕ

 

The coefficient of variation is defined as,  

ሺ1஼௏ሻ				ߠ஼௏ ൌ
ሺߠ௏ሻ଴.ହ

തݕ
 

Hence, 	

ሺ2஼௏ሻ				ߠ஼௏ሺ௜ሻ ൌ
൫ߠ௏ሺ௜ሻ൯

଴.ହ

തሺ௜ሻݕ
 

Substitution of 	ߠ௏ሺ௜ሻ ൌ ௏ߠ 	
ሺேିଵሻమ

ሺேିଶሻሺேି௪೔ሻ
െ ே௪೔ሺேିଵሻ

ሺேି௪೔ሻమሺேିଶሻ
ሺݕത െ തሺ௜ሻݕ ௜ሻଶ and ofݕ ൌ

ଵ

ሺேି௪೔ሻ
ሾሺܰݕത െ

 ,gives				௜ሻሿ in ሺ2஼௏ሻݓ௜ݕ

ሺ3஼௏ሻ				ߠ஼௏ሺ௜ሻ ൌ
൬	ߠ௏ 	

ሺܰ െ 1ሻଶ

ሺܰ െ 2ሻሺܰ െ ௜ሻݓ
െ

௜ሺܰݓܰ െ 1ሻ
ሺܰ െ ௜ሻଶሺܰݓ െ 2ሻ

ሺݕത െ ௜ሻଶ൰ݕ
଴.ହ

1
ሺܰ െ ௜ሻݓ

ሾሺܰݕത െ ௜ሻሿݓ௜ݕ
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A.2	STATA	code	for	Luxembourg	Income	Study	
 

#delimit	;	
	
***	loop	over	countries;		
foreach	file	in	$us91h	$us97h	$us00h	$us04h	$us07h	$us10h	$de94h	$de00h	$de04h	$de07h	$de10h	{;	
	 *	Variables	of	interest;	
	 local	vars	"dname	did	hwgt	dhi	nhhmem";	
	 *	open	data;	
	 use	`vars'	using	`file',	clear;	
	 *********************************************;	
	 *	Data	preparation	and	auxiliary	statistics	*;	
	 *********************************************;	
	 qui	rename	hwgt	w;	
	 qui	rename	dhi	y;	
	 *	drop	negative	or	zero	yomes	(because	of	log);	
	 qui	drop	if	y==.	|	y<=0;	
	 *	trimming	top	bottom	1percent	of	unweighted	observations;	
	 xtile	centiles=y,	nq(100);	
	 drop	if	centiles	==1	|	centiles==100;	
	 *	drop	missings;	
	 qui	drop	if	nhhmem==.	|	w==.;	
	 *	weight	by	frequency	weights	and	number	of	household	members;	
	 qui	replace	w=w*nhhmem;	
	 *	compute	equivalent	yome	using	square	root	scale;	
	 qui	replace	y=y/(nhhmem)^(0.5);	
	 qui	gen	logy=log(y);	
	 *	Normalization	of	the	weights;	
	 qui	sum	w;	
	 qui	replace	w=w/r(mean);	
	 *	Arithmetic	mean	(weighted);	
	 qui	sum	y	[w=w];	
	 qui	scalar	sc_mu=r(mean);	
	 *	geometric	mean	yome	(weighted);		
	 qui	gen	help=logy*w;	
	 qui	sum	help;	
	 qui	scalar	sc_gmu=exp(r(mean));	
	 qui	drop	help;	
	 *	Sample	size	(weighted);	
	 qui	scalar	sc_N=r(N);	
	 *********************************************;	
	 ***	Inequality	indices	from	overall	sample	**;	
	 *********************************************;	
	 *Atkinson	Index	1:	stored	in	scalar	sc_A1	***;	
	 qui	gen	summand=w*ln(y);	
	 qui	sum	summand;	
	 qui	scalar	sc_gmu=exp(r(sum)/sc_N);	
	 qui	scalar	sc_A1=1‐sc_gmu/sc_mu;	
	 qui	drop	summand;	
	 *Atkinson	Index	2:	stored	in	scalar	sc_A2	***;	
	 qui	gen	summand=w*(y/sc_mu)^(1‐2);	
	 qui	sum	summand;	
	 qui	scalar	sc_A2=1‐(r(sum)/sc_N)^(1/(1‐2));	
	 qui	drop	summand;	
	 *Mean	log	deviation:	stored	in	scalar	sc_MLD*;	
	 qui	gen	summand=w*ln(y);	
	 qui	sum	summand;	
	 qui	scalar	sc_MLD=‐r(sum)/(sc_N)+ln(sc_mu);	
	 qui	drop	summand;	 	
	 *Theil	index:	stored	in	scalar	sc_T*;	



18 
 

	 qui	gen	summand=y/sc_mu*ln(y)*w;	
	 qui	sum	summand;	
	 qui	scalar	sc_T=r(mean)‐ln(sc_mu);	
	 qui	drop	summand;	
	 *Variance	of	log	yomes:	stored	in	scalar	sc_V*;	
	 qui	gen	summands=(logy‐log(sc_gmu))^2*w;	
	 qui	sum	summands;	
	 qui	scalar	sc_VL=r(sum)/(sc_N‐1);	
	 qui	drop	summands;	
	 *Variance	and	coeff	of	var:	stored	in	scalar	sc_V	and	sc_CV*;	
	 qui	gen	summands=(y‐sc_mu)^2*w;	
	 qui	sum	summands;	
	 qui	scalar	sc_V=[r(sum)/(sc_N‐1)];	
	 qui	scalar	sc_CV=sc_V^(0.5)/sc_mu;	
	 qui	drop	summands;	
	
	 *********************************************;	
	 ****	Inequality	indices	from	JK	samples	*****;	
	 *********************************************;	
	 *Atkinson	Index	1:	stored	in	variable	jk_A1	***;	
	 qui	gen	jk_A1=1‐exp(sc_N/(sc_N‐w)*ln(sc_gmu)‐ln(y)*w/(sc_N‐w))/((sc_N*sc_mu‐w*y)/(sc_N‐w));	
	 *Atkinson	Index	2:	stored	in	variable	jk_A2	***;	
	 qui	 gen	 jk_A2=1‐(sc_N‐w)/[(sc_N*sc_mu‐w*y)/(sc_mu*(sc_N‐w))*sc_N/(1‐sc_A2)‐w*(sc_N*sc_mu‐
w*y)/(y*(sc_N‐w))];	
	 *Mean	log	deviation:	stored	in	variable	jk_MLD	***;	 	
	 qui	gen	jk_MLD=sc_N/((sc_N‐w))*(sc_MLD‐ln(sc_mu))+w*ln(y)/(sc_N‐w)+ln((sc_N*sc_mu‐y*w)/(sc_N‐w));	
	 *Theil	index:	stored	in	variable	jk_T	***;	 	
	 qui	 gen	 jk_T=(sc_N*sc_mu)/((sc_N*sc_mu‐w*y))*(sc_T+ln(sc_mu))‐(w*y*ln(y))/((sc_N*sc_mu‐w*y))‐
ln((sc_N*sc_mu‐w*y)/(sc_N‐w));	
	 *Variance	of	logs:	stored	in	variable	jk_VL	***;	 	
	 qui	 gen	 jk_VL=(sc_N‐1)^2/((sc_N‐2)*(sc_N‐w))*sc_VL‐sc_N*w*(sc_N‐1)/((sc_N‐w)^2*(sc_N‐2))*(log(sc_gmu)‐
logy)^2;	
	 *Variance:	stored	in	variable	jk_V	***;		
	 qui	gen	jk_V=(sc_N‐1)^2/((sc_N‐2)*(sc_N‐w))*sc_V‐sc_N*w*(sc_N‐1)/[(sc_N‐2)*(sc_N‐w)^2]*(y‐sc_mu)^2;	
	 *Coefficient	of	var:	stored	in	variable	jk_V	***;	 	
	 qui	gen	jk_CV=(jk_V)^(0.5)/((sc_N*sc_mu‐y*w)/(sc_N‐w));	
	 	
	 **********	95%	normal	confidence	interval	**********;	
	 ****	using	normalized	weights	as	in	WOLTER	(1985)	to	compute	variance;	
	 local	vars	"A1	A2	MLD	T	VL	CV";	
	 *	loop	over	inequality	indices;	
	 foreach	var	of	local	vars	{;	
	 	 qui	gen	jk_V_`var'=((sc_N‐1)/(sc_N)*w*(sc_`var'‐jk_`var')^2);	
	 	 qui	sum	jk_V_`var';	
	 	 qui	scalar	sc_V_`var'=r(sum);	
	 	 qui	scalar	sc_SD_`var'=sc_V_`var'^(0.5);	
	 	 qui	scalar	sc_lo_`var'	=sc_`var'‐1.96*sc_SD_`var';	
	 	 qui	scalar	sc_hi_`var'	=sc_`var'+1.96*sc_SD_`var';	
	 	 disp	dname	"	`var'	"	"	lower_bound	"	sc_lo_`var'	"	Point	estimate	"	sc_`var'	"	upper_bound	"	sc_hi_`var'	;	
	 };	 	
};	
******;	



Figure 1. Computer time and sample size 

 

 

Note. Own computations. The jackknife has been implemented using STATA’s software package inequal7.ado on  
a computer with characteristics: 64-bit system; 8 GB ram; core(TM)2 Duo CPU;  3GHz. See also footnotes 2 and 3.  
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Table 1. Inequality indices 

  
Atkinson 
߳ ൌ 1

Atkinson 
߳ ൌ 2

Mean log deviation Theil index Variance of logs Coeff. of variation 

 Year ܫܥఏಲభ
௟௢ ఏಲభܫܥ ஺ଵߠ

௛௜ ఏಲమܫܥ 
௟௢ ఏಲమܫܥ ஺ଶߠ 

௛௜ ఏಾಽವܫܥ
௟௢ ெ௅஽ߠ ఏಾಽವܫܥ

௛௜ ఏ೅ܫܥ
௟௢ ఏ೅ܫܥ ்ߠ 

௛௜ ఏೇಽܫܥ 
௟௢ ఏೇಽܫܥ ௏௅ߠ

௛௜ ఏ಴ೇܫܥ
௟௢ ஼௏ܫܥ ஼௏ߠ

௛௜  

US 1991 0.162 0.166 0.169 0.329 0.337 0.345 0.177 0.181 0.186 0.158 0.161 0.165 0.396 0.408 0.419 0.574 0.581 0.587

 
1997 0.177 0.181 0.185 0.348 0.357 0.366 0.195 0.199 0.204 0.180 0.184 0.189 0.422 0.435 0.447 0.637 0.646 0.654

 
2000 0.173 0.177 0.180 0.340 0.348 0.356 0.190 0.194 0.199 0.177 0.181 0.185 0.410 0.421 0.432 0.633 0.643 0.653

 
2004 0.179 0.183 0.186 0.361 0.371 0.380 0.197 0.202 0.206 0.178 0.182 0.185 0.439 0.452 0.464 0.625 0.633 0.640

 
2007 0.185 0.188 0.191 0.363 0.370 0.377 0.204 0.208 0.212 0.188 0.192 0.196 0.445 0.456 0.466 0.653 0.661 0.669

 
2010 0.193 0.197 0.201 0.402 0.411 0.421 0.215 0.219 0.224 0.189 0.192 0.196 0.494 0.508 0.522 0.639 0.646 0.652

DE 1994 0.088 0.095 0.102 0.175 0.188 0.200 0.093 0.100 0.107 0.090 0.097 0.104 0.191 0.207 0.222 0.437 0.456 0.475

 
2000 0.088 0.093 0.098 0.174 0.185 0.196 0.092 0.098 0.103 0.090 0.095 0.099 0.190 0.203 0.216 0.439 0.451 0.463

 
2004 0.098 0.106 0.114 0.184 0.203 0.222 0.103 0.112 0.121 0.103 0.111 0.119 0.204 0.226 0.248 0.480 0.500 0.519

 
2007 0.102 0.111 0.120 0.193 0.210 0.226 0.107 0.117 0.127 0.108 0.118 0.129 0.213 0.234 0.254 0.493 0.522 0.551

 
2010 0.103 0.110 0.117 0.198 0.212 0.225 0.109 0.116 0.124 0.107 0.114 0.122 0.221 0.238 0.254 0.482 0.504 0.525

Note. Data from Luxembourg Income Study.  
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