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The equilibrium outcome of a strategic interaction between two or more people may 

depend on the weight they place on each other’s payoff. A positive, negative or zero weight 

represents altruism, spite or complete selfishness, respectively. Paradoxically, the real, 

material payoff in equilibrium for a group of altruists may be lower than for selfish or 

spiteful groups. However, this can only be so if the equilibria involved are unstable. If they 

are stable, the total (equivalently, average) payoff can only increase or remain unchanged 

with an increasing degree of altruism. JEL Classification: C62, C72, D64. 

Keywords: Altruism, spite, comparative statics, strategic games, stability of equilibrium 

1 Introduction 
Altruism and spite represent deviations in opposite directions from complete selfishness, or 

total indifference to the welfare of others. A person is altruistic or spiteful towards another if 

he is willing to take costly actions in order to benefit or harm the other person, respectively. 

This paper considers the question of the welfare consequences of such preferences. Is the 

average payoff in a group in which everyone is equally altruistic or spiteful towards the 

others higher or lower than in a group in which everyone is only concerned with his own 

good? Unlike much of the related literature (e.g., Frank, 1988; Ridley, 1997) this question 

only involves the consequences of deviations from complete selfishness, not their origin or 

evolution. Correspondingly, it only concerns the effect on (material) social welfare, rather 

than on the individual payoffs. (However, this distinction only applies to asymmetric 

settings.) The common degree of altruism or spite is viewed as an exogenous parameter, 

representing, for example, a shared moral value or social attribute. The parameter quantifies 

the extent to which each individual 𝑖 internalizes the welfare of each of the other individuals 

𝑗. Specifically, it is the ratio between the weights attached to 𝑗’s and 𝑖’s payoffs in 𝑖’s 

“modified payoff”, which is linear in the payoffs. An individual’s modified payoff determines 

his preferences over action profiles, and in particular his best responses to the others’ 

actions.    

This simple, linear form of interdependent preferences is clearly not the only conceivable 

one. Other functional forms have been suggested (e.g., Fehr and Schmidt, 1999; Bolton and 

Ockenfels, 2000), which might better predict people’s behavior in certain experimental 

settings. In the “psychological games” literature (Geanakoplos et al., 1989; Rabin, 1993), 

preferences for physical outcomes are affected by a person’s beliefs about the other’s 

actions and discrepancies between these beliefs and the actual actions. An advantage of the 

simpler interdependent preferences considered in this paper is that the assumption that 
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they are determined by a single parameter facilitates comparative statics analysis. It is 

possible to investigate the conditions under which an increasing or decreasing degree of 

altruism results in lower or higher social welfare, and the conditions under which such 

changes of preferences have the opposite effects. This investigation is the main goal of this 

paper. 

The propensity for acting altruistically or spitefully may have a biological basis. In particular, 

with family members it may be the result of kin selection. According to Hamilton’s rule 

(Hamilton, 1963, 1964; Frank, 1998), natural selection favors acts that maximize the actor’s 

inclusive fitness, which is his own fitness augmented by 𝑟 times that of each of the other 

affected individuals, where 𝑟 is their coefficient of relatedness. This stems from the fact that 

helping a relative assists the propagation of the actor’s own genes; as the coefficient of 

relatedness increases, so does the number of shared genes. In small populations, the 

coefficient of relatedness may also take on negative values, which represent less-than-

average relatedness. In this case, the possibility of spiteful behavior arises (Hamilton, 1970). 

The inclusive fitness has the form described above. The fitness of each of the individuals 

involved in the interaction enters linearly, and the weight attached to it, which is the 

relevant coefficient of relatedness 𝑟, is exogenous, that is, determined by the family tree. 

Thus, comparative statics analysis might reveal, for example, how the expected 

consequences of a particular interaction involving two or more individuals depends on their 

relatedness, e.g., whether they are full or half-siblings. 

As it turns out, the question of whether altruism has a positive effect on social welfare has a 

simple, affirmative answer only in the case of nonstrategic interactions, in which each 

individual’s optimal action does not depend on the others’ actions. In strategic interactions, 

or games, altruism and spite do not necessarily have the effects one would expect. For 

example, even in a symmetric two-player game with a unique, symmetric equilibrium, the 

players’ equilibrium payoff may be higher if they are both selfish rather than mildly caring, 

and even higher if they resent each other. Thus, altruism in a strategic interaction may 

paradoxically result in real, material losses for all parties. A central finding in this paper is 

that a crucial factor affecting the nature of comparative statics is the stability or instability of 

the equilibria involved. In particular, continuously increasing the weight that players place 

on each other’s payoff can only increase social welfare or leave it unchanged if the strategies 

involved are stable, but has the opposite effect if the strategies are definitely unstable. (This 

term is defined below.) This finding is akin to Samuelson’s (1983) “correspondence 

principle”, which maintains that conditions for stability often coincide with those under 

which comparative statics analysis leads to what are usually regarded as “normal” 

conclusions, such as the conclusion that an increase in demand for a commodity results in a 

rise in its equilibrium price (Lindbeck, 1992). Since comparative statics analysis compares 

equilibria in different games, whereas stability is a property of the equilibrium in a particular 

game, the finding that the latter conveys information about the former is not at all obvious.1  

                                                           
1
 Note that this refers to the stability of the equilibrium, and not that of altruism itself, e.g., in the 

sense of Bester and Güth (1998). 
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In the works of Samuelson and others, ‘stability’ refers to dynamic, or asymptotic, stability. It 

therefore depends on the dynamical system used to model the evolution of the economic 

agents’ off-equilibrium behavior. By contrast, in this paper ‘stability’ means static stability. 

This arguably more fundamental concept only considers the players’ off-equilibrium 

incentives, and does not involve any assumptions about the translation of these incentives 

into concrete changes of actions. One example of a static notion of stability, applicable to 

symmetric 𝑛 × 𝑛 games, is evolutionarily stable strategy, or ESS. Another one, applicable to 

symmetric two-player games with a unidimensional set of strategies, is continuously stable 

strategy, or CSS, which is essentially equivalent to the requirement that, at the equilibrium 

point, the graph of the best-response function, or reaction curve, intersects the forty-five 

degree line from above. If the intersection is from below, the symmetric equilibrium strategy 

is definitely unstable. These two examples of static stability are in fact essentially special 

cases of a much more general notion of local static stability, proposed in Milchtaich (2008), 

which is applicable to all symmetric and asymmetric two- and multiplayer games with non-

discrete strategy spaces. As it turns out, the effects of altruism and spite on social welfare 

are related to this general notion of static stability, rather than to any special dynamic one.  

The layout of the paper is as follows. The next section defines the modified game, which is 

the tool used in this paper to model altruistic or spiteful preferences. A new parameter, the 

selfishness coefficient, is introduced, which is an alternative measure of the degree of 

altruism or spite. Section ‎3 presents the distinction between local comparative statics, which 

concern small, continuous changes to the selfishness coefficient and the corresponding 

equilibria, and global comparative statics, which allow for large, discrete changes. An 

example of the former is given, which shows that altruism can either increase or decrease 

the firms’ profits in a symmetric Cournot duopoly game, depending on the stability or 

instability of the corresponding equilibrium strategies. A general definition of static stability 

of a symmetric equilibrium strategy in a symmetric two-player game is presented in the first 

part of Section ‎4. The subsequent subsections specialize the definition to the modified 

game, present a general theorem that links the stability of the equilibrium strategy in the 

modified game with comparative statics, and give another theorem that concerns global 

comparative statics. Section ‎5 lays out a comparable analysis for asymmetric two-player 

games. Section ‎6 generalizes the definitions and results in the preceding two sections to 

games with more than two players. As it shows, the move to an arbitrary number of players 

does not affect the main results, provided that the right notion of stability is used. Some of 

the assumptions underlying the present model, possible extensions, and the relation 

between the static stability notion used here and dynamic stability are discussed in 

Section ‎7, which concludes the main text of the paper. Appendix A lists some algebraic 

identities involving payoffs, modified payoffs and average payoffs, which are used elsewhere 

in the paper. The question of whether the relation between the selfishness coefficient and 

the equilibrium payoff in a symmetric 𝑛 × 𝑛 game is monotonic (either nonincreasing or 

nondecreasing) is studied in Appendix B. For the same kind of games, Appendix C presents a 

useful connection between static stability and stability with respect to perturbations of the 

game parameters, which has an implication for comparative statics.  
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2 Altruism and Spite 
The model described below is based on a rather standard model of linearly interdependent 

preferences. However, it is less general than, e.g., Levine’s (1998) model, in which different 

players can be more or less altruistic and their attitudes are reflected in the way other 

players treat them. Here the players’ preferences are all interdependent in the same 

manner. Specifically, the dependencies are expressible by a single parameter 𝑟, called the 

coefficient of altruism (Levine, 1998) or coefficient of effective sympathy (Edgeworth, 1881). 

The parameter specifies the weight each player 𝑖 attaches to the payoff 𝑕𝑗  of each of the 

other players 𝑗, relative to the weight attached to the player’s own payoff 𝑕𝑖 . Thus,  the 

quantity player 𝑖 seeks to maximize is (possibly, a positive multiple of) 

𝑕𝑖 + 𝑟  𝑕𝑗

𝑗≠𝑖

. 

The coefficient of altruism 𝑟 may be positive, expressing altruism or concern for social 

welfare, or negative, expressing envy or spite (Morgan et al., 2003). In this paper, it is 

viewed as exogenously given, e.g., a shared moral standard. Varying the coefficient thus 

corresponds to a cross-group or cross-society comparison; different values of 𝑟 represent 

different groups rather than different kinds of individuals within a group.2 An example of 

such a group is a (human or non-human) family. In the biological theory of kin selection, an 

expression similar to (1) gives the inclusive fitness of an individual interacting with relatives. 

In this case, the coefficient of altruism 𝑟 is the coefficient of relatedness between 𝑖 and 𝑗, 

which, for example, is 0.5 for full siblings and 0.25 for half-siblings (Crow and Kimura, 1970). 

Thus, (1) expresses the inclusive fitness when the interaction involves only equality related 

individuals, e.g., offspring of a single pair of parents.  

The analysis in this paper excludes cases of extreme selflessness or spite. An individual does 

not care about another individual more than he cares about himself, and he does not hate 

the others so much that he would enjoy or be indifferent to an equal loss by all players. 

Mathematically, this means that  

−
1

𝑛 − 1
< 𝑟 ≤ 1, 

where 𝑛 is the number of players. With this assumption, and the parameter 𝑠 defined by3 

𝑠 =
1 − 𝑟

1 +  𝑛 − 1 𝑟
 , 

expression (1) can be written as  1 +  𝑛 − 1 𝑟  𝑠𝑕𝑖 +  1 − 𝑠 𝑕  , where  

                                                           
2
 The evolution and origin of sympathy and spite are outside the scope of this paper. The model is not 

an evolutionary one, and it is not suitable for studying the effects that individuals’ attitudes towards 

others have on their own success. The model and corresponding comparative statics analysis may, 

however, have relevance for group selection. See the discussion in Section ‎7. 
3
 The definition implies that 𝑠 is determined by 𝑟 as a strictly decreasing function in the interval given 

by (2). The inverse function has an identical form, i.e., 𝑟 = (1 − 𝑠)/(1 + (𝑛 − 1)𝑠). 

(1) 

(2) 
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𝑕 =
1

𝑛
 𝑕𝑗

𝑛

𝑗 =1

 

is the average payoff. Thus, (1) is a positive multiple of player 𝑖’s modified payoff 𝑕𝑠
𝑖 , defined 

by 

𝑕𝑠
𝑖 = 𝑠𝑕𝑖 +  1 − 𝑠 𝑕 . 

The games (with payoff functions) 𝑕 = (𝑕1 , 𝑕2, … , 𝑕𝑛) and 𝑕𝑠 = (𝑕𝑠
1 , 𝑕𝑠

2 , … , 𝑕𝑠
𝑛) (which have 

identical strategy spaces) will be referred to as the unmodified and modified games, 

respectively. The parameter 𝑠, which by (2) satisfies 𝑠 ≥ 0, will be called the selfishness 

coefficient.4 If 𝑠 = 0, the players are completely unselfish, and their only concern is social 

welfare, i.e., maximization of 𝑕 . If 𝑠 = 1, the players are completely selfish, and only care 

about their own payoffs. The case 𝑠 > 1 can be interpreted as representing spite, since it 

corresponds to a negative coefficient of altruism 𝑟. Alternatively, a high selfishness 

coefficient may be interpreted as representing envy. An envious person attaches a great 

weight to the difference  

𝑒𝑖 = 𝑕𝑖 − 𝑕  

between his own and the average payoffs. The latter interpretation is based on the 

decomposition 

𝑕𝑠
𝑖 = 𝑕 + 𝑠𝑒𝑖 , 

which shows that the weight of 𝑒𝑖  in the modified payoff 𝑕𝑠
𝑖  is precisely the selfishness 

coefficient 𝑠.  

Although the expressions (1) and (3) represent the same interdependent preferences, there 

are some advantages to using the latter rather than the former. The modified payoff 

representation decomposes the perceived payoff into a “private” component and a “social” 

one. The main concern of this paper is with the effect of the relative weights of these 

components on social welfare. If the weight the players attach to the social component 

increases or decreases at the expense of the private component (i.e., the selfishness 

coefficient decreases or increases, respectively), what is the effect on the actual social 

welfare? Note that a modification of the game does not by itself change the average payoff:  

𝑕𝑠
   = 𝑕  

for all 𝑠. Thus, the average payoff may shift only if there is a real change in behavior. Such 

a change may be expected to occur, since when preferences change, the equilibrium 

strategies normally change too. The issue then is comparative statics: the effect of 𝑠 on the 

average equilibrium payoff.  

                                                           
4
 Note that 𝑕1 = 𝑕, and that iterating the modification procedure would not give a new kind of game 

but only a modified game with a different selfishness coefficient, since  𝑕𝑠 𝑡 =  𝑕𝑠⋅𝑡  for all 𝑠 and 𝑡. 

This means that the selfishness coefficient acts on games as a monoid, i.e., a semigroup with an 

identity element. 

(3) 

(4) 

(5) 
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3 Comparative Statics 
The effect of selfishness on social welfare (i.e., on the players’ average payoff) can be 

studied either globally or locally. Global comparative statics compare social welfare at the 

equilibria in the unmodified and modified games, 𝑕 and 𝑕𝑠, or more generally, the equilibria 

in 𝑕𝑡  and 𝑕𝑠, with 𝑡 ≠ 𝑠. The comparison is global in that it is not restricted to equilibria in 𝑕𝑠 

that are close to particular equilibria in 𝑕𝑡  or to small changes in the selfishness coefficient 

(i.e., 𝑠 close to 𝑡). The unrestricted nature of global comparative statics means that 

meaningful results can be obtained only in special cases. This paper considers such 

comparative statics mainly in the context of symmetric two-player games (Section ‎4). The 

paper’s focus is on local comparative statics, which concern the way social welfare at a given 

equilibrium in a given modified game 𝑕𝑡  (or, in the special case 𝑡 = 1, the unmodified game 

𝑕) changes when the selfishness coefficient continuously increases or decreases from 𝑡. For 

this to be meaningful, a continuous mapping has to exist that assigns to every 𝑠 close to 𝑡 an 

equilibrium in 𝑕𝑠, which coincides with the given equilibrium for 𝑠 = 𝑡. This effectively rules 

out games with discrete strategy spaces, since if strategies are isolated, such a continuous 

mapping is necessarily constant. Assuming that the strategy spaces are non-discrete and 

that a mapping as above exists,5 the question is whether the players’ average payoff 

increases or decreases with increasing (or decreasing) 𝑠. As the following example shows, 

even in a single game both possibilities may occur.  

Example 1. Symmetric Cournot competition. Firms 1 and 2 produce an identical good at zero 

cost. They simultaneously decide on their respective output levels 𝑞1 and 𝑞2 and face a 

downward sloping, convex demand curve given by the price (or inverse demand) function 

𝑃 𝑞 =   𝑞 + 0.4 ln 𝑞 + 1.4  −
3
2 , 

where 𝑞 = 𝑞1 + 𝑞2 is the total output. The profit of each firm 𝑖 is the revenue 𝑃 𝑞 𝑞𝑖. 

Hence, the firm’s modified payoff is given by 

𝑕𝑠
𝑖  𝑞1 , 𝑞2 = 𝑃 𝑞  𝑠𝑞𝑖 +

1 − 𝑠

2
𝑞 . 

If the selfishness coefficient 𝑠 decreases from 1 all the way to 0, the duopoly effectively 

becomes a monopoly and the firms’ profits increase. However, this is not necessarily so for a 

moderate decrease in 𝑠. For every output level 𝑞1 of firm 1, there is a unique, nonzero 

output level 𝑞2 for firm 2 at which this firm’s profit is maximal. The same is also true for the 

modified payoff, for every 𝑠 greater than about 1/3 (see Figure 1a). For 𝑠 close to 1, there 

are precisely two equilibria, which are both symmetric, i.e., the firms’ output levels, and 

hence also their profits, are equal. In one equilibrium the output level is below 2 and in the 

other it is above 2. The first equilibrium output level continuously increases with increasing 

selfishness coefficient, and consequently the profits decrease. However, at the second 

equilibrium, output increases and profits decrease with decreasing 𝑠 (Figure 1b).  

                                                           
5
 For a sufficient condition for existence in the special case of symmetric 𝑛 × 𝑛 games, see Section ‎4.2. 
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Figure 1. The Cournot duopoly game in Example 1. a. The reaction curve. For every output level for firm 1, the 
unique output level for firm 2 that maximizes this firm’s modified payoff is shown for the selfishness 
coefficient 𝒔 = 𝟎. 𝟗 (black curve). The two points (marked by short vertical lines) at which the curve intersects 
the forty-five degree line (grey) are the (symmetric) equilibria. The lower (left) and upper (right) points, 
respectively, represent stable and unstable equilibrium output levels. When the selfishness coefficient 𝒔 
increases (or decreases), the two points move in opposite directions. b. The equilibrium profits. The firms’ 
equilibrium profit depends on the selfishness coefficient 𝒔. It also depends on whether the equilibrium output 
level is stable or unstable. The profit for the former (black, upper curve) is higher than for the latter (grey, 
lower curve), and it decreases rather than increases with increasing 𝒔. 

The modified payoffs of two competing firms may conceivably represent real profits for 

owners, e.g., if they own stock in both companies. However, in Example 1 and elsewhere in 

this paper, the modified payoffs are not assumed to be real entities. The question asked is 

how the firms’ profits would change if each of them were also concerned with the total 

profit, or equivalently, with the profit of the other firm. The comparative statics seen in this 

particular example can be understood by examining the geometry of firm 2’s reaction curve, 

or the graph of its best-response function. Increasing the selfishness coefficient 𝑠 raises the 

curve, since it attenuates the negative effect that an increase in firm 2’s output level (which 

decreases firm 1’s profit) has on 2’s modified payoff. At the lower-output equilibrium, where 

the upward-sloping reaction curve is less steep than the forty-five degree line (see Figure 

1a), raising the curve moves the equilibrium point upwards and to the right. Thus, the 

equilibrium output increases. At the higher-output equilibrium, where the reaction curve is 

steeper than the forty-five degree line, a shift upwards has the opposite effect on the 

equilibrium output level.  

Significantly, the same geometrical property of the reaction curve also determines whether 

the equilibrium output level is stable. As shown below, the equilibrium output is stable if the 

reaction curve is less steep than the forty-five degree line, and unstable (even definitely 

unstable, in a sense defined below) if it is steeper than that line. As this paper shows, this 

connection between comparative statics and stability is in fact a general phenomenon – 

much more so than the above geometrical demonstration might suggest. It does not depend 

on any special properties of the above example (e.g., zero production cost), properties of the 

Cournot duopoly game, or even the unidimensionality of the strategy space. As shown 

below, it is rather generally true that stable or definitely unstable equilibrium strategies 

imply “decreasing” or “increasing” local comparative statics, respectively, in the sense of the 
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direction on which the players’ average equilibrium payoff moves as the selfishness 

coefficient continuously increases.  

This general connection between stability and local comparative statics is laid out in the 

following sections. This is done in several steps, starting with symmetric two-player games 

and ending with asymmetric multiplayer ones. The notion of stability used here is that 

introduced in Milchtaich (2008); see that paper of motivation and detailed exposition. This 

notion of (local) static stability, which is applicable to symmetric as well as asymmetric 

games with two or more players, essentially generalizes several well-established stability 

notions that are specific to particular classes of games, such as evolutionarily stability (ESS) 

and the geometrical criterion for stability used in the above analysis.  

4 Symmetric Two-Player Games 
A symmetric two-player game is a function6 𝑔: 𝑋 × 𝑋 → ℜ, where 𝑋, the strategy space, is a 

finite or infinite topological space and ℜ is the real line. If one player uses strategy 𝑥 and the 

other uses 𝑦, their payoffs are 𝑔 𝑥, 𝑦  and 𝑔 𝑦, 𝑥 , respectively. The topology on 𝑋, which 

defines a neighborhood system for each strategy 𝑥 (Kelly, 1955), should in principle be part 

of the specification of the game. However, in many cases it is unnecessary to specify it 

explicitly, as this is clear from the context. For example, in (the mixed extension of) a 

symmetric 𝑛 × 𝑛 game (where 𝑛 is the number of pure strategies), the strategy space is the 

unit simplex in ℜ𝑛 , with the relative topology. If strategies are numbers, 𝑋 is by default 

considered a subspace of ℜ, so that a set of strategies is a neighborhood of a strategy 𝑥 if 

and only if, for some 𝜀 > 0, every 𝑦 ∈ 𝑋 with  𝑥 − 𝑦 < 𝜀 is in the set. 

Definition 1. (Milchtaich, 2008) A strategy 𝑥 in a symmetric two-player game 𝑔 is stable, 

weakly stable or definitely unstable if it has a neighborhood where the inequality 

𝑔 𝑦, 𝑥 − 𝑔 𝑥, 𝑥 + 𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑦 < 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds for all 

strategies 𝑦 ≠ 𝑥.  

A stable strategy is not necessarily an equilibrium strategy. An equilibrium strategy 𝑥 has to 

satisfy the condition that, for all strategies 𝑦,  

𝑔 𝑦, 𝑥 ≤ 𝑔 𝑥, 𝑥 , 

i.e.,  𝑥, 𝑥  is a symmetric equilibrium.7 An equilibrium strategy 𝑥 that is also stable is a stable 

equilibrium strategy. It is not difficult to see that, for an equilibrium strategy 𝑥, a necessary 

and sufficient condition for stability is that, for every strategy 𝑦 ≠ 𝑥 in some neighborhood 

of 𝑥,  

                                                           
6
 This formulation identifies a symmetric game with the corresponding payoff function. 

7
 In this paper, an ‘equilibrium strategy’ in the context of symmetric games always refers to a 

symmetric equilibrium. For a discussion of asymmetric equilibria, see section ‎5. 

(6) 

(7) 
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 1 − 𝑝 𝑔 𝑥, 𝑥 +  𝑝𝑔 𝑥, 𝑦 >  1 − 𝑝 𝑔 𝑦, 𝑥 + 𝑝𝑔 𝑦, 𝑦  

for all 0 < 𝑝 ≤ 1/2. This inequality says that 𝑥 affords a higher expected payoff than 𝑦 

against a rival who randomizes between using 𝑦 and 𝑥 with probabilities 𝑝 and 1 − 𝑝, 

respectively.  

In symmetric two-player games in which the strategy space is a subset of ℜ, i.e., strategies 

are real numbers, the stability of an equilibrium strategy has a simple, intuitive 

interpretation. If 𝑔 is twice continuously differentiable, and with the possible exception of 

certain borderline cases, an equilibrium strategy is stable or definitely unstable if, at the 

(symmetric) equilibrium point, the reaction curve intersects the forty-five degree line from 

above or from below, respectively (see Figure 1a). Stability is also very close to the notion of 

continuously stable strategy, or CSS (Eshel and Motro, 1981; Eshel, 1983).   

Proposition 1. (Milchtaich, 2008) Let 𝑔 be a symmetric two-player game with a strategy 

space 𝑋 that is a subset of the real line, and 𝑥 an equilibrium strategy lying in the interior of 

𝑋 such that 𝑔 has continuous second-order partial derivatives8 in a neighborhood of the 

equilibrium point  𝑥, 𝑥 . If 

 𝑔11 𝑥, 𝑥 + 𝑔12 𝑥, 𝑥 < 0, 

then 𝑥 is stable and a CSS. If the reverse inequality holds, then 𝑥 is definitely unstable and 

not a CSS.  

If  𝑥, 𝑥  is an interior equilibrium as in the proposition, then (the second-order maximization 

condition) 𝑔11 𝑥, 𝑥 ≤ 0 holds, since strategy 𝑥 is a best response to itself. If the inequality 

is strict, then (9) can be written as  

−
𝑔12 𝑥, 𝑥 

𝑔11 𝑥, 𝑥 
< 1. 

This inequality or the reverse one, respectively, says that at the equilibrium point the slope 

of the reaction curve is less than or greater than 1, which is the slope of the forty-five degree 

line.  

Another class of games for which the general Definition 1 can be given a more familiar form 

is the class of (the mixed extensions of) symmetric 𝑛 × 𝑛 games. In such games, both players 

share a common finite set of 𝑛 actions. A (mixed) strategy 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  specifies the 

probability 𝑥𝑖  with which a player chooses the 𝑖th action, for 𝑖 = 1,2, … , 𝑛. The set of all 

actions 𝑖 with 𝑥𝑖 > 0 is the support (or carrier) of 𝑥, and a strategy is pure or completely 

mixed, respectively, if its support contains only a single action 𝑖 (in which case the strategy 

itself may also be denoted by 𝑖) or all 𝑛 actions. A symmetric 𝑛 × 𝑛 game 𝑔 is bilinear, and is 

hence completely specified by the 𝑛 × 𝑛 payoff matrix 𝐴 =  𝑔 𝑖, 𝑗  
𝑖,𝑗 =1

𝑛
. Viewing strategies 

as column (probability) vectors, the game can be presented also in matrix notation: 

                                                           
8
 The partial derivatives of (the payoff function) 𝑔 are denoted by subscripts. For example, 𝑔12  is the 

mixed partial derivative. 

(8) 

(9) 



10 

𝑔 𝑥, 𝑦 = 𝑥T𝐴𝑦, 

where 𝑥T  is 𝑥 transpose.  

A standard notion of stability for symmetric 𝑛 × 𝑛 games 𝑔 is evolutionary stability, which 

can be defined as follows. A strategy 𝑦 can invade another strategy 𝑥 in 𝑔 if either (i) 

𝑔 𝑦, 𝑥 > 𝑔 𝑥, 𝑥  or (ii) 𝑔 𝑦, 𝑥 = 𝑔 𝑥, 𝑥  and 𝑔 𝑦, 𝑦 > 𝑔 𝑥, 𝑦 . It can weakly invade 𝑥 in 𝑔 

if a similar condition holds with the strict inequality in (ii) replaced by a weak one. Strategy 𝑥 

is an evolutionarily stable strategy (ESS; Maynard Smith, 1982) if there is no strategy 𝑦 ≠ 𝑥 

that can weakly invade it in 𝑔, and it is a neutrally stable strategy (NSS) if there is no strategy 

that can invade it in 𝑔. Clearly, every ESS is an NSS and every NSS is an equilibrium strategy. 

A completely mixed equilibrium strategy 𝑥 is definitely evolutionarily unstable (Weissing, 

1991) if every strategy 𝑦 ≠ 𝑥 can invade it in 𝑔. As the following proposition shows, these 

notions of evolutionary stability and instability are equivalent to the corresponding ones in 

Definition 1.  

Proposition 2. (Milchtaich, 2008). A strategy in a symmetric 𝑛 × 𝑛 game 𝑔 is an ESS or an 

NSS if and only if it is stable or weakly stable, respectively. A completely mixed equilibrium 

strategy 𝑥 in 𝑔 is definitely evolutionarily unstable if and only if it is definitely unstable. 

A symmetric 𝑛 × 𝑛 game 𝑔  is doubly symmetric if 𝑔  𝑥, 𝑦 = 𝑔  𝑦, 𝑥  for all 𝑥 and 𝑦, or 

equivalently, if the payoff matrix is symmetric. The following result, due to Hofbauer and 

Sigmund (1988; see also Weibull, 1995, pp. 56–57), follows from Proposition 2 as an 

immediate corollary. The proposition can therefore be viewed as a generalization of these 

authors’ result from doubly symmetric to general symmetric 𝑛 × 𝑛 games. 

Corollary 1. A strategy 𝑥 in a doubly symmetric 𝑛 × 𝑛 game 𝑔  is an ESS or an NSS if and only 

if it has a neighborhood where the inequality 

𝑔  𝑦, 𝑦 < 𝑔  𝑥, 𝑥  

or a similar weak inequality, respectively, holds for all strategies 𝑦 ≠ 𝑥. 

4.1 Altruism and spite in symmetric two-player games  
Corollary 1 may be viewed as a crude comparative statics result. Any symmetric 𝑛 × 𝑛 game 

𝑔 becomes a doubly symmetric game 𝑔  when played by completely unselfish players (𝑠 =

0), who attach equal weight to their own and the other player’s payoffs:  

𝑔  𝑥, 𝑦 =
1

2
𝑔 𝑥, 𝑦 +

1

2
𝑔 𝑦, 𝑥 . 

By the corollary, for any equilibrium strategy 𝑥 in 𝑔  that is not weakly stable there are 

strategies 𝑦 arbitrarily close to 𝑥 for which the players’ payoffs are greater than for 𝑥, i.e., 

the reverse inequality to that in (10) holds. Like Example 1, this suggests a connection 

between stability and the welfare effects of altruism.  

(10) 

(11) 
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For a general selfishness coefficient 𝑠 (≥ 0), the modified game obtained from a symmetric 

𝑛 × 𝑛 game 𝑔 is symmetric, but generally not doubly symmetric. Adapting the general 

notation in Section ‎2 to symmetric two-player games, the modified game 𝑔𝑠 is given by 

𝑔𝑠 = 𝑠𝑔 +  1 − 𝑠 𝑔 , 

where 𝑔  is the average payoff (11). Note that if both players use the same strategy 𝑥, then 

they received the same modified payoff, which coincides with the unmodified one since  

𝑔𝑠 𝑥, 𝑥 = 𝑔 𝑥, 𝑥 . 

By Proposition 2, a strategy 𝑥𝑠 in the modified game 𝑔𝑠 is stable if and only if it is an ESS in 

that game. The following proposition presents the stability condition directly in terms of the 

unmodified payoffs 𝑔. Note that this proposition only considers the case of altruistic players. 

Proposition 3. (Milchtaich, 2006a) For a symmetric 𝑛 × 𝑛 game 𝑔 and a selfishness 

coefficient 0 ≤ 𝑠 < 1, a strategy 𝑥𝑠 is an ESS or an NSS in the modified game 𝑔𝑠 if and only if 

the inequality 

𝑔 𝑦,  1 − 𝑟 𝑥𝑠 + 𝑟𝑦 < 𝑔 𝑥𝑠 , 𝑥𝑠  

or a similar weak inequality, respectively, holds for all strategies 𝑦 ≠ 𝑥𝑠  in some 

neighborhood of 𝑥𝑠, where 𝑟 = (1 − 𝑠)/(1 + 𝑠) is the coefficient of altruism.  

Proposition 3 shows that a stable strategy 𝑥𝑠 in the modified game 𝑔𝑠 is characterized by the 

property that it affords a higher expected (unmodified) payoff than any other strategy close 

to it for a player whose opponent either mimics him, and uses whatever (mixed) strategy 𝑦 

he uses, or uses strategy 𝑥𝑠, the former with probability 𝑟 (= (1 − 𝑠)/(1 + 𝑠)) and the latter 

with probability 1 − 𝑟. This characterization is somewhat similar to Myerson et al.’s (1991) 

notion of 𝛿-viscous equilibrium. The main difference is that the latter only takes into 

consideration alternative pure strategies. In particular, if 𝑥𝑠 itself is pure, and (14) holds for 

every pure strategy 𝑦 ≠ 𝑥𝑠 , then 𝑥𝑠 is a 𝛿-viscous equilibrium for 𝛿 = 𝑟. However, such a 

strategy 𝑥𝑠 is not necessarily even an equilibrium strategy in 𝑔𝑠. 

In the special case of complete unselfishness, 𝑠 = 0 (hence, 𝑟 = 1), Proposition 3 gives 

Corollary 1. That corollary implies that each of the one or more strategies 𝑥 satisfying 

𝑔 𝑥, 𝑥 = max
𝑦

𝑔 𝑦, 𝑦  

is an NSS, and hence an equilibrium strategy, in the modified game 𝑔0 (= 𝑔  ). (Note that 

‘strategies’ here means mixed strategies. A similar assertion does not hold for pure 

strategies.) This proves the following. (For a somewhat similar result, see Bernheim and 

Stark, 1988.) 

Corollary 2. For every symmetric 𝑛 × 𝑛 game 𝑔 there is some strategy 𝑥 that is an 

equilibrium strategy in 𝑔0 and yields an equilibrium payoff that is as high or higher than that 

of any equilibrium strategy in any modified game 𝑔𝑠, 𝑠 ≥ 0.  

(12) 

(13) 

(14) 

(15) 
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Importantly, Corollary 2 does not say anything about the effect of increasing selfishness on 

the other equilibrium strategies in 𝑔0, if such strategies exist, or on the equilibria of the 

other modified games 𝑔𝑠, with 𝑠 > 0. The result is also specific to 𝑛 × 𝑛 games. A much 

more general and comprehensive analysis is presented in the next subsection. 

4.2 Local comparative statics in symmetric two-player games 
The connection between local comparative statics and the stability or instability of the 

strategies involved is not restricted to any particular class of symmetric two-player games. 

The basic general result is the following theorem, which is proved (for an arbitrary number 

of players) in Section ‎6. 

Theorem 1. For a symmetric two-player game 𝑔, and 𝑠0 and 𝑠1 with 0 ≤ 𝑠0 < 𝑠1, suppose 

that 𝑔 is Borel measureable9 and there is a continuous and locally one-to-one10 function that 

assigns to each 𝑠0 ≤ 𝑠 ≤ 𝑠1 a stable strategy 𝑥𝑠 in the modified game 𝑔𝑠, such that the 

function 𝑓:  𝑠0, 𝑠1 → ℜ defined by 

𝑓 𝑠 = 𝑔 𝑥𝑠 , 𝑥𝑠  

is absolutely continuous.11 Then 𝑓 is strictly decreasing. A similar result holds with ‘stable’ 

and ‘strictly increasing’ replaced by ‘weakly stable’ and ‘nondecreasing’, respectively, or by 

‘definitely unstable’ and ‘strictly increasing’, respectively.  

If each of the strategies 𝑥𝑠 in Theorem 1 is an equilibrium strategy in the corresponding 

modified game 𝑔𝑠 (which the theorem does not require), then 𝑓(𝑠), defined in (16), is the 

(both unmodified and modified; see (13)) equilibrium payoff of both players. An increase in 

𝑓(𝑠) hence spells a Pareto improvement. Thus, Theorem 1 gives that, under the stated 

assumptions, stability of the equilibria guarantees that both players will benefit from 

gradually becoming less selfish, if the change in preferences is simultaneous and to the same 

degree for both players. Conversely, if the equilibria are definitely unstable, a similar change 

of preferences will have the opposite effect on the players’ equilibrium payoff.  

Note that changing the selfishness coefficient may also leave the equilibrium payoffs 

unchanged. For example, in any doubly symmetric 𝑛 × 𝑛 game (see above), the modified 

game coincides with the unmodified one, regardless of 𝑠, so that changing the latter has no 

effect whatsoever. In Theorem 1, such examples are excluded by the assumption that the 

assignment of an equilibrium strategy 𝑥𝑠 to each 𝑠 is locally one-to-one. The assignment is 

also assumed to be continuous, which means that (unlike for global comparative statics; see 

below) two equilibrium strategies can be compared only if they are connected in the 

strategy space by a curve whose points are equilibrium strategies for intermediate values of 

                                                           
9
 Borel measurability means that the inverse image of every real interval is a Borel set (Rana, 2002, 

Ex. 7.3.13). A sufficient condition for this is that 𝑔 is continuous.  
10

 A function is locally one-to-one if each point in its domain has a neighborhood where the function 

does not return any value more than once. Intuitively, this means that the function is nowhere “flat”. 

Obviously, a one-to-one function is also locally so. 
11

 A sufficient condition for absolute continuity is that 𝑓 is continuously differentiable. 

(16) 
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the selfishness coefficient. In the case of multiple equilibria, this guarantees that an 

equilibrium in one modified game is compared with the “right” equilibrium in the other 

game. Even with all of these assumptions, stability or definite instability, respectively, are 

not necessary conditions for the equilibrium payoff to decrease or increase with increasing 

selfishness coefficient. In fact, as Example 2 below shows, if the equilibrium strategies are 

neither stable nor definitely unstable, both kinds of comparative statics are possible.  

When considering particular classes of symmetric two-player games, more specific versions 

of Theorem 1 can be obtained by replacing the general stability or definite instability 

condition with a condition that is equivalent to, or at least implies, that property in the class 

under consideration. For example, consider games with a unidimensional strategy space. 

Proposition 1 suggests that the corresponding version of Theorem 1 would assert that the 

effects of altruism and spite on payoffs are determined by the sign of an expression similar 

to that on the left-hand side of (9), with 𝑔 replaced by the modified game 𝑔𝑠 and the partial 

derivatives evaluated at a symmetric equilibrium in that game. In fact, a stronger result 

holds. The following proposition presents a quantitative relation between the sign and 

magnitude of the above expression and the effect of the selfishness coefficient 𝑠 on the 

equilibrium payoff.  

Proposition 4. For a symmetric two-player game 𝑔 with a strategy space 𝑋 that is a subset of 

the real line, and 𝑠0 and s1 with 𝑠0 < 𝑠1, suppose that there is a continuously differentiable 

function that assigns to each 𝑠0 < 𝑠 < 𝑠1 an equilibrium strategy 𝑥𝑠 in the modified game 𝑔𝑠 

such that 𝑥𝑠 lies in the interior of 𝑋 and 𝑔 has continuous second-order partial derivatives in 

a neighborhood of the equilibrium point (𝑥𝑠 , 𝑥𝑠). Then, at each point 𝑠0 < 𝑠 < 𝑠1, 

 
𝑑𝑓

𝑑𝑠
= 2𝑠  𝑔𝑠 11 +  𝑔𝑠 12  

𝑑𝑥𝑠

𝑑𝑠
 

2

, 

where 𝑓 is defined by (16) and the partial derivatives are evaluated at (𝑥𝑠 , 𝑥𝑠). 

Proof. Since 𝑥𝑠 is an interior equilibrium strategy in 𝑔𝑠 for every 𝑠0 < 𝑠 < 𝑠1, it satisfies the 

first-order condition 

 𝑔𝑠 1 𝑥𝑠 , 𝑥𝑠 = 0. 

By the identity 

 𝑔𝑠 1 = 𝑠𝑔1 +  1 − 𝑠 𝑔 1, 

which follows from (12), differentiation of both sides of (18) with respect to 𝑠 gives 

 𝑔1 𝑥𝑠 , 𝑥𝑠 − 𝑔 1 𝑥𝑠 , 𝑥𝑠  + ( 𝑔𝑠 11(𝑥𝑠 , 𝑥𝑠) +  𝑔𝑠 12(𝑥𝑠 , 𝑥𝑠))
𝑑𝑥𝑠

𝑑𝑠
= 0. 

By (18) and (19),  

−𝑠 𝑔1 𝑥𝑠 , 𝑥𝑠 − 𝑔 1 𝑥𝑠 , 𝑥𝑠  = 𝑔 1 𝑥𝑠 , 𝑥𝑠 . 

The right-hand side is equal to 𝑔 2 𝑥𝑠 , 𝑥𝑠 , since the symmetry of the game implies that the 

(17) 

(18) 

(19) 

(20) 
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average payoff 𝑔  is invariant to permutations of its two arguments. Therefore, by (16) and 

(20), 

 
𝑑𝑓

𝑑𝑠
=  𝑔 1 𝑥𝑠 , 𝑥𝑠 + 𝑔 2 𝑥𝑠 , 𝑥𝑠  

𝑑𝑥𝑠

𝑑𝑠
= 2𝑠( 𝑔𝑠 11(𝑥𝑠 , 𝑥𝑠) +  𝑔𝑠 12(𝑥𝑠 , 𝑥𝑠))  

𝑑𝑥𝑠

𝑑𝑠
 

2

. 

           ∎ 

Consider next symmetric 𝑛 × 𝑛 games. For this class of games, the following somewhat 

stronger version of Theorem 1 holds. 

Theorem 2. (Milchtaich, 2006a) For a symmetric 𝑛 × 𝑛 game 𝑔, and 𝑠0 and 𝑠1 with 

0 ≤ 𝑠0 < 𝑠1, suppose that there is a continuous function that assigns to each 𝑠0 ≤ 𝑠 ≤ 𝑠1 a 

strategy 𝑥𝑠 that is an ESS in the modified game 𝑔𝑠, such that 𝑥𝑠0
≠ 𝑥𝑠1

. Then, 

𝑔 𝑥𝑠1
, 𝑥𝑠1

 < 𝑔 𝑥𝑠0
, 𝑥𝑠0

 . 

As indicated in Section ‎3, a local comparative statics result like Theorem 2 is significant only 

if a continuous function 𝑠 ↦ 𝑥𝑠 as in the theorem exists. For 𝑛 × 𝑛 games, the existence of 

such a function is guaranteed by a simple and rather weak condition. An ESS 𝑥 in such a 

game is said to be a regular ESS if every action that is a best response to 𝑥 is in its support, 

i.e.,  𝑥, 𝑥  is a quasi-strict equilibrium (van Damme, 1991). Proposition A4 in Appendix C 

immediately gives the following. 

Corollary 3. For a symmetric 𝑛 × 𝑛 game 𝑔 and selfishness coefficient 𝑡 ≥ 0, and any regular 

ESS 𝑥𝑡
 in 𝑔𝑡 , there exists a continuous function 𝑠 ↦ 𝑥𝑠 that assigns to each 𝑠 ≥ 0 in a 

neighborhood of 𝑡 a regular ESS 𝑥𝑠 in the game 𝑔𝑠, which is moreover the only equilibrium 

strategy in 𝑔𝑠 that has the same support as 𝑥𝑡 . 

If follows from Theorem 2 that, for 𝑠 close to 𝑡 such that 𝑥𝑠 ≠ 𝑥𝑡 , 𝑥𝑠 affords a higher payoff 

for the players than 𝑥𝑡  if 𝑠 < 𝑡, and a lower payoff if 𝑠 > 𝑡.  

As indicated above, stable or definite unstable equilibria are only sufficient conditions for 

decreasing or increasing local comparative statics, respectively. It is shown below that these 

conditions are close to being also necessary in the special case of symmetric 2 × 2 games. 

However, as the following example demonstrates, this is not so in general, and not even in 

the 3 × 3 case.  

Example 2. Generalized rock–scissors–paper games. A symmetric 3 × 3 game 𝑔 has the 

following payoff matrix: 

 
0 −1 1
2 0 −2

−2 3 0
 . 

This game (which is essentially the same one used by Chamberland and Cressman, 2000) and 

the modified game 𝑔𝑠 are generalized rock–scissors–paper games for all 𝑠 > 1/3. Such 

games have a single equilibrium, which is symmetric and completely mixed (Hofbauer and 

Sigmund, 1998). The equilibrium strategy, 𝑥𝑠 =   𝑥𝑠 1 ,  𝑥𝑠 2 ,  𝑥𝑠 3 , can be found by 

(21) 
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straightforward computation. It depends continuously on the selfishness coefficient 𝑠, and 

gives the equilibrium payoff ( 3𝑠 2 − 1)/( 11𝑠 2 − 5), which increases monotonically as 𝑠 

increases from 1/3 (Figure 2). By Theorems 1 or 2, this implies lack of stability. In fact, for all 

𝑠 > 1/3, the modified game 𝑔𝑠 does not have an ESS or an NSS. However, it also does not 

have a definitely evolutionarily unstable equilibrium strategy. A necessary condition for the 

unique equilibrium strategy in a generalized rock–scissors–paper game with a payoff matrix 

𝐴 =   𝑎𝑖𝑗  𝑖,𝑗 =1
3  to be evolutionarily stable, neutrally stable or definitely evolutionarily 

unstable is that, for all 1 ≤ 𝑖 < 𝑗 ≤ 3, the sum 𝑎𝑖𝑗 + 𝑎𝑗𝑖  is positive (Hofbauer and Sigmund, 

1998, Theorem 7.7.1; Weissing, 1991, Theorem 4.6), nonnegative or negative, respectively. 

None of these conditions holds here, since in (21), 𝑎13 + 𝑎31 < 0 but 𝑎23 + 𝑎32 > 0. This 

shows, in particular, that definite instability is not a necessary condition for increasing 

comparative statics. Similarly, stability is not a necessary condition for decreasing 

comparative statics. This is demonstrated by the generalized rock–scissors–paper game 𝑔 

with the following payoff matrix, which differs from (21) in a single entry only: 

  
0 −3 1
2 0 −2

−2 3 0
 . 

For 𝑠 > 1/3, the players’ payoff at the unique (symmetric and completely mixed) 

equilibrium in the modified games 𝑔𝑠 is ( 5𝑠 2 − 1)/( 13𝑠 2 − 5). Similarly to (21), and for 

the same reason, the corresponding equilibrium strategy is not an ESS, NSS or definitely 

evolutionarily unstable. However, unlike (21), the equilibrium payoff decreases 

monotonically12 as 𝑠 increases from 1/3 (Figure 2).  

 

 

Figure 2. Generalized rock–scissors–paper games in Example 2. For the game with the payoff matrix (21), the 
payoff at the unique symmetric equilibrium in the modified game increases as the selfishness coefficient 𝒔 
increases from 𝟏/𝟑 (black,upper curve). For the game with the payoff matrix (22), the payoff decreases (gray, 
lower curve). In both cases, the equilibrium strategies in the modified games are neither stable nor definitely 
unstable. 

                                                           
12

 Example 2 raises the question of whether in symmetric 𝑛 × 𝑛 games the equilibrium payoff is 

always a monotonic (either nonincreasing or nondecreasing) function of the selfishness coefficient. 

This question is addressed in Appendix B. 

(22) 
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Since none of the equilibria in Example 2 is stable or definitely unstable, this example raises 

the question of whether there are weaker properties that imply increasing or decreasing 

local comparative statics in symmetric 𝑛 × 𝑛 games. The following proposition identifies 

such properties. This result is more special than Theorem 2 in that it only concerns strategies 

with identical supports, e.g., completely mixed ones. On the other hand, it is a stronger 

result in that it gives a necessary and sufficient condition for an equilibrium in one modified 

game to afford a higher payoff than an equilibrium in another such game.  

Proposition 5. For a symmetric 𝑛 × 𝑛 game 𝑔, and (nonnegative) 𝑠 and 𝑡 with 𝑠 ≠ 𝑡, let 𝑥𝑠 

and 𝑥𝑡  be strategies with identical supports that are equilibrium strategies in 𝑔𝑠 and 𝑔𝑡 , 

respectively. The strict inequality 

 𝑡 − 𝑠  𝑔 𝑥𝑡 , 𝑥𝑡 − 𝑔 𝑥𝑠 , 𝑥𝑠  < 0 

or a similar weak inequality, respectively, holds if and only if 𝑥𝑡  cannot weakly invade or 

cannot invade 𝑥𝑠 in the modified game 𝑔𝑠. In particular, the strict or weak inequality, 

respectively, holds if 𝑥𝑠 is stable or weakly stable in 𝑔𝑠 and 𝑥𝑡 ≠ 𝑥𝑠. 

Proof. The identity of the supports implies that 𝑥𝑡  is a best response to 𝑥𝑠 in 𝑔𝑠 and 𝑥𝑠 is a 

best response to 𝑥𝑡  in 𝑔𝑡 . Thus, for 𝑥 = 𝑥𝑠 and 𝑦 = 𝑥𝑡 , the first two terms on the right-hand 

side of the identity (62) in Appendix A are zero, and therefore  𝑡 − 𝑠  𝑔 𝑥𝑡 , 𝑥𝑡 − 𝑔 𝑥𝑠 , 𝑥𝑠   

is equal to  𝑠 + 𝑡  𝑔𝑠 𝑥𝑡 , 𝑥𝑡 − 𝑔𝑠 𝑥𝑠 , 𝑥𝑡  . The factor 𝑠 + 𝑡 is positive, since 𝑠 and 𝑡 are 

nonnegative and distinct. The factor 𝑔𝑠 𝑥𝑡 , 𝑥𝑡 − 𝑔𝑠 𝑥𝑠 , 𝑥𝑡  is negative or nonpositive, 

respectively, if and only if 𝑥𝑡  cannot weakly invade or cannot invade 𝑥𝑠 in 𝑔𝑠. By Proposition 

2, the former or latter condition, respectively, holds (in particular) if 𝑥𝑠 is stable or weakly 

stable in 𝑔𝑠 and 𝑥𝑠 ≠ 𝑥𝑡 . ∎ 

Unlike Theorem 2, Proposition 5 does not assume that the strategies compared are 

connected in the strategy space by a curve consisting of equilibrium strategies 

corresponding to intermediate values of the selfishness coefficient. Thus, this result is 

somewhat in the spirit of global comparative statics. 

4.3 Global comparative statics in symmetric two-player games 
Global comparative statics differ from local comparative statics in that the comparison is not 

limited to continuous changes in the selfishness coefficient and the corresponding 

strategies. In particular, the topology on the strategy space is irrelevant. This makes the 

analysis applicable also to games with discrete strategy spaces, which is not the case for 

local comparative statics (see Section ‎3). The essence of global comparative statics is 

captured by the following. 

Definition 2. Selfishness decreases social welfare in a symmetric two-player game 𝑔 if, for 

every 𝑠 and 𝑡 with 0 ≤ 𝑠 ≤ 𝑡 and equilibrium strategies 𝑥𝑠 and 𝑥𝑡  in 𝑔𝑠 and 𝑔𝑡 , respectively,  

𝑥𝑠 ≠ 𝑥𝑡  implies 𝑔 𝑥𝑡 , 𝑥𝑡 < 𝑔 𝑥𝑠 , 𝑥𝑠 . 

Selfishness weakly decreases social welfare in 𝑔 if it satisfies the weaker condition in which 

(23) is replaced by 

(23) 
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𝑠 ≠ 𝑡 implies 𝑔 𝑥𝑡 , 𝑥𝑡 ≤ 𝑔 𝑥𝑠 , 𝑥𝑠 . 

The first condition in Definition 2 is rather demanding. In particular, it implies (in the special 

case 𝑠 = 𝑡) that for every 𝑠 the modified game 𝑔𝑠 has at most one equilibrium strategy. 

Nevertheless, as the follows theorem shows, that condition is implied by a simple condition 

on the unmodified payoffs, which (predictably) also implies stability. 

Theorem 3. Selfishness decreases social welfare in every symmetric two-player game 𝑔 in 

which, for every pair of distinct strategies 𝑥 and 𝑦,13 

𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑦 − 𝑔 𝑦, 𝑥 + 𝑔 𝑥, 𝑥 < 0. 

Selfishness weakly decreases social welfare in every game satisfying the weaker condition in 

which the strict inequality (24) is replaced by a weak one. The former, stronger, condition or 

the latter, weaker, one implies that, for every 𝑠 ≥ 0, an equilibrium strategy in the modified 

game 𝑔𝑠 is necessarily stable or weakly stable, respectively.   

Proof. Suppose that 𝑥 and 𝑦 are equilibrium strategies in the modified games 𝑔𝑠 and 𝑔𝑡 , 

respectively, and 0 ≤ 𝑠 ≤ 𝑡. Then, 𝑔𝑠 𝑦, 𝑥 − 𝑔𝑠 𝑥, 𝑥 ≤ 0 ≤ 𝑔𝑡 𝑦, 𝑦 − 𝑔𝑡 𝑥, 𝑦 . If (24) 

holds, then 𝑠 + 𝑡 > 0, since (by the previous inequalities) 𝑠 = 𝑡 = 0 would imply that 

 𝑔0 𝑦, 𝑦 − 𝑔0 𝑥, 𝑦  −  𝑔0 𝑦, 𝑥 − 𝑔0 𝑥, 𝑥  ≥ 0, which by (60) contradicts (24). 

Therefore, if (24) holds, the right-hand side of (63) is negative, which implies that 𝑔 𝑦, 𝑦 <

𝑔 𝑥, 𝑥 . Similarly, if the weak-inequality version of (24) holds and 𝑠 < 𝑡, then the right-hand 

side of (63) is nonpositive, and therefore 𝑔 𝑦, 𝑦 ≤ 𝑔 𝑥, 𝑥 .  

Suppose now only that 𝑥 is an equilibrium strategy in the modified game 𝑔𝑠. A sufficient 

condition for 𝑥 to be stable or weakly stable is that the left-hand side of the identity (61) is 

negative or nonpositive, respectively, for all 𝑦 ≠ 𝑥. By that identity, a sufficient condition for 

this is that (24) or a similar weak inequality, respectively, holds for all 𝑦 ≠ 𝑥. ∎ 

Inequality (24), which can also be written as 

𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑦 < 𝑔 𝑦, 𝑥 − 𝑔 𝑥, 𝑥 , 

may be interpreted as expressing “symmetric substitutability” (Bergstrom, 1995): the 

profitability of switching from any strategy 𝑥 to another strategy 𝑦 is lower if the opponent 

uses 𝑦 than if he uses 𝑥. By the theorem, this condition or its weak-inequality version implies 

that selfishness decreases or weakly decreases social welfare, respectively.  

An alternative interpretation of (24) is that coordination decreases the players’ payoffs. This 

interpretation is based on the fact that the left-hand side of (24) is equal to four times the 

difference between (i) each player’s expected payoff if the two players jointly randomize 50–

50 between 𝑥 and 𝑦, and so always choose the same strategy, and (ii) their expected payoff 

if they independently randomize 50–50 between 𝑥 and 𝑦. More generally, suppose that for 

some finite list of distinct strategies, 𝑥1 , 𝑥2 , … , 𝑥𝑛 , both players use each strategy 𝑥𝑖  with the 

                                                           
13

 Note the differences in signs between the left-hand sides of (24) and (6). 

(24) 

(25) 
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same (marginal) probability 𝑝𝑖 > 0 (with  𝑝𝑖𝑖 = 1). Then, the difference between each 

player’s expected payoff if the strategy choices of the two players are perfectly correlated 

and the expected payoff if their choices are independent is given by  𝑝𝑖𝑝𝑗  𝑔 𝑥𝑖 , 𝑥𝑖 −𝑖<𝑗

𝑔 𝑥𝑗 , 𝑥𝑖 − 𝑔 𝑥𝑖 , 𝑥𝑗  + 𝑔 𝑥𝑗 , 𝑥𝑗   . A sufficient condition for this to be negative or nonpositive 

is that the same is true for the expression on the left-hand side of (24) whenever 𝑥 ≠ 𝑦. 

Thus, Theorem 3 may be interpreted as saying that selfishness decreases or weakly 

decreases social welfare in every symmetric two-player game 𝑔 in which coordination 

decreases or weakly decreases payoffs, respectively. 

The symmetric substitutability condition (25) clearly holds, and selfishness therefore 

decreases social welfare, in every symmetric two-player game 𝑔 with a unidimensional 

strategy space that is strictly submodular, i.e., satisfies 

𝑔 𝑦, 𝑦′ − 𝑔 𝑥, 𝑦′ < 𝑔 𝑦, 𝑥′ − 𝑔 𝑥, 𝑥′  

whenever 𝑦 > 𝑥 and 𝑦′ > 𝑥′ . Selfishness weakly decreases social welfare if g is submodular, 

i.e., a similar condition holds with the strict inequality (26) replaced by a weak one. If the 

strategy space is an open interval (either finite or infinite) and 𝑔 has continuous second-

order partial derivatives, submodularity is equivalent to 𝑔12 ≤ 0 (everywhere), and a 

sufficient condition for strict submodularity is 𝑔12 < 0 (everywhere). The latter condition 

implies that (9) holds for every equilibrium strategy 𝑥, which is therefore necessarily stable. 

In fact, as Theorem 3 shows, if 𝑔 is strictly submodular or submodular, respectively, then 

stability or weak stability of the equilibrium strategies holds not only in 𝑔 but also in the 

modified game 𝑔𝑠, for all 𝑠 ≥ 0.  

In the special case of a symmetric Cournot duopoly game, a simpler and somewhat weaker 

condition than strict submodularity is sufficient to guarantee that selfishness decreases 

social welfare. In such a game, the profit 𝑔 𝑥, 𝑦  of a producer with output level 𝑥 

competing against an identical producer with output level 𝑦 is 𝑃 𝑥 + 𝑦 𝑥 − 𝐶 𝑥 , where 𝑃 is 

the price (or inverse demand) function and 𝐶 is the cost function. Therefore, (24) can be 

written as 

1

2
 𝑃 2𝑥 ⋅ 2𝑥 + 𝑃 2𝑦 ⋅ 2𝑦 < 𝑃 𝑥 + 𝑦  𝑥 + 𝑦 . 

(Note that this inequality does not involve 𝐶. This is because the price is a function of the 

firm’s own production level only.) A sufficient (and, if 𝑃 is continuous, also necessary) 

condition for (27) to hold for every pair of distinct 𝑥 and 𝑦 in the (finite or infinite) interval of 

possible output levels is that the total revenue is a strictly concave function of the total 

output. Similarly, if the total revenue is concave, a weak inequality similar to (27) always 

holds. By Theorem 3, this weak inequality implies that increasing comparative statics 

(exemplified by the lower curve in Figure 1b) cannot occur, so that moving from duopoly 

towards (not necessarily all the way to) effective monopoly cannot hurt the firms’ profits. 

This proves the following.  

(26) 

(27) 
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Corollary 4. In a symmetric Cournot duopoly game, each of the following two conditions, the 

latter being weaker than the former, implies that selfishness decreases the firms’ 

equilibrium profit: 

(i) A firm’s profit is given by a strictly submodular function of the two firms’ output 

levels. 

(ii) The total revenue is a strictly concave function of the total output. 

Dropping “strictly”, each of the two conditions implies that selfishness weakly decreases 

welfare.  

It is instructive to compare Corollary 4 with the results of Koçkesen et al. (2000). These 

authors show that, in a symmetric Cournot duopoly game that is strictly submodular, a firm 

with negatively interdependent preferences obtains a strictly higher profit than does a 

competitor with independent preferences in any equilibrium. The difference between the 

two firms’ preferences is that the latter is only concerned with its own profit while the 

former also seeks a high ratio 𝜌 between its own and the average profit. Complete 

selfishness, 𝑠 = 1, corresponds to independent preferences, whereas weak spite, i.e., 𝑠 

greater than 1 but close to it, gives negatively interdependent preferences if the ratio 

between the profits 𝜌 is not too small. Thus, with a strictly submodular profit, if only one 

firm is spiteful, it is likely to do better than its competitor. However, as Corollary 4 shows, if 

both firms have such preferences, they do not have higher profits than two firms with 

independent preferences.  

Another class of symmetric two-player games for which Theorem 3 can be given a more 

concrete form is symmetric 𝑛 × 𝑛 games.  

Proposition 6. For a symmetric 𝑛 × 𝑛 game 𝑔, consider the quadratic form 𝐺: ℜ𝑛−1 → ℜ 

defined by 

 𝐺 𝜁1 , 𝜁2 , … , 𝜁𝑛−1 =   𝑔 𝑖, 𝑗 − 𝑔 𝑛, 𝑗 − 𝑔 𝑖, 𝑛 + 𝑔 𝑛, 𝑛  𝜁𝑖𝜁𝑗

𝑛−1

𝑖,𝑗=1

.  

If 𝐺 is negative definite, then selfishness decreases welfare in 𝑔, and for every 𝑠 ≥ 0, the 

modified game 𝑔𝑠 has a unique equilibrium strategy, which is stable. If 𝐺 is negative 

semidefinite, then selfishness weakly decreases welfare in 𝑔, and for every 𝑠 ≥ 0, every 

equilibrium strategy in 𝑔𝑠 is weakly stable. If 𝐺 is positive definite, then for every 𝑠 ≥ 0, 

every completely mixed equilibrium strategy in 𝑔𝑠 is definitely unstable.  

Proof. Consider two distinct (mixed) strategies 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  and 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑛 . 

The expression on the left-hand side of (24) is equal to  𝑔 𝑖, 𝑗 𝜁𝑖𝜁𝑗
𝑛
𝑖,𝑗 =1 , where 𝜁𝑖 = 𝑦𝑖 − 𝑥𝑖 . 

Since  𝜁𝑖
𝑛
𝑖=1 = 0, this sum is equal to that in (28). Therefore, the assertions concerning 

negative definiteness and semidefiniteness follow from Theorem 3 and the fact that in a 

symmetric 𝑛 × 𝑛 game an equilibrium strategy always exists. If 𝐺 is positive definite, then 

the reverse of inequality (24) holds, and therefore, by (60), 

(28) 
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𝑔𝑠 𝑦, 𝑦 − 𝑔𝑠 𝑥, 𝑦 − 𝑔𝑠 𝑦, 𝑥 + 𝑔𝑠 𝑥, 𝑥 > 0 

for every 𝑠 ≥ 0. If in addition the strategy 𝑥 is a completely mixed equilibrium strategy 

in 𝑔𝑠, then 𝑔𝑠 𝑦, 𝑥 = 𝑔𝑠 𝑥, 𝑥 , and the expression on the left-hand side of (29) is hence 

equal to 𝑔𝑠 𝑦, 𝑦 − 𝑔𝑠 𝑥, 𝑦 + 𝑔𝑠 𝑦, 𝑥 − 𝑔𝑠 𝑥, 𝑥 , which proves that 𝑥 is definitely 

unstable. ∎ 

The quadratic form 𝐺 defined in (28) is particularly simple if 𝑛 = 2. In this case, 𝐺 is negative 

definite, negative semidefinite or positive definite if and only if the expression 𝑔 1,1 −

𝑔 2,1 − 𝑔 1,2 + 𝑔 2,2  is negative, nonpositive or positive, respectively. This expression 

is the difference between the sum of the two diagonal entries of the payoff matrix and the 

sum of the two off-diagonal entries. A negative or positive difference expresses strategic 

substitutability or complementarity, respectively (Bulow et al., 1985). This means that the 

profitability of switching from any of the two pure strategies 𝑖 to the other strategy 𝑗 

decreases or increases, respectively, as the probability that the other player uses 𝑗 increases 

(cf. (25)). Two kinds of symmetric 2 × 2 games that always exhibit strategic substitutability 

are the battle-of-the-sexes game, in its symmetric form 

 
0 1
2 0

 , 

and Chicken (or hawk–dove game). It follows, by Proposition 6, that in these games the 

equilibrium payoff can only decrease or remain unchanged with increasing 𝑠. By contrast, in 

games with strategic complementarity, if the equilibria are completely mixed, the 

equilibrium payoff can only increase or remain unchanged with increasing 𝑠. In the 

prisoner’s dilemma, both strategic substitutability and complementarity are possible. This is 

shown by the next example. 

Example 3. Public good game. Two people are presented with the offer to contribute $5 for 

the production of some public good. The production function is such that, if the total sum 

raised it $0, $5 or $10, respectively, 0, 4 or 7 units of the public good are produced. The 

worth of a unit of public good is $1 for each person. For a completely unselfish person 

(𝑠 = 0), it is clearly a dominant strategy to Contribute the money. For a selfish (𝑠 = 1) or 

spiteful (𝑠 > 1) person, the dominant strategy is to Decline the offer. For intermediate 

values of 𝑠, which are not too close to 0 or 1, the unique symmetric equilibrium is 

completely mixed, and the probability of making the contribution, as well as the equilibrium 

payoff (Figure 3b, solid black curve), decrease with increasing 𝑠. However, if $5 only allows 3 

units of the public good to be produced, selfishness in the same range has the opposite 

effect on the probability of contributing and on the equilibrium payoff (Figure 3b, dashed 

curve). The second case differs from the first in that the production function is convex rather 

than concave. Correspondingly, the game has strategic complementarity rather than 

substitutability, and the completely mixed equilibrium strategy is definitely unstable rather 

than stable. In the borderline case of a linear production function, $5 allows 3½ units of the 

public good to be produced, implying that the quadratic form 𝐺 is identically zero. In this 

case, selfishness weakly increases social welfare (Figure 3b, gray curve). 

(29) 

(30) 
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Figure 3. The three kinds of prisoner’s dilemma in Example 3. a. The payoff matrix. The parameter 𝜹 is 𝟎, 𝟏/𝟐, 
or 𝟏. b. The equilibrium payoff(s). The dependence on the selfishness coefficient 𝒔 is different for 𝜹 = 𝟎 (solid 
black curve), 𝜹 = 𝟏/𝟐 (gray curve) and 𝜹 = 𝟏 (dashed curve). The non-horizontal portions of the three curves 
correspond to completely mixed equilibrium strategies, which are stable, weakly stable or definitely unstable, 
respectively. 

5 Asymmetric Two-player Games 
Asymmetric equilibria of symmetric two-player games can be equally important or more so 

than the symmetric equilibria. For example, this is so for symmetric 2 × 2 mis-coordination 

games such as (30), in which the asymmetric equilibrium payoffs Pareto dominate the 

symmetric ones. An asymmetric equilibrium requires some asymmetry between the players: 

a cue that will tell each of them which strategy to choose. This is inessential (or 

uncorrelated) asymmetry in that it does not directly affect the payoffs. Nevertheless, as 

argued in Milchtaich (2008), it is highly consequential for stability analysis, since it enables 

the players to deviate from the equilibrium in a coordinated manner. Inessentially 

asymmetric games are more similar to “truly” asymmetric games than to symmetric ones. In 

particular, the comparative statics of asymmetric equilibria in symmetric games is best 

viewed as a special case of comparative statics of asymmetric games. These comparative 

statics, like those of symmetric equilibria in symmetric games, turn out to be related to 

(static) stability. However, in the asymmetric context, stability is a property of strategy 

profiles rather than strategies.  

Definition 3. (Milchtaich, 2008) A strategy profile  𝑥1 , 𝑥2  in an asymmetric two-player 

game 𝑕 =  𝑕1 , 𝑕2 : 𝑋1 × 𝑋2 → ℜ2, where the players’ strategy spaces 𝑋1 and 𝑋2 are 

topological spaces, is stable, weakly stable or definitely unstable if it has a neighborhood in 

the product space 𝑋1 × 𝑋2 where the inequality  

1

2
 𝑕1 𝑦1 , 𝑥2 − 𝑕1 𝑥1, 𝑥2 + 𝑕1 𝑦1 , 𝑦2 − 𝑕1 𝑥1, 𝑦2  

+
1

2
 𝑕2 𝑥1, 𝑦2 − 𝑕2 𝑥1 , 𝑥2 + 𝑕2 𝑦1 , 𝑦2 − 𝑕2 𝑦1, 𝑥2  < 0 

a similar weak inequality or the reverse (strict) inequality, respectively, holds for all strategy 

profiles  𝑦1 , 𝑦2 ≠  𝑥1 , 𝑥2 . 
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Conceptually, this definition of stability, weak stability and definite instability is based on 

Definition 1. In fact, it is precisely the condition that  𝑥1 , 𝑥2  has the same property as a 

strategy in the symmetric game 𝑔 obtained by symmetrizing 𝑕. Symmetrization means that 

each player can be assigned either to the role of player 1 in 𝑕 or to that of player 2, with 

equal probabilities, and in both cases the opponent is assigned to the other role.14 A strategy 

in 𝑔 is thus a strategy profile 𝑥 =  𝑥1 , 𝑥2  in 𝑕. It is easy to show (see Milchtaich, 2008, 

Proposition 4) that 𝑥 is an equilibrium in 𝑕 if and only if it is an equilibrium strategy in 𝑔, and 

in this case, the equilibrium payoff in 𝑔 is equal to the players’ average equilibrium payoff in 

𝑕, which is given by 

𝑕  𝑥1 , 𝑥2 =
1

2
𝑕1 𝑥1 , 𝑥2 +

1

2
𝑕2 𝑥1 , 𝑥2 . 

Thus, stability in an asymmetric game 𝑕 can be characterized in terms of stability in an 

auxiliary symmetric game. The implication of this is that a local comparative statics result for 

asymmetric games can be derived by substituting that auxiliary game for 𝑔 in Theorem 1. 

Such a substitution gives the following theorem, which is proved (for an arbitrary number of 

players) in Section ‎6.  

Theorem 4. For an asymmetric two-player game 𝑕 =  𝑕1 , 𝑕2 : 𝑋1 × 𝑋2 → ℜ2, and 𝑠0 and 𝑠1 

with 0 ≤ 𝑠0 < 𝑠1, suppose that 𝑕 is Borel measureable and there is a continuous and locally 

one-to-one function that assigns to each 𝑠0 ≤ 𝑠 ≤ 𝑠1 a stable strategy profile 𝑥𝑠 = (𝑥𝑠
1 , 𝑥𝑠

2) 

in the modified game 𝑕𝑠 = (𝑕𝑠
1 , 𝑕𝑠

2),15 such that the function 𝑓:  𝑠0, 𝑠1 → ℜ defined by 

𝑓 𝑠 = 𝑕  𝑥𝑠
1 , 𝑥𝑠

2  

is absolutely continuous. Then 𝑓 is strictly decreasing. A similar result holds with ‘stable’ and 

‘strictly increasing’ replaced by ‘weakly stable’ and ‘nondecreasing’, respectively, or by 

‘definitely unstable’ and ‘strictly increasing’, respectively.  

Theorem 4 is less widely applicable than Theorem 1. This is because stability is in a sense a 

more stringent requirement for asymmetric games than for symmetric ones. For example, in 

a bimatrix game, a strategy profile is stable if and only if it is a strict equilibrium (Selten, 

1980; Milchtaich, 2008, Proposition 5). Since strict equilibria are pure, a function as in 

Theorem 4 does not exist. 

One class of two-player games to which Theorem 4 is applicable is games in the plane, in 

which the two players’ strategy spaces are intervals or some other subsets of the real line. 

The differential conditions for stability or definite instability is such games are given by the 

following proposition.  

Proposition 7. (Milchtaich, 2008) Let 𝑕 =  𝑕1 , 𝑕2 : 𝑋1 × 𝑋2 → ℜ2 be an asymmetric two-

player game in which the players’ strategy spaces are subsets of the real line, and (𝑥1 , 𝑥2) 

an equilibrium lying at the interior of 𝑋1 × 𝑋2 with a neighborhood where 𝑕1 and 𝑕2 have 

                                                           
14

 For a formal definition of symmetrization, see Section ‎6 or Milchtaich (2008). 

15
 The function 𝑕𝑠

𝑖 : 𝑋1 × 𝑋2 → ℜ, which gives player 𝑖’s modified payoff (𝑖 = 1,2), is defined in (3).  

(31) 



23 

continuous second-order derivatives. A sufficient condition for stability or definite instability 

of the equilibrium is that the matrix 

𝐻 =  
𝑕11

1 𝑕12
1

𝑕21
2 𝑕22

2  , 

with the derivatives evaluated at (𝑥1 , 𝑥2), is negative definite or positive definite, 

respectively. A necessary condition for weak stability is that the matrix is negative 

semidefinite.  

Proposition 7 and Theorem 4 together point to a connection between local comparative 

statics and properties of the matrix  

𝐻𝑠 =  
 𝑕s

1 11  𝑕s
1 12

 𝑕s
2 21  𝑕s

2 22  
 , 

which is obtained by replacing 𝑕 in (32) with the modified game 𝑕𝑠. A direct, quantitative 

connection between this matrix and comparative statics is given by the following 

proposition. 

Proposition 8. For an asymmetric two-player game 𝑕 =  𝑕1 , 𝑕2 : 𝑋1 × 𝑋2 → ℜ2, with 

strategy spaces 𝑋1 and 𝑋2 that are subsets of the real line, and 𝑠0 and s1 with 𝑠0 < 𝑠1, 

suppose that there is a continuously differentiable function that assigns to each 𝑠0 < 𝑠 < 𝑠1 

a strategy profile 𝑥𝑠 = (𝑥𝑠
1 , 𝑥𝑠

2) that is an equilibrium in the modified game 𝑕𝑠, lies in the 

interior of 𝑋1 × 𝑋2, and has a neighborhood where 𝑕1 and 𝑕2 have continuous second-

order partial derivatives. Then, at each point 𝑠0 < 𝑠 < 𝑠1, 

 
𝑑𝑓

𝑑𝑠
= 𝑠  

𝑑𝑥𝑠

𝑑𝑠
 

T

𝐻𝑠  
𝑑𝑥𝑠

𝑑𝑠
 , 

where 𝑓 is defined in (31) and the matrix 𝐻𝑠 is evaluated at 𝑥𝑠.  

Proof. Since 𝑥𝑠 is an equilibrium strategy in 𝑕𝑠 for every 𝑠0 < 𝑠 < 𝑠1, it satisfies the first-

order conditions  

 𝑕s
𝑖  𝑖 𝑥𝑠

1 , 𝑥𝑠
2 = 0, 𝑖 = 1,2. 

By the identity 

 𝑕s
𝑖  𝑖 = 𝑠𝑕𝑖

𝑖 +  1 − 𝑠 𝑕 𝑖 , 𝑖 = 1,2, 

which follows from (3), differentiation of both sides of (35) with respect to 𝑠 gives 

 𝑕𝑖
𝑖 𝑥𝑠

1 , 𝑥𝑠
2 − 𝑕 𝑖 𝑥𝑠

1 , 𝑥𝑠
2  +   𝑕s

𝑖  𝑖𝑗  𝑥𝑠
1 , 𝑥𝑠

2 
𝑑𝑥𝑠

𝑗

𝑑𝑠

2

𝑗 =1

= 0, 𝑖 = 1,2. 

By (35) and (36),  

−𝑠  𝑕𝑖
𝑖 𝑥𝑠

1 , 𝑥𝑠
2 − 𝑕 𝑖 𝑥𝑠

1 , 𝑥𝑠
2  = 𝑕 𝑖 𝑥𝑠

1 , 𝑥𝑠
2 , 𝑖 = 1,2. 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 
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Therefore, by (31) and (37),  

𝑑𝑓

𝑑𝑠
=  𝑕 𝑖

2

𝑖=1

 𝑥𝑠
1 , 𝑥𝑠

2 
𝑑𝑥𝑠

𝑖

𝑑𝑠
= 𝑠   𝑕s

𝑖  𝑖𝑗

2

𝑖,𝑗 =1

 𝑥𝑠
1 , 𝑥𝑠

2 
𝑑𝑥𝑠

𝑖

𝑑𝑠

𝑑𝑥𝑠
𝑗

𝑑𝑠
. 

           ∎ 

Global comparative statics are less relevant to asymmetric two-player games than for 

symmetric ones (Section ‎4.3). Definition 2 readily extends to asymmetric games. However, 

conditions analogous to those in Theorem 3 do not hold for most asymmetric games. The 

only exception is games in which an expression analogous to that on the left-hand side of 

(24) is identically zero, i.e.,  

𝑕𝑖 𝑦1 , 𝑦2 − 𝑕𝑖 𝑥1 , 𝑦2 − 𝑕𝑖 𝑦1 , 𝑥2 + 𝑕𝑖 𝑥1 , 𝑥2 = 0,  for all 𝑥1 , 𝑥2 , 𝑦1 , 𝑦2 and 𝑖 = 1,2. 

Games satisfying this condition are non-strategic in that the change in the payoff of a player 

switching strategies (from 𝑥1 to 𝑦1 in the case of player 1 or from 𝑥2 to 𝑦2 in the case of 

player 2) is independent of the opponent’s strategy. It is not difficult to see that condition 

(39) holds if and only if, for all 𝑠 ≥ 0, a similar condition holds with 𝑕 replaced by the 

modified game 𝑕𝑠. In this case, in any modified game, any equilibrium is weakly stable. The 

following proposition extends the analogy with Theorem 3 by showing that, in games as 

above, selfishness weakly decreases social welfare. 

Proposition 9. Let 𝑕 =  𝑕1 , 𝑕2 : 𝑋1 × 𝑋2 → ℜ2 be an asymmetric two-player game satisfying 

(39). For every 𝑠 and 𝑡 with 0 ≤ 𝑠 < 𝑡, and equilibria 𝑥𝑠 =  𝑥𝑠
1 , 𝑥𝑠

2  and 𝑥𝑡 =  𝑥𝑠
1 , 𝑥𝑠

2  in 𝑕𝑠 

and 𝑕𝑡 , respectively,  

𝑕  𝑥𝑡
1 , 𝑥𝑡

2 ≤ 𝑕  𝑥𝑠
1, 𝑥𝑠

2 . 

Proof. It follows immediately from equality (39) that a similar equality holds with 𝑕𝑖  replaced 

by 𝑕 . Therefore, for equilibria 𝑥𝑠 and 𝑥𝑡  as above, the right-hand side of (65) is nonpositive 

for (𝑥1 , 𝑥2) = 𝑥𝑠 and (𝑦1 , 𝑦2) = 𝑥𝑡 . This proves (40). ∎  

A simple example illustrating the last result is non-strategic altruism, which is of 

considerable importance to the theory of kin selection (for references, see Milchtaich, 

2006a). An altruistic act confers a benefit 𝑏 on the recipient at a cost 𝑐 to the actor, with 

𝑏 > 𝑐 > 0. Therefore, it changes the actor’s modified payoff by −𝑠𝑐 + (1 − 𝑠)(𝑏 − 𝑐)/2. If 

the selfishness coefficient 𝑠 is low enough to make this change positive, acting altruistically 

maximizes the actor’s payoff in the modified game. This implies that lowering the selfishness 

coefficient can only increase social welfare or leave it unchanged.  

If the interaction described above is symmetric in that both individuals have an equal chance 

to be in the position of a potential actor or receiver, an increase in social welfare actually 

benefits them both. Such a symmetric interaction is still non-strategic, since each player’s 

payoff is additively separable. Specifically, the payoff is the sum of a nonpositive term (cost) 

that is 0 or −𝑐, depending on the individual’s own decision of whether to act altruistically, 

and a nonnegative term (benefit) that is 0 or 𝑏, depending on the other individual’s decision. 

(39) 

(40) 
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There is no interaction term. The third case in Example 3 (i.e., linear production function) is 

an example of such symmetric non-strategic altruism. 

6 Multiplayer Games 
The connection between comparative statics and stability holds not only for two-player 

games but for any number of players 𝑛. However, establishing this connection requires using 

the proper notion of stability. As for two-player games, the first step is to define stability of 

strategies in symmetric games 𝑔: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ, where the strategy space 𝑋 

(common to all 𝑛 players) is a topological space. The difficulty here is that there are several 

non-equivalent reasonable extensions of Definition 1 to multiplayer games, which differ in 

the assumptions they make about the correlations (or lack thereof) between the strategies 

used by a player’s opponents (Milchtaich, 2008). In the two-player case, there is only one 

opponent, so that the question of correlations does not arise and the only assumption is that 

the opponent uses each of the two strategies 𝑥 and 𝑦 under consideration with probability 

1/2. Consistency requires that the definition in the multiplayer case assume the same for 

each single opponent. This assumption implies that, regardless of correlation, the expected 

number of opponents using 𝑥 is equal to that using 𝑦. Equivalently,  

  𝑗 − 1 𝑝𝑗 =
𝑛 − 1

2

𝑛

𝑗 =1

, 

where, for 1 ≤ 𝑗 ≤ 𝑛, 𝑝𝑗  is the probability that 𝑛 − 𝑗 of the opponents use 𝑥 and 𝑗 − 1 use 𝑦 

(and  𝑝𝑗
𝑛
𝑗=1 = 1). These considerations lead to the following. 

Definition 4. (Milchtaich, 2008) For a probability vector 𝑝 = (𝑝1 , 𝑝2 , … , 𝑝𝑛), a strategy 𝑥 in a 

symmetric 𝑛-player game 𝑔: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ is 𝑝-stable, weakly 𝑝-stable or definitely 

𝑝-unstable, respectively, if it has a neighborhood where  

 𝑝𝑗  𝑔(𝑦, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

) − 𝑔(𝑥, 𝑥, … , 𝑥   ,
𝑛−𝑗 times

𝑦, … , 𝑦   
𝑗−1 times

) 

𝑛

𝑗 =1

< 0, 

a similar weak inequality or the reverse (strict) inequality holds for all strategies 𝑦 ≠ 𝑥. 

Strategy 𝑥 is stable, weakly stable or definitely unstable if the corresponding condition holds 

for every probability vector 𝑝 satisfying (41). 

Special cases of 𝑝-stability are dependent-stability, defined by  

𝑝𝑗 =  

1

2
, 𝑗 = 1, 𝑛             

0, 𝑗 = 2, … , 𝑛 − 1

 , 

independent-stability, defined by 

𝑝𝑗 =
1

2𝑛−1
 
𝑛−1

𝑗−1
 , 𝑗 = 1,2, … , 𝑛, 

and uniform-stability, defined by 

(41) 

(42) 

(43) 

(44) 
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𝑝𝑗 =
1

𝑛
, 𝑗 = 1,2, … , 𝑛. 

In each case, the corresponding notions of weak stability and definite instability are similarly 

defined. The probability vector (43) describes the distribution of the number of opponents 

using strategy 𝑥 (and the number using the alternative strategy 𝑦) if either all of them use 𝑥 

or they all use 𝑦, and both possibilities have probability 1/2. The probability vector (44) 

corresponds to independent randomizations by the opponents between 𝑥 and 𝑦 with half-

half probabilities. That in (45) assigns to the number of opponents using strategy 𝑥 the 

uniform distribution, i.e., all numbers are equally likely. Note that, in all three cases, (42) can 

be simplified to  

 𝑝𝑗  𝑔(𝑦, … , 𝑦   ,
𝑗  times

𝑥, … , 𝑥) − 𝑔(𝑥, … , 𝑥   ,
𝑗  times

𝑦, … , 𝑦) 

𝑛

𝑗 =1

< 0. 

The next step is to define stability of strategy profiles in asymmetric multiplayer games 

𝑕 =  𝑕1 , 𝑕2 , … , 𝑕𝑛 : 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → ℜ𝑛 , where the strategy space 𝑋𝑖  of each player 𝑖 

is a topological space. As in the two-player case (Section ‎5), a natural way to do this is to use 

the familiar procedure of symmetrization. An asymmetric game 𝑕 is symmetrized by 

allowing the players to take turns playing the different roles in 𝑕, which entails that each 

player 𝑖 has to choose a strategy profile 𝑥𝑖 =  𝑥𝑖
1 , 𝑥𝑖

2 , … , 𝑥𝑖
𝑛  in 𝑕. An assignment of the 𝑛 

players to the 𝑛 roles in 𝑕 is described by a permutation 𝜋 of (1,2, … , 𝑛): player 𝑖 is assigned 

to role 𝜋(𝑖), or equivalently, the player assigned to the role 𝑗 is 𝜋−1 𝑗 . Symmetrization 

involves averaging a player’s payoff as 𝜋 varies over the set Π of all 𝑛! permutations. 

Definition 5. (Milchtaich, 2008) The game obtained by symmetrizing an asymmetric 𝑛-player 

game 𝑕 =  𝑕1 , 𝑕2 , … , 𝑕𝑛 : 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → ℜ𝑛  is the symmetric 𝑛-player game 

𝑔: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ where the strategy space 𝑋 is the product space 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛  

and 

𝑔 𝑥1 , 𝑥2 , … , 𝑥𝑛 =
1

𝑛!
 𝑕𝜋 1  𝑥𝜋−1 1 

1 , 𝑥𝜋−1 2 
2 , … , 𝑥𝜋−1 𝑛 

𝑛  

𝜋∈Π

 

for all 𝑥1 =  𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑛 , 𝑥2 =  𝑥2

1 , 𝑥2
2 , … , 𝑥2

𝑛 , … , 𝑥𝑛 =  𝑥𝑛
1 , 𝑥𝑛

2 , … , 𝑥𝑛
𝑛 ∈ 𝑋. A strategy 

profile 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  in 𝑕 is stable, weakly stable or definitely unstable if it has the 

same property as a strategy in 𝑔. Similar definitions apply to 𝑝-stability, dependent-stability, 

independent-stability, uniform-stability and the other related notions of stability and 

instability. 

A strategy profile 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑛) in an asymmetric 𝑛-player game 𝑕 is an equilibrium if 

and only if it is a (symmetric) equilibrium strategy in the symmetric game 𝑔 obtained by 

symmetrizing 𝑕 (Milchtaich, 2008, Proposition 9). In this case, the equilibrium payoff in 𝑔 is 

equal to the players’ average equilibrium payoff in 𝑕. In fact, it follows as a special case from 

(47) that for any strategy profile 𝑥, 

𝑔 𝑥, 𝑥, … , 𝑥 = 𝑕  𝑥 . 

(45) 

(46) 

(47) 

(48) 
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This equality and the following proposition together entail that symmetrization in a sense 

preserves comparative statics. The proposition says that the operations of symmetrization 

and modification commute. 

Proposition 10. Let 𝑕 =  𝑕1 , 𝑕2 , … , 𝑕𝑛 : 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → ℜ𝑛  be an asymmetric 

𝑛-player game, and 𝑔 the game obtained by symmetrizing 𝑕. For given 𝑠, let 𝑕𝑠 be the 

corresponding modified game. Then the game obtained by symmetrizing 𝑕𝑠 coincides with 

the modified game 𝑔𝑠, which is defined in (12) (with 𝑔  denoting the average payoff). 

Proof. For strategies 𝑥1 =  𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑛 , 𝑥2 =  𝑥2

1 , 𝑥2
2 , … , 𝑥2

𝑛 , … , 𝑥𝑛 =  𝑥𝑛
1 , 𝑥𝑛

2 , … , 𝑥𝑛
𝑛 ∈

𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛  in 𝑔, the players’ average payoff can be computed by averaging the 

payoff of a single player over all strategy profiles with these strategies. Thus, 

𝑔  𝑥1 , 𝑥2 , … , 𝑥𝑛 =
1

𝑛!
 𝑔 𝑥𝜍 1 , 𝑥𝜍 2 , … , 𝑥𝜍 𝑛  

𝜍∈Π

=
1

𝑛!
 

1

𝑛!
 𝑕𝜋 1  𝑥𝜍 𝜋−1 1  

1 , 𝑥𝜍 𝜋−1 2  
2 , … , 𝑥𝜍 𝜋−1 𝑛  

𝑛  

𝜋∈Π𝜍∈Π

=
1

𝑛!
 

1

𝑛!
 𝑕𝜋 𝜍 1   𝑥𝜋−1 1 

1 , 𝑥𝜋−1 2 
2 , … , 𝑥𝜋−1 𝑛 

𝑛  

𝜋∈Π𝜍∈Π

=
1

𝑛!
 

1

𝑛!
 𝑕𝜋 𝜍 1   𝑥𝜋−1 1 

1 , 𝑥𝜋−1 2 
2 , … , 𝑥𝜋−1 𝑛 

𝑛  

𝜍∈Π𝜋∈Π

=
1

𝑛!
 𝑕  𝑥𝜋−1 1 

1 , 𝑥𝜋−1 2 
2 , … , 𝑥𝜋−1 𝑛 

𝑛  

𝜋∈Π

. 

The second equality uses the definition of symmetrization, and the third one is obtained by 

replacing 𝜋 in the summand by the composed permutation 𝜋 ∘ 𝜍. (This replacement leaves 

the inner sum unchanged, since as 𝜋 varies over all permutations, so does 𝜋 ∘ 𝜍.) 

Substituting the above expression for 𝑔  in (12) gives 

𝑔𝑠 𝑥1 , 𝑥2 , … , 𝑥𝑛 = 𝑠𝑔 𝑥1 , 𝑥2 , … , 𝑥𝑛 +  1 − 𝑠 𝑔  𝑥1 , 𝑥2 , … , 𝑥𝑛 

=
1

𝑛!
 𝑠𝑕𝜋 1  𝑥𝜋−1 1 

1 , 𝑥𝜋−1 2 
2 , … , 𝑥𝜋−1 𝑛 

𝑛  

𝜋∈Π

+ (1 − 𝑠)𝑕  𝑥𝜋−1 1 
1 , 𝑥𝜋−1 2 

2 , … , 𝑥𝜋−1 𝑛 
𝑛  =

1

𝑛!
 𝑕𝑠

𝜋 1  𝑥𝜋−1 1 
1 , 𝑥𝜋−1 2 

2 , … , 𝑥𝜋−1 𝑛 
𝑛  

𝜋∈Π

, 

which proves the proposition’s assertion. ∎ 

Proposition 10 is used in the proof of the following theorem, which is the basic local 

comparative statics result for multiplayer games. In the special case 𝑛 = 2, it gives Theorems 

1 and 4. 

Theorem 5. For a symmetric 𝑛-player game 𝑔: 𝑋 × 𝑋 × ⋯ × 𝑋 → ℜ, and 𝑠0 and 𝑠1 

with 0 ≤ 𝑠0 < 𝑠1, suppose that 𝑔 is Borel measureable and there is a continuous and locally 

one-to-one function that assigns to each 𝑠0 ≤ 𝑠 ≤ 𝑠1 a stable strategy 𝑥𝑠 in the modified 

game 𝑔𝑠, such that the function 𝑓:  𝑠0 , 𝑠1 → ℜ defined by 
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𝑓 𝑠 = 𝑔 𝑥𝑠 , 𝑥𝑠 , … , 𝑥𝑠  

is absolutely continuous. Then 𝑓 is strictly decreasing.  

For an asymmetric 𝑛-player game 𝑕 =  𝑕1 , 𝑕2 , … , 𝑕𝑛 : 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 → ℜ𝑛 , and 𝑠0 and 

𝑠1 with 0 ≤ 𝑠0 < 𝑠1, suppose that 𝑕 is Borel measureable and there is a continuous and 

locally one-to-one function that assigns to each 𝑠0 ≤ 𝑠 ≤ 𝑠1 a stable strategy profile 

𝑥𝑠 = (𝑥𝑠
1 , 𝑥𝑠

2 , … , 𝑥𝑠
𝑛) in the modified game 𝑕𝑠, such that the function 𝑓:  𝑠0, 𝑠1 → ℜ defined 

by 

𝑓 𝑠 = 𝑕  𝑥𝑠  

is absolutely continuous. Then 𝑓 is strictly decreasing.  

In both the symmetric and asymmetric cases, a similar result holds with ‘stable’ and ‘strictly 

increasing’ replaced by ‘weakly stable’ and ‘nondecreasing’, respectively, or by ‘definitely 

unstable’ and ‘strictly increasing’, respectively. Moreover, all of the above is true with 

‘stable’, ‘weakly stable’ or ‘definitely unstable’ replaced by ‘uniformly-stable’, ‘weakly 

uniformly-stable’ or ‘definitely uniformly-unstable’, respectively. 

Proof. Let 𝑔, 𝑠0, 𝑠1 and the function 𝑠 ↦ 𝑥𝑠 be as in the first part of the theorem. For 

− 𝑠1 − 𝑠0 /2 < 𝜖 <  𝑠1 − 𝑠0 /2, consider the (Borel) set 𝑈𝜖 ⊆ [𝑠0 , 𝑠1] defined by 

𝑈𝜖

=  𝑠0 +  𝜖 ≤ 𝑠 ≤ 𝑠1 −  𝜖    𝑔𝑠 𝑥𝑠+𝜖 , … , 𝑥𝑠+𝜖         ,
𝑗  times

𝑥𝑠 , … , 𝑥𝑠 − 𝑔𝑠 𝑥𝑠 , … , 𝑥𝑠     ,
𝑗  times

𝑥𝑠+𝜖 , … , 𝑥𝑠+𝜖  

𝑛

𝑗 =1

< 0 . 

For each 𝑠0 < 𝑠 < 𝑠1, 𝑥𝑠  is by assumption a stable, and in particular uniformly-stable, 

strategy in 𝑔𝑠, and 𝑥𝑡 ≠ 𝑥𝑠  for all 𝑡 ≠ 𝑠 in some neighborhood of 𝑠. Therefore, for 𝜖 ≠ 0 

sufficiently close to 0 (including negative 𝜖), 𝑠 ∈ 𝑈𝜖  (cf. (46)). If follows that the Lebesgue 

measure of 𝑈𝜖  tends to 𝑠1 − 𝑠0 as 𝜖 tends to 0. The same is clearly true for the set 𝑈−𝜖 , 

hence also for the set 𝑈−𝜖 − 𝜖 =  𝑠 − 𝜖 𝑠 ∈ 𝑈−𝜖 ⊆ [𝑠0 , 𝑠1] (which has the same measure as 

𝑈−𝜖 , since it is obtained from it by translation), and hence also for the set  

𝑉𝜖 = 𝑈𝜖 ∩  𝑈−𝜖 − 𝜖 . 

Therefore, for (Lebesgue-)almost every 𝑠0 < 𝑠 < 𝑠1, 𝑠 ∈ 𝑉1 𝑘  for infinitely many positive 

integers 𝑘. For each such 𝑘, the strict inequality in (51) holds for 𝜖 = 1/𝑘 (since 𝑠 ∈ 𝑈1 𝑘 ) 

and a similar inequality holds for 𝜖 = −1/𝑘 with 𝑠 replaced by 𝑠 + 1/𝑘 (since 𝑠 + 1/𝑘 ∈

𝑈−1 𝑘 ).  These inequalities imply that 

  

(49) 

(50) 

(51) 
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 𝑠 +
1

𝑘
  

 

 
 

𝑔𝑠 𝑥𝑠+
1
𝑘

, … , 𝑥
𝑠+

1
𝑘         

𝑗  times

, 𝑥𝑠 , … , 𝑥𝑠 − 𝑔𝑠 𝑥𝑠 , … , 𝑥𝑠     
𝑗  times

, 𝑥
𝑠+

1
𝑘

, … , 𝑥
𝑠+

1
𝑘

 

 

 
 

𝑛

𝑗 =1

+ 𝑠  

 

 
 

𝑔
𝑠+

1
𝑘

 𝑥𝑠 , … , 𝑥𝑠     
𝑗  times

, 𝑥
𝑠+

1
𝑘

, … , 𝑥
𝑠+

1
𝑘

 − 𝑔
𝑠+

1
𝑘

 𝑥
𝑠+

1
𝑘

, … , 𝑥
𝑠+

1
𝑘         

𝑗  times

, 𝑥𝑠 , … , 𝑥𝑠 

 

 
 

𝑛

𝑗 =1

< 0. 

It follows from (64), with 𝑡 = 𝑠 + 1/𝑘, 𝑥 = 𝑥𝑠 and 𝑦 = 𝑥𝑡 , that the expression on the left-

hand side of inequality (52) is equal to (1/𝑘)(𝑔 𝑥𝑠+1 𝑘 , … , 𝑥𝑠+1 𝑘  − 𝑔 𝑥𝑠 , … , 𝑥𝑠 ). 

Therefore, that inequality is equivalent to  

𝑓 𝑠 +
1

𝑘
 − 𝑓 𝑠 < 0. 

If (53) holds for infinitely many 𝑘’s and 𝑓 is differentiable at 𝑠, then 𝑓′ 𝑠 ≤ 0. Since 𝑓, being 

an absolutely continuous function, is differentiable almost everywhere in [𝑠0, 𝑠1] and 

satisfies  

𝑓 𝑡 = 𝑓 𝑠0 +  𝑓′ 𝑠 𝑑𝑠
𝑡

𝑠0

, 𝑠0 ≤ 𝑡 ≤ 𝑠1 

(Yeh, 2006, Theorem 13.17), this proves that 𝑓 is nonincreasing. To prove that 𝑓 is in fact 

strictly decreasing it suffices to show that there is no subinterval of (𝑠0, 𝑠1) in which 𝑓 is 

constant. Any point 𝑠 lying in such a subinterval satisfies 𝑓(𝑠 + 1/𝑘) − 𝑓(𝑠) = 0 for all large 

enough 𝑘, which implies that 𝑠 ∈ 𝑉1 𝑘  for at most finitely many positive integers 𝑘. Since it is 

shown above that the latter property does not hold for almost all 𝑠 ∈ (𝑠0, 𝑠1), this proves 

that such a subinterval does not exist. 

If, for each 𝑠0 < 𝑠 < 𝑠1, 𝑥𝑠 is a weakly stable strategy in 𝑔𝑠, then the conclusion that 𝑓 is 

nonincreasing still holds, and the only change required in the above proof is changing the 

strict inequalities in (51), (52) and (53) to weak ones. (Strict inequalities are only required for 

the part showing strict monotonicity.) If each 𝑥𝑠 is definitely unstable, than a proof very 

similar to that above shows that 𝑓 is strictly increasing. The only change required here is 

reversing the strict inequalities in (51), (52) and (53).  

Let 𝑕, 𝑠0, 𝑠1 and the function 𝑠 ↦ 𝑥𝑠 now be as in the second part of the theorem. By 

Definition 5, for each 𝑠0 < 𝑠 < 𝑠1 the strategy profile 𝑥𝑠 is a stable strategy in the symmetric 

game obtained by symmetrizing the modified game 𝑕𝑠. By Proposition 10, that symmetric 

game is the modified game 𝑔𝑠, where 𝑔 is the game obtained by symmetrizing 𝑕. By (48), 

𝑔 𝑥𝑠 , 𝑥𝑠 , … , 𝑥𝑠 = 𝑕  𝑥𝑠 . It therefore follows immediately from the first part of the theorem 

that the last expression is a strictly decreasing function of 𝑠. 

The proofs for the cases of weakly stable or definitely unstable strategies are similar. 

Finally, it remains to note that the assumption that each 𝑥𝑠 is stable, weakly stable or 

definitely unstable is nowhere fully used in the above proof, which only uses the implication 

(52) 

(53) 
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that 𝑥𝑠 is uniformly-stable, weakly uniformly-stable or definitely uniformly-unstable, 

respectively. Hence, to obtain the corresponding result, it suffices to assume that. ∎ 

For 𝑛 = 2, stability and uniform-stability are equivalent, since the only probability vector 𝑝 

satisfying (41) is (45). This is not so for general 𝑛, where stability (and even dependent- or 

independent-stability) can be a more stringent requirement than uniform-stability. For 

example, this is so for certain symmetric four-player 3 × 3 × 3 × 3 games (Milchtaich, 2008, 

Example 2).  

There are, however, classes of games for which stability and uniform-stability are essentially 

equivalent for any number of players 𝑛. One such class is games with unidimensional 

strategy spaces. In the two-player case, the differential condition for stability or definite 

instability of an equilibrium strategy in a symmetric such game is given by Proposition 1. A 

very similar result holds for all 𝑛 ≥ 2; the only difference is that the left-hand side of (9) is 

replaced by  

𝑔11 𝑥, 𝑥 +  𝑛 − 1 𝑔12 𝑥, 𝑥 . 

Importantly, the same result holds with ‘stable’ and ‘definitely unstable’ replaced by ‘𝑝-

stable’ and ‘definitely 𝑝-unstable’, respectively, for any probability vector 𝑝 satisfying (41) 

(Milchtaich, 2008, Theorem 2). This shows, in particular, that stability, dependent-stability, 

independent-stability and uniform-stability are essentially equivalent for this class of 

symmetric games. The same is true for asymmetric games, for which the obvious 𝑛-player 

generalization of Proposition 7 holds for all 𝑛 ≥ 2, and ‘stability’, ‘weak stability’ and 

‘definite instability’ can again be replaced by ‘𝑝-stability’, ‘weak 𝑝-stability’ and ‘definitely 𝑝-

instability’, respectively, for any probability vector 𝑝 satisfying (41) (Milchtaich, 2008, 

Theorem 4).  

The similarity between the two-player case and the multiplayer case of games with 

unidimensional strategy spaces extends to comparative statics. This is true for both 

symmetric and asymmetric games. That is, the obvious 𝑛-player generalizations of 

Propositions 4 and 8 hold, with Eq. (17) in the former replaced by 

𝑑𝑓

𝑑𝑠
= 𝑛𝑠  𝑔𝑠 11 + (𝑛 − 1) 𝑔𝑠 12  

𝑑𝑥𝑠

𝑑𝑠
 

2

. 

The proofs of these generalizations are virtually identical to those given in the 𝑛 = 2 case. 

The following example illustrates the result concerning symmetric games. 

Example 4. Symmetric multiplayer public good game. Each of the 𝑛 (≥ 2) players is endowed 

with a unit amount of private good, and can contribute any part 0 ≤ 𝑥 ≤ 1 of it for the 

production of a public good. The amount of public good produced depends on the players’ 

total contribution of private good, or equivalently on the average contribution 𝑥 . 

Specifically, it is given by 𝜙(𝑥 ), where the production function 𝜙:  0,1 → ℜ is increasing and 

has a negative and continuous second derivative. The payoff of a player contributing 𝑥 is 

given by 

𝑔 = 1 − 𝑥 + 𝜙 𝑥  . 

(54) 
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Therefore, the average payoff is 1 − 𝑥 + 𝜙 𝑥  , and for every 𝑠 the corresponding modified 

payoff is given by 

𝑔𝑠 = 1 −  𝑠𝑥 +  1 − 𝑠 𝑥  + 𝜙 𝑥  . 

This satisfies  𝑔𝑠 11 + (𝑛 − 1) 𝑔𝑠 12 = (1/𝑛)𝜙′′ < 0, which by Eq. (54) suggests that the 

equilibrium payoff in the modified game decreases with increasing 𝑠. A direct proof for this 

can be given as follows. Since 𝜙 is strictly concave, a necessary and sufficient condition for 

the existence of a symmetric equilibrium in the modified game in which all the players 

contribute the same amount 0 < 𝑥𝑠 < 1 is that 𝑥𝑠 satisfies the first-order condition  

𝜙′ 𝑥𝑠 = 1 + (𝑛 − 1)𝑠. 

If this equation has a solution 𝑥𝑠 in (0,1) (which may or may not be the case, depending 

on the extreme values of 𝜙′), then it is unique. Moreover, in this case, a unique solution 

exists for every value of the selfishness coefficient sufficiently close to 𝑠, the solution 

depends on the selfishness coefficient as a differentiable function, and its derivative satisfies 

𝑑𝑥𝑠

𝑑𝑠
=

𝑛 − 1

𝜙′′  𝑥𝑠 
< 0. 

This shows that selfishness reduces the players’ contributions. This reduction decreases 

social welfare, since by (55), 𝜙′ 𝑥𝑠 > 1 for 𝑠 > 0, which means that the social gain from 

converting private good into public good exceeds the loss for the contributing player. More 

specifically, by (54), for 𝑠 > 0 

𝑑𝑓

𝑑𝑠
=  𝑛 − 1 2

𝑠

𝜙′′ 𝑥𝑠 
< 0, 

where 𝑓(𝑠) is the players’ equilibrium payoff for the selfishness coefficient 𝑠.   

The effect of selfishness on social welfare in the case of a convex production function cannot 

be examined in a setting as in Example 4, since convexity entails that interior equilibria do 

not exist. However, interior equilibria may exist in a related all-or-nothing model, in which a 

player randomizes between contributing his entire endowment of private good or nothing at 

all. This model, which is described in the following example, is an 𝑛-player generalization of 

the one in Example 3.  

Example 5. Symmetric multilinear public good game. The example is similar to Example 4 

except that the players’ actual contributions of private good can only be 0 or 1 and the 

second derivative of the production function 𝜙 is either negative everywhere (so that 𝜙 is 

strictly concave) or positive everywhere (so that 𝜙 is strictly convex). The players’ (mixed) 

strategies 𝑥, 𝑥′, 𝑥′′, …, which can be viewed as independent Bernoulli random variables, 

specify the contribution probabilities. The player using strategy 𝑥 contributes or does not 

contribute if 𝑥 = 1 or 𝑥 = 0, respectively. Thus, the probability of contribution is equal to 

the expectation 𝐸 𝑥 . The strategy is pure if 𝑥 = 1 almost surely or 𝑥 = 0 almost surely; 

otherwise, it is completely mixed. The average contribution 𝑥 =  1/𝑛 (𝑥 + 𝑥′ + 𝑥′′ + ⋯ ) 

and the amount of public good produced 𝜙(𝑥 ) are also random variables. For a selfishness 

coefficient 𝑠, the (expected) payoff and modified payoff of the player using strategy 𝑥 are 

(55) 

(56) 
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given by 

𝑔 = 1 − 𝐸 𝑥 + 𝐸 𝜙(𝑥 )  

and 

𝑔𝑠 = 1 − 𝐸 𝑠𝑥 +  1 − 𝑠 𝑥  + 𝐸 𝜙(𝑥 ) . 

Suppose now that 𝑥 is a completely mixed equilibrium strategy in the modified game. 

Whether local comparative statics is increasing or decreasing depends on the stability of 𝑥. 

To check whether 𝑥 is stable, take a strategy 𝑦 ≠ 𝑥 and replace 𝑔 in (42) by 𝑔𝑠. For 𝑗 = 1, 

the expression in parenthesis in (42) is 0, since in a completely mixed equilibrium any 

strategy is a best response. This implies that, for 𝑗 > 1, the expression is not 0. This can be 

seen by writing it as  

 𝐸 𝑦 − 𝐸 𝑥   −  𝑠 +
1 − 𝑠

𝑛
 + 𝐸  𝜙 𝑥 −

𝑥

𝑛
+

1

𝑛
 − 𝜙(𝑥 −

𝑥

𝑛
)  , 

where the random variable 𝑥 − 𝑥 𝑛  is the average contribution of 𝑛 − 𝑗 players who use 

strategy 𝑥 and 𝑗 − 1 players who use 𝑦. If 𝐸 𝑦 > 𝐸 𝑥 , then for 𝑗 > 1 the distribution of 

𝑥 − 𝑥 𝑛  strictly first-order stochastically dominates the distribution for 𝑗 = 1, and therefore 

(58), which is 0 for 𝑗 = 1, is negative for 𝑗 > 1 if 𝜙 is strictly concave (i.e., decreasing 

marginal product) and positive if 𝜙 is strictly convex (increasing marginal product). If 

𝐸 𝑦 < 𝐸 𝑥 , the signs are reversed. It follows that, regardless of whether 𝐸 𝑦  is more or 

less than 𝐸 𝑥 , and for any probability vector 𝑝 with 𝑝1 < 1, inequality (42) or the reverse 

inequality holds if the production function is strictly concave or strictly convex, respectively. 

This proves, in particular, that if a completely mixed equilibrium strategy in 𝑔𝑠 exists, then it 

is stable in the former case and definitely unstable in the latter.  

Parenthetically, these considerations show that for a completely mixed equilibrium strategy 

𝑥 in the modified game, stability, dependent-stability, independent-stability and uniform-

stability are equivalent: they all hold if 𝜙 is concave but not if it is convex. It follows from a 

stochastic dominance argument similar to that in the previous paragraph that all these kinds 

of stability have the same meaning. Namely, if one or more of the players deviate from 𝑥 to 

a strategy or strategies prescribing a lower (higher) probability of contribution, then the 

unique best response for each of the remaining players is to contribute (respectively, not to 

contribute) with probability 1. It can be shown that this is also the meaning of 𝑥 being an 

evolutionarily stable strategy (ESS) in the modified game (in the sense of Broom et al., 1997; 

see also Milchtaich, 2008). However, these equivalences are specific to the game considered 

in this example; they do not hold in general. For an equilibrium strategy 𝑥 in a general 

symmetric multilinear game with more than two players, the conditions for stability, 

dependent-stability, uniform-stability and being an ESS are progressively less stringent 

(Milchtaich, 2008, Theorem 1).   

Stability or definite instability of the completely mixed equilibrium strategies suggests that 

local comparative statics in Example 5 are decreasing or increasing, respectively. This 

suggestion can be directly verified. Specifically, it can be shown that if a completely mixed 

equilibrium strategy 𝑥 in 𝑔𝑠 exists for some 𝑠 ≥ 0, then a unique such strategy exists for 

(57) 

(58) 
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every value of the selfishness coefficient close to 𝑠, and the derivative of the equilibrium 

payoff with respect to this coefficient is given by   

𝑑𝑓

𝑑𝑠
=

𝑛 − 1

𝑛

𝑠

  𝑛−2
𝑘  𝐸 𝑥 𝑘 1 − 𝐸 𝑥  𝑛−2−𝑘  𝜙 

𝑘 + 2
𝑛

 − 2𝜙 
𝑘 + 1

𝑛
 + 𝜙 

𝑘
𝑛
  𝑛−2

𝑘=0

. 

Since 𝜙′′  is by assumption a continuous function, standard calculus gives that the expression 

on the right-hand side is equal to  

𝑛 𝑛 − 1 
𝑠

𝜙′′ (𝜉)
, 

for some 0 < 𝜉 < 1. This proves that, as suggested by stability considerations, local 

comparative statics are decreasing or increasing if the production function is strictly concave 

or strictly convex, respectively. Figure 3 illustrates this result in the two-player case.  

Interestingly, the coefficient in (59) is greater by a factor of 𝑛/ 𝑛 − 1  than the 

corresponding one in (56). This implies, for example, that if the production function of the 

public good is quadratic and concave, then the effect of changing the selfishness coefficient 

on social welfare is greater (if 𝑛 = 2, twice as large) here than in the model in Example 4. 

This, however, refers only to the rates of change. For a fixed degree of altruism, the 

equilibrium payoff in one environment may or may not be greater than in the other. For a 

review of the experimental economics literature concerning both kinds of public good 

environments, see Ledyard (1995). 

7 Discussion 
It has long been known that altruism may theoretically lead to socially inefficient outcomes 

in asymmetric two-player strategic interactions, even if both individuals are equally altruistic 

towards each other (Lindbeck and Weibull, 1988; Corts, 2006). As the examples in this paper 

show, altruism may result in Pareto inferior outcomes also in symmetric two-player 

interactions. That is, the players’ material gains may be higher if they are both selfish (i.e., 

have 𝑠 = 1) rather than mildly caring (0 < 𝑠 < 1), and even higher if they resent one 

another (𝑠 > 1). The main message of the paper is that, in both symmetric and asymmetric 

games, such increasing, “paradoxical” comparative statics are unlikely if the equilibria or 

equilibrium strategies involved are statically stable, i.e., stable in the sense of Definitions 1, 

3, 4 or 5 (whichever is relevant for the kind of games considered).  

A corollary of this finding is that increasing comparative statics are unlikely in groups or 

societies in which the dynamics of strategy choices tend to exclude statically unstable 

equilibria or equilibrium strategies. In other words, if dynamic stability implies static 

stability, then increasing selfishness is only likely to make the group members better off. This 

result may be particularly significant for groups that compete with each other, so that the 

effect of altruism on social welfare may affect the group’s ability to survive in the long run. 

In this case, the above finding suggests that altruism may be favored by group selection. 

Thus, dynamic stability, which refers to intragroup dynamics, may be consequential for 

intergroup dynamics.  

   

(59) 
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Whether or not dynamic stability implies static stability generally depends on the particular 

dynamics (Milchtaich, 2008). This is illustrated by the case of symmetric 𝑛 × 𝑛 games, for 

which the notion of static stability considered in this paper coincides with evolutionary 

stability (Proposition 2). In an animal population in which such a game 𝑔 is played between 

pairs of related individuals with the same coefficient of relatedness 𝑟 (e.g., full siblings, with 

𝑟 =  0.5, which corresponds to the selfishness coefficient 𝑠 = (1 − 0.5)/(1 + 0.5) 

= 1/3; see Section ‎2), the dynamics are governed by mutation and natural selection. A 

strategy may be considered dynamically stable if it is uninvadable in the sense that, if all 

members of the population adopt it, no mutant strategy can invade. An uninvadable 

strategy is necessarily an ESS in the corresponding modified game 𝑔𝑠 (but not conversely; 

see Hines and Maynard Smith, 1979; Milchtaich, 2006a). As explained above, this means that 

in games between relatives in nature, increasing comparative statics are unlikely. That is, if 

in a different population the same game 𝑔 is played between somewhat less closely related 

individuals, the outcome is likely to be either the same as or worse than in the first 

population.  

An alternative notion of dynamic stability in symmetric 𝑛 × 𝑛 games, which is weaker (rather 

than stronger) than the static notion of evolutionary stability, is asymptotic stability under 

the continuous-time replicator dynamics (Hofbauer and Sigmund, 1998). This refers, more 

precisely, not to the stability of the strategies used by individual players, which (in the 

simple version considered here) are pure strategies, but to the stability of their frequencies 

in the population, 𝑥1 , 𝑥2 , … , 𝑥𝑛 . For a game with a payoff matrix 𝐴 =  𝑎𝑖𝑗  , the rate of 

change 𝑥 𝑖  of (pure) strategy 𝑖 (= 1,2, … , 𝑛) is determined by the difference between the 

expected payoff from using strategy 𝑖 and the mean payoff, according to the (replicator) 

equation 

𝑥 𝑖 = 𝑥𝑖   𝑎𝑖𝑗 𝑥𝑗

𝑛

𝑗 =1

−  𝑎𝑗𝑘 𝑥𝑗𝑥𝑘

𝑛

𝑗 ,𝑘=1

 . 

Asymptotic stability with respect to the replicator dynamics does not preclude increasing 

comparative statics, and instability does not preclude decreasing comparative statics. For 

example, in a generalized rock–scissors–paper game, the equilibrium strategy is globally 

asymptotically stable under the continuous-time replicator dynamics if and only if the 

equilibrium payoff is positive (Hofbauer and Sigmund, 1998, Theorem 7.7.2; Weissing, 1991, 

Theorem 5.6). In this case, the population converges to the equilibrium strategy from any 

initial interior point (i.e., a completely mixed strategy). If the equilibrium payoff is negative, 

the equilibrium is unstable, and the system converges to the boundary of the strategy space 

from any initial point other than the equilibrium strategy itself. For the payoff matrix (21), 

the equilibrium payoff in the modified game 𝑔𝑠 is positive for all 𝑠 > 1/3, and for (22) it is 

negative. Hence, for (21) the corresponding equilibrium strategy is stable under the 

replicator dynamics (as well as under other natural dynamics; see Chamberland and 

Cressman, 2000), and for (22) it is unstable. However, as seen in Figure 2, the equilibrium 

payoff increases with increasing selfishness coefficient in the former case and decreases in 

the latter. This demonstrates the point made above: depending on the dynamics, the notion 

of static stability used in Theorem 1 and the other results in this paper may or may not be 
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implied by dynamic stability. If the implication does not hold, then statically unstable 

equilibria, and hence also “paradoxical” comparative statics, are not necessarily unlikely.  

This paper does not explicitly consider the case of extreme selflessness, corresponding to a 

negative selfishness coefficient, 𝑠 < 0. Players with such preferences would prefer their own 

share of the pie, i.e., of the total payoff, to be as small as possible, which is arguably not very 

realistic. Some of the paper’s results do not use the assumption that 𝑠 ≥ 0, and are 

therefore applicable to all 𝑠. In particular, Propositions 4 and 8 suggest that the effect of 

selfishness on social welfare for negative 𝑠 is a mirror image of the effect for positive 𝑠 – 

which implies that the two effects are qualitatively different. Although this finding holds only 

under certain conditions, e.g., those expressed in these two propositions, it does indicate 

that the assumption 𝑠 ≥ 0 cannot be dropped in the results concerning the quantitative 

properties of local comparative statics, e.g., Theorems 1, 4 and 5.  

A noteworthy aspect of these quantitative properties is that they are evident for 𝑠 arbitrarily 

close to 1, i.e., for low levels of altruism or spite. This may indicate that the assumption of 

linearity of the modified payoff in the players’ (unmodified) payoffs is not overly restrictive. 

Rather, as suggested by Levine (1998), the functional form (1) (or the equivalent one (3)) 

may be viewed as a linearization, valid in the limit of weak altruism or spite, of a potentially 

more complex function. According to this view, the coefficient of altruism 𝑟 expresses the 

ratio between the marginal contributions to a player’s modified payoff of (i) the material 

payoff of any of the opponents and (ii) the player’s own material payoff. It may be 

conjectured that if this ratio is close to zero and is the same for all players, its effect on the 

average material equilibrium payoff is as described in this paper, which means that the 

effect is largely determined by the stability of the equilibria involved. 

The model presented in Section ‎2 can easily be extended to games with a continuum of 

players. In this extension, 𝑕  in (3) is the integral average of the payoffs with respect to a 

specified probability measure on the set of players. This so-called population measure, which 

should be part of the specification of the game, gives the total weight, or “size”, of each set 

of players. A number of strategic interactions involving a large number of individuals, e.g., 

network congestion games (Milchtaich, 2006c), are naturally modeled as games with a 

continuum of players. Altruism may significantly affect the equilibrium outcomes in such 

games (Chen and Kempe, 2007). A systematic extension of the results in this paper to games 

with a continuum of players would require a corresponding extension of the notion of static 

stability, which is not currently available.  

Appendix A: Identities 
The following is a list of useful identities pertaining to modified games. The identities hold 

for all symmetric games 𝑔 (with the number of players indicated by the number of 

arguments), asymmetric two-player games 𝑕, strategies 𝑥 and 𝑦, strategy profiles  𝑥1 , 𝑥2  

and  𝑦1 , 𝑦2 , and numbers 𝑟, 𝑠 and 𝑡. All the identities follow from (3), (12) and (13) after 

some algebra. 

𝑔𝑠 𝑦, 𝑦 − 𝑔𝑠 𝑥, 𝑦 − 𝑔𝑠 𝑦, 𝑥 + 𝑔𝑠 𝑥, 𝑥 = 𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑦 − 𝑔 𝑦, 𝑥 + 𝑔 𝑥, 𝑥  (60) 
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𝑔𝑠 𝑦, 𝑥 − 𝑔𝑠 𝑥, 𝑥 + 𝑔𝑠 𝑦, 𝑦 − 𝑔𝑠 𝑥, 𝑦 

= 2 𝑔𝑠 𝑦, 𝑥 − 𝑔𝑠 𝑥, 𝑥  +  𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑦 − 𝑔 𝑦, 𝑥 + 𝑔 𝑥, 𝑥   

 𝑡 − 𝑠  𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑥  

=  𝑡 − 𝑠  𝑔𝑠 𝑦, 𝑥 − 𝑔𝑠 𝑥, 𝑥  + 2𝑠 𝑔𝑡 𝑥, 𝑦 − 𝑔𝑡 𝑦, 𝑦  

+  𝑠 + 𝑡  𝑔𝑠 𝑦, 𝑦 − 𝑔𝑠 𝑥, 𝑦   

 𝑡 − 𝑠  𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑥  

= 2𝑡 𝑔𝑠 𝑦, 𝑥 − 𝑔𝑠 𝑥, 𝑥  + 2𝑠 𝑔𝑡 𝑥, 𝑦 − 𝑔𝑡 𝑦, 𝑦  

+  𝑠 + 𝑡  𝑔 𝑦, 𝑦 − 𝑔 𝑥, 𝑦 − 𝑔 𝑦, 𝑥 + 𝑔 𝑥, 𝑥   

 𝑡 − 𝑠  𝑔 𝑦, 𝑦, … , 𝑦 − 𝑔 𝑥, 𝑥, … 𝑥  

= 𝑡   𝑔𝑠 𝑦, … , 𝑦   
𝑗  times

, 𝑥, … , 𝑥 − 𝑔𝑠 𝑥, … , 𝑥   ,
𝑗  times

𝑦, … , 𝑦  

𝑛

𝑗 =1

+ 𝑠   𝑔𝑡 𝑥, … , 𝑥   ,
𝑗  times

𝑦, … , 𝑦 − 𝑔𝑡 𝑦, … , 𝑦   
𝑗  times

, 𝑥, … , 𝑥  

𝑛

𝑗 =1

 

 𝑡 − 𝑠  𝑕  𝑦1 , 𝑦2 − 𝑕  𝑥1 , 𝑥2  

= 𝑡 𝑕𝑠
1 𝑦1 , 𝑥2 − 𝑕𝑠

1 𝑥1, 𝑥2  + 𝑡 𝑕𝑠
2 𝑥1 , 𝑦2 − 𝑕𝑠

2 𝑥1 , 𝑥2  

+ 𝑠 𝑕𝑡
1 𝑥1, 𝑦2 − 𝑕𝑡

1 𝑦1, 𝑦2  + 𝑠 𝑕𝑡
2 𝑦1 , 𝑥2 − 𝑕𝑡

2 𝑦1, 𝑦2  

+  𝑠 + 𝑡  𝑕  𝑦1 , 𝑦2 − 𝑕  𝑥1 , 𝑦2 − 𝑕  𝑦1 , 𝑥2 + 𝑕  𝑥1 , 𝑥2   

𝑔𝑠 𝑥, 𝑦 − 𝑔𝑡 𝑦, 𝑥 =
𝑠 + 𝑡

2
 𝑔 𝑥, 𝑦 − 𝑔 𝑦, 𝑥   

 𝑡 − 𝑠 𝑔𝑟 𝑥, 𝑦 +  𝑠 − 𝑟 𝑔𝑡 𝑥, 𝑦 +  𝑟 − 𝑡 𝑔𝑠 𝑥, 𝑦 = 0 

Appendix B: Monotonicity 

As Example 2 shows, in different symmetric 𝑛 × 𝑛 games social welfare may decrease or 

increase with increasing selfishness. This raises the question of whether the change is always 

monotonic or whether, for example, social welfare can first decrease and then increase. If 

the modified games involved have multiple symmetric equilibria, the answer may depend on 

which equilibria are looked at. Two possibilities are: (i) the efficient symmetric equilibria, i.e., 

those giving the highest equilibrium payoff in each modified game, or (ii) the completely 

mixed symmetric equilibria. The answers to these two versions of the above question turn 

out to depend on whether the number of pure strategies 𝑛 is two, three or more. The next 

proposition concerns the efficient symmetric equilibria and the one following it concerns the 

completely mixed ones.  

Proposition A1. Let 𝑔 be a symmetric 𝑛 × 𝑛 game. For 𝑠 ≥ 0, define 

𝐹 𝑠 = max
𝑥s

𝑔 𝑥𝑠 , 𝑥𝑠 , 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 
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where the maximum is taken over all equilibrium strategies 𝑥𝑠 in the modified game 𝑔𝑠. If 

𝑛 = 2, the function 𝐹 𝑠  is monotonic, indeed nonincreasing. However, if 𝑛 ≥ 3, the 

function is not necessarily monotonic.  

Proof. The payoff matrix of a symmetric 2 × 2 game 𝑔 can always be given the following 

normalized form, by subtracting a constant from all entries and relabeling pure strategies if 

necessary: 

 
0 𝑏
−𝑐 𝑏 − 𝑐 + 𝑑

 , 

for some 𝑏, 𝑐 and 𝑑 with 𝑏 − 𝑐 + 𝑑 ≥ 0. The normalization does not affect the difference 

between the sums of the two diagonal entries and the two off-diagonal entries of the payoff 

matrix, which is equal to 𝑑 in both the normalized and unnormalized forms. For 𝑠 ≥ 0, the 

payoff matrix of 𝑔𝑠 is 

 
0 𝑏𝑠

−𝑐𝑠 𝑏𝑠 − 𝑐𝑠 + 𝑑
 , 

where 𝑏𝑠 = 𝑠𝑏 + (1 − 𝑠)(𝑏 − 𝑐)/2 and 𝑐𝑠 = 𝑠𝑐 + (1 − 𝑠)(𝑐 − 𝑏)/2. By Proposition 6 and 

the remarks following it, if 𝑑 < 0 (i.e., strategic substitutability), then selfishness decreases 

social welfare, and hence 𝐹 𝑠  is determined by 𝑠 as a nonincreasing function. Suppose that 

𝑑 ≥ 0. If both players use the same mixed strategy 𝑥 =  𝑥1 , 𝑥2  (with 𝑥1 + 𝑥2 = 1), their 

payoff can be written as 

 𝑏 − 𝑐 𝑥2 + 𝑑𝑥2
2 . 

Since this is a convex, quadratic function of 𝑥2, it attains its maximum in the unit interval 

at one of the endpoints. Since by assumption 𝑏 − 𝑐 + 𝑑 is nonnegative, this is the maximum, 

and it is attained at 𝑥2 = 1. If 𝑠 is such that 𝑐𝑠 ≤ 𝑑, then there is a pure equilibrium strategy 

in 𝑔𝑠 for which the equilibrium payoff is 𝑏 − 𝑐 + 𝑑. If 𝑐𝑠 > 𝑑 (≥ 0), then the same pure 

strategy is strictly dominated, and the payoff at the unique equilibrium in 𝑔𝑠 is 0. Since 𝑐𝑠 is 

given by an affine function of 𝑠, and 𝑐0 = (𝑐 − 𝑏)/2 ≤ 𝑑/2 ≤ 𝑑, either 𝑐𝑠 ≤ 𝑑 for all 𝑠 ≥ 0 

or there is some 𝑀 ≥ 0 such that 𝑐𝑠 ≤ 𝑑 for all 0 ≤ 𝑠 ≤ 𝑀 and 𝑐𝑡 > 𝑑 for all 𝑡 > 𝑀. As 

shown above, for every such 𝑠 and 𝑡, 𝐹 𝑠 = 𝑏 − 𝑐 + 𝑑 ≥ 0 = 𝐹 𝑡 . This proves that, for 

𝑑 ≥ 0 as well as 𝑑 < 0, the function 𝐹 𝑠  is monotonically nonincreasing (as illustrated by 

Figure 3).  

The rock–scissors–paper game with the payoff matrix (21) is an example of a symmetric 

3 × 3 game for which 𝐹 𝑠  is not monotonic. For 𝑠 > 1/3 (in which range the equilibria are 

unique), 𝐹 𝑠  is increasing (Figure 2). However, by Corollary 2, 𝐹 0 ≥ 𝐹 𝑠  for all 𝑠 (which 

implies that for 𝑠 > 1/3 the inequality is strict). ∎ 

Proposition A2. For a symmetric 𝑛 × 𝑛 game 𝑔, and 𝑠0 and 𝑠1 with 0 ≤ 𝑠0 < 𝑠1, suppose 

that there is a continuous function that assigns to each 𝑠0 ≤ 𝑠 ≤ 𝑠1 a completely mixed 

equilibrium strategy 𝑥𝑠 in the modified game 𝑔𝑠. If 𝑛 = 2, the equilibrium payoff 𝑓 𝑠  

(defined in (16)) is a monotonic function of 𝑠 in the interval  𝑠0, 𝑠1 . The same is true if 𝑛 = 3 

and the payoff matrix is non-singular. However, if 𝑛 ≥ 4, then 𝑓 𝑠  is not necessarily 

monotonic even if the payoff matrix is non-singular. 

(68) 

(69) 

(70) 
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Proof. Consider, first, the case 𝑛 = 2. Suppose that the payoff matrix is normalized as in (68) 

and that not all entries are zero. (If 𝑏 = 𝑐 = 𝑑 = 0, then 𝑓 𝑠  is identically zero, and hence 

monotonic.) Using (69), it is not difficult to show that for all but at most one value of 

𝑠0 ≤ 𝑠 ≤ 𝑠1 (namely, that for which 𝑐𝑠 = 0), the completely mixed equilibrium strategy in 𝑔𝑠 

is given by 𝑥𝑠 = (1 − 𝑐𝑠/𝑑, 𝑐𝑠/𝑑). Therefore, (70) gives  

𝑓 𝑠 =  𝑏 − 𝑐 
𝑐𝑠

𝑑
+ 𝑑  

𝑐𝑠

𝑑
 

2

=
 𝑏 + 𝑐 2

4𝑑
𝑠2 −

 𝑏 − 𝑐 2

4𝑑
. 

This is a monotonic, quadratic function of 𝑠.  

Next, suppose that 𝑛 = 3 and that 𝑔 has a non-singular payoff matrix 𝐴. For 𝑠0 ≤ 𝑠 ≤ 𝑠1, 

the payoff matrix 𝐴𝑠 of the modified game 𝑔𝑠 is given by 𝐴𝑠 = (1/2) 1 + 𝑠 𝐴 +

(1/2) 1 − 𝑠 𝐴T, where the matrix 𝐴T  is 𝐴 transpose. The determinant of 𝐴𝑠 is determined 

by 𝑠 as a polynomial 𝑃 𝑠  with a degree of three at most. In fact, the degree is even: Since 

the determinant of a matrix is equal to that of the transpose matrix, 𝑃 𝑠 = 𝑃 −𝑠  for all 𝑠, 

which implies that 𝑃(𝑠) = 𝛼𝑠2 + 𝛽, for some coefficients 𝛼 and 𝛽. These coefficients are 

not both zero, since the assumption that 𝐴 is non-singular gives 𝑃 1 = det 𝐴 ≠ 0. 

Therefore, 𝑃 𝑠 ≠ 0 for all but at most two values of 𝑠. By similar reasoning, the polynomial 

𝑄 𝑠 = det 𝐴𝑠 − 𝐸 = det (1/2) 1 + 𝑠  𝐴 − 𝐸 + (1/2) 1 − 𝑠  𝐴 − 𝐸 T , where 𝐸 is the 

3 × 3 matrix with all the entries equal to 1, has the form 𝑄(𝑠) = 𝛾𝑠2 + 𝛿, for some 

coefficients 𝛾 and 𝛿. If 𝑠 is such that det 𝐴𝑠 = 𝑃 𝑠 ≠ 0, then it follows as a special case 

from the Lemma in Milchtaich (2006b) that 𝑓 𝑠 , the completely mixed equilibrium payoff in 

the game with the payoff matrix 𝐴𝑠, satisfies the equation 

𝑓 𝑠 − 1

𝑓 𝑠 
=

det 𝐴𝑠 − 𝐸 

det 𝐴𝑠
=

𝑄 𝑠 

𝑃 𝑠 
. 

Solving for 𝑓 𝑠  and using the above expressions for 𝑃 𝑠  and 𝑄 s  gives: 

𝑓 𝑠 =
𝛼𝑠2 + 𝛽

 𝛼 − 𝛾 𝑠2 +  𝛽 − 𝛿 
. 

This expression is a monotonic function of 𝑠. In fact, it is decreasing, increasing, or constant if 

the product 𝛼𝛿 is greater than, less than, or equal to 𝛽𝛾, respectively.  

The last assertion of the proposition is demonstrated by the 4 × 4 game 𝑔 with the following 

(non-singular) payoff matrix: 

 

2 5 1 0
−7 −2 9 8
−3 7 9 −9
9 2 −4 −5

  

It can be shown that the modified game 𝑔𝑠 has a unique completely mixed equilibrium 

strategy for every 0 ≤ 𝑠 ≤ 1. Straightforward computation shows that the equilibrium 

payoff decreases for 0 < 𝑠 < 0.263 but increases for 0.263 < 𝑠 < 1. Thus, it is not 

monotonic. ∎ 
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Proposition A2 shows that, for general symmetric 𝑛 × 𝑛 games, the payoff at the completely 

mixed symmetric equilibria in the modified games is not necessarily monotonically related to 

the selfishness coefficient. Nevertheless, the finding that monotonicity does apply for 2 × 2 

games can be generalized. The key is the fact that all symmetric 2 × 2 games are potential 

games. A game with a finite number of players is called a potential game if each player’s 

payoff can be expressed as the sum of two functions, such that the first function (called the 

potential) is the same for all players and the second function only depends on the strategies 

of the other players. A necessary and sufficient condition for this is that, for every simple 

closed path of length four in the space of strategy profiles (in which a particular player 

switches from some strategy 𝑥 to another strategy 𝑦, then another player switches from 

some strategy 𝑥′  to another strategy 𝑦′ , then the first player returns to 𝑥, and finally the 

second player returns to 𝑥′ , completing the cycle), the changes in the deviating players’ 

payoffs sum up to 0 (Monderer and Shapley, 1996, Corollary 2.9). For a symmetric 𝑛 × 𝑛 

game 𝑔, this condition reads: 

 𝑔 𝑦, 𝑥 ′ − 𝑔 𝑥, 𝑥′  +  𝑔 𝑦′ , 𝑦 − 𝑔 𝑥′ , 𝑦  

+  𝑔 𝑥, 𝑦′ − 𝑔 𝑦, 𝑦′  +  𝑔 𝑥′ , 𝑥 − 𝑔 𝑦′ , 𝑥  = 0. 

In fact, for 𝑔 to be a potential game, it is necessary and sufficient that (71) holds for all pure 

strategies 𝑥, 𝑦, 𝑥′  and 𝑦′  (Monderer and Shapley, 1996, Lemma 2.10). This condition implies 

that the  𝑛 − 1 ×  𝑛 − 1  matrix defining the quadratic form 𝐺 in (28) is symmetric. In fact, 

it is not difficult to show that the above condition is equivalent to the symmetry of that 

matrix, and therefore holds trivially if 𝑛 = 2 (but not if 𝑛 = 3). The following proposition 

shows that if 𝑔 is a potential game, then completely mixed equilibrium strategies 

corresponding to different values of the selfishness coefficient lie side-by-side along a 

straight line in the strategy space. In other words, the line segment connecting any pair of 

such strategies consists of equilibrium strategies corresponding to intermediate values of 

the selfishness coefficients. The players’ payoff along that line changes monotonically.   

Proposition A3. For a symmetric 𝑛 × 𝑛 potential game 𝑔, and 𝑠0 and 𝑠1 with 0 ≤ 𝑠0 < 𝑠1, let 

𝑥𝑠0
 and 𝑥𝑠1

 be completely mixed equilibrium payoffs in the modified games 𝑔𝑠0
 and 𝑔𝑠1

, 

respectively. For every 𝑠0 ≤ 𝑠 ≤ 𝑠1, the completely mixed strategy  

𝑥𝑠 =
𝑠1 − 𝑠

𝑠1 − 𝑠0
𝑥𝑠0

+
𝑠 − 𝑠0

𝑠1 − 𝑠0
𝑥𝑠1

 

is an equilibrium strategy in 𝑔𝑠. The equilibrium payoff is equal to  

𝑠2 − 𝑠0
2

𝑠1
2 − 𝑠0

2  𝑔 𝑥𝑠1
, 𝑥𝑠1

 − 𝑔 𝑥𝑠0
, 𝑥𝑠0

  + 𝑔 𝑥𝑠0
, 𝑥𝑠0

 , 

and is thus determined by 𝑠 as a monotonic, quadratic function in the interval  𝑠0 , 𝑠1 .  

Proof. For every 𝑠, strategy 𝑥 and pure strategy 𝑗, it follows from the identity (66) (used 

twice, with 𝑡 = 𝑠1) that  

  

(71) 

(72) 

(73) 
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2  𝑔𝑠 𝑥𝑠1
, 𝑗 − 𝑔𝑠1

 𝑗, 𝑥𝑠1
  + 2  𝑔𝑠 𝑗, 𝑥 − 𝑔𝑠1

 𝑥, 𝑗  

=  𝑠 + 𝑠1  𝑔 𝑥𝑠1
, 𝑗 − 𝑔 𝑗, 𝑥𝑠1

 + 𝑔 𝑗, 𝑥 − 𝑔 𝑥, 𝑗  . 

It follows from (71), applied to 𝑦 = 𝑥𝑠1
, 𝑥′ = 𝑗 and 𝑦′ = 1, that the right-hand side of (74) is 

equal to  

 𝑠 + 𝑠1  𝑔 𝑥𝑠1
, 1 − 𝑔 1, 𝑥𝑠1

 + 𝑔 1, 𝑥 − 𝑔 𝑥, 1  . 

This expression does not involve 𝑗. Since 𝑥𝑠1
 is a completely mixed equilibrium strategy, 

𝑔𝑠1
 𝑗, 𝑥𝑠1

  on the left-hand of (74) is equal to 𝑔𝑠1
 𝑥𝑠1

, 𝑥𝑠1
 , which also does not involve 𝑗. 

Therefore, it follows from (74) that 𝑔𝑠 𝑗, 𝑥  does not depend on 𝑗 if and only if the same is 

true for the difference  

𝑔𝑠 𝑥𝑠1
, 𝑗 − 𝑔𝑠1

 𝑥, 𝑗 . 

Clearly, a sufficient condition for this is that the difference is zero, i.e.,  

𝑔𝑠 𝑥𝑠1
, 𝑗 = 𝑔𝑠1

 𝑥, 𝑗 , 𝑗 = 1,2, … , 𝑛. 

This condition is also necessary, since if the above difference does not depend on j, then  

  𝑔𝑠 𝑥𝑠1
, 𝑗 − 𝑔𝑠1

 𝑥, 𝑗   𝑥𝑠1
 𝑗

𝑛

𝑗 =1

= 𝑔𝑠 𝑥𝑠1
, 𝑥𝑠1

 − 𝑔𝑠1
 𝑥, 𝑥𝑠1

 = 𝑔𝑠1
 𝑥𝑠1

, 𝑥𝑠1
 − 𝑔𝑠1

 𝑥, 𝑥𝑠1
 

= 0, 

where the second equality follows from (13) and the third one follows from the assumption 

that the equilibrium strategy 𝑥𝑠1
 is completely mixed. This shows that the condition that 

𝑔𝑠 𝑗, 𝑥  does not depend on 𝑗 is equivalent to (75), which proves the following. 

Claim. For 𝑠0 ≤ 𝑠 ≤ 𝑠1, a strategy 𝑥 has the property that every strategy is a best response 

to it in 𝑔𝑠 if and only if it satisfies (75). A completely mixed strategy 𝑥 has that property if 

and only if it is an equilibrium strategy in 𝑔𝑠. In particular, strategies 𝑥𝑠0
 and 𝑥𝑠1

 satisfy 

𝑔𝑠0
 𝑥𝑠1

, 𝑗 = 𝑔𝑠1
 𝑥𝑠0

, 𝑗 , 𝑗 = 1,2, … , 𝑛. 

To complete the proof of the proposition, fix some 𝑠0 ≤ 𝑠 ≤ 𝑠1. For every pure strategy 𝑗,  

𝑔𝑠 𝑥𝑠1
, 𝑗 =

𝑠1 − 𝑠

𝑠1 − 𝑠0
𝑔𝑠0

 𝑥𝑠1
, 𝑗 +

𝑠 − 𝑠0

𝑠1 − 𝑠0
𝑔𝑠1

 𝑥𝑠1
, 𝑗 

=
𝑠1 − 𝑠

𝑠1 − 𝑠0
𝑔𝑠1

 𝑥𝑠0
, 𝑗 +

𝑠 − 𝑠0

𝑠1 − 𝑠0
𝑔𝑠1

 𝑥𝑠1
, 𝑗 

= 𝑔𝑠1
 
𝑠1 − 𝑠

𝑠1 − 𝑠0
𝑥𝑠0

+
𝑠 − 𝑠0

𝑠1 − 𝑠0
𝑥𝑠1

, 𝑗 , 

where the first equality follows from the identity (67), with 𝑟 = 𝑠0 and 𝑡 = 𝑠1, the second 

equality follows from (76), and the third from the bilinearity of 𝑔𝑠1
. By the Claim, (77) proves 

that the completely mixed strategy 𝑥𝑠 defined in (72) is an equilibrium strategy in 𝑔𝑠. The 

equilibrium payoff can be computed as follows. Since 𝑥𝑠 = (1 − 𝜃)𝑥𝑠0
+ 𝜃𝑥𝑠1

, with 

(74) 

(75) 

(76) 

(77) 
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𝜃 = (𝑠 − 𝑠0)/(𝑠1 − 𝑠0),  

𝑔 𝑥𝑠 , 𝑥𝑠 =  𝜃2 − 𝜃  𝑔 𝑥𝑠1
, 𝑥𝑠1

 − 𝑔 𝑥𝑠0
, 𝑥𝑠1

 − 𝑔 𝑥𝑠1
, 𝑥𝑠0

 + 𝑔 𝑥𝑠0
, 𝑥𝑠0

  

+ 𝜃  𝑔 𝑥𝑠1
, 𝑥𝑠1

 − 𝑔 𝑥𝑠0
, 𝑥𝑠0

  + 𝑔 𝑥𝑠0
, 𝑥𝑠0

 

=  𝜃2 − 𝜃 
𝑠1 − 𝑠0

𝑠0 + 𝑠1
 𝑔 𝑥𝑠1

, 𝑥𝑠1
 − 𝑔 𝑥𝑠0

, 𝑥𝑠0
  

+ 𝜃  𝑔 𝑥𝑠1
, 𝑥𝑠1

 − 𝑔 𝑥𝑠0
, 𝑥𝑠0

  + 𝑔 𝑥𝑠0
, 𝑥𝑠0

 

=
𝑠2 − 𝑠0

2

𝑠1
2 − 𝑠0

2  𝑔 𝑥𝑠1
, 𝑥𝑠1

 − 𝑔 𝑥𝑠0
, 𝑥𝑠0

  + 𝑔 𝑥𝑠0
, 𝑥𝑠0

 , 

where the second equality follows from the assumption that the equilibrium strategies 𝑥𝑠1
 

and 𝑥𝑠0
 are completely mixed and an identity similar to (63), in which 𝑠 is replaced by 𝑠0 and 

𝑡 by 𝑠1. ∎ 

Appendix C: Strong Stability 
A stable equilibrium strategy in a symmetric 𝑛 × 𝑛 game is normally also “strongly” stable in 

the sense that a continuous deformation of the payoff matrix changes the equilibrium 

strategy in a continuous manner. Specifically, the following lemma, which is essentially due 

to Selten (1983), shows that every regular ESS has this property. An ESS is said to be regular 

if every action that is a best response to it is in its support (equivalently, if the corresponding 

symmetric equilibrium is quasi-strict; see van Damme, 1991). The proposition has a corollary 

for local comparative statics; see Section ‎4.2.  

Proposition A4. Let 𝑥 be a regular ESS in a symmetric 𝑛 × 𝑛 game with a payoff matrix 𝐴. 

There is a neighborhood 𝑉 of 𝑥 in the strategy space and a neighborhood 𝑈 of 𝐴 in ℜ𝑛2
 such 

that: 

(i) every symmetric 𝑛 × 𝑛 game 𝑔 with a payoff matrix in 𝑈 has a unique 

equilibrium strategy in 𝑉, 

(ii) that strategy is a regular ESS, its support is equal to that of 𝑥, and it is the only 

equilibrium strategy in 𝑔 with that support, and  

(iii) the mapping from 𝑈 to 𝑉 thus defined is continuous.  

Proof. According to the regularity assumption, every action 𝑖 that is not in the support of 𝑥 

(i.e., 𝑥𝑖 = 0) is not a best response to 𝑥. Therefore, there are neighborhoods 𝑉 ′  and 𝑈′  of 𝑥 

and 𝐴, respectively, such that every such action 𝑖 is also not a best response to any strategy 

𝑦 ∈ 𝑉 ′  in any symmetric 𝑛 × 𝑛 game with a payoff matrix 𝐵 ∈ 𝑈′ . In particular, if 𝑦 is an 

equilibrium strategy for 𝐵, its support is necessarily contained in that of 𝑥. Let 𝑉 ⊆ 𝑉 ′  be a 

closed neighborhood of 𝑥 that includes only strategies whose support contains that of 𝑥 (i.e., 

𝑦𝑖 > 0 for every 𝑦 ∈ 𝑉 and every action 𝑖 with 𝑥𝑖 > 0).  

The regularity of 𝑥 implies that it is an essential ESS (van Damme, 1991, Theorem 9.3.6). That 

is, every symmetric 𝑛 × 𝑛 game with a payoff matrix close to 𝐴 has an ESS close to 𝑥. In 

particular, there is a neighborhood 𝑈 ⊆ 𝑈′  of 𝐴 such that every symmetric 𝑛 × 𝑛 game with 

a payoff matrix 𝐵 ∈ 𝑈 has some ESS 𝑦 ∈ 𝑉. As shown above, the support of 𝑦 – indeed, of 
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any equilibrium strategy for 𝐵 lying in 𝑉 – coincides with that of 𝑥. Since the support of an 

ESS cannot coincide with that of any other equilibrium strategy in the same game (van 

Damme, 1991, Lemma 9.2.4), conditions (i) and (ii) in the proposition hold. The mapping 

assigning to each element of 𝑈 the set of its equilibrium strategies in 𝑉 is clearly upper 

semicontinuous. Since by (i) this mapping is singleton-valued, condition (iii) also holds. ∎ 

References 
Bergstrom, T. C. (1995). On the evolution of altruistic ethical rules for siblings. American 

Economic Review 85, 58–81. 

Bernheim, B. D. and Stark, O. (1988). Altruism within the family reconsidered: Do nice guys 

finish last? American Economic Review 78, 1034–1045. 

Bester, H. and Güth, W. (1998). Is altruism evolutionarily stable? Journal of Economic 

Behavior and Organization 34, 193–209. 

Bolton, G. E. and Ockenfels, A. (2000). ERC: A theory of equity, reciprocity and competition. 

American Economic Review 90, 166–193. 

Broom, M., Cannings, C., and Vickers, G. T. (1997). Multi-player matrix games. Bulletin of 

Mathematical Biology 59, 931952. 

Bulow, J. I., Geanakopolos, J. D., and Klemperer, P. D. (1985). Multimarket oligopoly: 

Strategic substitutes and complements. Journal of Political Economy 93, 488511. 

Chamberland, M., and Cressman, R. (2000). An example of dynamic (in)consistency in 

symmetric extensive form evolutionary games. Games and Economic Behavior 30, 319–

326. 

Chen, P.-A. and Kempe, D. (2007). Altruism and selfishness in traffic routing. The 45th Annual 

Allerton Conference on Communication, Control, and Computing, September 26-28, 

2007. University of Illinois at Urbana-Champaign, IL, USA.  

Corts, K. S. (2006). When altruism lowers total welfare. Economics and Philosophy 22, 1–18. 

Crow, J. F. and Kimura, M. (1970). An Introduction to Population Genetics Theory. Harper & 

Row, New York. 

Edgeworth, F. Y. (1881). Mathematical Psychics. Kegan Paul, London. 

Eshel, I. (1983). Evolutionary and continuous stability. Journal of Theoretical Biology 103, 99–

111. 

Eshel, I. and Motro, U. (1981). Kin selection and strong evolutionary stability of mutual help. 

Theoretical Population Biology 19, 420–433. 

Fehr, E. and Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. The 

Quarterly Journal of Economics 114, 817–868. 



43 

Frank, R. H. (1988). Passions within Reason. Norton, New York.  

Frank, S. A. (1998). Foundations of Social Evolution. Princeton University Press, Princeton. 

Geanakoplos, J., Pearce, D., and Stacchetti, E. (1989). Psychological games and sequential 

rationality. Games and Economic Behavior 1, 60–79. 

Hamilton, W. D. (1963). The evolution of altruistic behavior. American Naturalist 97, 354–

356. 

Hamilton, W. D. (1964). The genetical evolution of social behaviour. I and II. Journal of 

Theoretical Biology 7, 1–52. 

Hamilton, W. D. (1970). Selfish and spiteful behaviour in an evolutionary model. Nature 228, 

1218–1220. 

Hines, W. G. S. and Maynard Smith, J. (1979). Games between relatives. Journal of 

Theoretical Biology 79, 1930. 

Hofbauer, J. and Sigmund, K. (1988). The Theory of Evolution and Dynamical Systems. 

London Mathematical Society Students Texts 7. Cambridge University Press, Cambridge, 

UK. 

Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. 

Cambridge University Press, Cambridge, UK. 

Kelly, J. L. (1955). General Topology. Springer, New York. 

Koçkesen, L., Ok, E. A., and Sethi, R. (2000). The strategic advantage of negatively 

interdependent preferences. Journal of Economic Theory 92, 274–299. 

Ledyard, J. O. (1995). Public goods: A survey of experimental research. In J. H. Kagel and A. E. 

Roth (Eds.), The Handbook of Experimental Economics, pp. 111–194. Princeton University 

Press, Princeton, NJ.  

Levine, D. K. (1998). Modeling altruism and spitefulness in experiments. Review of Economic 

Dynamics 1, 593–622. 

Lindbeck, A. (1992). Presentation Speech, 1970. In A. Lindbeck (Ed.), Nobel Lectures in 

Economic Sciences (1969–1980) – The Sveriges Riksbank (Bank of Sweden) Prize in 

Economic Sciences in Memory of Alfred Nobel, pp. 53–55. World Scientific, Singapore. 

Lindbeck, A. and Weibull, J. W. (1988). Altruism and time consistency: The economics of fait 

accompli. Journal of Political Economy 96, 1165–1182. 

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press, 

Cambridge, UK.  

Milchtaich, I. (2006a). Comparative statics of games between relatives. Theoretical 

Population Biology 69, 203–210.  

http://www.nobel.se/economics/laureates/elsevier.html
http://faculty.biu.ac.il/~milchti/papers/altruism.pdf


44 

Milchtaich, I. (2006b). Computation of completely mixed equilibrium payoffs in bimatrix 

games. International Game Theory Review 8, 483–487.  

Milchtaich, I. (2006c). Network topology and the efficiency of equilibrium. Games and 

Economic Behavior 57, 321–346. 

Milchtaich, I. (2008). Static stability in games. Bar-Ilan University, Department of Economics 

Working Paper 2008-04. 

Monderer, D. and Shapley, L. S. (1996). Potential games. Games and Economic Behavior 14, 

124–143. 

Morgan, J., Steiglitz, K., and Reis, G. (2003). The spite motive and equilibrium behavior in 

auctions. Contributions to Economic Analysis & Policy Volume 2, Issue 1, Article 5.   

Myerson, R. B., Pollock, G. B., and Swinkels, J. M. (1991). Viscous population equilibria. 

Games and Economic Behavior 3, 101–109. 

Rabin, M. (1993). Incorporating fairness into game theory and economics. American 

Economic Review 83, 1281–1302. 

Rana, I. K. (2002). An Introduction to Measure and Integration, Second Edition. Graduate 

Studies in Mathematics Vol. 45. American Mathematical Society, Providence, RI. 

Ridley, M. (1997). The Origins of Virtue. Viking, New York. 

Samuelson, P. A. (1983). Foundations of Economic Analysis, Enlarged Edition. Harvard 

University Press, Cambridge, MA. 

Selten, R. (1980). A note on evolutionarily stable strategies in asymmetric animal conflicts. 

Journal of Theoretical Biology 84, 93–101. 

Selten, R. (1983). Evolutionary stability in extensive two-person games. Mathematical Social 

Sciences 5, 269–363. 

van Damme, E. (1991). Stability and Perfection of Nash Equilibria, Second Edition. Springer-

Verlag, Berlin. 

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge, MA. 

Weissing, F. J. (1991). Evolutionary stability and dynamic stability in a class of evolutionary 

normal form games. In R. Selten (ed.), Game Equilibrium Models I: Evolution and Game 

Dynamics, pp. 29–97. Springer-Verlag, Berlin. 

Yeh, J. (2006). Real Analysis: Theory of Measure and Integration, Second Edition. World 

Scientific, NJ. 

 

http://faculty.biu.ac.il/~milchti/papers/computation.pdf
http://faculty.biu.ac.il/~milchti/papers/computation.pdf
http://faculty.biu.ac.il/~milchti/papers/computation.pdf
http://faculty.biu.ac.il/~milchti/papers/network.pdf
http://faculty.biu.ac.il/~milchti/papers/stability.pdf


Bar-Ilan University 

Department of Economics 

WORKING PAPERS  

 

1-01 The Optimal Size for a Minority 

Hillel Rapoport and Avi Weiss, January 2001. 

2-01  An Application of a Switching Regimes Regression to the Study of Urban 
Structure 

Gershon Alperovich and Joseph Deutsch, January 2001. 

3-01  The Kuznets Curve and the Impact of Various Income Sources on the Link 
Between Inequality and Development     

Joseph Deutsch and Jacques Silber, February 2001. 

4-01  International Asset Allocation: A New Perspective 

Abraham Lioui and Patrice Poncet, February 2001. 

 מודל המועדון והקהילה החרדית 5-01
 

  .2001פברואר , יעקב רוזנברג 

6-01 Multi-Generation Model of Immigrant Earnings: Theory and Application 

Gil S. Epstein and Tikva Lecker, February 2001. 

7-01 Shattered Rails, Ruined Credit: Financial Fragility and Railroad Operations in 
the Great Depression 

Daniel A. Schiffman, February 2001. 

8-01 Cooperation and Competition in a Duopoly R&D Market 

Damiano Bruno Silipo and Avi Weiss, March 2001. 

9-01 A Theory of Immigration Amnesties 

Gil S. Epstein and Avi Weiss, April 2001. 

10-01 Dynamic Asset Pricing With Non-Redundant Forwards 

Abraham Lioui and Patrice Poncet, May 2001. 

 

Electronic versions of the papers are available at 

http://www.biu.ac.il/soc/ec/wp/working_papers.html 



 

11-01 Macroeconomic and Labor Market Impact of Russian Immigration in Israel 

Sarit Cohen and Chang-Tai Hsieh, May 2001. 

12-01 Network Topology and the Efficiency of Equilibrium 

Igal Milchtaich, June 2001. 

13-01 General Equilibrium Pricing of Trading Strategy Risk 

Abraham Lioui and Patrice Poncet, July 2001. 

14-01 Social Conformity and Child Labor 

Shirit Katav-Herz, July 2001. 

15-01 Determinants of Railroad Capital Structure, 1830–1885 

Daniel A. Schiffman, July 2001. 

16-01 Political-Legal Institutions and the Railroad Financing Mix, 1885–1929 

Daniel A. Schiffman, September 2001. 

17-01 Macroeconomic Instability, Migration, and the Option Value of Education 

Eliakim Katz and Hillel Rapoport, October 2001. 

18-01 Property Rights, Theft, and Efficiency: The Biblical Waiver of Fines in the 
Case of Confessed Theft 

Eliakim Katz and Jacob Rosenberg, November 2001. 

19-01 Ethnic Discrimination and the Migration of Skilled Labor 

Frédéric Docquier and Hillel Rapoport, December 2001. 

1-02 Can Vocational Education Improve the Wages of Minorities and 
Disadvantaged Groups? The Case of Israel 

Shoshana Neuman and Adrian Ziderman, February 2002. 

2-02 What Can the Price Gap between Branded and Private Label Products Tell 
Us about Markups? 

Robert Barsky, Mark Bergen, Shantanu Dutta, and Daniel Levy, March 2002. 

3-02 Holiday Price Rigidity and Cost of Price Adjustment 

Daniel Levy, Georg Müller, Shantanu Dutta, and Mark Bergen, March 2002. 

4-02 Computation of Completely Mixed Equilibrium Payoffs 

Igal Milchtaich, March 2002. 



 

5-02 Coordination and Critical Mass in a Network Market – An Experimental 
Evaluation 

Amir Etziony and Avi Weiss, March 2002. 

6-02 Inviting Competition to Achieve Critical Mass  

Amir Etziony and Avi Weiss, April 2002. 

7-02 Credibility, Pre-Production and Inviting Competition in a Network Market 

Amir Etziony and Avi Weiss, April 2002. 

8-02 Brain Drain and LDCs’ Growth: Winners and Losers 

Michel Beine, Fréderic Docquier, and Hillel Rapoport, April 2002. 

9-02 Heterogeneity in Price Rigidity: Evidence from a Case Study Using Micro-
Level Data 

Daniel Levy, Shantanu Dutta, and Mark Bergen, April 2002. 

10-02 Price Flexibility in Channels of Distribution: Evidence from Scanner Data 

Shantanu Dutta, Mark Bergen, and Daniel Levy, April 2002. 

11-02 Acquired Cooperation in Finite-Horizon Dynamic Games 

Igal Milchtaich and Avi Weiss, April 2002. 

12-02 Cointegration in Frequency Domain  

Daniel Levy, May 2002. 

13-02 Which Voting Rules Elicit Informative Voting? 

Ruth Ben-Yashar and Igal Milchtaich, May 2002. 

14-02 Fertility, Non-Altruism and Economic Growth: Industrialization in the 
Nineteenth Century 

Elise S. Brezis, October 2002.  

15-02 Changes in the Recruitment and Education of the Power Elitesin Twentieth 
Century Western Democracies 

Elise S. Brezis and François Crouzet, November 2002. 

16-02 On the Typical Spectral Shape of an Economic Variable 

Daniel Levy and Hashem Dezhbakhsh, December 2002. 

17-02 International Evidence on Output Fluctuation and Shock Persistence 

Daniel Levy and Hashem Dezhbakhsh, December 2002. 

1-03 Topological Conditions for Uniqueness of Equilibrium in Networks 

Igal Milchtaich, March 2003. 



 

2-03 Is the Feldstein-Horioka Puzzle Really a Puzzle? 

Daniel Levy, June 2003. 

3-03 Growth and Convergence across the US: Evidence from County-Level Data 

Matthew Higgins, Daniel Levy, and Andrew Young, June 2003. 

4-03 Economic Growth and Endogenous Intergenerational Altruism 

Hillel Rapoport and Jean-Pierre Vidal, June 2003. 

5-03 Remittances and Inequality: A Dynamic Migration Model 

Frédéric Docquier and Hillel Rapoport, June 2003. 

6-03 Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-
Level Data 

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, September 2003. 

7-03 Managerial and Customer Costs of Price Adjustment: Direct Evidence from 
Industrial Markets 

Mark J. Zbaracki, Mark Ritson, Daniel Levy, Shantanu Dutta, and Mark 
Bergen, September 2003. 

8-03 First and Second Best Voting Rules in Committees 

Ruth Ben-Yashar and Igal Milchtaich, October 2003. 

9-03 Shattering the Myth of Costless Price Changes: Emerging Perspectives on 
Dynamic Pricing 

Mark Bergen, Shantanu Dutta, Daniel Levy, Mark Ritson, and Mark J. 
Zbaracki, November 2003. 

1-04 Heterogeneity in Convergence Rates and Income Determination across U.S. 
States: Evidence from County-Level Data 

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, January 2004. 

2-04 "The Real Thing:" Nominal Price Rigidity of the Nickel Coke, 1886-1959 

Daniel Levy and Andrew T. Young, February 2004. 

3-04 Network Effects and the Dynamics of Migration and Inequality: Theory and 
Evidence from Mexico 

David Mckenzie and Hillel Rapoport, March 2004.  

4-04 Migration Selectivity and the Evolution of Spatial Inequality 

Ravi Kanbur and Hillel Rapoport, March 2004. 



 

5-04 Many Types of Human Capital and Many Roles in U.S. Growth: Evidence 
from County-Level Educational Attainment Data 

Andrew T. Young, Daniel Levy and Matthew J. Higgins, March 2004. 

6-04 When Little Things Mean a Lot: On the Inefficiency of Item Pricing Laws 

Mark Bergen, Daniel Levy, Sourav Ray, Paul H. Rubin and Benjamin Zeliger, 
May 2004. 

7-04 Comparative Statics of Altruism and Spite 

Igal Milchtaich, June 2004. 

8-04 Asymmetric Price Adjustment in the Small: An Implication of Rational 
Inattention  

Daniel Levy, Haipeng (Allan) Chen, Sourav Ray and Mark Bergen, July 2004. 

1-05 Private Label Price Rigidity during Holiday Periods  

 Georg Müller, Mark Bergen, Shantanu Dutta and Daniel Levy, March 2005.  

2-05 Asymmetric Wholesale Pricing: Theory and Evidence 

Sourav Ray, Haipeng (Allan) Chen, Mark Bergen and Daniel Levy,  
March 2005.  

3-05 Beyond the Cost of Price Adjustment: Investments in Pricing Capital 

Mark Zbaracki, Mark Bergen, Shantanu Dutta, Daniel Levy and Mark Ritson, 
May 2005.  

4-05 Explicit Evidence on an Implicit Contract 

Andrew T. Young and Daniel Levy, June 2005.  

5-05 Popular Perceptions and Political Economy in the Contrived World of Harry 
Potter  

Avichai Snir and Daniel Levy, September 2005.  

6-05 Growth and Convergence across the US: Evidence from County-Level Data 
(revised version) 

Matthew J. Higgins, Daniel Levy, and Andrew T. Young , September 2005.  

1-06 Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-
Level Data (revised version) 

Andrew T. Young, Matthew J. Higgins, and Daniel Levy, June 2006. 

2-06 Price Rigidity and Flexibility: Recent Theoretical Developments 

Daniel Levy, September 2006. 



 

3-06 The Anatomy of a Price Cut: Discovering Organizational Sources of the Costs 
of Price Adjustment   

Mark J. Zbaracki, Mark Bergen, and Daniel Levy, September 2006.  

4-06 Holiday Non-Price Rigidity and Cost of Adjustment   

Georg Müller, Mark Bergen, Shantanu Dutta, and Daniel Levy.  
September 2006.  

2008-01 Weighted Congestion Games With Separable Preferences   

Igal Milchtaich, October 2008. 

2008-02 Federal, State, and Local Governments: Evaluating their Separate 
Roles in US Growth 

Andrew T. Young, Daniel Levy, and Matthew J. Higgins, December 2008.  

2008-03 Political Profit and the Invention of Modern Currency 

Dror Goldberg, December 2008. 

2008-04 Static Stability in Games 

Igal Milchtaich, December 2008. 

2008-05 Comparative Statics of Altruism and Spite 

Igal Milchtaich, December 2008. 
  


	Introduction
	Altruism and Spite
	Comparative Statics
	Symmetric Two-Player Games
	Altruism and spite in symmetric two-player games
	Local comparative statics in symmetric two-player games
	Global comparative statics in symmetric two-player games

	Asymmetric Two-player Games
	Multiplayer Games
	Discussion
	Appendix A: Identities
	Appendix B: Monotonicity
	Appendix C: Strong Stability
	References

