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Schedulers, Potentials and Weak 
Potentials in Weakly Acyclic Games 

Igal Milchtaich 

May 2013 

Abstract. In a number of large, important families of finite games, not only do pure-strategy 

Nash equilibria always exist but they are also reachable from any initial strategy profile by 

some sequence of myopic single-player moves to a better or best-response strategy. This 

weak acyclicity property is shared, for example, by all perfect-information extensive-form 

games, which are generally not acyclic since even sequences of best-improvement steps may 

cycle. Weak acyclicity is equivalent to the existence of weak potential, which unlike a 

potential increases along some rather than every sequence as above. It is also equivalent to 

the existence of an acyclic scheduler, which guarantees convergence to equilibrium by 

disallowing certain (improvement) moves. A number of sufficient conditions for acyclicity 

and weak acyclicity are known. 

Keywords. Weakly acyclic games, Weak potential, Scheduler. 

This paper concerns finite games, with a finite number   of players and a finite strategy set 

   for each player  . Correspondingly, “strategy” always means pure strategy. The payoff 

function of player   is denoted by   . A subgame of a finite game   is obtained by replacing 

each strategy set    with some subset of    and restricting the payoff functions 

correspondingly.1 If the strategy sets of one or more players are reduced to a singleton, it is 

possible to view only the remaining ones as players in the subgame. 

The improvement graph of a finite game   is the directed graph that describs the players’ 

profitable unilateral deviations. Its vertices are the strategy profile in the game, and for 

every pair of strategy profiles   and  , a (directed) edge with head   and tail   exists if and 

only if there is some player   such that       for all     (thus,   (      )) and  

  ( )    ( )  

The best-improvement graph of   is the subgraph obtained by augmenting (1) with the 

requirement that, for player  , strategy    is a best response to     (    ), that is, 

  ( )    (  
     ) for all other strategies   

 . Obviously, a strategy profile is a sink of either 

the improvement or best-improvement graph if and only if it is a (pure-strategy Nash) 

equilibrium in  . In the following, “the graph” of   and related terms may refer to either 
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1
 It should be clear from the context whether “subgame” is meant in this sense (Shapley 1964) or in 

the more familiar one pertaining to extensive-form games (Selten 1975). For example, the latter holds 
when the reference is to an extensive-form game  , and the former holds when it is to  ’s normal, or 
strategic, form.  

(1) 
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graph. This facilitates the simultaneous presentation of two parallel terminologies. However, 

unless this can be understood from the context, unambiguous use of any term requires 

indicating the graph it refers to, for example, by prefixing either  - or   -.2  

A scheduler3 for a finite game   is any subgraph of its graph that includes all vertices and at 

least one edge with tail   for every vertex   that has such edges (i.e., is not a sink). Less 

formally, a scheduler is a rule that, for each strategy profile, may restrict the players’ 

freedom of choice by not allowing some of them to take certain moves, or even any move at 

all, without going as far as making it impossible to leave the strategy profile. For example, it 

may stipulate that certain kinds of moves take precedence over certain other moves, so 

that, whenever any of the former is feasible, none of the latter is allowed. One scheduler is 

weaker than another if it is a subgraph of it. The second, stronger scheduler allows every 

move allowed by the first one but not necessarily the other way around.4 The strongest 

scheduler, which is the (improvement or best-improvement) graph itself, is also referred to 

as the default scheduler.  

A finite sequence            (   ) of (not necessarily distinct) strategy profiles is a walk 

of length   in a scheduler if for           there is an edge in the scheduler whose tail 

and head are      and   , respectively. A walk is closed if     and      , and it is a 

path if the     strategy profiles are all distinct. One walk or path extends another if the 

former is obtained from the latter by appending to it one or more strategy profiles. A 

scheduler is acyclic if there are no closed walks in it, and weakly acyclic if some weaker 

scheduler is acyclic.  

The game itself is said to be acyclic or weakly acyclic if the default scheduler has the same 

property. A path in the default scheduler is also called an improvement or best-(reply) 

improvement path, depending on the graph considered. Correspondingly, alternative terms 

for the (weak)  - and   -acyclicity properties are the (respectively, weak) finite improvement 

and finite best-(reply) improvement properties.5 It is easy to see that the four properties of 

games are linearly ordered by the implication relation, as follows:  

 -acyclicity     -acyclicity   weak   -acyclicity   weak  -acyclicity. 

                                                           
2
 A third graph considered in the literature is the best-reply graph, which differs from the best-

improvement one in that it describes also moves between (and not only to) best-response strategies. 
A strategy profile is a sink of the best-reply graph if and only if it is a strict equilibrium. The set of 
edges in the best-improvement graph is the intersection of those in the best-replay and the 
improvement graphs.  
3
 The meaning of this term here is somewhat different than in Apt and Simon (2012). According to 

these authors’ definition, at each strategy profile, a scheduler allows only one player to move but 
does not restrict his choice of strategy. In addition, the identity of the mover may depend on history, 
that is, on previous moves. 
4
 Note that these definitions entail reflexivity: every scheduler is both weaker and stronger than itself. 

This fact may optionally be underlined by adding the qualifier weakly. The corresponding irreflexive 
relation is indicated by the qualifier strictly.   
5
 Young’s (1993) notion of (weak) acyclicity is simliar, except that it refers to the best-reply graph (see 

footnote 2), and may therefore be referred to as (respectively, weak)   -acyclicity.   -acyclicity in 
particular precludes the existence of best-response cycles in the sense of Voorneveld (2000). The 
latter differ from closed walks in the best-improvement graph of the game in that only one of the 
changes of strategy is required to be an improvement; the rest may be moves between two best-
response strategies.   
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For some examples of games possessing one or more of these properties see Monderer and 

Shapley (1996), Milchtaich (1996, 2009), Friedman and Mezzetti (2001), Milchtaich and 

Winter (2002), Kukushkin et al. (2005), Engelberg and Schapira (2011) and Theorems 2, 3, 4 

and 5 below.  

A real-valued function   on the set of vertices is a potential for a scheduler if it increases 

along every walk in it, in other words, if for every two strategy profiles   and   that are 

respectively the head and tail of an edge in the scheduler, 

 ( )   ( )  

A function   is a weak potential for a scheduler if it is a potential for some weaker 

scheduler, equivalently, if the subgraph obtained by eliminating all edges in the scheduler 

whose head and tail do not satisfy (2) is also a scheduler. A necessarily and sufficient 

condition for this is that every strategy profile   that is not an equilibrium is also not a “local 

minimum point” of  , in the sense that   is the tail of some edge in the scheduler whose 

head   satisfies (2).  

A potential or weak potential for a game means such a function for the default scheduler. An 

alternative term for  -potential for a game, which stresses the distinction between this 

concept and the related cardinal one of exact potential, is generalized ordinal potential 

(Monderer and Shapley 1996). It is easy to see that the following implications between 

properties of a function   on strategy profiles hold:  

 -potential     -potential   weak   -potential   weak  -potential. 

The following theorem applies to both the improvement and best-improvement graph. 

Theorem 1. (Monderer and Shapley 1996, Kukushkin 2004) For a finite game or (more 

generally) a scheduler, the following properties are equivalent: 

(i) acyclicity, 

(ii) existence of potential, 

(iii) every walk can be extended only finitely many times before an equilibrium is 

reached. 

Similarly, the following properties are equivalent: 

(i′) weak acyclicity, 

(ii′) existence of weak potential, 

(iii′) for every strategy profile  , some path that starts at   ends at an equilibrium.  

Proof. For an acyclic scheduler (or, as a special case, acyclic game), consider for each strategy 

profile   the length of the longest path that starts at  . This number is   if and only if   is an 

equilibrium. Its negative, 

 ( )      {    there is a path of length   that starts at  }  

defines a potential, as it is easy to see that   increases along any walk. Conversely, if a 

scheduler does have a closed walk, the latter clearly precludes the existence of a potential, 

and it can be extended indefinitely by repetition.  

(2) 
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Figure 1. The cube-like improvement (and best-improvement) graph of a finite       game that is 
(i) weakly acyclic but (ii) not acyclic, (iii) not solvable by iterated elimination of never-best response strategies 
and (iv) has the property that every subgame (which corresponds to a  -dimensional face of the cube, with 
     ) has a unique equilibrium. The strategies are right and left for player 1, up and down for player 2, 
and in and out for player 3. Shown for each strategy profile are the players’ payoff vector and the value of a 
weak potential   defined as in the proof of Theorem 1. 

By the first part of the proof, a scheduler is weakly acyclic if and only if some weaker 

scheduler possesses a potential, in other words, if and only if the scheduler itself possesses a 

weak potential. In this case, every walk in the weaker scheduler that starts at a given 

strategy profile   is a path and can be extended only finitely many times before it reaches an 

equilibrium, which proves that (iii′) holds. Conversely, for a scheduler that satisfies (iii′), 

consider for each strategy profile   the distance in the scheduler to the closest equilibrium. 

The negative of this distance (see example in Figure 1),  

 ( )      {    there is a path of length   that starts at   and ends in an equilibrium}  

defines a function   on strategy profiles that is a weak potential for the scheduler. This is 

because, if a strategy profile   is not an equilibrium, then   increases along any of the 

shortest paths connecting it to an equilibrium, which in particular means that   is not a 

“local minimum point” (see above). ∎ 

Sufficient Conditions for Weak Acyclicity 
In a finite game  , a never-best response strategy for a player   is a strategy    that is not a 

best response to any profile     of the other players’ strategies. Since, as indicated, only 

pure strategies are considered here, every strategy that is strictly dominated by a mixed 

strategy is a never-best response strategy but not conversely. Iterated elimination of never-

best response strategies means a finite sequence            (   ) of games such 

that     , each of the subsequent games is a subgame of the preceding game obtained by 

eliminating one or more never-best response strategies for one or more players, and there 

are no never-best response strategies in   .6 As the following lemma shows, the elimination 

process in a sense preserves the best-response relation. 

                                                           
6
 It can be shown that the order of elimination does not matter, in the sense that the last subgame    

is unique. Obviously, the other subgames are also unique if in each step all eligible strategies are 
eliminated. 

(     ) 
𝑃     

 

(     ) 
𝑃     

(     ) 
𝑃     

(     ) 
𝑃     

(     ) 
𝑃     

(     ) 
𝑃     

(     ) 
𝑃    

(     ) 
𝑃   3 
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Lemma 1. Consider iterated elimination of never-best response strategies in a finite game  , 

that is, a sequence of subgames    (  )         as above. For      , and any 

strategy profile   in    and player  , strategy    is a best response to     for player   in    if 

and only if this is so in  . Moreover, for      , the set of all equilibria in    coincides 

with that in  .  

Proof. For      , and any strategy profile   in    and player  , if    is not a best response 

to     for player   in   , then the same is obviously true in  . Conversely, if    is not a best 

response to     in  , then consider any strategy   
  that is a best response. Since the games 

           all include every strategy in    , the same must be true for the best response 

strategy   
 , which does not get eliminated. This implies that strategy    is not a best 

response also in   . The second part of the lemma follows from the first part and the fact 

that, for      , every equilibrium in      is present also in   , since each of the 

strategies in it is a best response to the others.  ∎ 

A game   is solvable by iterated elimination of never-best response strategies if there exists 

a sequence as above such that, in the last subgame   , all strategy profiles are equilibria. By 

Lemma 1, in this case, the set of all strategy profiles in    is also the set of all equilibria in  . 

In other words, solvability means that the equilibria in   are the only strategy profile that 

survive iterated elimination of never-best response strategies. 

Theorem 2. (Kukushkin 2012, Apt and Simon 2012) If a finite game is solvable by iterated 

elimination of never-best response strategies, then it is weakly   -acyclic.  

Proof. Consider a game   solvable by iterated elimination of never-best response strategies 

and a corresponding sequence of subgames           . Define the height of a strategy in 

  as the largest index   such that    includes the strategy, and the height of a strategy profile 

as the average height of the strategies in it. It suffices to establish the following. 

CLAIM. The function   that maps strategy profile to their height is a weak potential for  . 

A strategy profile   is an equilibrium if and only if  ( )   . 

If all the strategies in a strategy profile   are in   , then by the solvability assumption   is an 

equilibrium. Otherwise, consider a strategy    in   with minimum height   (  ), so that all 

the strategies in   are in    but (at least)    is not in     . Necessarily, for the corresponding 

player  , strategy    is not a best response to      (in both    and  ; see Lemma 1). Let   
  be 

a strategy in    that is a best response. The height of   
  is greater than  , and therefore the 

strategy profile (  
     ) satisfies  ( )    (  

     )   . This concludes the proof of the 

claim, and hence also that of the theorem. ∎  

A different sufficient condition for weak acyclicity is presented by the following theorem. 

See Figure 1 for example. 

Theorem 3. (Fabrikant et al. 2010) If a finite game has the property that every subgame has 

a unique equilibrium, then it is weakly   -acyclic.  

Interestingly, the weaker property that every subgame has at least one equilibrium is not 

sufficient even for weak  -acyclicity (Takahashi and Yamamori 2002). 
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Figure 2. An extensive-form game with perfect information that is not   -acyclic. The best-improvement graph 
of the game has the following closed walk: (      ), (      ), (      ), (      ) and back to (      ).   

Extensive-Form Games 
The difference between acyclicity and weak acyclicity is illustrated by the example of finite 

extensive-form games with perfect information. In general, these games are not even   -

acyclic, as the simple game in Figure 2 demonstrates. However, that particular 

counterexample is clearly driven by player 2’s nonbeneficial change of action at his 

unreached decision nod (simultaneously with the beneficial one at the reached nod). Indeed, 

in the (trivial) subgame whose root is that nod, the change of strategy is harmful rather than 

beneficial. In other words, the agent (Selten 1975) residing at the node switches to an action 

that would not be optimal if the node were actually reached. The significance of this 

observation lies in the fact that the agent normal form of every finite extensive-form game 

with perfect information is acyclic. This fact can be stated also as follows. 

Theorem 4. (Kukushkin 1999) Every finite extensive-form game with perfect information in 

which each player has only one decision node is  -acyclic.  

Theorem 4 is a special case of a more general result, which applies regardless of the 

numbers of decision nods. Namely, if a walk in the improvement graph does not involve 

changes of actions at unreached decision nods as in Figure 2, then it cannot be closed 

(Kukushkin 2002). In other words, the scheduler that results from forbidding such changes of 

actions is acyclic. An alternative (similar, but a trifle weaker) acyclic scheduler can be defined 

as follows. For a player   and a strategy profile  , call a unilateral change of strategy by   

from    to some other strategy   
  parsimonious if   (  

     )    (  
     ) for every strategy 

  
  that differs from both    and   

  but is a combination of them, in the sense that the action 

it prescribes at each of player  ’s decision nodes is also prescribed by one of these strategies. 

Clearly, any non-parsimonious change of strategy can be replaced by a parsimonious one 

without decreasing the resulting payoff of the player involved. Therefore, the subgraphs of 

the improvement- and best-improvement graphs obtained by considering only parsimonious 

changes of strategies are schedulers.  

Lemma 2. In every finite extensive-form game with perfect information  , the  -scheduler 

and   -scheduler defined by parsimonious changes of strategies are acyclic.  

2 

1 

𝐿 

2 

𝑅 

𝑟  𝑙  𝑟  𝑙  
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Proof. It needs to be shown that any walk in the  -scheduler (or, as a special case, the   -

scheduler) under consideration,           , it not closed. For a subgame  ̂ of   and a 

strategy profile  , denote by  ̂ the strategy profile in  ̂ obtained by restricting each player’s 

strategy to the decision nodes in that subgame. In particular,  ̂   ̂     ̂  are the strategy 

profiles corresponding to the walk. Now, choose  ̂ in such a way that there is exactly one 

player   whose strategies  ̂ 
   ̂ 

     ̂ 
  are not all equal. For any       such that 

 ̂ 
   ̂ 

   , consider the strategy   
     

 (   
   ) in   that coincides with   

  inside  ̂ and with 

  
    outside it. Since the chance from   

  to   
    increases  ’s payoff and is parsimonious, 

  (  
     

    
 )    ( 

   ). The inequality implies that, in the subgame  ̂ , strategy  ̂ 
    

yields player   a higher payoff than  ̂ 
  against the other players’ strategies  ̂  

 . Since, by 

assumption, the latter do not change (that is,  ̂  
   ̂  

     ̂  
 ), this conclusion implies 

that the walk cannot be closed.  ∎ 

The guaranteed existence of an acyclic scheduler means that, while general perfect-

information extensive-form games may not be acyclic, they are always weakly acyclic.  

Theorem 5. (Kukushkin 2002) Every finite extensive-form game with perfect information is 

weakly   -acyclic.  

By Theorems 4 and 5, acyclicity or weak acyclicity of a finite game   is a necessary condition 

for the existence of some perfect-information extensive-form game   whose normal or 

agent normal form, respectively, is  . If   is the agent normal form of  , then it has the 

additional property that every subgame has an equilibrium. However, if   is the normal 

form, this is not necessarily so. For example, if in Figure 2 player 2 were only allowed to use 

strategies      and     , an equilibrium would not exist. 
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